
Section C: Computational Intelligence, Machine Learning and Data Analytics
The Computer Journal, Vol. 00 No. 0, 2019

© The British Computer Society 2019. All rights reserved.
For permissions, please email: journals.permissions@oup.com

doi: 10.1093/comjnl/bxz078

Pruning Neural Networks Using
Multi-Armed Bandits

Salem Ameen and Sunil Vadera*

School of Computing, Science and Engineering, University of Salford, Manchester, M5 4WT,UK
∗Corresponding author: S.Vadera@salford.ac.uk

The successful application of deep learning has led to increasing expectations of their use in
embedded systems. This, in turn, has created the need to find ways of reducing the size of neural
networks. Decreasing the size of a neural network requires deciding which weights should be
removed without compromising accuracy, which is analogous to the kind of problems addressed by
multi-armed bandits (MABs). Hence, this paper explores the use of MABs for reducing the number
of parameters of a neural network. Different MAB algorithms, namely ε-greedy, win-stay, lose-shift,
UCB1, KL-UCB, BayesUCB, UGapEb, successive rejects and Thompson sampling are evaluated and
their performance compared to existing approaches. The results show that MAB pruning methods,

especially those based on UCB, outperform other pruning methods.

Keywords: neural networks; multi-armed bandits; pruning weights

Received 16 November 2018; revised 26 April 2019; editorial decision 25 June 2019
Handling editor: Fionn Murtagh

1. INTRODUCTION

The use of deep learning has led to dramatic improvements in
performance in many pattern recognition applications [1–7].
These deep learning models consist of neural networks with a
large number of parameters that require a significant amount
of memory and computational resource [8]. Hence, there is
renewed interest in developing algorithms for reducing the size
of neural networks while retaining their predictive power. A
survey of the literature reveals four categories of algorithms:
direct methods, network pruning (NP) methods, use of regular-
ization and methods that utilize sensitivity analysis, which are
summarized below.

Direct methods [9] work by assessing the effect of setting
weights to zero and removing weights that have little impact on
performance. NP methods [10–13] are based on the view that
very small weights are the least important and can be removed
without affecting performance. Regularization methods [14,
15] extend the loss function Li (such as mean square error)
to include an additional term, R(W), that aims to reduce the
magnitude of weights and promote generalization [14, 15]:

1

N

N∑
i=1

Li + λ

N
R (W) ,

where λ > 0 is a parameter that can be set to a value that
reflects the weight given to the regularization term and N is the

number of examples in the training set. There are many types of
regularization functions R(W), and two that have been widely
used are the sum of the squares of the weights (L2-norm) and
the sum of the absolute values of the weights (L1-norm).

Sensitivity analysis methods [16–22] aim to assess the effect
of perturbing the weights on the loss function. These include
a method due to Le Cun et al. [19], known as optimal brain
damage (OBD), that approximates the change in loss δL with
the Taylor series [19]:

δL =
∑

i

giδwi+ 1

2

∑
i

hiiδw2
i +

1

2

∑
i �=j

hijδwiδwj+O
(
||δW||3

)
,

(1)

where the δwi, δwj are the weight perturbations, gi are the
components of the gradient of the loss function L with respect
to the weights W and hij are elements of a Hessian matrix H:

gi = δL

δwi
and hij = δ2L

δwiδwj
.

Le Cun et al. [19] note that computing the Hessian matrix is
computationally expensive, and to simplify the computation,
they assume that the change in loss can be approximated by the
diagonal elements of the Hessian, resulting in a simplification
of equation (1) to

δL =
∑

i

hiiδw2
i .

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/advance-article-abstract/doi/10.1093/com
jnl/bxz078/5574718 by U

niversity of Salford user on 09 O
ctober 2019

2 S. Ameen and S. Vadera

Given this simplification, the saliency sk of a weight wk can
then be computed by [19]:

sk = 1

2
hkkw2

k ,

where the second-order derivatives, hkk, are computed in a
manner similar to the way the gradient is computed in back-
propagation. In a later study, Hassibi et al. [20] also use
equation (1) to develop a method known as optimal brain
surgeon (OBS) but argue that it is not necessary to make the
simplifying assumption that the non-diagonal elements of the
Hessian matrix are zero.

The above methods for pruning neural networks have dif-
ferent merits. The direct methods are of O(NP3), where P is
the number of weights and N is the size of the training set,
and hence are considered to be intractable [9]. Regularization
can lead to weights decaying towards zero, although as Collins
and Kohli [23] and Gupta et al. [24] show, they may not
reduce the weights to zero. One approach to address this might
be to apply magnitude-based pruning methods to remove any
small weights after regularization. However, Hassibi et al. [20]
show that pruning based on magnitude can lead to removing
important weights, and Srinivas and Babu [25] conclude that
methods based on sensitivity analysis find it difficult to prune
deep neural networks.

This paper explores an alternative approach based on the
observation that there is a trade-off in deciding which weights
to remove. That is, having too many weights can lead to
overfitting, but equally, removing too many weights can result
in underfitting the data. Although direct methods are optimal,
evaluating the merits of weights by using all the training data
to assess their value is not computationally feasible except for
small data sets and networks. Equally, utilizing only a small
sample of the data and trials may not lead to an accurate assess-
ment of the value of a weight. Hence, this paper develops and
evaluates an algorithm based on the use of multi-armed bandits
(MABs), which have been successfully applied to problems
where trials are carried out to explore the merits of various
options [26–38].

The rest of this paper is organized as follows: Section 2
presents the background on MABs, Section 3 develops a new
pruning algorithm that utilizes MABs, Section 4 presents the
results of an empirical evaluation and Section 5 concludes the
paper.

2. BACKGROUND ON MABS

The term MAB refers to a framework that is based on modelling
a gambler who faces a collection of slot machines and needs to
select which machines to play in order to maximize returns.
Prior to each lever pull, the gambler will know the expected
return or pay off based on the previous history of rewards and
will be able to use this to decide which arm to pull next in

order to achieve his or her goal. Typically, the goal can be to
maximize the cumulative reward [39] or to find the best arm
[40]. When the aim is to maximize the cumulative reward, a
key decision for the gambler is to decide whether to exploit
the best arm to date or explore other arms with the hope of
gaining greater reward. In contrast, when the aim is to find the
best arm, a key decision is to select an arm that will lead to
high confidence that the arm ultimately selected will indeed
be the best one to exploit. Given the goal of the algorithm
developed in this paper is to remove weights that do not impact
the performance of a neural network, we utilize MABs for
identifying the best arms given a fixed budget defined by the
number of lever pulls.

There are several alternative strategies for selecting the next
arm to pull which can be grouped into three categories: random
exploration [41], optimistic exploration [42] and Bayesian ban-
dits [43, 44]. The following subsections summarize algorithms
in these categories.

2.1. Random exploration

In random exploration methods [41], arms are pulled randomly,
expected returns are calculated and a strategy for deciding when
the best arm should be exploited and when other arms are tried
is employed. In the simplest algorithm, the next arm is chosen
randomly for a fixed number of times, an average reward
computed and the best arm selected and exploited repeatedly.
A more informed strategy, known as ε-greedy [37, 39, 45],
pulls (i.e. exploits) the current best arm with a probability 1-ε
and otherwise pulls another arm randomly (i.e. explores). More
formally, given k arms, the ε-greedy algorithm selects the next
arm at+1 as follows:

at+1 =
{

argmax [μt(1), . . . μt(k)] with prob 1 - ε

select randomly from{1 . . . k} with prob ε,

where μt(i) denotes the average reward for arm i obtained over
t rounds.

Selecting a suitable ε for this algorithm can be challenging.
If ε is large then, it will waste time pulling random arms
without gaining much, but if ε is too small, then the learning
process will be slow [45]. Hence, some authors have proposed
a strategy of decaying ε over time [39]. For example, White
[46] proposes decaying ε by

1

log(t + φ)
,

where φ is a small number and t is the number of rounds to
date.

Another technique, known as WinStay, LoseShift (WSLS)
[47, 48], changes the probability of selecting an arm depending
on whether it results in a reward or not in the current round. If a

Section C: Computational Intelligence, Machine Learning and Data Analytics
The Computer Journal, Vol. 00 No. 0, 2019

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/advance-article-abstract/doi/10.1093/com
jnl/bxz078/5574718 by U

niversity of Salford user on 09 O
ctober 2019

Pruning Neural Networks Using Multi-Armed Bandits 3

selected arm results in a reward (i.e. wins), then its probability
of being selected in the future is increased; otherwise, it is
reduced. More formally, let Pt(a) be the probability of choosing
arm a at time t, then the WSLS update equations are

Pt+1 =
{

Pt(a) + β(1 − Pt(a)) if a wins
Pt(a) − βPt(a) otherwise,

where β is a scaling parameter for rewarding the winner and
penalizing the losers.

2.2. Optimistic explorations

As mentioned above, prior to pulling the next arm, a player will
know the expected reward for each arm based on the history of
lever pulls. A simple approach to selecting the next arm is to use
an arm with the largest reward. However, this ignores the fact
that early estimates of the rewards may be inaccurate, making
it ineffective, irrespective of whether we wish to maximize
cumulative reward or, as in our case, for the best arm problem.
Thus, the main idea for optimistic exploration is to maintain
confidence bounds on the expected rewards and to select an
arm with the largest upper bound. This ensures that there is
sufficient exploration at the start, knowing that the bounds will
tighten as the number of lever pulls increase. MAB methods
that adopt this approach are known as upper confidence bound
(UCB) algorithms [39, 49]. More formally, UCB algorithms
aim to select the next arm, at+1 as follows:

at+1 = argmax
iε{1...K}

(μi + Pfi),

where μi is the expected reward for arm ai and Pfi is a padding
function that is used to provide an upper bound for the reward
for an arm ai.

One of the earliest and most widely cited UCB algorithms,
known as UCB1, uses the following selection function [39]:

at+1 = argmax
iε{1...K}

(
μi +

√
2 log t

ni

)
, (2)

where ni is the number of times arm i has been chosen and t
is the total number of rounds. UCB1 begins by playing each
arm once to create an initial estimate. Then, for each iteration
t, an arm is selected using equation 2. Initially, when arms
have only been pulled a few times, the padding function in
equation 2 allows exploration, but as the number of rounds
increases, the extent of the padding function reduces, lead-
ing to greater exploitation of the arms that return the largest
rewards.

KL-UCB [50, 51] presents an alternative approach where the
padding function is derived from the Kullback–Leibler (KL)

divergence measure, leading to a selection function where the
next arm to pull is given by

at+1 = argmax
iε{1...K}

q(i)

q(i) = max
qε{μi...1}

(
d(μi, q) ≤ log t + c. log log t

ni

)
,

where c is a constant and d is the KL divergence measure
defined by [52]

d(p, q) = p log
p

q
+ (1 − p) log

(
1 − p

1 − q

)
.

Both UCB1 and KL-UCB focus on the upper bounds of indi-
vidual bandits. In contrast, some recent MAB algorithms also
utilize the information in the lower bounds. One such algorithm
is the unified gap-based exploration algorithm (UGapEb) [53].
As with the above algorithms, it maintains the lower and upper
bounds (li, ui) for each arm, but, in addition, it also maintains
a set Sm with the top m arms, which are selected on the basis
of the gap, gi between the lower bound of an arm and the best
upper bound amongst the arms:

gi = max
j �=i

uj − li

Given this set, the algorithm considers whether an arm that
is not currently in Sm can make it into the set in the next round.
To assess this, it picks two arms: an arm in Sm with the lowest
lower bound and an arm that is not in Sm but which has the
highest upper bound. From these, it selects the arm with the
largest uncertainty (i.e. ui − li) and repeats the process a fixed
number of times (fixed budget setting).

The bounds (li, ui) for an arm ai, with Ti lever pull at round t,
are defined as follows and can be derived using the Chernoff–
Hoeffding bounds [53]:

(li, ui) = (μi − βi, ui = μi + βi)

βi = b

√
a

Ti(t − 1)
, (3)

where a and b are user provided parameters that need tuning
to improve performance. Audibert and Bubeck [40] argue that
finding suitable parameters for algorithms such as UGapEb
can be challenging and propose a parameter-free algorithm,
successive rejects (SR), that involves K − 1 phases in which
the available arms are attempted for a fixed number of times
and the least promising arm is removed following each phase.
The number of rounds nk, in the kth phase, is set with a view to
achieving the theoretical lower bound for the best arm problem
[40]:

nk =
⌈

1

log(K)
.

n − K

K + 1 − k

⌉
,

Section C: Computational Intelligence, Machine Learning and Data Analytics
The Computer Journal, Vol. 00 No. 0, 2019

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/advance-article-abstract/doi/10.1093/com
jnl/bxz078/5574718 by U

niversity of Salford user on 09 O
ctober 2019

4 S. Ameen and S. Vadera

where n is the total number of rounds and

log(K) = 1

2
+

K∑
i=2

1

i

2.3. Bayesian bandits

In the Bayesian approach, the potential reward from each arm
is represented by a probability distribution that is updated in a
Bayesian fashion. If P(R) is the prior probability of a reward,
then the goal is to compute a posterior distribution P(R|ht)

where ht is the history of rewards and actions.
One of the first algorithms to adopt a Bayesian approach was

Thompson sampling [26, 27, 52]. Given sa, the number of times
an arm results in a reward, and fa, the number of times an arm
fails to deliver a reward, the probability distribution for an arm
is defined by the beta distribution [43, 44]:

P(x) = (1 − x)β−1xα−1

B(α, β)
,

where α is set to sa + 1, β is set to fa + 1 and B(α, β) is a
normalizing constant.

In a more recent development that uses a Bayesian approach,
Kaufmann et al. [54] propose an algorithm BayesUCB, in
which the quantiles of a distribution are estimated to increas-
ingly tight bounds and used to determine the next step:

at+1 = argmax
iε{1...K}

qi(t)

qi(t) = Q

(
1 − 1

t
, λt−1

i

)
,

where Q is the standard quantile function and λt−1
i denotes the

posterior distribution of the mean reward for the ith arm.

3. A MULTI-ARMED PRUNING ALGORITHM

To utilize the MAB algorithms described in Section 2, we need
to define the arms and the reward function. The arms, ak, are
defined as the weights wi,j from a weight matrix W connecting
the neurons in the layers of the network, and pulling an arm
is considered to be equivalent to setting a weight to zero. The
reward is defined as the difference between the accuracy of a
network before and after removing a weight and is based on
applying the network on a random sample of the data. The
weight selected, together with the reward, becomes part of
the history, which is then used by a MAB algorithm to select
the next weight and the process repeated for a fixed number of
rounds.

The reward function used varies depending on the type of
bandit algorithm used. For UCB1, ε-greedy, KL-UCB and

WSLS, the reward is computed by first calculating the differ-
ence in loss:

δL = L(D|W) − L(D|W ′
),

where L is the loss when the network is applied on the sample
of the data D, W denotes the weights and W

′
the weights after

pruning. The reward is then computed using

Rat ,t = max(0, Threshold + δL)

Constant
,

where the value of Threshold determines how much loss in
performance can be tolerated when pruning. For example,
suppose pruning results in a slightly worse performance, giving
-0.05 for δL, then a threshold of 0.1 would still result in a
reward. The divisor, Constant, is defined in a way that ensures
that the reward is bounded between zero and one.

The Thompson sampling and BayesUCB algorithms assume
Bernoulli rewards, and hence the reward is one if δL is larger
than zero and zero otherwise.

In summary, given the number of rounds T and loss function
L, the main steps of the MAB algorithm for pruning a neural
network are

1. Initialize the round number: t = 1.
2. Let D be a random sample from the training data.
3. If any weight wji has yet to be played, then let the selected

indices be (j, i), else use a MAB selection policy to return
the indices (j, i) based on the current history.

4. Perform forward propagation with the initial weights W
to obtain L(D|W).

5. Save the selected weight wji in case it needs to be
reinstated and set wji to zero to obtain W ′.

6. Perform forward propagation with the revised weights
W ′ to obtain L(D|W ′).

7. Compute the change in loss and reward for round t:

δL = L(D|W) − L(D|W ′
)

Rji,t = Reward(δL).

8. Update the average reward for the selected arm:

μji = (nji − 1)/nji ∗ μji + 1/nji ∗ Rji,t.

9. Increment the number of rounds t and repeat from Step
2 for T rounds after resetting the selected weight wji.

10. Rank the weights based on the rewards μji and select a
user defined proportion to be set to zero to obtain the
pruned network.

This algorithm has been implemented with Step 3 invoking
the selection policy of a specific MAB algorithm such as
UCB1, KL-UCB, Bayes-UCB, UGapEb and Thompson sam-
pling and Step 7 utilizing the relevant reward function.1 Its
worth noting that this algorithm inherits the extensive body of

1 All the implementations are available on GitHub at https://github.com/SalemAmeen/

codepaper/tree/master/codepaper.

Section C: Computational Intelligence, Machine Learning and Data Analytics
The Computer Journal, Vol. 00 No. 0, 2019

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/advance-article-abstract/doi/10.1093/com
jnl/bxz078/5574718 by U

niversity of Salford user on 09 O
ctober 2019

https://github.com/SalemAmeen/codepaper/tree/master/codepaper
https://github.com/SalemAmeen/codepaper/tree/master/codepaper

Pruning Neural Networks Using Multi-Armed Bandits 5

research on the theoretical convergence properties of the differ-
ent MAB algorithms. Readers interested in these properties are
referred to the survey paper by Burtini et al. [45].

4. EMPIRICAL EVALUATION

The MAB pruning algorithms were evaluated by carrying out
two sets of experiments. In the first, the NNSYSID package
[55] was used to build neural networks for 12 data sets from
the UCI machine learning repository [56] whose characteristics
are summarized in Appendix A. The inputs and outputs of
the neural networks reflected the features and class of the
data sets. For consistency, each network adopted two hidden
layers, with each hidden layer utilizing 20 neurons. The data
were randomly divided into 60:40 training:testing sets. The
models were trained using stochastic gradient descent with a
batch size of 10 examples, momentum of 0.9 and weight decay
of 0.005. The learning rate was initialized to 0.01, and the
Softmax function was used as the activation function. Once
trained, the neural networks were pruned using the different
methods and their performance analysed on the testing set.
In the second set of experiments, the LeNet deep learning
model, with two convolutional layers and two fully connected
layers, was adopted and trained on the MNIST data set [57].
The model was then pruned using the different methods and
their performance compared on the MNIST testing data. The
following subsections present the results from the two sets of
experiments.

4.1. Results for the UCI data sets

The empirical evaluation of the eight MAB methods on the
UCI data was carried out in comparison with the following four
algorithms:

1. Random pruning (RP), in which the weights are sampled
randomly for a fixed number of times and the weights
removed are selected based on their average effect on
reducing the error.2

2. An NP method [58], which removes weights that are
below a user specified threshold value.

3. OBD [19], which, as described in Section 1, is derived
using a Taylor series approximation for the change in
error that would occur if the weights were perturbed
but makes some simplifying assumptions about the off-
diagonal elements of the resulting Hessian matrix.

4. OBS [20, 21], which also adopts a Taylor series approx-
imation for the change in error but does not make the
assumptions made by OBD.

The experiments aimed to address what happens to the
accuracy when a network is pruned using the different methods

2 Note that RP is equivalent to setting ε to 1 in ε-greedy.

and to compare the computational time of the methods. Table 1
presents the percentage error rate for each of the pruning
methods on data sets from the UCI repository after pruning
10% of the weights after 1800 rounds of the MAB methods.
The ε-greedy and UGapEb algorithms both have hyper param-
eters. In these experiments, for ε-greedy, we set ε to 0.5 to
allow sufficient opportunities for exploring alternative arms.
For UGapEb, we set the parameters a and b (in equation 3)
to 0.25 and 1, respectively, based on the recommendations in
Terayama et al. [59]. The average error rate, presented in the
last row, shows that UCB1 and UGapE methods perform well
relative to the other methods for pruning.

To compare the methods more formally, we adopted the
methodology recommended by Demsar [60], who advocates
use of a non-parametric test introduced by Friedman [61] to
determine if there is a difference amongst the methods, and if
so, to follow up with the Nemenyi test [62] to assess if one
method is significantly better than another.

Table 3 presents the average rank of the 13 methods over
the 12 data sets, with UCB1 being ranked the most effective
in terms of reducing the error rate and NP ranked the least
effective. Applying the Friedman test results in a P-value of
1.2 × 10−12 confirming that there is a significant difference
amongst some of the methods and hence the Nemnyi post
hoc test was carried out. The critical difference (CD) for the
Nemenyi test was calculated using [62]:

CD = qα,k

√
K(K + 1)

6N
,

where α is the confidence level, which was set to 0.05, K is
the number of models (or classifiers) and N is the number of
measurements (data sets). To compute qα,K , the studentized
range statistic for infinite degrees of freedom divided by

√
2

was used.
Figure 1 displays the results, where the methods are plotted

according to their average rank. The best ranked methods are to
the right, and the line at the top indicates the CD. The coloured
lines group the methods that are not significantly different at
the 0.05 level. These results show that

• The UCB family of methods performed significantly
better than NP. Thompson sampling for pruning is also
significantly better than NP.

• The performance of BayesUCB and KL-UCB is very
similar, which is consistent with the theoretical results
due to Kaufmann et al. [63].

• Although the bandit-based methods have a higher aver-
age rank, the Nemenyi test does not distinguish these
methods significantly from OBD or OBS in terms of
minimizing the error.

Section C: Computational Intelligence, Machine Learning and Data Analytics
The Computer Journal, Vol. 00 No. 0, 2019

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/advance-article-abstract/doi/10.1093/com
jnl/bxz078/5574718 by U

niversity of Salford user on 09 O
ctober 2019

6 S. Ameen and S. Vadera

TABLE 1. The table presents the computed percentage error rate for the datasets, where the column labelled Model presents the error before
pruning and the remaining columns present the error when 10% of the weights are pruned using the different pruning methods.

Data set Model ε-greedy WSLS UCB1 KL-UCB BayesUCB OBD OBS TS NP UGapEb SR RP

Banknote 16 16 17 15 15 15 16 18 16 18 15 16 17
Blood TraNS. 12 12 18 12 12 12 12 13 12 13 12 12 14
Credit Approval 11 11 10 10 11 11 13 14 11 20 10 11 13
Haberman 20 20 23 20 20 20 20 20 20 21 20 21 21
Liver Disorders 30 30 35 30 30 30 30 37 30 32 30 31 32
MAGIC Gamma 20 23 25 20 20 20 21 26 20 22 20 21 23
Mammographic 19 17 19 17 17 18 19 20 19 19 18 19 19
MONK’s 30 33 35 30 30 30 30 35 30 33 30 30 31
Connectionist 16 18 16 16 16 16 16 16 17 18 16 16 16
Spam Base 14 16 16 14 15 15 14 17 15 18 14 15 15
SPECTF Heart 20 21 23 20 20 20 20 22 20 23 20 20 21
Tic-Tac-Toe 22 23 25 21 22 22 22 25 22 24 22 22 23
Average 19.17 20.00 21.83 18.75 19.00 19.08 19.42 21.92 19.33 21.75 18.92 19.50 20.42

TABLE 2. Run-time performance of the pruning methods in seconds.

Data set ε-greedy WSLS UCB1 KL-UCB BayesUCB OBD OBS TS UGapEb SR RP

Banknote 8.5 21.3 12.5 25.5 29.3 210.8 214.5 12.5 23.3 150.5 4.6
Blood TraNS. 8.2 20.9 11.0 23.5 24.4 218.0 220.1 12.1 23.3 149.4 4.5
Credit Approval 9.4 19.8 11.9 23.1 23.9 469.3 470.0 20.1 27.1 169.3 4.5
Haberman 44.8 58.1 48.9 57.6 61.2 201.8 102.4 42.0 68.1 458.4 19.0
Liver Disorders 8.9 19.6 11.5 23.4 24.2 290.0 296.5 12.6 22.1 148.5 4.7
MAGIC Gamma 8.3 19.3 12.0 22.2 23.3 301.0 303.7 13.3 23.2 142.3 4.3
Mammographic 50.0 56.8 42.7 66.6 74.0 190.8 195.7 48.2 60.5 452.0 20.3
MONK’s 9.3 20.4 13.3 23.5 23.3 276.5 180.0 12.4 24.4 151.4 4.5
Connectionist 8.2 19.0 12.7 22.3 22.3 1024.6 1100.0 11.8 27.7 139.2 4.4
Spam Base 14.3 22.0 11.4 24.8 26.1 570.2 577.8 13.4 25.9 155.5 5.9
SPECTF Heart 8.5 19.5 15.0 23.0 25.5 920.0 998.4 15.1 22.7 157.3 4.4
Tic-Tac-Toe 8.3 19.5 11.0 23.4 22.6 404.4 487.2 12.0 24.7 153.4 4.9
Average 15.56 26.35 17.83 29.91 31.68 423.12 428.86 18.79 31.08 202.27 7.17

Table 2 presents the run-time performance of these methods
showing that the UCB family, ε-greedy, WSLS and Thompson
sampling have the best run-time performance. OBD and OBS
are computationally intensive given the need to compute the
Hessian matrix. Thus, UCB methods achieve better perfor-
mance on average than OBD and OBS but in significantly less
time.

4.2. Results for the MNIST data set

The MNIST (Modified National Institute of Standards and
Technology) data set is a well-known collection of handwritten
digits that has been used in evaluating many handwriting recog-
nition algorithms [57]. One of the most widely adopted deep
learning architecture for this data set is the LeNet model [57].
In this model, the network has two 5×5 convolutional layers

with 20 and 50 filters, respectively, and two fully connected
layers with 500 and 10 neurons in the output layer. This results
in the first two layers (the convolutional layers) having 500
and 25,000 weights, respectively, and the third and fourth lay-
ers (fully connected layers) having 2,500,000 and 500 nodes,
respectively. The base line accuracy of this model is 98.06%,
so it provides a good example for assessing which methods
can best remove weights without adversely affecting the level
of accuracy. To assess this, we applied a selection of MAB
methods, with the number of rounds set to 150,000, to prune
50% of the weights in the second and third layers, which have
the most weights. The methods we selected include one from
the UCB1 family given their performance is similar, Thompson
sampling and NP.

Table 4 presents the results, where the first column lists the
pruning methods, the second column presents the accuracy
obtained after pruning the first fully connected layer of LeNet

Section C: Computational Intelligence, Machine Learning and Data Analytics
The Computer Journal, Vol. 00 No. 0, 2019

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/advance-article-abstract/doi/10.1093/com
jnl/bxz078/5574718 by U

niversity of Salford user on 09 O
ctober 2019

Pruning Neural Networks Using Multi-Armed Bandits 7

FIGURE 1. Comparison of all classifiers against each other with the Nemenyi test at α = 0.05. The coloured lines group methods that cannot be
distinguished based on the critical distance.

TABLE 3. Average rank of the methods.

Name of method Mean rank

UCB1 3.54
UGapEb 4.08
KL-UCB 4.63
BayesUCB 4.83
Model before pruning 5.21
OBD 5.88
TS 6.04
SR 6.79
ε -greedy 7.75
RP 9.54
WSLS 10.42
OBS 11.04
NP 11.25

TABLE 4. The table shows the percentage accuracy after pruning
50% of the first fully connected layer (FC) and 50% of the second
convolutional layer (Conv) in LeNet.

Method FC Conv

TS 98.30 98.10
ε -greedy 98.08 98.07
UCB1 98.40 98.20
RP 93.30 95.47
NP 59.20 49.50

and the last column presents the accuracy after pruning the
second convolution layer of LeNet. The results show that the
use of the bandit algorithms maintains accuracy but NP results
in a significant decline in accuracy.

5. CONCLUSION AND FUTURE WORK

Pruning neural networks has re-emerged as a significant
research topic following the emergence of deep neural
networks which can be memory intensive and computationally
demanding. Pruning neural networks can involve various trade-
offs such as the size of a network versus accuracy and time
spent in assessing the value of a weight versus accuracy of
the assessment. This paper has explored the use of MABs
for pruning neural networks. Several MAB methods, namely
UCB1, UGapEb, BayesUCB, KL-UCB, ε-greedy, WSLS,
SR and Thompson sampling were utilized for pruning neural
networks and compared with existing methods.

In terms of retaining accuracy, the results on data sets from
the UCI repository show that UCB1 and UGapEb are the
most effective methods for pruning when compared to existing
methods such as OBD, OBS and NP. Computationally, UCB1
is also significantly less demanding than methods such as OBS
and OBD.

The bandit methods were also applied to Le Cun’s deep
learning model to examine their effectiveness and performed
well in terms of maintaining the accuracy of the original
model.

There are several directions for future research on the use of
MAB algorithms for pruning neural networks. First, there are
MAB algorithms, such as the SR algorithm, that are designed to
guarantee the theoretical lower bound for the best arm problem.
As our evaluation of SR indicates, these algorithms can be
computationally demanding for deep neural networks. Hence,
the development of best arm MAB algorithms that ensure near
optimal regret bounds, perform well empirically and are also
computationally feasible for pruning neural networks remains
an open challenge. A second area of interesting work is to
evaluate the use of MABs at different layers of granularity, such
as for pruning neurons and feature maps.

Section C: Computational Intelligence, Machine Learning and Data Analytics
The Computer Journal, Vol. 00 No. 0, 2019

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/advance-article-abstract/doi/10.1093/com
jnl/bxz078/5574718 by U

niversity of Salford user on 09 O
ctober 2019

8 S. Ameen and S. Vadera

In conclusion, this study shows that MABs based on UCB
offer an effective way of pruning neural networks. Given the
growth and scale of applications of deep neural networks,
pruning them remains an open challenge, and we have therefore
shared the implementations on GitHub so others can also build
upon the work presented in this paper.

ACKNOWLEDGMENTS

The authors are grateful to the reviewers whose comments
have led to improvements to several improvements to the paper
including the inclusion of the SR and UGapEb algorithms in
this study.

REFERENCES

[1] Krizhevsky, A., Sutskever, I. and Hinton, G. E. (2012) Ima-
geNet classification with deep convolutional neural networks.
In Advances in Neural Information Processing Systems 25: 26th
Annual Conference on Neural Information Processing Systems,
Lake Tahoe, Nevada, USA, December, pp. 1106–1114.

[2] Zeiler, M.D. and Fergus, R. (2014) Visualizing and understand-
ing convolutional networks. In Computer Vision—ECCV 2014,
pp. 818–833. Springer.

[3] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.E., Anguelov,
D., Erhan, D., Vanhoucke, V. and Rabinovich, A. (2015) Going
deeper with convolutions. In IEEE Conf. Computer Vision and
Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7–
12, 2015, pp. 1–9.

[4] Simonyan, K. and Zisserman, A. (2015) Very deep convolutional
networks for large-scale image recognition. The 3rd Interna-
tional Conference on Learning Representations https://arxiv.org/
abs/1409.1556.

[5] He, K., Zhang, X., Ren, S. and Sun, J. (2016) Deep residual
learning for image recognition. Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, Las Vegas,
USA, pp. 770–778.

[6] Montúfar, G., Pascanu, R., Cho, K. and Bengio, Y. (2014)
On the number of linear regions of deep neural networks. In
Proc. 27th Int. Conf. Neural Information Processing Systems,
Vol. 2, Cambridge, MA, USA, NIPS’14, pp. 2924–2932. MIT
Press.

[7] Ameen, S. and Vadera, S. (2017) A convolutional neural network
to classify american sign language fingerspelling from depth and
colour images. Expert Syst., 34, e12197.

[8] Han, S., Liu, X., Mao, H., Pu, J., Pedram, A., Horowitz, M.A. and
Dally, W.J. (2016) EIE: efficient inference engine on compressed
deep neural network. ACM/IEEE 43rd Annual International
Symposium on Computer Architecture, Seoul, South Korea,
pp. 243–254.

[9] Reed, R. (1993) Pruning algorithms—a survey. IEEE Trans.
Neural Netw., 4, 740–747.

[10] Chauvin, Y. (1989) A back-propagation algorithm with optimal
use of hidden units. In Touretzky, D.S. (ed.) Advances
in Neural Information Processing Systems, Vol. 1, pp.
519–526. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA.

[11] Weigend, D. (1991) Back-propagation, weight-elimination and
time series prediction. In Proc. 1990 Connectionist Models Sum-
mer School, pp. 105–116.

[12] Weigend, A.S., Rumelhart, D.E. and Huberman, B.A. (1991)
Generalization by weight-elimination applied to currency
exchange rate prediction. In Proc. IEEE Int. Joint Conf. Neural
Networks (IJCNN-91), pp. 837–841. IEEE.

[13] Weigend, A.S., Rumelhart, D.E. and Huberman, B.A. (1990)
Generalization by weight-elimination with application to fore-
casting. In Proc. 1990 Conf. Advances in Neural Information
Processing Systems, Vol. 3, pp. 875–882. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA.

[14] Hanson, S.J. and Pratt, L.Y. (1988) Comparing biases for min-
imal network construction with back-propagation. In Proc. 1st
Int. Conf. Neural Information Processing Systems, pp. 177–185.
MIT Press, Cambridge, MA, USA NIPS’88.

[15] Arbib, M.A. (1995) The Handbook of Brain Theory and Neural
Networks. MIT Press.

[16] Nikolaev, N. and Iba, H. (2006) Adaptive Learning of Poly-
nomial Networks: Genetic Programming, Backpropagation and
Bayesian Methods. Springer.

[17] Finnoff, W., Hergert, F. and Zimmermann, H.G. (1993) Improv-
ing model selection by nonconvergent methods. Neural Netw., 6,
771–783.

[18] Neuneier, R. and Zimmermann, H. (1998) How to train neural
networks. Neural networks: tricks of the trade, Lecture Notes in
Computer Science, Vol. 1524, pp. 373–423. Springer.

[19] Le Cun, Y., Denker, J.S. and Solla, S.A. (1990) Optimal brain
damage. In Advances in Neural Information Processing Systems,
pp. 598–605. Morgan Kaufmann.

[20] Hassibi, B., Stork, D.G. and Wolff, G.J. (1993) Optimal brain
surgeon and general network pruning. In IEEE Int. Conf. Neural
Networks, pp. 293–299. IEEE Press, Piscataway, NJ.

[21] Hassibi, B., Stork, D.G., Wolff, G. and Watanabe, T. (1993) Opti-
mal brain surgeon: extensions and performance comparisons.
In Proc. 6th Int. Conf. Neural Information Processing Systems,
pp. 263–270. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, NIPS’93.

[22] Hassibi, B. and Stork, D.G. (1993) Second order deriva-
tives for network pruning: optimal brain surgeon. In Advances
in Neural Information Processing Systems, Vol. 5, San
Francisco, CA, USA, pp. 164–171. Morgan Kaufmann Publish-
ers Inc.

[23] Collins, M.D. and Kohli, P. (2014) Memory bounded deep con-
volutional networks. https://arxiv.org/abs/1412.1442.

[24] Gupta, M., Jin, L. and Homma, N. (2004) Static and Dynamic
Neural Networks: From Fundamentals to Advanced Theory.
John Wiley & Sons.

[25] Srinivas, S. and Babu, R.V. (2015) Data-free parameter pruning
for deep neural networks. Proceedings of the British Machine
Vision Conference, pp. 31.1–31.12.

[26] Thompson, W.R. (1933) On the likelihood that one unknown
probability exceeds another in view of the evidence of two
samples. Biometrika, 25, 285–294.

[27] Thompson, W.R. (1935) On the theory of apportionment. Amer.
J. Math., 57, 450–456.

[28] Robbins, H. (1952) Some aspects of the sequential design of
experiments. Bull. Amer. Math. Soc., 58, 527–535.

Section C: Computational Intelligence, Machine Learning and Data Analytics
The Computer Journal, Vol. 00 No. 0, 2019

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/advance-article-abstract/doi/10.1093/com
jnl/bxz078/5574718 by U

niversity of Salford user on 09 O
ctober 2019

https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1412.1442

Pruning Neural Networks Using Multi-Armed Bandits 9

[29] Babaioff, M., Sharma, Y. and Slivkins, A. (2009) Characterizing
truthful multi-armed bandit mechanisms: extended abstract. In
Proc. 10th ACM Conf. Electronic Commerce, New York, NY,
USA, EC’09, pp. 79–88. ACM.

[30] Devanur, N.R. and Kakade, S.M. (2009) The price of truth-
fulness for pay-per-click auctions. In Proc. 10th ACM Conf.
Electronic Commerce, New York, NY, USA, EC’09, pp. 99–106.
ACM.

[31] Gelly, S. and Wang, Y. (2006) Exploration exploitation in Go:
UCT for Monte-Carlo Go. In NIPS: Neural Information Pro-
cessing Systems Conference On-line trading of Exploration and
Exploitation Workshop, Canada, December.

[32] Kleinberg, R. (2004) Nearly tight bounds for the continuum-
armed bandit problem. In Proc. 17th Int. Conf. Neural Infor-
mation Processing Systems, Cambridge, MA, USA, NIPS’04,
pp. 697–704. MIT Press.

[33] Kleinberg, R., Slivkins, A. and Upfal, E. (2008) Multi-armed
bandits in metric spaces. In Proc. Fortieth Annual ACM Sympo-
sium on Theory of Computing, New York, NY, USA, STOC’08,
pp. 681–690. ACM.

[34] Mnih, V., Szepesvári, C. and Audibert, J.-Y. (2008) Empirical
Bernstein stopping. In Proc. 25th Int. Conf. Machine Learning,
New York, NY, USA, ICML’08, pp. 672–679. ACM.

[35] Bubeck, S., Stoltz, G., Szepesvári, C. and Munos, R. (2008)
Online optimization in x-armed bandits. In Advances in Neural
Information Processing Systems, pp. 201–208.

[36] Busa-Fekete, R. and Kégl, B. Fast boosting using adversarial
bandits. In 27th Int. Conf. Machine Learning (ICML 2010),
pp. 143–150.

[37] Sutton, R.S. and Barto, A.G. (1998) Reinforcement Learning: An
Introduction. MIT Press.

[38] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou,
I., Wierstra, D. and Riedmiller, M. (2013) Playing Atari
with deep reinforcement learning. https://arxiv.org/abs/1312.
5602.

[39] Auer, P., Cesa-Bianchi, N. and Fischer, P. (2002) Finite-time
analysis of the multiarmed bandit problem. Mach. Learn., 47,
235–256.

[40] Audibert, J.-Y. and Bubeck, S. (2010) Best arm identification in
multi-armed bandits. In COLT—23th Conf. Learning Theory—
2010, Haifa, Israel, June, p. 13.

[41] Agrawal, R. (1995) Sample mean based index policies by o
(log n) regret for the multi-armed bandit problem. Adv. in Appl.
Probab., 27, 1054–1078.

[42] Auer, P., Cesa-Bianchi, N., Freund, Y. and Schapire, R.E. (2002)
The nonstochastic multiarmed bandit problem. SIAM J. Comput.,
32, 48–77.

[43] Srinivas, N., Krause, A., Kakade, S. and Seeger, M. (2010)
Gaussian process optimization in the bandit setting: no regret and
experimental design. In Proc. 27th Int. Conf. Machine Learning,
USA ICML’10, pp. 1015–1022. Omnipress.

[44] Kaufmann, E., Korda, N. and Munos, R. (2012) Thompson
sampling: an asymptotically optimal finite-time analysis. Algo-
rithmic Learning Theory, Lecture Notes in Computer Science,
Vol. 7568, pp. 199–213. Springer, Berlin, Heidelberg.

[45] Burtini, G., Loeppky, J. and Lawrence, R. (2015) A survey of
online experiment design with the stochastic multi-armed bandit.
https://arxiv.org/abs/1510.00757.

[46] White, J. (2012) Bandit Algorithms for Website Optimization.
O’Reilly Media, Inc.

[47] Nowak, M. and Sigmund, K. (1993) A strategy of win-stay, lose-
shift that outperforms tit-for-tat in the prisoner’s dilemma game.
Nature, 364, 56–58.

[48] Posch, M. (1997) Win Stay—Lose Shift: An Elementary Learning
Rule for Normal Form Games. Report. Santa Fe Institute.

[49] Lai, T.L. and Robbins, H. (1985) Asymptotically efficient adap-
tive allocation rules. Adv. Appl. Math., 6, 4–22.

[50] Maillard, O.-A., Munos, R. and Stoltz, G. (2011) Finite-time
analysis of multi-armed bandits problems with Kullback–Leibler
divergences. In Proc. 24th Annual Conf. Learning Theory,
pp. 497–514.

[51] Garivier, A. and Cappé, O. (2011) The KL-UCB algorithm for
bounded stochastic bandits and beyond. In Kakade, S.M. and
von Luxburg, U. (eds)Proc. 24th Annual Conf. Learning The-
ory, Budapest, Hungary, 09–11 June, Proceedings of Machine
Learning Research, Vol. 19, pp. 359–376.

[52] Agrawal, S. and Goyal, N. (2013) Further optimal regret bounds
for thompson sampling. In Sixteenth Int. Conf. Artificial Intelli-
gence and Statistics (AISTATS), pp. 99–107.

[53] Gabillon, V., Ghavamzadeh, M. and Lazaric, A. (2012) Best arm
identification: a unified approach to fixed budget and fixed con-
fidence. In Proc. 25th Int. Conf. Neural Information Processing
Systems, Vol. 2, pp. 3212–3220.

[54] Kaufmann, E., Cappe, O. and Garivier, A. (2012) On Bayesian
upper confidence bounds for bandit problems. In Lawrence,
N.D. and Girolami, M. (eds)Proc. Fifteenth Int. Conf. Arti-
ficial Intelligence and Statistics, La Palma, Canary Islands,
21–23 April, Proceedings of Machine Learning Research, 22,
pp. 592–600. PMLR.

[55] Norgaard, M., Ravn, O. and Poulsen, N. (2002) Nnsysid—
toolbox for system identification with neural networks. Math.
Comput. Model. Dyn. Syst., 8, 1–20.

[56] Bache, K. and Lichman, M. (2013). UCI machine learning repos-
itory, University of California, Irvine, School of Information and
Computer Sciences. http://archive.ics.uci.edu/ml (accessed June
24, 2018).

[57] LeCun, Y., Bottou, L., Bengio, Y. and Haffner, P. (1998)
Gradient-based learning applied to document recognition. Proc.
IEEE, 86, 2278–2324.

[58] Han, S., Pool, J., Tran, J. and Dally, W.J. (2015) Learning both
weights and connections for efficient neural networks. In Proc.
28th Int. Conf. Neural Information Processing Systems, Vol. 1,
Cambridge, MA, USA, NIPS’15, pp. 1135–1143. MIT Press.

[59] Terayama, K., Iwata, H., Araki, M., Okuno, Y. and Tsuda, K.
(2018) Machine learning accelerates MD-based binding pose
prediction between ligands and proteins. Bioinformatics, 34,
770–778.

[60] Demšar, J. (2006) Statistical comparisons of classifiers over
multiple data sets. J. Mach. Learn. Res., 7, 1–30.

[61] Friedman, M. (1937) The use of ranks to avoid the assumption
of normality implicit in the analysis of variance. J. Amer. Statist.
Assoc., 32, 675–701.

[62] Nemenyi, P. (1963) Distribution-free multiple comparisons. PhD
Thesis, Princeton University.

[63] Kaufmann, E., Cappé, O. and Garivier, A. (2011) On the effi-
ciency of Bayesian bandit algorithms from a frequentist point of
view. In Neural Information Processing Systems (NIPS). Curran
Associates, Red Hook, NY.

Section C: Computational Intelligence, Machine Learning and Data Analytics
The Computer Journal, Vol. 00 No. 0, 2019

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/advance-article-abstract/doi/10.1093/com
jnl/bxz078/5574718 by U

niversity of Salford user on 09 O
ctober 2019

https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1510.00757
http://archive.ics.uci.edu/ml

10 S. Ameen and S. Vadera

Appendix A

This appendix summarizes the data used from the UCI repository where full details are available

Data set No examples No features Brief description

Banknote 1372 4 These data include records of whether bank notes are forged or not together with wavelet
features extracted from images.

Blood Trans. 748 4 These data record whether there has been a blood donation in a particular month together with
the months since donation, frequency, total donated to date and time since first donation.

Haberman 306 3 The records in these data indicate whether a patient has survived following surgery for breast
cancer. Features include age, year of operation and number of axillary nodes detected.

Liver Disorders 345 6 Liver disorders data that include results from blood samples and alcohol consumption per day.
MAGIC Gamma 19020 10 Data generated from a Monte Carlo simulation of the registration of high energy gamma

particles in a ground-based atmospheric gamma telescope. The task is to predict the presence
of a gamma signal.

Mammographic 961 5 Data to enable screening for breast cancer based on breast imaging data (from BI-RADS) and
age.

MONK’s 432 6 Widely used artificial benchmark data where the task is to classify a robot based on features
such head shape, body shape, smiling or not, holding, jacket colour, wearing a tie or not.

Connectionist 208 59 Each example consists of the data obtained when sonar signals are bounced off a metal
cylinder or rock at various angles. The task is to predict whether a signal obtained is metal or
rock.

Spam base 4601 96 Data for detecting spam emails based on frequency of certain words and use of capitalization.
SPECTF Heart 267 44 These data include examples of classifying patients with normal or abnormal hearts based on

features extracted from single proton emission computed tomography images.
Tic-Tac-Toe 958 9 Each example of these data consists of states of tic-tac-toe (Noughts and crosses) and resulting

win or no win.

Section C: Computational Intelligence, Machine Learning and Data Analytics
The Computer Journal, Vol. 00 No. 0, 2019

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/advance-article-abstract/doi/10.1093/com
jnl/bxz078/5574718 by U

niversity of Salford user on 09 O
ctober 2019

	Pruning Neural Networks Using Multi-Armed Bandits
	Introduction
	Background on MABs
	Random exploration
	Optimistic explorations
	Bayesian bandits

	A MULTI-ARMED PRUNING ALGORITHM
	Empirical Evaluation
	Results for the UCI data sets
	Results for the MNIST data set

	Conclusion and Future Work

