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ABSTRACT Rollators are widely used by people with mobility problems, but previous studies have
been limited to self-report approaches when evaluating their real-world effectiveness. To support studies
based on more robust datasets, a method to estimate mobility parameters, such as gait speed and distance
traveled, in the real world is needed. Body-worn sensors offer one approach to the problem, but rollator-
mounted sensors have some practical advantages providing direct insight into patterns of walking device
used, an under-researched area. We present a novel method to estimate speed and distance traveled from
a single rollator-mounted IMU. The method was developed using data collected from ten rollator users
performing a series of walking tasks including obstacle negotiation. The IMU data is first pre-processed to
account for noise, orientation offset, and rotation-induced accelerations. The method then uses a two-stage
approach. First, activity classification is used to separate the rollator data into one of three classes (movement,
turning, or other). Subsequently, the speed of movement and distance traveled is estimated, using a separate
estimation model for each of the three classes. The results showed high classification accuracy (precision,
recall, and F1 statistics all >0.9). Speed estimation showed mean absolute errors below 0.2 m/s. Estimates
for distance traveled showed errors which ranged from 5% (straight line walking) to over 70%. The results
showed some promise but further work with a larger data set is needed to confirm the performance of our
approach.

INDEX TERMS Activity classification, inertial sensors, machine learning, rollator, speed estimation,
distance estimation.

I. INTRODUCTION
An estimated 19 million people in the US and over 6 million
people in the UK live with, often age-related, reduced mobil-
ity [1], [2]. Many of the people living with reduced mobility
use walking aids to assist moving around their environment.
Indeed, a study carried out in five European countries con-
cluded that walking aids were reported to be used by 29-49%
of older people [3]. In the United States, approximately
4.3 million people over 65 use at least one walking aid [4],
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approving it for publication was Dian Tjondronegoro.

with a view to safely increasing mobility [5], and the major-
ity of walking aid users reported using theirs on a daily
basis [5], [6]. However, despite their widespread use, studies
of mobility in the older people have often ignored the role
played by walking aids [7], [8]. Further, almost all the studies
of walking aid use outside the lab/clinic environment rely on
self-report methods of data collection.

One commonly used and apparentlywell-acceptedwalking
aid is the rollator [5], [6]. Brandt et al. reported [5] that
rollator users in Denmark expressed 94% overall satisfaction
with their device, 4 months after its prescription. However,
rollator users have also reported challenges associated with
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outdoor use. In a recent study [9] in which 60 four-wheeled-
rollator users were interviewed, it was shown that users
reported problems when walking downhill and uphill, during
obstacle crossing and when walking over uneven ground.
In addition, use of rollators may not necessarily help the rol-
lator users to complete complex walking tasks, for example,
opening a door against the walking direction [9]. A subse-
quent laboratory study showed that the quality of walking
was improved when using a rollator compared to walking
unaided, but the quality of walking with rollator was reduced
during uphill and downhill walking compared to level walk-
ing. Body-mounted IMUs were used in this study to derive
gait-metrics, including speed, stride length and cadence [10].

In clinical or laboratory setting, tests of walking speed and
distance travelled over a fixed time are promising measures
for evaluation and monitoring of reduced walking capacity
and/or frailty [11], [12] and have traditionally been used as
a metric of the value of walking aids to older people [13].
However, walking speed has not been widely captured in the
real-world environment, where users face themost challenges
to their mobility, but also where a minimum walking speed
is essential to achieve certain activities (such as crossing the
road at controlled crossings). Further, distance travelled is a
widely used measure of general mobility [7], [8] and being
able to capture these data without needing to instrument the
user themselves with monitoring devices has merit, at least in
those persons who cannot walk without the rollator. Finally,
a better understanding of how walking users negotiate obsta-
cles in the real world is important for urban designers and for
those interested in falls research.

In our previous work [14], we reported a pilot study carried
out in a simulated urban environment, showing promising
predictions of both distance travelled and rollator veloc-
ity from data collected from a single inertial sensor unit
located on the rollator. However, there were only two par-
ticipants in the previous study (one healthy participant and
one participant with multiple sclerosis) and this meant that
further work was needed to validate our approach. Specif-
ically, the pushing patterns observed in both participants,
which were characterized by regular push events separated
by still/low velocity periods, were particularly amenable to
a simple approach using integration to derive velocity and
distance travelled. It was unclear whether or not this pattern
would also be seen in a larger sample. In addition, the testing
in our previous study focused largely on steady walking bouts
over a range of different surfaces, whereas urban walking
is typified by challenges which interrupt steady walking,
including negotiating of curbs and going through doors.

Therefore, the motivation of this paper is to develop a
more robust and more generalisable approach to the charac-
terisation of rollator use, based on rollator-mounted inertial
sensor data. In this paper, we report on the development
and implementation of a method to characterize rollator use
using inertial sensors during both steady walking and when
negotiating real-world relevant obstacles.

The novelty of this work lies in the demonstration of a
robust approach to characterising rollator use by older adults,
based on a simple sensor set, which could be deployed in
the real world. The algorithm is developed and tested with
older rollator users moving through a simulated real-world
environment.

II. METHODS
A. PARTICIPANTS
Ten participants were recruited from the Robert-Bosch-
Hospital in Stuttgart, Germany and experiments were carried
out in the gait lab of the same hospital. The inclusion criteria
were: 1) age 65 years or older, 2) able to walk household
distances with a rollator, but not able to walk such distances
unaided. People were excluded from the study if they showed
1) a history of head injury or concussion, 2) visual disorders
not correctable by glasses, 3) diagnosed peripheral or central
nerve dysfunction, 4) terminal disease, 5) or an inability to
follow verbal instructions.

Participants (8 females) had a median age of 84 years
(minimum = 77, maximum = 91 years), a median height
of 154 cm (minimum = 152, maximum = 168 cm), and
a median weight of 65.5 kg (minimum = 47, maximum =
80 kg). Experience in using a rollator varied from a few days
to over 6 months. Written informed consent was obtained
from all participants, and the experimental protocol was
approved by the University of Tuebingen Medical Faculty
Ethics committee (678/2016BO1) and the University of
Salford Ethics Committee (HSCR13-48).

B. ROLLATOR AND DATA ACQUISITION SYSTEM
One IMU (Xsens MTw2 Awinda (Xsens Technolo-
gies BV, NL)) was attached to the front of the rollator
(Coopers 10907C, Sunrise Medical Limited), as shown
in Figure 1(C). The Mtw2 contains a 3 axis accelerometer,
3 axis rate gyroscope and magnetic field sensor and was set
to sample at a frequency of 100 Hz. The full scale ranges for
the accelerometer and rate gyroscope sensors are ±160 m/s2

and ±2000 deg/s. To obtain the ground truth, the three-
dimensional coordinate data of the rollator were captured
from three clusters of markers using an eight-camera VICON
Motion Capture System (Vicon Motion Systems Ltd, Los
Angeles, USA) at a sampling frequency of 200 Hz, as shown
in Figure 1(B).1

C. EXPERIMENTAL PROCEDURE
Each participant pushed the rollator along a pre-defined des-
ignated route, involving six activities (Figure 2): straight
line walk (5 m); 90◦ turn; 180◦ turn; obstacle crossing
(involving pushing two wheels of the rollator over the end
part of a long wooden beam, cross section 22 mm high and
62 mm wide, while the other two wheels remain on the level
floor); forward-backwards walk (2.5 m) as if to open a door;

1Multiple clusters were used to reduce occlusion issues
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FIGURE 1. Photographs of the rollator and IMU used during the
experiments showing A. rear view; B. front view; and C. accelerometer
mounting with axis orientation.

FIGURE 2. Experimental setup in the gait lab, showing the obstacles to be
negotiated.

and negotiating a 50mm step up. Each participant was asked
to repeat each of the activities twice.

Although all participants started with straight line walking,
the order in which the other tasks were performed was varied
to avoid learning effects and fatigue related issues.

D. SPEED AND DISTANCE ESTIMATION ALGORITHM
Data from the study were used to develop a two-stage
analysis technique to enable speed and distance estimation.

TABLE 1. Activity classification classes and activity types.

The first stage is activity classification that separates the
rollator data into one of three classes (movement, turn-
ing or other), subsequently, the speed and distance estimation
stage estimates the speed of movement and distance travelled.
A separate estimation model is used for each of the three
classes of activity to enablemore accurate estimation of speed
and distance.

1) ACTIVITY CLASSIFICATION
a: ACTIVITY CLASSES
The activity classifier uses a one-vs-one multiclass support
vector machine (SVM) [15] to classify each trial into one of
six activity types, which are then aggregated into one of three
overall categories (termed ‘classes’). The three classes used
are given in Table 1.

SVMs are well used techniques for classification tasks,
especially when there is a large number of features as we
have in this study, and operate principally on binary problems.
A multi-stage SVMs, which have a track record of use for
physical activity classification [16]0–[18], combine several
binary SVMs with a voting mechanism to achieve multi-class
classification. Furthermore, SVM is a well-known algorithm
that works successfully in binary classification scenarios.
In the work presented in this paper, a one-vs-one method-
ology was used where an SVM is trained to recognise one
activity type against the remainder, resulting in this case in six
individual SVMs being used. The class with the most votes
from the one-vs-one classifications is then assigned the class
label.

b: FEATURE DESIGN AND SELECTION
Features are calculated from each trial from the following
7 parameters: X, Y, Z and RMS (Root Mean Square) signals
from the accelerometer and the X, Y and Z axis signals from
the gyroscope. A 43-feature set was (Table 2) used as a base
set and additionally, each signal was processed with one of 10
different initial processing techniques (Table 3) before the
base set of features was calculated for the signal.

In summary, 3,010 signal features were calculated. Fea-
ture selection using Latent Feature Selection [19] (with the
FSLib library [20]) was used to reduce this to a more
manageable number. A candidate feature set (CFS) was cal-
culated to identify each class against all the others, and the
features that occur in all six CFSs were used as the final
feature set. Feature selection in this way reduced the feature
set to 2,588 features. The SVM classifier was subsequently
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TABLE 2. The 43-feature base feature set.

trained with the reduced feature set using the Matlab 2016b
Statistics and Machine Learning Toolbox. The SVM clas-
sifier was trained and tested using 1000 runs of 10-fold
cross-validation, which provide a sensible statistical average
in an acceptable runtime.

2) SPEED AND DISTANCE ESTIMATION
The estimator stage is an evolution of previous work by
the authors [14], which has been expanded significantly and
proceeds in the following manner.

TABLE 3. The 10 pre-processing methods for feature extraction.

a: STATIC ALIGNMENT CORRECTION
The IMU is mounted onto the rollator such that there is
a constant static pitch error of around 16 degrees. For the
sake of completeness static roll offset is also corrected for
at this point. This is corrected through calculation and use of
a rotation matrix to adjust the accelerometer and gyroscope
data to be aligned with true vertical. Initially, the accelerom-
eter data, A, are padded with random noise to match the
amplitude of the initial part of the signal and a low pass
filter at 0.02 Hz is applied to extract the baseline data. The
padding is subsequently removed from the filtered signal to
give AL =

{
ALx ,ALy,ALz

}
.

It is assumed that acceleration data is of the form
Ax =

{
ax1a

x
2, . . . , a

x
n
}
and that gyroscope data are of the form

Gx =
{
gx1g

x
2, . . . , g

x
n
}
, where the superscript letter indicates

the axis, X, Y or Z. The set of all accelerometer data will be
denoted as A = {Ax ,Ay,Az} and the set of all gyroscope data
as G = {Gx ,Gy,Gz}. A single frame of A can be represented
as Ai =

{
axi , a

y
i , a

z
i

}
, and similarly for G.

Orientation is corrected for by calculating the pitch and roll
(α and β) of the IMU over the first 200 samples (two seconds)
of the recording, when the rollator is assumed to be static, as:

α =
1

200

200∑
i=1

atan

 aLyi√
aLx

2

i + a
Lz2
i

 (1)

β =
1
200

200∑
i=1

atan

 aLxi√
aLy

2

i + a
Lz2
i

 (2)

The rotation matrix R is then constructed as:

Rα =

 cos (α) 0 −sin (α)
0 1 0

sin(α) 0 cos(α)

 , (3)

Rβ =

 1 0 0
0 cos(β) −sin(β)
0 sin(β) cos(β)

 , (4)

Rγ =

 1 0 0
0 1 0
0 0 1

 , (5)

R = RγRαRβ , (6)
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FIGURE 3. Position and abstraction of the offset accelerometer in the
plane parallel to the normal direction of travel for correction due to pitch
(A) and the horizontal plane for correction due to yaw (B) showing the
Accelerometer (Acc.), the centre of rotation (COR), directions of rotation,
positioning offsets (OY and OZ), distance to COR (rα and rγ ), and offset
of the accelerometer in relation to the line rα(ϕ).

And then used to rotate A and G to correct for the static
alignment of the IMU, giving AR and GR respectively, such
that:

ARi = R

 axiayi
azi

 , ∀1 ≤ i ≤ n (6a)

GRi = R

 gxigyi
gzi

 , ∀1 ≤ i ≤ n (6b)

b: FILTERING
Once static alignment has been corrected, both the accelerom-
eter and gyroscope data are filtered with low-pass filters to
provide filtered versions of the data that are used further down
the processing chain. AR is filtered (to give ARL) using a
low-pass Butterworth filter, which is designed on-the-fly as
the passband and stopband parameters are optimised in the
training step. GR is filtered, using a 4-section lowpass IIR
filter with a cutoff of 6 Hz, to remove high frequency noise,
giving GRL .

c: OFFSET CENTRE OF ROTATION CORRECTION
Due to the mounting position of the accelerometer on the
rollator, shown in Fig. 3 any turning forces applied to the
rollator by the user will induce tangential and radial accel-
eration in the accelerometer that would not be present if the
accelerometer were mounted at the centre of rotation (COR).
These induced accelerations would introduce errors in the
estimation of linear velocity and hence distance travelled
if not removed. In this step we use equations of circular
motion and an estimate of the COR to estimate the induced
acceleration and remove it from the data. The offsets of the
COR (rα and rγ ) from the IMU are optimisation parameters.
The following formula are used to calculate the correction

for a particular time point and angular velocity is given by:

ω =
δθ

δt
. (7)

Tangential velocity given by:

vt = ωr (8)

and used to calculate tangential velocity components for pitch
and yaw,

vαt = ω
αrα, (9)

vγt = ω
γ rγ , (10)

where the values for ω are taken from the gyroscope data.
Radial acceleration is given by:

ar = ω2r (11)

and used to calculate radial acceleration for pitch and yaw
components as:

aαr = ω
α2rα, (12)

aγr = ω
γ 2rγ . (13)

Tangential acceleration for pitch and yaw are calculated as:

aαt = 1v
α
t × fs, (14)

0aγt = 1v
γ
t × fs, (15)

where fs is the sample rate in Hz, 1v the change in velocity
between one sample and the next.

The angle φ is the angle between the line from the
COR to the accelerometer and the vertical axis as shown
in Figure 3 (A) and is used to determine the fraction of radial
and tangential acceleration that manifests in the accelerome-
ter due to fact that the accelerometer is not aligned with the
radial or tangential axes if there is a horizontal offset. The
angle φ is calculated as:

φ = atan
(
OY
OZ

)
(16)

and used to calculate the components of radial acceleration
and tangential acceleration that project onto the Z and Y axis
of the accelerometer.

aαyt = aαt cos (φ) , (17)

aαzt = aαt sin (φ) , (18)

aαyr = aαr sin (φ) , (19)

aαzr = aαr cos (φ) . (20)

The final adjustments to the accelerometer X, Y and Z axis
are given by:

x = x − aγt , (21)

y = y+ aαyr + a
γ
r + a

αy
t , (22)

z = z− aαzr + a
αz
t (23)

These corrections are applied at each time-point to the
accelerometer data ARL to give AC .
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d: CORRECTION OF DYNAMIC PITCH AND ROLL
Dynamic pitch and roll, that is to say, the pitch and roll of the
rollator while it is being used, serve to alter the orientation
of the device with respect to the earth and cause the forward
acceleration to register slightly on axis other than Y. This
is corrected in this step to ensure that all forward motion
is mapped to the Y axis and all lateral motion mapped to
the X axis. Dynamic pitch and roll correction uses the same
approach as static pitch and roll correction but replaces the
calculation of α and β in Equations (1) and (2) with a com-
plementary filter to calculate the pitch and roll angles at all
time points.

αi= 0.98

(
αi−1 +

gRLxi

100

)
+0.02

atan

 aCyi√
aCx

2

i + aCz
2

i


(24)

βi= 0.98

(
βi−1 +

gRLyi

100

)
+0.02

atan

 aCxi√
aCy

2

i + a
Cz2
i


(25)

where

α0 = atan

 aCy1√
aCx

2

1 + aCz
2

1

 (26)

β0 = atan

 aCx1√
aCy

2

1 + a
Cz2
1

 (27)

From this point, the rotation matrix is constructed and used
in the same way as for static pitch and roll correction for the
accelerometer only to give AD.

e: SPEED AND DISTANCE CALCULATION
An initial velocity estimateVE is calculated using cumulative
trapezoidal integration over the X and Y components of AD,
such that:

vEx0 = 0, (28)

vEy0 = 0, (29)

vExi = vExi−1 +
aDxi−1 + a

Dx
i

2
, (30)

vEyi = vEyi−1 +
aDyi−1 + a

Dy
i

2
. (31)

Due to the nature of the preceding calculations, and the
propensity for accelerometer data to drift, the velocity esti-
mate must be rebased, in accordance with the authors previ-
ous work [14]. This is achieved by estimating the baseline by
interpolating through the points when the velocity estimate is
considered to show no movement, referred to as zero points.

The zero points are identified by finding runs of points
where the difference between the upper and lower envelope
of the smoothed RMS of the velocity signal is less than a
threshold value. The threshold value andminimum run length

are optimisation parameters. Once the zero points have been
identified, linear interpolation is used to interpolate between
the velocities at these points to estimate the baseline, which
is then subtracted from the velocity signal. The adjusted
velocity signal can then be cumulatively integrated to get
distance travelled over time. This is repeated in the X and
Y axis and the Euclidian combination of the two gives total
distance.

f: TRAINING AND CROSS-VALIDATION
The speed and distance estimator trains up three different
estimators, designed to match the three grouped activity cat-
egories identified by the 3-class classification. A separate
set of three estimators is optimised for each user, with the
target of obtaining the same speed as the Vicon data shows.
Due to the highly limited quantity of data available, it was
not possible to train and test the estimators on separate sets
of data. Instead, the estimators in this work show what is
possible given the data.

E. DATA PROCESSING
Data were taken from the Vicon data files and the Xsens data
files, which had been aligned to synchronise the timestamps
of both datasets, and subjected to some pre-processing steps
prior to further processing. Initially, Vicon data were down-
sampled to 100Hz tomatch theXsens data. Secondly, the axis
registration of the Xsens data were corrected as some of
the trials had the Xsens unit attached incorrectly and rotated
through 180 degrees around the Z-axis; the full axis regis-
tration from IMU to biological axis is given in Figure 1(C).
Finally, the gyroscope data were zeroed by subtracting the
mean of the first 200 samples from each signal.

Data files for each recording typically contain two rep-
etitions of each trial. It is worth noting that each of the
trials used to train the ‘‘turning’’ and ‘‘other’’ classifier typ-
ically contained data immediately preceding and immedi-
ately following the negotiation of the activity in question.
For example, ‘‘obstacle’’ trials contained data not only of
the period during which the rollator was moving over the
obstacle, but also some straight walking immediately prior to,
and following this. For use in the activity classification stage,
these recordings were split in half in the middle of the largest
section where there was no Vicon data, giving two trials per
recording. Due to themethodology used in the estimator stage
this split was not possible so recordings were left containing
two trials.

III. RESULTS
A. ACTIVITY CLASSIFICATION
Tables 4 to 7 show the results of the activity classifier applied
to the data. The confusion matrix for the full six-class classi-
fier is shown in Table 4 and the derived accuracymeasures are
shown in Table 5. In all cases, Fwd-Bwd refers to the forward-
backwards walk (2.5 m) as if to open a door. The confusion
matrix and derived accuracy measures for the reduced three-
class classifier are shown in Tables 6 and 7.
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TABLE 4. Confusion matrix for the full 6-class one-vs-one SVM classifier
showing the mean and standard deviation results over 1000 runs.

TABLE 5. Precision, recall and F1 statistics calculated from the average
confusion matrix for the 6-class classifier (Table 4).

TABLE 6. Confusion matrix for the grouped 3-class problem, generated
by aggregating results from Table 4.

B. SPEED AND DISTANCE ESTIMATES
Tables 8 to 11 show results from speed and distance estimates
using groupings for training and testing as in the grouped
3-class problem. Figure 4 show example plots for speed
and distance traveled: ‘Ground truth’ data collected using
the Vicon measurement system and ‘estimated’ using the
approach presented in this paper.

TABLE 7. Precision, recall and F1 statistics calculated from the average
confusion matrix for the 3-class classifier (Table 6).

TABLE 8. Average absolute error in speed (m/s) over each time point for
each trial.

IV. DISCUSSION
This paper has introduced a method to characterize activity
types and an improved method for estimating speed and
distance travelled with a rollator-mounted IMU sensor. The
study involved 10 users of rollators, who walked on a course
designed to represent obstacles encountered in daily life,
including going up a step and turning a corner. In recognition
that IMUs may not always be placed horizontally on a rolla-
tor, we also developed a mechanics-based approach to correct
for the static offset in orientation of the accelerometer unit
with respect to gravity. We also implemented an optimisation
approach to compensate for the tangential and radial accel-
erations seen by the IMU when rotating. Comparisons were
made between speed and distance calculated from rollator-
mounted IMU sensor data using our algorithm and rollator-
mounted reflective marker data.

The classification accuracy of full 6-class, the straight
task remains fairly high (Precision = 0.828; Recall = 0.915;
F1 = 0.869). However the classification results for the
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TABLE 9. Percentage error in speed (m/s) over each time point for each
trial.

TABLE 10. Total error in distance travelled (m) for each trial.

remaining tasks are somewhat mixed. In particular, there is a
large amount of cross-class confusion between Left Turn and
Spot Turn and between Step and Obstacle. This is perhaps
unsurprising, given the similarities between, for example,
obstacle and step crossing and being able to discriminate

TABLE 11. Percentage error in distance travelled for each trial.

FIGURE 4. Example data (participant 05) for estimated and
marker-derived speed and distance. Top left: ‘‘Straight Speed’’; Top right:
‘‘Spot Turn Speed’’; Bottom left: ‘‘Straight distance’’; Bottom right: ‘‘Spot
Turn distance’’. Please note that the participants sometimes moved
outside of the Vicon camera capture volume and these periods
correspond to the gaps in the ground truth data.

between the two may be of limited relevance to clini-
cians. Therefore, we also investigated the performance of a
classifier which considered only 3 classes (straight, turning
and other). The classification accuracy improved, with preci-
sion, accuracy and F1 statistics all greater than 0.9.

Overall, the performance of our estimation on speed was
satisfied. The mean absolute errors for the straight, left turn
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and spot turn were below 0.1m/s, which is a limit of clinically
meaningful differences in walking speed [21]. The step task
was the worst case with a mean absolute error of 0.2 m/s,
although the clinical relevance of this error has yet to be deter-
mined. To allow comparison, various approaches to estimat-
ing gait speed from body worn IMUs have been reported.
Results vary with both body location and methods used.
For example, Laudanski and colleagues [22] showed RMSE
of 0.14 m/s from a shank-mounted IMU; an approach based
on a wrist worn IMU resulted in accuracy and precision
of 5.9% and 4.7%, respectively [23]. It is worth noting that
many previous studies have used healthy young subjects,
whose walking was likely to be more regular than the par-
ticipants in this study.

Very small absolute percentage error (mean percentage
error = 5.16%) of the straight task was achieved for distance
travelled estimation. It is clear, the distance travelled estima-
tion for the remaining tasks were very poor. The mean errors
are ranging from 18.02% - 72.31%. It is worth noting that
the absolute distance travelled during some of these activities
was rather small and hence may have limited effect on the
perhaps more clinically important measure of total distance
travelled.

It is worthwhile to compare the findings in this paper
with our previous research [14]. In our earlier work we col-
lected data over a number of periods of straight line walking
over different surfaces. In addition, one of the two subjects
studied was unimpaired. In both subjects, the pushing style
was characterized by push events, each fairly consistently
separated by periods of no movement. The data was rela-
tively straightforward to analyse and showed promise in terms
of prediction of both walking speed and distance travelled.
However, it is clear from this study that the pushing style
seen in our earlier study may not have been representative
of a wider population. Of our 10 participants, by contrast to
our previous study [14], none showed a clear pattern of dis-
tinct push events interspersed with low velocity periods (See
last Figure). This observation is consistent with a previous
study [24].

There are clear practical advantages to mounting sensors
onwalking aids, as opposed to the person themselves, particu-
larly when studying behaviors over extended periods of time.
For example, the tolerance for wearable sensors is limited
and participants periodically remove sensors, for example
when sleeping, requiring algorithms to distinguish periods of
wear from non-wear. Nevertheless, monitoring based solely
on a sensor on the walking aid provides no direct observation
of the user themselves and therefore provides no data on
periods of unassisted mobility. Further, there is the potential
to misattribute observations from a rollator-mounted sen-
sor to the wrong individual, particularly in settings such as
care homes where multiple users of rollators may be in the
same building. Further work is needed in the future to better
understand when a single sensor on the rollator provides
sufficient information and when multiple sensors may be
required.

By contrast to the extensive work interpreting data from
body-worn sensors [25], methods to interpret sensor data
from walking aids is in its infancy. For example, Culmer
and colleagues investigated the potential for an instrumented
walking stick (sometimes referred to as a ‘cane’) to be used
for gait assessment and training [26]. A recent paper has
shown the potential to estimate distance travelled from walk-
ing stick-mounted IMU [27]. In other related work, three
of the authors (EM, ST and LK) have shown the poten-
tial for characterizing stability through a combination of
instrumented walking aids, insole pressure systems and an
optoelectronic position tracking system [28]. Longer term
we see the potential to extend and combine some of these
techniques to better understand both mobility and fall events
in vulnerable older adults.

One of the limitations of this work is the relatively limited
number of participants (all of whom were trained at the same
centre in Germany) and the low number of repetitions of
each activity by each participant. This forced an approach
to the machine learning which could lead to over special-
ising of the resultant classifiers and estimators. This was
unavoidable given the data that were available and the results
presented here showcase the best possible outcome. Further
work in this area would need to include more participants and
more repetitions of each activity in order to build a robust
classifier.

V. CONCLUSION AND FUTURE WORK
The study has shown the potential to use a machine learn-
ing approach to estimate rollator velocity and distance trav-
elled from a single IMU located on a four wheeled rollator.
The results show promise, but further work with a larger
data set and an increased number of subjects is needed
to confirm the performance of our approach. While the
decision to use a SVM as the classifier in this work is
supported by the promising results, it would be interest-
ing to compare the performance with other classifiers in
future work. Our methods show promise as a tool to better
understand older people’s use of mobility aids in the urban
environment.

REFERENCES
[1] L. I. Iezzoni, E. P. McCarthy, R. B. Davis, and H. Siebens, ‘‘Mobility

difficulties are not only a problem of old age,’’ J. Gen. Internal Med.,
vol. 16, no. 4, pp. 235–243, Apr. 2001.

[2] Disability in the United Kingdom 2016 Facts and Figures. Papworth
Everard, U.K.: Papworth Trust, 2016.

[3] C. Löfqvist, C. Nygren, Z. Széman, and S. Iwarsson, ‘‘Assistive devices
among very old people in five European countries,’’ Scand. J. Occupational
Therapy, vol. 12, no. 4, pp. 181–192, 2005.

[4] H. S. Kaye, T. Kang, and M. P. LaPlante, ‘‘Mobility device use in the
United States: Disability statistics report,’’ U.S. Dept. Educ., Nat. Inst.
Disab. Rehabil. Res., Washington, DC, USA, Tech. Rep. 14, 2000.

[5] Å. Brandt, S. Iwarsson, and A. Ståhl, ‘‘Satisfaction with rollators among
community-living users: A follow-up study,’’ Disab. Rehabil., vol. 25,
no. 7, pp. 343–353, 2003.

[6] K. Samuelsson and E. Wressle, ‘‘User satisfaction with mobility assistive
devices: An important element in the rehabilitation process,’’Disab. Reha-
bil., vol. 30, no. 7, pp. 551–558, 2008.

VOLUME 7, 2019 71395



M. Sun et al.: Methods to Characterize the Real-World Use of Rollators Using Inertial Sensors

[7] L. Böcker, P. van Amen, and M. Helbich, ‘‘Elderly travel frequencies and
transport mode choices in greater Rotterdam, The Netherlands,’’ Trans-
portation, vol. 44, no. 4, pp. 831–852, Jul. 2017.

[8] W. Liu, H. Lu, Z. Sun, and J. Liu, ‘‘Elderly’s travel patterns and trends: The
empirical analysis of Beijing,’’ Sustainability, vol. 9, no. 6, p. 981, 2017.

[9] U. Lindemann, M. Schwenk, J. Klenk, M. Kessler, M. Weyrich, F. Kurz,
and C. Becker, ‘‘Problems of older persons using a wheeled walker,’’ Aging
Clin. Exp. Res., vol. 28, no. 2, pp. 215–220, 2016.

[10] U. Lindemann, M. Schwenk, S. Schmitt, M. Weyrich, W. Schlicht, and
C. Becker, ‘‘Effect of uphill and downhill walking onwalking performance
in geriatric patients using a wheeled walker,’’ Zeitschrift für Gerontologie
und Geriatrie, vol. 50, no. 6, pp. 483–487, 2017.

[11] N. M. Salbach, K. K. O’Brien, D. Brooks, E. Irvin, R. Martino, P. Takhar,
S. Chan, and J.-A. Howe, ‘‘Reference values for standardized tests of
walking speed and distance: A systematic review,’’ Gait Posture, vol. 41,
no. 2, pp. 341–360, Feb. 2015.

[12] S. S. Kuys, N. M. Peel, K. Klein, A. Slater, and R. E. Hubbard, ‘‘Gait speed
in ambulant older people in long term care: A systematic review and meta-
analysis,’’ J. Amer. Med. Directors Assoc., vol. 15, no. 3, pp. 194–200,
2014.

[13] M. Sanjak, V. Langford, S. Holsten, N. Rozario, C. G. M. Patterson,
E. Bravver, W. L. Bockenek, and B. R. Brooks, ‘‘Six-minute walk test
as a measure of walking capacity in ambulatory individuals with amy-
otrophic lateral sclerosis,’’ Arch. Phys. Med. Rehabil., vol. 98, no. 11,
pp. 2301–2307, Nov. 2017.

[14] T.-J. Cheng, L. Kenney, J. D. Amor, S. B. Thies, E. Costamagna, C. James,
and C. Holloway, ‘‘Characterisation of rollator use using inertial sensors,’’
Healthcare Technol. Lett., vol. 3, no. 4, pp. 303–309, Dec. 2016.

[15] J. Weston and C. Watkins, ‘‘Multi-class support vector machines,’’
Dept. Comput. Sci., Royal Holloway, Univ. London, London, U.K.,
Tech. Rep. CSD-TR-98-04, 1998.

[16] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz, ‘‘Human
activity recognition on smartphones using a multiclass hardware-friendly
support vector machine,’’ in Proc. Int. Workshop Ambient Assist. Living,
Vitoria-Gasteiz, Spain, Dec. 2012, pp. 216–223.

[17] A.Mannini and A.M. Sabatini, ‘‘Machine learningmethods for classifying
human physical activity from on-body accelerometers,’’ Sensors, vol. 10,
no. 2, pp. 1154–1175, 2010.

[18] F. Attal, S. Mohammed, M. Dedabrishvili, F. Chamroukhi, L. Oukhellou,
and Y. Amirat, ‘‘Physical human activity recognition using wearable sen-
sors,’’ Sensors, vol. 15, no. 12, pp. 31314–31338, 2015.

[19] G. Roffo, S.Melzi, U. Castellani, andA. Vinciarelli, ‘‘Infinite latent feature
selection: A probabilistic latent graph-based ranking approach,’’ in Proc.
IEEE Int. Conf. Comput. Vis., Venice, Italy, Oct. 2017, pp. 1398–1406.

[20] G. Roffo. (2018). Feature Selection Library. [Online]. Available: https://
uk.mathworks.com/matlabcentral/fileexchange/56937-feature-selection-
library

[21] S. Perera, S. H. M. PharmD, R. C.Woodman, and S. A. Studenski, ‘‘Mean-
ingful change and responsiveness in common physical performance mea-
sures in older adults,’’ J. Amer. Geriatrics Soc., vol. 54, no. 5, pp. 743–749,
May 2006.

[22] A. Laudanski, S. Yang, and Q. Li, ‘‘A concurrent comparison of inertia
sensor-based walking speed estimation methods,’’ presented at the IEEE
Annu. Int. Conf. Eng. Med. Biol. Soc., 2011.

[23] S. Zihajehzadeh and E. J. Park, ‘‘Regression model-based walking speed
estimation using wrist-worn inertial sensor,’’ PLoS One, vol. 11, no. 10,
Oct. 2016, Art. no. e0165211.

[24] J. Y. Tung, ‘‘Development and evaluation of the iWalker: An instrumented
rolling walker to assess balance and mobility in everyday activities,’’
Ph.D. dissertation, Graduate Dept. Rehabil. Sci., Univ. Toronto, Toronto,
ON, Canada, 2010.

[25] F. Horak, L. King, and M. Mancini, ‘‘Role of body-worn movement
monitor technology for balance and gait rehabilitation,’’ Phys. Therapy,
vol. 95, no. 3, pp. 461–470, Mar. 2015.

[26] P. R. Culmer, P. C. Brooks, D. N. Strauss, D. H. Ross, M. N. Levesley,
R. J. O’Connor, and B. B. Bhakta, ‘‘An instrumented walking aid to
assess and retrain gait,’’ IEEE/ASME Trans. Mechatronics, vol. 19, no. 1,
pp. 141–148, Feb. 2014.

[27] D. C. Dang and Y. S. Suh, ‘‘Walking distance estimation using walking
canes with inertial sensors,’’ Sensors, vol. 18, no. 1, p. 230, 2018.

[28] E. Costamagna, S. B. Thies, L. P. J. Kenney, D. Howard, A. Liu, and
D. Ogden, ‘‘A generalisable methodology for stability assessment of walk-
ing aid users,’’ Med. Eng. Phys., vol. 47, pp. 167–175, Sep. 2017.

MINGXU SUN was born in Jinan, China, in 1984.
He received the B.S. degree in control engineering
from the University of Jinan, in 2007, and theM.S.
degree inmanufacturing engineering and the Ph.D.
degree in medical engineering from the University
of Salford, Manchester, U.K., in 2014.

Following periods of Postdoctoral work with
the Rehabilitation Technologies and Biomedical
Engineering Group at University of Salford, he
was appointed as an Assistant Professor in rehabil-

itation technologies with the School of Electrical Engineering, University of
Jinan, in 2018. His research interests includes the development of functional
electrical stimulation systems for use in stroke rehabilitation, together with
novel approaches of using inertial sensors for their control; the use of inertial
sensors to understand the real world use of walking aids.

JAMES AMOR is a Biomedical Engineer with
the University of Warwick. His research inter-
est includes the development of computationally
intelligent techniques to extract meaning from
multi-sensor systems for applications in health and
wellbeing and the use of wearable technology as
a data gathering platform within these systems.
His work primarily involves the application of
intelligent data analysis techniques to large, per-
sonal data-sets to extract personalised behaviour

patterns, and detect differences in behaviour, which are indicative of chang-
ing health state. His work also involves the use of wrist-worn wearable
devices, particularly smart-watches and accelerometers to monitor location
and activity in a longitudinal setting, and the development of signal pro-
cessing techniques to detect and analyse activity and movement from these
sensors.

CHRISTOPHER J. JAMES (M’92–SM’02) was
born in Malta. He received the B.Eng. (Hons.)
degree in electrical engineering from the Uni-
versity of Malta, in 1992, and the Ph.D. degree
from the University of Canterbury, New Zealand,
in 1997, through the Commonwealth Scholarship.

After briefly working in the semiconductor
manufacturing with ST Microelectronics, from
1991 to 1993, he was a Postdoctoral Research
Fellow of the EEG Department, Montreal Neuro-

logical Institute, McGill University, Montreal, Canada, from 1997 to 1998.
From 1998 to 2001, he was a Postdoctoral Research Fellow of the Neural
Computing Research Group, Aston University, Birmingham, U.K. He was
a Lecturer with the Neural Computing Research Group, until 2003. Then,
he was a Reader in biomedical signal processing with ISVR, University
of Southampton. From 2010 2015, he was a Professor of healthcare tech-
nology with the University of Warwick and the Director of the Institute of
Digital Healthcare. He is currently a Professor of biomedical engineering
and the Director of Warwick Engineering in Biomedicine, University of
Warwick. His research interest includes the analysis of EEG and mag-
netoencephalogram (MEG) signals through intelligent signal and pattern
processing techniques, such as artificial neural networks, specifically when
applied to epilepsy analysis and for brain-computer interfacing. He is also
interested in the development of wearable technology for the assessment
of behavior and behavior analysis techniques. Furthermore, he is interested
in the development of blind source separation and independent component
analysis-based techniques for practical implementation in multi-channel and
single channel biomedical signal recordings.

Prof. James is a member of the IEEE Engineering in Medicine and
Biology (EMB) Society. He was the past Europe Representative on the EMB
Administrative Committee. He was the Chair of the U.K. and Ireland EMBS
Chapter, and past IEEE Region Eight Vice Chair for Technical Activities.
He is the Founding Editor-in-Chief of Healthcare Technology Letters with
the IET.

71396 VOLUME 7, 2019



M. Sun et al.: Methods to Characterize the Real-World Use of Rollators Using Inertial Sensors

ELEONORA COSTAMAGNA received the bach-
elor’s and master’s degrees in biomedical engi-
neering from the Polytechnic University of Turin,
Italy, in 2011 and 2014, respectively, and the Ph.D.
degree in biomedical engineering from the Univer-
sity of Salford, under the prestigious Pathway to
Excellence Studentship Scheme. Prior to starting
the Ph.D. degree, in 2015, she was a Graduate
Research Trainee for one year with the University
of Sydney, where she developed a computational

model of stem cells expansion in bioreactors. Her research interests include
the safety of walking aids and fall prevention, but her academic interests
extend to rehabilitation technologies and assistive devices. In 2014, she has
received a scholarship in the field of rehabilitation engineering from the
Italian Institute of Technology (IIT).

SIBYLLE THIES received the Ph.D. degree in
biomedical engineering and biomechanics from
the University of Michigan, USA, in 2004.
Her expertise lies in the 3D analysis of human
movement using optoelectronic cameras, and iner-
tial and force sensors and processing their sig-
nals. She came to the University of Salford, as a
Postdoctoral Researcher, in 2005, to work on the
European Framework VI Project Healthy AIMS,
within which she supported the development of

a movement pattern recognition algorithm to trigger functional electrical
muscle stimulation in the forearm, to assist stroke survivors with their hand
opening. She was with the EPSRC-Funded IDGO TOO Project (inclusive
design for getting outdoors), specifically, she led the experimental gait anal-
ysis of older people when crossing the road, to investigate the effect of tactile
pavement on gait. In 2011, she became a Permanent Staff of the University
of Salford. She has worked on a number of projects concerned with gait
stability of older adults, with a special focus on walking aid ambulation.
She has published over 30 peer-reviewed publications, regularly presented at
international and national conferences. She is an active reviewer of a number
of journals in her research field.

ULRICH LINDEMANN received the Ph.D.
degree, in 2004. He is a Senior Researcher with the
Department of Geriatrics and Clinic for Geriatric
Rehabilitation, Robert-Bosch-Hospital, Stuttgart.
After working as a Professional Coach, from
1989 to 1990, and as a Therapist in orthopaedic
and neurologic rehabilitation, from 1990 to 1998,
he started as a Research Fellow of the Geriatric
Centre Ulm/Alb-Donau, Academic Centre of the
University of Ulm, from 1998 to 2004. He wrote

the Ph.D. thesis with the University of Ulm. He is involved in teaching of
bachelor’s and master’s degree students (medical school, sport science, and
physiotherapy) concerning the subject of strength and balance exercise for
older persons, the assessment of physical performance and physical activity,
and environmental effects on physical performance and physical activity,
representing his research activities.

JOCHEN KLENK received the Diploma degree in
medical engineering, the master’s degree in public
health, and the Ph.D. degree in human biology. He
is currently a Professor of public health with the IB
University of Applied Sciences, Berlin. He is also
a Senior Research Fellow with the Institute of Epi-
demiology andMedical Biometry, UlmUniversity,
and the Department of Geriatrics and Clinic for
Geriatric Rehabilitation, Robert-Bosch-Hospital,
Stuttgart. His main research interests include the

epidemiology of successful ageing, sensor-based physical activity monitor-
ing, and sensor-based fall measurements.

LAURENCE KENNEY received the B.S. degree
in mechanical engineering and the PhD. degree
from the University of Salford, in 1993. Follow-
ing periods of Postdoctoral work in U.K. and
The Netherlands, he was appointed to a per-
manent position with the University of Salford,
in 2000. Since 2014, he has been a Professor
in rehabilitation technologies with the Centre for
Health Sciences Research, University of Salford.
His research interests include design and novel

approaches to the evaluation of prosthetics, functional stimulation systems,
and most recently walking aids. He is a member of the EPSRC Peer Review
College, the Chair of the Scientific Committee of the Inspire Charity, and
also the Chair of the 2019 Trent International Prosthetics Symposium.

VOLUME 7, 2019 71397


	INTRODUCTION
	METHODS
	PARTICIPANTS
	ROLLATOR AND DATA ACQUISITION SYSTEM
	EXPERIMENTAL PROCEDURE
	SPEED AND DISTANCE ESTIMATION ALGORITHM
	ACTIVITY CLASSIFICATION
	SPEED AND DISTANCE ESTIMATION

	DATA PROCESSING

	RESULTS
	ACTIVITY CLASSIFICATION
	SPEED AND DISTANCE ESTIMATES

	DISCUSSION
	CONCLUSION AND FUTURE WORK
	REFERENCES
	Biographies
	MINGXU SUN
	JAMES AMOR
	CHRISTOPHER J. JAMES
	ELEONORA COSTAMAGNA
	SIBYLLE THIES
	ULRICH LINDEMANN
	JOCHEN KLENK
	LAURENCE KENNEY


