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ABSTRACT 

 

Human assistance innovation is essential in an increasingly aging society and one 

technology that may be applicable is exoskeletons. However, traditional rigid exoskeletons 

have many drawbacks. This research includes the design and implementation of upper-

limb power assist and rehabilitation exoskeletons based on pneumatic soft actuators.  

A novel extensor-contractor pneumatic muscle has been designed and constructed. 

This new actuator has bidirectional action, allowing it to both extend and contract, as well 

as create force in both directions. A mathematical model has been developed for the new 

novel actuator which depicts the output force of the actuator. Another new design has been 

used to create a novel bending pneumatic muscle, based on an extending McKibben 

muscle and modelled mathematically according to its geometric parameters. This novel 

bending muscle design has been used to create two versions of power augmentation gloves. 

These exoskeletons are controlled by adaptive controllers using human intention. For 

finger rehabilitation a glove has been developed to bend the fingers (full bending) by using 

our novel bending muscles. Inspired by the zero position (straight fingers) problem for 

post-stroke patients, a new controllable stiffness bending actuator has been developed with 

a novel prototype. To control this new rehabilitation exoskeleton, online and offline 

controller systems have been designed for the hand exoskeleton and the results have been 

assessed experimentally. Another new design of variable stiffness actuator, which controls 

the bending segment, has been developed to create a new version of hand exoskeletons in 

order to achieve more rehabilitation movements in the same single glove. For Forearm 

rehabilitation, a rehabilitation exoskeleton has been developed for pronation and supination 

movements by using the novel extensor-contractor pneumatic muscle. For the Elbow 

rehabilitation an elbow rehabilitation exoskeleton was designed which relies on novel two-

directional bending actuators with online and offline feedback controllers. Lastly for 

upper-limb joint is the wrist, we designed a novel all-directional bending actuator by using 

the moulding bladder to develop the wrist rehabilitation exoskeleton by a single all-

directional bending muscle. Finally, a totally portable, power assistive and rehabilitative 

prototype has been developed using a parallel processing intelligent control chip. 
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Chapter 1 

Introduction 

1.1 Overview 

Human upper-limb robotic apparatuses can be broadly catergorised into two types: 

prosthesis and orthosis. Prosthesis is an artificial body part, such as a hand or leg, that 

disabled people can wear to replace a missing body part in order to help them in their daily 

activities. Orthosis is an orthopaedic device that can be utilised to straighten alignment, 

provide support to disabled individuals, or to provide a functionality improvement for 

movable human body segments. In addition, orthosis devices are outside the human body 

and provide a suitable external force to support the desired movement of the human limb 

without considering individual joint movements of the limb. The most recent kind of 

orthosis is the wearable robot, which is generally worn by the person. The joints and 

connections of the wearable robot have lineal harmonisation with the individual joints and 

limbs, respectively. Moreover, the robot axes are aligned with the anatomic axes of the 

human limb. Wearable robots have been extensively researched in the fields related to 

rehabilitation, assistance robots, human force augmentation, impairment evaluation, and 

impedance exercises. Power assistive and rehabilitation robots have significantly increased 

in number to assist physically weak, elderly individuals and disabled people who have 

neurological damage, in order to improve their quality of life and independence. The 

exoskeleton plays a significant role in providing comfort and safety for the wearer. The 

physical human–robot interaction includes various aspects, such as transmission of power, 

actuation, uniqueness, the degree of freedom (DOF), dexterity, compliance and kinematic 

concatenation. A power assistive and/or rehabilitation exoskeleton must be safe because it 
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is in direct contact with patients and elderly individuals. It also needs to be a lightweight 

device so that it can be portable and can be used at home without any clinical assistance. In 

addition, it should be small and soft so as to be flexible in daily independent use. All of 

these features are found in the pneumatic soft muscles used to build exoskeletons and 

therefore many researchers depend on these soft actuators to manufacture power assistive 

and/or rehabilitation wearable robots. Upper-limbs are the most common examples of 

neurological weakness or damage because the worker’s hand is in direct contact with 

machines and repetitive movements at work cause neurological damage, which then 

produces a reduction in ability to control upper-limb muscles. 

1.2 Research Motivation 

In the future, with the increasing numbers of elderly people and the decreasing 

birth-rate, there might not be sufficient working individuals in the different fields, such as 

for medical well-being, cultivation and industry. In particular, the expansion of the elderly 

population and the shortfall of caregivers will be an interesting challenge. To manage this 

issue, it may be necessary to develop a device or robot to provide assistance to elderly 

individuals, disabled persons, nurses, manual workers, caregivers, and so on. Human 

assistive technology has now become a major concern and researchers in mechatronics and 

robotics have become more interested in the relationship between the machine and the 

human. Furthermore, rehabilitation and physical therapy are proven successful methods for 

regaining the ability to control body motion for individuals with physical injuries, 

neurological damage and different kinds of disabilities. The most widely recognised are 

hand disabilities, because the manual worker’s hand is in direct contact with machines and 

repeated motions at work can cause neurological damage which then produces a reduction 

in capability to control hand muscles. All of these reasons have inspired and motivated 

research into upper-limb power assistance and/or rehabilitation robots to solve these 

problems. 

1.3 Aims and Objectives 

This research aims to develop power assistive and/or rehabilitation exoskeletons 

based on pneumatic artificial muscles for human upper-limb segments (hands, fingers, 

wrist joints and elbow joints). These exoskeletons, with novel actuators, mathematical 

models and robust controllers, will be lightweight, soft, small, portable, fit for any adult (a 
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single device suitable for any person to wear), with high output force but safe for human 

interaction.   

To achieve these targets the following objectives are set: 

1- Develop a novel Extensor-Contractor pneumatic artificial muscle. 

2- Develop a kinematic analysis for the novel Extensor-Contractor actuator. 

3- Develop a mathematical model for the novel Extensor-Contractor actuator output 

force. 

4- Design a novel soft bending actuator based on the extensor McKibben muscle. 

5- Develop a kinematic analysis for the novel bending actuator. 

6- Develop a mathematical model for the novel bending actuator output force and 

enhance this mathematical model to decrease the error between the model and the 

experimental results. 

7- Construct a power assistive glove to provide augmentation force for the fingers 

which is controlled by human intention; this glove could be used for elderly or 

partially disabled individuals or for force augmentation for manual workers with 

heavy work. 

8- Design and construct a novel, fully soft (materials and actuation) rehabilitation 

exoskeleton glove, fit for any adult and capable of assisting all hand rehabilitation 

motions. 

9- Develop and build a novel soft wearable robot for wrist power assistive 

rehabilitation purposes; this device should be portable and capable of performing 

all wrist movements including Flexion/Extension, Radial/Ulnar deviation and 

circular movements. 

10- Design and construct a novel soft wearable device for elbow and forearm power 

assistive rehabilitation; this device should have the ability to assist the elbow 

Flexion/Extension movements and forearm pronation and supination movements. 

11- Design and implement a totally portable rehabilitation system based on parallel 

processing controllers on-chip, with a small and lightweight air compressor as an 

air pressure supply for the pneumatic rehabilitation system. 

12- Critically evaluate the suitability of the soft exoskeleton system for safe human 

interaction. 
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1.4 Methodology 

The methodology that will be adopted in order to complete the present project will 

involve the following steps: (Figure 1.1 shows the research methodology and its key steps). 

1- Reviewing previous research: previous research which is related to power assistive 

and/or rehabilitation devices and soft actuators or any relevant field has been 

reviewed to understand the project area and construct a clear understanding about 

the whole design system. This review has also provided us with good knowledge on 

the different areas of research in the soft wearable robot systems. 

2- Identifying the research problem: the first step in the research was identifying the 

research problem by reviewing previous work and specifying the drawbacks in the 

previous exoskeleton systems. 

3- Describing the available solutions and validating those that are essential for 

improving the performance of the wearable system. 

4- Designing and constructing novel soft actuators. 

5- Developing a kinematic analysis and mathematical model for these actuators. 

6- Developing a novel soft exoskeleton design for each upper-limb segment.  

7- Developing a suitable controller system for each exoskeleton part. 

8- Evaluating and validating the proposed designs: the proposed design will be 

evaluated by implementing an experimental evaluation of the system to assess its 

effectiveness. 

9- Ongoing modification of the design system based on the evaluation, to improve the 

system performance and to optimise its design. 

10- Finalising conclusions, publishing results and submitting a PhD thesis for 

examination. 

 

1.5 List of Contributions 

1- Design and construct a novel extensor-contractor pneumatic artificial muscle 

(ECPAM). 

• This new actuator has bidirectional action allowing it to both extend and 

contract, as well as create force in both directions, with controllable 

stiffness at a specific length and fixed stiffness with variable lengths. 
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Figure 1.1: Stages of Research Methodology. 

 

Novel wrist 

Exoskeleton 

Novel hand 

Exoskeleton 

Novel forearm 

Exoskeleton 

Novel elbow 

Exoskeleton 

Design and construct novel 

soft actuators  

Control 

algorithm 

Control 

algorithm 

Control 

algorithm 

Control 

algorithm 

Evaluating and validating the 

proposed system 

Modification to 

improve the system 

Drawing conclusions 

and publicize 

Submitting the PhD 

thesis 

Develop a kinematic analysis 

and mathematical model 

Reviewing previous 

research 

Identifying research 

problem 

Describing the available 

solutions and validating them 



6 
 

• A mathematical model has been developed for the new novel ECPAM 

which describes the actuator output force. 

• A stiffness position controller has been developed to control the stiffness of 

the actuator (ECPAM) at specific lengths. Verification was conducted 

using the controller and the average stiffness and position errors were 

found to be less than 5%. 

2- Design and construct novel extender bending pneumatic artificial muscles 

(EBPAMs).  

• Create kinematics analysis for EBPAM depending on its geometrical 

parameters.  

• Develop a novel axial output force mathematical model for EBPAMs, with 

an average percentage error of 15.81% between experimental results and 

our mathematical model.  

• Enhance our mathematical model based on the loss of radial expansion 

pressure of the proposed actuators in order to obtain an average percentage 

error reduction of 45.21% for our last model in previous point.  

• Enhance our last mathematical model based on actual muscle diameter in 

order to have an average percentage error reduction of 29.81% for our last 

model in previous point.  

• Enhance our last mathematical model based on the total muscle actual 

volume in order to have an average percentage error reduction of 22.64% 

for our last model in previous point.  

3- A new design for a power assistive glove for partially disabled individuals with a 

novel solution for release movement problems after assistive has occurred.  

4- A new design for a power augmentation glove for partially disabled or healthy 

individuals with a novel hybrid, cascaded position/force intelligent control system, 

based on human intention. 

5- A fingers rehabilitation glove has been developed to bend the fingers by using our 

novel bending muscles. 

• To solve the zero position (straight fingers) problem for post-stroke 

patients, a new controllable stiffness bending actuator has been developed 

with a novel prototype. 
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• Online and offline controller systems have been designed for the hand 

exoskeleton and the results have been assessed experimentally. 

6- New designs of variable stiffness actuators to control the bending segment have 

been developed to create a new version of hand exoskeletons in order to achieve 

more rehabilitation movements in the same single glove, such as hook and table 

fists. 

7- A forearm rehabilitation exoskeleton has been developed for pronation and 

supination movements. 

8- The elbow rehabilitation exoskeleton is designed based on our novel bending 

actuators with online and offline feedback controllers. 

9- A novel two-directional bending actuator has been developed based on moulding a 

bladder from elastic liquid materials. This bending actuator has been used to 

enhance the elbow exoskeleton so as to make it capable of performing the 

rehabilitation exercises vertically and horizontally with a controllable stiffness. 

10- A wrist exoskeleton has been developed in order to perform the wrist rehabilitation 

movements. 

11- The novel all-directional bending actuator has been developed based on the 

moulding bladder technique. This actuator is used to develop a new version of the 

wrist rehabilitation exoskeleton. 

12- Design and implementation of a totally portable rehabilitation system based on 

parallel processing controllers on-chip. 

 

1.6 Organisation of the thesis 

This thesis is organised into nine chapters so as to present the different aspects of 

the research that has been undertaken to complete the goals described above. 

Chapter 1: Introduction : - This chapter presents a general overview of the power assistive 

and rehabilitation exoskeleton. It then illustrates the research motivation, aims and 

objective for this PhD research. It also explains the research methodology and lists 

the thesis’ contributions. 

Chapter 2: Upper-Limb Power-Assistive and/or Rehabilitation Robots : - This chapter 

presents a review of previous research in the power assistance and rehabilitation 

area. 
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Chapter 3: Soft Actuators : - This chapter presents background information on soft 

actuators, especially traditional PAMs, and discusses their numerous advantages 

over other actuation technologies. Furthermore, current applications of PAM 

actuators are briefly considered, along with the modelling efforts that have been 

used thus far to predict the behaviour of these devices. Given the current state of 

PAM technology and its analysis, motivation is established to develop novel PAM 

actuators for new applications. 

Chapter 4: The Design and Mathematical Model of a Novel Variable Stiffness Extensor-

Contractor Pneumatic Artificial Muscle (ECPAM) : - This chapter presents the 

design of a novel Extensor-Contractor Pneumatic Artificial Muscle (ECPAM). 

Furthermore, it contains the kinematics analysis of ECPAM with a mathematical 

model for these actuators. 

Chapter 5: The Design and Mathematical Modelling of Novel Extensor-Bending 

Pneumatic Artificial Muscles (EBPAMs) : - This chapter presents the design of 

novel Extensor Bending Pneumatic Artificial Muscles (EBPAMs) for soft 

exoskeletons. Additionally, this chapter describes the design of the kinematic 

analysis and mathematical model for these actuators. 

Chapter 6: Power Assistive and Augmentation Wearable Robot Based on Soft Actuators : - 

This chapter presents the design of soft, wearable gloves for power assistance and 

augmentation based on pneumatic soft actuators. 

Chapter 7: Upper-Limb Rehabilitation Exoskeletons : - This chapter presents the design 

and construction of hand, forearm and wrist rehabilitation devices.  

Chapter 8: Parallel Processing based on On-Chip Controllers for a Totally Portable 

Exoskeleton : - This chapter presents the design and implementation of a totally 

portable rehabilitation system based on parallel processing controllers on-chip.   

Chapter 9: Conclusion and Future Work: - This chapter concludes the entire research and 

presents a plan for future work.  
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Chapter 2 

Upper-Limb Power-Assistive and/or 

Rehabilitation Robots 

2.1 Introduction 

Robots are increasingly relied upon to promote efficient and enhanced living in 

modern day society. It can lead to a major improvement in quality of life if a robot assists 

and supports physically disabled and elderly individuals in their daily lives; for example, in 

social participation, rehabilitation, nursing, agriculture, medical welfare and so on. 

Furthermore, it is an increasing challenge to overcome the scarcity of caregivers for people 

in need of care. Elderly and disabled individuals need to be able to live independently if 

they so desire. In addition, rehabilitation and physical therapy are effective ways of 

regaining the ability to control body movement for people with neurological damage, 

physical injuries and other causes of disability. The most common are hand disabilities 

because the worker’s hand is in direct contact with machines and repetitive movements at 

work cause neurological damage which then produces a decrease in the ability to control 

hand muscles. All the above reasons have inspired the invention of numerous kinds of 

power assistance and rehabilitation robots to solve these problems.  

This chapter describes the human upper-limb anatomy by demonstrating the joints 

and movements of each segment in the upper-limb. A classification has been made for the 

power assistive and/or rehabilitation devices depending on their actuation type, such as 

electric actuations, hydraulic actuations and soft actuation. In each class we did a literature 
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review of previous research, drew conclusions from the literature review and discussed the 

pros and cons of previous research and what the challenges were in this field. 

2.2 Upper-Limb Anatomy 

The human upper-limb consists of three parts: hand, forearm and upper-arm (see 

Figure 2.1 a). The human hand consists of two segments: finger joints and wrist joints (see 

Figure 2.1 b); each finger has three joints. 

Figure 2.1 c shows shoulder and elbow segments. The shoulder segment has three 

bones: the humerus, scapula and clavicle. The humerus is the longest bone in the upper-

limb of humans, extending from the shoulder to the elbow. The scapula, or shoulder blade, 

consists of two flat triangular bones, each forming the back part of a shoulder in humans. 

The clavicle, or collarbone, consists of two slender bones, each articulating with the 

sternum and a scapula and forming the anterior part of a shoulder. The elbow is the bend or 

joint of the human arm between the upper arm and forearm. The wrist is the carpus or 

lower part of the forearm where it joins the hand.       

 

Figure 2.1: Human upper-limb anatomy (R. Gopura, D. Bandara, K. Kiguchi, & G. Mann, 

2016a). 
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2.2.1 Human Shoulder Joint Motion 

The shoulder complex is the largest joint of the upper-limb and has three DOF 

movements, as shown in Figure 2.2. Generally, there are three shoulder joint movements: 

flexion (forward and upward movement of the humerus on the glenoid in the sagittal 

plane)/extension (upward movement of the humerus on the glenoid in the sagittal plane 

towards the rear of the body) (see Figure 2.2 a), abduction (elevation of the humerus on the 

glenoid in the frontal (coronal) plane)/adduction (movement of the humerus on the glenoid 

in a medial direction, usually accompanied with some degree of shoulder flexion) (see 

Figure 2.2 b) and internal rotation (rotation of the humerus on the glenoid in a medial 

direction)/external rotation (rotation of the humerus on the glenoid in a lateral direction) 

(see Figure 2.2 c).  

 

Figure 2.2: Shoulder joint movements (R. Gopura, D. Bandara, K. Kiguchi, & G. K. Mann, 

2016b). 

2.2.2 Human Elbow Joint Motion 

The elbow is the middle joint of the arm between the wrist and the shoulder joints 

and has two DOFs, as shown in Figure 2.3. Generally, the elbow joint has two movements: 

flexion/extension (see Figure 2.3 a) and supination/pronation (see Figure 2.3 b).  

2.2.3 Human Wrist Joint Motion 

The wrist is the last joint before the fingers and the first after the elbow joint. It has 

two DOF movements, as shown in Figure 2.4. Generally, the wrist joint has two 

(a) (b) (c) 
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movements: flexion/extension (see Figure 2.4 a) and radial/ulnar deviation (see Figure 2.4 

b).  

 

Figure 2.3: Elbow joint movements (Gopura et al., 2016b). 

 

 

Figure 2.4: Wrist joint movements (Gopura et al., 2016b). 

2.2.4 Human Finger Joint Motion 

Figure 2.5 shows the human fingers and their joints: index, middle, ring and pinky 

fingers each contain three joints. The largest joint at the root of the finger is called the MP 

joint (metacarpophalangeal joint). The middle joint of each finger is the PIP joint 

(proximal interphalangeal joint). The terminal joint is called the DIP joint (distal 

interphalangeal joint). The thumb also has three joints: the root joint at the back of the 

palm is the CM joint (carpometacarpal joint). The middle joint has the same name as the 

root joints in the fingers: the MP joint. Finally, the IP joint (interphalangeal joint) is the 

name of the terminal joint of the thumb. 

(a) (b) 

(a) (b) 
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Figure 2.5: The human fingers and their joints. 

2.3 Power Assistive and/or Rehabilitation Robots 

During the last two decades, power assist and/or rehabilitation robots have been 

attracting more interest (Rocon & Pons, 2011). There is abundant research in this field and 

we can classify this research by the type of actuators used. The most common actuator 

categories are: electric, hydraulic and pneumatic soft actuators.     

2.3.1 Power Assistive and/or Rehabilitation Robots using Electric 

Actuators 

 Electric actuators are gadgets controlled by engines that transform electrical energy 

into mechanical torque. Due to no oil is included, electrical actuators are thought to be one 

of the cleanest and most easily available types of actuators. There are numerous types of 

electric actuators and their function is dependent on the motor that they use. Electric 

actuators are commonly used to manufacture wearable robots for power assistance and 

rehabilitation, and the following research studies are some examples of that:   

 Frisoli et al. (2005) designed an exoskeleton to support the human shoulder 

movements and the elbow flexion/extension motions. This exoskeleton has 5 DOFs 

actuated by 4 DC motor groups and the motor groups’ mass is approximately 40% of the 

whole exoskeleton mass. The prototype has been optimised to solve the problem of high 

mass and high stiffness in exoskeletons by using lightweight units, such as special carbon 

fibre mechanical components (see Figure 2.6 a).  

 Nef, Mihelj, Colombo, and Riener (2006) presented an upper-limb exoskeleton 

called ARMin. This device provides 6 DOF movements for the rehabilitation patients in 

the clinic, actuated by 4 DC motors. Force and position sensors have been equipped with 
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motors to reach the desired force and position for each rehabilitation movement. ARMin 

has been tested with five patients for more than 30 hours and the test results were 

extremely successful (see Figure 2.6 b). 

 Ball, Brown, and Scott (2007) developed a rehabilitation robot for stroke patients 

called MEDARM. This exoskeleton is capable of providing 6 DOFs for shoulder and 

elbow joints, actuated by electric motors with cables and belts to improve the power-to-

weight ratio of their exoskeleton. MEDARM provides most shoulder movements and one 

for the elbow joint, and it can independently monitor and control all of its 6 DOFs (see 

Figure 2.6 c). 

 Retolaza, Pujana-Arrese, Cenitagoya, Basurko, and Landaluze (2008) presented a 

power assistive upper-limb exoskeleton device to support the manual worker in the 

workplace, especially during routine or repetitive movements. Their design was developed 

to amplify the shoulder and elbow motions with 5 DOFs actuated by a combination of 

conventional electric motors and pneumatic artificial muscles (see Figure 2.6 d). 

 Ren, Park, and Zhang Sr (2009) developed a whole upper-limb exoskeleton for 

fully paralysed stroke patients, especially for the hand and fingers gripping movement. 

This exoskeleton has 10 DOFs with DC motors to serve the purpose of diagnosis, 

treatment, training and outcome evaluation. Experimental results proved that this device 

provides more accurate diagnosis results than the clinician (see Figure 2.6 e).    

 Rahman, Ouimet, Saad, Kenne, and Archambault (2010) designed a wearable robot 

for rehabilitation purposes called ExoRob for the human shoulder and elbow joints. 

ExoRob is an exoskeleton robot that has 2 DOFs to support the internal/external rotation 

motion for the shoulder joint and the flexion/extension for the elbow joint. The researchers 

also focused on the mathematical model and the control algorithm of their design. A 

kinematic model type and nonlinear sliding mode controller were used (see Figure 2.6 f).   

 Ivanova, Bulavintsev, Ryu, and Poduraev (2011) proposed a 7 DOFs exoskeleton 

placed on a wheelchair to serve elderly and disabled people. Their design was 

manufactured to provide assistive movements for shoulder and elbow joints to perform the 

activities of daily living efficiently. Many tests have been done to examine the mechanism 

control performance of this prototype; the results were extremely encouraging (see Figure 

2.6 g). 
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 Ergin and Patoglu (2012) introduced an exoskeleton device to the rehabilitation 

exercises for shoulder and elbow segments called ASSISTON-SE. ASSISTON-SE, using 

independent active control and designed to amplify the force movements of both passive 

translational movements of the centre of the glenohumeral joint. Implementation details for 

their prototype have been provided, as well as the results of numerous experiments done 

for their prototype, to prove the ability of this device to track movements of the shoulder 

girdle (see Figure 2.6 h). 

 J. A. Martinez, Ng, Lu, Campagna, and Celik (2013) designed and presented the 

implementation and specifications of the forearm and wrist rehabilitation device for stroke 

patients. This device provides 3 DOF movements for the wrist joint and forearm segment 

to support pronation/supination, flexion/extension, and adduction/abduction joint motions. 

Using three Maxon DC brush motors for actuation, the design focused on the safety 

requirements by using mechanical rubber parts and an easily accessible emergency stop 

switch (see Figure 2.6 i). 

 Yamamoto et al. (2014) developed a rehabilitation robot for supporting patients 

when performing their rehabilitation exercises. This design is capable of detecting human 

intentions and supports any movement of the wrist joint. This device is also small and 

lightweight so that patients can use it in a clinic or at home. Actuator units receive a 

biological signal from the muscles to decide which movement the patient needs (see Figure 

2.6 j).  

 Xiang et al. (2015) presented a one DOF wrist and forearm rehabilitation device for 

stroke patients. This device is capable of providing different training modes and creating a 

virtual-reality game for the patient to perform during the training. The device had been 

examined by two stroke patients and one chronic patient with left hemiplegia, and the 

results were successful. The robot is reconfigurable to each rehabilitation mode and it is 

portable (see Figure 2.6 k).  

S. Chen et al. (2016) presented a rehabilitation robot called NTUH-ARM to rehabilitate the 

human upper-limb. This robot has 7 DOFs actuated by FAULHABER DC motors to 

perform most upper-limb rehabilitation exercises. Two 6-axis force/torque sensors have 

been used to provide a movement capture for the monitor and the controller. This device 

has been tested clinically by six patients to evaluate the performance of the robot, and the 



16 
 

results were examined by physical therapists, also revealing promising results (see Figure 

2.6 l). 

 

Figure 2.6: Power Assistive and/or Rehabilitation Robots using Electric Actuators: (a) The 

arm exoskeleton (Frisoli et al., 2005); (b) ARMin exoskeleton (Nef et al., 2006); (c) 

MEDARM system (Ball et al., 2007); (d) Exoskeleton Prototype IKO (Retolaza et al., 

2008); (e) A 8+2 DOF Robot (Ren et al., 2009); (f) Exoskeleton Robot (Rahman et al., 

2010); (g) Prototype of The 7-DOF (Ivanova et al., 2011); (h) Solid Model of ASSISTON-

SE (Ergin & Patoglu, 2012); (i) Wrist Gimbal (J. A. Martinez et al., 2013); (j) The 

Prototype Rehabilitative Training Robot (Yamamoto et al., 2014); (k) CAD drawing of 

The Robot (Xiang et al., 2015); (l) NTUH-ARM (S. Chen et al., 2016).     

2.3.2 Power Assistive and/or Rehabilitation Robots using Hydraulic 

Actuators 

 Hydraulic actuators consist of a cylinder or liquid engine that uses pressure driven 

energy to facilitate mechanical operations. The mechanical movement produces an output 

(c) (d) 

(e) (f) (g) (h) 

(i) (j) (k) (l) 

(a) (b) 
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involving linear, rotary or oscillatory movement. Because the fluids are approximately 

incompressible, they take a long time to generate speed and force and, likewise, slow back 

down. However, they can apply a large force. The hydraulic actuators are widely used to 

create exoskeletons for power assist and rehabilitation, and the following studies are some 

examples of that:  

 Mistry, Mohajerian, and Schaal (2005) proposed an experimental prototype to 

study the human upper-limb in 3D motion. This prototype has a 7 DOFs hydraulically 

actuated exoskeleton robot arm to examine the behaviour of human upper-limb motor 

control. An independent PD servo controller has been used at each joint to create an 

efficient control structure to fit most human upper-limb movements. Force field 

experiments have been done to test the effectiveness of this device and the results were 

promising (see Figure 2.7 a).  

 Pylatiuk et al. (2009) presented an elbow flexion orthosis device for rehabilitation 

purposes with one DOF for the elbow joint. The major advantages of this device are that it 

is lightweight, portable, safe and inexpensive to facilitate a patient’s independent usage at 

home or at a clinic etc. A flexible fluidic actuation system has been used to actuate this 

prototype. Surface EMG electrodes are used to control elbow flexion and extension 

movements. The system is also designed to provide the extra elbow flexion force that 

enables the patient to carry an additional load, such as a glass of water (see Figure 2.7 b).      

 Vitiello et al. (2013) proposed a powered elbow exoskeleton designed for 

poststroke physical rehabilitation, ensuring maximum safety and comfort to the patient. 

They used lightweight mechanical materials to minimise the pressure on the skin. This 

device has 4 DOFs to drive elbow flexion and extension movements. These DOFs are 

actuated hydraulically by using two cylinders and tendons to a suitable control for the joint 

movements under rehabilitation training conditions (see Figure 2.7 c). 

 Polygerinos, Galloway, Sanan, Herman, and Walsh (2015) designed a power 

assisted glove for full finger assistance for the activities of daily life. The glove is 

manufactured in elastomeric and inextensible materials so as to be lightweight and to 

create soft actuators that conform to the patient’s fingers and are able to create enough 

hand grasp force. A fluidic pressure controller, which depends on human intentions, is used 

to actuate and control the glove. The patient’s intention is detected by monitoring the EMG 

signals from electrodes placed on the forearm surface of the patient (see Figure 2.7 d).   
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 Otten et al. (2015) developed a hydraulically powered self-aligning upper-limb 

exoskeleton for identifying the reflex properties of the shoulder and elbow joints in stroke 

patients. Powerful hydraulic motors are used to actuate this rehabilitation device and to 

generate high torques and power using lightweight actuators. This exoskeleton is also used 

for diagnostic purposes to diagnose the level of muscle/neurone damage in the upper-limb 

(see Figure 2.7 e). 

 Polygerinos, Wang, Galloway, Wood, and Walsh (2015) presented a soft glove to 

assist the rehabilitation exercises for functional grasp pathologies. The prototype employs 

soft actuators consisting of moulded elastomeric chambers with fibre reinforcements that 

produce suitable curvatures at finger joints under fluid pressurisation. A closed-loop 

controller is used to regulate the pressure inside the actuators. This device is completely 

portable with a rechargeable battery (see Figure 2.7 f). 

 

Figure 2.7: Power Assistive and/or Rehabilitation Robots using Hydraulic Actuators: (a) 

Exoskeleton Robot (Mistry et al., 2005); (b) Components of a Fluidically Driven Elbow 

Training System Prototype (Pylatiuk et al., 2009); (c) NEUROExos (Vitiello et al., 2013); 

(d) The fabricated soft robotic glove prototype (Polygerinos, Galloway, et al., 2015); (e) 

LIMPACT (Otten et al., 2015); (f) The prototyped soft and lightweight robotic hand 

assistive device (Polygerinos, Wang, et al., 2015).   

(a) 
(b) 

(c) 

(f) (e) 
(d) 
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2.3.3 Power Assistive and/or Rehabilitation Robots using Pneumatic Soft 

Actuators 

 Pneumatic soft actuators are actuators motored by air pressure created from soft 

materials, such as rubber tubes acting as a bladder and braided sleeves. They are the safest 

actuators for direct human interaction because they are lightweight and contain no rigid 

parts. 

 Noritsugu, Yamamoto, Sasaki, and Takaiwa (2004) presented a power assistive 

wearable glove to assist in making hand-gripping activities easier and safer in day to day 

life (see Figure 2.8 (a)). McKibben type pneumatic artificial muscles (PAMs) were used, 

placed on the front of the glove surface, one for each finger and two muscles for the palm 

(thumb side), one on the back and the other one on the face of the hand. Curved type 

PAMs are used by reinforcing one side of the muscle then, when pressurised, the muscle 

will be curved on the reinforced side. This device used the expiration switch (like video 

games controller switches) as the input signal since the expiration switch is generally 

easily used by disabled patients. This work was developed by Sasaki, Noritsugu, and 

Takaiwa (2005a) to manufacture a power assistive device for the wrist joint by also using a 

PAMs rotary type soft actuator (see Figure 2.8 (b).  

 

Figure 2.8: Exoskeletons: (a) Power Assist Glove (Noritsugu et al., 2004); (b) Assisting 

Scene (Sasaki et al., 2005a); (c) Power Assist Splint (Noritsugu, 2005); (d) ASSIST 

(Sasaki, Noritsugu, & Takaiwa, 2005b). 
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 This type of pneumatic soft actuator consists of a rubber tube, two silicone rubber 

tubes and polyester bellows, which are reinforced with fibre to produce bending 

movements. In order to develop this study, Noritsugu (2005) extended the previous wrist 

assist device into an upper-limb splint to produce assistive power for the wrist and elbow 

joints (see Figure 2.8 (c)). A power assistive device for the elbow joint was driven by a 

contraction curved PAM attached to the elbow through a supporter, and the assistive force 

was controlled by adjusting the pressure inside the muscle. Moreover, a control technique, 

which takes into account a human aim, is proposed by Sasaki et al. (2005b) (see Figure 2.8 

(d)). In the proposed technique, a focal point of pressure, calculated from the contact force 

between the lower arm and appliance, is utilised as a human aim info signal and the 

adequacy of the device is assessed utilising EMG.  

 A new design for power assistive wearable gloves has been developed by 

Noritsugu, Takaiwa, and Sasaki (2008) using two joint muscles for each finger except the 

thumb (see Figure 2.9 (a)).  

 

Figure 2.9: (a) Two Joints Power Assisted Glove (Noritsugu et al., 2008); (b) Power-Assist 

Glove (Toya, Miyagawa, & Kubota, 2011).   

 Two curved type PAMs with different diameters are connected in series on the 

back of each finger. The muscle with the smaller diameter is placed on the terminal two 

joint of the finger and the bigger diameter one on the root joint, with each muscle provided 



21 
 

by a split air supply. The advantage of this technique is its capability of controlling the 

finger joints separately and to provide more movement types for assistance and 

rehabilitation. Similar to this, a design with two joints for each finger has been made by 

Toya et al. (2011), but this device used soft materials moulded to create the bending type 

artificial muscles (see Figure 2.9 (b)). The controller of this design depends on human 

intention as the input by using bending sensors attached to the muscles. In addition, the 

movements are divided into only three modes: power grip, precision grip, and tip pinch; 

the controller predicts the mode by matching the grasping angles with the stored database.   

 Another new design of a hand power assistive wearable robot was developed by 

Kadowaki, Noritsugu, Takaiwa, Sasaki, and Kato (2011) (see Figure 2.10).  

 

Figure 2.10: Power-assist glove (Kadowaki et al., 2011). 

 The design of this wearable robot is completely made up of soft materials, inspired 

by McKibben's muscles. Each muscle has two bladders: a rubber one and one comprising a 

balloon covered by woven elastic. These muscles are placed on the back of the hand, one 

for each finger, except that the thumb has two muscles. PI controllers were used to decide 

the bending angles for the fingers based on a bending sensor attached to each finger joint. 
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Estimated timing is used to perform the release movement after the gripping movement. 

They tried to use the EMG signals to control the release movements but they faced a 

problem due to the similarity between the EMG signals from the fingers and the wrist joint 

movements. Improvements to the controller algorithm of this robot have been achieved by 

(Sasaki, Noritsugu, Takaiwa, & Konishi, 2014). A neural network controller is used (Self-

Organizing Maps) to recognise the different EMG signals from the wrist and the fingers 

during a release movement. However, this method assumed that the fingers and the wrist 

move independently (if the fingers are moving, the wrist is fixed and vice versa). 

 The power assistive wearable robot is not only for disabled or elderly people, but 

also for assisting with heavy manual work, such as nursing staff moving disabled patients 

from/to hospital beds. Kobayashi, Suzuki, Nozaki, and Tsuji (2007) proposed a muscle suit 

consisting of the upper-limb soft exoskeleton to provide muscular support for a manual 

worker (see Figure 2.11 (a)).  

 

Figure 2.11: (a) Power Assist System for a Manual Worker by using a Muscle Suit 

(Kobayashi et al., 2007); (b) The power-assist robot arm (Kadota, Akai, Kawashima, & 

Kagawa, 2009).  

(a) 

(b) 
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 This suit is actuated by PAMs to assist the upper-limbs and the human back, and 

also to help nurses move disabled patients from/to the wheelchair. Another assistive power 

suit has been developed by Kadota et al. (2009) (see Figure 2.11 (b)).  This suit also 

consists of a wearable exoskeleton for both upper-limbs and the back in order to support 

people who carry heavier loads than normal. Bi-articular and singular PAMs have been 

used to manufacture this suit and a PI controller used as a control method, based on a 

balloon sensor (inflated balloon with a differential pressure sensor) as a feedback pressure 

when it has compressed, placed under the elbow muscles. The performance of this device 

was evaluated by monitoring the EMG signals with and without assistance. Results showed 

that there was less muscular fatigue with the assistive than without, whilst carrying the 

same load. 

 3D printed pneumatic soft actuators also play a part in rehabilitation devices, such 

as the hand rehabilitation wearable glove proposed by Polygerinos et al. (2013) (see 

Figure 2.12 (a)).  

 

Figure 2.12: (a) Top and bottom views of the prototype showing the soft actuators and the 

open palm glove configuration with the velcro straps (Polygerinos et al., 2013); (b) A 

ExoGlove prototype (Yap, Lim, Nasrallah, Goh, & Yeow, 2015b). 

 This research reports on the preparatory strides made towards the improvement of a 

soft exoskeleton glove for hand rehabilitation. The new soft actuators involve elastomeric 

materials with integrated channels that function as pneumatic networks and are 

manufactured and geometrically analysed to create bending movements that can safely 

adjust with the patient’s finger movement. The bending curvature and force response of 

(a) (b) 
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these actuators are explored utilising a finite element model (FEM) and geometrical 

analysis before it’s created.  

Another 3D printed glove was presented by Yap et al. (2015b). This exoskeleton has 

variable stiffness features to perform most rehabilitation movements (see Figure 2.12 (b)). 

The variable stiffness is to make the muscle capable of only bending at the finger joints. 

The flaw in this research is that they have developed a different muscle for each 

rehabilitation movement. In other words, the patient needs to replace the glove muscles 

when converting to exercise mode. 

2.4 Conclusion   

Exoskeleton robots are a blend of human intelligence and machine power. As a 

result, the device improves the force of the human wearer. During recent decades, 

specialists have been continually working to increase their understanding and knowledge 

of robots. Their venture has succeeded practically through recent advances in the fields of 

mechanical design, electronic engineering, biomedical design and computerised reasoning. 

Exoskeleton robots are anticipated to play a critical part in the field of rehabilitation, 

assistive mechanical technology and human force growth. A few upper-limb exoskeleton 

robots have been created for different purposes with their own particular benefits and 

faults. 

Dependent on the research literature review, this research area has many problems. 

The soft actuated exoskeleton is the safest device for direct human interaction but the fully 

soft actuated devices are still a major challenge. There is a noticeable lack of power 

assistance and rehabilitation research. Moreover, power assistive and rehabilitation devices 

should fit any adult limb size and should not need to mechanically change from one adult 

to another. The main problem of power assistive and rehabilitation exoskeletons is the 

release movements after the assisted movement has occurred as the human intention 

controller for rehabilitation robots is still a confused issue. Creating fully soft variable 

stiffness actuators continues to be a big challenge: there are no exoskeletons that can 

provide a hook movement (e.g. carrying a shopping bag) in power assistive gloves and 

there are problems in controlling the pneumatic soft actuators because of their nonlinear 

behaviour. Humans increase their grasping power when an object slips from their hand and 

there are no exoskeletons that provide a reaction for an object slipping from the hand. 

There is no design for a fully soft actuated hand rehabilitation device capable of 
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performing all hand rehabilitation movements due to the complexity of hand movements 

and the robot’s difficulty in performing the complexity of the movements. This is the 

problem with the series of controllers for the actuators working in parallel. There is no 

portable, safe, soft, small and lightweight design for a wrist, elbow and forearm, or human 

shoulder power assistive and rehabilitation device, which is capable of performing all 

movements.  

An exoskeleton power assistive and rehabilitation device must be: i) safe, because 

it is in direct interaction with humans; ii) lightweight, for easy use and portability, and; iii) 

small and soft, to be flexible in daily usage. All these properties are found in pneumatic 

soft actuators and, therefore, many researchers depend on these soft actuators to 

manufacture power assistive and rehabilitation exoskeletons. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



26 
 

 

 

 

 

Chapter 3 

Soft Actuators 

3.1 Introduction 

An assortment of creatures and plants perform complicated movements using soft 

formations without rigid parts. Muscular hydrostats, such as the arms of an octopus and the 

trunk of an elephant, are almost totally composed of muscles and connective tissue; plant 

cells are also capable of changing their shape when osmosis is pressurised. Scientists have 

been inspired by these creatures and plants to design and manufacture robots with artificial 

soft actuators. Soft actuator structures provide a great degree of freedom; these robots are 

the safest for human interaction (Noritsugu et al., 2008). Figure 3.1 shows examples of 

muscular hydrostats and hydroskeletons. These creatures are typically capable of moving 

without skeletal support (Trivedi, Rahn, Kier, & Walker, 2008). 

In this chapter, we review and explain the soft actuators and why they are better in 

some situations than the rigid actuators. The PAM history is also reviewed in this chapter. 

In addition, the contraction and operation of PAM are demonstrated. The artificial muscle 

properties and types from the last 50 years are also reviewed. The mathematical models are 

a major challenge and we explain that in this chapter by summarising the most important 

kinds of mathematical models. Finally, the PAM controller’s techniques and its 

applications are also covered.         
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Figure 3.1: Examples of muscular hydrostats and hydroskeletons (Trivedi et al., 2008). 

3.2 Soft Actuator Techniques  

 This section reviews and discusses on the state of the art of soft actuator 

techniques. A numerous number of actuators exist, but most of soft robotic applications are 

based on four soft actuator techniques: Shape-Memory Alloys (SMAs), Ionic Polymer-

Metal Composites (IPMCs), Dielectric-Elastomer Actuators (DEAs) and Pneumatic 

Elastomeric Actuators. 

3.2.1 Shape-Memory Alloys (SMAs) 

 Shape-memory alloys (Jani, Leary, Subic, & Gibson, 2014) actuate by 

transformation of their crystal structure in response to applied temperature. At low 

temperature, they have a martensitic structure that changes to an austenite structure at high 

temperature. When the alloy is deformed at low temperature, the material returns to its 

original shape upon heating (Figure 3.2). This phenomenon is called the shape memory 

effect, and can be used as a form of actuation.  

 SMAs exhibit high stress (e.g., 230 MPa) with substantial strains up to 5 % 

(Hunter, Lafontaine, Hollerbach, & Hunter, 1991). Nickel-titanium (NiTi) is the most 

commonly used alloy in this type of actuators (Hodgson, Ming, & Biermann, 1990)). 
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However, as shown in Figure 3.3 (a), when it is formed into a spring with a wire diameter 

of 25-500 μm, SMAs can provide compliance and a large actuation strain (e.g., 50 % linear 

contraction reported (S. Kim et al., 2009)). NiTi alloys are conductive, allowing direct 

Joule-heating, and they are also biocompatible. The response speed is relatively slow (∼10 

Hz) due to the thermally-activated phase change, and there is hysteresis across actuation 

cycles. SMAs can be driven with low voltage, but they require high current and provide 

low efficiency. The thermos-elastic behaviour of SMAs may also be affected by the 

external environment. In addition, SMAs have self-sensing capability (Lan & Fan, 2010). 

 

Figure 3.2: Working mechanism of SMAs, adopted from (Schubert, 2011). Top row shows 

crystal structure of the material at different states. (a) Undeformed SMA spring at low 

temperature in martensite state. (b) Deformed SMA spring at low temperature in 

martensite state. (c) SMA spring at high temperature in austenite state. 

 SMAs have been widely applied in robotic applications. Figure 3.3 (b) shows an 

inchworm-robot consisting of a mesh tube surrounded by an SMA spring.  The compliance 

of the spring shows a resistance to external shock. Figure 3.3 (c) is a jellyfish robot. SMAs 

are integrated in the silicone-based bell. The high actuation stress of the actuator enables 
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jumping (Matsuyama & Hirai, 2007), even from the water’s surface (J.-S. Koh et al., 

2015). The small size of SMAs allows their implementation in millimetre scale robots 

(Hoover & Fearing, 2008), low-profile robots (Amir Firouzeh & Paik, 2015), and 

endoscopes (Ikuta, Tsukamoto, & Hirose, 1988) as well as manipulation devices such as a 

robotic hand (Price, Jnifene, & Naguib, 2007).  

 

Figure 3.3: SMA actuators; (a) A spring actuator (NiTi) (S. Kim et al., 2009), (b) An 

inchworm robot (Seok et al., 2013), and (c) A jellyfish robot using SMA (Villanueva, 

Smith, & Priya, 2011). 

 And another robotics applications such as an underwater walker (Ayers & Witting, 

2007) (Figure 3.4 (a)) to a miniature flying robot (Kovac, Guignard, Nicoud, Zufferey, & 

Floreano, 2007) (Figure 3.4 (b)). Many bio-inspired robots have been developed. They are 

simulating the motions of inchworms (Lin, Leisk, & Trimmer, 2011) (Figure 3.4 (c)), 

microrobotic fish fin (Cho, Hawkes, Quinn, & Wood, 2008) (Figure 3.4 (d)), octopus arm 

(Laschi et al., 2012) (Figure 3.4 (e)), manta rays (Wang, Wang, Li, & Hang, 2009) (Figure 

3.4 (f)), turtles (H.-J. Kim, Song, & Ahn, 2012) (Figure 3.4 (g)), and bat wings (Colorado, 

Barrientos, Rossi, & Breuer, 2012) (Figure 3.4 (h)). 
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Figure 3.4: SMA robotic applications; (a) Underwater walker (Ayers & Witting, 2007), (b) 

Miniature flying robot (Kovac et al., 2007), (c) Inchworms (Lin et al., 2011), (d) 

Microrobotic fish fin (Cho et al., 2008), (e) Octopus arm (Laschi et al., 2012), (f) Manta 

rays (Wang et al., 2009), (g) Turtles (H.-J. Kim et al., 2012) and (h) Bat wings (Colorado 

et al., 2012). 

3.2.2 Ionic Polymer-Metal Composites (IPMCs) 

 Ionic polymer-metal composites (Jo, Pugal, Oh, Kim, & Asaka, 2013) consist of an 

electrolyte-swollen polymer membrane (thickness 100-300 μm) surrounded by two thin 

metallic layers. Figure 3.5 shows the operation of IPMCs. The polymer is charged 

negatively and balanced by added mobile cations. When a voltage bias is applied to the 

electrodes, the cations relocate across the cathode part. The relocation results in swelling 

the negative part of the membrane, causing a bending movement of the entire structure 

toward the positive part. Figure 3.6 (a) shows the bending movement of an IPMC actuator. 

 IPMCs are compliant and are able to provide large bending strokes with low 

actuation voltages. Encapsulation enhances actuation performance in dry environments 

(Barramba, Silva, & Branco, 2007). However, their response speed is slow (e.g., an IPMC 

actuator took 3.5 minutes to achieve ~270 deg of bending angle (Nemat-Nasser & Wu, 
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2003), Figure 3.6 (b)), and their actuation characteristics exhibit hysteresis. Moreover, the 

output stress and the efficiency are low. Their slow motion makes them unsuitable to be 

applied to devices that require fast movements. IPMCs are capable of self-sensing 

(Punning, Kruusmaa, & Aabloo, 2007) and energy harvesting (Aureli, Prince, Porfiri, & 

Peterson, 2009). Figure 3.6 (b) shows an untethered fish robot where IPMCs are integrated 

into the root of the tail. Not confined to aquatic environments, terrestrial IPMC robots have 

been developed. Examples include worm-like (Arena, Bonomo, Fortuna, Frasca, & 

Graziani, 2006) and deformable robots (A Firouzeh, Ozmaeian, & Alasty, 2012) that can 

crawl on the ground, as well as grippers (Jain, Majumder, & Dutta, 2013) and (Khan, Jain, 

& Naushad, 2015). 

 

Figure 3.5: Operation of IPMCs (Madden et al., 2004).  
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Figure 3.6: IPMC actuators, (a) An IPMC actuator exhibiting bending motion (applied 

voltage 3 V) (Nemat-Nasser & Wu, 2003) and (b) An untethered fish robot using an IPMC 

actuator (the actuator is placed in the root of the tail) (Z. Chen, Shatara, & Tan, 2010). 

 The inherent need of water for IPMCs has accelerated their use in underwater 

robots. Researchers have demonstrated bio-inspired robots mimicking a sea snake 

(Kamamichi, Yamakita, Asaka, & Luo, 2006) (Figure 3.7 (a)), manta ray (Z. Chen, Um, & 

Bart-Smith, 2011) (Figure 3.7 (b)), turtle (Shi et al., 2013) (Figure 3.7 (c)), and jellyfish 

(Najem, Sarles, Akle, & Leo, 2012) (Figure 3.7 (d)).  

 

Figure 3.7: IPMC robotic applications; (a) Sea snake (Kamamichi et al., 2006), (b) Manta 

ray (Z. Chen et al., 2011), (c) Turtle (Shi et al., 2013) and (d) Jellyfish (Najem et al., 

2012). 
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3.2.3 Dielectric-Elastomer Actuators (DEAs) 

 Dielectric-Elastomer Actuators (DEAs) consists of an elastomer membrane 

sandwiched between two compliant electrodes. Applying a voltage creates opposing 

charges on the electrodes. These charges attract each other and squeeze the elastomer 

membrane, resulting in thickness reduction and area expansion. 

 DEAs have high compliance (~1 MPa elastic modulus), large actuation strokes (up 

to 85% of linear strain on a silicone elastomer (Akbari, Rosset, & Shea, 2013)), fast 

response speeds (response time less than 200 μs (Maffli, Rosset, Ghilardi, Carpi, & Shea, 

2015)), and theoretically high electromechanical efficiency (maximum 90% (Carpi, De 

Rossi, Kornbluh, Pelrine, & Sommer-Larsen, 2011)). In a silicone elastomer, the hysteresis 

in a cycle is relatively small due to low viscoelasticity (Michel, Zhang, Wissler, Löwe, & 

Kovacs, 2010). In addition, a silicone elastomer also has a wide thermal tolerance (-100 to 

250 ◦C (Madden et al., 2004)). When carefully insulated, DEAs are able to work in an 

underwater environment (Godaba, Ng, & Zhu, 2014), and are expected to be used in space 

(Araromi et al., 2015). However, DEAs usually generate low stresses, and a high voltage is 

necessary for driving them (typically a few kV), which requires the use of DC/DC 

converters.  

 DEAs have self-sensing capability (Gisby, Calius, Xie, & Anderson, 2008). 

Depending on the configuration, they can possess further capabilities, such as, self-healing 

(Hunt, McKay, & Anderson, 2014), switching (O’Brien, Calius, Inamura, Xie, & 

Anderson, 2010), energy harvesting and (S. J. A. Koh, Keplinger, Li, Bauer, & Suo, 2011). 

The simple structure of DEAs has exploited a number of actuator configurations, and a 

wide range of robotic applications.  

 Robotic applications based on DEAs have been widely explored. Figure 3.8 (a) is a 

legged robot consisted of six 2-DOF spring roll actuators (Pei, Rosenthal, Stanford, 

Prahlad, & Pelrine, 2004). Bending actuation of each leg moves the robot in different 

directions. For this type of legged robot, employing linear contractile actuators could 

mimic the movements of animals. Figure 3.8 (b) is a quadruped in which each leg has 2 

linear actuators to perform animal-like 2-DOF motion (Nguyen et al., 2014). Biomimetic 

ground locomotion based on extension or undulation of its body has also been realized in 

the form of an inchworm (Conn, Hinitt, & Wang, 2014) or snake (Petralia & Wood, 2010). 
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Figure 3.8 (c) shows an inchworm robot that can extend and contract segments of its body 

to loco-mote. A similar mechanism can be seen in the snake-like robot shown in Figure 3.8 

(d) in which several DEMESs are integrated (Petralia & Wood, 2010).  

 

Figure 3.8: Robotic applications based on DEAs; (a) Legged robot using 2-DOF spring roll 

actuators (Pei et al., 2004), (b) Quadruped using linear contractile actuators (Nguyen et al., 

2014), (c) Inchworm robot using modular diaphragm actuators (Jung, Koo, Lee, & Choi, 

2007) and (d) Snake-like robot using DEMESs (Petralia & Wood, 2010). 

3.2.4 Pneumatic Elastomeric Actuator 

 This type of actuator has a homogeneous silicone matrix with embedded chambers 

(PneuNets (Ilievski, Mazzeo, Shepherd, Chen, & Whitesides, 2011)), a paper origami 

structure (R. V. Martinez, Fish, Chen, & Whitesides, 2012),  reinforcing fibres (Galloway, 

Polygerinos, Walsh, & Wood, 2013), Soft-bodied (Suzumori, Endo, Kanda, Kato, & 

Suzuki, 2007). Depending on their structural configuration, different actuation behaviours 

can be achieved, such as bending, contraction, and extension. Figure 3.9 shows the 

working mechanism of PneuNets actuators. The actuator is often combined with an 

inextensible, flexible substrate. When pressured with fluid (mostly air), the chambers 

(b) 

(c) (d) 

(a) 
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inflate, resulting in an anisotropic bending motion. Figure 3.10 shows a real PneuNets 

actuator exhibiting bending motion (Ilievski et al., 2011). 

 

Figure 3.9: Working mechanism of a pneumatic elastomeric actuator (PneuNets). 

Pressuring the structure inflates the chambers anisotropically, leading to a bending motion 

(Ilievski et al., 2011). 

 

Figure 3.10: A pneumatic elastomeric actuator showing bending motion (Ilievski et al., 

2011) (the actuator shown here is the finger of a 9 cm diameter gripper). 

 Pneumatic elastomeric actuators can be formed with varied geometries and 

materials, and their actuation characteristics change from one type to another with driving 

pressure. It is difficult to have representative characteristics for comparison with other soft 

(b) 

(a) 
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actuator technologies. However, pneumatic elastomeric actuators exhibit high compliance 

(~1MPa elastic modulus) and force (e.g., 7 N at 414 kPa (Galloway, Polygerinos, et al., 

2013)), large actuation strokes (e.g., over 200◦ bending angle at 150-350 kPa (Galloway, 

Polygerinos, et al., 2013)), and fast movements (50 ms to bend circular from a linear shape 

at 345 kPa (Mosadegh et al., 2014)). The use of elastomers should result in a wide thermal 

tolerance (-100 to 250◦C in silicone (Madden et al., 2004)). One setback to this actuation 

technology is the need of compressors, pumps, and air cylinders. They are big, leading to a 

bulky untethered structure, hindering mobility and the miniaturisation of such robots. 

Pneumatic elastomeric actuators do not have self-sensing capability as the structure is a 

homogeneous silicone matrix. However, they can exhibit colour change (camouflage) 

capability by injecting coloured fluids into embedded channels (Morin et al., 2012). It has 

been reported that the actuators are resistant to puncture and self-seal when combined with 

a fibrous material (e.g., Kevlar); however, the mechanism is not yet fully understood 

(Shepherd, Stokes, Nunes, & Whitesides, 2013). 

 To date, several robots using pneumatic actuators have been demonstrated (Faudzi 

et al., 2012). Figure 3.11 is a legged robot that can perform different gait patterns by 

inflating certain combinations of body parts (Shepherd et al., 2011). Changing the gait 

pattern enables it to go through narrow gaps. A larger version of this robot has been made 

untethered, equipped with a compressor and controller (Tolley et al., 2014).  

 

Figure 3.11: A legged robot using a pneumatic elastomeric actuator (Shepherd et al., 2011) 

(∼15 cm long) (the robot is able to crawl through a narrow gap by changing its gait 

pattern). 
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 There have also been untethered systems such as a rolling robot using a series of 

pneumatic bending actuators (Onal, Chen, Whitesides, & Rus, 2017), and a bio-inspired 

fish robot that can perform escape maneuvers in addition to forward swimming (Figure 

3.12 (Marchese, Onal, & Rus, 2014)). Meanwhile, manipulation devices have been 

developed, such as, grippers (Ilievski et al., 2011), a dexterous hand (Deimel & Brock, 

2016), a discrete robotic arm (Marchese, Komorowski, Onal, & Rus, 2014), and tentacles 

(R. V. Martinez et al., 2013).  

 

Figure 3.12: An untethered fish robot using pneumatic elastomeric actuators (Marchese, 

Onal, et al., 2014). 

 The heights weight to force ratio of pneumatic soft actuator is the pneumatic 

artificial muscles (Daerden & Lefeber, 2002) (PAMs, also known as McKibben artificial 

muscles) linearly contract like human muscle when pressurised due to the radial change of 

an inextensible mesh surrounding a rubber inner bladder (this type of actuators will 

reviewed in details in the next sections). 

3.3 Pneumatic Artificial Muscles  

The Pneumatic Muscle Actuator (D. Caldwell, Medrano-Cerda, & Goodwin, 1993), 

also named the McKibben Pneumatic Artificial Muscle (PAM), Fluidic Actuator or 

Biomimetic Muscle, is a tube–like actuator that is characterised by a decrease or increase 

in the muscle length when pressurised (Andrikopoulos, Nikolakopoulos, & Manesis, 

2011). The most common soft actuator is the McKibben Muscle, which was invented by 

the physician Joseph L. McKibben in the 1950s and was used as an orthotic appliance for 

polio patients (Daerden & Lefeber, 2002).  
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The first commercial version of PAM was manufactured by a Japanese company 

named Bridgestone in the 1980s. These muscles are significantly lightweight actuators that 

feature smooth, fast, and accurate responses and are also capable of producing a high force 

when fully pressurised (Andrikopoulos et al., 2011).  

PAMs are typically designed and manufactured as a latex or rubber tube 

surrounded by a braid sleeve. Fibre wrapping surrounds the rubber tube for protection, and 

suitable plastic or metal fittings are attached to both ends. The PAMs convert pneumatic 

power to a pulling/pushing force and have many benefits, such as a high force to weight 

ratio, variable installation possibilities, no requirement for additional mechanical parts (e.g. 

gearboxes), low consumption of compressed air and that they are manufactured from cheap 

materials. Moving off board heavy rigid motor parts, which make up most of the weight of 

a robot actuator, with lighter McKibben artificial muscles will produce advantages in 

industrial and medical robots. The PAM is a pneumatic soft actuator, which shows 

numerous features found in real muscle.  

3.3.1 Construction  

According to Chopade, Kauthalkar, and Bhandari (2013), the general design 

consists of an expandable bladder, such as a rubber tube surrounded by a braided sleeve 

made of fibre threads, which are attached to both sides. Davis, Tsagarakis, Canderle, and 

Caldwell (2003) state that the muscles are available in many sizes, producing variable 

output forces. Furthermore, the range of actuator displacement, and also the lengths of 

muscles, can be from under 10 cm up to 400 cm, and the range of diameters from under 10 

mm up to 70 mm. Figure 3.13 shows the PMA construction. 

 

Figure 3.13: The PMA Construction (Davis et al. (2003)). 
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3.3.2 Operation  

Expansion of the rubber tube bladder against the braided sleeve occurs when 

pressure is applied. The braided sleeve acts to limit the expansion of the inner tube in order 

to maintain a cylindrical shape. When the pressure is increased, the volume of the inner 

tube increases in relation to the applied pressure, the contracting artificial muscle shortens 

and provides a pulling force to a mechanical load due to the extensor producing a pushing 

force (the extensor muscle type is the same construction of the contractor type but in this 

case the braided sleeve is longer than the bladder). “This basic principle is the conversion 

of the radial stress on the rubber tube into axial stress and during relaxation of the muscle 

the reverse happens” (Chopade et al., 2013). A thin rubber tube transmits the applied 

pressure acting on it to the non-stretchable outside braid. Loads can be attached at one end 

of the PAM and the other end is for the air flow from the valve, as shown in Figure 3.14 

(Davis et al., 2003). 

 

Figure 3.14: Operation of PAM (Davis et al., 2003). 

3.4 PAM Properties 

 Daerden and Lefeber (2002) illustrate the most important properties of PAM as 

follows: 



40 
 

• Static load characteristics: Under static conditions, the PAM equilibrium length 

will be determined by the pressure, the external load and the volume to length ratio 

of that specific muscle. 

• Compliance: As a result of air compressibility, every pneumatic actuator 

demonstrates the compliant behaviour. Regardless of the fact that the pressure is 

kept at a fixed amount, the muscle demonstrates spring-like behaviour because of 

the change of force with respect to length. 

• Antagonistic set-up: Pneumatic soft actuators are contraction devices and can 

produce movement in one direction only, like real muscles. To generate 

bidirectional movements, two muscles are needed, one for each direction. One 

actuator moves the load in one direction and the other one works as a brake to 

reach the desired position; changing the muscles’ operation produces an opposite 

movement. Figure 3.15 shows the load motions in rotational or linear directions. 

 

Figure 3.15: Antagonistic set-up (Daerden & Lefeber, 2002). 

• Skeletal Muscle Resemblance: PAMs are similar to skeletal muscle in functional 

behaviour in that both use linear contraction motion with a monotonical relation 

between decreasing load and the contractile ratio (which does not always happen 

in real skeletal muscles). To produce bidirectional movement, both require an 

antagonistic set-up to be able to control the joints efficiently. 

• Lightweight and strong: PAMs are extremely lightweight because their 

components are soft and small. Output force for these actuators is extremely high, 

up to several thousand newtons. 
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• Ready replacement: Replacement of a damaged PAM is extremely easy and rapid. 

• Hazard-free use: Pneumatic actuators use air pressure, resulting in no pollution, 

and the soft materials are also safer than rigid units. As a result, pneumatic soft 

actuators are safest for human interaction.  

3.5 Types and Classification 

There are numerous types of pneumatic soft actuators used in several applications, 

such as the medical, agricultural and industrial fields, and especially in direct human 

interaction machines. 

3.5.1 McKibben Muscle 

McKibben's muscle is hitherto the most commonly used and published. It is a 

cylindrical braided muscle that has both its inner bladder tube and its sleeve connected at 

each end, not only to transfer fibre tension but also to serve as a volume limitation. In 

general, the materials used are silicone and latex rubber for the bladder and nylon fibres for 

the sleeve. Figure 3.16 illustrates its structure and operation (Ranjan, Upadhyay, Kumar, & 

Dhyani, 2012). 

 

Figure 3.16: McKibben Muscle (Ranjan et al., 2012). 

3.5.2 Sleeved Bladder Muscle 

The Sleeved Bladder Muscle differs from the McKibben muscle in the design of 

the inner tube connection; it is not connected with the sleeve at both ends as shown in 

Figure 3.17 (Beullens, 1989). It is a McKibben-like muscle generally consisting of an inner 
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tube surrounded by a sleeve directly attached to tendon-like cords; the motion range of a 

5–30% contraction ratio depends on the applied pressure and the braid strain angle at rest. 

The main advantage of this type is that it is extremely easy to construct and to replace the 

defective bladder.  

 

Figure 3.17: Sleeved Bladder Muscle (Beullens, 1989). 

3.5.3 Netted Muscles 

 The netted artificial muscle differs from the braided artificial muscle in the density 

of the threads in the sleeve surrounding the bladder. The braid in the braided muscles is 

tightly woven, but in the netted muscle it is a mesh with large holes. As a result, these 

muscles only need to withstand low pressures. Figure 3.18 shows netted muscle types 

(Daerden, 1999).  

 

Figure 3.18: Netted muscle types; (a) Yarlott Netted muscles (Yarlott, 1972), (b) ROMAC 

Netted muscles (Immega, 1986) and (c) Kukolj Netted muscles (Kukolj, 1988). 

(a) (b) 

(c) 
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3.5.4 Pleated PAM 

Pleated Pneumatic Artificial Muscle (PPAM) was proposed by Daerden and 

Lefeber (2001). This type of muscle does not contain a separate inner tube and sleeve 

bladder but consists of only one membrane with a number of pleats in the axial direction. 

This means there is no strain in the material when pressurised. Figure 3.19 shows the 

PPAM design. The operation process is frictionless. 

 

Figure 3.19: Pleated Pneumatic Artificial Muscle (PPAM) (Daerden & Lefeber, 2001). 

3.5.5 Parallel Bladders artificial muscles 

Davis and Caldwell (2011) proposed a parallel bladders artificial muscle. This type 

of muscle consists of two or more inner bladders as shown in Figure 3.20. Each bladder 

can be pressurised separately because each one is connected to a different valve, with all 

bladders aligned parallel surrounded by one braided sleeve. When only one bladder is 

pressurised, the muscle bends in relation to the applied pressure and the bending direction 

will be on the same side of the pressurised bladder. 

 

Figure 3.20: Parallel Bladders artificial muscle (Davis & Caldwell, 2011). 
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3.5.6 Concentric Bladders artificial muscles 

This type of artificial muscle is one of the parallel bladders muscles (Davis & 

Caldwell, 2011). It arranges the bladder tubes one inside the other, as shown in Figure 

3.21, and each bladder can be pressurised separately because each one is connected to a 

different valve. The muscle behaves like a normal PAM when the outer bladder is 

pressurised; when the inner bladder is pressurised, it also shows ordinary behaviour, but 

with a slower response and lower output force because of the contrary force from the outer 

bladder. The major advantage of this type is having a backup bladder when one is 

defective. 

 

Figure 3.21: Concentric Bladders artificial muscle (Davis & Caldwell, 2011). 

3.6 Modelling 

Recently, there has been a considerable amount of research into the mathematical 

modelling of PAMs. The purpose of modelling approaches is to create a mathematical 

relationship between the length of the PAM and the amount of pressure inside it, and the 

applied force along its entire axis. These mathematical models depend on variable 

parameters, such as applied pressure, pulling force, length and the diameter of PAMs, as 

well as the properties of materials used. All these variables play a considerable role in the 

dynamic behaviour of the soft actuators. There is strong evidence of non-linear behaviour 

of PAMs; thus, the major challenge is to build a robust control for this (D. G. Caldwell, 

Medrano-Cerda, & Goodwin, 1995; Daerden & Lefeber, 2001). A classification of the 

most common and valuable mathematical models was made by (Kelasidi, Andrikopoulos, 

Nikolakopoulos, & Manesis, 2012). 
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3.6.1 Geometrical Model of PMA 

The basic mathematical modelling approach was based on the geometric characteristics 

of PAMs. The models of Chou and Hannaford (1996) and Tondu and Lopez (Tondu & 

Lopez, 2000) have been widely used. Chou and Hannaford’s model was based on static 

features of the soft actuator; they assumed that the muscle is cylindrical in shape, ignored 

the extensibility of the threads in the sleeve, ignored the friction force between the sleeve 

and the bladder and between the threads of the sleeve, and ignored rubber bladder forces. 

Their model depends on the geometry parameters of the actuator, such as the length L of 

the actuator, the length of the strands used to form the braid b, the number of times the 

strand circles the muscle n, and the angle between braided threads and the cylinder long 

axis θ and the force model in the following equation:  

                                                   𝐹 =
𝜋𝐷0

2𝑃

4
(3 cos2 𝜃 − 1)                                           (3.1) 

Where 𝐷0 = 𝑏 𝑛𝜋⁄ , is the muscle diameter when θ equals 90o and P is the relative 

pressure. The tension is thus linearly proportional to the pressure, and is a monotonic 

function of the braid angle (0o < θ < 90o). The maximal shortening will be reached when F 

= 0, that is, θ = 54.7o. 

Chou and Hannaford improved their model by adding a new parameter representing the 

sleeve and bladder thickness to reduce the error, but the error between the mathematical 

model and the experimental results was still 15-20%. According to Paynter (Paynter, 

1996), a stretch in the actuator braided material is caused as a result of increasing muscle 

volume when input pressure is applied on a fixed muscle length.  

Davis et al. (Davis et al., 2003) proved Paynter’s theory through practical experiments; 

the results of these experiments showed around a 5% increase in the length of the thread 

across the test range, and this increase depended on the applied pressure and the muscle 

length. The extension of the braid must be calculated to derive a valid mathematical model. 

Based on Doumit, Fahim, and Munro (Doumit, Fahim, & Munro, 2009), more realistic 

geometric measurements have been added to Chou and Hannaford’s models. Chou and 

Hannaford assumed that the PAM is perfectly cylindrical, but actually, there is a 

deformation at both ends of the muscle. Doumit et al. (Doumit et al., 2009) assumed the 

deformation to be conical in shape at both ends and the middle part a cylinder.  
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3.6.2 PAMs’ Phenomenological Model 

The axial output force of a PAM depends on the contraction ratio. Serres, 

Reynolds, Phillips, Rogers, and Repperger (2010) suggested that this behaviour is similar 

to a combination of a spring, a damper and contractile elements placed together in parallel, 

as shown in Figure 3.22.  

 

Figure 3.22: Phenomenological Model (Serres et al., 2010). 

These elements each had a mathematical model and then they derived a new 

phenomenological PAM model based on these models. Experiment verification was 

conducted and this model worked efficiently with an acceptable amount of error between 

the mathematical model and the experimental results. 

3.6.3 Curved PMA Model 

There are numerous mathematical models for ordinary linear PAMs but there are 

no models for bending muscles. However, Zhang, Yang, Chen, Zhang, and Dong (2008) 

proposed two approximate models based on physics: the membrane and beam models for 

pneumatic muscles operating when curved around an object. These two models were used 

to control the joint torque of a wearable elbow exoskeleton. 
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3.6.4 Empirical Model of PMA 

There is a functional similarity between a PAM and a mechanical spring because 

both produce a tensile force when attached to a load. For the spring, force is produced by 

the material used to create it and for a PAM, the force is a function of applied pressure (see 

Figure 3.23). Based on this idea, Wickramatunge and Leephakpreeda (Wickramatunge & 

Leephakpreeda, 2010) proposed a PAM model based on adding a new parameter to the 

mechanical spring model; this parameter is the gauge pressure inside the artificial muscle. 

 

Figure 3.23: Similarity between a PAM and a mechanical spring (Wickramatunge & 

Leephakpreeda, 2010). 

3.7 Control 

There is a wide range of control strategies to control various actuators; Figure 3.24 

illustrates a control strategies diagram based on the actuators’ behaviour (linear or 

nonlinear) (Jouppila, 2014).    

 

Figure 3.24: Control strategies diagram (Jouppila, 2014).  
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As a rule, the majority of natural physical devices are nonlinear. Nevertheless, if 

the range of the control operation system is limited, and if the nonlinearity of these systems 

is smooth, then the controller of these devices may be a set of linear controllers which 

serve the purpose and produce acceptable results.  

The numerous advantages of PAMs push the researchers to do research into the 

control area of PAMs, the nonlinearity of these actuators is the major challenge in 

modelling and controlling them. Numerous control methods have been developed to solve 

this problem. D. Caldwell et al. (1993) proposed a PID controller (traditional type) with 

feed-forward terms to control a multi-jointed manipulator for robot fingers. After two 

years, the same researchers developed their work into an adaptive controller to control the 

elbow of a robot arm (D. G. Caldwell et al., 1995). 

An efficient solution to control the nonlinear PAMs is to combine a linear 

controller approach with higher level controller approaches, such as fuzzy, adaptive, neural 

network, genetic algorithms, and so on. Nouri, Gauvert, Tondu, and Lopez (1994) 

proposed a generalised variable structure model reference adaptive control to control an 

artificial muscle actuator, and Hesselroth, Sarkar, Van Der Smagt, and Schulten (1994) 

also used a traditional PID with a neural network to develop a soft robot arm controller.  

A Fuzzy PD+I controller was proposed by Chan, Lilly, Repperger, and Berlin 

(2003) to track a mass position attached to the PAM terminal. A nonlinear PID controller 

was used with a neural network to create an efficient controller for a two axes PAM 

manipulator (Thanh & Ahn, 2006). A sliding mode control based on the proxy to control a 

2-DOF planar manipulator-based PPAM was developed by Van Damme et al. (2007). This 

method is an extension of a sliding mode and PID controller to provide more safety for 

human interaction with their planar manipulator. Zhu, Tao, Yao, and Cao (2008) presented 

an adaptive robust posture controller to manipulate the problem of controlling a parallel 

manipulator driven by pneumatic muscles (PMDPM). Shen (2010) presented a nonlinear 

model-based method of control of PAM servo devices. This technique proposed a 

controller method for servo systems-based PAMs to deal with the four major processes in 

these devices: the flow, pressure, force, and load dynamics. Based on these processes, a 

fully nonlinear model and efficient controller were created. A position control approach 

based on a sliding mode controller relay type for a robot arm manufactured by soft 
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pneumatic actuators was developed by (József Sárosi & Gyeviki, 2009; J Sárosi, Gyeviki, 

Véha, & Toman, 2009).  

An adaptive controller based on a fast hybrid fuzzy technique was proposed by 

Hosovsky, Novak-Marcincin, Pitel, Borzikova, and Zidek (2012) as a nonlinear controller 

for PAM and the adaptive control was created by using genetic algorithms. Nuchkrua and 

Leephakpreeda (2013) presented a real time conventional self-tuning PID by using fuzzy 

logic to create an efficient non-linear controller for PAMs. A tracking controller for PAM 

was presented by Qian, Huang, and Ri (2015b), who used a combination between a 

conventional sliding mode control method and a fuzzy control to create a robust adaptive 

controller.  

Finally, a fuzzy-PID self-tuning controller was also used by Sun, Yan, Han, Song, 

and Zhang (2016) to control a damping seat based on PAMs, used in a crawler construction 

vehicle. Many controller methods have been developed in this area (soft pneumatic 

actuators) in many industrial and medical applications because this is an interesting field 

for researchers to create safer robots and machines for direct human interaction. 

3.8 PAMs Applications 

During the last fifteen years there has been a noteworthy increase in PAMs 

applications, such as biorobotic, medical, industrial, and aerospace applications, because 

the PAMs have a wide range of advantages. 

The similarity of the PAMs with organic muscles inspires researchers to use them 

in manufacturing robots like animals or humans. A pleated pneumatic artificial muscle has 

been used to construct a biped walking robot named Lucy. This robot has 6 degrees of 

freedom (DOFs) with two legs, manufactured using a combination of rigid and soft units as 

shown in Figure 3.25 (a) (Verrelst et al., 2005). Scarfe and Lindsay (2006) presented a 

humanoid robot hand based on PAMs; this hand has 10 DOFs for the elbow, wrist and 

finger joints, and is also capable of some real human hand functions, such as gripping and 

pinching movements (see Figure 3.25 (b)). Mowgli is a bipedal jumping and landing robot 

presented by (Niiyama, Nagakubo, & Kuniyoshi, 2007). This robot has six PAMs with 

some rigid parts to do the jumping and landing functions using only two legs, as shown in 

Figure 3.25 (c). Zwei-Arm-Roboter (ZAR5) is also a soft humanoid robot constructed by 

Boblan and Schulz (2010). ZAR5 is a fully soft actuated human-like robot with two five 
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finger hands, as shown in Figure 3.25 (d). Shin, Yeh, and Khatib (2014) designed a safe 

human interaction robot actuated by PAMs and a magnetic particle brake. This robot has a 

human-like body with two four finger hands, as shown in Figure 3.25 (e). An ambidextrous 

robot hand was presented by Mukhtar, Akyurek, Kalganova, and Lesne (2015). This was a 

five-finger hand actuated by contracted PAMs with most human hand functions (see Figure 

3.25 (f)). Finally, Sun et al. (2016) presented a damping seat based on PAMs and used it in 

a crawler construction vehicle to protect the driver from violent vibration and shock. 

 

Figure 3.25: PAMs Applications: (a) Lucy (Verrelst et al., 2005), (b) a humanoid robot 

hand (Scarfe & Lindsay, 2006), (c) Mowgli (Niiyama et al., 2007), (d) ZAR5 (Boblan & 

Schulz, 2010), (e) human interaction robot (Shin et al., 2014) and (f) ambidextrous robot 

hand (Mukhtar et al., 2015).   

3.9 Conclusion  

The major inspiration for researchers to invent and use PAMs is the huge similarity 

between them and organic muscles. The most common PAMs design is based on 

McKibben's muscles. PAMs have been widely used in manufacturing as a new robot 

generation named ‘soft robots’. Furthermore, because the PAMs are constructed from soft 

(b) (a) (c) 

(d) (e) (f) 
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materials, they have the capability of providing much safer systems when compared to 

traditional rigid robots with direct human interaction. It is obvious from our literature 

review that there are numerous modelling types for PAMs. However, there is currently no 

100% accurate mathematical model for these actuators due to their highly nonlinear 

behaviour and the materials they are constructed from: latex or rubber also show high 

hysteresis behaviour. Most previous models have been done on the contraction PAMs type 

and there is a lack of extensor PAMs models and bending muscles. The majority of soft 

continuum robots are based on contraction muscles only, ignoring other muscle behaviour 

types, such as extensor PAMs models and bending muscles. 

On the other hand, many control methods have been used to create an efficient 

controller for these soft actuators, but because there are no accurate mathematical models, 

there are serious problems with the controllers of PAMs.  

Numerous applications have been done on PAMs because of their wide range of 

points of interest. These applications have increased in the last decade, covering many 

fields, such as biorobotic, medical, industrial, and aerospace applications. 
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Chapter 4 

The Design and Mathematical Model of a 

Novel Variable Stiffness Extensor-Contractor 

Pneumatic Artificial Muscle (ECPAM) 

 

4.1 Introduction  

 Soft robotics typically have high numbers of degrees of freedom and are able to 

flex and bend at multiple locations rather than at discrete fixed joint locations as is the case 

for a traditional robot. This means soft robots can deform when they are in contact with an 

object, distributing contact stresses over a greater area. This combined with the fact that 

many soft robots are constructed from lightweight materials; means soft robots are 

potentially safer for human interaction than traditional robots.  

Soft robots often use soft and compliant actuators and one of the most well-known 

soft actuator is the pneumatic artificial muscle (PAM). Pneumatic artificial muscles vary 

significantly from conventional pneumatic actuators and have seen application in bionic, 

anthropomorphic and humanoid robots, physiotherapeutic and rehabilitation robots, and 

also for the mechanisation of industrial processes. 

This chapter reports the development of a novel Extensor-Contractor pneumatic 

artificial muscle. The main contributions of the new actuator are its capability to both 

contract and extend relative to its resting length with both contraction and extension forces 
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being generated. The new actuator also allows the muscle’s stiffness to be varied at any 

specific length. The design and construction of this actuator are explained in detail below. 

A new output force mathematical model for the novel actuator is presented. This 

mathematical model has been validated experimentally. Stiffness and position control 

experiments have been performed to validate the main contribution of the new actuator. 

4.2 Contraction Pneumatic Artificial Muscles 

The new actuator developed in this work uses a combination of both contractor and 

extensor pneumatic muscles. The behaviour of these two muscle types will be investigated 

before they are combined into a single actuator.  

The contractor muscles used in this research are constructed from a braided nylon 

sleeve with a maximum unpressurised extended length of 18.4cm and a corresponding 

resting diameter of 5mm; an inner bladder formed from two layers of latex rubber tube 

18.4cm length and 5mm diameter and two 3D printed cap ends, one which is closed and 

the other with a port through which compressed air can be supplied to the muscle. A 

contraction muscle decreases in length when the applied pressure is increased until it 

reaches its minimum energy state, which occurs at a braid interweave angle of 54.7°. 

Figure 4.1 shows the proposed contracting muscle at different supplied pressures. 

The characteristic relation between the supplied air pressure and the actuator 

contraction (at no load) is illustrated in Figure 4.2. The contraction occurs when increasing 

the supplied pressure (this experiment is done my increasing the supply pressure in steps of 

50 kPa), and this results in the creation of a contractile force. The maximum contraction 

ratio of the actuator used is approximately 30% at 500kPa pressure. The displacement is 

decreased from the contraction muscle nominal length (18.4 cm) to approximately 12.8 cm 

as the pressure raised from 0 to 500kPa. It is clear from the graph, the relationship between 

the pressure and the displacement is linear between 0 and 250kPa pressures and above this 

range, the displacement was slightly decreased. 

The stiffness of a PAM is proportional to the pneumatic pressure within it. An 

experiment was performed to calculate the stiffness of the contractor actuator at a range of 

different applied pressures. Figure 4.3 shows the experimental setup used. The actuator 

was positioned vertically with the muscle end cap through which air is applied secured to a 

fixed mounting plate. 
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Figure 4.1: The contraction artificial muscle with no-load at different pressures.  

 

Figure 4.2: No-load displacement characteristic of the contraction muscle with increased 

applied pressure. 

The unloaded muscle was then pressurised and its contracted length was recorded. 

Increasing loads where then applied to the free end of the muscle and the resulting change 

in length of the muscle at each load value was recorded. This experiment was repeated four 

times with four supplied pressures (200kPa, 300kPa, 400kPa and 500kPa). Figure 4.4 
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demonstrates the results of these four experiments. In each experiment, the muscle was 

pressurised to 200kPa, loads were attached to the free end of the actuator starting from 

100g to 1600g in step of 100g. The force/displacement curves are approximately linear; the 

stiffness is a rational relation between the force to the displacement. The stiffness of each 

curve is calculated by the average stiffness of all stiffness points (point for each load) at 

that specific pressure. Figure 4.5 shows the behaviour of the contraction muscle stiffness as 

the applied pressure is increased. The stiffness is increased from 1000 N/m to 2600 N/m as 

pressure raised from 200 kPa to 500 kPa. 

 

Figure 4.3: Experiment setup to calculate the stiffness of the PAM. 

 

Figure 4.4: The experimental results of the contraction muscle change in length with 

different attached loads at specific amounts of supplied pressure. 
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Figure 4.5: The contraction muscle stiffness in relation with increasing the supplied 

pressure. 

4.3 Extensor Pneumatic Artificial Muscles 

The extensor artificial muscle used in the development of the new actuator uses the 

same type of woven braid as for the contractor muscle. However, the resting diameter of 

the braid was double that of the contractor muscle (10mm) and its length was 32cm. The 

inner rubber tube of the extensor muscle also had a diameter of 10mm and was half the 

length of the braided sleeve (16cm). The muscle end caps were the same as those used with 

the contractor muscles. As the braided sleeve was considerably longer than the length of 

the rubber tube it needed to be compressed axially to match the length of the bladder. This 

meant that the muscle had a resting braid interweave angle greater than 54.7° which meant 

when it was pressurised the muscle would extend in length. Figure 4.6 shows the extensor 

artificial muscle at a range of different applied pressures and it can clearly be seen that the 

muscle’s length increases as the pressure is raised.  

Figure 4.7 shows the relationship between the pressure inside the muscle and muscle 

length when no load is applied (this experiment is done my increasing the supply pressure 

in steps of 50 kPa). It can be seen from the graph that the extensor muscle achieves a 

maximum length of 25.1cm at 500kPa pressure. This represents an extension from its 

resting, unpressurised, length of 56%. Between the pressures 50 kPa and 250 kPa there is 

an approximately linear relationship between the pressure and the displacement and above 
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this pressure range the increasing in pressure dose not lead to significant change in 

displacement.    

 

Figure 4.6: The Extensor artificial muscle with no-load at different pressures.  

 

Figure 4.7: No-load displacement characteristic of the extensor muscle with increased 

applied pressure. 

To calculate the stiffness of the extensor muscle, the same experiment used to 

determine the stiffness of the contraction muscle was performed. This experiment was also 
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repeated four times with four supplied air pressures (100kPa, 200kPa, 300kPa and 

400kPa). Figure 4.8 illustrates the results of these four experiments and again the force 

displacement curves are approximately linear. Figure 4.9 shows the behaviour of the 

extensor muscle stiffness when increasing the supplied air pressure. 

 

Figure 4.8: The experimental results of the contraction muscle change in length with 

different attached loads at specific amounts of supplied pressure. The stiffness is increased 

from 480 N/m to 1460 N/m as pressure raised from 100 kPa to 400 kPa. 

 

Figure 4.9: The extensor muscle stiffness in relation with increasing the supplied pressure. 

It is obvious from the above plots that the contraction muscle has greater stiffness 

than the extensor. This is not an unexpected finding as although both actuators are 
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constructed from the same braid and therefore have the same force/pressure profile the 

extensor muscle is able to displace almost double the distance of the contractor muscle. 

This means the gradient of a force/displacement plot for the extensor muscle would be 

considerably shallower than for the contractor muscle. 

4.4 Novel Extensor-Contractor Pneumatic Artificial Muscles (ECPAM) 

Based on the previous research presented in the literature review and the results 

presented above there are limitations associated with both the contraction and extensor 

muscles. These limitations are summarised as follows: 

• The contraction muscle only generates a contraction force in response to 

supplied air pressure. 

• The extensor muscle only generates extension force in response to supplied air 

pressure. 

• There is no single PAM capable of performing both contraction (decreasing in 

length) and extension (increasing in length) with reference to its nominal length. 

• There is no single PAM able to produce bidirectional (extension and 

contraction) force. 

• Each muscle type has a fixed stiffness at a specific length and load. 

• When muscle pressure is low (e.g. when the force the muscle is generating is 

small) actuator stiffness will be low as stiffness increases with pressure. 

These limitations inspired the design and construction of a novel Extensor-

Contractor Pneumatic Artificial Muscles (ECPAM) as described in the following sections. 

Several ideas of combining extensor and contractor have been already reported in 

the previous research such as (Suzumori, Wakimoto, Miyoshi, & Iwata, 2013) and 

(Giannaccini et al., 2018). These papers describe systems where the actuators are parallel 

to each other not one inside the other and our system is more compact and takes up less 

space.  

In addition, the force a muscle produces is a function of the surface area of the 

muscle not the volume. This means that the central volume of the muscle is “dead space” 
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which must be pressurised but does not contribute to actuator force. Placing the contractor 

muscle inside the extensor muscle helps to fill this “dead space” meaning that the new 

actuator will use slightly less air than two muscles positioned side by side. 

 

4.4.1 Design and Construction of the ECPAM 

The Extensor-Contractor Pneumatic Artificial Muscle (ECPAM) is formed from a 

combination of contraction and extensor muscles. The new actuator consists of a 

contraction muscle placed inside an extensor muscle. The construction of the new actuator 

began with the creation of two end caps as shown in Figure 4.10 (a), these endcaps form 

the ends of both the extensor and contractor muscles. The thin central section of the 

endcaps is for attaching the contraction muscle and one of them has a hole in the centre for 

the air supply. The larger diameter section of the endcaps is for the outer extensor muscle 

and again one cap contains a hole in the side as shown in the Figure for the application of 

air.  

As can be seen in Figure 4.10 (b) the contraction muscle is secured to the inner 

section of the two endcaps using a combination of nylon treads and a resin adhesive and 

then the muscle is inserted into the rubber bladder of the extensor muscle. The rubber 

bladder of the extension muscle is 15% shorter than the contraction muscle (this different 

percentage in length is default for the design of the ECPAM because the new actuator is 

capable of contacting and extending 15% of its nominal length and this will be clarified in 

the next sections). The contraction muscle is therefore compressed inside the extensor 

muscle’s bladder so that the bladder can be secured to the second endcap. The extensor 

muscle’s braided sleeve is then compressed and secured to the two endcap using both 

thread and plastic cable ties, as can be seen in Figure 4.10 (c).   

Figure 4.10 (d) shows contraction of the ECPAM caused by pressurising the inner 

contraction muscle to 300kPa whilst the extensor muscle remains unpressurised. The 

extension operation of the actuator is illustrated in Figure 4.10(e) where the outer extensor 

muscle is pressurised to 200kPa whilst the contractor muscle remains unpressurised. 

To investigate the relation between the supplied pressure and the muscle length an 

experiment was performed that involved inflating each muscle (the contractor and the 
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extensor) independently gradually from zero to 500kPa in steps of 50kPa; the results are 

shown in Figure 4.11. It is clear from the graph, there is no action in length of ECPAM 

when pressurise the contraction muscle below 100 kPa because this amount of pressure is 

actuated only the contraction muscle to contract approximately 15% (from 18.4 to 16 cm) 

until reach the same length on the ECPAM (16 cm is the ECPAM nominal length, this 

length has been chosen randomly as a example of the ECPAM construction) and above 100 

kPa it will decrease the ECPAM length. In addition, there is no action in extension of 

ECPAM when pressurise the extensor muscle above 100kPa because the ECPAM was 

reaches its maximum length (the same contraction muscle length 18.4 cm). 

 

Figure 4.10: Construction and operation of the novel ECPAM; (a) Endcaps design, (b) The 

contraction muscle inside the extensor muscle bladder, (c) The ECPAM with no pressure, 

(d) The ECPAM with pressurised only the inner contraction muscle by 300kPa, and (e) 

The ECPAM with pressurised only the outer extensor muscle by 200kPa. 
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 Figure 4.11: The experimental results of the relation between the ECPAM and increasing 

the supplied pressure for the inner and outer muscles independently. 

The resting, unpressurised, length of the extensor muscle was 16cm. However, the 

contractor muscle was 15% longer than this which meant that when the ECPAM was 

unpressurised the contractor muscle would be compressed inside the bladder of the 

extensor muscle to a length of 16cm. As the extensor muscle was pressurised and extended 

the contractor muscle would become stretched until it reached its maximum length. At this 

point the contractor muscle would prevent the extensor muscle from being able to extend 

any further. From it’s resting length of 16cm to the point where the contractor muscle 

prevented any further extension of the ECPAM it extended by approximately 15% to 

18.4cm, as can be seen in Figure 4.11.  

As was proven previously the contractor muscle is able to contract by 

approximately 30%. This means that at its minimum length the contractor muscle would be 

shorter than the resting (unpressurised) length of the extensor muscle and this caused the 

extensor muscle to become compressed. Pressurising the contractor muscle to its maximum 

pressure whilst the extensor muscle was unpressurised resulted in the ECPAM contracting 

from its resting length of 16cm to 13.6cm, a contraction of approximately 15%, as can be 

seen in Figure 4.11. The overall ECPAM is therefore able to extend and contract from its 

resting length by approximately 15%. 
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4.4.2 Kinematics Analysis of ECPAM 

Figure 4.12 illustrates the general geometry of PAM, assuming the middle part of 

the actuator is perfectly cylindrical and the actuator length L, Diameter D and 𝜃 represents 

the braid angle between a single braided thread and the muscle central axis (Chou & 

Hannaford, 1996). The single thread of the sleeve b encircles the muscle n times.  

The extensor actuator differs from the contractor in that the resting length of the 

sleeve is significantly longer than the length of the rubber tube. In other words, the sleeve 

must be compressed (𝜃 increased) to reach the same length as the rubber tube.  

Based on Figure 4.12 the initial length of the PAM will be: 

                                                 𝐿 = 𝑏 cos 𝜃                                                         (4.1) 

And the muscle diameter: 

                                                  𝐷 =
𝑏 sin 𝜃

𝑛𝜋
                                                           (4.2) 

 

Figure 4.12: The general geometry of PAM. 

Assuming the middle segment of the PAM is cylinder then the actuator volume is: 

                                              𝑉 =
𝜋𝐷2𝐿

4
                                                                 (4.3) 
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The analysis of the ECPAM is based on the following assumption: there are no 

friction forces between the braids and the bladders, or between the nylon threads of the 

braid, or between the contractor muscle and the bladder of the extensor muscle, and there 

are no elastic forces within the bladders. 

Figure 4.13 illustrates the geometrical kinematic analysis of the ECPAM. 

The ECPAM is constructed using the same contraction and extensor muscles 

(discussed above in sections 4.2 and 4.3). There is a geometrical relationship between these 

two muscles as follows: the resting sleeve diameter of the contraction muscle is half of the 

resting sleeve diameter of the extensor (both have the same sleeve type but different braid 

angles). As mentioned above, the contraction muscle is longer than the extensor muscle by 

15% as shown in Figure 4.13 (c). Therefore, at the resting length of the ECPAM the 

contraction muscle will be bent or compressed inside the extensor muscle to match the 

extensor muscle’s length as shown in Figure 4.13 (d).  

                                               𝐿𝑐 = 1.15𝐿𝑒 →  𝐿𝑒 =
1

1.15
𝐿𝑐                                              (4.4) 

 

Figure 4.13: Kinematics of the ECPAM; (a) The general geometry of PAM (The contractor 

and the extensor muscles), (b) The braid angles and the number of turns of both muscles, 

(c) The lengths relation between the muscles and (c) The ECPAM design. 

Where 𝐿𝑐 is the contraction muscle length and 𝐿𝑒 is extensor muscle length. 
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The sleeve length of the extensor muscle is double its bladder length (the 

ECPAM’s resting length). Based on the relationship between the sleeve diameters (the 

contractor muscle’s resting sleeve length is half that of the extensor one) and the 

relationship between the sleeve lengths (normally the length of the extensor muscle sleeve 

is double that of the contractor muscle; in our case the contractor muscle is longer than the 

extensor muscle’s resting length by 15% as shown in equation 4.4. Normally, if two 

sleeves of the same type, with the same length, but one having double the diameter of the 

other are selected then the larger diameter sleeve will have half n of the smaller diameter 

sleeve whilst they have the same b length. From this and the sleeves resting diameter: 

                                              𝑛𝑐 = 1.15𝑛𝑒  →  𝑛𝑒 =
1

1.15
𝑛𝑐                                             (4.5) 

                                             2𝑏𝑐 = 1.15𝑏𝑒  →  𝑏𝑒 =
2

1.15
𝑏𝑐                                             (4.6) 

Where 𝑛𝑐 is the number of turns of thread in the contractor muscle, 𝑛𝑒 is the 

number of turns of thread in the extensor muscle, 𝑏𝑐 is the single thread length of the 

contraction muscle sleeve and 𝑏𝑒 is the single thread length of the extensor muscle sleeve. 

Based on Figure 4.13, the contraction and extensor muscles geometrical parameters 

will be: 

                                                       𝐿𝑐 = 𝑏𝑐  cos 𝜃𝑐                                                           (4.7) 

                                                       𝐿𝑒 = 𝑏𝑒  cos 𝜃𝑒                                                           (4.8) 

                                                        𝐷𝑐 =
𝑏𝑐 sin 𝜃𝑐

𝑛𝑐𝜋
                                                              (4.9) 

                                                        𝐷𝑒 =
𝑏𝑒 sin 𝜃𝑒

𝑛𝑒𝜋
                                                            (4.10) 

                                                         𝑉𝑐 =
𝜋𝐷𝑐

2𝐿𝑐

4
                                                             (4.11) 

                                                        𝑉𝑒 =
𝜋𝐷𝑒

2𝐿𝑒

4
                                                              (4.12) 

Where 𝜃𝑐 is the angle between the braided thread and central actuator axis of the 

contraction muscle, 𝜃𝑒 is the angle between braid and central actuator axis of the extensor 
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muscle, 𝐷𝑐 is the contraction muscle diameter, 𝐷𝑒 is the extensor muscle diameter, 𝑉𝑐 is the 

contraction muscle volume and 𝑉𝑒 is the extensor muscle volume. 

4.4.3 Modelling the Output Force of the ECPAM 

Chou et al. (Chou & Hannaford, 1996) derived the output force mathematical 

model of the PAM based on its cylindrical shape  as follows: 

                                                        𝐹 = −𝑃′ 𝑑𝑉

𝑑𝐿
                                                             (4.13) 

Where 𝑃′ is the relative PAM pressure. 

In the case of ECPAM’s contraction muscle, the relative pressure in it is affected 

by the pressure inside the extensor muscle (i.e. a higher pressure in the extensor muscle 

reduces the relative pressure in the contractor muscle), therefore: 

                                                         𝑃′ = (𝑃𝑐 − 𝑃𝑒)                                                       (4.14) 

Where 𝑃𝑐 is the pressure of the contraction muscle and 𝑃𝑒 is the pressure of the 

extensor muscle. 

Substituting equations (4.7), (4.11) and (4.14) into equation (4.13) gives the 

contraction muscle force 𝐹𝑐: 

                                                    𝐹𝑐 = −(𝑃𝑐 − 𝑃𝑒)
𝑑𝑉𝑐

𝑑𝐿𝑐
                                                    (4.15) 

Differentiating equation (4.15) with respect to 𝜃𝑐 gives: 

                                            𝐹𝑐 =
𝑏𝑐

2 (𝑃𝑐−𝑃𝑒)

4𝜋𝑛𝑐
2 (3 cos2 𝜃𝑐 − 1)                                            (4.16) 

The extensor muscle is affected by the volume of the contraction muscle only not 

by the pressure inside the contraction muscle, in effect the contractor muscle represents a 

hollow cylindrical section along the centre of the extensor muscle. This means the true 

shape of the extensor muscle is represented by a thick wall cylindrical shell, therefore the 

cylinder extensor muscle force  𝐹𝑠 will be: 

                                 𝐹𝑠 = 𝑃𝑒
𝑑𝑉𝑠

𝑑𝐿𝑒
=  𝑃𝑒

𝑑𝑉𝑒−𝑑𝑉𝑐

𝑑𝐿𝑒
= 𝑃𝑒 (

𝑑𝑉𝑒

𝑑𝐿𝑒
−

𝑑𝑉𝑐

𝑑𝐿𝑒
)                                    (4.17) 
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Where 𝑉𝑠 is the volume of the cylinder representing the extensor muscle. 

By substituting the relation between the contractor and extensor muscles lengths in 

equation (4.4) into equation (4.17): 

                                               𝐹𝑠 = 𝑃𝑒 (
𝑑𝑉𝑒

𝑑𝐿𝑒
− 1.15

𝑑𝑉𝑐

𝑑𝐿𝑐
)                                                  (4.18) 

Differentiating equation (4.18) gives: 

      𝐹𝑠 = 𝑃𝑒 (
𝑑𝑉𝑒

𝑑𝜃𝑒
⁄

𝑑𝐿𝑒
𝑑𝜃𝑒

⁄
− 1.15

𝑑𝑉𝑐
𝑑𝜃𝑐

⁄

𝑑𝐿𝑐
𝑑𝜃𝑐

⁄
) =  𝑃𝑒 (1.15

𝑏𝑐
2(3 𝑐𝑜𝑠2 𝜃𝑐−1)

4𝜋𝑛𝑐
2 −

𝑏𝑒
2(3 𝑐𝑜𝑠2 𝜃𝑒−1)

4𝜋𝑛𝑒
2 )         (4.19) 

Substituting equations (4.5) and (4.6) into equation (4.19) and simplifying the result 

gives: 

                               𝐹𝑠 =
𝑏𝑐

2𝑃𝑒

4𝜋𝑛𝑐
2 (1.15(3 𝑐𝑜𝑠2 𝜃𝑐 − 1) − 4(3 𝑐𝑜𝑠2 𝜃𝑒 − 1))                     (4.20) 

The ECPAM has two opposite forces: 𝐹𝑐 is the contraction force and 𝐹𝑠 is the 

extension force. 

               𝐹 = (𝐹𝑐 − 𝐹𝑠) {
𝑖𝑓 𝐹 𝑖𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 → 𝑖𝑡 𝑖𝑠 𝑎 𝐶𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝐹𝑜𝑟𝑐𝑒
𝑖𝑓 𝐹 𝑖𝑠 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 → 𝑖𝑡 𝑖𝑠 𝑎 𝐸𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛 𝐹𝑜𝑟𝑐𝑒

}                  (4.21) 

Substituting equations (4.16) and (4.20) in equation (4.21) and simplifying the 

result gives the ECPAM total force model F: 

     𝐹 =
𝑏𝑐

2

4𝜋𝑛𝑐
2 (𝑃𝑐(3 𝑐𝑜𝑠2 𝜃𝑐 − 1) + 0.15𝑃𝑒(3 𝑐𝑜𝑠2 𝜃𝑐 − 1) − 𝑃𝑒(3 𝑐𝑜𝑠2 𝜃𝑒 − 1))         (4.22) 

4.4.4 Experimental Verification of the ECPAM Output Force Model 

An experimental verification of the ECPAM model has been performed using the 

experimental setup shown in Figure 4.14. The ECPAM was suspended vertically in a rig 

with the unpressurised actuator being at its resting length (16cm). The end cap through 

which air was supplied was secured to a mounting plate and the free end of the actuator 

was attached via a load cell to a second fixed point. The actuator was surrounded by a rigid 

cylindrical nylon tube to limit any buckling or lateral deformations of the muscle during 

extension force testing, as shown in Figure 4.14 (b) and (c). Figure 4.14 (a) illustrates how 
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the contraction force could be measured using the same rig by reversing the load cell 

direction and removing the cylinder tube.  

 

Figure 4.14: Experiment setup to calculate the extension and contraction force of the 

ECPAM; (a) Calculating the contraction force of the ECPAM, (b) Buckling or lateral 

deformations of the ECPAM at extension and (c) Calculating the extension force of the 

ECPAM with a rigid cylindrical nylon tube. 

The experiment began by pressurising the extensor muscle to 100kPa (Pe) and 

recording the extension force measured by the load cell. The pressure in the contraction 

muscle (Pc) was then gradually increased from zero to 500kPa in 50kPa increments and the 

contraction force was recorded. The experiment was then repeated twice more with the 

extensor muscle pressure (Pe) equal to 300kPa and 500kPa. Figure 4.15 shows the 

experimental results of these three experiments.    

The average error percentages between the mathematical model and the 

experimental results are 20.23%, 20.31% and 21.09% for the three experiments with 

extensor muscle pressures 100kPa, 300kPa and 500kPa respectively. These errors were 

expected because the force losses were neglected; for example, we assumed there were no 

frictional forces between the braids and the bladders or between the nylon threads of the 

braid or between the contractor muscle and the bladder of the extensor muscle and that 

there were no elastic forces within the bladders. 
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Figure 4.15: The Experimental results of the output force of the ECPAM with its 

mathematical model (the upper part of the graph shows the contraction forces and the 

lower part shows the extension forces of the ECPAM). 

These losses caused these errors as an approximately fixed percentage (20%) of the 

total force and this increased in relation with the force. This error percentage has been 

calculated by the average percentage difference for all force points and each point with 

pressure step of 50kPa. Based on this a correction factor C is introduced to represent these 

losses and decrease the average error percentage as far as possible. A similar approach has 

been used by other researchers to account for frictional losses and hysteresis in the past 

(Giannaccini et al., 2018). The total force equation with the suggested correction factor 

will be: 

                                              𝐹𝑡 = 𝐹 − 𝐶𝐹                                                         (4.23) 

This correction factor was calculated experimentally and in this work was assumed 

to be 20%, derived from the average error percentage between the experimental results and 

the mathematical model. Figure 4.16 shows the new mathematical force model with 

consideration of the correction factor and the experimental results. 

The average error percentages between the mathematical model, with the correction 

factor, and the experimental results are 5.32%, 5.91% and 5.14% for the three experiments 
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with extensor muscle pressures 100kPa, 300kPa and 500kPa respectively. The factor CF 

represents the losses and it is not a constant because it is a percentage of the optimal force 

F, therefore it must be small for low pressures and high for higher pressures in order to 

decrease the gap between the two curves. Clearly more advanced mathematical models of 

the actuator performance would reduce the need for the correction factor and more detailed 

modelling of the new actuator will represent future work. 

 

Figure 4.16: The Experimental results of the output force of the ECPAM with its 

mathematical model with consideration of correction factor (the upper part of the graph 

shows the contraction forces and the lower part shows the extension forces of the 

ECPAM). 

As can be seen in the experimental procedure buckling of the actuator was a 

potential problem and a mechanical support was used to prevent it. In the new actuator 

both the internal contractor muscle and the external extensor can experience buckling. 

However, in reality buckling of contractor muscle only occurs when it is unpressurised and 

so has no effect on the force output of the actuator, as soon as the contractor is pressurised 

it will experience tension and this will force it into an straight, unbuckled configuration. 

Buckling of the extensor muscle is more of a problem. When the extensor muscle extends 

it places the contractor muscle inside it under tension, which causes it to behave like an 

internal tether between the two endcaps. If the extensor muscle buckles it makes contact 

with the taught contractor muscle which prevents it from extreme buckling, however, some 
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degree of buckling is still possible. This is a problem common to many types of soft 

extending pneumatic actuator not just the new actuator described in this chapter. There are 

various methods that can been used to prevent buckling of extending actuators including 

the addition of a rigid support structure or soft guides located on the mechanical structure 

being actuated which prevent buckling. Alternative methods include using the muscle as a 

bending actuator (i.e. intentionally creating and exploiting buckling) or as part of a 

continuum manipulator. These methods will be further explored as future chapters on the 

application of the new actuator. 

4.4.5 Stiffness of the ECPAM  

At a fixed load and position a traditional pneumatic muscle has a single fixed 

stiffness value. The reason for this is that the actuator’s stiffness is a result of the pressure 

in the actuator, with higher pressure resulting in greater stiffness. However, pressure is 

proportional to muscle output force and so increasing the pressure in a muscle which is 

supporting a fixed load will result in contraction of the muscle and change in position. It is 

therefore not possible to change a pneumatic muscle’s stiffness independently of its force 

or position. The newly developed ECPAM, however, has the ability to potentially vary its 

stiffness independently of its position.    

Stiffness experiments were conducted to prove and validate that the novel 

ECPAM’s stiffness can be adjusted without resulting in a change of actuator length. The 

ECPAM was again suspended vertically, but this time with the distal end being free. The 

actuator was initially at its unpressurised nominal length of 16cm. The contractor muscle 

was pressurised to 100kPa which resulted in a shortening with reference to the nominal 

length. The pressure in the extensor muscle was then increased until the actuator extended 

in length to again reach the nominal length. The extensor pressure required to achieve this 

was measured to be 75kPa. To calculate the stiffness at this combination of muscle 

pressures, loads of increasing mass were applied to the free end of the muscle and the axial 

displacement at each load was measured. It was then possible to determine the stiffness 

from the gradient of the resultant force/displacement plot Figure 4.17 and this was found to 

be 4611N/m. To prove that it was possible to achieve a different stiffness value at the same 

length, the contractor muscle pressure was increased to 150kPa. This again caused the 

ECPAM to become shorter than the nominal length and so the extensor muscle pressure 

was again increased until it reached its nominal length (16cm). The extensor pressure 
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required to achieve this was 100kPa. The stiffness was again found experimentally and 

calculated to be 5478N/m. The reason the stiffness increased was because both the muscle 

pressures were higher and as previously stated stiffness is a function of muscle pressure. 

For further verification that the stiffness could be varied at a fixed length (16cm), the 

experiment was repeated twice more at the same actuator length but with the pressure in 

the contractor and extensor muscles being Pc=200kPa/Pe=125kPa and 

Pc=250kPa/Pe=150kPa respectively. The resulting stiffness values were determined to be 

6172N/m and 7788N/m respectively. The experimental results from all four experiments 

are shown in Figure 4.17 and it can be seen that different stiffness can be achieved at the 

same actuator length. 

 

Figure 4.17: Stiffness experimental results for the ECPAM at length 16cm.  

For further verification that the stiffness of the ECPAM can be adjusted whilst at a 

fixed length the same experiment described above was repeated twice more, once with a 

muscle length shorter than the nominal length (15cm) and once with it longer (17cm). All 

ECPAM’s stiffness results are summarised in Table 4.1. 

Unlike a traditional pneumatic muscle, the ECPAM can have the same stiffness at 

different lengths. In the table above, it can be seen that experiments 2,6 and 12 all have 

broadly similar stiffness values but in each the muscle length is different. This therefore 

proves that ECPAM’s stiffness can be set independently of position (actuator length). 
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Table 4.1: A summary of ECPAM’s stiffness results. 

Experiment No. Muscle Length Pc Pe Stiffness 

1 16cm 100kPa 75kPa 4611N/m 

2 16cm 150kPa 100kPa 5478N/m 

3 16cm 200kPa 125kPa 6172N/m 

4 16cm 250kPa 150kPa 7788N/m 

5 15cm 200kPa 60kPa 3550N/m 

6 15cm 250kPa 90kPa 5796N/m 

7 15cm 300kPa 120kPa 7492N/m 

8 15cm 350kPa 150kPa 9961N/m 

9 17cm 50kPa 100kPa 1634N/m 

10 17cm 100kPa 125kPa 2640N/m 

11 17cm 150kPa 150kPa 3077N/m 

12 17cm 200kPa 175kPa 5337N/m 

 

4.6 Stiffness and Position (length) Control of the ECPAM 

Accurate control of McKibben muscles presents a major challenge, this is because 

of both the nonlinear behaviour of the muscles and the compressibility of air. Much of the 

control of pneumatic muscle has relied on classical control techniques and simple models 

of the actuator functionality that include many assumptions.  

Based on the above experimental stiffness results a control system has been created 

capable of controlling both the length and the stiffness of the novel ECPAM, as shown in 

Figure 4.18. The first stage of the stiffness and position controller system is a neural 

network identifier.  This stage is utilised to generate the appropriate pressures set-point for 

the contractor and extensor muscles, based on our stiffness experiments in Table 4.1. This 

neural network identifier is designed using a Matlab neural network data fitting application 

(one of the curve fitting techniques based on inputs and its outputs data). The experimental 

stiffness and lengths data for the ECPAM are used as inputs and the amount of appropriate 

contractor and extensor pressures are utilised as outputs to design this identifier. This 

neural network includes one input layer, four two layers and one output layer. A Bayesian 

Regularisation (Demuth, Beale, De Jess, & Hagan, 2014) training technique is used to train 

the proposed neural network identifier. It is a network training technique that updates the 

weight and bias values according to Levenberg-Marquardt optimisation; it minimises a 

combination of squared errors and weights, and then determines the correct combination so 

as to produce a network that generalises well. 
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Figure 4.18: The proposed stiffness and position controller of the ECPAM. 

Two Fuzzy logic controllers are utilised in the stiffness-position controller system 

to control the level of pressure inside the contractor and extensor muscles. The appropriate 

pressure set-points for each contractor and extensor muscle come from the neural network 

identifier. These two fuzzy controllers are identical. Each one has two inputs (error and 

change of error) and two outputs (Fill and Vent). MATRIX 3x3 (see Figure 4.19) solenoid 

valves are used to control the air flow by PWM (Pulse Width Modulation). The advantages 

of this valve are: (i) compact dimension, (ii) short response time, (iii) insensitivity both to 

frequency work and to vibrations, (iv) low absorbed power, precision, repetitiveness and 

(v) flexibility and long operation life. The same valve port can be used as either a fill or 

vent valve depending on the applied PWM signal. The ECPAM has two valves, one for the 

contractor muscle and the other for the extensor muscle.  

The solenoid valve was controlled by Arduino Mega 2560, because of the Arduino 

PWM output is only 5V and the valve operate on 24V PWM, a driver circuit to transform 

5V PWM to 24V PWM as shown in Figure 4.20. 

The feedback pressures are calculated by MDPS002 pressure sensor (700kPa) 

vacuum absolute pressure sensor. The output of this type of pressure sensor is microvolt, 

but the Arduino analogue read pins sensitive range is 0-5 v. The INA122 precision 

instrumentation amplifier for accurate, low noise differential signal acquisition is used to 

amplify the pressure sensor signal as shown in Figure 4.21.  
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Figure 4.19: MATRIX 3/3 750 series solenoid valve. 

 

Figure 4.20: The solenoid valve driver circuit; (a) schematic diagram of single driver 

circuit and (b) 8-channals driver circuit. 

 

Figure 4.21: The pressure sensor circuit. 

Based on this, each Fuzzy controller has two outputs to control the percentage of 

the PWM duty cycle for each filling and venting valve. The valve PWM frequency is 
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125Hz. Figure 4.22 shows the membership functions of the inputs and outputs of both 

Fuzzy controllers.  

 

Figure 4.22: The membership functions for the inputs and outputs for the Fuzzy controllers 

of the proposed stiffness and position controller of the ECPAM; where NB is Negative 

Big, NS is Negative Small, Z is Zero, PS is Positive Small, PB is Positive Big, ZF is Zero 

Fill, SF is Small Fill, BF is Big Fill, ZV is Zero Vent, SV is Small Vent and BV is Big 

Vent; (a) The membership function of the input error, (b) The membership function of the 

input change in error, (c) The membership function of the Fill output and (d) The 

membership function of the Vent output. 

There are five ranges for the input error and five ranges for the change in error, 

with the entire range being -500 to 500, because the contractor and the extensor muscles 

act in a range between zero to 500kPa; this range of pressure was chosen based on the 

maximum operating pressures of the valves. Likewise, there are three intervals for PWM 

fill output percentage and the same for vent output. All membership functions are triangle 

type for its straightforwardness, but the membership functions of the error input are smaller 

close intervals to zero. This serves to diminish the gain of the controller close to the 

desired set point, to achieve superior stability and to avoid excessive overshoots on the 

controller response. It is easy and rapid to implement this Fuzzy controller and it has been 

shown in the literature to successfully control pneumatic muscles with sufficient accuracy 

to prove the hardware developed (Nuchkrua & Leephakpreeda, 2013; Qian, Huang, & Ri, 

2015a; Zhang et al., 2008). Figure 4.23 demonstrates the Fuzzy controllers’ rules surface 

of each fill and vent output.  
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Figure 4.23: The Fuzzy controllers rules surfaces of each Fill and Vent outputs; (a) The 

rules surface of the Fill output and (b) The rules surface of the Vent output. 

The proposed stiffness-position controller was experimentally tested. Six different 

experiments were conducted to examine the performance of the proposed control system, 

as shown in Figures 4.24, 4.25 and 4.26. Figure 4.24 illustrates two experimental results. 

The first experiment in Figure 4.24 (a) was with a stiffness set point of 7500N/m and an 

actuator length of 15cm. At these stiffness and length set points, the neural network 

identifier generated contractor and extensor pressures of 300.6kPa and 119.8kPa 

respectively. The second experiment in Figure 4.24 (b) was with a stiffness set point of 

3500N/m and the same actuator length 15cm. At these stiffness and length set points, the 

neural network identifier generated contractor and extensor pressures of 199.1kPa and 

59.78kPa respectively. These two experiments prove that we can control the stiffness of 

our novel actuator without changing its length.  
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Figure 4.24: Stiffness-position controller results at actuator length 15cm and two different 

stiffness.  

(a) 

(b) 
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Figure 4.25: Stiffness-position controller results at actuator length 16cm and two different 

stiffness values. 

(a) 

(b) 
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Figure 4.26: Stiffness-position controller results at actuator length 17cm and two different 

stiffness values. 

(a) 

(b) 
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To validate this concept, we conducted another two experiments for another 

actuator length as shown in Figure 4.25. The first experiment in Figure 4.25 (a) was with a 

stiffness set point of 6000N/m (randomly chosen) and actuator length of 16cm. The 

identifier in this case generated contractor and extensor pressures of 186.6kPa and 

117.5kPa respectively. The second experiment in Figure 4.25 (b) was with a stiffness set 

point of 4500N/m and the same actuator length 16cm. At these stiffness and length set 

points, the neural network identifier generated contractor and extensor pressures of 

92.44kPa and 72.14kPa respectively. 

For further validation, we also conducted another two experiments for another 

actuator length as shown in Figure 4.26. The first experiment in Figure 4.26 (a) was with a 

stiffness set point of 5000N/m (randomly chosen) and actuator length of 17cm. The 

identifier in this case generated contractor and extensor pressures of 192kPa and 170.4kPa 

respectively. The second experiment in Figure 4.26 (b) was with a stiffness set point of 

2500N/m and the same actuator length 17cm. At these stiffness and length set points, the 

neural network identifier generated contractor and extensor pressures of 92.66kPa and 

120.8kPa respectively. 

The actuator length and stiffness results of all of the above six experiments in 

Figures 4.24, 4.25 and 4.26 were verified manually after each experiment. The length was 

measured and the stiffness determined using the same experimental procedure described in 

section 4.4.5. The average percentage error of the ECPAM stiffness and length were 

determined to be 3.95% and 4.18% respectively. 

4.7 Conclusion 

This chapter has described the design and construction of a novel extensor-

contractor pneumatic muscle. This new actuator overcomes some of the limitations 

associated with the use of single pneumatic muscles as well as having additional features. 

This new actuator has bidirectional action allowing it to both extend and contract and 

create force in both directions.  

A mathematical model has been developed for the new novel ECPAM which 

describes the actuator output force. This mathematical model has been verified 

experimentally with the average error percentage between the mathematical model and the 

experimental results being less than 6%.  
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The stiffness of a pneumatic muscle is dependent on the pressure inside it, 

however, for a fixed load the length of a traditional pneumatic muscle is also a function of 

pressure. This means that it is not possible to change the stiffness of a pneumatic muscle 

(with a fixed load) without changing its length. It has been shown that the new ECPAM is 

able to adjust its stiffness without this resulting in a change of actuator length. Numerous 

stiffness and length experiments were performed to investigate the ability to vary the 

actuator’s stiffness independently of position. A stiffness position controller has been 

developed to control the stiffness of the actuator at specific lengths. Verification was 

conducted using the controller and the average stiffness and position errors were found to 

be less than 5%. 
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Chapter 5 

The Design and Mathematical Modelling of 

Novel Extensor-Bending Pneumatic Artificial 

Muscles (EBPAMs) 

 

5.1 Introduction  

 As discussed in section 3.6 of chapter 3, there has been a considerable amount of 

research into the mathematical modeling of contraction PAMs. The purpose of modeling 

approaches is to create a mathematical relationship between the length of the PAM, the 

amount of pressure inside it, and the force it generates. These mathematical models depend 

on variable parameters such as applied pressure, axial force, length and diameter of the 

PAMs, as well as the properties of the materials used. All these variables play a 

considerable role in the dynamic behavior of the soft actuators. There is strong evidence of 

the non-linear behavior of PAMs. Thus, the major challenge is to build a robust controller 

for the PAM.  

This Chapter proposes a novel form of pneumatic muscle which bends when 

activated. The Chapter first describes the construction of the new extensor bending 

pneumatic artificial muscle. Numerous prototypes have been developed, and their behavior 

has been assessed experimentally. A new mathematical model of the actuator was then 

developed and verified against the experimental results. Three enhancement stages were 
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done successfully to decrease the average error percentage between the experimental 

output force of the novel actuator and the new mathematical model. 

5.2 Extensor-Bending Pneumatic Artificial Muscles  

The proposed extensor bending pneumatic artificial muscles (EBPAMs) are based 

on linearly extending McKibben artificial muscles. These muscles are reinforced along one 

side keeping one side of the actuator at a fixed length. This means that when pressurised 

the new actuator does not extend in length but rather bends. 

Development of the bending pneumatic muscle began with the experimental 

analysis of a series of extending pneumatic muscles. A prototype pneumatic muscle (M1) 

was produced which consisted of a rubber bladder with resting length 160 mm and 

diameter 10 mm. This was encased by a braided nylon sleeve whose length was double that 

of the rubber and had a minimum diameter of 8 mm and maximum diameter of 18 mm. 

The muscle had two 3D printed terminals at either end, one closed and the other containing 

a small hole for the supply of pressurised air. The rubber and braid were secured to the 

terminals using cable ties and the resulting actuator had an experimentally measured 

resting diameter of 18 mm; the same as the maximum diameter of the sleeve. 

Due to the fact the braided sleeve was significantly longer than the rubber tube 

(meaning the muscle had a resting braid angle greater than 54.7°) an increase in the 

supplied pressure causes an increase in the muscle length i.e. the muscle is of the extending 

type. The length of muscle increases with increasing supplied pressure; the maximum 

increase in length was measured to be 68%.  

Figure 5.1 illustrates the characteristic behaviour of extending pneumatic muscle 

relative to the supplied pressure. During operation, an axial compressive force is produced 

at the end of the actuator.  

This experiment is done by increasing the supply pressure of the actuator by steps 

of 25 kPa until 500 kPa. There is no movement action before 25 kPa pressurised because 

this amount of lost pressure needs to inflate the bladder until be in contact with the braid.   
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Figure 5.1: EPAM length related to the supplied pressure. 

By reinforcing one side of the extending pneumatic muscle using a fixed length 

thread with a 500N breaking strength, as shown in Figure 5.2, the muscle is converted to a 

bending actuator. The thread prevents one side of the actuator from extending whilst the 

opposite side remains free to extend when pressurised. The resultant difference in length of 

the two sides of the actuator mean it bends as seen in the figure.  

Figure 5.2 shows the configuration of the EBPAM at four arbitrary but increasing 

pressures. It can be seen that one side of the actuator remains at a fixed length whilst the 

over side increases in length leading to bending of the actuator.  

 

Figure 5.2: EBPAM pressurised by different amounts of pressure. 
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The bending angle of the proposed actuator increases with increasing supplied 

pressure and this relationship was explored experimentally. The pressure in the actuator 

was gradually increased and the angle of the remote end of the muscle relative to its initial 

position was measured. The angle of the actuator is measured manually by increasing the 

supply pressure in step of 25 kPa and measure the angle manually at each pressure from 0 

to 500 kPa.  Figure 5.3 illustrates the relationship between the supplied pressure and the 

bending angle of the proposed artificial muscle. Again, there is no bending action before 

25 kPa pressurised because this amount of lost pressure needs to inflate the bladder until be 

in contact with the braid.  

To verify these findings, two further EBPAMs, M2 and M3, were created using the 

same end caps and bladder as the first muscle (M1) but using a larger diameter braid, as 

Table 5.1 shows. The initial muscle diameters are the same as the maximum sleeve 

diameter because they are extensor type muscles. A larger diameter braid results in higher 

muscle force, so each muscle prototype generates a greater force than the previous. 

Table 5.1: M1, M2 and M3 characteristics. 

Muscle No. M1 M2 M3 
Muscle length 160 (mm) 160 (mm) 160 (mm) 
Bladder diameter 10 (mm) 10 (mm) 10 (mm) 
Sleeve diameter 8 (mm) 10 (mm) 12 (mm) 
Muscle diameter 18 (mm) 23 (mm) 35 (mm) 

 

 

Figure 5.3: EBPAM bending angle with the supplied pressure. 
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Figure 5.4 (a) and Figure 5.5 (a) shows the relationship between the applied 

pressure and the actuator length for muscle M2 and M3, respectively, before the 

reinforcing thread is added. 

 

Figure 5.4: M2 with its characteristics. 

(a) 

(b) 

(c) 
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Figure 5.5: M3 with its characteristics. 

In both instances, the extending ratio is 68%, which is the same as for M1. This 

result is not unexpected as it is the braid length, not its diameter, that determines the 

maximum extension of the muscles. Figure 5.4 (b) and Figure 5.5 (b) shows the 

(a) 

(b) 

(c) 
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relationship between the pressure and bending angle for M2 and M3, respectively. The 

relationship is broadly the same for all three muscles. Again, and for the same reason, this 

result is not unexpected. However, at high pressure, the results for the three muscles 

diverge. 

The reason for this can be seen in Figure 5.4 (c) and Figure 5.5 (c), as the muscle 

approaches maximum bending it collides with itself and the muscle becomes deformed. As 

can be seen, this problem is more significant for the larger diameter muscles. 

This section has experimentally proven the operation of the EBPAM; the following 

sections will attempt to analyse its behaviour mathematically and develop a numerical 

model. 

5.3 Kinematic Analysis of the Proposed EBPAM 

The general geometry of a McKibben muscles is shown in (chapter 4 Figure 4.12. 

In addition, the muscle length L, diameter D and the volume V are mentioned previously in 

chapter 4 equations (4.1), (4.2) and (4.3) respectively. An extensor muscle differs from a 

contracting muscle in that the resting length of the braid is significantly longer than the 

length of the bladder. This means the braid must be compressed (braid angle increased) to 

make it the same length as the bladder. This means that the muscle will have an 

unpressurised braid angle 𝜃 greater than 54.7° (the minimum energy configuration), when 

pressurised the braid angle will reduce in an attempt to reach the minimum energy state 

and this will result in extension of the muscle. The bending muscle is derived from the 

extensor one by reinforcing one side of the braid. This means that one side of the braid 𝜃 is 

always at its maximum value and cannot increase in length. When pressurise the increase 

in actuator length will only occur on the free side and this results in bending. 

The analysis of the EBPAM is based on the following assumption: the muscle 

retains a circular cross-section during bending, the threads used to form the sleeve and 

reinforce one side of the muscle are inextensible, there is no friction force between the 

sleeve and the bladder and between the threads of the sleeve and there are no elastic forces 

within the bladder.  

Figure 5.6 shows the bending muscle geometry, where 𝐿𝑜is the muscle length on 

the reinforced side, 𝐿𝑛 is the length of bending muscle on the free side, 𝐷𝑐 is the curved 
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muscle diameter, α is the bend angle of the muscle, 𝑟𝑜 is the inner radius and 𝑟𝑛 is the outer 

radius. The actuator length will be the average length: 

                                                 𝐿𝑐 =
𝐿𝑜+𝐿𝑛

2
                                                            (5.1) 

The actuator diameter in relation to the inner and outer radius is given by: 

                                               𝐷𝑐 = 𝑟𝑛 − 𝑟𝑜                                                           (5.2) 

 

Figure 5.6: Bending muscle geometry. 

Combining actuator length (4.1) with the equation for the length of an arc the 

following equations can be produced which describe the length of two opposite sides of the 

bending muscle: 

                                   𝐿𝑜 = 𝑏 cos 𝜃𝑚𝑎𝑥  =  𝑟𝑜𝛼                                                   (5.3) 

                                     𝐿𝑛 = 𝑏 cos 𝜃 =  𝑟𝑛𝛼                                                        (5.4) 

The radius inside the curve is determined by the maximum braid angle(𝜃𝑚𝑎𝑥), 

which is fixed as a result of the reinforcing thread, and the radius outside the curve is 

determined by the braid angle 𝜃, which reduces as the muscle bends. 
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Unlike a traditional pneumatic muscle, the braid angle around the circumference of 

the bending muscle is not a constant. Instead, the braid angle will decrease around the 

circumference from 𝜃 on the outside edge of the bend (point A in Figure 5.7) to 𝜃𝑚𝑎𝑥 at on 

the inner edge of the bend (point B in Figure 5.7). Each of these braid angles will have an 

associated muscle diameter as shown in Figure 5.7. If we assume that the muscle cross 

section forms a perfect circle, then the overall diameter will be the sum of the radii on the 

outside of the curve (r1) and inside of the curve (r2) as shown in Figure 5.7. Actuator 

diameter equation (4.2) can be used to determine the diameter of the bent muscle: 

                                            𝑟1 =
𝐷1

2
=

𝑏 sin 𝜃

2𝑛𝜋
                                                         (5.5) 

                                          𝑟2 =
𝐷2

2
=

𝑏 sin 𝜃𝑚𝑎𝑥

2𝑛𝜋 
                                                     (5.6) 

                                               𝐷𝑐 = 𝑟1 + 𝑟2                                                           (5.7) 

                                       𝐷𝑐 =
𝑏 sin 𝜃+𝑏 sin 𝜃𝑚𝑎𝑥

2𝑛𝜋
                                                     (5.8) 

Using the above information, it is possible to develop the kinematic equations of 

the bending muscle which describe the bending angle α, the radius of curvature 𝑟𝑜 and the 

length of the central axis of the muscle  𝐿𝑐 as follows: 

By substituting Equation (5.2) in Equation (5.4): 

                                           𝐿𝑛 = (𝐷𝑐 + 𝑟𝑜)𝛼                                                        (5.9) 

Substituting Equations (5.3) and (5.4) in Equation (5.9) gives the following 

equation: 

                         𝐿𝑛 = (𝐷𝑐 +  
𝐿𝑜

𝛼
) 𝛼 = 𝐷𝑐 𝛼 + 𝐿𝑜 = 𝑏 cos 𝜃                               (5.10) 

From Equations (5.10) and (5.3) we can derive the curvature angle as a function of 

𝜃 and 𝜃𝑚𝑎𝑥 using the following equation:  

                                           𝛼 =  
𝑏 cosθ  −𝑏 cos 𝜃𝑚𝑎𝑥

𝐷𝑐
                                              (5.11) 

Also, the actuator length can be determining by substituting Equations (5.3) and 

(5.4) in Equation (5.1): 
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                                          𝐿𝑐 =
𝑏 𝑐𝑜𝑠𝜃𝑚𝑎𝑥+𝑏 𝑐𝑜𝑠𝜃

2
                                                (5.12) 

 

Figure 5.7: Radii inside curved muscle. 

5.4 Modelling the Output Force of the Proposed EBPAM 

The previous section presented a kinematic analysis of the bending muscle. 

However, if the bending muscle is to be used in an application, it is important that its force 

generating behaviour is also understood. This analysis is performed using the theory of 

conservation of energy as was performed by Chou et al. (Chou & Hannaford, 1996) for a 

contracting pneumatic muscle.  

The input work 𝑊𝑖𝑛 which occurs in the artificial muscle is in the form of applied 

air pressure which acts on the inner surface of the actuator and leads to a change in 

actuator volume. This can be described by the following formula: 

       𝑑𝑊𝑖𝑛 = ∫ (𝑃′ − 𝑃𝑜) 𝑑𝑙𝑖. 𝑑𝑠𝑖

 

𝑠𝑖
= (𝑃′ − 𝑃𝑜) ∫ 𝑑𝑙𝑖. 𝑑𝑠𝑖

 

𝑠𝑖
= 𝑃. 𝑑𝑉𝑐                    (5.13)    
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Where 𝑃′ is the internal absolute air pressure, 𝑃𝑜is the environment pressure 

(103360 Pa on the day of testing), P is the relative differential air pressure, 𝑆𝑖 is the 

actuator inner surface, 𝑑𝑙𝑖 is the inner surface displacement vector, 𝑑𝑠𝑖
 is the area vector, 

and 𝑑𝑉𝑐 is the actuator volume change.  

Based on the volume of a cylinder volume formula in equation (4.3), the curved 

actuator volume 𝑉𝑐 will be: 

                                            𝑉𝑐 =
𝜋𝐷𝑐

2𝐿𝑐

4
→ 

             𝑉𝑐 =
 𝑏3(𝑐𝑜𝑠 𝜃+𝑐𝑜𝑠 𝜃𝑚𝑎𝑥)(𝑠𝑖𝑛2𝜃+2 𝑠𝑖𝑛 𝜃𝑚𝑎𝑥 𝑠𝑖𝑛 𝜃+𝑠𝑖𝑛2𝜃𝑚𝑎𝑥)

32𝜋𝑛2
                           (5.14) 

Where 𝐷𝑐 is the curved muscle diameter from Equation (5.8) and 𝐿𝑐 is the central 

curved muscle length from Equation (5.12). 

The output work 𝑊𝑜𝑢𝑡 done when the EBPAM bends is associated with an increase 

in actuator length 𝐿𝑐 as a result of the change in volume. This can be described by the 

following formula: 

                                           𝑑𝑊𝑜𝑢𝑡 = 𝐹. 𝑑𝐿𝑐                                                       (5.15) 

Figure 5.8 shows the EBPAM output force direction.  

From the theory of energy conservation, the change in input work is equal to the 

change in output work: 

                                          𝑑𝑊𝑖𝑛 = 𝑑𝑊𝑜𝑢𝑡                                                          (5.16) 

 

Figure 5.8: EBPAM output force direction. 
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The output force can therefore be determined by combining (5.13) an (5.15) as 

follows: 

                                                      𝐹 = 𝑃
𝑑𝑉𝑐

𝑑𝐿𝑐
                                                      (5.17) 

Differentiating with respect to 𝜃 gives: 

                                                   
𝑑𝑉𝑐

𝑑𝜃
=

𝑏3

32π𝑛2 ×   

((cos 𝜃 + cos 𝜃𝑚𝑎𝑥)(2 cos 𝜃 sin 𝜃 + 2 sin 𝜃𝑚𝑎𝑥 cos 𝜃) − sin𝜃(sin𝜃 + sin𝜃𝑚𝑎𝑥)2)    (5.18)  

and: 

                                                   
𝑑𝐿𝑐

𝑑𝜃
=

−𝑏𝑠𝑖𝑛𝜃

2
                                                     (5.19) 

The final mathematical model of the proposed EBPAM output force results from 

substituting Equations (5.18) and (5.19) in Equation (5.17) as follows: 

                𝐹 =
𝑃𝑏2

8π𝑛2 (
(𝑐𝑜𝑠 𝜃+𝑐𝑜𝑠 𝜃𝑚𝑎𝑥)(𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜃+𝑠𝑖𝑛 𝜃𝑚𝑎𝑥 𝑐𝑜𝑠 𝜃)

𝑠𝑖𝑛𝜃
−

(𝑠𝑖𝑛𝜃+𝑠𝑖𝑛𝜃𝑚𝑎𝑥)2

2
)           (5.20) 

Equation (5.20) relies on values of 𝜃 which is particularly difficult to measure 

directly with a high degree of accuracy. However, equation (5.12) allows 𝜃 to be 

determined from the measured muscle length. As the length of the muscle is considerably 

easier to measure, in the experimental verification described in the next section the muscle 

length is measured and then 𝜃 calculated using (5.12).  

To validate this output force mathematical model of the bending muscles the three 

muscles (M1, M2 and M3), previously described, were again used. These muscles were 

each placed in a rig, which held them in an isometric configuration at a range of known 

bending angles, as can be seen in Figure 5.9. A load cell was mounted to the remote end of 

the muscle to allow actuator force to be measured and recorded to a PC. 

Each muscle to be tested was placed in the rig and then the pressure applied to it 

was increased from 50kPa to 500kPa in 50kPa increments and the force generated was 

recorded. The experiment was repeated at muscle bend angles of 90°, 135° and 45°. These 

bending angles have been chosen randomly to test the actuator in different positions and 
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the angles do not form part of the calculations of the output force. The experimental results 

along with the modelled data can be seen in Figures 5.10, 5.11 and 5.12. 

 

Figure 5.9: Test rig used to measure muscle force at a range of bending angles. 

There is an obvious observable error between the experimental and theoretical 

results in the form of a relatively constant over estimation of each muscle’s force output. 

For M1 the average error across all three bend angles was calculated to be 2.65N. This was 

determined by measuring the force error at each pressure value for each of the three bend 

angles and then taking an average of these values. This represents an error of 13.36% of 

the maximum force generated by the muscle. For M2 and M3 the average errors were 

4.02N and 8.19N respectively. These values correspond to 14.95% and 19.13% of the 

maximum output force for the two muscles M2 and M3.  

These errors are not unexpected as the model used is simplistic and does not 

consider energy losses within the muscle. However, the accuracy of the simple model is 

broadly similar to when the same approach has been used to model contracting pneumatic 

muscles (Davis et al., 2003).  

5.5 Enhancements to the Mathematical Model based-on Radial 

Expansion Pressure 

From the previous section, it is clear that there is a considerable gap between the 

theoretical and experimental results. There are many factors which introduce energy losses 

in PAMs. One of these factors is the energy spend radially expanding the rubber bladder 

before it makes contact with the braided sleeve.  
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Figure 5.10: Measured and modelled force for muscle M1 at 90°, 135° and 45° bend angle. 

Figure 5.13 shows there is a certain amount of pressure needed to inflate the 

bladder tube until it comes into contact with the sleeve, and below this pressure the 

(a) 

(b) 

(c) 
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actuator output force will be zero (Al-Ibadi, Nefti-Meziani, & Davis, 2016; Tsagarakis & 

Caldwell, 2000). 

 

Figure 5.11: Measured and modelled force for muscle M2 at 90°, 135° and 45° bend angle. 

 

(a) 

(b) 

(c) 
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Figure 5.12: Measured and modelled force for muscle M3 at 90°, 135° and 45° bend angle.  

We will call this pressure needed to radially expand the bladder to make contact 

with the braid 𝑃𝑟. To take into consideration this lost pressure effect, the active drive 

pressure for the actuator in the model (Equation 5.20) is replaced with the actual pressure 

𝑃𝑎 where: 

(a) 

(b) 

(c) 
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Figure 5.13: Pressure needed to inflate the bladder tube. 

                                                𝑃𝑎 = 𝑃 − 𝑃𝑟                                                         (5.21) 

Figure 5.14 shows the experimental results obtained for 𝑃𝑟  for the three test muscles 

M1, M2 and M3. The results were obtained by pressurising the bladders and measuring 

their diameter as the pressure increased up to the point where the diameter was equal to 

that of the resting braid diameter.  

 

Figure 5.14: Pressure needed to inflate rubber. 

Tsagarakis and Caldwell (Tsagarakis & Caldwell, 2000) modelled the radial 

expansion pressure for their contraction muscle. Based on this model, we derived a new 

model of this lost pressure experimentally.  

We represent the radial expansion pressure 𝑃𝑟 in the following equation: 
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                                                    𝑃𝑟 = 𝐾𝑟(𝐷𝑜 − 𝐷𝑐  sin 𝜃)                                             (5.22) 

Where 𝐷𝑜 is the actual bending muscle diameter and 𝐾𝑟 is the linearised radial 

actuator elasticity obtained from the experiment above (Tsagarakis & Caldwell, 2000): 

                                       𝐾𝑟 = 2000 𝑘𝑃𝑎/𝑚 for 𝐷𝑐  sin 𝜃 <
𝐷𝑜

2
 

                                          𝐾𝑟 = 500
𝑘𝑃𝑎

𝑚
 for 𝐷𝑐  sin 𝜃 >

𝐷𝑜

2
 

The final output force model of extensor bending muscles is given by the following 

equation: 

                 𝐹 =
𝑃𝑎 𝑏2

8π𝑛2 (
(sinθ+sin𝜃𝑚𝑎𝑥)2

2
−

(cos 𝜃+cos 𝜃𝑚𝑎𝑥)(cos 𝜃 sin θ+sin 𝜃𝑚𝑎𝑥 cos 𝜃)

𝑠𝑖𝑛𝜃
)           (5.23) 

Figures 5.15 shown the performance of the new model when compared to the 

experimental and previously modelled results. 

It is clear from the graphs in Figures 5.15, 5.16 and 5.17 that the average 

percentage errors are decreased by a considerable amount when using the new model. 

Table 5.2 illustrates a comparison between the previous errors and the new errors for all 

proposed bending muscles at bending angles of 90𝑜, 135𝑜and 45𝑜.  

Across the three bending angles the average percentage error for muscles M1, M2 

and M3 were found to be 8.62%, 8.59% and 8.11% respectively. The percentage reduction 

in modelled error when Pr was included was 35.48%, 42.54% and 57.61% for M1, M2 and 

M3 respectively. It is obvious, this enhancement stage reduces the error for high diameters 

muscles more than for the muscles with small diameters. This is because we used the same 

bladder diameter for all muscles, therefore the muscle with the largest maximum sleeve 

diameter has the maximum loss of radial expansion pressure. 

Table 5.2: The average error as a percentage of the maximum actuator force with and 

without consideration of Pr.  

Muscle No. M1 M2 M3 

Bending 
Angle 

% 
Error 

% Error with 
Pr 

% 
Error 

% Error with 
Pr 

% 
Error 

% Error with 
Pr  

90𝑜 13.70 8.98 15.29 8.79 19.47 8.20 
135𝑜  13.68 7.88 15.32 7.77 19.21 6.75 
45𝑜 12.71 9.01 14.25 9.21 18.71 9.37 
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Figure 5.15:  Final results of the output force for M1 in consideration with 𝑃𝑟. 

 

 

(a) 

(b) 
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Figure 5.16:  Final results of the output force for M2 in consideration with 𝑃𝑟. 

 

 

 

(a) 

(b) 
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Figure 5.17:  Final results of the output force for M3 in consideration with 𝑃𝑟. 

 

 

(a) 

(b) 

(c) 
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5.6 Enhancements to the Mathematical Model based on Actual Diameter 

The proposed mathematical model of the proposed actuator is based on an 

assumption, which is the muscle has no thickness (the thicknesses of the sleeve and the 

bladder is zero). This assumption simplifies the model but increases the error between the 

experimental results and the proposed model. 

In this enhancement stage, we will take into consideration the thicknesses of the 

sleeve (𝑡𝑠) and the bladder (𝑡𝑏) then the total muscle border thickness (𝑡𝑎) will be:  

                                                            𝑡𝑎 = 𝑡𝑠 + 𝑡𝑏                                                        (5.24) 

This thickness (𝑡𝑎) effects the muscle diameter and its volume. The proposed 

bending actuator diameter is expressed by the following equations: 

                                             𝐷𝑎 = 𝐷𝑐 − 2𝑡𝑎                                                       (5.25) 

                                   𝐷𝑎 =
𝑏 𝑠𝑖𝑛 𝜃+𝑏 𝑠𝑖𝑛 𝜃𝑚𝑎𝑥

2𝑛𝜋
− 2𝑡𝑎                                            (5.26) 

The bending muscle actual volume 𝑉𝑎 will be: 

                                          𝑉𝑎 =
𝜋𝐷𝑎

2𝐿𝑐

4
→                                                          (5.27)                                            

                     𝑉𝑎 =
1

32 𝑛2 𝜋
× ((𝑏 𝑐𝑜𝑠 𝜃𝑚𝑎𝑥 + 𝑏 𝑐𝑜𝑠 𝜃) × (𝑏 𝑠𝑖𝑛 𝜃 + 𝑏 𝑠𝑖𝑛 𝜃𝑚𝑎𝑥 − 4 𝑛 𝜋 𝑡𝑎)2)                             

The proposed actuator output force can therefore be determined based on Equation 

(5.17) as follows: 

                                             𝐹 = 𝑃𝑎
𝑑𝑉𝑎

𝑑𝐿𝑐
                                                              (5.28) 

Differentiating the bending muscle actual volume with respect to 𝜃 gives: 

                                         
𝑑𝑉𝑎

𝑑𝜃
=

1

32𝑛2𝜋
 ×                                                            (5.29) 

(2𝑏2 𝑐𝑜𝑠 𝜃 (𝑐𝑜𝑠 𝜃 + 𝑐𝑜𝑠 𝜃𝑚𝑎𝑥)(𝑏(𝑠𝑖𝑛 𝜃 + 𝑠𝑖𝑛 𝜃𝑚𝑎𝑥) − 4𝑛𝜋𝑡𝑎) − 𝑏 𝑠𝑖𝑛 𝜃 (𝑏(𝑠𝑖𝑛 𝜃 + 𝑠𝑖𝑛 𝜃𝑚𝑎𝑥) − 4𝑛𝜋𝑡𝑎)2)     

The final mathematical model of the output force of the proposed extensor bending 

artificial muscle results from substituting (5.29) and (5.19) in (5.28) as follows: 
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                                         𝐹 =
−2𝑃𝑎

32𝑛2𝜋𝑏 𝑠𝑖𝑛 𝜃
                                                          (5.30) 

(2𝑏2 𝑐𝑜𝑠 𝜃 (𝑐𝑜𝑠 𝜃 + 𝑐𝑜𝑠 𝜃𝑚𝑎𝑥)(𝑏(𝑠𝑖𝑛 𝜃 + 𝑠𝑖𝑛 𝜃𝑚𝑎𝑥) − 4𝑛𝜋𝑡𝑎) − 𝑏 𝑠𝑖𝑛 𝜃 (𝑏(𝑠𝑖𝑛 𝜃 + 𝑠𝑖𝑛 𝜃𝑚𝑎𝑥) − 4𝑛𝜋𝑡𝑎)2)  

Figures 5.18, 5.19 and 5.20 show the performance of the new model when 

compared to the experimental and previously modelled results. 

Based on the graphs in Figures 5.18, 5.19 and 5.20 it can be seen that the average 

percentage errors are decreased by a considerable amount when using the new model. 

Table 5.3 shows a comparison between the previous errors (when including 𝑃𝑟) and the 

new errors (when including 𝑡𝑎) for all three proposed bending muscles at bending angles 

of 90𝑜, 135𝑜and 45𝑜. 

Table 5.3: The average error as a percentage of the maximum actuator force with and 

without consideration of  𝑡𝑎. 

Muscle No. M1 M2 M3 

Bending 

Angle 

% 

Error 

%  

Error with ta 

% 

Error 

%  

Error with ta 

% 

Error 

%  

Error with ta  

90𝑜 8.98 5.85 8.79 6.17 8.20 6.26 

135𝑜 7.88 4.79 7.77 5.22 6.75 4.88 

45𝑜 9.01 5.94 9.21 6.66 9.37 7.45 

 

Across the three bending angles the average percentage error for muscles M1, M2 

and M3 were found to be 5.53%, 6.02% and 6.19% respectively. The percentage reduction 

in modelled error when ta was included (with the last model in section 5.5) was 35.89%, 

29.92% and 23.63% for M1, M2 and M3 respectively. 

5.7 Enhancements to the Mathematical Model based on Total Volume 

All mathematical models in the previous sections were based on a further 

assumption, which is the actuator is perfectly cylinder and there are no deformations 

segments at the ends of the actuator. In reality, there are that deformations occurred at the 

actuator terminals because the ends caps of the extensor muscles have a diameter smaller 

than the muscle cylindrical body. These deformations are similar in shape to a frustum of a 

cone. Figure 5.21 shows the frustum of cone geometry with its parameters. 
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Figure 5.18:  Final results of the output force for M1 in consideration with 𝑡𝑎. 

 

 

 

(a) 

(b) 

(c) 
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Figure 5.19:  Final results of the output force for M2 in consideration with 𝑡𝑎. 

 

 

(a) 

(b) 

(c) 
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Figure 5.20:  Final results of the output force for M3 in consideration with 𝑡𝑎. 

 

(a) 

(b) 

(c) 
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Figure 5.21:  The frustum of cone geometry with its parameters. 

The frustum of a cone volume is given by the following equation: 

                                                   𝑉 =
𝜋ℎ

3
(𝑅2 + 𝑅𝑟 + 𝑟2)                                               (5.31) 

Where h is the height of the frustum of a cone, r is the radius of the upper base and 

R is the radius of the lower base. 

The proposed extensor bending muscle’s new geometry including this deformation 

is shown in Figure 5.22. 

 

Figure 5.22: The proposed extensor bending muscle new geometry with its parameters. 

Based on Figure 5.22, the volume equation of each actuator end is given by the 

following equation: 

                                              𝑉𝑙 =
𝜋 𝐿𝑙

12
(𝐷𝑎

2 + 𝑑2 + 𝐷𝑎𝑑)                                               (5.32) 

 Where 𝑉𝑙 is the deformed volume, 𝐿𝑙is the deformed length and d is the actuator 

end cap diameter. 

 By substituting the body muscle diameter from equation (5.26) to equation (5.32); 

the volume of each deformation is given by the following equation: 

         𝑉𝑙 =
𝜋 𝐿𝑙

12
[(

𝑏 𝑠𝑖𝑛 𝜃+𝑏 𝑠𝑖𝑛 𝜃𝑚𝑎𝑥

2𝑛𝜋
− 2𝑡𝑎)

2

+ (𝑑 (
𝑏 𝑠𝑖𝑛 𝜃+𝑏 𝑠𝑖𝑛 𝜃𝑚𝑎𝑥

2𝑛𝜋
− 2𝑡𝑎)) + 𝑑2]         (5.33) 

 And its derivative with respect to 𝜃: 

                      
𝑑𝑉𝑙

𝑑𝜃
=

𝐿𝑙

48𝜋𝑛2 (2𝑏 cos 𝜃 (𝑏(sin 𝜃 + sin 𝜃𝑚𝑎𝑥)) − 𝑛𝜋(4𝑡𝑎 − 𝑑))               (5.34) 
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 From the theory of energy conservation, the change in input work is equal to the 

change in output work: 

                                                       𝑃𝑎𝑑𝑉𝑡 = 𝐹 𝑑𝐿𝑡                                                         (5.35) 

                                        𝑃𝑎(𝑑𝑉𝑎 + 2𝑑𝑉𝑙) = 𝐹(𝑑𝐿𝑐 + 2𝑑𝐿𝑙)                                        (5.36) 

                                                     𝐹 = 𝑃𝑎 [
𝑑𝑉𝑎
𝑑𝜃

+2
𝑑𝑉𝑙
𝑑𝜃

𝑑𝐿𝑐
𝑑𝜃

+2
𝑑𝐿𝑙
𝑑𝜃

]                                                       (5.37) 

 Assuming 𝐿𝑙 is a constant experimentally measured for each actuator, the force 

equation will be: 

                                                𝐹 = 𝑃𝑎 [
𝑑𝑉𝑎
𝑑𝜃

+2
𝑑𝑉𝑙
𝑑𝜃

𝑑𝐿𝑐
𝑑𝜃

]                                                           (5.38) 

 Where 𝑃𝑎 is the actual pressure from equation (5.21), 
𝑑𝑉𝑎

𝑑𝜃
 is the change in volume of 

the actuator cylindrical segment from equation (5.29), 
𝑑𝑉𝑙

𝑑𝜃
 is the change in volume of the 

frustum of a cone at each actuator end from equation (5.34) and 
𝑑𝐿𝑐

𝑑𝜃
 is the change in length 

of the cylindrical segment of the proposed actuator from equation (5.19).  

 Figures 5.23, 5.24 and 5.25 show the performance of the new model when 

compared to the experimental and previously modelled results. 

From the graphs in Figures 5.23, 5.24 and 5.25 it can be seen that the average 

percentage errors are decreased by a considerable amount when using the new model in 

equation (5.38). Table 5.4 illustrates a comparison between the previous errors (when 

considering 𝑡𝑎) and the new errors (when considering 𝑉𝑙) for all three proposed bending 

muscles at bending angles of 90𝑜, 135𝑜and 45𝑜. 

Table 5.4: The average error as a percentage of the maximum actuator force with and 

without consideration of  𝑉𝑙. 

Muscle No. M1 M2 M3 

Bending 

Angle 

% 

Error 

%  

Error with Vl 

% 

Error 

%  

Error with Vl 

% 

Error 

%  

Error with Vl  

90𝑜 5.85 4.73 6.17 4.74 6.26 4.72 

135𝑜 4.79 3.70 5.22 3.83 4.88 3.42 

45𝑜 5.94 4.84 6.66 5.25 7.45 5.90 

 

Across the three bending angles the average percentage error for muscles M1, M2 

and M3 were found to be 4.42%, 4.61% and 4.68% respectively. The percentage reduction 
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in modelled error when ta was included (with the last model in section 5.6) was 20.1%, 

23.42% and 24.39% for M1, M2 and M3 respectively. 

5.8 Conclusion 

This chapter has described the construction of a bending pneumatic muscle based 

on an extending McKibben muscle. By reinforcing one side of the muscle to prevent 

extension, a bending motion actuator has been developed and modelled mathematically. 

This model relies upon the geometric parameters of the extending bending pneumatic 

muscle to determine the output force as a function of the input pressure. The model has 

been verified against experimental results for a range of actuator sizes and at a range of 

bending angles. The chapter has experimentally assessed the effectiveness of the novel 

muscle and our mathematical model.  

Three enhancements to the model have been added to enhance the output force 

mathematical model to decrease the average error percentage to the minimum. 
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Figure 5.23:  Final results of the output force for M1 in consideration with 𝑉𝑙. 
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Figure 5.24:  Final results of the output force for M2 in consideration with 𝑉𝑙. 
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Figure 5.25:  Final results of the output force for M3 in consideration with 𝑉𝑙. 
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Chapter 6 

Power Assistive and Augmentation Wearable 

Robot Based on Soft Actuators  

 

6.1 Introduction 

 In the increasingly rapid development in wearable robots of recent decades, one 

important area of innovation has been alleviating heavy tasks (Malcolm, 1996). Human–

robot power assistance refers to the utilisation of robotics systems to increase human 

functionalities in various operations (Kazerooni, 1990). Generally, the power assistance of 

people's functionalities using robotic systems refers exclusively to augmentation in 

mechanical abilities, including movement control and limbs output force. This involves 

complex functionalities and taking advantage of perceptual abilities. There are instances of 

working conditions in which human–robot assistance can form a fundamental part of the 

operation, e.g., tasks for wreckage elimination after an earthquake in which human 

employees wearing such devices can move and work in a more adaptable and precise way 

than machines, such as excavators or cranes. 

 This chapter presents the developments in the design of a power assistive and/or 

augmentation soft glove based on our novel EBPAMs (described in chapter 5). The early 

version of our glove is capable of multiple gripping and pinching movements. In this 

glove, we used a simple control algorithm based on a bang-bang controller. A hybrid 

cascaded position/force intelligent control system has been developed to control the latest 

version of the glove. These soft exoskeletons are able to fit any adult hand size without the 
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need for any mechanical system changes or calibration. The potential beneficiaries of the 

system are post-stroke patients and the elderly who have reduced strength, with the 

exoskeleton allowing for increased independent daily living. There are potentially 

significant psychological benefits to be gained from enhanced patient independence. 

6.2 Power Assistive Soft Glove 

 This section will describe the design of a soft wearable glove for power assisted 

and/or augmentation based on pneumatic soft actuators. The extensor bending type of 

pneumatic soft actuators was used; an examination of their characteristics proved that these 

actuators are appropriate. A proposed solution for a release movement is also presented 

and experimental results show that this solution works efficiently. Electromyography 

(EMG) signals are monitored to examine the proposed prototype. The proposed glove 

provides assistive power for multi-griping and multi-pinching movements, depending on 

the wearer’s intention. The elderly, partially disabled and strenuous workers can use this 

glove. An efficient control algorithm is used which detects signals from sensors located 

within the glove; these capture the type of movement and bending angle to provide 

appropriate assistance. A wide range of rehabilitation exercises can be carried out using 

this soft wearable glove. 

To make the glove capable of multiple gripping and pinching movements, 

pneumatic soft actuators are used as hand exoskeleton muscles to assist finger joints. Our 

system aims to fit any adult without needing to be changed mechanically. All movements 

are controlled by the glove’s wearer, who is then provided with suitable assistance using 

electronic sensors to capture the movement and provide the system with enough feedback 

information. The main contribution of this chapter is to solve the release movement 

challenge whereby power assistance is active and overcomes the problems with release 

movements which occurred in many previous research studies. An efficient control 

algorithm is used to control the proposed system. 

6.2.1 The Glove Characteristics 

The power assistive glove is a wearable soft glove to assist in gripping and 

pinching movements. Movements are assisted by placing pneumatic artificial muscles on 
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the glove’s surface. When any movement occurs, the air flow pressurises the muscles to 

bend to a suitable degree to amplify the hand’s power. 

 The soft actuator proposed to actuate this glove (M1) is the same as that which is 

described and modelled in chapter 5. 

We manufactured a power assistive glove based on the proposed actuator discussed 

in the previous chapter and our prototype in Figure 6.1. Four bending muscles have been 

sewed on the back of a standard worker’s glove and the air flow is controlled by MATRIX 

3/3 solenoid valves. The features of this prototype are that it is: flexible, lightweight 

(approximately 100g), working to assist most human hand functions, made from good 

quality materials for a long working life, and containing enough sensors to capture most 

movements (to be discussed in later sections). 

 

 

 

 

 

 

 

 

Figure 6.1: Proposed soft glove; (a) The design and (b) The real prototype. 

EBPAMs 

Bending Sensors 

Force Sensors 

(a) 

(b) 
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6.2.2 Output Force of the Proposed Prototype 

When our prototype was examined, the artificial muscles on the glove were found 

to be very flexible when no pressure exists whilst the maximum assisting force was 17N at 

4bar pressurised. This compares with healthy individuals aged 50 or over who have an 

average pinching force (on the index finger) of 43N for men and 38N for women 

(Kadowaki et al., 2011).  

This power assistive glove therefore amplifies the healthy person’s force by up to 

40% - 45% for males and females respectively, and for partially disabled or unhealthy 

individuals this percentage can be increased depending on the level of neurological 

damage. 

6.2.3 Sensing 

 The glove sensing data is useful for capturing and collecting enough information 

about a movement to produce suitable assistance from the controller. There are 6 SparkFun 

2.2” flex bend sensors located between the muscles and the glove, as shown in Figure 6.2, 

and 3 SparkFun force sensitive sensors (sensing area: 0.3") on the other side of the glove. 

A pressure sensor for each muscle has been placed on the air entrance. 

 

Figure 6.2: Glove sensors. 
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The force sensitive sensors are used as touch sensors to classify the movement as 

pinch or grip. If the index and thumb sensors are in contact, and no others are touching 

them, it is a pinch movement. The index finger’s joint angle from the bend sensors is then 

read to produce suitable pressure. If all touch sensors are touching, the movement is a grip, 

so the bending data from the flex sensors on the index and ring fingers are then read to 

recognise the grip angle and produce suitable pressure. There are no sensors on the middle 

finger because in most daily activities the middle finger’s movements are the same as the 

ring finger’s, so we assume both move together in gripping movements. Figure 6.2 shows 

no bending sensors on the thumb because our assumption is that the thumb moves in 

relation to the index finger in pinching and gripping movements. We will explain the 

function of the sensors on the little finger in another section. 

6.2.4 Proposed Solution for the Release Movement Problem 

The major challenge for power assistive and rehabilitation wearable robots is the 

release movement, because when assistance is active (muscles are pressurised), the patient 

or the elderly person cannot produce enough opposite force for a release movement. In 

other words, if a person grasps something with the glove’s assistance, he cannot release it 

without removing the assistance because his power is less than the assistive power. 

Robots were only developed for gripping and/or pinching movements, without any 

mention of the release movement (Noritsugu, 2005; Noritsugu et al., 2008; Noritsugu et al., 

2004; Polygerinos, Wang, et al., 2015; Tadano, Akai, Kadota, & Kawashima, 2010). Using 

the wearable glove was only used for rehabilitation exercises, it was not important to 

control the release movement because these were repetitive movements, depending on the 

time and movement type (Polygerinos et al., 2013; Polygerinos, Wang, et al., 2015; Yap et 

al., 2015b). According to Toya et al. (2011), the release movement problem was solved by 

estimating the average duration of the pinching or gripping movements, which was not an 

efficient solution because there is no fixed time for grasping something for every person, 

and therefore it is impossible to estimate that time for multiple people. Finally, researchers 

faced this problem and tried to solve it by using EMG characteristic signals, but found that 

this was not an efficient solution because the EMG signals of attempted release movements 

can conflict with other EMG signals, such as wrist movement signals (Kadowaki et al., 

2011; Polygerinos, Galloway, et al., 2015; Sasaki et al., 2014). 
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Our proposed solution to the release movement problem is to leave the little finger 

without assistive muscle, as shown in Figure 6.2. The little finger is free to move because 

there is no opposite assisted force exerted on it. When a gripping movement is made, all 

fingers are bending; and when a release movement is made, only the little finger will 

move. The controller understands this is a release movement and orders the muscles to 

move in relation to the little finger, depending on the sensors in the little finger (Figure 

6.2).  

6.2.5 Proposed Control Algorithm 

Figure 6.3 shows the block diagram of the control system. 

We designed a control algorithm that works efficiently in most movement 

situations. It is done by using two bang-bang closed loop controllers. The algorithm for the 

bang-bang controllers can be written as follows (Kaitwanidvilai & Parnichkun, 2005; 

Verrelst et al., 2005; Zhang et al., 2008): 

 

Figure 6.3: Control system. 

 

𝑦 = {

 𝐹 𝑖𝑓 𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘 ≤ 𝑠𝑒𝑡 𝑝𝑜𝑖𝑛𝑡 − 𝜖 
0 𝑖𝑓 𝑠𝑒𝑡 𝑝𝑜𝑖𝑛𝑡 − 𝜖 < 𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘 < 𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡 + 𝜖

𝑉 𝑖𝑓 𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘 ≥ 𝑠𝑒𝑡 𝑝𝑜𝑖𝑛𝑡 + 𝜖
 

 

 Where y is the controller output, F is a valve fill, V is a valve vent, and ϵ is a small 

constant. Figure 6.4 shows a flowchart of the proposed control algorithm; the initial state is 

all muscles unpressured. After that, whether the movement type is pinch or grip, it’s 
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recognised by a feedback signal from the touch sensors on the thumb, index and ring 

fingers, respectively. The touch is recognised by a threshold force with each touch sensor.    

If the movement is a pinch, then the pinch movement controller is started, the 

pressure point is set as the pinch movement comes from the bending angle of the index 

finger and the feedback signals come from the pressure sensors of the assisting muscles 

placed on the index and thumb fingers. The release pinching movement is made when the 

little finger starts to unbend. Then the system starts to check again for any further 

movement.  

If the movement is gripping, the same pinching procedure will work, but the grip 

movement controller will start; the pressure set point of the controller comes from the bent 

angles of the ring finger, and the feedback signals come from the pressure sensors of the 

assisting muscles on all fingers. The grip is released when the little finger starts to unbend. 

Then the system starts to check again for any further movement. 

EMG signals from the hand are monitored. Figure 6.5 (a) shows the experimental results of 

EMG signals for hand grip carrying a 0.5 kg weight. Figures 6.5 (b) and (c) show the 

signals of the same hand carrying a weight with all fingers assisted, and only four fingers 

assisted, without assistance for the little finger, respectively. These results proved that the 

EMG signals for full hand assistance show a decrease in muscular fatigue. Moreover, the 

full assistance and assistance without the little finger are almost the same, proving that our 

release movement solution has no effect on muscular fatigue. 

6.3 Power Augmentation Hand Exoskeleton based-on Human Intention 

 This section presents our developed version of a soft materials power augmentation 

wearable robot, dependant on soft artificial muscles. The previous version (section 6.2) is 

used as a power assistive glove for elderly people who have hand muscle weakness, not as 

a power augmentation glove for healthy individuals. This soft exoskeleton has been 

developed as a human hand power augmentation for healthy or partially hand disabled 

individuals with high augmentation force. The proposed prototype serves healthy manual 

workers by decreasing the muscular effort needed for grasping objects. Furthermore, it is a 

power augmentation wearable robot for partially hand disabled or post-stroke patients, 

supporting and augmenting the fingers’ grasping force with minimum muscular effort in 

most everyday activities. 

Thumb 
Touch 
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Figure 6.4: Proposed control flowchart. 
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Figure 6.5: Hand EMG signals. 

The control system for this exoskeleton is more accurate and more advanced than 

the previous version and the controller developed has been created by hybridisation 

between cascaded position and force closed loop intelligent controllers. The cascaded 

position controller is designed for the bending actuators to follow the fingers in their 

bending movements and the force controller is developed to control the grasping force 

augmentation. The operation of the controller system with the exoskeleton has been 

experimentally validated. EMG signals were monitored during the experiments to 

determine whether the proposed exoskeleton system decreased the muscular efforts of the 

wearer. 

 This glove was manufactured, and the muscles were attached, using the same 

method as described for the previous prototype. The soft bending actuator M2 is used to 

construct this prototype (see chapter 5). 
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 The power augmentation soft glove was constructed based on the proposed bending 

actuator, as shown in Figure 6.6. Four bending actuators are reinforced (sewn) on the back 

surface of a traditional worker’s leather glove; one muscle for each finger except the little 

finger. The air supplied for all muscles is controlled by a solenoid valve type MATRIX 

3x3. The proposed soft exoskeleton glove has a weight of approximately 0.12 kg. 

 The proposed exoskeleton sensing data is helpful in catching and gathering enough 

data about a hand motion to create appropriate assistance by the controller. There are two 

(2.2 inch) flex bend sensors, placed between the soft actuator and the glove, on the index 

finger joints; one bend sensor to capture the bending angle of the root of the finger is 

named the MP joint (Metacarpophalangeal Joint) and the others are for the PIP middle 

joint (Proximal Interphalangeal Joint) and the DIP terminal joint (Distal Interphalangeal 

Joint). As the assumption of our controller is that all fingers bend together at the same time 

for a full grasping movement, the index finger flex sensors provide the feedback of the 

grasp movement angle of the hand. The force sensitive sensor (sensing area: 0.5") on the 

front side of the glove (on the index fingertip) is also reinforced. This sensor is attached to 

give feedback on the tactile pressure force of the index finger when grasping an object. An 

air pressure sensor is attached to the soft bending actuators for live feedback of the 

pressure inside the glove muscles. 

 

Figure 6.6: The proposed power augmentation exoskeleton. 

 The proposed solution of the release movement problem is to leave the little finger 

without any assistance muscle (similar to the solution of the release movement problem 

which is discussed in section 6.2.4).  
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 Instead of the assistive muscle, we placed a flex bend sensor (size 4.4”) on the back 

of the little finger to provide the controller with real-time feedback on the little finger 

bending angle. As usual, when grasping an object, all the fingers will bend and the 

controller will start working.  

 If we need to release the object, first we release the little finger (because it is free of 

assisted force) then, depending on the angle of the little finger reaching a zero-bend angle, 

the controller will understand that it is a release movement, then deflate all actuators. 

6.3.1 The Proposed Control Algorithm with Experimental Results 

 In all events, the control precision and stabilisation of the pneumatic actuator (for 

example, pneumatic cylinder or McKibben muscle) presents a major challenge due to both 

the nonlinear working behaviour and the compressibility of air. The classic control 

techniques are regularly created via simple models of the actuator functionality that fulfil 

the important assumptions, and through the uncommon tuning of comparatively basic 

linear or nonlinear controllers. 

 Figure 6.7 illustrates the proposed controller system flowchart. The initial state of 

the control system has vented all actuators (all bending muscles with zero air pressure). 

The next state is reading all sensors: flex bend sensors (on the index and little fingers), the 

force sensitive sensor on the index fingertip, and the pressure sensor.  

 The first conditional block in the proposed algorithm is testing the little finger’s 

bending angle (if the little finger’s bending angle = 0). If there is no bend or return to the 

straight position, the release movement state will occur as explained in the previous 

section. If there is bending in the little finger, the next condition continues. The second 

condition is to test the force sensitive sensor whether the index fingertip is in contact with 

the object or not (the force > 0). If there is no force applied, the position controller starts; if 

there is a force, the force controller starts. In other words, when the wearer needs to grasp 

an object, the wearer starts to bend his/her fingers to touch the object (in this case, the 

position controller system actuates the muscles to follow the fingers until the fingers are in 

contact with the object, then the controller system stops the position controller and 

switches on the force controller, depending on the index fingertip press force). 
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Figure 6.7: The flowchart of the proposed control algorithm. 

6.3.2 The Position Controller System  

 An assumption is made in this work that all bending actuators follow the bending 

angle of the index finger (all fingers bent at the same time and their angles based on the 

index finger bending angle). This assumption does not limit the fingers movements when 

grasping cylindrical or spherical objects; when grasping other shaped objects, the force on 

the fingertips will vary by small amounts depending on the shape of the object grasped. It 

is not difficult to place flex bend sensors on all fingers and copy the proposed controller for 

each finger, but that will increase the cost of the proposed exoskeleton and also increase 

the processing controller response time. Figure 6.8 shows the proposed position control 

system block diagram.          

 

Figure 6.8: The block diagram of the proposed position controller system. 
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 The computational burdens of the NN identifier and Fuzzy controller, from the 

viewpoint of real-time implementation, are acceptable because the control system is simple 

and the NN is already trained. The control system is implemented by Matlab and there is 

no noticeable delay occurring in real-time interface operations. 

6.3.2.1 The Neural Network Identifier 

 The first block of the proposed position control system is the neural network 

identifier. This block is used to generate the appropriate pressure set-point for the position 

controller, depending on the online feedback signal of the index finger bending angle. This 

neural network identifier is designed by the Matlab neural network data fitting application. 

The experimental data, from the relationship between the actuator bending angles and the 

amount of supplied pressure, are used to design this identifier. The network includes one 

input layer, four hidden layers and one output layer. The Bayesian Regularisation (Demuth 

et al., 2014) training technique is used to train the proposed neural network identifier. It is 

a network training technique that updates the weight and bias values according to 

Levenberg-Marquardt optimisation. It minimises a combination of squared errors and 

weights and then determines the correct combination so as to produce a network that 

generalises well. Figure 6.9 illustrates the results of this identifier and the error between the 

targets and outputs.   

 

 

  

 

Figure 6.9: Results of the neural network identifier and the error of the targets and outputs. 

6.3.2.2 The Fuzzy Logic Controller of the Position Controller 

 A Fuzzy logic controller is used in the proposed position control system to control 

the pressure amount inside the bending muscles. The desired pressure set-point for each 

bending angle comes from the neural network identifier (real-time feedback signal). This 

Fuzzy controller has two inputs (error and change of error) and two outputs (fill and vent). 
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As we used a MATRIX 3x3 solenoid valve to control the air flow by PWM (Pulse Width 

Modulation), the same valve output can fill and vent by applying two separate PWM 

signals. Based on this, the Fuzzy controller has two outputs to control the percentage of the 

PWM duty cycle for each filling and venting signal. The valves are pulse width modulated 

at a frequency of 125Hz and this allows the flow of air through the valve to be regulated. A 

3-3 valve has three states of operations: i) regulating the filling air pressure; ii) regulating 

the venting air pressure and; iii) holding a specific air pressure inside the actuator when the 

controller is stable. These three operations are controlled by the control system. Figure 

6.10 shows the membership functions of the inputs and outputs of the fuzzy controller. 

 There are five ranges for the input error and five ranges for the change in error, 

with the entire range being -200 to 200 because during experiments the proposed actuator, 

when placed on the index finger, reached its maximum angle at less than 200KPa pressure. 

Likewise, there are three intervals for the PWM fill output percentage and the same for 

vent output. All membership functions are the triangle type for simplicity, but the 

membership functions of the error input are smaller intervals, close to zero. This serves to 

diminish the gain of the controller close to the desired set-point, achieve superior stability, 

and avoid excessive overshoots on the controller response. Figure 6.11 demonstrates the 

Fuzzy controller rules surface of each fill and vent output. 

 
Figure 6.10: The membership functions for the inputs and outputs for the Fuzzy controller 

of the proposed position controller; where NB is Negative Big, NS is Negative Small, Z is 

Zero, PS is Positive Small, PB is Positive Big, ZF is Zero Fill, SF is Small Fill, BF is Big 

Fill, ZV is Zero Vent, SV is Small Vent and BV is Big Vent. 
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Figure 6.11: Fuzzy controller rules surface for each fill and vent output of the proposed 

position controller.  

 The proposed position controller is examined experimentally. Figure 6.12 shows 

the experiment results of the controller at various bending angles. These six experiments 

were done by grasping cylindrical shaped objects with different diameters, to reach the 

grasping angles of 38o, 64o, 90o, 122o, 144o and 170o; they are represented in Figure 6.12 (a 

to f), respectively. 

6.3.3 The Force Controller System 

 The proposed force controller is based on the assumption that the applied touch 

force from the fingertips to the grasped object is equal for all fingers, depending on the 

index fingertip force (see Figure 6.13). The main purpose of the proposed controller is to 

decrease the muscular effort of the wearer when grasping an object. The wearer needs only 

to apply press force on the object with the index fingertip (the wearer estimates the amount 

of this press pressure) and then rests the hand. Then the controller gives feedback and 

calculates the maximum amount of this pressing force. This maximum press force will be 

added to the bent force (the bent force to reach the position at the moment of touch on the 

grasped object) to provide a force feedback signal to the controller system. The bent force 

is calculated by the kinematic analysis equations of the bending actuator. Substitute the 

bending angle of the actuator (it is constant when fingers are in contact with the grasped 

object) in these equations to calculate the sleeve strain angle θ and we have the amount of 

the pressure inside the actuators at the moment of touching, to calculate the bent force by 

using the proposed output force model in Equation 5.38. After adding the bending force to 

the maximum touch force, we now have the desired force of the single fingertip and the 

strain angle θ; then we calculate the desired pressure set-point of this pressing force, again 

by using Equation 5.38. 



130 
 

 

 

Figure 6.12: The experimental results of the position controller system. 
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Figure 6.13: The proposed force controller. 

 Using the same technique as the Fuzzy controller of the position controller system, 

we designed the Fuzzy controller of the force controller system. This Fuzzy controller has 

two inputs (error and change of error) with seven membership functions of each input; and 

two outputs (fill and vent) with four membership functions for each output, as shown in 

Figure 6.14. Figure 6.15 illustrates the Fuzzy controller rules surface of each fill and vent 

output in this controller. 

 The proposed force controller has been tested using six different experiments which 

to examine the performance of the proposed controller system, as shown in Figure 6.16. 

These experiments were done by grasping three different cylindrical objects then applying 

a pressing force from the index fingertip to the object. Figures 6.16 (a) and (b) show the 

results of grasping to reach a bending angle of approximately 64o. The press index 

fingertip forces approximately 5.1N and 14.9N, respectively, with a bend wasted force of 

5.73N (is the amount of force that needed to bend the fingers until the fingertips be in 

contact with the object). Other bending angles were also tested with different press forces 

for validation, as shown in Figures 6.16 (c) to (f). 
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Figure 6.14: The membership functions for the inputs and outputs for the Fuzzy controller 

of the proposed force controller. 

 

Figure 6.15: Fuzzy controller rules surface for each fill and vent output of the proposed 

force controller. 
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Figure 6.16: The experimental results of the force controller system. 
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6.3.4 The Validation of the Proposed Exoskeleton and its Controller 

 The validation of the proposed exoskeleton and its controller have been proven 

experimentally, as shown in Figures 6.17. Figure 6.17 (a) shows a human wearing the 

power augmentation exoskeleton and grasping to apply force on a load cell, where the 

hand fingers bending angle was 120o. Muscular effort and fatigue cause a corresponding 

increase in muscle activation amplitude, measured with electromyography (EMG) 

(Graham, Wachowiak, & Gurd, 2015). Based on previous research, such as (Kadota et al., 

2009; Noritsugu, 2005; Noritsugu et al., 2008; Polygerinos, Galloway, et al., 2015; Sasaki 

et al., 2005a; Tadano et al., 2010), there is a noticeable increase in EMG amplitude due to 

the increase in muscular efforts. EMG signals were monitored to demonstrate the muscular 

effort during the experiment without wearing the exoskeleton, as shown in Figure 6.17 (b), 

and with wearing the exoskeleton, as shown in Figure 6.17 (c). The fingers’ bending angle 

was recorded, as shown in Figure 6.17 (d). The desired pressure set-points and the actual 

pressure inside the actuators are illustrated in Figure 6.17 (e). Figure 6.17 (f) shows the 

index fingertip press force and the total applied force on the load cell. 

 We divided the experiment figures into six regions (R1, R2, R3, R4, R5 and R6) to 

simplify what happened during the entire experiment: 

• Region R1: the wearer wears the exoskeleton with straight fingers without any 

movements. 

• Region R2: the wearer curls the fingers to touch the bar and the load cell, 

meanwhile the position controller is active, and the bending muscles follow the 

fingers until touch occurs at a bending angle of approximately 90o; we can note 

the slightly increased muscular effort from the EMG signals because of the 

fingers’ movement. 

• Region R3: the wearer touches the bar and the load cell and briefly presses with 

the index fingertip to apply force on the force sensitive sensor. Meanwhile, the 

force controller is working to reach the desired force; it is obvious from Figure 

6.17 (c) that in this region the muscular effort is at its maximum during the 

entire experiment because of the effort of the fingertip when pressing on the bar.  
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Figure 6.17: The validation experiment of the proposed prototype at grasping bending 

angle approximately 120o. 
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The load cell force in Figure 6.17 (f) is higher than the applied index fingertip 

force (approximately four times), because the applied force on the load cell 

comes from four fingers (index, middle, ring and thumb), with their assistive 

muscles.  

• Region R4: the wearer rests his muscles and the exoskeleton performs the 

grasping function with the desired force, and the proof of that is the muscular 

effort signals in Figure 6.17 (a) in this region.  

• Region R5: the wearer releases his little finger to the straight bending angle, then 

the release movement procedure becomes active, venting all muscles to zero 

pressure. 

• Region R6: the wearer’s fingers are straight again without any movement (as in 

R1) and the controllers standby for another movement. 

 It is clear from Figure 6.17 (b) that the highest muscular effort occurs along 

grasping periods R3 and R4. However, with the glove assistance (Figure 6.17 (c)), the 

highest muscular effort only occurs along R3, and that proves our theory that the wearer 

only needs to expend considerable effort at the beginning of grasping by pressing their 

index fingertip on the object. The exoskeleton will then apply the appropriate assistive 

force and the wearer’s hand can rest (the lowest muscular effort regions). 

 Three statistical features from the time domain are used in evaluation Daud, Yahya, 

Horng, Sulaima, and Sudirman (2013). Time domain features can be implemented in real-

time and are usually used for detecting muscle contraction, muscle activity and onset 

detection. The three statistical features, based on time domain, are described as follows: 

• Maximum amplitude: Maximum amplitude (MAX) is defined as the peak 

amplitude of a signal. 

• Standard deviation: Standard deviation (SD) measures the spread of data from 

the mean. In signal processing, SD represents noise and other interference. It is 

used in comparison to the mean. This leads to the term: signal-to-noise ratio 

(SNR), which is equal to the mean divided by the standard deviation. Better data 

means a higher value for the SNR. 
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• Root mean square: Root mean square (RMS) is another feature that is popular in 

EMG signal analysis. RMS is defined as the square root of the mean over the 

time of the square of the vertical distance of the graph from the rest state, related 

to the constant force and non-fatiguing contraction of the muscle. In most cases, 

it is similar to the standard deviation method. 

 Figure 6.18 illustrates these three EMG features for Figures 6.17 (b) and (c). Figure 

6.18 (a) shows the EMG signal analysis of the naked hand when grasping an object 

(experiment on Figure 6.17 (b)), to prove that the high muscular effort is during grasping 

periods R3 and R4. Figure 6.18 (b) shows the EMG signal analysis of a human wearing the 

power augmentation exoskeleton and grasping to apply force on a load cell (experiment on 

Figure 6.17 (c)), to prove that the high muscular effort is occurring only when pressed by 

the wearer’s index fingertip on the load cell (R3). This analysis supports our validation of 

the power augmentation glove by serving the aim of augmenting or assisting the wearer’s 

human hand whilst grasping objects. 

 

Figure 6.18: EMG signals analysis of grasping an object with a 120o bending angle of the 

human hand. 

 The same experiment and analysis were repeated at the fingers bending angles of 

approximately 90o with different index fingertip pressing force, as shown in Figure 6.19 

and 6.20. 
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Figure 6.19: The validation experiment of the proposed prototype at grasping bending 

angle of approximately 90o. 
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Figure 6.20: EMG signals analysis of grasping an object with a 90 bending angle of the 

human hand. 

6.4 Conclusion 

 This chapter presents the preliminary stages of developing a wearable power 

assistive glove based on pneumatic soft actuators, where curved type artificial muscles are 

used. The proposed prototype outputs 17 N maximum force at the fingers for bending at 4 

bar, showing that the assistive amount is up to 40% and 45% respectively for healthy men 

and women over 50. An efficient solution for the release movement problem is presented. 

EMG signals from the hand are monitored to clarify that solution. The proposed control 

algorithm gives a high performance of multiple gripping/pinching movements, assisted by 

pressure sensors as a feedback signal, and using bending joint angles as the set-points. 

 This chapter also demonstrates a developed version of power augmentation hand 

exoskeleton. The proposed bending soft actuators also actuate this exoskeleton. The 

control system of this exoskeleton was created by hybridisation between both the cascaded 

position and force closed loop intelligent controllers. The cascaded position controller is 

designed for the bending actuators to follow the fingers in their bending movements. The 

force controller was developed to control the grasping force augmentation. Validation of 

the controller system with the exoskeleton has been done experimentally in this research. 

EMG signals were monitored to validate whether the proposed exoskeleton system 

decreased the muscular efforts of the wearer during the experiments. 
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Chapter 7 

Upper-Limb Rehabilitation Exoskeletons 

 

7.1 Introduction 

 According to literature reviews, numerous researchers are focusing their attention 

on rehabilitation devices (Sarasola-Sanz et al., 2017). Wearable robots developed for 

physiotherapy are now being considered for various applications, for example, clinical and 

at-home rehabilitation (Long et al., 2017). The most common human hand disabilities 

which effect people are: spasticity, loss of control, muscle weaknesses as a result of a 

stroke, disability or muscular injuries. Cerebrovascular accidents (CVA) and spinal cord 

injuries (SCI) are currently the most common causes of paralysis. Stroke survivors 

frequently suffer impairments on their hand, wrist and paretic limbs. The complicity and 

versatility of the human hand tools play a major role in the individual-environment 

interaction. Due to the small size and numerous movement capabilities required, upper-

limb wearable robots are facing numerous challenges when trying to solve rehabilitation 

issues and problems in other technical fields, such as bio-mechanics, neuro-physiology, 

rehabilitation, sensors and actuators, safety of human-robot interactions, and exoskeleton 

working environments.  

 This chapter demonstrates the upper limbs rehabilitation exoskeletons based on our 

novel actuators, such as the ECPAM (explained in chapter 4), EBPAM (explained in 

chapter 5) and other new actuators developed. Three novel versions of finger rehabilitation 

gloves are developed in this chapter. A novel forearm rehabilitation exoskeleton is also 

developed, based on the ECPAM, and two novel versions of elbow rehabilitation 
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exoskeletons are illustrated. Finally, two new wrist rehabilitation exoskeletons are also 

developed in this chapter. All exoskeletons are assessed against experimental results to 

validate the effectiveness of each exoskeleton.   

7.2 Hand Rehabilitation Exoskeletons 

 The application for the new bending extensor pneumatic muscle (explained in 

chapter 5) is in a soft exoskeleton glove for hand rehabilitation. The main requirements of 

the glove are:  

• Inherent safety – as it is in direct contact with a human user. 

• Lightweight – to allow portability. 

• Fast response – actuation speed must match that of the human user.  

• High force to weight ratio – to keep weight low. 

• Low/no calibration requirement – so system can easily be used by multiple people.  

7.2.1 Hand Rehabilitation Exoskeletons (Version 1) 

 One of the disadvantages of traditional exoskeletons is that they have discrete joints 

which must be correctly aligned with the user’s joints (Kiminori, Miyagawa, & Kubota, 

2011; Noritsugu et al., 2008; Yap et al., 2015b). Incorrect alignment can lead to injury and 

so adjustments and calibrations are required when a different person uses the system. The 

main benefit of our bending muscle is that is does not have discrete joints, the entire 

actuator flexes instead. If the actuator is mounted to the back of a finger, it will apply force 

to the entire rear end of the finger when pressurised, resulting in bending at the joints. 

Based on this concept, a soft-force augmentation glove has been produced. The bending 

muscles (M1 explained in chapter 5) are sewn onto the reverse of a leather glove, as shown 

in Figure 7.1. 

 Eight muscles are used; two muscles for the thumb, index and middle finger to 

increase force, and single muscles on the ring and little fingers. The resultant soft glove has 

a weight of approximately 0.15Kg. The air supply to all the muscles is controlled by 

MATRIX 3-3 solenoid valves, which are pulse width modulated to allow control of the 

airflow. In the experiment described below, the glove is controlled in an open loop manner. 
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Figure 7.1:  The proposed soft glove with some rehabilitation movements. 

 In order to demonstrate the effectiveness of the glove in simple force assistive 

applications, two grasping experiments were conducted, both with and without the use of 

the glove. The experiments involved a user grasping a 0.5kg mass using a pinch grasp and 

a 1kg mass using a whole hand grasp.   

 During experimentation, the human test subject was fitted with EMG 

(electromyography) sensors on their forearm. These were used to record the total muscle 

activity required to perform the grasping tasks. The results for the two grasps when the 

glove was not used can be seen in Figures 7.2 (a) and 7.3 (a). The subject then repeated the 

two tasks whilst using the glove. For the pinch grasp test, the thumb and index finger 

actuators were pressurised to 300kPa and for the full hand grasp, all actuators were 

pressurised to 300kPa. The user’s muscle activity was again recorded using EMG and the 

results can be seen in Figures 7.2 (b) and 7.3 (b). 

7.2.2 Hand Rehabilitation Exoskeletons (Version 2) 

 Most post-stroke patients (with fingers functionality disabled) have curved fingers 

at a zero position, as shown in Figure 7.4. When those patients wear the soft exoskeletons, 

their fingers will force the muscles to bend because the muscle has very low stiffness 

without pressure. It is then difficult to make their fingers move into a straight position to 

start the rehabilitation exercises by using the rehabilitation glove. This issue inspired us to 

develop a novel bending actuator capable of controlling its stiffness at any bending angle 

in order to gain a straight position. 
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Figure 7.2: EMG signals of pinching load. 

 

Figure 7.3: EMG signals of grasping load. 

 

Figure 7.4: Patients with finger functionality disabled.  
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7.2.2.1 The Novel Controllable Stiffness Bending Actuators 

 Based-on the controllable stiffness extensor-contractor muscle in chapter 4 and the 

bending muscle in chapter 5’s design techniques, we developed a novel controllable 

stiffness bending muscle. At first, by using the same technique for the extensor-contractor 

muscle, the controllable stiffness extensor muscle was developed. The controllable 

stiffness extensor muscle has the same construction as the ECPAM, but in this case, the 

inner contraction muscle is longer than the outer extensor muscle by 30% instead of 15%. 

When the inner contraction muscle is fully pressurised, it will contract at approximately 

30% to reach the outer extensor muscles nominal length so that, when applying pressure on 

the outer extensor muscle, it will extend 30% to reach the inner contraction muscles 

nominal length.  

 The controllable stiffness extensor muscle has controllable stiffness by controlling 

both the pressures of the inner contraction muscle and the outer extensor muscle at the 

same time (the same concept as the controllable ECPAM in chapter 4). Finally, based on 

the technique of the bending muscle in chapter 5, the controllable stiffness extensor muscle 

has been reinforced on one side by a non-stretchable fixed-length thread to make this side 

of the novel muscle have a fixed-length and the other side free to bend when pressurised, 

as shown in Figure 7.5.       

 

Figure 7.5: The novel controllable stiffness bending actuator. 
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7.2.2.2 The Proposed Exoskeleton Glove 

 Five controllable stiffness bending muscles are sewn on the back of a left-hand 

worker glove, as shown in Figure 7.6. 

 

Figure 7.6: Rehabilitation glove based on controllable stiffness bending muscles.   

 To overcome the problem of bent fingers at a zero position, we can pressurise only 

the inner contraction muscles to keep the fingers straight. In addition, with this prototype it 

is possible for the muscles with high fixed stiffness at all bending angles to overcome the 

patients’ finger resistance.  

7.2.2.3 The Proposed Controller System 

 Hand rehabilitation exercises involve the fingers repeating several movements with 

help from a therapist. The patients attend a clinic in order to have a therapist help them do 

the rehabilitation exercises. The therapist moves the patients’ fingers manually with 

repetitive movements for a long time. Our prototype and controller system aim to make 

this process easier. 

 To make the hand rehabilitation easier for the patients and the therapists, we made 

two soft gloves with flex bend sensors only, as shown in Figure 7.7. 
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Figure 7.7: Soft controller gloves. 

 For each glove, a flex bend sensor (4.4’’) is placed on the top surface of the thumb, 

index and middle fingers. For most finger movements in daily activities, the middle, ring 

and little fingers move together and, based on this assumption, the ring and little fingers 

are without sensors because they move simultaneously with the ring fingers at the same 

bending angle. The patient wears the soft left-hand glove and afterwards wears the 

exoskeleton glove on the same hand (the exoskeleton glove above the soft glove on the 

same hand) and the therapist wears the right-hand soft glove as a controller glove. The idea 

is that when the therapist moves his fingers, the patient does the same movements at the 

same time with the same bending angles, without any contact between the therapist and the 

patient. This technique will make the rehabilitation process easier and more comfortable 

for both the patient and the therapist. The therapist’s glove acts as a controller set point and 

the patient’s soft glove acts as signals feedback. Each controllable stiffness bending muscle 

has two inputs, one for the inner contractor muscle and the other one for the outer extensor 

muscle. Each muscle input was connected to a solenoid valve; we used six valves, two for 

the thumb, two for the index finger and two for the middle fingers (the ring and little 

fingers are connected with the middle finger actuator). Figure 7.8 shows the hardware 

controller system. 
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Figure 7.8: The hardware controller system. 

 A single fuzzy controller is used for each actuator, as shown in Figure 7.9. This 

fuzzy controller is repeated three times for the thumb, index and middle finger. The 

controller has two outputs; the bend output is to control the outer extensor bending muscle 

and the unbend output is to control the inner contraction muscle. Figure 7.10 shows the 

membership functions of the inputs and outputs of the fuzzy controller and Figure 7.11 

shows its fuzzy surface.  

 

Figure 7.9: The fuzzy controller system for each actuator. 

The zero position of the controller system fully inflates all the inner contraction 

muscles and fully deflates the outer bending muscles to make all the fingers be in a straight 

position, as shown in Figure 7.12 (a). A thumb rehabilitation exercise is illustrated in 

Figure 7.12 (b). When the thumb in the controller glove starts bending, the patients glove 
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responds in real-time to do the same movement by decreasing the pressure in the inner 

contraction muscle and increasing the pressure of the outer bending muscle of the thumb 

actuator at the same time. The actuator has approximately high stable stiffness at all ranges 

of bending angles of the finger joints. The index finger rehabilitation exercise is 

demonstrated in Figure 7.12 (c). 

 

Figure 7.10: Membership function of the fuzzy controller. 

 

Figure 7.12: The surface of the fuzzy controller. 
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 The same controller for the thumb is repeated for the index finger to do the index 

finger rehabilitation movements with other fingers in a straight position. The same 

controller has been repeated again for the middle finger, but in this case, all middle, ring 

and little fingers are moving together based on the bending angle of the middle finger, as 

shown in Figure 7.12 (d). Figure 7.12 (e) shows the rehabilitation exercise of all the fingers 

except the thumb and Figure 7.12 (f) shows all fingers rehabilitation exercises. One, two, 

or all three controllers can be activated to make a high range of hand rehabilitation 

movements based on the therapist’s hand movements.   

 

Figure 7.12: Hand rehabilitation movements controlled by a therapist’s hand. 

 Using this controller system, it is easy to make an online controller (remotely) via 

the internet. In other words, the therapist at the clinic and the patient at home have the 

controller glove commands transferred online via internet protocol (they are dynamic set-

point numbers) to the patients glove to perform the rehabilitation exercises at home 
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without needing to go to the clinic. In this case, the therapist can do the rehabilitation 

exercises remotely for more than one patient at a time if they need the same exercise. 

Figure 7.13 shows the controller system results. 

 

Figure 7.13: Hand rehabilitation controller results. 
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 The thumb controller is illustrated in Figure 7.13 (a) and the index finger controller 

is in Figure 7.13 (b). Figure 7.13 (c) shows the middle finger controller results. The middle 

finger controller results are slightly different from the other fingers results because the 

middle, ring and little fingers all move together, and their muscles inflate/deflate using the 

same valve (as previously mentioned) then the air flow amount divides into three muscles. 

This causes a bigger delay between the set-point and the controller response. 

 For offline rehabilitation exercises, we designed a Matlab application to help the 

patients use the rehabilitation exoskeleton at home independently and do their 

rehabilitation exercises without involving the therapist. Figure 7.14 shows the Matlab 

application foreground for six hand rehabilitation exercises.      

 

Figure 7.14: The Matlab application foreground. 

 The patient only has to activate the offline mode with the red button and choose the 

exercise number to start the exercise repeatedly. Figure 7.15 shows the offline controllers 

results of the thumb, index and middle fingers. The same previous controllers are used, but 

in this case, the controllers set-points come from the Matlab application at full bending 

angles for each finger, with repeated 3 second periods. The exercise buttons in Figure 7.14 

is only to activate which controller will be active (thumb, index and/or middle finger 

controller) to start the chosen rehabilitation exercise.     
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Figure 7.15: Offline controllers results. 
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To validate this exoskeleton system a 3D printed hand was produced and placed 

inside the glove. This hand contained all the joints found within the human hand, however, 

as it was unactuated so it allowed the glove to apply forces to the hand and to flex and 

extend the joints. This allowed the glove to apply repetitive movements to the hand to 

evaluate the system’s performance and Root Mean Square Error (RMSE) values.  Firstly 

the  Thumb muscle with its controller was tested by generating a step setpoint to the 

system with value of 135o as the bending angle setpoint. The experiment was repeated 20 

times and the results are shown in Figure 7.16.  

 

Figure 7.16: The glove validation (Thumb finger) with step setpoint. 

In Figure 7.16, the blue line represents the step setpoint input from 0 to  135o, the 

foggy red area represents the range of motions from the 20 experiments and the middle 

bold dashed red line is the average response of the 20 time experiments. The RMSE value 

between the average response and the setpoint was recorded as 13.99. this value of RMSE 

is not unexpected because of the recorded error between the average response and the 

setpoint during the start movement until the response reaches the setpoint with some 

overshoots until stability. This experiment has been repeated with a sinusoidal setpoint 

with amplitude of 178o bending angle (the assumed maximum bending angle for each 

finger).  Figure 7.17 shows the results, again the experiment was repeated 20 times using 

the same procedure as the experiment in Figure 7.16 and the recoded RMSE value between 
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the average response and the setpoint was found to be 7.04. It is clear, the second 

experiment has significantly less value of RMSE because the experiment in Figure 7.16, 

the setpoint started from the 135o directly and the system started from zero bending angle 

and the experiments in Figure 7.17, both setpoint and the response started from zero. 

 

Figure 7.17: The glove validation (Thumb finger) with sinusoidal setpoint. 

The above two experiments in Figures 7.16 and 7.17 were repeated for the index 

finger with its controller as shown in Figures 7.18 and 7.19 with RMSE 14.97 and 8.17 

respectively.  

 

Figure 7.18: The glove validation (Index finger) with step setpoint. 
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Figure 7.19: The glove validation (Index finger) with sinusoidal setpoint. 

The same two experiments were repeated for the middle finger (with ring and little 

fingers as explained previously) with its controller as shown in Figures 7.20 and 7.21, the 

RMSEs were found to be 18.38 and 10.73 respectively. 

 

Figure 7.20: The glove validation (Middle finger) with step setpoint. 
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Figure 7.21: The glove validation (Middle finger) with sinusoidal setpoint. 

7.2.3 Hand Rehabilitation Exoskeletons (Version 3) 

 The hand rehabilitation exoskeleton version 2 (see section 7.2.2) can perform a 

wide range of rehabilitation movements by bending the finger joints (root, middle and 

terminal) together at the same time. Figure 7.22 shows the general hand movements; our 

prototype version 3 cannot perform table top and hook movements because it cannot 

control the finger joints separately. Inspired by this issue, we created the hand exoskeleton 

version 3 with the ability to perform all the movements of prototypes versions 1 and 2 with 

additional movements, such as table top and hook movements.    

 

Figure 7.22: Hand movements. 
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7.2.3.1 The Proposed Variable Stiffness Soft Actuators 

 Human bodies, with their flexible limb joints, have the capability of performing 

numerous movements in a very effective and precise manner under different conditions, in 

different environments, with high flexibility.  

 Inspired by the human body, researchers have presented many kinds of actuators 

(Albu-Schäffer & Bicchi, 2016; Galloway, Clark, & Koditschek, 2013; Jiang, Xynogalas, 

Dasgupta, Althoefer, & Nanayakkara, 2012; Ketelaar, Visser, Stramigioli, & Carloni, 

2013; S. Kim, Laschi, & Trimmer, 2013; Kuder, Arrieta, Raither, & Ermanni, 2013; 

Vanderborght et al., 2013; Wolf et al., 2015; Yang & Chen, 2016; Yap, Lim, Nasrallah, 

Goh, & Yeow, 2015a). Variable stiffness actuation is one of the most promising areas. 

Generally, they operate by motorising the actuator compliance and their equilibrium 

positions independently. Hence, many human-like motions can be achieved using a small 

amount of energy at the input of the actuator. 

• Partially Variable Stiffness Soft Actuator: A novel variable stiffness soft actuator 

has been developed. We’ve combined the proposed contraction and bending 

artificial muscles together, as shown in Figure 7.23 (a). The contraction artificial 

muscle is reinforced on the free side of the bending muscle. Figure 7.23 (b) shows 

the partially variable stiffness soft actuator by actuating both muscles. The root part 

of the bending muscle is not bent because the pulling force of the contraction 

muscle is greater than the bending force of the bending muscle. The bending occurs 

only on the terminal part because it is free on one side. Figure 7.23 (c) shows the 

proposed actuator actuating only the bending muscle. The whole actuator is bent, 

but the root part bending angle is less than the terminal part because of the 

limitation coming from the length and the friction of the contraction muscle. 

 
• Fully Variable Stiffness Soft Actuator: The partially variable stiffness soft actuator 

is developed to a fully variable stiffness by adding another contraction muscle on 

the terminal part of the bending muscle, as shown in Figure 7.24 (a). The second 

contraction muscle is to control the stiffness of the second part of the bending 

muscle. Figure 7.24 (b) illustrates the bending angle of the fully variable stiffness 

actuator when actuating only the bending artificial muscle. To increase the bending 

muscle stiffness at no bending angle (straight), we actuated only the two 
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contraction muscles, as shown in Figure 7.24 (c). The stiffness amount is controlled 

by the pressure amount inside the contraction muscles. Figure 7.24 (d & e) 

demonstrates the bending of the terminal and the root part of the proposed actuator 

by actuating the bending muscle with the root (for terminal part bending) and 

terminal (for root section bending) contraction muscles. As a result of controlling 

the pressures of all the muscles together, the stiffness of the bending actuator is 

controllable. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.23: Partially variable stiffness soft actuator.  

7.2.3.2 The Proposed Exoskeleton Glove 

 We constructed an exoskeleton glove based on the proposed fully variable stiffness 

actuator discussed in the section above, as shown in Figure 7.25. Four fully variable 

stiffness actuators were sewn on to a traditional worker gloves dorsal side. These four 

actuators are placed on the back side of the glove for the index, middle, ring and little 

fingers. The thumb finger is assisted by a bending extensor artificial muscle.  
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 The airflow of all the muscles are controlled by MATRIX 3×3 solenoid valves. 

Each muscle is controlled separately by its filling/venting solenoid valve. Air can be 

supplied via a compressor or a miniature diaphragm pump for actuation. 

 

Figure 7.24: Fully variable stiffness soft actuator.  



160 
 

 The properties of this exoskeleton glove are: flexibility (at no pressure); lightweight 

because it is fully soft (approximately 150g); supports most human hand rehabilitation 

movements, including hook and table top fist movements; safe due to no rigid parts or 

electricity; fast response actuation to reach the healthy human hand speed motion; small in 

size in order to be flexible in daily usage; and fits any adult hand size. 

 

Figure 7.25: The proposed exoskeleton glove version 3. 

 There are an extensive variety of hand rehabilitation movements. The significant 

challenge is to accomplish most of these movements using a single rehabilitation 

exoskeleton without any assistance from a rehabilitation proficient.  

 A lightweight, small, and easy to utilise wearable robot that provides the capability to 

perform most rehabilitation exercises at home or anywhere rather than in the healing centre 

has been developed. 

  Figure 7.26 demonstrates most rehabilitation movements of the proposed prototype 

with the fully variable stiffness actuators, such as full grasp, straight grasp, hook grasp, and 

table top. Depending on the rehabilitation exercise type, we can program our prototype to 

perform many exercise modes by controlling the pressure amount inside each actuator 

separately. 
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Figure 7.26: Typical hand rehabilitation exercises; a) Full Grasp, b) Straight Grasp, c) 

Hook Grasp, and d) Table Top. 

(a) 

(b) 

(d) 

(c) 



162 
 

7.3 Forearm Rehabilitation Exoskeleton 

 This section describes an application for the novel Extensor-Contractor Pneumatic 

Artificial Muscle developed in chapter 4. The ECPAM in this prototype has the same 

characteristics as those explained in chapter 4 but this muscle is bigger in length and 

diameter. The application chosen was a soft exoskeleton to be used in the rehabilitation of 

the forearm. There are only two movements of the forearm: pronation and supination. The 

challenge is to achieve both forearm movements using a single actuator without the need 

for any assistance from a rehabilitation therapist. 

 A lightweight, soft, and easy to use exoskeleton for performing forearm 

rehabilitation motions has been created utilising our new soft extensor-contractor actuator, 

as shown in Figure 7.27. 

 The soft actuator is secured to the forearm at the terminals and the middle section 

using adjustable elasticated straps. The total weight of the exoskeleton is 0.18Kg. As the 

proposed rehabilitation device is low in weight and created using soft materials, it is safe 

for direct human interaction. The system can also fit any individual patients’ hand without 

the requirement for adjustments or mechanical changes. This potentially makes the system 

suited to use in a home environment without the need of a rehabilitation specialist present. 

 Open loop control experiments were performed to demonstrate that the actuator 

could be used to generate motion in the user’s forearm. Figure 7.28 shows supination of 

the forearm achieved by actuation of the inner contraction muscle which pulls on the palm 

as shown. Figure 7.29 shows pronation achieved by actuating the extensor muscle to push 

the palm. The range of pronation and supination the exoskeleton was able to generate was 

approximately 90° and 75°, respectively. 

 

Figure 7.27: The proposed forearm soft exoskeleton. 
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Figure 7.28: The forearm supination using the soft exoskeleton. 

 

Figure 7.29: The forearm pronation using the soft exoskeleton. 

7.4 Elbow Rehabilitation Exoskeleton 

 Flexion and extension movements of the elbow joint are an important way in which 

to recover from injuries and prevent them from reoccurring. Working with your physical 

therapist is a good idea after an elbow injury. An elbow rehabilitation exoskeleton has been 

developed based on EBPAM with an M3 bending muscle (see chapter 5), but the length of 

the muscle in this prototype is 30cm. Two bending muscles are used in this exoskeleton, as 

shown in Figure 7.30. Plastic handles with Velcro are used to reinforce the exoskeleton to 

the wearers hand and a bending muscle for each side. Both muscles have been pressurised 

at the same time with the same amount of pressure to produce the desired bending angle to 

the elbow joint of the wearer. The maximum output force for each bending actuator is 43N 

at 5bar pressure (approximately the same output force of M3 in chapter 5). The elbow 

exoskeleton has two bending actuators, then the maximum output force of the prototype is 

https://www.verywellhealth.com/elbow-exercises-2696591
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the sum of both actuators (86N) because they have parallel forces and the maximum torque 

achieved by the exoskeleton is 14 Nm.   

 

 

 

 

 

 

Figure 7.30: Elbow exoskeleton. 

 The same controller, explained in section 7.2.2.3, is used in this prototype. Two 

elbow medical bands are used and a 4.4’’ flex bend sensor is placed on each one, as shown 

in Figure 7.31. To perform the online controller, as explained in section 7.2.2.3, the patient 

has to first wear the medical band and position the flex bend sensor to the back centre of 

his elbow joint, after which the patient should wear the exoskeleton. The therapist wears 

the other band to produce the desired elbow joint angle as a set-point to the controller 

during the rehabilitation exercises, as shown in Figure7.32.   

 

Figure 7.31: Elbow medical bands with flex bend sensors. 

 When the therapist bends his elbow, the patient’s exoskeleton responds at the same 

time, bending the patient’s elbow by the same angle. Figure 2.27 demonstrates the online 

controller results of the elbow exoskeleton.    

(a) (b) 
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Figure7.32: Online controller for the elbow exoskeleton. 

 

Figure 7.33: The online controller results of the elbow exoskeleton. 

 An offline rehabilitation application has been developed using Matlab, as shown in 

Figure 7.34. Three rehabilitation exercises are placed in this application; to choose a 

specific exercise, push its button to run the exercise repeatedly. Exercise number (1) 

generates a 45o bending set-point to the controller system repeatedly within a period of 4 

seconds, exercise number (2) uses the same controller and technique but in this case the 

bending angle set-point is 90o and finally, exercise number (3) is with a full bending angle 

set-point at 135o. Figure 7.35 shows the elbow offline rehabilitation controller results. 

 

Figure 7.34: Offline elbow rehabilitation application. 
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Figure 7.35: The elbow offline rehabilitation controller results. 
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To validate this Elbow exoskeleton system, some repetitive movement with a 

predefined bending angles on the system have been tested with a mechanical 3D printed 

Elbow to evaluate the system performance and RMSE values. The same procedure as used 

to validate the exoskeleton glove described in section 7.2.2.3 was again used. The elbow 

was tested with step responses with three bending angles 45o, 90o and 135o. The 

experiment was performed 20 times and an average determined for each of the three 

bending angles 45o, 90o and 135o. The experimental results are shown in Figures 7.36 (with 

RMES = 12.52), 7.37 (with RMES = 14.66) and 7.38 (with RMES = 17.27) respectively. 

 

Figure 7.36: The Elbow exoskeleton validation (45o bending angle) with step setpoint. 

 

Figure 7.37: The Elbow exoskeleton validation (90o bending angle) with step setpoint. 
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Figure 7.38: The Elbow exoskeleton validation (135o bending angle) with step setpoint. 

The experiment was repeated with a sinusoidal setpoint with amplitude of 138o 

bending angle (the assumed maximum bending angle for the Elbow).  Figure 7.39 shows 

the results which were repeated 20 times using the  same procedure as the experiment 

shown in Figure 7.36 and the recoded RMSE value between the average response and the 

setpoint was found to be 9.19. 

 

Figure 7.39: The glove validation (Thumb finger) with sinusoidal setpoint. 
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7.4.1 Modifications to the Elbow Rehabilitation Exoskeleton Actuation 

System 

 This elbow exoskeleton bends the wearer’s arm when pressurised and, by deflating 

the actuators, the wearer’s arm becomes unbent because of the vertical arm mass. The arm 

mass produces a vertical force directed to the ground. However, if the elbow rehabilitation 

exercise is done with the wearer’s arm being horizontal, then the exoskeleton doesn’t have 

the pulling force to make the wearer’s arm straight after the bending occurs. The 

exoskeleton depends on the arm mass to return the arm to zero position; then the 

exoskeleton can perform the vertical exercises, as shown in Figures 7.30 (a), (b) and (c), 

but cannot perform the exercises in Figures 7.30 (d), (e) and (f).  

 

Figure 7.30: Vertical and horizontal elbow rehabilitation exercises.  

 Inspired by this issue, a new bidirectional bending PAM (BBPAM) has been 

developed to use in elbow exoskeletons and overcome this problem. To manufacture the 

novel BBPAM, moulding a novel elastic bladder has been made by mixing liquid elastic 

materials. The full bladder manufacturing process is described in detail in Appendix A1. 

Figures 7.31 (b) and (c) show the operation of the BBPAM by actuating each part 

separately to produce bidirectional bending movements. The new version of the elbow 

exoskeleton replaces the EBPAMs with BBPAMs. Now the new version of the elbow 

rehabilitation device is capable of bending in two directions in order to perform vertical 

and horizontal elbow rehabilitation exercises. In addition, this novel BBPAM has 

controllable stiffness due to the relationship between the two-part pressures. The maximum 

output force of BBPAM is approximately the same as the bending actuator (M3 in chapter 
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5); 39N in 5bars pressurised in a single direction. The output force is slightly less than the 

EBPAM because of the impedance applied from the deflated half of the bladder. The new 

elbow exoskeleton with the BBPAMs has double the force of a no load of a single one at 

78N.        

 

 

Figure 7.31: The BBPAM operation.  

7.5 Wrist Rehabilitation Exoskeletons 

 There are a limited number of wrist rehabilitation movements, such as flexion, 

extension, radial deviation (abduction) and ulnar deviation (adduction). The challenge is to 

accomplish all wrist motions using a single exoskeleton without any assistance from a 

rehabilitation therapist.  

      The biomechanics of the wrist joint are more complex than the resulting movements 

of the wrist would suggest. The wrist movements of interest are illustrated in Figure 7.32. 

The Flexion/Extension, Radial/Ulnar deviation bending angles (Celestino, 2003) are: 

• Extension: 0 to 70 degrees  

• Flexion: 0 to 90 degrees  

• Radial Deviation: 0 to 20 degrees  
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• Ulnar Deviation: 0 to 50 degrees 

  A lightweight, small and simple to utilise wearable robot, capable of performing 

wrist rehabilitation movements, has been developed using a combination of contracting 

and bending pneumatic muscles, as shown in Figure 7.33. The air pressure supply to each 

actuator is controlled by MATRIX 3/3 solenoid valves, which control the air flow by pulse 

width modulation. 

 

Figure 7.32: Kinematics of Wrist Motion (Medlej, 2014). 

 Figure 7.33 shows the prototype wrist force assist and rehabilitation wearable 

robot. The wrist flexion motion is generated by two (to increase power) extensor bending 

actuators (M2 in chapter 5) sewn onto the top face of a leather glove, as shown in Figure 

7.34 (a). The extension movement is generated by a single contracting actuator located 

between the two bending muscles on the top of the glove, as shown in Figure 7.34 (b). 

Ulnar and radial deviation motions are produced by two contractor actuators placed along 

the sides of the leather glove which, when activated, cause the hand to move in either 

abduction or adduction, as shown in Figures 7.34 (c) and (d). 

 The overall weight of the proposed exoskeleton prototype is 0.15Kg. As the 

proposed exoskeleton is low in weight and made from flexible materials, it is safe for 

direct human interaction and is portable. It will also fit any adult hand size without the 

need for calibration or mechanical changes, making it suitable to use in the home and 

without the need of a therapist.  
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 The performance of this soft rehabilitation exoskeleton was assessed through some 

basic practical experiments. The pressure in the muscles was controlled in an open loop 

manner and it was evident that the system was capable of moving a user’s wrist joint 

through flexion, extension, radial deviation and ulnar deviation motions. The wrist 

rehabilitation exoskeleton can achieve the maximum bending angles (see Figure 7.32) for 

each wrist’s movement side. The maximum amount of pressure needed for each movement 

varies from person to person because it depends on the hand size and mass.  

 

 

Figure 7.33: The proposed wrist soft exoskeleton. 

(a) 

(b) 
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7.5.1 Modifications to the Wrist Rehabilitation Exoskeleton Actuation 

System 

 Five actuators have been used in the wrist exoskeletons. To reduce the number of 

actuators to a single muscle capable of performing all wrist rehabilitation exercises, a new 

actuator has been developed based on the moulded bladder that was explained in section 

7.4. All directional bending PAM (ABPAM) has been made by using the moulding bladder 

technique. The full bladder manufacturing process is described in detail in Appendix A2. 

The maximum output force of ABPAM is approximately the same as the bending actuator 

(M3 in chapter 5); 37N in 5bars pressurised in a single direction. The output force is 

slightly less than the EBPAM because of the impedance applied from the other three 

deflated bladders.  

 

Figure 7.34: The rehabilitation movements of the proposed wrist soft exoskeleton: (a) 

Wrist flexion movement, (b) Wrist extension movement, (c) Wrist ulnar deviation 

movement (d) Wrist radial deviation movement. 
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 Figure 7.35 shows the ABPAM operation using pressurised bladder lines altogether 

to have a stiff actuator for a straight zero position (Figure 7.35 (a)). Figures 7.35 (b to e) 

illustrates that by pressurising a single line of the bladder each time, it will have a different 

binding direction each time also. This actuator has controllable stiffness by controlling the 

amount of pressure in each line of the bladder. The new version of the wrist rehabilitation 

only places one ABPAM on the middle top of the leather glove with three bits of Velcro to 

keep the actuator alignment on the top of the hand, as shown in Figure 7.36. The wrist 

rehabilitation exercises using the new prototype is shown in Figure 7.37.      

 

Figure 7.35: The ABPAM operation. 
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The range of motions with the new wrist prototype is the same as the previous 

prototype, with the only difference being the applied pressure in each directional 

movement. The maximum output force in each direction of the new prototype depends on 

the supplied pressure. The previous prototype had greater maximum force in each direction 

because the flection movement was actuated by two bending muscles and the other 

movements were actuated by contraction muscles (the contraction muscles have a higher 

force-to-weight ratio than the bending muscles). 

 

Figure 7.36: Wrist rehabilitation exoskeleton based on ABPAM. 

 

Figure 7.37: Wrist rehabilitation exercises based on the new version of the wrist 

rehabilitation prototype. 
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7.6 Conclusion 

 Human assistance innovation is essential in an increasingly aged society and one 

technology that may be applicable is exoskeletons. However, traditional rigid exoskeletons 

have many drawbacks. Upper-limb rehabilitation devices have been developed in this 

chapter; hand, wrist, forearm and elbow exoskeletons are developed to serve the 

rehabilitation issues.  

 Fingers rehabilitation glove has been developed to bend the fingers (full bending) 

by using our novel bending muscles. To solve the zero position (straight fingers) problem 

for post-stroke patients, a new controllable stiffness bending actuator has been developed 

with a novel prototype. Online and offline controller systems have been designed for the 

hand exoskeleton and the results have been assessed experimentally. A new design of 

variable stiffness actuators to control the bending segment have been developed to create a 

new version of hand exoskeletons to achieve more rehabilitation movements in the same 

single glove, such as hook and table fists. 

 A forearm rehabilitation exoskeleton has been developed for pronation and 

supination movements. This exoskeleton is based on our novel ECPAM and is actuated by 

an open loop controller to evaluate the performance of the exoskeleton. 

 The elbow rehabilitation exoskeleton is designed based on our novel bending 

actuators with online and offline feedback controllers. A novel two-directional bending 

actuator has been developed based on moulding a bladder from elastic liquid materials. 

This bending actuator has been used to enhance the elbow exoskeleton to make it capable 

of performing the rehabilitation exercises vertically and horizontally with a controllable 

stiffness.   

 A wrist exoskeleton has been developed to perform the wrist rehabilitation 

movements. This prototype is based on five actuators (two bending and three contraction 

actuators) and is operated using an open loop controller to examine the performance of the 

device. The novel all-directional bending actuator is developed based on the moulding 

bladder technique. This actuator is used to develop the wrist rehabilitation exoskeleton by 

reducing the five actuators to a single all-directional bending muscle. 
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Chapter 8 

Parallel Processing based on On-Chip 

Controllers for a Totally Portable Exoskeleton  

 

8.1 Introduction 

 In the last few decades there have been huge developments in the control systems. 

Control systems are used in numerous applications, such as robotics, computer control, 

space technology and power systems, as well as a lot of other applications. Due to the fast 

development in control systems, many types of controllers have been developed. Each 

control system has advantages and disadvantages, and the researcher must choose the best 

controller for his system based on many factors, such as the nature of the prototype (size, 

nonlinearity, time varying and complexity), specifications, control objective, and cost. On-

Chip Controller (OCC) is a co-processor that is embedded directly onto the main processor 

die. The OCC is used for embedded and portable systems which don’t need a computer to 

build a controller on its application, such as Matlab. These systems generally contain a 

central processing unit (CPU), memory and input/output ports, all on a single board. It 

might include analogue, digital, mixed signal, and digital signal processing, depending on 

the board properties. Parallel processing is a technique for concurrently processing 

functions and executing the program parts in parallel on multiple microprocessors to 

reduce the execution time and have several programs active in parallel. This can be done 

by a single computer with a multi-processor or by a network for more than one computer. 

Using Field-Programmable Gate Array (FPGA) is the best choice if you want to switch 
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between the OCC and parallel processing programming to have parallel processing 

controllers on one board without needing a PC. 

  This chapter includes a procedure for designing and implementing a totally portable 

rehabilitation system based on parallel processing controllers on-chip. A portable, small 

and lightweight air compressor is designed as an air pressure supply for the pneumatic 

rehabilitation system. A rehabilitation glove is used to perform the finger rehabilitation 

exercises. Rehabilitation exercises are activated by manual switches to perform the desired 

hand rehabilitation exercise. Three controllers for the thumb, index and middle fingers are 

programmed concurrently to work in parallel by using the Field-Programmable Gate Array 

board. The whole system is put in a small bag on the back with a total weight of 

approximately 4 kg. The system performance was assessed experimentally with successful 

results. 

8.2 Field-Programmable Gate Array (FPGA) 

FPGA is a device that includes a reconfigurable gate array logic circuitry matrix. 

To implement a software for a specific application, the FPGAs internal logic gates are 

connected to describe the software program in hardware circuitry. In contrast to processors, 

FPGAs utilise dedicated hardware circuits for logic processing and don't have any 

operating system. FPGAs are genuinely parallel in nature and various processing tasks 

don't need to compete for similar resources. Thus, the execution of one part of the 

application isn't influenced when other processing parts are included. Additionally, 

multiple control loops can run on a single FPGA device at different rates and all of the 

controllers can be activated in parallel. FPGA-based control systems can enforce critical 

interlocking logic and can be designed to prevent I/O forcing by an operator. FPGA boards 

deliver the performance and reliability of dedicated hardware circuitry (Palchaudhuri & 

Chakraborty, 2016).  

Thousands of discrete components can be replaced by a single FPGA board by 

incorporating several logic circuits in a single integrated chip. The internal parts of an 

FPGA device consist of a matrix of configurable logic blocks surrounded by a periphery of 

input/output blocks, demonstrated in Figure 8.1 (Chine, Mellit, & Bouhedir, 2017). 

The process of creating digital logic is not unlike the embedded software development 

process. A description of the hardware's structure and behaviour is written in a high-level 
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hardware description language (usually VHDL or Verilog) and that code is then compiled 

and downloaded prior to execution. 

There are many types of FPGA types, such as Xilinx and Altera, and each type has 

numerous versions. In this research we will use the Altera type version DE0-NANO 

BOARD. 

 

Figure 8.1: FPGA chip. 

8.2.1 FPGA DE0-NANO 

The DE0-Nano is ideal for use with embedded soft processors, it features a 

powerful Altera Cyclone IV FPGA (with 22,320 logic elements), 32 MB of SDRAM, 2 Kb 

EEPROM, and a 64 MB serial configuration memory device (Manual, 2012). For 

connecting to real-world sensors, the DE0-Nano includes a National Semiconductor 8-

channel 12-bit A/D converter and it also features an Analog Devices 13-bit, 3-axis 

accelerometer device. Figure 8.2 shows the board component diagram and Figure 8.3 

shows the board block diagram.  

8.2.2 Fuzzy logic controller on FPGA DE0-NANO 

A Fuzzy logic controller (FLC) system is demonstrated in Figure 8.4 (Gdaim, 

Mtibaa, & Mimouni, 2015). The knowledge base is the core of the FLC, including the rule 
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base which illustrates the controller’s behaviour, and the inference engine, which integrates 

the rule base according to the controller entries. The rule base and the inference engine 

utilises fuzzy logic sets by transferring the fuzzy logic sets to real measures to have a 

fuzzification stage. The defuzzification stage is to calculate the controller outputs based on 

fuzzification and linguistic strategy stages. 

 

Figure 8.2: The DE0-Nano Board. 

 

Figure 8.3: Block diagram of DE0-Nano Board.  
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Figure 8.4: Fuzzy logic controller (FLC) system.  

8.2.2.1 Fuzzification Stage 

Generally, there are two inputs to the Fuzzy logic controller: error (e) and change 

of error (∆e). Figure 8.5 demonstrates the design of the FPGA implementation. The input 

values (crisp values (e) and (∆e)) are converted to an interval of [0, 1] for Fuzzy values in 

the fuzzification block.   

The fuzzification block is responsible for converting the crisp input values (error, 

change of error) to equivalent fuzzy values in the interval [0,1]. Triangle membership- 

functions are used in this controller. These triangle membership-functions are expressed in 

VHDL code as a trapezoidal shape presented by two slopes (slope1 and slope2) and two 

points (point1 and point2), as shown in Figure (8.6). The following code shows the VHDL 

code for a single membership degree function (Youssef, El Telbany, & Zekry, 2018). The 

VHDL code is written in a way that the numbers for error and change of error membership 

degree functions is generic, assuming symmetric membership degree functions. The 

system designer needs only to specify the number, points and slopes of membership 

functions. Membership Functions algorithm as the following:  

Algorithm 1   Membership Functions 

1:  𝒕𝒚𝒑𝒆 𝒆𝒓𝒓𝒐𝒓 𝒎𝒆𝒎𝒃𝒆𝒓𝒔𝒉𝒊𝒑 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏𝒔 𝒊𝒔 𝒂𝒓𝒓𝒂𝒚 (𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑟𝑎𝑛𝑔𝑒 < >) 𝑜𝑓 𝑒𝑟𝑟𝑜𝑟 𝑚𝑒𝑚𝑏𝑒𝑟 −  𝑠ℎ𝑖𝑝; 

2:  𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕 𝒆𝒓𝒓𝒐𝒓 𝒎𝒇𝒔: 𝒆𝒓𝒓𝒐𝒓 𝒎𝒆𝒎𝒃𝒆𝒓𝒔𝒉𝒊𝒑 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏𝒔: = ((𝑡𝑒𝑟𝑚 => 𝑁𝐵𝑓, 𝑝𝑜𝑖𝑛𝑡1 =>

     𝑥“00”, 𝑠𝑙𝑜𝑝𝑒1 => 𝑥“𝐹𝐹”, 𝑝𝑜𝑖𝑛𝑡2 => 𝑥“2𝐴”, 𝑠𝑙𝑜𝑝𝑒2 => 𝑥“06”); 
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Figure 8.5: Complete VHDL design. 

 

Figure 8.6: Trapezoidal membership-degree.  

Figure 8.7 shows the flowchart of the fuzzification process. 

Fuzzification algorithm as the following: 

Algorithm 2   Fuzzification (); 

1:  𝑺𝒆𝒕 𝑛 =  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑒𝑚𝑏𝑒𝑟𝑠ℎ𝑖𝑝 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

2:  𝝁 =  𝑎𝑟𝑟𝑎𝑦 𝑜𝑓 𝑑𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑚𝑒𝑚𝑏𝑒𝑟𝑠ℎ𝑖𝑝 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑚 =  𝑎𝑟𝑟𝑎𝑦 𝑜𝑓 𝑚𝑒𝑚𝑏𝑒𝑟𝑠ℎ𝑖𝑝 

3:  function start 

4:  loop for i= 1 to n 

5:  if input value<m[i].point1 then μ[i]=0; else if input value<m [i].point2then 

6:  μ[i]=(input value -m[i].point1)*m[i].slope1; else μ[i]= 255 - (input value - m[i].point2)*m[i].slope2; 

7:  end if; end loop; 
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Figure 8.7: Flowchart of the fuzzification process. 

8.2.2.2 Inference-Engine Stage 

          Maximum and minimum VHDL internal functions are used to express the inference-

engine process. Two-dimensional arrays are used to implement the rule base table. 

Inference algorithm as the following: 
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Algorithm 3   Inference 

1:  𝒇𝒐𝒓 𝑗 𝑖𝑛 0 𝑡𝑜 𝑛𝑜𝑢𝑡𝑝𝑢𝑡𝑚𝑒𝑚𝑏 𝑙𝑜𝑜𝑝 

2:  𝒇𝒐𝒓 𝑘 𝑖𝑛 0 𝑡𝑜 𝑚𝑐𝑜𝑢𝑛𝑡(𝑗) − 1 𝑙𝑜𝑜𝑝 𝑡𝑠𝑖𝑔𝑛𝑎𝑙(𝑘) : = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚(𝑚𝑒𝑚𝑏𝑑𝑒𝑔𝑟𝑒𝑒 

(𝑚1(𝑗, 𝑘)), 𝑚𝑒𝑚𝑏𝑑𝑒𝑔𝑟𝑒𝑒1(𝑚2(𝑗, 𝑘))); 

3:  end loop; 

4:  MDvaluesn(j): =maximum(tsignal,mcount(j)); 

5:  end loop; 

 

        Maximum function algorithm as the following: 

Algorithm 4   Maximum Function 

1:  𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 (𝑑𝑖𝑧𝑖: 𝑚𝑦𝑡𝑦𝑝𝑒;  𝑝𝑎𝑟: 𝑖𝑛𝑡𝑒𝑔𝑒𝑟) 

2:  𝒓𝒆𝒕𝒖𝒓𝒏 𝑠𝑡𝑑𝑙𝑜𝑔𝑖𝑐𝑣𝑒𝑐𝑡𝑜𝑟 

3:  variable maxnumber: stdlogicvector(7 downto 0) for integer i in 0 to 10 

4:  if(maxarray: = dizi(i)) then 

5:  maxnumber: = dizi(i); end if; 

6:  end loop; 

7:  return maxnumber; 

8:  end maximum; 

 

8.2.2.3 Defuzzification Stage 

         By assuming that the output membership-functions are a single shape which will 

overcome the VHDL code complexity, the centroid defuzzification technique has been 

used. The defuzzification output is for generating the duty cycle of the PWM block and is 

calculated with the following equation:  

                                               𝐷𝑢𝑡𝑦 =
∑ 𝐹𝑢𝑧𝑧𝑦_𝑂𝑢𝑡𝑝𝑢𝑡×𝑆𝑖𝑛𝑔𝑙𝑡𝑜𝑛

𝐹𝑢𝑧𝑧𝑦_𝑂𝑢𝑡𝑝𝑢𝑡
                                         (8.1) 

        The defuzzification algorithm as the following: 

Algorithm 5   Defuzzification 

1: For i = 1 to n do begin product = (s(i) f(i))+ 𝑝𝑟𝑜𝑑𝑢𝑐𝑡; 

2: sum = f[i] + sum; 
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8.2.2.4 Sum Block 

         The sum block generates the output duty cycle from the duty step size generated by 

the defuzzification block using the following equation: 

                                       𝐷𝑢𝑡𝑦𝑐𝑦𝑐𝑙𝑒 𝐷 =  𝑑𝐷(𝑘)  +  𝐷(𝑘 −  1)                                    (8.2) 

where 𝑑𝐷(𝑘) is the change in the duty cycle output at the instant K and 𝐷(𝑘 −  1) is the 

duty cycle at a previous instant. 

8.2.2.5 Pulse width modulation generator 

        This stage generates the PWM signal depending on the duty cycle value coming from 

the fuzzy controller.  

8.2.2.6 Finite State Machine (FSM) 

        This block controls all the blocks of the design. It has three states: s1, s2 and s3. The 

first state (s1) is reading the input error (e) and change of error (∆e). This state takes four 

clock cycles. The second state (s2) is the fuzzy controller with one clock cycle. The third 

state (s3) is loading the duty cycle to the pulse width modulation block by one clock cycle. 

8.2.2.7 Clock Divider 

        A clock divider block is built in VHDL. The block is needed to divide the input clock 

frequency to the desired clock frequency. Generic code that takes the output frequency as a 

parameter is written and tested. 

8.3 Portable Air Supply 

        Air supply is the major obstacle to creating a totally portable exoskeleton system 

based on pneumatic muscles. It must be lightweight and small in size to be easily carried 

by the wearer. Figure 8.8 shows our design of the portable air compressor. This air 

compressor has no difference in function to other commercial compressors but it is small in 

size, low cost, lightweight and easy to makeportable.  
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Figure 8.8: Air compressor design. 

        The air storage unit of the portable compressor contains three soft pneumatic muscles. 

These muscles are not designed to be extensors or contractors (has a fixed length when 

inflation or deflation) but by using a specific sleeve length with a braid angle of 54.7o, with 

this braid angle the force will be zero. The length of each muscle is 32 cm with a 6.5 cm 

diameter. Traditional tyre inflators with a maximum pressure of 15 bars have been used as 

an air pressure supply. A manual air regulator is used to regulate the desired pressure for 

the exoskeleton system. An electronic pressure sensor is used as a limit for the air pressure 

in the storage unit. Figure 8.9 shows the portable air compressor electronic circuit. Two 18 

V 5000mAh rechargeable batteries are used as a voltage supply. The batteries are 

connected in parallel to increase the electric current for the system. Two 12 V voltage 

regulators are used to regulate the Tyre Inflator voltage. One 5 V voltage regulator is used 

to regulate the Arduino voltage. The Arduino is used with a 16 channel servo motor shield 

to regulate the frequency of the solenoid valve. The driver is used to receive the controlling 

5 V PWM signals from the Arduino and transfer them to 18 V PWM. 

All the parts of the portable air compressor, such as storage unit, tyre inflator and the 

electronic circuit, are assembled in a small back-bag with the total weight of approximately 

4 kg.  

8.4 Totally Portable Rehabilitation System 

        The proposed portable rehabilitation system block-diagram is illustrated in Figure 

8.10. 
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Figure 8.9: Air compressor electronic circuit. 

 

Figure 8.10: The proposed block-diagram portable rehabilitation system. 
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        We used the same rehabilitation glove in section (7.2.2.2) with the same off-line 

controller in section (7.2.2.3). Three switches are used to select the desired exercise. 

Switch number one is used to operate a thumb finger rehabilitation exercise which is a 

repetitive movement that bends the thumb finger by the set-point bending angle, e.g. 150o. 

Switch number two is used to activate the index finger controller for an index finger 

rehabilitation exercise. Switch number three activates the middle, ring and little fingers 

rehabilitation exercise together, as we explained in chapter 7.  

           Three Fuzzy logic controllers (the same controller in 7.2.2.3) are programmed as 

parallel controllers on-chip in a FPGA DE0-NANO kit. These controllers are programmed 

by using concurrent techniques to operate in parallel independently. Each controller is 

programmed by the same procedure in section 8.2.2. The thumb controller controls the 

thumb fingers bending angle with a procedure of repetitive movements when switch 

number one is active and receiving the feed-back signal from the celebrated flex bend 

sensor allocated between the thumb and the bending muscle. The index controller controls 

the index finger movements when switch number two is activated and also receives the 

bending angle feed-back signal from a flex bend sensor placed on the top of the index 

finger. Finally, the middle controller is activated when switch number three is active to 

control the middle, ring and little fingers together by receiving a feed-back signal from a 

bending sensor allocated on the middle finger. Due to the three controllers being 

programmed in parallel, more than one controller can be activated at the same time to 

discover the most commonly used hand rehabilitation exercises, as shown in chapter 7 

Figure 7.15. Figure 8.11 shows the wearer wears the rehabilitation system. 

8.5 Conclusion 

The rehabilitation system should be lightweight and easily portable so that the 

rehabilitation exercises can be done anywhere, not only in the rehabilitation clinic. It 

should also be easy for the patient to use without needing rehabilitation supervision.  

The controller system is designed to be an on-chip controller and not need any PC 

to be connected. A FPGA DE0-Nano Board is used as a controller system, PC free. A 

parallel processing controller technique is used to implement the controller system, to 

overcome the complexity and signals conflict, and to also reduce the processing time.  
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A portable air pressure supply is designed so as to supply the air pressure to the 

rehabilitation system. It is a rechargeable system, lightweight and small in size.  

A rehabilitation glove is used as a rehabilitation exoskeleton based on our novel 

bending muscles. The rehabilitation exercises can be activated by three manual switches to 

choose the desired exercise.    

 

Figure 8.11: The wearer wears the rehabilitation system. 
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Chapter 9 

Conclusion and Future Work 

 

9.1 Conclusion  

Wearable exoskeleton devices are a combination of human intelligence and 

machine power. The strength of the human is improved when they wear the device. During 

recent decades, inventors have been persistently working towards increasing their 

knowledge of wearable exoskeletons. Exoskeleton robots are expected to play a critical 

part in the rehabilitation fields, mechanical assistance technology and the augmentation of 

human force. A limited number of upper-limb wearable robots have been created for 

different purposes with particular benefits and drawbacks. Power assistive and 

rehabilitation wearable robots have to be safe, lightweight, small and soft. All these 

features are found in pneumatic soft muscles and, therefore, many researchers depend on 

these soft actuators to manufacture power assistive and rehabilitative wearable robots.  

  The significant motivation for researchers to create and utilise PAMs is the 

remarkable closeness between them and natural muscles. The most widely recognised 

PAMs configuration depends on McKibben's muscles. PAMs have generally been utilised 

as a component when assembling another type of robot, known as ‘soft robots’ or 

‘continuum robots’. Moreover, since the PAMs are developed from soft materials, they 

have the ability to provide safer devices when contrasted with conventional inflexible 

robots with direct human interaction. Numerous applications have been done based on 

PAMs because of their wide range of points of interest. These applications have increased 



191 
 

in the last decade, covering many fields, such as biorobotics, medical, industrial, and 

aerospace applications. 

The conclusion of the work done in this research has been listed in the following 

points: 

1- The design and implementation of a novel extensor contractor pneumatic artificial 

muscle. The Extensor-Contractor Pneumatic Artificial Muscle (ECPAM) is formed 

from a combination of contraction and extensor muscles. The new actuator consists 

of a contraction muscle placed inside an extensor muscle. This new actuator 

overcomes some of the limitations associated with the use of single pneumatic 

muscles as well as having additional features. This new actuator has bidirectional 

action allowing it to both extend and contract and create force in both directions.  

a. This muscle is capable of extending and contracting in reference to its 

nominal length by controlling the amount of the pressure inside both 

extensor and contractor muscles. 

b. This muscle has higher stiffness in contrast to traditional extensor and 

contractor muscles and this has been assessed experimentally to prove this 

novelty point. 

c. A kinematics analysis has been done of the new actuator based on its 

geometrical parameters. 

d. A pushing/pulling force mathematical model has been developed for this 

actuator to understand the behaviour of this new actuator and describe it 

mathematically.  

e. Experimental verification has been done for the new mathematical model. 

The average error percentages between the mathematical model and the 

experimental results are approximately 20%. 

f. Mathematical model enhancement has been made and it is assessed 

experimentally. This enhancement process decreased the average error 

percentages between the mathematical model and the experimental results 

by approximately 70%. 

g. At a fixed load and position a traditional pneumatic muscle has a single 

fixed stiffness value. The reason for this is that the actuator’s stiffness is a 

result of the pressure in the actuator, with higher pressure resulting in 

greater stiffness. However, pressure is proportional to muscle output force 
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and so increasing the pressure in a muscle which is supporting a fixed load 

will result in contraction of the muscle and change in position. It is therefore 

not possible to change a pneumatic muscle’s stiffness independently of its 

force or position. The newly developed ECPAM, however, has the ability to 

potentially vary its stiffness independently of its position. A controllable 

stiffness experimental verification has been made to prove the novelty of 

the new actuator. 

h. Accurate control of McKibben muscles presents a major challenge, this is 

because of both the nonlinear behaviour of the muscles and the 

compressibility of air. Much of the control of pneumatic muscle has relied 

on classical control techniques and simple models of the actuator 

functionality that include many assumptions. A Stiffness and Position 

(length) Control has been created for the new actuator to validate the 

stiffness novelty.  

2- Design and implementation of a novel extensor bending soft actuator. The proposed 

extensor bending pneumatic artificial muscles (EBPAMs) are based on linearly 

extending McKibben artificial muscles. These muscles are reinforced along one 

side keeping one side of the actuator at a fixed length. This means that when 

pressurised the new actuator does not extend in length but rather bends. 

a. A kinematic analysis of this actuator has been created. The analysis of the 

EBPAM is based on the following assumption: the muscle retains a circular 

cross-section during bending, the threads used to form the sleeve and 

reinforce one side of the muscle are inextensible, there is no friction force 

between the sleeve and the bladder and between the threads of the sleeve 

and there are no elastic forces within the bladder.  

b. A mathematical output force model for this actuator is developed. However, 

if the bending muscle is to be used in an application, it is important that its 

force generating behaviour is also understood. The average error percentage 

between the force mathematical model and the experimental results is 

approximately 15%. This error is not unexpected as the model used is 

simplistic and does not consider energy losses within the muscle. 

c. Three stages for enhancing this model has been done. The first enhancement 

stage is based on the energy spent radially expanding the rubber bladder 

before it makes contact with the braided sleeve. This enhancement stage 
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reduces the error percentage by approximately 45%. The second 

enhancement stage takes into consideration the thicknesses of the sleeve and 

the bladder to reduces the error percentage (error after first stage 

enhancement) by approximately 30%. The third stage of the model 

enhancement is based on the total actuator volume by eliminate the 

assumption of the actuator is perfectly cylinder and there are no 

deformations segments at the ends of the actuator. In reality, deformations 

occur at the actuator terminals because the ends caps of the extensor 

muscles have a diameter smaller than the muscle cylindrical body. These 

deformations are similar in shape to a frustum of a cone, taking this in 

consideration to reduces the error percentage (error after second stage 

enhancement) by approximately 22%.   

3- A novel design for a power assistive glove has been developed to overcome the 

release movements problem with a simple controller for validation has been 

created. The proposed prototype outputs 17 N maximum force at the fingers for 

bending at 4 bar, showing that the assistive amount is up to 40% and 45% 

respectively for healthy men and women over 50. An efficient solution for the 

release movement problem is presented. EMG signals from the hand are monitored 

to clarify that solution. The proposed control algorithm gives a high performance of 

multiple gripping/pinching movements, assisted by pressure sensors as a feedback 

signal, and using bending joint angles as the set-points. 

4- A novel power augmentation hand exoskeleton has been developed. The proposed 

bending soft actuators also actuate this exoskeleton. The control system of this 

exoskeleton was created by hybridization between both the cascaded position and 

force closed loop intelligent controllers. The cascaded position controller is 

designed for the bending actuators to follow the fingers in their bending 

movements. The force controller was developed to control the grasping force 

augmentation. Validation of the controller system with the exoskeleton has been 

done experimentally in this research. EMG signals were monitored to validate 

whether the proposed exoskeleton system decreased the muscular efforts of the 

wearer during the experiments.  

5- A rehabilitation glove for the fingers has been developed to bend the fingers (full 

bending) by using the novel bending muscles designed. To solve the zero position 

(straight fingers) problem for post-stroke patients, a new controllable stiffness 
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bending actuator has been developed with a novel prototype. Online and offline 

controller systems have been designed for the hand exoskeleton and the results 

have been assessed experimentally. A new design of variable stiffness actuators to 

control the bending segment have been developed to create a new version of hand 

exoskeletons to achieve more rehabilitation movements in the same single glove, 

such as hook and table fists. 

6- A new design for a forearm rehabilitation exoskeleton based on the novel extensor 

contractor actuator has been created in this research. 

7- The elbow rehabilitation exoskeleton is designed based on the novel bending 

actuators with online and offline feedback controllers. A novel two-directional 

bending actuator has been developed based on moulding a bladder from elastic 

liquid materials. This bending actuator has been used to enhance the elbow 

exoskeleton to make it capable of performing the rehabilitation exercises vertically 

and horizontally with a controllable stiffness.  

8-  A novel bidirectional bending actuator based on a moulded bladder has been 

developed in this research and it is used to create a new version for an elbow 

rehabilitation exoskeleton. 

9-  A novel design for a wrist rehabilitation device based on the traditional contraction 

muscles and the novel bending actuator has been developed in this research. 

10-  A novel all-directional bending actuator based on a moulded bladder has also been 

developed and it is used to create a new version of a wrist rehabilitation 

exoskeleton based on a single actuator. 

 
11-  The design and implementation of a totally portable rehabilitation system based on 

parallel processing controllers on-chip has been developed in this research. 

 

9.2 Future Work 

Soft robotics draws heavily from the way in which living organisms move and 

adapt to their surroundings. In contrast to robots built from rigid materials, soft robots 

allow for increased flexibility and adaptability for accomplishing tasks, as well as 

improved safety when working around humans. These characteristics allow for its potential 

use in the fields of medicine and manufacturing.  

The plan for future work on this Ph.D. research is to design, construct and control 

lower-limb exoskeleton segments based on PAMs for power assistive and rehabilitation 
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purposes. The problems with previous designs of exoskeletons will be taken into 

consideration, then as many of these problems as possible will be addressed. During this 

work, all the planned aims and research objectives were successfully accomplished. 

However, there were some of limitations and possibilities for future work in the proposed 

design it will illustrated in the following points: 

1- Enhance the output force mathematical model of ECPAM by taking into 

consideration new factors such as the frictional forces between the braids and 

the bladders or between the nylon threads of the braid or between the contractor 

muscle and the bladder of the extensor muscle and that there were no elastic 

forces within the bladders. 

2- More enhancement stages for the EBPAM mathematical model by taking in 

consideration the energy losses within the muscle. 

3- Develop the power assistive and augmentation gloves to be more accurate by 

taking in consecration the real time EMG signals from the wearer as a feedback 

signal to the controller system.  

4- Test out rehabilitation prototypes with real patients and monitor the recovery 

effectiveness of the exoskeletons to the wearers to enhance the future 

prototypes by taking into consideration the real patients comments. 

The new actuators and exoskeletons developed in this work will be of interest to 

researchers working in sectors other than in healthcare, the main focus of this research. The 

ability to use the system for force augmentation has application other sectors, for example 

in manufacturing or assembly tasks operators could use the systems developed to give 

them additional strength or to reduce fatigue by removing strain from the user’s own 

muscles. The low material cost and the fact that the system does not need to be custom 

designed for individual users means it potentially offers a low cost solution in industrial 

settings.   

Another area where the technology could be applied is in future astronaut suits. The 

pressure difference between the inside of an astronaut’s suit and the vacuum of space 

combined with the multiple layers of protective fabric means it is difficult and often hard 

work for an astronaut to perform delicate and repetitive motions and grasps. The soft 

actuators developed in this research could be incorporated into a spacesuit to allow the user 

greater dexterity and reduce their fatigue during spacewalks.  
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APPENDIXES 

A1. BBPAM Bladder Manufacturing Process 

Natural latex and thickener have been mixed using 95% and 5%, respectively, as 

shown in Figure A1.1 (a). A 3D printed template has been used to mould this bladder, as 

shown in Figure A1.1 (b). This template has four parts with a hole in the middle to place 

parallel fixed length threads. These threads are used so that the middle of the bladder has a 

fixed length. After the threads have been placed in the middle, the mould is painted with 

layers under heating until it has a desirable thickness, as shown in Figure A1.1 (c). Figure 

A1.1 (d) shows the novel bladder after it’s dried. Finally, the bladder is encapsulated by a 

netted sleeve, using the same technique as the extensor muscle, and the end cap is placed 

on each hole (one terminal has fully solid endcaps and the other terminal has two endcaps 

with a hole for each airflow) 

 

Figure A1.1: Moulding the novel bladder for BBPAM. 
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A2. ABPAM Bladder Manufacturing Process 

Figure A2.1 (a) shows the 3D printed template, it contains four bars and two ends. 

Parallel fixed length threads are placed in the middle of the template (see Figure A2.1 (b)) 

to make the centre of the muscle always have a fixed length. The elastic liquid was painted 

on the template under heating (see Figure A2.1 (c)) until it reached the desired bladder 

thickness. Figure A2.1 (d) shows the new bladder after it’s completely dried. The bladder 

is encapsulated by a netting sleeve as an extensor muscle and end caps are connected to 

each terminal. One end cap is completely closed and the other one has four holes for the 

airflow, as shown in Figure A2.1 (e). 

 

Figure A2.1: The ABPAM fabrication stages.  


