
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

A Cloud-hosted MapReduce Architecture
for Syntactic Parsing

Yonas D. Woldemariam
Computing Science

Umeå University
Umeå, Sweden

yonasd@cs.umu.se

Stefan Pletschacher
Computer Science and Software

Engineering
University of Salford

Manchester, UK
S.Pletschacher@salford.ac.uk

Christian Clausner
Computer Science and Software

Engineering
University of Salford

Manchester, UK
C.Clausner@salford.ac.uk

Julian M. Bass
Computer Science and Software

Engineering
University of Salford

Manchester, UK
J.Bass@salford.ac.uk

Abstract—Syntactic parsing is a time-consuming task in
natural language processing particularly where a large number
of text files are being processed. Parsing algorithms are
conventionally designed to operate on a single machine in a
sequential fashion and, as a consequence, fail to benefit from high
performance and parallel computing resources available on the
cloud.

We designed and implemented a scalable cloud-based
architecture supporting parallel and distributed syntactic
parsing for large datasets. The main architecture consists of a
syntactic parser (constituency and dependency parsing) and a
MapReduce framework running on clusters of machines. The
resulting cloud-based MapReduce parsing is able to build a map
where syntactic trees of the same input file have the same key
and collect into a single file containing sentences along with their
corresponding trees.

Our experimental evaluation shows that the architecture
scales well with regard to number or processing nodes and
number of cores per node. In the fastest tested cloud-based setup,
the proposed design performs 7 times faster when compared to a
local setup. In summary, this study takes an important step
toward providing and evaluating a cloud-hosted solution for
efficient syntactic parsing of natural language data sets consisting
of a large number of files.

Keywords—cloud deployment, natural language processing
(NLP), syntactic parsing

I. INTRODUCTION
Text analysis and understanding is widely used in

advertising, customer relations, business intelligence,
journalism, politics, crime-fighting, social media moderation,
digital humanities, and other domains [1].

Text parsing is commonly used as a fundamental step to
split texts into sentences, constituents, and or tokens (i.e.
words, punctuations etc.). This can be followed by higher-level
analyses such as part-of-speech tagging (to reveal the sentence
structure), named entity recognition (to label nouns as different
types of entities), sentiment analysis, topic analysis, and
summarisation [1, 2].

For time-critical applications such as news article
generation (for instance by distilling larger texts), hate-speech
detection (in social media context), or interactive tools (where
the user expects analysis results with little delay), the
processing time of parsing methods becomes a deciding factor.

Cloud-hosted applications can benefit from elastic scaling
of resources based on demand, cost efficiencies arising from
adaptation of infrastructure to needs and pay-per-use charging
models [3]. Parallelisation of algorithms can reduce text
processing execution time. Other approaches include
optimising the parsing algorithms or using faster hardware.
Both approaches are inherently limited and are often cost or
time prohibitive. Re-engineering proven technologies (such as
the Stanford Natural Language Processing toolkit) and
deploying them as cloud services is a promising and flexible
solution.

Syntactic parsing is a time-consuming task in natural
language processing (NLP) and this research is a contribution
to those studies on cloud-based solutions attempting to solve
this problem. Our hypothesis is that cloud deployment of
syntactic parsing NLP algorithms can improve performance
and widen access. The performance can be enhanced by
employing scalable resources of cloud providers (for instance
on a pay-as-you-go basis) [4].

However, transforming legacy sequential parsing
algorithms, designed to run on a single machine, into
distributed cloud-based applications requires significant effort,
including the application of parallel and distributed models to
the parsing algorithms. In our study, a parsing algorithm has
been tailored to handle MapReduce jobs (Mapping and
Reducing) by instantiating the Stanford Probabilistic Context-
Free Grammar (PCFG) parser using the Hadoop framework on
the Amazon (AWS) cloud service in four different
configurations, varying the type of AWS clusters and the
number of processor nodes. The results were evaluated by
measuring the response time of the text processing service.

The next section of the paper explores previous research in
the field of natural language processing and potential benefites
promised by cloud deploment. We then describe our proposed
cloud-deployed NLP system architecture, followed by a
presentation of the experimental method we adopted. Section V
describes the results followed by a discussion in Section VI.
We conclude in Section VII.

II. RELATED WORK
Cloud services are applications delivered over the Internet

[5, 6] that offer users on-demand access to shared resources
such as infrastructures, hardware platforms, and software

application functionality [7, 8]. Cloud-hosting can also offer
high availability and reliability arising from component
replication and the ability to rapidly deploy new application
instances [2].

Applications designed to benefit from cloud hosting
technologies must be architected using appropriate deployment
design patterns, such as multitenancy and elasticity [7].

Multi-tenancy provides users (tenants) shared access to
software service functionality. This centralises management of
a deployed software stack. However, where services are
deployed on shared processors using virtualisation, tenant
isolation becomes a challenge [9, 10]. Tenant isolation is
required to ensure the one tenant does not deprive resources
from other tenants on the same shared underlying platform. In
addition, in business-to-business service contexts, simple flat
tenant models are unsuitable and hierarchical multi-tenancy is
required [11].

In addition to the benefits of cloud deployment already
mentioned: elasticity to automatically scale resources to
demand, optimisation of capital expenditure to “right-size”
infrastructure to needs and pay-per-use charging models;
applications deployed as cloud-hosted services can also benefit
from reduced time-to-market and unlimited scalability from
multiple cloud inter-operability [3].

Syntactic parsing is an important step in NLP pipelines
enabling applications such as grammar checking, question
answering and information extraction [12]. In this context,
syntactic parsing is the analysis of the internal structure of
sentences in natural langue in order to arrive at a computer
internal representation (such as a tree) that can be interpreted
by subsequent NLP methods. Parsers typically implement one
of the two dominant grammar theories [1]. Constituency
grammars follow an approach of recursively decomposing
sentences into smaller constituents using the concept of phrases
(e.g. a verb phrase containing a noun phrase). Dependency
grammars [13], on the other hand, consider direct relations
between two words typically in combination with their role
(e.g. the subject of a verb).

There are numerous implementations of parsers available
that can be readily used: SUPPLE [14], RASP [15], MaltParser
[16], TurboParser [17], Stanford RNN Parser [18] and
YaraParser [8]. Most parsers can be executed as stand-alone
tools or as integrated components of more complex NLP
frameworks such as GATE [8]. GATE was originally
developed to run on local machines but following the general
trend of Platform and Software as a Service [19] it is now also
available in the cloud as GATECloud.net [20]. AnnoMarket
[21] is another example for a cloud NLP service building on
GATE that focuses on reusability of components and pipelines
and aims to minimise coding requirements. An overview and
comparison of more NPL cloud services such as AlchemyAPI,
Aylien,

Lexalytics/Semantria, Meaning cloud, and TextRazor is
presented in [22]. The focus of these products is clearly on
application development, masking the underlying methods and
dependencies to an extent which might not be desirable in a

more research-oriented environment or where full control of all
parameters is required.

In general, it appears that many publications related to
cloud NLP systems are mostly concerned with the functionality
and features on offer and less with concrete performance
benchmarks. Establishing a speed and accuracy baseline for
actual NLP tasks and implementations on a realistic dataset can
therefore generate new knowledge which might help
practitioners to judge the usefulness of specific method/system
configurations applied to different use scenarios. In [1] it is
argued that speed is still the most crucial aspect when it comes
to syntactic parsing in an NLP pipeline. Based on their work
related to sentiment analysis the authors recommend the
prioritisation of “speed over accuracy when choosing a parser”
and that “parsing researchers should investigate models that
improve speed further, even at some cost to accuracy.” as most
parsers produce good-enough results for the following steps
but not fast-enough.

Specifically the point of using cloud resources to improve
the speed of computationally expensive tasks such as syntactic
parsing is addressed in this paper.

III. SYNTACTIC PARSING IN THE CLOUD
The proposed cloud-based natural parsing architecture (Fig.

1.) comprises a syntactic parser, a MapReduce framework and
a Master-Slave cluster of nodes. The parser runs on top of the
MapReduce framework that distributes users requests across
the Master-Slave cluster nodes that are connected with the
Amazon simple storage service (S3). Generally, the
architecture aims to support scalable, distributed and parallel
syntactic parsing over the cloud. It allows to integrate syntactic
parsing algorithms and models into the underlying cluster of
machines that scales-out and run them in parallel..

Unlike multithreaded solutions where sentences of a text
file can be parsed simultaneously, our architecture focused on
providing multiple documents parallel parsing that potentially
exploits cloud computing resources.

The main technologies that were deployed are the Stanford
parser [24], Apache Hadoop and Amazon Web Services
(AWS).

The Stanford parser was instantiated as a MapReduce
application, providing both constituency and dependency
parsing. It was packaged as a Java archive (prior to the
deployment) to fit into the underlying Hadoop MapReduce
framework.

For AWS, the type and number of clusters of machines was
selected (as the basis of the Master-Slave architecture) to
deploy the parsing algorithm.

Apache Hadoop is a popular platform for implementing
MapReduce. Therefore, to achieve such distribution, Apache
Hadoop is used to implement the distributed programming
model. Moreover, from the implementation point of view using
Hadoop is a reasonable choice to the Stanford parser as both
are written in Java

Fig. 1. The Proposed architecture of cloud-based syntactic
parsing

During the parsing process, Hadoop creates a map with
(key, value) pairs where syntactic trees of the same input file
have the same key, sort and collect into a single output file
containing sentences along with their corresponding trees. Its
main responsibilities are loading the parsing model into its
distributed file system (Hadoop Distributed File System -
HDFS) and distributing input files across a cluster of machines.
To be able to perform that, we extended the Stanford parser to
include a reducer class while the actual parsing and pre-
processing steps constituet the mapper class.

The reducer class was implemented, allowing Hadoop to
collect the resulting parse trees into a single file and write it to
the shared disk (Amazon S3). The cluster setup (detailed in the
experimental setup section) is designed to support to be able to
test horizontal and vertical scalability of the parsing algorithm
(the pseudo-code provided in Algorithm 1).

Different types of Amazon EC2 instances are used to build
clusters running the parsing algorithm. The clusters have two
types of nodes: master nodes and slave nodes (workers). The
clusters are also closely linked to the central storage system
i.e., S3 and HDFS. Every cluster has a single dedicated master
node that monitors and tracks the MapReduce jobs running on
the clusters. The slave nodes are responsible for the actual
parsing job once Hadoop reads and distributes the input files to
them in parallel. After parsing the input files, the parse trees
are written to S3 and the master node is notified (so another job
can be assigned).

We used the Stanford parser [24] for natural language parsing,
which is provided as part of the Stanford CoreNLP [2]. The
Stanford probabilistic context-free grammar (PCFG) parser is
open source and well-optimized. However, it takes a long time
to parse a large volume of text files due to its requirement of
high computational resources such as CPU and memory. For
example, in our previous study [25] this parser took several
hours to extract syntactic features and annotate the text
obtained from crowd source discussion forum posts.

Before deploying the parser into the cloud, it was wrapped
into a MapReduce distributed application and packaged as a jar
file. Also, tested and debugged as a single Java process in the
local mode. Then, the memory-optimized instance types were
used in our preliminary experiments. However, only a few
machines of such types are available to meet our goals, so the

Algorithm 1. A Cloud-based MapReduce parsing algorithm

next logical alternative offering a balance of memory,
compute resources and network bandwidth for our use-case,
was taken. Such machines are available under the M4 category
(with the M4.large and M4.xlarge sub-catagories) of the AWS
platform1.

IV. EXPERIMENTAL METHODS
We set up four different AWS MapReduce based clusters

of nodes running the parser. The first two clusters consist of 12
and 18 nodes (each has 8GB of memory and dual-core
processors with 2.4 GHz.) respectively.

The remaining two clusters consist 6 and 9 machines (each
has 16GB of memory and 4-core processors with 2.4 GHz).

To evaluate the performance of the parser, we prepared an
English plain-text corpus collected from various domains
including the crowd source project Zooniverse 2and other open
sources available for use in natural language processing such as
the Bible, news, novels etc.

In our experiments, we randomly chose 1659 files
containing 18003 sentences from the corpus. For each scenario,
100% (1.1 MB file size), 67% (823.3 KB) and 33% (383.9 KB)
of these files are used to observe how the size of data
influences the response time.

1 https://aws.amazon.com/ec2/instance-types/
2 https://www.zooniverse.org/

Algorithm:	 Cloud-‐based	 syntactic	 parsing	
Input:	 syntactic	 parsing	 model,	 raw	 corpus	 C,	 AWS	 S3	 path	
Output:	 syntactic	 parse	 trees	 //written	 on	 S3	 for	 each	
input	 file	
Intialization	
files[]ßSplit_files	 (corpus	 C)	 //	 	
Distribute_files	 (files)	 //	 distribute	 files	 across	
parallel	 slave	 nodes	 	
	
for	 each	 file	 do	 	
	 	 	 procedure	 MAP	 (file,	 Context)	
	 	 	 	 	 	 words[]ßtokenize(file)	
	 	 	 	 	 	 sentences[]ßssplit(file)	 	
	 	 	 	 	 	 	
	 	 	 	 	 	 for	 i=0	 to	 words.length()	 do	
	 	 	 	 	 	 	 	 	 rootWords[i]=lemmatize(words[i])	
	 taggedWords=pos_Tagger(rootWords[i])	
	 	 	 	 	 	 end	 for	
	
	 	 	 	 	 	 for	 j=0	 to	 sentences.length()	 do	 	
	 	 	 	 	 	 	 	 	 Tree	 treeßparse(sentences[j])	
	 	 	 	 	 	 	 	 	 Context.write(file.id,	 tree)	
	 	 	 	 	 	 end	 for	
end	 for	
	 	
procedure	 REDUCE	 (file.id,	 Iterable<file.id,	 tree>,	
Context2)	
	 	 	 for	 each	 file.id	 	 do	
	 	 	 	 	 	 //collecting	 trees	 belonging	 to	 same	 file	 	
	 	 	 	 	 	 Context2.write(file.id,	 tree)	
	 	 	 end	 for	
	 	 	 write_S3(file.id,	 trees)	 //accessing	 trees	 from	 Context2	 	 	 	 	 	
	 	 	 and	 writing	 on	 AWS	 S3	 	

	

A. Choice of Independent and Dependent Variables
In this study, we are particularly interested in improving the

response time of syntactic parsing algorithms using a strategy
that systematically combines the MapReduce paradigm and
cloud resources. The response time is the total elapsed time
between submitting and finishing MapReduce jobs. In the case
of parsing algorithms the main tasks are reading files from a
distributed file system, construct parse trees and write on a
disk. Given a large amount of text files, in custom setups where
only a single machine is involved and parsing is sequential, the
performance of parsing algorithms depend on the memory
space and the number of CPU cores available. Whereas in a
distributed and parallel cloud environments, the main factors
affecting the response time include the type and size of the
clusters, and the number of input files (including the total
number of sentences). We assume that the network bandwidth
of the clusters is almost the same in all conditions. The time
taken by disk I/O operations is negligible in comparison to the
overall parsing process.

B. Approaches to performance measurement
There are a number of models [29, 30] to measure and

analyze the performance of MapReduce applications deployed
on cloud environments depending on their purposes. These
models can be used to effectively plan computing resources
available to manage workloads related with cloud-based
applications. Regardless the purpose of the MapReduce
applications, estimating their performance involves computing
the execution time for the entire workflow. While that is
connected with I/O disk operations, memory, network and
CPU, the main tasks are mapping and reducing. For example,
authors in [30] proposes a performance estimation model that
involves analyzing MapReduce phases that mainly include
reading, mapping, collecting, reducing and writing.

During experimental evaluations we used performance
measuring utility provided by AWS called CloudWatch 3 .
Once we submit parsing jobs to clusters running MapReduce
tasks, CloudWatch get reports from the clusters concerning the
jobs and provide performance metrics for the completed tasks.
Jobs execution performance measurement involves counting
the number of mapping and reducing tasks for the submitted
jobs and calculating the total elapsing time.

C. Challenges and solutions
Like any other NLP task, syntactic parsing is sensitive to

the quality and format of input files. Because of that, noisy
documents not only affect the accuracy of the resulting parse
trees, but severely slow down the parsing algorithm.
Particularly, the problem gets worse when it comes to cloud
resources as they often timeout and abort more regularly that
local computing resources. In our experiments, to tackle the
issue we added a preprocessing sub task to clean the input text,
for example removing XML tags. However, further pre-
processing tasks that potentially addresses the performance
challenges lying in the Cloud are needed.

3 https://aws.amazon.com/cloudwatch/

As our primary focus is to provide parallelism for multiple
files parsing support than multiple sentences parsing,
processing very big documents with limited cloud resources
used in our experimental setup was challenging. As a result
some documents containing extremely large number of
sentences caused other small to medium size files to wait very
long time in the queue. That requires inspecting exceptionally
delayed map-reduce jobs moving the deployment from low
memory nodes to nodes with relatively better memory spaces.

V. PERFORMANCE ANALYSIS OF RESULTS AND DISCUSSION
In this study we carried out the total of 30 independent test

runs as shown in TABLE I. While the first 15 are associated
with constituency parsing, the remaining 15 dependency
parsing. Since the two scenarios are conducted with the same
parser, of course with different parsing types, it gives
confidence on the experiments in terms of repeatability. That
means that, the experimental setting is same for both parsing
types except the parser configuration to produce either pharse-
structure or grammatical relation representation. We found
consistent result patterns across the test datasets.

The overall results show that the parser running over the
clusters of machines outperforms by almost 5 times than its
counterpart on a single machine. In the best-case scenario, the
18-nodes M.large and 9-nodes M.xlarge clusters, outperform
7.23 times faster compared to the native installation. Unlike
existing approaches where performance is achieved with
accuracy-speed trade-off, our approach does not affect the
accuracy of the original parser. Likewise, the 12-nodes M.large
and 6-nodes M.xlarge clusters are 3.64 and 3.78 times faster
respectively. That provides strong indication that the parsing
performance highly depends on the size of the cluster given
that the computing power of the individual nodes is equal.
Moreover, we observe that running the parser on the 12-nodes
M.large cluster versus 6-nodes M.xlarge yields almost the
same performance. That indicates the ability of the deployed
MapReduce based parser to scale not only with the number of
machines, but with the number of processors. As a result the
performance of the parsing algorithm is improved to efficiently
use the available processors of the machines in parallel.
However, while all test runs results show consistent
performance patterns (as shown in Fig. 2 and Fig. 3) across the
test datasets sizes, exceptionally almost the same execution
time is taken (by the 6-nodes M.xlarge cluster) to perform
dependency parsing of 1106 and 1659 input plain text files.

Moreover, it potentially leads to further analysis how the
performance behaves under the conditions of constituency
versus dependency parsing. In principle (concerning time
complexity), dependency parsing is faster than constituency
parsing.

For easy comparison of the structure and size of
constituency versus dependency parse trees representation,
examples (of parsed an English sentence) are provided (Fig. 4
and Fig. 5). As shown in Fig. 4 (a) and Fig. 4 (b), constituency
parse trees split the sentence “the astronomer observed the
Cloud with the camera”, into phrases: the noun phrase (np)
“the astronomer” and the verb phrase (vp) “observed the Cloud
with the camera” and, also these phrases further break into

TABLE I. EXPERIMENTAL RESULTS
Pa

rs
in

g
T

yp
e

Fi
le

 C
ou

nt

Se
qu

en
ce

 C
ou

nt

T
ag

 C
ou

nt

N
at

iv
e

(M
ac

) AWS Instance Type
M4.large M4.xlarge

12 nodes 18 nodes 6 nodes 9 nodes

Execution time in minutes

C
on

sti
tu

en
cy

 1659 18003 226903 207 48 32 50 41

1106 13108 154906 117 32 23 34 24

553 5328 83039 102 28 14 27 14

D
ep

en
de

nc
y 1659 18003 116398 206 45 29 41 29

1106 13108 79479 118 31 20 39 21

553 5328 42605 101 19 15 17 15

sub-phrases and other smaller syntactic categories (shown in
Fig. 4 (c)) such as part-of-speech tags and determiners.

Non-leaf nodes (aka non-terminals nodes) represent
syntactical categories such as lexical, functional and phrasal
categories. In this case, the lexical categories such as
correspond to part-of-speech tags of the individual words (aka
terminals in the parse trees) that construct the actual sentence.
For example, the part-of-speech of the words “astronomer” and
“observed’ are the noun (n) and the verb (v) respectively.
Functional categories connect syntactic units, for example, art
(determiner), p (preposition).

The dependency parse tree provided in Fig. 5 (a) shows the
relationship between words as well as their higher syntactic
units in the sentence “the astronomer observed the Cloud with
the camera”.

The dependencies (aka universal dependencies) in the tree
(shown in Fig. 5 (b)) include det (Cloud, the), dobj (observed,
Cloud), case (camera, with), det (camera, the) and so on. For
example, nsubj (observed, astronomer) represent the link
between the verb “observed” and the noun “astronomer”.

Fig. 2. Constituency Parsing

Fig. 3. Dependency Parsing

These dependencies also establish relationships between
the head word “observed” and the remaining words directly or
indirectly related. For example, the arrow (labled dobj) from
the head word “observed” to the word “Cloud” associates
“observed” with the direct object “the Cloud”.

It is also true, in almost all test cases that dependency
parsing is faster than constituency parsing regarding both
deployment environments (single-machine or cloud based
clustered-machines). That is due to the tree representation of
dependency parsing is simpler and smaller in size. As it is
evident from our experimental results shown in Fig. 6, the
number of tags (syntactic categories) extracted by constituency
parsing is almost twice than the tags (dependency relations)
extracted by dependency parsing. For the constituency parsing
the latency gets even worse when structurally ambiguous
sentences are encountered. More than one parse tree can be
generated for such sentences, and then the most probable tree is
chosen to disambiguate them. As indicated in Fig. 4 (a) and
Fig. 4 (b), the sentence “the astronomer observed the Cloud
with the camera” has at least two possible constituency parse
trees. The interpretation of the first parse tree differs from the
second one, due to the difference in attachment constitutes of
the prepositional phrase (pp) “with the camera”. In the former
case, the pp is attached with the verb phrase (vp) “observed the
Cloud”, that in turn modifies the meaning of the sentence and
interpreted as “the astronomer observed the Cloud through the
camera”. In the later case, the pp modifies the noun phrase “the
Cloud”, and the corresponding meaning becomes “the
astronomer observed the Cloud together with the camera”,
though semantically that does not make sense. In order to
determine the highest scoring constituency-based parse tree,
the parsing algorithm which is based on dynamic
programming, needs to assign probability distributions for all
possible valid parse trees. That is computationally intensive as
dynamic programming attempts to solve complex and large
problems iteratively by breaking them into smaller ones. For
example, a computational grid in [32] demonstrates how a
Master-Slave parallel computation can be used to solve such
dynamic programming problems. Such types of computational
problems, particularly in formal language research, are
commonly solved by using the dynamic programming

0	

50	

100	

150	

200	

250	

553	 1106	 1659	

Ex
ec
u&

on
	 T
im

e	
(M

in
ut
es
)	

Number	 of	 Files	

Mac	

M4	 12	 nodes	

M4	 18	 nodes	

X	 6	 nodes	

X	 9	 nodes	

0	

50	

100	

150	

200	

250	

553	 1106	 1659	

Ex
ec
u&

on
	 T
im

e	
(M

in
ut
es
)	

Number	 of	 Files	

Mac	

M4	 12	 nodes	

M4	 18	 nodes	

X	 6	 nodes	

X	 9	 nodes	

algorithm called the CYK (Cocke–Younger–Kasami)
algorithm [33]. So, building cloud-based architectures is
plausible to fully utilize available computational resources
heavily demanded by such dynamic programming algorithms.

The results also show that the proposed architecture
effectively scales both horizontally and vertically well along
with the size of the test datasets. By scaling out the 12-nodes
M.large cluster with 8 new additional nodes, we achieved
significant performance gain with all the workloads. Likewise,
adding three new nodes to the 6-nodes M.large cluster yields
significant performance gain. Shifting from the M.large cluster
to the M.xlarge cluster, can be considered as vertical scaling
(adding a new processor on M.large nodes). That means, the
computing power of a single node (has dual cores) of the
M.xlarger cluster is twice of two nodes (have a single core) of
the M.large cluster. For example, in many cases, running the
same workloads on the 12-nodes M.large cluster and the 6-
nodes M.xlarge cluster or 18-nodes M.large cluster and the 6-
nodes M.large cluster.

M.xlarge cluster takes almost the same time. That in turn
gives an alternative option of deployment to achieve similar
results obtained from clustering single processor machines.

Also, from the design and implementation point of, the chosen
paradigm for parallel programming model i.e., Hadoop based
MapReduce for distributed and parallel processing has been
effective. Of course, using other MapReduce platforms such as
Apache Spark might help intensify (or gives a different
thought) the results and draw a better conclusion. Moreover,
the chosen-parsing algorithm along with the deployment
environment helps to effectively demonstrate how the proposed
cloud-based solution to improve the performance of the natural
language parsing algorithms.

VI. PRACTICAL AND THEORETICAL IMPLICATIONS
This exploratory study investigates the feasibility of cloud

deployment of NLP algorithms. We chose to focus on syntactic
parsing, because it is a time consuming natural language
processing task but also lends itself to decomposition and
distribution over multiple parallel processors. Compared to
other studies, that have focused on solving syntactic parsing
performance problems, our study uniquely combines three
areas: cloud computing, natural language parsing and
MapReduce programming.

The clear focus is to re-engineer single-machine based
syntactic parsing algorithms to effectively adopt cloud
technologies by using intermediate parallel programming
techniques such as MapReduce. Our method systematically
connects these areas to effectively exploit computing resources
available in the Cloud and, demonstrate performance gain in
different experimental scenarios. Moreover, both constituency
and dependency parsing are covered to a reasonable extent in
our experiments. Though constituency parsing requires more
attention as it takes more time than dependency parsing.

There are a few studies [34] investigated improving the
performance of dependency parsing using multiple machines

(a) A constituency-based parse tree

(b) A constituency-based parse tree

(c) Context-free grammar

Fig. 4. Constituency-based parse trees with their
corresponding grammar

settings without considering methods for utilizing cloud
resources.

Unlike those previous studies, we adopt an even-handed
approach to address both types of parsing in the cloud
environment. In practice, researchers exploring syntactic
structures of natural text, could get analysis results quickly and
focus on other aspects of their studies. Specially for those who
are interested in syntatic analysis for example linguists with no
programming experience could help analyse their text without
overhead cost of installation, configuration and possibly
programming.

// A simple context-free grammar that parses the
sentence “the astronomer observed the Cloud
with the camera” and generates constituency-
based parse trees

grammar CCloud;
s : np vp ;
np : art n | art n pp| np pp;
pp : p np ;
vp : v np;
v : V ;
n : N ;
art : Art ;
p : P ;
V : 'observed' ;
N : 'astronomer' | 'camera' | 'Cloud';
Art : 'the' ;
P : 'with' ;

(a) A dependency parse tree (bottom) labeled with part-of-

speech tags

(b) Universal dependencies

Fig. 5. A dependency parse tree with its corresponding
universal dependencies

The quality of natural languages processing models often rely
on the size of the data on which the models get trained on.
However, to handle huge amount of data (corpora) with limited
computing resources is challenging. It also severly affects the
range (varites) of intended analyses due to the shortage the
demanded computing resources.

Fig. 6. Sentence count and tag count information from Const
(Constituency) and Dep (Dependency) parsing

For example, training n-gram language models with
machine learning techniques require a huge amount of
memory, having limited memory spaces might lead to reduce
the size of n or adhere to only specific types of learning
methods or internal model parameter settings. Taking those
actions, in turn reduces the quality of the models, for instance,
building a 3-gram language model could caputure larger
contextual information and represent the semantic than a bi-
gram (uni-gram) models. Thus, generally working on
computing infrastructure design and implemetnation that
potentially improve the performance of NLP tools is very
important. That includes moving legacy computing
architectures intended to run on traditional standalone settings
into the cloud and distributed environments.

The architecture proposed in this study could be potentially
extended to include other compute intensive tools in natural
language and speech processing such as named entity
recognition, automatic speech recognition. Particularly,
training deep neural net based models takes several hours. The
recommended alternative to speed up the training is to install
high computing resources such as GPU cards, though too
expensive for local machines. So the parallization techniques
used in this study could be utitlized as a solution is to divide
the audio data into blocks that are analysed in parallel.

VII. CONCLUSIONS
In this research we have proposed a cloud-hosted approach

to syntactic parsing in natural language processing. We have
instantiated the Stanford NLP parser as an AWS service. Our
approach has used a conventional master-slave multi-node
deployment configuration. The syntactic parser has been
extended to employ a MapReduce architectural style enabling
parallel parsing of multiple natural language source text files.
While Apache Hadoop and Apache Spark are widely used
MapReduce frameworks, we employed the MapReduce based
parsing approach using Hadoop. Although our experimental
results prove that Hadoop helps contribute for performance
gain, probably using Spark gives different results.

 The main contribution of this research is in the novel
instantiation of the Stanford NLP parser as a decentralised
algorithm enabling simultaneous parsing of multiple text files.
Further, this decentralised parser has been deployed to the
cloud in a proof-of-concept case study.

Performance evaluation of our architecture shows a 7 times
speed-up using 18-nodes M.large and 9-nodes M.xlarge AWS
clusters. Other cluster configurations have shown consistent
performance speed-up compared with conventional local client
computer deployment.

During this early stage of the study, we have not been able
to exhaustively evaluate all the possible permutations of cloud
deployment. Further work would be useful to explore 24- or
36-node configurations to see if speed-up through
parallelisation is consistent with increasing numbers of nodes.
Moreover, it is also interesting to consider other performance
measurement tools other than CloudWatch, though quite
standard in AWS.

0	
50000	

100000	
150000	
200000	
250000	

55
3	

11
06
	

16
59
	

55
3	

11
06
	

16
59
	

Number	
of	 Files	

Number	
of	 Files	

Const.	 Dep	

Fr
eq

ue
nc
y	

Sentence	 Count	

Tag	 Count	

//grammatical	 relations	 capturing	 //dependency	
relation	 between	 //words	 in	 the	 sentence	 “the	
//astronomer	 observed	 the	 Cloud	 //with	 the	 camera”	
	
//root:	 sentence	 head	
//nsubj:	 nominal	 subject	
//det:	 determiner	
//dobj:	 direct	 object	
//case:	 case	 marking	
//nmod:	 nominal	 modifier	
	
det(astronomer-‐2,	 the-‐1)	 nsubj(observed-‐3,	
astronomer-‐2)	 root(ROOT-‐0,	 observed-‐3)	 det(Cloud-‐5,	
the-‐4)	 dobj(observed-‐3,	 Cloud-‐5)	 case(camera-‐8,	
with-‐6)	 det(camera-‐8,	 the-‐7)	 nmod(observed-‐3,	
camera-‐8)	

It is envisaged that a RESTful service API will be used to
create a simplified file upload front-end to the parallelised
syntactic parser. This would allow a web client interface to
provide access to the services by a wider audience.

ACKNOWLEDGMENT
 We acknowledge the financial support obtained from the
department of Computing Science at Umeå University,
Sweden, for the travel fund covered for a research visit to
University of Salford for this study.

REFERENCES
[1] C. Gómez-Rodríguez, I. Alonso-Alonso, and D. Vilares, How important

is syntactic parsing accuracy? An empirical evaluation on rule-based
sentiment analysis, 2017, Artificial Intelligence Review.

[2] M. Christopher, M. Surdeanu, J. Bauer, J. Finkel, S.J. Bethard, and D.
McClosky, The stanford corenlp natural language processing toolkit. In
Proceedings of 52nd Annual Meeting of the Association for
Computational Linguistics: System Demonstrations, pp. 55-60, 2014

[3] R. Moreno-Vozmediano, R. Montero, and I. M. Llorente, “Key
Challenges in Cloud Computing: Enabling the Future Internet of
Services,” IEEE Internet Computing, vol. 17, no. 4, pp. 18–25, Jul.
2013.

[4] H. Khazaei, J. Misic, and V. B. Misic, “Performance analysis of cloud
computing centers using m/g/m/m+r queuing systems,” Parallel and
Distributed Systems, IEEE Transactions on, vol. 23, no. 5, pp. 936–943,
2012.

[5] Z. Guo, and G. Fox: Improving MapReduce Performance in
Heterogeneous Network Environments and Resource Utilization. In the
Proceedings of the 2012 12th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (ccgrid 2012). IEEE Computer
Society, Washington, DC, USA; 2012.

[6] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A view of
cloud computing,” Commun. ACM, vol. 53, no. 4, pp. 50–58, Apr.
2010. [Online].

[7] E. Bauer and R. Adams, Reliability and availability of cloud computing.
John Wiley & Sons, 2012.

[8] H. Cunningham, V. Tablan, A. Roberts, and K. Bontcheva, “Getting
More Out of Biomedical Documents with GATE's Full Lifecycle Open
Source Text Analytics”, PLoS Computational Biology, 2013.
doi:10.1371/journal.pcbi.1002854

[9] C. Fehling, F. Leymann, R. Retter, W. Schupeck, and P. Arbitter, Cloud
Computing Patterns. Springer, 2014.

[10] L. C. Ochei, J. M. Bass, and A. Petrovski, “Degrees of tenant isolation
for cloud-hosted software services: a cross-case analysis,” JOCCASA,
vol. 7, no. 22, pp. 1–39, Dec. 2018.

[11] A. Abdul and J. Bass, “Hierarchical multi-tenancy in business to
business software services,” in 44th Euromicro Conference on Software
Engineering and Advanced Applications, 2018, pp. 494–501.

[12] D. Jurafsky, and J. Martin, Speech and Language Processing (Second
ed., Vol. Always learning). Harlow: Pearson Education, 2014.

[13] M. Rasooli, and J. Tetreault, Yara Parser: A Fast and Accurate
Dependency Parser. CoRR, 2015. Retrieved from
http://arxiv.org/abs/1503.06733

[14] R. Gaizauskas, M. Hepple, H. Saggion, M. Greenwood, and K.
Humphreys, SUPPLE: A Practical Parser for Natural Language
Engineering Applications. Proceedings of the Ninth International
Workshop on Parsing Technology pp. 200–201, 2005. Vancouver,
British Columbia: Association for Computational Linguistics.

[15] T. Briscoe, J. Carroll, and R. Watson, “The Second Release of the RASP
System”, Proceedings of the COLING/ACL on Interactive presentation
sessions, pp. 77-80, Sydney, Australia, 2006

[16] J. Nivre, J. Hall, J. Nilsson, A. Chanev, G. Eryigit, S. Kübler S. Marinov
and E. Marsi. (2007). MaltParser: A language-independent system for
data-driven dependency parsing. Natural Language Engineering, 95-135,
2007.

[17] A. Martins, M. Almeida, and A. Smith, N, Turning on the Turbo: Fast
Third-Order Non-Projective Turbo Parsers. Proceedings of the 51st
annual meeting of the association for computational linguistics (pp. 617–
622), 2013. Sofia, Bulgaria: Association for Computational Linguistics.

[18] D. Chen, and C. Manning, “A Fast and Accurate Dependency Parser
using Neural Networks”, Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP), pp. 740-
750, Doha, Qatar, 2014.

[19] M. Dikaiakos, D. Katsaros, P. Mehra, G. Pallis, and A. Vakali, Cloud
Computing: Distributed Internet Computing for IT and Scientific
Research. IEEE Internet Computing, 13(5), 10-13, 2009.

[20] V. Tablan, I. Roberts, H. Cunningham, and K. Bontcheva.
GATECloud.net: a platform for large-scale, open-source text processing
on the cloud. Philosophical Transactions of the Royal Society, 2012. A.

[21] V. Tablan, K. Bontcheva, I. Roberts, H. Cunningham, M. Dimitrov, and
O. Ad, AnnoMarket: An Open Cloud Platform for NLP. Proceedings of
the 51st Annual Meeting of the Association for Computational
Linguistics pp. 19-24, 2013. Sofia, Bulgaria: Association for
Computational Linguistics.

[22] R. Dale, R. NLP meets the cloud. Natural Language Engineering, 21(4),
653-659, 2015.

[23] M. Shaw and D. Garlan, Software Architecture: Perspectives on an
Emerging Discipline. Upper Saddle River, N.J: Pearson, 1996.

[24] D. Klein and C. Manning, Accurate unlexicalized parsing. In
Proceedings of the 41st Meeting of the Association for Computational
Linguistics, 423–430, 2003.

[25] Y. Woldemariam, S. Bensch, and H. Björklund, “Predicting User
Competence from Linguistic Data.” Proceedings of the 14th
International Conference on Natural Language Processing (ICON-
2017). 2017, pp. 476–484.

[26] W.N. Francis, and H. Kučera, Manual of Information to accompany A
Standard Corpus of Present-Day Edited American English, for use with
Digital Computers. Providence, Rhode Island: Department of
Linguistics, Brown University, 1964.

[27] M. Marcus, B. Santorini, M. Marcinkiewicz. Building a large annotated
corpus of English: the Penn Treebank. Computational Linguistics, Vol
19, 1993.

[28] M. Marcus, G. Kim, M. Marcinkiewicz, R. MacIntyre, A. Bies, M.
Ferguson, K. Katz and B. Schasberger, The Penn Treebank: Annotating
Predicate Argument Structure, in Proceedings of the Human Language
Technology Workshop, Morgan Kaufmann Publishers Inc., San
Francisco, CA, 1994.

[29] Y. Chen, A. Ganapathi, R. Griffith, and R. Katz, “The Case for
Evaluating MapReduce Performance using Workload suites. IEEE Int’l
Symp. on Modeling, Analysis & Simulation of Computer and
Telecommunication Systems (MASCOTS), 2011.

[30] Z. Zhang, L. Cherkasova, and B.T. Loo, Benchmarking approach for
designing a MapReduce performance model. Proceedings of the
International Conference on Performance Engineering, Prague, Czech
Republic, 2013; 253–258.

[31] Z. Guo, and G. Fox: Improving MapReduce Performance in
Heterogeneous Network Environments and Resource Utilization. In the
Proceedings of the 2012 12th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (ccgrid 2012). IEEE Computer
Society, Washington, DC, USA; 2012.

[32] Y. Cai, K. Judd, G. Thain, S.Wright, Solving dynamic programming
problems on a computational grid. ComputationalEconomics, Society
for Computational Economics, vol. 45(2), pages 261-284, 2015.

[33] P. Linz, An Introduction to Formal Languages and Automata, 6th
edition, Jones & Bartlett Learning, ISBN 978- 1-4496-1552-9, 2017.

[34] U. Jung-Ho, J. Chang-Hoo, C. Sung-Pil, L. Seungwoo, K. Hwan-Min, J.
Hanmin. Distributed and Parallel Big Textual Data Parsing or Social
Sensor Network. International Journal of Distributed Sensor Network,
2013. 1-6.

