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23 Abstract

24 Medial knee loading during stair negotiation in individuals with medial knee osteoarthritis, has 

25 only been reported in terms of joint moments, which may underestimate the knee loading. This 

26 study assessed knee contact forces (KCF) and contact pressures during different stair 

27 negotiation strategies. Motion analysis was performed in five individuals with medial knee 

28 osteoarthritis (52.8±11.0 years) and eight healthy subjects (51.0±13.4 years) while ascending 

29 and descending a staircase. KCF and contact pressures were calculated using a multi-body knee 

30 model while performing step-over-step at controlled and self-selected speed, and step-by-step 

31 strategies. At controlled speed, individuals with osteoarthritis showed decreased peak KCF 

32 during stair ascent but not during stair descent. Osteoarthritis patients showed higher trunk 

33 rotations in frontal and sagittal planes than controls. At lower self-selected speed, patients also 

34 presented reduced medial KCF during stair descent. While performing step-by-step, medial 

35 contact pressures decreased in osteoarthritis patients during stair descent. Osteoarthritis 

36 patients reduced their speed and increased trunk flexion and lean angles to reduce KCF during 

37 stair ascent. These trunk changes were less safe during stair descent where a reduced speed was 

38 more effective. Individuals should be recommended to use step-over-step during stair ascent 

39 and step-by-step during stair descent to reduce medial KCF.  

40 Keywords: Knee osteoarthritis, motion analysis, knee contact forces, contact pressures, 

41 musculoskeletal modeling.

42 Word Count: 3996 words.
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43 Introduction

44 Stair negotiation and level walking are common activities of daily living. However, stair 

45 negotiation is biomechanically more challenging 1, demanding a higher range of motion in the 

46 lower extremity 2, higher moments acting at the knee joint 3-5 and, consequently, increased 

47 quadriceps demands compared to level walking. Thus, stair negotiation is particularly 

48 demanding for the elderly or subjects with knee osteoarthritis (OA) 6, who often face the first 

49 difficulties in daily task performance and pain complaints 7, particularly during stair descent 8. 

50 However, stair negotiation has not been deeply explored in OA with most studies in literature 

51 focusing on knee loading during level walking as a biomarker for OA onset and progression. 

52 Previous literature has shown reduced knee flexion moments (KFM) 4,7,9, non-conclusive 

53 findings in knee adduction moments (KAM) 4,10 and altered muscle activation patterns 6 in 

54 severe knee OA patients during stair negotiation. In addition, these patients exhibited higher 

55 trunk flexion angles 11,12 and hip flexion moments 11,13 than healthy subjects while ascending 

56 stairs 11. These alterations observed in OA patients have been associated with a loss of 

57 quadriceps function 14,15 as these muscles provide extensor moments necessary to accelerate 

58 the upward propulsive phase occurring during the first part of stair ascent and to decelerate the 

59 lowering of the body during stair descent 16. 

60 Generally, healthy and young individuals use a traditional step-over-step motion pattern 

61 during stair negotiation, but OA patients frequently feel forced to adjust their stair gait due to 

62 knee pain, reduced range of motion, muscle weakness, stiffness and instability complaint 17,18. 

63 Therefore, they often adopt alternate walking patterns, such as increased handrail use, sideways 

64 motion, or a step-by-step patterns (placing both feet on the same step) 19,20,21 and/or a 

65 significantly reduced speed 4,22. In healthy subjects, the step-by-step strategy has been 

66 demonstrated to require higher energy costs and be less efficient than step-over-step, while it 

67 seems to increase stability and compensates for lower-limb weakness 19,23. However, 
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68 significant reductions in KFM were found for the leading leg during step-by-step when 

69 compared to step-over-step while descending stairs in healthy subjects, and reduced 

70 anteroposterior force for step-by-step versus step-over-step either during stair ascent or descent 

71 23. 

72 To date it is still unknown how the altered stair negotiation patterns observed in 

73 individuals with knee OA affect the compartmental knee contact forces (KCF) as only 

74 kinematics and kinetics 4,11,24 have been explored, which do not provide direct measures of 

75 cartilage loading. However, KCF reflect not only the influence of external forces but also the 

76 muscle and ligament forces. Computational approaches are non-invasive, do not alter the knee 

77 biomechanics and can be applied to a larger number of subjects compared to in vivo KCF 

78 calculations. Therefore, computation of KCF in patients with knee OA during gait has received 

79 increasing attention over the last years 25-27. Previous research 28 has shown the important role 

80 of muscle action controlling flexion-extension and adduction-abduction moments in joint 

81 loading, specially, during late stance of gait. This was particularly evident in patients with 

82 established knee OA. To our knowledge, however, KCF calculated using musculoskeletal 

83 modeling that accounts for muscle and ligament forces in combination with dynamic 

84 simulations has never been used in individuals with knee OA during stair negotiation. 

85 Therefore, the effectiveness of the observed speed reduction 4,22 and changes in stepping 

86 strategy in controlling knee joint loading during stair negotiation is unexplored. 

87 The first objective of this study was to compare knee joint loading and trunk kinematics 

88 during stair ascent and descent in individuals with medial knee OA against healthy subjects 

89 during step-over-step at controlled speed. We hypothesize that OA patients will present lower 

90 knee loading than healthy subjects trying to avoid pain. The second objective was to investigate 

91 the influence of stair negotiation strategy on knee joint loading magnitude and distribution 

92 when individuals performed step-over-step at their preferred speed or were using step-by-step. 
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93 We hypothesize that by reducing stair walking speed or by using step-by-step instead of step-

94 over-step, patients will reduce the KCF and redistribute the knee loading to avoid the 

95 overloading of the involved compartment.
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96 Methods

97 Five participants (2 females and 3 males) were recruited for this study via a volunteer 

98 database diagnosed in clinical practice with symptomatic bilateral medial knee OA. Eight 

99 participants (4 females and 4 males) were recruited on a volunteer basis from the university 

100 context, who were asymptomatic and had no history of OA. Participants underwent magnetic 

101 resonance imaging (MRI) and completed the Hip 29 and Knee 30 disability and Osteoarthritis 

102 Outcome Score questionnaires (Table 1).  The Research Ethics committee for Science & 

103 Engineering at the Metropolitan Manchester University approved the study. Participants signed 

104 the written informed consent form prior to participation.

105 Patients were classified as having mild (1) moderate (2) and severe (3) knee OA based 

106 on pain complaints and three parameters observed on the MRI (Table 2): cartilage defect; bone 

107 marrow lesion (BML); and presence of osteophytes. Cartilage was scored for partial and full 

108 thickness loss as a % of the surface area in which: 0 when none; 1 when ˂ 15% of cartilage 

109 loss; 2 when 15-75% of cartilage loss; 3 when ˃ 75% of cartilage loss in a region (medial, lateral 

110 or patellofemoral). BML size was scored as follows: 0 when none; 1 when BML size ˂1 cm; 2 

111 BML when size ˃1 cm; 3 when multiple BML. Presence of osteophytes was scored based on 

112 their size as follow: 0 when no osteophytes; 1 when size ˂ 5mm; 2 when size ˂ 1cm; 3 when 

113 ˃ 1cm. All patients presented with bilateral medial knee OA classified as moderate to severe 

114 by a consultant radiologist. 

115 Motion analysis was performed while barefoot ascending and descending a staircase 

116 consisting of seven 17.2cm-height steps (Figure 1). A 10-camera 3D motion capture system 

117 (Vicon Motion Systems Inc, Los Angeles, CA, USA) synchronized with four force platforms 

118 (embedded in the middle of the staircase) recorded the 3D position of 34 reflective markers 

119 according to an extended lower-body plug-in-gait marker set protocol 31 at 100 Hz, and 

120 measured ground reaction forces at 1000 Hz (Kistler, Amherst, New York, United States). 
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121 Ground reaction forces were filtered using a second order Butterworth low pass filter, with cut-

122 off level at 30Hz, and marker trajectories using a smoothing spline with cut-off at 6Hz.

123 Six trials per condition were collected for ascending and descending for step-over-step 

124 at controlled speed, i.e. alternating feet per step (Figure 1) with cadence controlled by a 

125 metronome at 90 beats per minute, corresponding to the normal self-selected stair walking 

126 speed in healthy subjects 32. Furthermore, two alternative strategies were tested: step-over-step 

127 at self-selected speed; and step-by-step at self-selected speed, i.e. both feet per step (Figure 1). 

128 The use of the handrail was not allowed. For safety reasons, patients wore a harness during the 

129 data collection. 

130 A multi-body knee model with 6 degrees of freedom for the tibiofemoral and 

131 patellofemoral joints and fourteen ligaments was used. More details about the model can be 

132 seen in the supplementary material. Development and validation of the knee model are detailed 

133 elsewhere 33. The model included an elastic foundation formulation 34 to compute cartilage 

134 contact pressures. This model was integrated into an existing lower extremity musculoskeletal 

135 model 35 with 44 musculotendon units.

136 The lower extremity model was scaled to subject-specific segment lengths as determined 

137 in a static calibration trial. The joint angles were computed using an inverse kinematics 

138 algorithm. The concurrent optimization of muscle activations and kinematics (COMAK) 

139 algorithm 33,36, was used to compute the secondary tibiofemoral and patellofemoral kinematics, 

140 muscle and ligament forces, and contact forces by minimizing the muscle volume weighted 

141 sum of squared muscle activations plus the net knee contact energy. The COMAK algorithm 

142 modulates muscle excitations to track knee flexion, while secondary knee motions 

143 (tibiofemoral translations and non-sagittal rotations) and patellofemoral kinematics evolve 

144 naturally due to muscle, ligament, cartilage contact, and external loading. The secondary 

145 tibiofemoral kinematics and patellofemoral kinematics are load-dependent as they evolve as a 
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146 function of muscle and ligament forces, and cartilage contact. Tibiofemoral and patellofemoral 

147 cartilage contact pressures were computed using an elastic foundation model 34 in which 

148 pressure is assumed to be a function of the depth of penetration between contacting cartilage 

149 surfaces. Depths of penetration for each triangle in a mesh were determined at each time step 

150 using ray-casting techniques 37. At each triangle of the tibia plateau, the contact pressure was 

151 computed, in which cartilage was assumed to have an elastic modulus of 10 MPa, a Poisson's 

152 ratio of 0.45, and a uniform thickness of 2 mm for each surface 34. Subsequently, an inverse 

153 dynamics algorithm computed the external joint moments.

154 The knee model performance has previously been validated. As kinematic validation, the 

155 predicted joint kinematics in the secondary degrees of freedom of the knee were validated 

156 against joint kinematics measured using dynamic MRI and are reported in the study of Lenhart 

157 et al.33. As dynamic validation, the calculated KCF were compared with instrumented implant 

158 data provided through the Grand Challenge Competition to Predict in vivo Knee Loads, a 

159 subject-specific data set that allows researchers to validate muscle and contact forces estimated 

160 in the knee. When comparing between the measured and calculated KCF, the joint contact load 

161 prediction errors (root-mean-square (rms) error = 0.33 BW) 36,38 were comparable to those (rms 

162 error = 0.26 BW) observed from a unique optimization approach, termed force-dependent 

163 kinematics, introduced by the 2014 “Grand Challenge” winner 39, and slightly better than those 

164 that have been obtained using traditional optimization or forward dynamic simulations 40,41.

165 Calculated KCF were normalized to body weight (BW) and moments to the product of 

166 body weight and height (BW×Ht). All data were time normalized to the stance phase (i.e. from 

167 initial contact to toe off collected from either of the four force plates). 

168 KCF, moments and angles throughout the stance phase were averaged over all trials for 

169 each leg. Trunk angles were calculated relative to the ground reference frame. The highest 

170 peaks during the first and second half of the stance phase for stair ascent and descent 
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171 respectively, were determined for the total KCF, medial KCF, and lateral KCF. The highest 

172 peak KFM, KAM were determined for all activities whereas peak knee rotation moment 

173 (KRM) were only clear for step-over-step tasks while ascending. Furthermore, maximum 

174 contact pressures in the medial tibial plateau were assessed at the instant of peak medial KCF. 

175 Independent-samples t-test (SPSS Inc., v17.0) evaluated the significance (p < .050) of 

176 the differences in peaks (tested for normality by Kolmogorov-Smirnov and Shapiro-Wilk) 

177 between the two groups and paired-samples t-test between strategies (step-over-step at 

178 controlled versus self-selected speed, and step-over-step versus step-by-step) within each 

179 group. 

180 As maximum contact pressures did not show a normal distribution, the non-parametric 

181 Mann-Whitney-U test was used to evaluate the significance (p < .050) of the differences 

182 between the two groups. Wilcoxon matched-pair test (p < .050) tested the significance of the 

183 differences between strategies within each group.
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184 Results 

185 Age, body mass and height, and also speed did not differ significantly between the two 

186 subject groups (Table 1). The medial OA group had significantly more knee pain (p < .001) 

187 and significantly higher function limitations in activities of daily living (p < .001) than controls. 

188 Level of knee pain was highly correlated with function limitations (R > 0.87). 

189 Peak medial KCF (1.86±0.54, p < .000) and lateral KCF (1.52±0.36, p = .015) were 

190 significantly lower in individuals with OA compared to controls (2.51±0.28 and 2.24±0.81, 

191 respectively, medial and lateral KCF) during stair ascent (Figure 2). During stair descent, on 

192 the other hand, no significant differences were observed between the two groups (S1 Figure 

193 and S1 Table). Maximum contact pressures were also lower in individuals with OA, during 

194 stair ascent, however, not statistically significant (Table 4).  Patients with OA exhibited more 

195 similar pressures during stair ascent and stair descent, whereas control subjects clearly reduced 

196 pressures from ascending to descending (Figure 4). 

197 Individuals with OA exhibited significantly lower peak KFM during both stair ascent 

198 (0.050±0.017, p = .002) and descent (0.058±0.018, p = .022) compared to controls 

199 (0.070±0.012 and 0.073±0.015, respectively, at stair ascent and descent). No significant 

200 differences in the peak KAM or KRM were observed between the two groups (S2 Figure and 

201 S2 Table). 

202 Individuals with OA had higher trunk flexion angles (24.45±3.76, p = 0.001 during stair 

203 ascent) and tended to lean the trunk more towards the leading leg in the frontal plane 

204 (2.76±1.38, p = 0.069 during stair ascent) throughout the stance phase compared to controls 

205 (18.43 (3.74) and 0.93 (2.82), respectively, trunk flexion and trunk lean angles during stair 

206 ascent) during both stair ascent and descent (Figure 3 and S3 Table). During stair descent, the 

207 OA group exhibited a larger variation between subjects in the trunk kinematics in the frontal 

208 and transversal planes, shown by the high standard deviations, compared to controls. In all 

Page 10 of 47

Human Kinetics, 1607 N Market St, Champaign, IL 61825

Journal of Applied Biomechanics



For Peer Review

209 planes of motion, kinematics of the hip, knee and ankle joints showed a similar pattern of 

210 movement between the two groups during stair ascent and descent (S3 Figure and S4 Figure).

211 When changing speed, all subjects walked slower when they could walk at their preferred 

212 speed in comparison with the controlled condition, however only significantly during stair 

213 ascent. During stair ascent at decreased speed, the peak medial KCF (p = .024) and lateral KCF 

214 decreased (p = .002) in individuals with OA (S6 Figure and S4 Table), whereas the opposite 

215 was found for peak lateral KCF (p = .009) in healthy subjects (S5 Figure and S4 Table). During 

216 stair descent, no significant differences in KCF were observed between step-over-step at 

217 controlled and self-selected speed in healthy or OA groups. No differences were observed in 

218 terms of maximum contact pressures between step-over-step at controlled and self-selected 

219 speed in both groups (Table 4). 

220 With reduced speed, patients with OA maintained the increased trunk flexion and lean 

221 angles towards the leading leg during stair ascent. During stair descent, on the other hand, OA 

222 patients exhibited a smaller variation in the trunk kinematics in the frontal and transversal 

223 planes as the speed decreased (S5 Table). 

224 When changing strategies from step-over-step to step-by-step, both controls and OA 

225 significantly reduced the speed while ascending (p < .001 and p = .009, respectively) and 

226 descending stairs (p < .001 and p = .008, respectively) (Table 3). Both controls (p = .016) and 

227 OA (p = .040) exhibited significantly higher peak lateral KCF when using step-by-step instead 

228 of step-over-step during stair descent. During stair ascent, however, individuals with knee OA 

229 significantly increased the peak medial KCF (p = .008) when using step-by-step, whereas no 

230 significant differences were seen in controls (S4 Table). By altering from step-over-step to 

231 step-by-step, maximum contact pressures were not significantly different neither in controls or 

232 patients with OA (Figure 4 and Table 4) during stair ascent. However, during stair descent 
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233 maximum contact pressures significantly decreased in patients with OA when using step-by-

234 step (p = .007). 
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236 Discussion

237 This study investigated knee joint loading in terms of magnitude of KCF and cartilage 

238 pressures, during stair ascent and descent in individuals with medial knee OA. Using a 

239 multibody musculoskeletal model, we showed that patients with OA exhibited reduced 

240 tibiofemoral loading during stair ascent, but not stair descent. The reduced contact force during 

241 ascent was achieved by increasing the trunk flexion angle, which reduced the knee flexion 

242 moment and thus muscle forces compressing the joint. This strategy was not as effective in 

243 stair descent, where the trunk was more vertical, thus the knee flexion moment cannot be 

244 modulated without large adjustments to trunk flexion that compromise stability on stairs. 

245 Furthermore, different strategies in stair negotiation, such as reduction in speed, and employing 

246 step-by-step instead of step-over-step were shown to be effective in reducing the knee contact 

247 loading.

248 Our results confirmed the hypothesis that OA patients would present lower KCF than 

249 controls. During stair ascent, when asked to walk at controlled speed, which was significantly 

250 higher than their preferred speed, the OA group could effectively reduce both peak medial and 

251 lateral KCF compared to control subjects. This was possible by executing higher trunk flexion 

252 and higher trunk lean towards the leading leg compared to controls. By positioning the centre 

253 of mass further forwards and more towards the leading leg at a time where knee is considerably 

254 flexed, which potentially induces elevated joint moments, OA patients direct the ground 

255 reaction force vector closer to the knee joint centre and, therefore, they reduce the KFM 

256 (significantly) and KAM. In addition, the increased trunk flexion decreases the demand on the 

257 knee extensors, which generate the propulsion required during stair ascent. Previous studies 

258 have also found reduced KFM 4,11 and increased trunk flexion 11 during stair ascent 4,11 and 

259 descent 4 in OA patients compared to controls. Despite the reduced KCF, OA patients still 

260 reported significantly higher pain complaints compared to controls. Our study is therefore the 
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261 first to determine that the altered stair walking pattern used by patients with OA, more specific 

262 the higher trunk flexion and reduced KFM, effectively unloads the knee joint as reflected in 

263 the reduced compartmental KCF. 

264 During stair descent, the compensatory mechanisms used by the OA group were less 

265 effective in reducing the knee loading than during stair ascent, and reductions in peak medial 

266 and lateral KCF were not statistically significant. Patients could not increase the trunk flexion 

267 angles during stair descent as much as they did during stair ascent compared to a healthy 

268 control, probably due to fear of falling. During stair descent, the body has to adopt to a more 

269 upright position to maintain balance and, therefore, by leaning the trunk too far forwards, 

270 patients could compromise their balance 42 and, ultimately fall. The inability to reduce KCF 

271 during descent may explain why patients experience higher knee pain 43 during stair descent 

272 than ascent. 

273 The second hypothesis that OA patients would be able to reduce the KCF by reducing 

274 the speed or by using step-by-step instead of step-over-step strategy has been partially 

275 confirmed. When subjects walked at their preferred speed, which was significantly slower than 

276 that at controlled execution during stair ascent, individuals with OA significantly reduced 

277 medial KCF compared to those occurring at controlled speed, whereas controls kept similar 

278 KCF at the medial compartment. When forced to increase their speed, some OA patients felt 

279 forced to lean and rotate their trunk more, resulting in a high variation between subjects in the 

280 trunk kinematics in these two planes during stair descent. This shows that some patients felt 

281 forced to use another mechanism rather than increased trunk flexion to perform stair descent 

282 when speed was enforced. This suggests that it is more effective for patients to reduce medial 

283 compartment loading during stair descent by reducing the walking speed than by altering trunk 

284 kinematics. During stair ascent, on the other hand, the changes in the trunk kinematics were 

285 still effective for OA patients to reduce knee loading, even at a higher stair walking speed. In 
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286 addition, speed reduction allowed OA patients to decrease maximum medial compartment 

287 contact pressure. Thus, a reduction in speed together with changes in trunk kinematics are the 

288 key strategies used to reduce the knee loading during stair ascent, and a reduction in speed is 

289 even more important to reduce the medial knee loading during stair descent.

290 By changing the stepping strategy and performing step-by-step instead of step-over-step 

291 during stair ascent, OA patients significantly increased the medial KCF, even at significantly 

292 lower speeds. This resulted from the fact that performing step-by-step, body tends to adopt a 

293 straighter position. On the other hand, during stair descent, by performing step-by-step instead 

294 of step-over-step, they significantly decreased the medial knee contact pressures. Similarly, 

295 Reid et al. 23 reported that in healthy subjects, step-by-step strategy was more efficient in 

296 reducing the peak KFM when compared to step-over-step strategy during stair descent than 

297 stair ascent. From our findings, it is suggested that, in OA patients, step-by-step is only 

298 effective in reducing the medial knee loading during stair descent, but not during stair ascent. 

299 The magnitude of KCF in healthy subjects in the present study was higher for stair ascent 

300 than those from literature based on measured KCF in subjects with instrumented prosthesis 

301 44,45. Our controls exhibited an averaged peak total KCF of 4.41 (0.78) BW and 4.20 (0.74) BW 

302 for, respectively, stair ascent and descent, whereas Kutzner et al. 44 reported averages of 3.16 

303 BW and 3.46 BW for the peak resultant force. Similar results, ranged from 2.90 to 3.50 BW, 

304 were reported by Heinlein et al. 45. More similarly, our OA group exhibited peak KCF of 2.78 

305 (0.62) BW and 3.29 (1.14) BW for stair ascent and descent, respectively. Previous simulation 

306 studies on healthy subjects and those having TKR during stair ascent, presented compressive 

307 joint reaction forces up to 4.00 BW 46. Differences might be due to several reasons: 

308 instrumented implant studies report on patients having TKR and an altered gait pattern may 

309 therefore be present; none of the mentioned studies report stair walking speed nor the step 

310 height. 
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311 The findings of this study should be viewed in light of the following specific limitations. 

312 We used a single generic knee model that was scaled to represent the anthropometry of the 

313 subjects instead of considering the subject-specific articular geometries, including those of the 

314 tibia plateau. Subject-specific articular geometries, muscle-tendon and ligaments properties 

315 were not considered in our approach since there was no data available for the cohort studied. 

316 Therefore, our model does not account for OA induced changes in the articular geometry, 

317 thickness and mechanical properties of the cartilage or changes in the ligaments. Consequently, 

318 the reported differences in KCF and contact pressures only result from altered kinematic and 

319 kinetic behavior. Bone deformities, ligament laxity or changes in cartilage induced by joint 

320 degeneration were not taken into account although they may affect the calculated contact 

321 pressures. However, the effect of having a 2-mm constant cartilage thickness instead of a 

322 variable thickness on tibiofemoral contact pressure during gait has been previously assessed 

323 and showed limited effect on the observed peak contact pressure (about 4%) 47. Furthermore, 

324 although the validation of the model has shown a good agreement between the calculated and 

325 experimental kinematics and contact forces in healthy subjects and patients following total 

326 knee replacement 33, this validation cannot easily be extended to an OA population. Therefore, 

327 this model might present specific limitations when used in patients with knee OA, especially 

328 those known to present increased co-contraction (Kellgren-Lawrence score ≥2) resulting in an 

329 underestimation of the joint loading 48. In this model, the ligaments are represented as nonlinear 

330 spring elements, one-dimensional discrete elements, rather than deformable 3D representations 

331 that account for spatial variations in strain. Instead, some wrapping surfaces were included to 

332 improve wrapping around the bony structures but no ligament–ligament interactions were 

333 incorporated. The thickness of the cartilage surface was assumed constant, which is a 

334 simplification since cartilage thickness varies. This simplification might result in differences 

335 in terms of contact pressures and contact areas 49. Further, the knee model does not include 
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336 menisci, which are known to distribute pressure in the tibiofemoral joint. Therefore, the 

337 absence of menisci might increase the peak contact pressures in the knee joint surface. Finally, 

338 it is known that the definition of other lower limb joints influences knee kinematics as well 50, 

339 especially the ankle joint, for which only one degree of freedom was considered.

340 In conclusion, during stair ascent, OA patients could effectively reduce the knee joint 

341 loading by reducing their speed, increasing the trunk flexion and lean the trunk more towards 

342 the leading leg. However, during stair descent, changes in the trunk flexion and frontal lean 

343 were more limited and less effective, requiring reduced speed or even more increased trunk 

344 rotation and lean to effectively reduce the peak medial KCF and the contact pressures on the 

345 tibia plateau. Furthermore, this study suggests that, in OA patients, step-over-step is more 

346 effective in reducing the medial knee loading, particularly at reduced speed, during stair ascent, 

347 while step-by-step is more effective during stair descent. Understanding how these 

348 compensatory mechanisms work across the whole body can help underpin recommendations 

349 on alternative strategies for avoiding overloading of other joints.
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Figure 1 - Marker set on a representative subject while ascending the staircase (left) and a representative 
scheme of the step-over step (above right) and step-by-step (below right) tasks. 

428x318mm (72 x 72 DPI) 

Page 25 of 47

Human Kinetics, 1607 N Market St, Champaign, IL 61825

Journal of Applied Biomechanics



For Peer Review

 

Figure 2 - Peak medial KCF (MKCF) and lateral KCF (LKCF), comparing the two groups of subjects while 
performing different tasks: step-over-step at controlled speed (SOS CS), step-over-step at self-speed (SOS 

SS) and step-by-step (SBS) while ascending or descending stairs. * indicates a significant difference 
between the groups. □ indicates a significant difference between the task in which there is this indication 

and the task step-over-step while ascending stairs for the control group, whereas ● is used to the OA group. 

263x107mm (120 x 120 DPI) 
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Figure 3 - Trunk kinematics relative to the ground reference frame in the sagittal (left), frontal (middle) and 
transversal (right) plane for step-over-step while ascending (above) and descending (below) stairs at 

controlled speed during stance phase, comparing healthy subjects and individuals with medial knee OA. 

347x191mm (120 x 120 DPI) 
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Figure 4 - Group-averaged contact pressure distributions (MPa) on the articular surfaces of medial tibial 
plateau at the time instant of the first peak medial KCF. To obtain these averaged contact pressure 

distribution maps, the average contact pressure was calculated for every triangle of the medial tibial surface 
mesh and presented on a representative surface model. Results are presented for step-over-step at 

controlled speed; step-over-step at self-selected speed and step-by-step, while ascending and descending 
stairs for the healthy group (on the left), and the medial knee OA group (on the right). 
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Table 1 - Characteristics of the groups: control and medial OA.

Mean (SD)

Control Medial OA

p

(Control vs OA)

No. of subjects 8 5 -

No. of limbs 16 10 -

Age, years 51.0 (13.4) 52.8 (11.0) .806

Body mass, kg 74.1 (13.7) 83.8 (14.8) .255

Height, m 1.66 (0.10) 1.70 (0.11) .489

KOOS score, % 96.7 (6.0) 42.3 (7.7) < .001

KOOS pain score, % 96.5 (7.8) 41.1 (13.4) < .001

KOOS function score, 

%
98.9 (2.0) 54.1(7.7) < .001

R 0.968 0.876

HOOS score, % 98.2 (4.6) 92.8 (10.4) .214

Statistically significant differences (p < .050) between the two groups of subjects, 

evaluated by the independent t-test, are indicated in bold.

Function score indicates the level of function in activities of daily living (ADL).

R is the Person correlation coefficient between pain and function scores, in which 1 

indicates a perfect correlation between the two parameters.

Page 29 of 47

Human Kinetics, 1607 N Market St, Champaign, IL 61825

Journal of Applied Biomechanics



For Peer Review

Table 2 – OA classification based on MRI and X-ray.

Control Medial OA

Lateral knee 

joint

Medial  

knee joint

Lateral  knee 

joint

Medial  

knee joint

Cartilage score 0 0 0.6 1.8

BML 0 0 0.3 2

Osteophytes 0 0 1.2 1.6

K&L score 0 2-3 (4 out of 5)
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Table 3 – Stair walking speed during step-over-step at controlled speed (SOS CS) and at 

self-selected speed (SOS SS), and step-by-step (SBS) in patients with medial knee OA 

compared to controls.

Mean (SD)

Control Medial OA

p

(Control 

vs OA)

p

(Control)

p

(OA)

SOS CS 
0.59 

(0.02)
0.57 (0.04) 0.107

SOS SS 
0.53 

(0.08)
0.49 (0.12) 0.364

CS 

vs 

SS

.006 .031

As
ce

nd
in

g

SBS
0.36 

(0.04)
0.38 (0.03) 0.203

SOS 

vs 

SBS

< .001 .009

SOS 

CS 

0.60 

(0.03)
0.56 (0.08) 0.154

SOS 

SS 

0.57 

(0.09)
0.49 (0.11) 0.057

CS 

vs 

SS

.180 .107

Sp
ee

d,
 m

/s

D
es

ce
nd

in
g

SBS 
0.34 

(0.05)
0.36 (0.04)   0.303

SOS 

vs 

SBS

< .001
< 

.001

Statistically significant differences (p < .050) between the two groups of subjects, 

evaluated by the independent t-test, are indicated in bold.

Statistically significant differences (p < .050) between strategies (CS vs SS, and SOS 

vs SBS) within each group of subjects, evaluated by the paired-sample t-test, are 

indicated in bold.
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Table 4 – Maximum contact pressures (MPa) at the peak medial KCF (MKCF) 

comparing the two groups of subjects and p- values comparing activities into the 

groups.

Mean (SD)

Control
(16 legs)

Medial OA
(10 legs)

p 
(C0 vs OA)

Ascending 24.1 (12.1) 16.0 (6.1) .092
SOS CS

Descending 15.8 (5.6) 14.2 (4.6) .598

Ascending 24.4 (11.7) 13.9 (4.6) .004
SOS SS

Descending 15.7 (7.1) 13.8 (4.6) .317

Ascending 24.4 (12.6) 14.7 (4.6) .035
SBS

Descending 16.1 (5.9) 11.4 (3.3) .013

p 
(SOS SS vs SOS CS)

.717 .093

A
sc

en
di

ng

p
(SOS SS vs SBS)

.877 .059

p 
(SOS SS vs SOS CS)

.959 .445

D
es

ce
nd

in
g

p 
(SOS SS vs SBS)

.877 .007

Statistically significant differences (p < .050) in maximum contact pressures between the two 
groups of subjects, evaluated by Mann-Whitney-U test, are indicated in bold.
Statistically significant differences (p < .050) in maximum contact pressures between strategies 
within each group of subjects, evaluated by Wilcoxon matched-pair test, are indicated in bold.
SOS CS, SOS SS and SBS correspond to step-over-step at controlled and self-selected speed, and 
step-by-step, respectively.
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PART I -Knee Model

The multibody knee model was developed from MRI images of the right knee from a 23 

years old female subject (height = 1.65 m, mass = 61 kg) with no history of chronic 

knee pain, injury, or surgery. 

Anatomical reference frame orientations were established for each bone using an 

automatic algorithm based on geometric and inertial properties of the 3D segments 1, 2.

The tibiofemoral and patellofemoral joints were both modeled as 6 degree of freedom 

with deformable contact. The passive restraints of the knee joint are provided by the 

major knee ligaments and joint capsule, represented by 14 bundles of non-linear 

springs: superficial and deep medial collateral ligament (sMCL, dMCL), lateral 

collateral ligament (LCL), anteriomedial and posteriolateral anterior cruciate ligament 

(aACL, pACL), anteriolateral and posteriomedial posterior cruciate ligament (aPCL, 

pPCL), patellar tendon (PT), medial and lateral patellofemoral ligaments (MPFL, 

LPFL), popliteofibular ligament (PFL), posteriomedial capsule (pmCAP), the posterior 

capsule (CAP), and the iliotibial band (ITB). Each ligament bundle was represented by 

a discrete number of strands. Each strand was assumed as a non-linear stiffening spring 

at low strains (ɛ <0.06), and having a linear stiffness at higher strains 3. The ligament 

elastic modulus was assumed to be 125 MPa 4.

Tibiofemoral and patellofemoral cartilage geometry were segmented from MRI images 

(Mimics Innovation Suite, Materialise, Belgium). Tibiofemoral and patellofemoral 

cartilage contact pressures (p) acting between articulating surfaces were computed using 

an elastic foundation model 5, in which pressure is assumed to be a function of the depth 

of penetration between contacting cartilage surfaces.
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2

,  (1)𝑝 = ―
(1 ― 𝑣)𝐸

(1 + 𝑣)(1 ― 2𝑣)ln [1 ―
𝑑
ℎ]

with two additional equations resulting from the equilibrium of pressures in pairs of 

contacting triangles, and the equivalence of the sum of the individual surface 

penetration depths to the total penetration depth:

   (2)𝑝1 = 𝑝2

   (3)𝑑1 + 𝑑2 = 𝑑

where E is elastic modulus, v is Poisson’s ratio, d is the penetration depth and h is the 

combined thickness of the two cartilage surfaces. The system of equations (Eqs 2 and 3) 

is solved for each pair of contacting triangles (subscripts) in the cartilage meshes given 

the E, ν, and thickness of each cartilage geometry. Cartilage was assumed to have an 

elastic modulus of 5MPa 3, a Poisson’s ratio of 0.45 6 and represented by uniform 

cartilage thickness of 2mm over each surface (i.e. 4 mm total thickness).

The model included 44 musculotendon actuators spanning the right hip, knee and ankle 

7.
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PART II - Comparison between control subjects and medial OA

S1 Figure - Total, medial and lateral knee contact forces (KCF) during step-over-step 

(SOS) at controlled speed while ascending (above) and descending stairs (below) 

comparing healthy subjects and individuals with medial knee OA. * indicates a 

significant difference between the groups.

S1 Table - Peak values of the total, medial and lateral KCF (×BW) during the stance 

phase of step-over-step at controlled speed (SOS CS), while ascending (ASC) and 

descending (DESC) stairs comparing between the control (C0) group and the medial OA 

(OA) group.

Total 

(26)

Control

(16 legs)

Medial OA

(10 legs)

p 

(C0 vs OA)

TKCF 4.49 (0.85) 3.17 (0.82) .001

MKCF 2.51 (0.28) 1.86 (0.54) < .001P1

LKCF 2.24 (0.81) 1.52 (0.36) .015

TKCF 2.82 (0.65) 2.65 (0.53) .492

MKCF 1.56 (0.62) 1.52 (0.35) .868

ASC

P2

LKCF 1.39 (0.43) 1.26 (0.44) .454

TKCF 3.26 (0.81) 2.72 (0.75) .104

MKCF 2.11 (0.57) 1.58 (0.41) .019P1

LKCF 1.28 (0.36) 1.34 (0.42) .682

TKCF 4.33 (0.96) 3.43 (1.12) .038

MKCF 2.44 (0.54) 1.98 (0.65) .063

DESC

P2

LKCF 2.11 (0.72) 1.58 (0.58) .062
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Statistically significant differences (p < .050) are indicated in bold and calculated by 

paired-samples t-test. KCF are expressed as mean (SD (BW), where SD is standard 

deviation. P1 and P2 correspond, respectively, to first and second peak of the stance 

phase.

S2 Figure - Knee flexion (left), adduction (middle) and rotation (right) moments during 

step-over-step (SOS) at controlled speed while ascending (above) and descending stairs 

(below) comparing healthy subjects and individuals with medial knee OA. * indicates a 

significant difference between the groups.

2 Table – Peak values of the KFM, KAM and KRM (BW*Ht) during stance phase of 

step-over-step at controlled speed (SOS CS) while ascending (ASC) and descending 

stairs (DESC).

Total 

(26)

Control

(16 legs)

Medial OA

(10 legs)

p 

(C0 vs OA)

KAM 0.017 (0.009) 0.016 (0.008) .805

KFM 0.070 (0.012) 0.050 (0.017) .002P1

KRM -0.008 (0.006) -0.006 (0.004) .235
ASC

P2 KRM 0.002 (0.003) 0.001 (0.003) .633

KAM 0.021 (0.008) 0.016 (0.007) .119
DESC P2

KFM 0.073 (0.015) 0.058 (0.018) .022

Statistically significant differences (p < .050) are indicated in bold and calculated by 

paired-samples t-test. Knee moments are expressed as mean (SD (BW*Ht), where SD 
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is standard deviation. P1 and P2 correspond, respectively, to first and second peak of 

the stance phase.

S3 Figure - Hip, knee and ankle kinematics at the sagittal (left), frontal (middle) and 

transversal (right) planes of rotation for step-over-step (SOS) while ascending stairs at 

controlled speed during stance phase comparing healthy subjects and individuals with 

medial knee OA.

S4 Figure - Hip, knee and ankle kinematics at the sagittal (left), frontal (middle) and 

transversal (right) planes of rotation for step-over-step (SOS) while descending stairs at 

controlled speed during stance phase comparing subjects and individuals with medial 

knee OA.

S3 Table - Trunk extension and bending angles (in degrees), at the time instant 

of the first peak MKCF during SOS at controlled speed.

Control

(16 legs)

Medial OA

(10 legs)
p

Trunk Flexion 

Angles
18.43 (3.74) 24.45 (3.76) .001

SOS CS 

Ascending Trunk Lean 

Angles
0.93 (2.82) 2.76 (1.38) .069

SOS CS 

Descending

Trunk Flexion 

Angles
8.98 (3.43) 10.89 (3.11) .166
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Trunk Lean 

Angles
0.09 (2.67) 0.73 (7.72) .762

Statistically significances (p < .050) are indicated in bold and calculated by t-test.

Positive trunk flexion angles correspond to flexion of the trunk; positive trunk bending 

correspond to bending towards the leading leg.

SOS CS corresponds to step-over-step at controlled speed.
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PART III - Comparison between strategies: SOS at controlled versus 

self-selected speed and SOS versus SBS

S5 Figure - Total, medial and lateral knee contact forces (KCF) in healthy subjects 

comparing step-over-step at controlled speed (SOS CS) and step-over-step at self-

selected speed (SOS SS) while ascending (above) and descending (below) stairs. * 

indicates a significant difference between the two tasks.

S6 Figure - Total, medial and lateral knee contact forces (KCF) in individuals with 

medial knee OA comparing step-over-step at self-selected speed (SOS SS) and step-

over-step at controlled speed (SOS CS) while ascending (above) and descending 

(below) stairs. * indicates a significant difference between the two tasks.

S4 Table - Peak values of the total, medial and lateral KCF (×BW) during the stance 

phase of step-over-step at controlled speed (SOS CS), step-over-step at self-selected 

speed (SOS SS) and step-by-step (SBS) while ascending and descending stairs for the 

control and medial OA groups comparing between tasks.

ASCENDING DESCENDING

SOS CS SOS SS SBS

p
CS 
vs 

SS)

p
(SS
vs 

SBS)

SOS CS SOS SS SBS

p
(CS 
vs 

SS)

p
(SS
vs 

SBS)

TKCF 4.49 (0.85) 4.41 (0.78) 4.56 (0.86) .414 .182 4.33 (0.96) 4.20 (0.74) 4.44 (0.73) .473 .087

MKCF 2.51 (0.28) 2.61 (0.26) 2.64 (0.34) .190 .672 2.44 (0.54) 2.44 (0.43) 2.43 (0.35) .977 .797

C
O

N
T

R
O

L

LKCF 2.24 (0.81) 2.04 (0.67) 2.17 (0.69) .009 .066 2.11 (0.72) 1.92 (0.53) 2.31 (0.60) .144 .016

TKCF 3.17 (0.82) 2.78 (0.62) 2.94 (0.70) .007 .101 3.43 (1.12) 3.29 (1.14) 3.48 (1.03) .506 .215

MKCF 1.86 (0.54) 1.64 (0.45) 1.81 (0.40) .024 .008 1.98 (0.65) 1.90 (0.58) 1.95 (0.50) .547 .657

M
E

D
IA

L
 O

A

LKCF 1.52 (0.36) 1.32 (0.29) 1.36 (0.31) .002 .425 1.58 (0.58) 1.52 (0.72) 1.73 (0.74) .628 .040

Statistically significant differences (p < .050) are indicated in bold and evaluated by the paired-sample t-test. KCF are expressed as mean 
(SD (BW), where SD is standard deviation. KCF corresponding to the peak KCF of the different tasks, i.e., first and second peaks KCF for 
ascending and descending, respectively.
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S5 Table - Trunk extension and bending angles (in degrees), at the time instant 

of the first peak medial KCF during SOS while ascending and descending stairs for 

the control and medial OA groups comparing between controlled and self-selected 

speed.

ASCENDING DESCENDING

SOS CS SOS SS p
(CS vs SS) SOS CS SOS SS p

(CS vs SS)

Trunk 
Flexion 

18.43 

(3.74)

18.10 

(3.26)
.331

8.98 

(3.43)

0.00 

(9.29)
.753

C
O

N
T

R
O

L

Trunk 
Lean

0.93 

(2.82)

0.83 

(2.92)
.004

0.09 

(2.67)

-1.00 

(2.42)
.254

Trunk 
Flexion

24.45 
(3.76)

23.71 
(3.31)

.304
10.89 
(3.11)

11.50 
(3.64)

.157

M
E

D
IA

L
 O

A

Trunk 
Lean

2.76 
(1.38)

3.06 
(2.14)

.602
0.73 

(7.72)
0.57 

(2.01)
.942

Statistically significant differences (p < .050) in the trunk angles between strategies within each group of subjects, 
evaluated by the paired-sample t-test, are indicated in bold. Angles are expressed as mean (SD (º), where SD is 
standard deviation.
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