
A Safety-Centric Change Management Framework by Tailoring Agile
and V-Model Processes

Abdallah M. Salameh, Ph.D. Candidate; University of Salford, Manchester, UK*

Omar T. Jaradat, Ph.D. Candidate; Mälardalen University; Västerås, Sweden*

Keywords: safety case, contracts, impact analysis, change management, agile
software development, agile tailoring, V-model, XP, Kanban

Abstract

Safety critical systems are evolutionary and subject to preventive, perfective, corrective or
adaptive changes during their lifecycle. Changes to any part of those systems can undermine
the confidence in safety since changes can refute articulated claims about safety or challenge
the supporting evidence on which this confidence relies. Changes to the software components
are no exception. In order to maintain the confidence in the safety performance, developers
must update their system and its safety case. Agile methodologies are known to embrace
changes to software where agilists strive to manage changes, not to prevent them. In this
paper, we introduce a novel framework in which we tailor a hybrid process of agile software
development and the traditional V-model. The tailored process aims to facilitate the
accommodation of non-structural changes to the software parts of safety critical systems. We
illustrate our framework in the context of ISO 26262 safety standard.

Introduction

Many safety critical systems are subject to compulsory or advisory certification process which
often necessitates building the systems in compliance with domain-specific safety standards
(Jaradat & Bate, 2017). Safety standards are becoming the main guide of the development and
maintenance of hardware and software parts of safety critical systems. Safety standards, also,
form the basis for the approval and certification of those systems (Denney et al., 2015).
Software systems, in general, are subject to different types of changes (e.g., preventive,
perfective, corrective or adaptive) during the different stages in their life-cycle. In order to
maintain the confidence in safety after accommodating a change, developers are required to
update the safety case, which in turn requires identifying, re-analysing, and re-checking the
impacted parts of the system and generate a new valid set of evidence (Jaradat & Bate, 2017).
Despite the obvious recommendations to adequately maintain and review the systems and their
safety cases by different safety standards, the latter offer little or no advice on how such
operations can be carried out (T. Kelly & J. McDermid, 1999). There is an increasing need for
globally-accepted methods and techniques to enable easier change accommodation in safety
critical systems without incurring disproportionate cost compared to the size of the change.
However, since broader re-verification and re-validation require more effort and time, it is
important for any proposal aims to facilitate system changes to delimit the impact of changes.

*The author's names are listed in alphabetical order

Safety standards in many safety critical system domains adopt the traditional V-model as a
development process for building the systems. Despite the effectiveness of validation and
verification that the V-model provides, in addition to other advantages (e.g., easy to estimate
costs, create timeliness, and stick to deadlines), the model has a well-known drawback when it
comes to handling system changes. This is particularly true when it comes to changes to
software systems and their requirements. Following the V-model implies that changes to
software components requires re-visiting the system requirements and all later stages to
perform a broad and costly impact analysis process. Hence, accepting software changes while
using a V-model based process is not a trivial task.

Unlike the series of isolated phases in the V-model, agile methods depend on iterative and
incremental development of software to enable reduction in cost, acceleration of time to
market in addition to the focus of providing more maintainable code (Salameh, 2011; Tarwani
& Chug, 2016). Software developers who follow agile methods breakdown their project into
manageable fragments which enables a rapid responsive ways to handle software changes. The
Agile way of working minimises the shortcomings of traditional sequential methods and
improves the software development process in a more cost-efficient way (Tarwani & Chug,
2016). The alignment of the development process with a dynamic environment is a critical
motivation for adopting Agile Software Development (ASD) (Cao et al., 2010). Test Driven
Development (TDD) is an important agile process that brings many benefits such as reducing
the potential consequences of software defects. TDD protects the system from future failures
proactively, which leads to an acceleration of the maintenance process (Knippers, 2011).

The work in this paper does not seek to conduct a comparative study between agile methods
and the V-model. The main contribution of this paper, however, is to propose XP-Kan-Safe as
a novel maintenance framework to facilitate the accommodation process of software non-
structural changes in safety critical systems by utilising the strengths of agile methods and the
V-model. More clearly, we reconcile the known effective validation & verification process of
the V-model to the known effective practices and the TDD process of agile methods. We
exploit the usage of safety contracts (Bate et al., 2003) as: 1) stitches that connect the V-
model, Extreme Programming (XP) and Kanban into our tailored process, and 2) means to
enable a tri-directional impact analysis process. The hypothesis we make is that ASD can
resolve some observed maintenance challenges in the V-model while maintaining software
parts of systems.

Background and Motivation

Safety Cases and Safety Arguments

A safety case (also known as assurance or safety assurance case) is: “A structured argument,
supported by a body of evidence that provides a compelling, comprehensible and valid case
that a system is safe for a given application in a given operating environment" (00-56 Standard,
2015). A safety case shall comprise both safety evidence (e.g., safety analyses, software
inspections, or functional tests) and a safety argument explaining that evidence (Jaradat et al.,
2014). Safety cases might contain an implicit safety argument but some safety standards

require an explicit argument that is usually expressed in terms of a defined hierarchy of safety
claims and sub-claims that are supported by a body of evidence (00-56 Standard, 2015). There
are several ways to represent safety arguments (e.g., textual, tabular, graphical, etc.). In this
paper, we use the Goal Structuring Notation (GSN) (GSN Standard, 2011), which provides a
graphical means of communicating (1) safety argument elements, claims (goals), argument
logic (strategies), assumptions, context, evidence (solutions), and (2) the relationships between
these elements (Jaradat et al., 2015a). Figure 1 shows the main notations of the GSN.

Figure 1— Notation Keys of the GSN

Maintenance of Safety Critical Systems and Their Safety Cases

Change requests should be assessed before decision makers decide whether or not to accept
them. The assessment should reveal if the change can cause unreasonable risks, and the
required cost to implement the change. Hence, system developers should understand the
change and the potential risks that it might carry before they identify the impacted parts.
Misunderstanding the change might lead to skip those parts of the system which are dependent
on that assumptions. Also, the developers need to understand the dependencies between the
system parts to identify the affected parts correctly. For example, the effect of a change can
propagate to other parts of the system — creating a ripple effect — and cause unforeseen
violations of the acceptable safety limits. If the impact of change is not clear, developers might
be conservative and do wider analyses and verification (i.e., check more elements than strictly
necessary), and this will exacerbate the cost problem of safety cases. It is also necessary for
the developers to describe how the change affects the system parts in order to correctly
estimate the cost of the response to that change. Otherwise, the response to a change might
generate unplanned further changes to which the system must again respond, and this requires
more cost than originally estimated.

ISO 26262 Safety Standard

ISO 26262 (ISO 26262:2011, 2011) regulates the automotive domain and it is intended to be
applied to safety-related systems that include one or more electrical and/or electronic systems.
The following parts are summarised descriptions of the safety requirements decomposition
directly from ISO 26262 guidelines:

1. After identifying hazards, the standard recommends to formulate Safety Goals (SGs) to
eliminate or mitigate hazards. The standard defines a safety goal as a top-level safety
requirement resultant of the hazard analysis and risk assessment. Safety goals are not
expressed in terms of technological solutions, but in terms of functional objectives.

2. Identification of SGs leads to the functional safety concept. The objective of the functional
safety concept is to derive the Functional Safety Requirements (FSRs) from the SGs, and

Requires further
development

Goal InContextOf

SolvedBy

Away Goal

 <Module Name>
SolutionModule Reference

Assumption
A

Strategy Justification
J

Context

to allocate them to the preliminary architectural elements. At least one FSR shall be
specified for each SG. Derivation of FSRs can be supported by safety analyses (e.g.,
Failure modes and effects analysis (FMEA), Fault Tree Analysis, Hazard and Operability
Study (HAZOP)) in order to develop a complete set of effective functional safety
requirements.

3. The functional concept leads to the technical safety concept. The first objective of the
latter is to specify the Technical Safety Requirements (TSRs) and their allocation to
system elements. The second objective is to verify that the TSRs comply with the
functional safety requirements. TSRs are used to derive Software Safety Requirements
(SSRs).

Safety Contracts

Contract-based design (Benvenuti et al., 2008) is defined as an approach in which the design
process is seen as a successive assembly of components where a component behaviour is
represented in terms of assumptions about its environment and guarantees about its behaviour.
Hence, contracts are intended to describe functional and behavioural properties for each
design component in form of assumptions and guarantees. A contract is said to be a safety
contract if it guarantees a property that is traceable to a hazard. Using contracts in
development of safety critical systems is not a novel idea since there are many works utilise
contracts for building, reusing or maintaining safety critical systems (e.g., (Bate et al., 2003;
Jaradat et al., 2015a; Jaradat et al., 2015b)). The cost of maintaining, reusing and changing
software components is lessened while using contracts as developers may rework software
components with knowledge of the constraints placed upon them (Bates et al., 2003). In this
paper, we use contracts to support the maintainability of safety critical systems. We also
suggest to include additional information into safety contracts in order to enable effective
traceability.

Agile Software Development (ASD)

Compared to traditional software engineering approaches, ASD targets complex systems and
product development with dynamic, non-deterministic and non-linear characteristics. ASD
methods (e.g., XP, Kanban, Scrum) evolve through collaboration between self-organising and
cross-functional teams by sharing the same philosophy and utilising the appropriate practices
for their contexts.

Each agile method has its own set of features (e.g., practices, terminologies, and tactics) and
those features should reflect ASD values and principles. However, agile methods vary when it
comes to the strategies they adopt to reflect those values and principles. For example, Kanban
is known to have a rapid response to software requirement changes since it allows the team to
instantly postpone some change requests to start with other emergent requests. Scrum might
do the same but not after the completion of a sprint planning meeting and team commitment.
XP teams are amenable to change within their iterations as long as a team has not started work
on a particular feature that needs to be exchanged with the new feature. There is no standard
recommendation as to how an agile method should implement its features (Campanelli &
Parreiras, 2015).

Organisations, typically, adapt software development methodologies to be in line with their
needs and contexts, which covering the full spectrum of the software development life-cycle
(Heeager & Rose, 2015; Salameh, 2011). In fact, there is no single agile method that can be
adopted for any arbitrary context or to efficiently cover all phases in the development life-
cycle. Hence, organisations might not adopt an entire agile method, but rather they combine
different processes from different agile methods based on their needs and contexts.

Agile Tailoring

The process in which an agile method is adapted for a specific project situation in a responsive
way to accommodate the encountered challenges and to cover the indented interplay between
contexts in a dynamic way, is called Agile Tailoring. There are two main approaches to tailor
agile methods: the contingency factors and the method engineering theory (Campanelli &
Parreiras, 2015). The first approach, handles the tailoring by choosing multiple methods to be
on standby in an organisation (i.e., Crystal family (Abrahamsson et al., 2003)). The selection
of any standby method is based on project size and criticality, as well as the development
context, such as uncertainty level, impact and structure. The second approach is based on
meta-method processes and proposes the creation of a new method to be applied on specific
contexts based on existing method fragments (a fragment represents a set of practices)
(Campanelli & Parreiras, 2015). Despite the flexibility of this approach, it introduces
challenges such as how to control the fragments or how to assemble the method for a context
specific situation by bringing the appropriate fragments and integrating them into one
framework (Campanelli & Parreiras, 2015). In this paper, we tailor our framework using the
method engineering approach.

The Kanban Method

Kanban is based on lean principles: it tries to remove the waste of the production process by
embracing rules to limit Work In Progress (WIP) and measures the time to finish the tasks
(Campanelli & Parreiras, 2015). Kanban does not prescribe a specific set of roles or process
steps, but rather it encourages its users to start from the existing context by understanding and
emphasising the customers’ needs (Ahmad et al., 2013). Kanban is deemed as an approach to
process change for organisations by providing sufficient visibility and understanding of the
workflow and its progress. Kanban is all about visual signs (aka Kanban Cards) which
represent individual work items accompanied with their critical information. Those cards
move across a board (aka Kanban board). The latter is partitioned by vertical lanes which are
titled, typically, according to the names of the development life-cycle phases (e.g., Analysis,
Development, testing). These lanes can be partitioned further to specify the current state of
each phase (To Do, Doing and Done). The location of a card on the board indicates the
progress of the work and its current state. Kanban shows the assigned work for each team
member, communicates priorities and highlights bottlenecks via cycle or lead time and the
cumulative flow diagram (Ahmad et al., 2013; Campanelli & Parreiras, 2015).

The XP Method

The XP method intends to improve software quality and responsiveness to the changing
customer requirements. XP is considered a lightweight agile method that focuses on cost

savings, unit tests before and along code activities, frequent full system integration and
frequent releases (Campanelli & Parreiras, 2015). XP comprises five phases: exploration,
planning, iterations to release, productionising, maintenance and death (Salameh, 2011). The
exploration, planning and iterations to release are the only phases involved in our tailored
framework.

During the exploration phase, the customers describe the features they wish to have in the first
release of their system by writing each of them into a story card (Abrahamsson et al., 2017).
Our tailored framework is designed to deal with changes to a system that has been already
built by the V-model. Hence, the features are considered as changes to the software system in
our case. More clearly, safety engineers (who represent the customers) write change requests
into story cards and discuss them with the team manager. During the planning phase, the story
cards should be prioritised, an agreement on the first small release should be made and the
time span required to implement the story cards should be estimated (Abrahamsson et al.,
2017). In the iteration and release planning phase, each release should be incremented by
exactly one iteration. The development team should break down requested features (i.e.,
requested changes in our case) into several small releases. The customer selects the stories that
should be implemented in a specific iteration. XP Planning Game is a close interaction
between the customer and the development team. The latter should estimate the effort needed
to implement the stories.

A Maintenance Framework to Facilitate Change Management

In this section, we build upon the background section to propose a new framework which aims
to streamline the change management process of non-structural software changes in safety
critical systems. The framework is referred to as XP-Kan-Safe and it comprises two main
processes: The Preliminary Process and the Change Management process. Figure 2 provides a
conceptual model of the framework. The conceptual model encompasses three phases: 1)
Analysis phase to cover the derivation of safety contracts, 2) Planning phase to cover the game
planning, and 3) Implementation phase to cover the TDD and other XP practices. The grey
background of the model represents the Kanban board.

The Preliminary Process

This process is preparatory and should be performed before handling changes. The main
objective of this process is to derive safety contracts and enrich them with additional
information to increase the traceability between the requirements (i.e., guarantees) and
different related artefacts. The activity of deriving safety contracts should start from the safety
analysis phase. Safety analysis, how- ever, is typically performed on different levels such as
system, subsystems and components levels. The preliminary process enables system
developers to derive contracts from safety analyses on the highest level down to lower levels.
The preliminary process is applicable to any approach aims to decompose and specify safety
requirements. The work in this paper, however, is designed to comply with ISO 26262 thus the
derivation of safety contracts starts from the safety analysis through which SGs are derived.

After completing the safety analysis on the system level, safety contracts should be derived to
guarantee the resultant SGs. A safety contract that guarantees a SG is referred to as “SG

contract". The assumptions of a SG contract should capture the FSRs that fulfil the guaranteed
SG. Furthermore, a contract should be derived to guarantee every assumed FSR in SG
contracts after completing the safety analysis on the safety function level. A safety contract
that guarantees a FSR is referred to as “FSR contract". The assumptions of a FSR contract
should capture the TSRs that implement the guaranteed FSR. Finally, a contract should be
derived to guarantee every assumed TSR in FSR contracts; such contracts are referred to as
“TSR contracts". The assumptions of a TSR contract should capture the SSRs that implement
the guaranteed TSR after completing the safety analysis on the software components level.

Figure 2— A conceptual model of XP-Kan-Safe framework

Failure modes and effects analysis (FMEA) is recommended by many safety standards
(including ISO 26262) as a safety analysis tool to identify potential failures modes. We enable
the derivation of safety contracts from FMEAs by adding an extra column to the FMEA table so
that safety analysts, together with requirement engineers, should cite their derived contracts in
it. FMEA might have a deficiency when it comes to a multiple failures investigation. Hence,
safety analysts might use different tools, such as Fault Tree Analysis (FTA) to search for the
effects of multiple failures. Our preliminary process takes this into account and manages the
derivation of safety contracts from FMEAs and FTAs. Figure 3 shows the connection between
FTA and FMEA in addition to an example of a derived safety contract.

A guarantee in a contract and its related assumptions are the main elements of the contracts
and they help to understand the relationships and the dependencies among the safety
requirements. However, they might not be enough for analysts to identify the impacted
artefacts and the elements in the GSN safety argument due to changes because they do not
provide information as how the different parts are related to each other. For instance,
identifying an impacted TSR will not directly lead to the impacted test cases and the items of
evidence which need to be replaced. In order to enhance the traceability between the

System Test

SW
Components

Integration Test

Unit Test

Implement (TDD)

Technical Safety
Requirements

Contracts

Functional
Safety

Contracts

 Technical
Safety

Requirements

Functional
Safety

Requirements

Function

Safety
Analysis

Safety Goals

referenced in

specified for

support
verified by

integrated to

ensures

referenced in

refined by

realised by

derive

analysed by

realised by

System

derive

verify

SW
Change
Request

allocated to

allocated to

verified by

Technical SW
Safety

Requirements

SW
Components

Software
Architectural

Design

Software
Architectural

Design

System Design
Architecture

HW
Components

Technical
 HW Safety

Requirements

requires

realised by

realised by

Safety Goals
Contracts

analysed by

Development
Team

New user story (if any) / confident estimation

Uncertain estimation

Game Planning (Release and Iteration)

implement user stories

 next iteration

Customer
Approval

small releases

failed contracts (bugs)

Analysis
Doing Done

Backlog
Queue/Ready

Development
Doing Done

Test
Doing To Deploy

DEPLOYED

support

support

Safety Case

Analysis

Planning

Implementaion

requirements (i.e., guarantees) and other related artefacts as well as GSN elements, safety
contracts should be enriched with additional information. To this end, system developers
should include additional information into the derived contracts as follows:

1. Elements in the system architecture: all derived safety requirements should be allocated to
elements of the system architecture. However, since the changes we are after in this work
are non-structural, we assume that the changes have no effect on the system architecture.

Figure 3— An illustration of a contract derivation by the Preliminary Process

CID:SSG_1

Wrong indication of the actual
amount of fuel in the tank

WrongEstimate

Fuel gauge indicates
higher fuel level than the

actual one in the tank
EFEstomatorECU

Fuel gauge indicates
lower fuel level than the
actual one in the tank

EPresentECU

Fuel gauge indicates no fuel
level at all

CommE—> PECU

The calculated fuel
level deviates from

the actual level
DevCalcErr

FMEA — System level

Ref Function Potential
failure
mode

Potential effects of
failure

A
S
I
L

Recommended
action

Current
process
controls

Traceability
(Contract)

30 The FLES warns
the driver of
lack of fuel in
the tank while
the engine is ON
and the Parking
Brake is NOT
applied

No
warning of
the lack of
fuel when
actual
amount of
fuel in the
tank is
LOW

The driver decides
not to refuel and the
vehicle runs out of
fuel and the engine
shuts down which
leads to a loss of
hydraulic systems
(steering and braking
abilities) while the
vehicle on a high
speed road

C Vehicle’s driver
shall be warned
when the fuel level
is low whenever
the engine is ON
and the Parking
Brake is NOT
applied

FuelLevel
Warning
componen
t triggers a
warning
once the
amount of
fuel is
under a
predefined
threshold

CID: SSG_2

10 The FLES
presents to the
driver the actual
level of fuel in
the tank while
the engine is ON
and the Parking
Brake is NOT
applied

Wrong
indication
of the
actual
amount of
fuel in the
tank

The fuel gauge
presents misleading
status of the actual
amount of fuel in the
tank which can
support the driver’s
decision to delay the
refuel activity. The
vehicle can run out
of fuel and the
engine shuts down
which in turn leads
to a loss of hydraulic
systems (steering
and braking abilities)
while the vehicle on
a high speed road

C Vehicle’s driver
shall be constantly
aware of the actual
remaining fuel in
the tank whenever
the engine is ON
and the Parking
Brake is NOT
applied

The fuel
gauge
indicates
the actual
amount of
fuel in the
tank

CID: SSG_1

Ref Function Potential
failure
mode

Potential effects of
failure

A
S
I
L

Recommended
action

Current
process
controls

Traceability
(Contract)

CID:F17

The calculated fuel level
deviates from the actual level

DevCalcErr

Erroneous fuel level
estimation by Kalman

filter in the Estimator ECU
KFEstimatorECU

HW failures in the
Estimator ECU

HWEstimatorECU

Erroneous
determination of the

actual fuel level
FuelLevelErr

FMEA — Function level

Miscommunication
between the Estimator

and the Presenter ECUs
MisCommEstPre

Faulty fuel gauge

FGErr

Wrong conversion by
the Presenter ECU

ConvPresECU

Erroneous fuel
consumption rate by

the EMS ECU
EFCREMSECU

No constant sensing
of the fuel level

ConsCalcErr

Wrong measure of
the tank capacity

TankCapaErr

Incorrect fuel
consumption rate by

the EMS ECU
EFCREMSECU

Faulty fuel sensor

FuelSensorErr

Wrong mapping of the
sensor output signal (in

volts) to fuel volume (in %)
WrongMapping

Faulty logic in
Kalman filter

FlogicKalman

SG_Contract: CID:SSG_1
Guarantee
Vehicle’s driver shall be constantly aware of the
actual remaining fuel in the tank whenever the
engine is ON and the Parking Brake is NOT applied
Assumptions
1. FSR F17 (CID: FSR F17)
2. FSR F22 (CID: FSR F22)

Traceability
System Design V2.2: element (E101, E105)
Test case suite: (System test suite STS 12)
GSN element: SSG_1_ImplAssur

Test cases

SafetyGoalsImpAssu—
All derived safety goals have been implemented and assured

DecSSG_1—
Decompose S1.0 into FSR

SGsImplAndAssur—
Argument over derived safety goals

...
SSG_1_ImplAssur—
Safety Goal 1.0 has been
implemented and is assured

FSR_F17_Imp_Assure—
Decomposed FSR 17 has been
implemented and is assured

ValidFSR_F17Deco—
FSR F17 satisfies and
assures SG1.0

F17 The gauge
displays the
actual fuel
level in the
tank while the
engine is ON
and parking
brake is not
applied

The
calculated
fuel level
deviates
from the
actual
level

The driver decides
not to refuel and the
vehicle runs out of
fuel and the engine
shuts down which
leads to a loss of
hydraulic systems
(steering and braking
abilities) while the
vehicle on a high
speed road

C

The fuel gauge
shall not display a
fuel estimate that
deviates more
than 5 % from the
actual fuel
volume in the
tank

Kalman Filter
is
implemented
to stabilise
the estimated
fuel level
(due to the
sloshing fuel
when the
vehicle is
moving)

CID: F17

FMEA

FTA

FMEA
Safety

Contracts

Safety Argument

CID:SSG_1

CID:F17

2. Test cases: potential failure modes for which a safety requirement is derived should be
considered as testing criteria during the verification phase to ensure the prevention of those
failures. Including a reference to test cases in safety contracts enables direct traceability
between safety analyses (i.e., FMEA and FTA), safety requirements (i.e., guarantees) and
test cases. This traceability enables a top-down change impact analysis from the safety
analysis down to the test cases. This top-down analysis represents the first direction of the
tri-directional impact analysis process in our maintenance framework. While documenting
the safety contracts, the reference of test cases might not be available as the test cases
themselves might not be built yet. System developers are required to revisit each contract
and add the corresponding test case references whenever they are made available.
Furthermore, given that the test cases are available and complete, system developers can
annotate them with the contracts’ references. The annotations in the source code of the test
cases are important to establish a traceability that enables a bottom-up impact analysis
from the test cases up to the safety analysis. This bottom-up analysis represents the second
direction of the tri-directional impact analysis process in our maintenance framework.

3. Elements of safety arguments: each safety contract should contain a reference to the
related goals, contexts or items of evidence from safety arguments. Whenever GSN
references are made available, system developers are required to revisit each contract and
add the corresponding GSN reference to it. Including a reference to GSN elements in
safety contracts enables direct traceability between a system and its safety case. This
traceability enables a bi-directional impact analysis from the system to its safety case and
vice versa. More clearly, an affected guarantee can lead to an affected GSN element. Since
the safety case presents the logic of how different artefacts are related, impact analysts
might use it to highlight the change impact in the related system. The bi-directional change
impact analysis represents the third direction of the tri-directional impact analysis process
in our framework.

Figure 3 highlights the suggested traceability information and connects them to specimen
artefacts and a GSN element.

The Change Management Process

In this section, we describe the second process of XP-Kan-Safe. This process and its activities
represent the result of tailoring ASD and the V-model. The main objective of this tailored
process is to guide whoever involved in the change management activities from the arrival of a
change until the generation of a new test results report. Figure 4 presents the flow of these
activities. The Change Management Process activities are described as follows:

 Activity 1: Understand the change and its impact in the system and its safety case.
Once a change request is placed, Activity 1 should be followed in which the safety engineers
should understand the nature of the change and determine its potential effects in the system
and its safety case. In order to initiate the Kanban management process, safety engineers
should create a card that describes the change request in more technical specifications and
visualise it as a WIP in the analysis phase. The outcome of this activity should provide
plausible data about the impacted parts of the system and its safety case.

Figure 4— The change management process of XP-Kan-Safe framework

Activity 2: Identify the impacted contracts. In this activity, all related safety
contracts to the change should be identified. The benefit of applying the first process of XP-
Kan-Safe (i.e., preliminary) will be more realised in this activity since using safety contracts
should help to provide a systematic impact analysis through the utilisation of the tri-
directional impact analysis. The identified contracts should be listed in the Kanban card.

 Activity 3: Terminate: Forward the change request to the related team. If there is
no safety contract identified as suspect in Activity 2, this implies that the change request has
nothing to do with the functional safety in the system (no safety requirements are affected). In
this specific case, the change request should be forwarded to the relevant team and no further
continuation of the change management process is needed.

 Activity 4: Investigate the impacted contracts to estimate the required size of
work. There is no perfect impact analysis that can determine the effects of a change in the
system and its artefacts at the first glance. That is, it is unlikely that the team will find out
what might, precisely, get impacted merely by looking at the documented requirement and
without iterating the impact analysis process. Hence, further investigation should be
conducted to gain sufficient confidence in the perceived impact of a change. To this end, this
activity should be followed to make further investigation of the impacted contracts. During
this activity, a preliminary meeting should be carried out in which safety engineers, who
represent the on-site customer with respect to XP, together with the development team,
should determine the possibility of identifying more impacted contracts. Any additional
identification of safety contracts should be added to the Kanban card. Safety contracts should
support the collaboration between safety engineers and the development team to delimit the
impacted parts of a system through the tri-directional impact analysis process. It is worth
mentioning that any need to modify an existing contract or derive a new one will necessitate
the application of this activity.

 Activity 5: Derive new contracts or modify existing contracts. Since changes might
introduce other changes, this might lead to modifying or deriving other contracts (i.e.,
requirements) that were not thought of earlier in Activity 2. In this activity, safety engineers

Change
request

1. Understand the change
and its impact in the
system and its safety case

2. Identify the
impacted contracts

Safety
related?

4. Investigate the impacted
contracts to estimate the
required size of work

Yes
3. Terminate: Forward
the change request to
the related team

No

Add or
Derive more
contracts?

Yes

No
Approved

?

5. Derive/Modify
more contracts

7. Plan the
implementation
of change

Yes

8.Implementati
on by TDD

Discovered
unpredicted
changes?

Yes

No

6. Document
the change and
its rejection

Done!

No

9. Run all related
tests (unit,
integration,
acceptance test,
etc.)

Failed test
cases?

Yes

10. Generate
new versions
for the
modified test
reports

No

and system developers derive new contracts or modify the existing ones to capture the newly
introduced requirements or to update the already captured requirements, respectively. An
initial cost of the change accommodation and its timeframe are two among several other
factors upon which the approval decision is made. The involvement of the development team
in the Activities 4 and 5 should cover the estimation of the initial amount of work and the
time needed to complete it. Safety engineers and system developers should agree on: 1) what
should be changed or added (i.e., size of the work) and 2) the acceptance of the accompanied
potential risk on safety functions. Subsequently, they should submit their agreement to the
management where the latter can either decline or accept the change request. Submission of
the agreement concludes the Analysis Phase, and this means that the Kanban card should
move on the board from (Analysis → Doing) to (Analysis → Done).

 Activity 6: Document the change and its rejection. If the change request receives a
rejection by the management, the change request, the performed investigation and the
management decision should be documented (ISO 26262:2011, 2011). The rejection implies
that the Kanban card should be closed.

 Activity 7: Plan the implementation of change. If the change request receives an
approval by the management, the Kanban card should be available for development. The
adopted planning method, in our change management process, complies with XP. This
implies that the implementation of the change request is initiated by the planning game. The
input of the planning game is the estimated work and the impacted safety contracts. The
output are more fine-grained estimated tasks than the earlier estimated tasks in Activity 4.

 Activity 8: Implementation by TDD. In this activity, the implementation of the
change is carried out using TDD. For those contracts that are subject to modification, system
developers should find the related test cases (using the parameters that refer to them in the
contracts) and modify them accordingly. Since modifying a contract might require creating
new test cases, system developers should cite the newly added test cases in the corresponding
contracts and vice versa. This is particularly important to support bi-directional traceability
between the test cases and the contracts while is deemed as a preparation for future changes.
Citing the newly added test cases in the contracts applies to the derived contracts during the
impact analysis process — after the preliminary process — as well Activity 5. Moreover, after
implementing required production code to satisfy the derived test cases, other already existing
test cases might get impacted by newly added code. If the solution is to modify or add new
requirements, system developers should inform the safety engineers about the suggested
changes to the requirements. In this case, the suggested changes by system developers should
be declared as unexpected changes. Afterwards, safety engineers and system developers
should arrange an on-the-fly meeting to investigate the discovered unexpected changes
Activity 4. The meeting should reveal 1) whether or not the suggested changes might
introduce unreasonable risks (i.e., criticality level) and 2) the size of work required to cope
with the suggested changes. The size of work is defined, in this context, based on its influence
on the earlier gaming plan Activity 7 so that big work means a modification of the release
planning is required. If the suggested changes are non-critical, system developers should
implement them or forward them to the relevant team. If the suggested changes are critical,
one of two possible actions should be performed:

1. If the size of work is small, developers should do the fixes on-the-fly and cite the related
test cases in the contracts and vice versa.

2. If the size of work is big and critical, developers should either follow the exchange
strategy by XP to re-prioritise the tasks within the current iteration of the planned release
or plan the tasks for the next release.

 Activity 9: Run all related tests. In this activity, system developers should utilise the
continuous integration as a first step, according to XP, to avoid delays caused by integration
problems. Subsequently, a continuous testing process should be initiated to obtain immediate
feedback on the possibility of violating safety countermeasures to prevent unreasonable risks
associated with a software release. The scope of testing should be extended from a bottom-up
assessment (from test cases to safety requirements) to validate safety goals. In case of any
violation of safety requirements after running the continuous testing, system developers
should follow Activity 8.

 Activity 10: Generate new versions for the modified test reports. This activity
should be followed once the continuous testing is completed successfully. New reports of the
test results should be generated to replace the out-of-date reports in the safety case. It is
significant to update the references of these reports in the safety contracts of the system and
its safety case.

Discussion and Conclusion

Maintaining safety critical systems due to changes is a challenging process because of: 1) the
lack of awareness of the change’s effects and the ripple of these effects on the system, 2) the
lack of documentation of dependencies among the generated artefacts during the development
process, and 3) the lack of traceability between a system and its safety case. Following the V-
model to accommodate system changes might be very strict, which might be justifiable for
structural system changes since many parts get impacted and there is no precise clue about the
size of work needed to maintain the system. For software non-structural changes, this might
not be justifiable. ASD can provide promising methods to maintain software changes. For
example, XP puts great emphasis on the technical aspects (e.g., TDD, continuous integration
and code refactoring). Also, Kanban brings the visibility of the workflow and improves the
communication and collaboration among the stakeholders. Using ASD for maintaining safety
critical systems can be promising but it still needs to comply with the current safety standards.
In this paper, we introduced XP-Kan-Safe as a novel framework in which we tailor a hybrid
process of ASD and the traditional V-model. The tailored process exploits safety contracts to
connect ASD and the V-model, and enable a tri-directional impact analysis process. Future
work will focus on creating a more in-depth case study to validate both the feasibility and
efficacy of the process as well as to fully automate its application.

Acknowledgment

This work has been partially supported by the Swedish Foundation for Strategic Research
(SSF) (through SYNOPSIS and FiC Projects) and the EU-ECSEL (through SafeCOP project).
Both authors contributed equally to the paper and their names are listed in alphabetical order.

References

Abrahamsson, P., Salo, O., Ronkainen, J., & Warsta, J. (2017). Agile software development methods:
Review and analysis. CoRR, abs/1709.08439.

Abrahamsson, P., Warsta, J., Siponen, M. T., & Ronkainen, J. (2003). New directions on agile methods:
A comparative analysis. In Proceedings of the 25th International Conference on Software
Engineering (ICSE). Washington, DC, USA.

Ahmad, M., Markkula, J., & Oivo, M. (2013). Kanban in software development: A systematic literature
review. In Proceedings of the 39th EUROMICRO Conference on Software Engineering and
Advanced Applications (SEAA).

Bate, I., Hawkins, R., & McDermid, J. (2003). A contract-based approach to designing safe systems. In
Proceedings of the 8th Australian workshop on safety critical systems and software - volume 33
(pp. 25–36). Darlinghurst, Australia. Australian Computer Society, Inc.

Benvenuti, L., Ferrari, A., Mazzi, E., & Vincentelli, A. L. (2008). Contract-based design for computation
and verification of a closed-loop hybrid system. In Proceedings of the 11th international
workshop on hybrid systems: Computation and control (pp. 58–71). Berlin, Heidelberg: Springer-
Verlag.

Campanelli, A. S., & Parreiras, F. S. (2015). Agile methods tailoring – a systematic literature review. The
Journal of Systems & Software, 110, 85–100.

Cao, L., Ramesh, B., & Abdel-Hamid, T. (2010). Modeling dynamics in agile software development.
ACM Trans. Manage. Inf. Syst., 1 (1), 5:1–5:26.

Denney, E., Pai, G., & Habli, I. (2015). Dynamic safety cases for through-life safety assurance. In
Proceedings of the 37th IEEE international conference on software engineering (ICSE).

GSN Standard (2011). Goal Structuring Notation working group.

Heeager, L., & Rose, J. (2015, December). Optimising agile development practices for the maintenance
operation: nine heuristics. Empirical Software Engineering, 20(6), 1762–1784.

ISO 26262:2011 (2011). Road Vehicles — Functional Safety, Part 1-9. International Organization for
Standardization.

Knippers, D. (2011). Agile software development and maintainability. In Proceedings of the 15th Twente
Student conference.

Jaradat, O., Bate, I. (2017). Using safety contracts to guide the maintenance of systems and safety cases.
In Proceedings of the 13rd European Dependable Computing Conference (EDCC).

Jaradat, O., Bate, I. & Punnekkat, S. (2015a). Facilitating the maintenance of safety cases. In Proceedings
of the 3rd International Conference On Reliability, Safety and Hazard - Advances In Reliability,
Maintenance and Safety (ICRESH-ARMS). Luleå, Sweden.

Jaradat, O., Bate, I. & Punnekkat, S. (2015b). Using sensitivity analysis to facilitate the maintenance of
safety cases. In Proceedings of the 20th International Conference on Reliable Software
Technologies (Ada-Europe).

Jaradat, O., Graydon, P. & Bate, I. (2014). An approach to maintaining safety case evidence after a
system change. In Proceedings of the 10th European Dependable Computing Conference
(EDCC). Newcastle, UK.

Bates, S., Bate, I., Hawkins, R., Kelly, T., McDermid, J., & Fletcher, R. (2003). Safety case architectures
to complement a contract-based approach to designing safe systems. In Proceedings of the 21st
International System Safety Conference (ISSC).

Salameh, A. (2011). On Process Tailoring - An Agile Example. Master Thesis. Chalmers University.

Kelly, T., & McDermid, J. (1999). A systematic approach to safety case maintenance. In Proceedings of
the Computer Safety, Reliability and Security (SAFECOMP) (Vol. 1698, p. 13-26). Springer
Berlin Heidelberg.

Tarwani, S., & Chug, A. (2016). Agile Methodologies in Software Maintenance: A Systematic
Review. Informatica, 40(4), 415.

00-56 Standard (2015). Defence Standard — Issue 6. Safety Management Requirements for Defence
Systems — Part 1: Requirements and Guidance. U.K. Ministry of Defence.

Biographies

Abdallah M. Salameh, Ph.D. candidate, School of Computing, Science & Engineering,
University of Salford, Manchester, UK, Tel: +46 721844015, e-mail –
a.salameh@edu.salford.ac.uk.

Abdallah Salameh is a senior developer at Bambora Group AB - Sweden and a Ph.D. candidate
in the School of Computing, Science and Engineering at the University of Salford, U.K. His
research interests include agile software development, where the main focus is on tailoring the
processes in large-scale software intensive organisations.

Omar T. Jaradat, Ph.D. candiate, School of Innovation, Design and Engineering, Mälardalen
University, Högskoleplan 1, SE-72123, Västerås, Sweden, Tel: +46 21101369, Fax: +46
21101460 e-mail – omar.jaradat@mdh.se.

Omar Jaradat is a Ph.D. candidate in the Innovation, Design and Engineering department at
Mälardalen University. His research interests include safety argumentation for safety critical
systems, where the main focus is on maintenance of safety-critical systems and safety cases.

