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Abstract—Syntactic parsing is a time-consuming task in 
natural language processing particularly where a large number 
of text files are being processed. Parsing algorithms are 
conventionally designed to operate on a single machine in a 
sequential fashion and, as a consequence, fail to benefit from high 
performance and parallel computing resources available on the 
cloud. 

We designed and implemented a scalable cloud-based 
architecture supporting parallel and distributed syntactic 
parsing for large datasets. The main architecture consists of a 
syntactic parser (constituency and dependency parsing) and a 
MapReduce framework running on clusters of machines. The 
resulting cloud-based MapReduce parsing is able to build a map 
where syntactic trees of the same input file have the same key 
and collect into a single file containing sentences along with their 
corresponding trees. 

Our experimental evaluation shows that the architecture 
scales well with regard to number or processing nodes and 
number of cores per node. In the fastest tested cloud-based setup, 
the proposed design performs 7 times faster when compared to a 
local setup. In summary, this study takes an important step 
toward providing and evaluating a cloud-hosted solution for 
efficient syntactic parsing of natural language data sets consisting 
of a large number of files.  

Keywords—cloud deployment, natural language processing 
(NLP), syntactic parsing 

I. INTRODUCTION 
Text analysis and understanding is widely used in 

advertising, customer relations, business intelligence, 
journalism, politics, crime-fighting, social media moderation, 
digital humanities, and other domains [1].  

Text parsing is commonly used as a fundamental step to 
split texts into sentences, constituents, and or tokens (i.e. 
words, punctuations etc.). This can be followed by higher-level 
analyses such as part-of-speech tagging (to reveal the sentence 
structure), named entity recognition (to label nouns as different 
types of entities), sentiment analysis, topic analysis, and 
summarisation [1, 2]. 

For time-critical applications such as news article 
generation (for instance by distilling larger texts), hate-speech 
detection (in social media context), or interactive tools (where 
the user expects analysis results with little delay), the 
processing time of parsing methods becomes a deciding factor. 

Cloud-hosted applications can benefit from elastic scaling 
of resources based on demand, cost efficiencies arising from 
adaptation of infrastructure to needs and pay-per-use charging 
models [3]. Parallelisation of algorithms can reduce text 
processing execution time. Other approaches include 
optimising the parsing algorithms or using faster hardware. 
Both approaches are inherently limited and are often cost or 
time prohibitive. Re-engineering proven technologies (such as 
the Stanford Natural Language Processing toolkit) and 
deploying them as cloud services is a promising and flexible 
solution. 

Syntactic parsing is a time-consuming task in natural 
language processing (NLP) and this research is a contribution 
to those studies on cloud-based solutions attempting to solve 
this problem. Our hypothesis is that cloud deployment of 
syntactic parsing NLP algorithms can improve performance 
and widen access. The performance can be enhanced by 
employing scalable resources of cloud providers (for instance 
on a pay-as-you-go basis) [4].  

However, transforming legacy sequential parsing 
algorithms, designed to run on a single machine, into 
distributed cloud-based applications requires significant effort, 
including the application of parallel and distributed models to 
the parsing algorithms. In our study, a parsing algorithm has 
been tailored to handle MapReduce jobs (Mapping and 
Reducing) by instantiating the Stanford Probabilistic Context-
Free Grammar (PCFG) parser using the Hadoop framework on 
the Amazon (AWS) cloud service in four different 
configurations, varying the type of AWS clusters and the 
number of processor nodes.  The results were evaluated by 
measuring the response time of the text processing service.  

The next section of the paper explores previous research in 
the field of natural language processing and potential benefites 
promised by cloud deploment. We then describe our proposed 
cloud-deployed NLP system architecture, followed by a 
presentation of the experimental method we adopted. Section V 
describes the results followed by a discussion in Section VI. 
We conclude in Section VII. 

II. RELATED WORK 
Cloud services are applications delivered over the Internet 

[5, 6] that offer users on-demand access to shared resources 
such as infrastructures, hardware platforms, and software 



application functionality [7, 8]. Cloud-hosting can also offer 
high availability and reliability arising from component 
replication and the ability to rapidly deploy new application 
instances [2]. 

Applications designed to benefit from cloud hosting 
technologies must be architected using appropriate deployment 
design patterns, such as multitenancy and elasticity [7].  

Multi-tenancy provides users (tenants) shared access to 
software service functionality. This centralises management of 
a deployed software stack. However, where services are 
deployed on shared processors using virtualisation, tenant 
isolation becomes a challenge [9, 10]. Tenant isolation is 
required to ensure the one tenant does not deprive resources 
from other tenants on the same shared underlying platform. In 
addition, in business-to-business service contexts, simple flat 
tenant models are unsuitable and hierarchical multi-tenancy is 
required [11].   

In addition to the benefits of cloud deployment already 
mentioned: elasticity to automatically scale resources to 
demand, optimisation of capital expenditure to “right-size” 
infrastructure to needs and pay-per-use charging models; 
applications deployed as cloud-hosted services can also benefit 
from reduced time-to-market and unlimited scalability from 
multiple cloud inter-operability [3]. 

Syntactic parsing is an important step in NLP pipelines 
enabling applications such as grammar checking, question 
answering and information extraction [12]. In this context, 
syntactic parsing is the analysis of the internal structure of 
sentences in natural langue in order to arrive at a computer 
internal representation (such as a tree) that can be interpreted 
by subsequent NLP methods. Parsers typically implement one 
of the two dominant grammar theories [1]. Constituency 
grammars follow an approach of recursively decomposing 
sentences into smaller constituents using the concept of phrases 
(e.g. a verb phrase containing a noun phrase). Dependency 
grammars [13], on the other hand, consider direct relations 
between two words typically in combination with their role 
(e.g. the subject of a verb). 

There are numerous implementations of parsers available 
that can be readily used: SUPPLE [14], RASP [15], MaltParser  
[16], TurboParser [17], Stanford RNN Parser [18] and 
YaraParser [8]. Most parsers can be executed as stand-alone 
tools or as integrated components of more complex NLP 
frameworks such as GATE [8]. GATE was originally 
developed to run on local machines but following the general 
trend of Platform and Software as a Service [19] it is now also 
available in the cloud as GATECloud.net [20]. AnnoMarket 
[21] is another example for a cloud NLP service building on 
GATE that focuses on reusability of components and pipelines 
and aims to minimise coding requirements. An overview and 
comparison of more NPL cloud services such as AlchemyAPI, 
Aylien,  

Lexalytics/Semantria, Meaning cloud, and TextRazor is 
presented in [22]. The focus of these products is clearly on 
application development, masking the underlying methods and 
dependencies to an extent which might not be desirable in a 

more research-oriented environment or where full control of all 
parameters is required. 

In general, it appears that many publications related to 
cloud NLP systems are mostly concerned with the functionality 
and features on offer and less with concrete performance 
benchmarks. Establishing a speed and accuracy baseline for 
actual NLP tasks and implementations on a realistic dataset can 
therefore generate new knowledge which might help 
practitioners to judge the usefulness of specific method/system 
configurations applied to different use scenarios. In [1] it is 
argued that speed is still the most crucial aspect when it comes 
to syntactic parsing in an NLP pipeline. Based on their work 
related to sentiment analysis the authors recommend the 
prioritisation of “speed over accuracy when choosing a parser” 
and that “parsing researchers should investigate models that 
improve speed further, even at some cost to accuracy.” as most 
parsers produce good-enough results for the following steps 
but not fast-enough. 

Specifically the point of using cloud resources to improve 
the speed of computationally expensive tasks such as syntactic 
parsing is addressed in this paper. 

III. SYNTACTIC PARSING IN THE CLOUD 
The proposed cloud-based natural parsing architecture (Fig. 

1.) comprises a syntactic parser, a MapReduce framework and 
a Master-Slave cluster of nodes. The parser runs on top of the 
MapReduce framework that distributes users requests across 
the Master-Slave cluster nodes that are connected with the 
Amazon simple storage service (S3). Generally, the 
architecture aims to support scalable, distributed and parallel 
syntactic parsing over the cloud. It allows to integrate syntactic 
parsing algorithms and models into the underlying cluster of 
machines that scales-out and run them in parallel.. 

Unlike multithreaded solutions where sentences of a text 
file can be parsed simultaneously, our architecture focused on 
providing multiple documents parallel parsing that potentially 
exploits cloud computing resources.  

The main technologies that were deployed are the Stanford 
parser [24], Apache Hadoop and Amazon Web Services 
(AWS).  

The Stanford parser was instantiated as a MapReduce 
application, providing both constituency and dependency 
parsing. It was packaged as a Java archive (prior to the 
deployment) to fit into the underlying Hadoop MapReduce 
framework. 

For AWS, the type and number of clusters of machines was 
selected (as the basis of the Master-Slave architecture) to 
deploy the parsing algorithm.  

Apache Hadoop is a popular platform for implementing 
MapReduce. Therefore, to achieve such distribution, Apache 
Hadoop is used to implement the distributed programming 
model. Moreover, from the implementation point of view using 
Hadoop is a reasonable choice to the Stanford parser as both 
are written in Java 

 



 

Fig. 1. The Proposed architecture of cloud-based syntactic 
parsing 

During the parsing process, Hadoop creates a map with 
(key, value) pairs where syntactic trees of the same input file 
have the same key, sort and collect into a single output file 
containing sentences along with their corresponding trees. Its 
main responsibilities are loading the parsing model into its 
distributed file system (Hadoop Distributed File System - 
HDFS) and distributing input files across a cluster of machines. 
To be able to perform that, we extended the Stanford parser to 
include a reducer class while the actual parsing and pre-
processing steps constituet the mapper class. 

The reducer class was implemented, allowing Hadoop to 
collect the resulting parse trees into a single file and write it to 
the shared disk (Amazon S3). The cluster setup (detailed in the 
experimental setup section) is designed to support to be able to 
test horizontal and vertical scalability of the parsing algorithm 
(the pseudo-code provided in Algorithm 1).  

Different types of Amazon EC2 instances are used to build 
clusters running the parsing algorithm. The clusters have two 
types of nodes: master nodes and slave nodes (workers). The 
clusters are also closely linked to the central storage system 
i.e., S3 and HDFS. Every cluster has a single dedicated master 
node that monitors and tracks the MapReduce jobs running on 
the clusters. The slave nodes are responsible for the actual 
parsing job once Hadoop reads and distributes the input files to 
them in parallel. After parsing the input files, the parse trees 
are written to S3 and the master node is notified (so another job 
can be assigned). 

We used the Stanford parser [24] for natural language parsing, 
which is provided as part of the Stanford CoreNLP [2]. The 
Stanford probabilistic context-free grammar (PCFG) parser is 
open source and well-optimized. However, it takes a long time 
to parse a large volume of text files due to its requirement of 
high computational resources such as CPU and memory. For 
example, in our previous study [25] this parser took several 
hours to extract syntactic features and annotate the text 
obtained from crowd source discussion forum posts.  

Before deploying the parser into the cloud, it was wrapped 
into a MapReduce distributed application and packaged as a jar 
file. Also, tested and debugged as a single Java process in the 
local mode. Then, the memory-optimized instance types were 
used in our preliminary experiments. However, only a few 
machines of such types are available to meet our goals, so the  

 
Algorithm 1. A Cloud-based MapReduce parsing algorithm 

next logical alternative offering a balance of memory, 
compute resources and network bandwidth for our use-case, 
was taken. Such machines are available under the M4 category 
(with the M4.large and M4.xlarge sub-catagories) of the AWS 
platform1.  

IV. EXPERIMENTAL METHODS 
We set up four different AWS MapReduce based clusters 

of nodes running the parser. The first two clusters consist of 12 
and 18 nodes (each has 8GB of memory and dual-core 
processors with 2.4 GHz.) respectively. 

The remaining two clusters consist 6 and 9 machines (each 
has 16GB of memory and 4-core processors with 2.4 GHz).  

To evaluate the performance of the parser, we prepared an 
English plain-text corpus collected from various domains 
including the  crowd source project Zooniverse 2and other open 
sources available for use in natural language processing such as 
the Bible, news, novels etc.  

In our experiments, we randomly chose 1659 files 
containing 18003 sentences from the corpus. For each scenario, 
100% (1.1 MB file size), 67% (823.3 KB) and 33% (383.9 KB) 
of these files are used to observe how the size of data 
influences the response time. 

                                                
1 https://aws.amazon.com/ec2/instance-types/ 
2 https://www.zooniverse.org/ 

Algorithm:	  Cloud-‐based	  syntactic	  parsing	  
Input:	  syntactic	  parsing	  model,	  raw	  corpus	  C,	  AWS	  S3	  path	  
Output:	  syntactic	  parse	  trees	  //written	  on	  S3	  for	  each	  
input	  file	  
Intialization	  
files[]ßSplit_files	  (corpus	  C)	  //	  	  
Distribute_files	  (files)	  //	  distribute	  files	  across	  
parallel	  slave	  nodes	  	  
	  
for	  each	  file	  do	  	  
	  	  	  procedure	  MAP	  (file,	  Context)	  
	  	  	  	  	  	  words[]ßtokenize(file)	  
	  	  	  	  	  	  sentences[]ßssplit(file)	   	  
	  	  	  	  	  	  	  
	  	  	  	  	  	  for	  i=0	  to	  words.length()	  do	  
	  	  	  	  	  	  	  	  	  rootWords[i]=lemmatize(words[i])	  
	   taggedWords=pos_Tagger(rootWords[i])	  
	  	  	  	  	  	  end	  for	  
	  
	  	  	  	  	  	  for	  j=0	  to	  sentences.length()	  do	  	  
	  	  	  	  	  	  	  	  	  Tree	  treeßparse(sentences[j])	  
	  	  	  	  	  	  	  	  	  Context.write(file.id,	  tree)	  
	  	  	  	  	  	  end	  for	  
end	  for	  
	   	  
procedure	  REDUCE	  (file.id,	  Iterable<file.id,	  tree>,	  
Context2)	  
	  	  	  for	  each	  file.id	  	  do	  
	  	  	  	  	  	  //collecting	  trees	  belonging	  to	  same	  file	   	  
	  	  	  	  	  	  Context2.write(file.id,	  tree)	  
	  	  	  end	  for	  
	  	  	  write_S3(file.id,	  trees)	  //accessing	  trees	  from	  Context2	  	  	  	  	  	  
	  	  	  and	  writing	  on	  AWS	  S3	  	  

	  



A. Choice of Independent and Dependent Variables 
In this study, we are particularly interested in improving the 

response time of syntactic parsing algorithms using a strategy 
that systematically combines the MapReduce paradigm and 
cloud resources. The response time is the total elapsed time 
between submitting and finishing MapReduce jobs. In the case 
of parsing algorithms the main tasks are reading files from a 
distributed file system, construct parse trees and write on a 
disk. Given a large amount of text files, in custom setups where 
only a single machine is involved and parsing is sequential, the 
performance of parsing algorithms depend on the memory 
space and the number of CPU cores available. Whereas in a 
distributed and parallel cloud environments, the main factors 
affecting the response time include the type and size of the 
clusters, and the number of input files (including the total 
number of sentences). We assume that the network bandwidth 
of the clusters is almost the same in all conditions. The time 
taken by disk I/O operations is negligible in comparison to the 
overall parsing process. 

B. Approaches to performance measurement 
There are a number of models [29, 30] to measure and 

analyze the performance of MapReduce applications deployed 
on cloud environments depending on their purposes. These 
models can be used to effectively plan computing resources 
available to manage workloads related with cloud-based 
applications. Regardless the purpose of the MapReduce 
applications, estimating their performance involves computing 
the execution time for the entire workflow. While that is 
connected with I/O disk operations, memory, network and 
CPU, the main tasks are mapping and reducing.  For example, 
authors in [30] proposes a performance estimation model that 
involves analyzing MapReduce phases that mainly include 
reading, mapping, collecting, reducing and writing.  

During experimental evaluations we used performance 
measuring utility provided by AWS called CloudWatch 3 .  
Once we submit parsing jobs to clusters running MapReduce 
tasks, CloudWatch get reports from the clusters concerning the 
jobs and provide performance metrics for the completed tasks. 
Jobs execution performance measurement involves counting 
the number of mapping and reducing tasks for the submitted 
jobs and calculating the total elapsing time. 

C. Challenges and solutions 
Like any other NLP task, syntactic parsing is sensitive to 

the quality and format of input files. Because of that, noisy 
documents not only affect the accuracy of the resulting parse 
trees, but severely slow down the parsing algorithm. 
Particularly, the problem gets worse when it comes to cloud 
resources as they often timeout and abort more regularly that 
local computing resources. In our experiments, to tackle the 
issue we added a preprocessing sub task to clean the input text, 
for example removing XML tags. However, further pre-
processing tasks that potentially addresses the performance 
challenges lying in the Cloud are needed. 

                                                
3 https://aws.amazon.com/cloudwatch/ 

As our primary focus is to provide parallelism for multiple 
files parsing support than multiple sentences parsing, 
processing very big documents with limited cloud resources 
used in our experimental setup was challenging. As a result 
some documents containing extremely large number of 
sentences caused other small to medium size files to wait very 
long time in the queue. That requires inspecting exceptionally 
delayed map-reduce jobs moving the deployment from low 
memory nodes to nodes with relatively better  memory spaces. 

V. PERFORMANCE ANALYSIS OF RESULTS AND DISCUSSION  
In this study we carried out the total of 30 independent test 

runs as shown in TABLE I. While the first 15 are associated 
with constituency parsing, the remaining 15 dependency 
parsing. Since the two scenarios are conducted with the same 
parser, of course with different parsing types, it gives 
confidence on the experiments in terms of repeatability. That 
means that, the experimental setting is same for both parsing 
types except the parser configuration to produce either pharse-
structure or grammatical relation representation. We found 
consistent result patterns across the test datasets. 

The overall results show that the parser running over the 
clusters of machines outperforms by almost 5 times than its 
counterpart on a single machine. In the best-case scenario, the 
18-nodes M.large and 9-nodes M.xlarge clusters, outperform 
7.23 times faster compared to the native installation. Unlike 
existing approaches where performance is achieved with 
accuracy-speed trade-off, our approach does not affect the 
accuracy of the original parser. Likewise, the 12-nodes M.large 
and 6-nodes M.xlarge clusters are 3.64 and 3.78 times faster 
respectively. That provides strong indication that the parsing 
performance highly depends on the size of the cluster given 
that the computing power of the individual nodes is equal. 
Moreover, we observe that running the parser on the 12-nodes 
M.large cluster versus 6-nodes M.xlarge yields almost the 
same performance. That indicates the ability of the deployed 
MapReduce based parser to scale not only with the number of 
machines, but with the number of processors. As a result the 
performance of the parsing algorithm is improved to efficiently 
use the available processors of the machines in parallel. 
However, while all test runs results show consistent 
performance patterns (as shown in Fig. 2 and Fig. 3) across the 
test datasets sizes, exceptionally almost the same execution 
time is taken (by the 6-nodes M.xlarge cluster) to perform 
dependency parsing of 1106 and 1659 input plain text files.  

Moreover, it potentially leads to further analysis how the 
performance behaves under the conditions of constituency 
versus dependency parsing. In principle (concerning time 
complexity), dependency parsing is faster than constituency 
parsing.  

For easy comparison of the structure and size of 
constituency versus dependency parse trees representation, 
examples (of parsed an English sentence) are provided (Fig. 4 
and Fig. 5). As shown in Fig. 4 (a) and Fig. 4 (b), constituency 
parse trees split the sentence “the astronomer observed the 
Cloud with the camera”, into phrases: the noun phrase (np) 
“the astronomer” and the verb phrase (vp) “observed the Cloud 
with the camera” and, also these phrases further break into  
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sub-phrases and other smaller syntactic categories (shown in 
Fig. 4 (c)) such as part-of-speech tags and determiners. 

Non-leaf nodes (aka non-terminals nodes) represent 
syntactical categories such as lexical, functional and phrasal 
categories. In this case, the lexical categories such as 
correspond to part-of-speech tags of the individual words (aka 
terminals in the parse trees) that construct the actual sentence. 
For example, the part-of-speech of the words “astronomer” and 
“observed’ are the noun (n) and the verb (v) respectively. 
Functional categories connect syntactic units, for example, art 
(determiner), p (preposition). 

The dependency parse tree provided in Fig. 5 (a) shows the 
relationship between words as well as their higher syntactic 
units in the sentence “the astronomer observed the Cloud with 
the camera”. 

The dependencies (aka universal dependencies) in the tree 
(shown in Fig. 5 (b)) include det (Cloud, the), dobj (observed, 
Cloud), case (camera, with), det (camera, the) and so on. For 
example, nsubj (observed, astronomer) represent the link 
between the verb “observed” and the noun “astronomer”. 

 
Fig. 2. Constituency Parsing 

 

Fig. 3. Dependency Parsing   

These dependencies also establish relationships between 
the head word  “observed” and the remaining words directly or 
indirectly related. For example, the arrow (labled dobj) from 
the head word “observed” to the word “Cloud” associates 
“observed” with the direct object “the Cloud”.   

It is also true, in almost all test cases that dependency 
parsing is faster than constituency parsing regarding both 
deployment environments (single-machine or cloud based 
clustered-machines). That is due to the tree representation of 
dependency parsing is simpler and smaller in size. As it is 
evident from our experimental results shown in Fig. 6, the 
number of tags (syntactic categories) extracted by constituency 
parsing is almost twice than the tags (dependency relations) 
extracted by dependency parsing. For the constituency parsing 
the latency gets even worse when structurally ambiguous 
sentences are encountered. More than one parse tree can be 
generated for such sentences, and then the most probable tree is 
chosen to disambiguate them. As indicated in Fig. 4 (a) and 
Fig. 4 (b), the sentence “the astronomer observed the Cloud 
with the camera” has at least two possible constituency parse 
trees. The interpretation of the first parse tree differs from the 
second one, due to the difference in attachment constitutes of 
the prepositional phrase (pp) “with the camera”. In the former 
case, the pp is attached with the verb phrase (vp) “observed the 
Cloud”, that in turn modifies the meaning of the sentence and 
interpreted as “the astronomer observed the Cloud through the 
camera”. In the later case, the pp modifies the noun phrase “the 
Cloud”, and the corresponding meaning becomes “the 
astronomer observed the Cloud together with the camera”, 
though semantically that does not make sense. In order to 
determine the highest scoring constituency-based parse tree, 
the parsing algorithm which is based on dynamic 
programming, needs to assign probability distributions for all 
possible valid parse trees. That is computationally intensive as 
dynamic programming attempts to solve complex and large 
problems iteratively by breaking them into smaller ones. For 
example, a computational grid in [32] demonstrates how a 
Master-Slave parallel computation can be used to solve such 
dynamic programming problems. Such types of computational 
problems, particularly in formal language research, are 
commonly solved by using the dynamic programming 
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algorithm called the CYK (Cocke–Younger–Kasami) 
algorithm [33]. So, building cloud-based architectures is 
plausible to fully utilize available computational resources 
heavily demanded by such dynamic programming algorithms. 

The results also show that the proposed architecture 
effectively scales both horizontally and vertically well along 
with the size of the test datasets. By scaling out the 12-nodes 
M.large cluster with 8 new additional nodes, we achieved 
significant performance gain with all the workloads. Likewise, 
adding three new nodes to the 6-nodes M.large cluster yields 
significant performance gain. Shifting from the M.large cluster 
to the M.xlarge cluster, can be considered as vertical scaling 
(adding a new processor on M.large nodes). That means, the 
computing power of a single node (has dual cores) of the 
M.xlarger cluster is twice of two nodes (have a single core) of 
the M.large cluster. For example, in many cases, running the 
same workloads on the 12-nodes M.large cluster and the 6-
nodes M.xlarge cluster or 18-nodes M.large cluster and the 6-
nodes M.large cluster. 

M.xlarge cluster takes almost the same time. That in turn 
gives an alternative option of deployment to achieve similar 
results obtained from clustering single processor machines.   

Also, from the design and implementation point of, the chosen 
paradigm for parallel programming model i.e., Hadoop based 
MapReduce for distributed and parallel processing has been 
effective. Of course, using other MapReduce platforms such as 
Apache Spark might help intensify (or gives a different 
thought) the results and draw a better conclusion. Moreover, 
the chosen-parsing algorithm along with the deployment 
environment helps to effectively demonstrate how the proposed 
cloud-based solution to improve the performance of the natural 
language parsing algorithms. 

VI. PRACTICAL AND THEORETICAL IMPLICATIONS 
This exploratory study investigates the feasibility of cloud 

deployment of NLP algorithms. We chose to focus on syntactic 
parsing, because it is a time consuming natural language 
processing task but also lends itself to decomposition and 
distribution over multiple parallel processors. Compared to 
other studies, that have focused on solving syntactic parsing 
performance problems, our study uniquely combines three 
areas: cloud computing, natural language parsing and 
MapReduce programming. 

The clear focus is to re-engineer single-machine based 
syntactic parsing algorithms to effectively adopt cloud 
technologies by using intermediate parallel programming 
techniques such as MapReduce. Our method systematically 
connects these areas to effectively exploit computing resources 
available in the Cloud and, demonstrate performance gain in 
different experimental scenarios. Moreover, both constituency 
and dependency parsing are covered to a reasonable extent in 
our experiments. Though constituency parsing requires more 
attention as it takes more time than dependency parsing. 

There are a few studies [34] investigated improving the 
performance of dependency parsing using multiple machines  

 
(a) A constituency-based parse tree 

 
(b) A constituency-based parse tree 

 
(c) Context-free grammar 

Fig. 4. Constituency-based parse trees with their         
corresponding grammar 

settings without considering methods for utilizing cloud 
resources. 

Unlike those previous studies, we adopt an even-handed 
approach to address both types of parsing in the cloud 
environment. In practice, researchers exploring syntactic 
structures of natural text, could get analysis results quickly and 
focus on other aspects of their studies. Specially for those who 
are interested in syntatic analysis for example linguists with no 
programming experience could help analyse their text without 
overhead cost of installation, configuration and possibly 
programming. 

// A simple context-free grammar that parses the 
sentence “the astronomer observed the Cloud 
with the camera” and generates constituency-
based parse trees 
 
grammar CCloud; 
s : np vp ; 
np : art n | art n pp| np pp; 
pp : p np ; 
vp : v np; 
v : V ; 
n : N ; 
art : Art ; 
p : P ; 
V : 'observed' ; 
N : 'astronomer' | 'camera' | 'Cloud'; 
Art : 'the' ; 
P : 'with' ; 

 



 
(a) A dependency parse tree (bottom) labeled with part-of-

speech tags

 
(b) Universal dependencies  

Fig. 5. A dependency parse tree with its corresponding               
universal dependencies 

The quality of natural languages processing models often rely 
on the size of the data on which the models get trained on. 
However, to handle huge amount of data (corpora) with limited 
computing resources is challenging. It also severly affects the 
range (varites) of intended analyses due to the shortage the 
demanded computing resources. 

 

 

Fig. 6. Sentence count and tag count information from Const 
(Constituency) and Dep (Dependency) parsing  

For example, training n-gram language models with 
machine learning techniques require a huge amount of 
memory, having limited memory spaces might lead to reduce 
the size of n or adhere to only specific types of learning 
methods or internal model parameter settings. Taking those 
actions, in turn reduces the quality of the models, for instance, 
building a 3-gram language model could caputure larger 
contextual information and represent the semantic than a bi-
gram (uni-gram) models. Thus, generally working on 
computing infrastructure design and implemetnation that 
potentially improve the performance of NLP tools is very 
important. That includes moving legacy computing 
architectures intended to run on traditional standalone settings 
into the cloud and distributed environments.  

The architecture proposed in this study could be potentially 
extended to include other compute intensive tools in natural 
language and speech processing such as named entity 
recognition, automatic speech recognition. Particularly, 
training deep neural net based models takes several hours. The 
recommended alternative to speed up the training  is to install 
high computing resources such as GPU cards, though too 
expensive for local machines. So the parallization techniques 
used in this study could be utitlized as a solution is to divide 
the audio data into blocks that are analysed in parallel. 

VII. CONCLUSIONS 
In this research we have proposed a cloud-hosted approach 

to syntactic parsing in natural language processing. We have 
instantiated the Stanford NLP parser as an AWS service. Our 
approach has used a conventional master-slave multi-node 
deployment configuration. The syntactic parser has been 
extended to employ a MapReduce architectural style enabling 
parallel parsing of multiple natural language source text files. 
While Apache Hadoop and Apache Spark are widely used 
MapReduce frameworks, we employed the MapReduce based 
parsing approach using Hadoop. Although our experimental 
results prove that Hadoop helps contribute for performance 
gain, probably using Spark gives different results. 

 The main contribution of this research is in the novel 
instantiation of the Stanford NLP parser as a decentralised 
algorithm enabling simultaneous parsing of multiple text files. 
Further, this decentralised parser has been deployed to the 
cloud in a proof-of-concept case study.   

Performance evaluation of our architecture shows a 7 times 
speed-up using 18-nodes M.large and 9-nodes M.xlarge AWS 
clusters. Other cluster configurations have shown consistent 
performance speed-up compared with conventional local client 
computer deployment.   

During this early stage of the study, we have not been able 
to exhaustively evaluate all the possible permutations of cloud 
deployment. Further work would be useful to explore 24- or 
36-node configurations to see if speed-up through 
parallelisation is consistent with increasing numbers of nodes. 
Moreover, it is also interesting to consider other performance 
measurement tools other than CloudWatch, though quite 
standard in AWS. 
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//grammatical	  relations	  capturing	  //dependency	  
relation	  between	  //words	  in	  the	  sentence	  “the	  
//astronomer	  observed	  the	  Cloud	  //with	  the	  camera”	  
	  
//root:	  sentence	  head	  
//nsubj:	  nominal	  subject	  
//det:	  determiner	  
//dobj:	  direct	  object	  
//case:	  case	  marking	  
//nmod:	  nominal	  modifier	  
	  
det(astronomer-‐2,	  the-‐1)	  nsubj(observed-‐3,	  
astronomer-‐2)	  root(ROOT-‐0,	  observed-‐3)	  det(Cloud-‐5,	  
the-‐4)	  dobj(observed-‐3,	  Cloud-‐5)	  case(camera-‐8,	  
with-‐6)	  det(camera-‐8,	  the-‐7)	  nmod(observed-‐3,	  
camera-‐8)	  



It is envisaged that a RESTful service API will be used to 
create a simplified file upload front-end to the parallelised 
syntactic parser. This would allow a web client interface to 
provide access to the services by a wider audience.  
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