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Abstract: This investigation was carried out to highlight the influence of the variation of permeability
of the porous media with respect to the injection orientations during enhanced gas recovery (EGR)
by CO2 injection using different core samples of different petrophysical properties. The laboratory
investigation was performed using core flooding technique at 1300 psig and 50 ◦C. The injection
rates were expressed in terms of the interstitial velocities to give an indication of its magnitude and
variation based on the petrophysical properties of each core sample tested. Bandera Grey, Grey Berea,
and Buff Berea sandstone core samples were used with measured permeabilities of 16.08, 217.04,
and 560.63 md, respectively. The dispersion coefficient was observed to increase with a decrease
in permeability, with Bandera Grey having the highest dispersion coefficient and invariably higher
mixing between the injected CO2 and the nascent CH4. Furthermore, this dispersion was more
pronounced in the horizontal injection orientation compared to the vertical orientation with, again,
the lowest permeability having a higher dispersion coefficient in the horizontal orientation by about
50%. This study highlights the importance of the permeability variation in the design of the injection
strategy of EGR and provides a revision of the CO2 plume propagation at reservoir conditions
during injection.

Keywords: enhanced gas recovery; longitudinal dispersion coefficient; injection orientation;
supercritical CO2; CO2 permeability

1. Introduction

The effects of greenhouse gas (GHG) emissions in the form of global warming with the resulting
subsequent climate change cannot be overemphasized. The authors of [1] reported that the most
significant of the GHG emissions are carbon dioxide (CO2), methane (CH4), dinitrogen oxide (N2O),
and other gases. Amongst all these gases, they iterated that CO2 makes up about 76% of the total
global emissions of GHGs. Incidentally, combustion of fossil fuels is the central source of the global
CO2 emissions and the oil and gas industry alone accounts for 65% of global CO2 emissions [2].
Furthermore, CO2 emissions from the oil and gas industry is ever increasing as a result of the high
energy demand and at a rate of 1.7% per annum between the 1990s and early 2000s, and at an even
higher rate of 3.1% per annum between 2000 and 2010 [3]. Therefore, the environmental consequences
associated with CO2 emissions have forced researchers in the oil and gas industry to come up with
technologies to curb the proliferation of anthropogenic CO2 due to the oil and gas activities. An avenue
with a growing potential to address this issue is by the injection of the CO2 emissions into geological
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formations like oil and gas reservoirs [4] using enhanced oil/gas recovery processes. Enhanced gas
recovery (EGR) by CO2 injection and sequestration is a simultaneous process whereby CO2 is injected
into a natural gas (CH4) reservoir to displace CH4 and store CO2 in the reservoir.

EGR is still in its pilot/test phase and has not been widely accepted due to the nature of the gas-gas
displacement whereby CO2 disperses into CH4 during the process and the recovered CH4 will be
heavily contaminated with the injected CO2. This will affect the market value of the recovered CH4

given that one of the reasons for the choice of CH4 reservoirs as potential storage sites is that the
recovered natural gas will offset part of the cost of the sequestration process [5]. Therefore, efforts are
being made to stall the incessant mixing during EGR, and this is only achievable when the physics
of the mixing are better understood. Pivotal to the adoption of the technique is understanding the
mechanisms and factors which influence the interaction between the gases in situ, which leads to
mixing at reservoir conditions. This will eventually provide an avenue to characterise gas systems for
better injection scenarios and explore the potential and the viability of EGR as an adopted method of
CO2 sequestration.

In our previous works [6–9], we studied some of the factors that affect in situ mixing between
the injected CO2 and the displaced CH4 which have not been previously considered. These factors
include the connate water salinity, the injection orientation and, also, the flow behaviour of CO2

in its supercritical state during EGR displacement. This research, however, focuses on the effect of
injection orientation of the CO2 on the dispersion of the gas in consolidated sandstone cores with
an emphasis on permeability variation. The injection orientation determines the path of the CO2

plume propagation through the pore spaces of the reservoir rock, which is also very important when it
comes to the dip angle between the injector and producer wells. Consistent with our previous results,
horizontal injections showed that the segregation of CO2 to the bottom of the core sample—due to
its higher density of supercritical CO2 compared to that of CH4 (showed in Figure 1)—led to higher
residence time of the CO2 traversing the length of the core sample, thereby increasing CO2 dispersion.
Invariably, dispersion in the vertical injection orientation of the CO2 was significantly less than that in
the horizontal orientation.

Energies 2019, 12, x FOR PEER REVIEW 2 of 16 

 

Enhanced gas recovery (EGR) by CO2 injection and sequestration is a simultaneous process whereby 
CO2 is injected into a natural gas (CH4) reservoir to displace CH4 and store CO2 in the reservoir. 

EGR is still in its pilot/test phase and has not been widely accepted due to the nature of the gas–
gas displacement whereby CO2 disperses into CH4 during the process and the recovered CH4 will be 
heavily contaminated with the injected CO2. This will affect the market value of the recovered CH4 
given that one of the reasons for the choice of CH4 reservoirs as potential storage sites is that the 
recovered natural gas will offset part of the cost of the sequestration process [5]. Therefore, efforts are 
being made to stall the incessant mixing during EGR, and this is only achievable when the physics of 
the mixing are better understood. Pivotal to the adoption of the technique is understanding the 
mechanisms and factors which influence the interaction between the gases in situ, which leads to 
mixing at reservoir conditions. This will eventually provide an avenue to characterise gas systems 
for better injection scenarios and explore the potential and the viability of EGR as an adopted method 
of CO2 sequestration. 

In our previous works [6–9], we studied some of the factors that affect in situ mixing between 
the injected CO2 and the displaced CH4 which have not been previously considered. These factors 
include the connate water salinity, the injection orientation and, also, the flow behaviour of CO2 in its 
supercritical state during EGR displacement. This research, however, focuses on the effect of injection 
orientation of the CO2 on the dispersion of the gas in consolidated sandstone cores with an emphasis 
on permeability variation. The injection orientation determines the path of the CO2 plume 
propagation through the pore spaces of the reservoir rock, which is also very important when it 
comes to the dip angle between the injector and producer wells. Consistent with our previous results, 
horizontal injections showed that the segregation of CO2 to the bottom of the core sample—due to its 
higher density of supercritical CO2 compared to that of CH4 (showed in Figure 1)—led to higher 
residence time of the CO2 traversing the length of the core sample, thereby increasing CO2 dispersion. 
Invariably, dispersion in the vertical injection orientation of the CO2 was significantly less than that 
in the horizontal orientation. 

 

Figure 1. CH4 and CO2 density as a function of temperature at 1300 psi. 

The authors of [10] carried out a horizontal dispersion of CO2 in CH4 in sand packs as the porous 
medium and also concluded that gravity plays a significant role in the dispersion of CO2 during 
displacement applications. Their study included long and short sand packs with similar 
permeabilities, while here, different consolidated core samples with different petrophysical 
properties and equal length were employed to ascertain the effects of their variation on dispersion. 
The reasoning behind the use of equal length core samples was to minimise systemic disparities in 

Figure 1. CH4 and CO2 density as a function of temperature at 1300 psi.

The authors of [10] carried out a horizontal dispersion of CO2 in CH4 in sand packs as the porous
medium and also concluded that gravity plays a significant role in the dispersion of CO2 during
displacement applications. Their study included long and short sand packs with similar permeabilities,
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while here, different consolidated core samples with different petrophysical properties and equal
length were employed to ascertain the effects of their variation on dispersion. The reasoning behind
the use of equal length core samples was to minimise systemic disparities in our measurements.
Given that permeability is a function of length, the pore structure variation which is responsible for
the permeability difference between the core sample was explored, and the interplay between the
core sample and the gases was evaluated. Therefore, the variation of the injection orientation and
permeability was analysed to showcase their influence on dispersion coefficient.

2. Materials and Methods

The core samples were obtained from Kocurek Industries USA whose petrophysical properties are
shown in Table 1. Gas permeability was obtained using a core flooding and the porosity was evaluated
using Helium Porosimetry. Research grade CO2 and CH4 were obtained from BOC UK both with
purity of >99.999%.

Table 1. Dimensions and petrophysical properties of core samples.

Core Samples Length (mm) Diameter (mm) * Porosity (%) * Permeability (md)

Grey Berea 76.27 25.22 19–20 200–315
Bandera Grey 76.00 25.47 21 30

Buff Berea 76.18 24.95 26 350–600

* Properties provided by suppliers.

Apparatus and Procedure

(1) Porosity and permeability measurements

The Helium Porosimeter PORG 200™ (Corelab, OK, USA and Gas Permeater PERG 200™ (Corelab,
OK, USA) were used to measure the porosity and permeability of the core samples respectively. Details
of the equipment description, principles of operation, and procedure can be found in our previous
works [8]. The results are shown in Table 2.

Table 2. Measured petrophysical properties.

Core Samples Porosimetry Porosity (%) Measured Permeability (md)

Bandera Grey 17 16.08
Grey Berea 20 217.04
Buff Berea 26.27 560.63

(2) Core flooding

Core flooding equipment, also from CoreLab Oklahoma, UFS 200 (details are presented in [7]), was
used in this work. It simulated the displacement of CH4 by supercritical CO2 at reservoir conditions.
The core holder was originally horizontally orientated; however, a stand was constructed to change
this orientation to vertical in order to vary the injection orientation. The same procedure was adopted
as the one employed in [9], the only difference being in the using different core samples of different
permeabilities and porosities. The schematics of the setup are shown in Figure 2. After carrying out the
same experiments at the same conditions in the horizontal orientation for each core sample, the core
holder was installed vertically, and the same experiments were repeated using the same conditions as
in the previous horizontal experiments.

Injection was made from the bottom of the core holder in the vertical orientation. The injection
orientation adopted in this study was not based on the dip angle of injection during the flooding
and recovery processes. The experiments were not field scale depictions of the injection strategy,
rather, we were looking at core to pore scale investigation of the flow physics of CO2 plume as it
displaces nascent CH4. Central to the experiments was the interaction and mixing between CO2 in its
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supercritical state and the CH4 in the reservoir given that the CO2 plume occupies the lower echelon of
the CH4 zone due to its higher density at supercritical condition as we have iterated in our previous
works. Vertical and horizontal flows of the CO2 plume are the two extreme flow conditions in terms of
propagation direction.
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(3) Data analysis

A single parameter diffusion equation was used by [11] in the description of the longitudinal
dispersion coefficient for gas flow in porous media which is shown in Equation (1):
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where C-CO2 concentration at time t, location x, Kl—the longitudinal dispersion coefficient, and u is
the interstitial velocity. The dimensionless for of Equation (1) is written as
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where each parameter is defined in Table 3.
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This one-dimensional advection–dispersion (ADE) equation was used to measure/evaluate,
analytically, the longitudinal dispersion of CO2 into CH4 using the solution of the equation and also
assuming that the dispersion coefficient and interstitial velocity of the displacing species are not affected
by the concentration. With the following boundary conditions, the initial condition—C = 0 at tD = 0,
boundary conditions—C = 1 at xD = 0, C→ 0 as xD →∞ , the dimensionless solution to (Equation (1))
thus becomes [12–14]

C =
1
2

{
er f c

(
xD − tD

2
√

tD/Pe

)
+ ePexDer f c

(
xD + tD

2
√

tD/Pe

)}
. (3)

Using the obtained concentration profiles from core flooding experiments, Equation (3) was used
to fit the results from the experiments and the dispersion coefficient was obtained analytically using
the least squares regression method with the dispersion coefficient as the fitting parameter.

Perkins and Johnston (1963) described the medium Péclet number denoted by Pex, which defines
the displacement mechanism that is dominant in gas dispersion in porous media as

Pex =
umd
D

, (4)

where D—diffusion coefficient (m2/s), Pem—medium Péclet number, um—mean interstitial velocity
(m/s), and d is the characteristic length scale of mixing in the porous medium. Largely, at the values of
Pem < 0.1, diffusion mixing dominates and, equally, at Pex > 10, advective mixing dominates during the
gas dispersion process. In this range of Pex, [15] related diffusion to dispersion coefficients as presented
in (Equation (6)):

Kl
D

=
1
τ
+ α

un
m

D
, (5)

where α represents the dispersivity of the porous medium in m, τ is the tortuosity of the porous
medium, and n is an exponent.

Additionally, [16–18] reported a correlation between the molecular diffusion coefficient, pressure,
and temperature to obtain accurate diffusivity at conditions relevant to EGR as follows:

D =

(
−4.3844× 10−13p + 8.55440× 10−11

)
T1.75

p
, (6)

where D (m2/s) is the molecular diffusion coefficient of CO2 in CH4 pressure p (MPa) and at temperature
T (K).

3. Results and Discussion

The core flooding experiments were carried out at 1300 psig, and 50 ◦C in both vertical and
horizontal orientations for each core sample. The interstitial velocities were varied according to
individual core samples given their different porosities. A range of interstitial velocities was based on
the injection rates in our previous work [8], which were evaluated using Equation (7):

u =
Q
φA

, (7)

where Q—injection rate in m3/s, A—cross-sectional area of core sample, and ϕ—porosity of core sample.
The results are shown in Table 4.
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Table 4. Interstitial velocities employed in each core sample.

SN Core Sample Porosity (%) Interstitial Velocity (µm/s)

1 Grey Berea 20.10 33.5–83.8
2 Bandera Grey 17.20 39.3–98.3
3 Buff Berea 26.27 26.2–65.6

Accordingly, the results of each individual core sample will be presented, discussed, and analysed
based on the injection orientation and the interstitial velocity. Grey Berea core sample will be presented
first, followed by Bandera Grey and, finally, Buff Berea.

The mole fractions of the injected CO2 were used to develop the concentration profile which
assesses rate of mixing between the injected CO2 and the CH4, in situ, using Equation (3) to fit the
equation to the experimental data and varying KL, which is the longitudinal dispersion coefficient
(keeping the interstitial velocity constant as assumed in the 1D ADE), until the analytical solution fits
the experimental results. The Lexp was also adjusted in the regression to provide a good fit as carried
out by [16] and adopted by [17]. Least square regression analysis was the method used in the curve
fitting process.

Curve fitting was carried out using OriginPro 8 software and the curve-fitted concentration
profiles for each u for Grey Berea core sample are shown in Figures 3 and 4 for horizontal and vertical
orientation respectively. The dispersion coefficients were evaluated, and it was shown that the KL
increases with increase in the interstitial velocity. This was done for all core samples and injection
orientation experiments in this investigation. There was early breakthrough at higher values of u run
and a late breakthrough at lower values as expected in all the core samples. The fitting of the 1D ADE
to the experimental results was meagre as a result of systemics like entry and exit effects as described
in the works of [17]. This was noted for all the runs in the entire experiments. However, these do not
affect the evaluation of the parameter i.e., dispersion coefficient. For all subsequent experiments, these
systemic effects were noticed and are presented as such.
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Using Equation (6), the diffusion coefficients, D, were evaluated at the experimental conditions.
This is essential when describing the dispersivity, α, and the Pex of the core sample, and also when
comparing the results to those in literature, which will further reaffirm the accuracy of the experiments.
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The dispersivity can be analytically evaluated by fitting Equation (5) to the plot of u/D against k/D
which is a straight line as shown in Figure 4.Energies 2019, 12, x FOR PEER REVIEW 7 of 16 
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The fitted concentration profiles of the subsequent core sample (Buff Bera) is shown in Figures 5
and 6, for horizontal and vertical orientation respectively, which also showed meagre fitting as a result
of systemic errors as seen in Grey Berea.
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Similarly, Bandera Grey core sample fitted horizontal and vertical orientation concentration
profiles are shown in Figures 7 and 8. The profiles are steeper than the previous ones obtained for
the core samples (Buff Berea and Grey Berea) because of the instant mixing during the displacement
process due to higher interstitial velocities.
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The works of [16,18,19] presented values of the apparent dispersivity in consolidated porous media
that were generally smaller than 0.01 ft (0.003 m). Hughes et al. (2012) obtained dispersivity in a range
of 0.0001 to 0.0011 m using a core sample (Donny brook) with similar petrophysical properties as the
ones used in this work. This provided a practical input variable for EGR simulations. As dispersivity is
a very important porous media property, its accurate determination can provide a befitting technique
to establish the optimum injection rate of the CO2 for a better simulation of the fluid flow in the matrix
of the reservoir during EGR. All the dispersivity obtained (from each experiment carried out in this
study are well within those obtained from literature. This was evaluated from Equation (5) as earlier
stated—a straight-line equation. This further demonstrates the reliability of the experiments.

The tortuosity (inverse of the intercept on the y-axis of the straight line) was similar in both cases
(Figures 9–11), for Grey Berea, indicating that regardless of the injection orientation of the core sample,
the tortuosity (a property of the core sample) remained unchanged. This shows that core orientation
does not alter the pathways of the matrix of the porous media when fluids traverse through the porous
medium, further attributing the fluid behaviour to mainly a function of the fluid properties and not
the porous media. This was also true for Buff Berea depicted in Figures 12 and 13, and a comparison
between the vertical and horizontal dispersivity is shown in Figure 14.
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Bandera Grey core sample exhibited similar trend as the previous core samples discussed in terms
of dispersivity as shown in Figures 15–17. Dispersivity, however, is highest in Bandera Grey compared
to the other core samples. This can be attributed to the grain arrangement of the core sample and the
structure of the pore matrix which is tightly packed with its characteristic low permeability.
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There certainly are similarities between the vertical and horizontal orientations in all the core
samples used in this study in terms of dispersion coefficient. This discussion is highlighted in the next
section, which summarises the dispersion coefficient variation with the permeability.

Summary of the Dispersion Coefficient Investigation

A summary of the dispersion coefficients for all the core samples is shown in Table 5.

Table 5. Summary of all dispersion coefficients.

Core Sample U (µm/s) KL (10−8 m2/s)

Horizontal Vertical

Bandera (k = 16.08 md)

39.3 7.01 4.56
59.0 8.97 5.19
78.6 13.20 7.03
98.3 15.23 9.35

Grey Berea (k = 217.04 md)

33.5 3.11 2.46
50.3 3.64 3.03
67.0 4.01 3.70
83.8 5.51 4.02

Buff Berea (k = 560.63 md)

26.2 2.38 1.44
39.3 3.13 2.56
52.5 3.51 2.84
65.6 4.89 3.12

Dispersion coefficient generally decreases with increase in permeability as seen in Table 5. Hence,
the core sample with the least permeability (Bandera Grey) showed a significantly higher dispersion
coefficient. Another realisation from the Table is that in all the runs, those in the horizontal orientation
appear to have the higher dispersion coefficient compared to the vertical counterparts. This can
be attributed to the effect of gravity on the CO2 as it traverses the core sample. Also, since the
interstitial velocity is a function of porosity, the core sample with the most porosity had the lowest
interstitial velocity and, hence, a lower dispersion coefficient at lower injection rates. The dispersion
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coefficient increases significantly at higher injection rates in all the runs regardless of the orientation.
Furthermore, in the higher permeability core sample, the interaction between the injected CO2 and
the nascent CH4 was limited as the CO2 interstitial velocity was lower and, thus, the dispersion
coefficient was lower compared to the subsequent core samples. The opposite was realised in the low
permeability sample with the highest interstitial velocity was characterised by higher agitation of the
gas molecules within the porous medium which eventually led to higher interaction and mixing and
of course higher dispersion coefficient—the rate of mixing. Permeability is one of the vast factors that
influence dispersion.

The dispersivity also increases with increase in permeability. This being a function of the core
sample is evident with this trend, as the absolute permeability of the core sample is also a property of
the core sample. Basically, the higher the permeability of the core sample, the higher the rate of mixing
when CO2 is injected to displace CH4. However, dispersivity is scale-dependent [20,21] and, albeit
being at laboratory scale, this finding is an indication of the effects of the petrophysical properties on
the mixing taking place during EGR. Finding the right injection scenario is vital in achieving the best
recovery efficiency whilst storing substantial volumes of CO2.

4. Conclusions

The effects of permeability on the dispersion coefficient have been shown to be significant during
the displacement of CH4 by supercritical CO2. This effect was more pronounced in the horizontal
orientation compared to the vertical orientation which was attributed to the gravity effects on the
supercritical CO2 as it traverses the core sample. The magnitude difference in the dispersion coefficients
was about 20%–30% higher in the horizontal orientation compared to the vertical orientation. Bandera
Grey, with the lowest permeability and porosity, exhibited a wider contrast (40%–50%) between the
dispersion coefficients in both orientations as a result of higher interstitial velocity and tortuosity of
the core sample compared to the other core samples tested. Therefore, the effect of permeability and
orientation on mixing between the displacing and displaced gas during EGR are vital. This study
highlights the influence of the permeability variation and plume propagation orientation on the mixing
between CO2 and CH4 during EGR. It provides reservoir engineers with an insight into characterising
gas systems during the design of the EGR technology. The injection rates, injection pressures, and
dip angle of injection from the injector to the producer can be evaluated accurately during simulation
studies prior to field scale application and implementation. Inclusion of such hysteresis will provide
a better representation of the injection process given that the main reason why EGR has not been
widely adopted is the its economic drawback brought on by incessant mixing and contamination of
the recovered CH4.
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