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SENSE OF SOUNDS’ DATA SET AND CHALLENGE
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ABSTRACT

Humans are able to identify a large number of environmental
sounds and categorise them according to high-level semantic
categories, e.g. urban sounds or music. They are also capa-
ble of generalising from past experience to new sounds when
applying these categories. In this paper we report on the cre-
ation of a data set that is structured according to the top-level
of a taxonomy derived from human judgements and the de-
sign of an associated machine learning challenge, in which
strong generalisation abilities are required to be successful.
We introduce a baseline classification system, a deep convo-
lutional network, which showed strong performance with an
average accuracy on the evaluation data of 80.8%. The re-
sult is discussed in the light of two alternative explanations:
An unlikely accidental category bias in the sound recordings
or a more plausible true acoustic grounding of the high-level
categories.

Index Terms— Acoustic classification, machine learning
challenge, sound taxonomy, deep learning, convolutional neu-
ral network

1. INTRODUCTION

Management of audio data typically involves assigning tex-
tual descriptors and allocating audio to a predefined category.
Previous novel approaches to the problem of organising audio
data into categories include: Augmenting the WordNet frame-
work [1, 2] with audio concepts in order to classify sounds
[3, 4]; using Gaver’s [5] taxonomy based upon the mechan-
ical properties of sound-causing events in an audio retrieval
system [6]; classifying urban noise complaints [7]; classifica-
tion by affect ratings [8]; and using hyponym generation from

*This work was supported by EPSRC grant EP/N014111/1 ‘Making
Sense of Sounds’ and by European Commission H2020 research and innova-
tion grant 688382 ‘AudioCommons’.

Average accuracy

Fig. 1. Classifications results of the submitted systems with
the baseline performance marked with the dashed red line.

web text with subsequent manual refinement [9].

The data set and taxonomy presented here constitutes a
first approach to use empirical data obtained from human par-
ticipants in a controlled experiment. It is limited in scope
(only 60 basic starting terms were selected; see section 2), but
it explores the highest level of abstraction that can be derived
from human categorisations. Thus the resulting top level cat-
egories refer to broad concepts and cover a wide variety of
sound-types that often seem to share little essential acoustic
properties. Our interest from the view point of signal pro-
cessing and machine learning was whether machine systems
could replicate this top-level categorisation.

To encourage exploration of the topic, we created the
‘Making Sense of Sounds’ Data Challenge within the re-
search context of the acoustic signal processing and machine
learning project with the same name'. The challenge follows

Thttp://cvssp.org/projects/making_sense_of_sounds
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Fig. 2. The dendrogram with labelled clusters resulting from cluster analysis of the dimensions generated by correspondence

analysis.

the tradition of previous machine learning challenges in the
field, in particular, the Detection and Classification of Acous-
tic Scenes and Events challenge (DCASE 2013 [10], 2016
[11], 2017 [12] and 2018 [13]).

The current challenge differs from the DCASE tasks in fo-
cussing on a few very broad categories. The emphasis on se-
mantic generalisation also distinguish it from challenges that
focus on specific topic areas such as the Bird Audio Detec-
tion challenge [14] (detection of bird calls) or the MLSP 2013
Bird Classification Challenge [15] (acoustic bird species clas-
sification).

2. THE DATA SET

The categories of the data set presented here were derived
from human experiments [16]. In brief, audio files corre-
sponding to each of the top 60 search terms entered by users
of Freesound” were downloaded from Freesound for use as
experimental stimuli. The category label data spontaneously-
generated by N = 101 participants during a sorting task
were analysed using correspondence analysis and agglomer-
ative hierarchical cluster analysis, using Wards criterion (see
[17]), producing a dendrogram. Correspondence analysis is
a method similar to principal component analysis but is suit-
able for categorical rather than continuous data (see [18, 19]).
The dendrogram was sliced at the point at which the ratio
of between-cluster inertia to total inertia was 0.1, creating
five clusters (see Figure 2). This ratio was chosen to create
enough labels so as to be meaningful without compromising
the quality of the labelling. Each of the resulting five clusters
was given a category name according to the category labels
that were most over-represented in that cluster. Significance
of over-representation of each descriptive word within each
cluster was assessed using a hypergeometric distribution [19].

To create the data set, 2000 audio files were compiled
by collecting 400 sound-types belonging to each of the five
categories. Files were taken from three sources: the above
mentioned Freesound data base, the ESC-50 data set [20] and

Zhttps://freesound.org/

the Cambridge-MT Multitrack Download Library?. The raw
files were processed so as to have an identical format: Single-
channel 44.1 kHz, 16-bit WAV files. File length was uni-
formly set to 5 seconds, but in some cases the target sound
did not fill the entire duration and short periods of silence
were included.

3. THE CHALLENGE

The aim of the challenge was to explore how machine learn-
ing systems would fare if they had to categorise sounds into
categories determined by human judgement.

The five major categories (Nature, Human, Music, Effects
and Urban) were the target classification labels. Within each
class the provided training data consisted of varying sound-
types, e.g., different animals in the Nature category or dif-
ferent instruments in the Music category such as guitar and
mandolin. Most of the sound-types were, of course, repre-
sented by several instances themselves, but as a rule these
instances originated from different recordings, e.g., differ-
ent guitars recorded with different microphones in varying
situations. The machine classifier was therefore forced to
generalise well in order to be successful, something humans
achieve seemingly effortless: Based upon previously estab-
lished schemas, humans are capable of generalising from past
experience to new sounds, e.g. recognising a dulcimer or a
kora as a musical instrument despite having never heard this
instrument before.

The data set was (pseudo-) randomly split per category in
a development set (1500 sound clips) and a held-out evalua-
tion set (500 sound clips). For the development set the cate-
gory labels together with the sound-type labels as additional
information were published. It was not guaranteed that the
number of samples for each sound-type was proportionally
the same in the development set and the evaluation set or even
that a particular sound-type was represented at all in both data
sets. The task for the challenge participants was to classify
the audio files of the evaluation data set according to the five

3http://www.cambridge-mt.com/ms-mtk.htm



Layer Feature map

log mel spectrogram T x64,1
convolutional layer
[3 x 3,64], BN, ReLU T x 64,64
[3 x 3,64], BN, ReLU
2 X 2 max pooling T/2 x 32,64
convolutional layer
[3 x 3,128], BN, ReLU T/2 x 32,128
[3 x 3,128], BN, ReLU
2 x 2 max pooling T/4 % 16,128
convolutional layer
[3 x 3,256], BN, ReLU T/4 x 16,256
[3 x 3,256], BN, ReLU
2 X 2 max pooling T/8 x 8,256
convolutional layer
[3 x 3,512], BN, ReLU T/8 x 8,512
[3 x 3,512], BN, ReLU
2 X 2 max pooling T/16 x 16,512
lobal max poolin
5gl2 X classll)qumbegr 1x1,512
class number fc, softmax
1 x 1, class number
1 x class number
total parameters 4,690,116

Table 1. Configuration of the baseline network system

categories. Determining the sound-type was not required but
admissible. This allowed for two major strategies:

1. Fine-grained classification on the sound-type level fol-
lowed by an additional step that maps sound-types to
categories.

2. Direct classification of the high-level categories.

As performance measure average accuracy was chosen:

1 ngrue
A=2) O]

ceC ¢

where C is the set of categories and C' its cardinality, N, the
number of sound clips belonging to category ¢ and nf"™“¢ the
number of correct classifications with respect to class c.

4. BASELINE SYSTEM

We built a baseline system based on Convolutional Neural
Networks.

As input features for the baseline system log mel-spectral
coefficients were chosen, commonly used in supervised sep-
aration with neural network classifiers. The system itself is
based on VGG model with 8 convolutional layers. A fil-
ter kernel size of 3 x 3 is used in the convolutional layers,
followed by batch normalisation [21] to ensure the stability

Development Evaluation
Effects 85.7 88.0
Human 84.1 81.0
Music 94.3 95.0
Nature 77.9 70.0
Urban 77.2 70.0
Average 83.8 80.8

Table 2. Average accuracy of the baseline system in percent

of the distribution of nonlinearity inputs. This reduces the
chance that the optimiser gets stuck in a saturated regime, ac-
celerating the training. A ReLU is then applied after the batch
normalisation. Global max pooling (GMP) is utilised at the
end of the last convolutional layer to summarise the feature
maps to a vector. Finally, a fully-connected layer is applied
to the summarised vector followed by a softmax nonlinearity.
The probabilities of the audio classes are then generated. For
the loss function cross-entropy was selected following stan-
dard procedures in multi-class problems. The detailed con-
figuration of the network is shown in Table 1.

5. RESULTS

5.1. Baseline

A four-fold cross-validation was applied to the development
set. To that end, the training data were randomly split into
four folds, containing each 25% of the data. Three folds (75%
of the data) were used for training, the remaining fold was
used for validation. All four combinations of the folds were
tested and the average precision computed. The results are
shown in Table 2.

The baseline system was also tested on the evaluation set.
The system was developed, however, strictly without refer-
ence to the evaluation data and only a single output of pre-
dicted class membership was evaluated in the same way or-
dinary entries are evaluated. The results are also depicted in
Table 2. For a closer inspection of the classification error,
the confusion matrix of the baseline system with regard to the
evaluation data set is displayed in Figure 3.

5.2. Challenge contributions

Twenty-two systems from 11 teams were submitted, originat-
ing both from academia and industry and from a variety of
countries (e.g., USA, India, France, Greece). The winning
system achieved an average accuracy of 93%. The results for
all systems including the baseline are shown in Figure 1. All
systems with one notable exception were based on deep learn-
ing methods. The systems of five of the teams used transfer
learning and the overwhelming majority of systems worked
directly on the categories and did not consider the lower-level



sound-types. More details can be found on the challenge web-
site*.

6. DISCUSSION

The baseline showed a strong performance with an average
accuracy of 80.8% on the evaluation set. In particular, the
category Music was very well distinguished from all other
categories, achieving 95%. The highest errors are found in
categories Nature and Urban, which both reach only 70% ac-
curacy. However, the error is primarily not a mutual confu-
sion: Nature is most frequently misclassified as Urban, but
Urban is most often confused with Human.

Nature 70 1 8 6 7
Music 1 95 1 3 4
e}
]
=
.© Human 8 0 81 1 15
e}
o
o
Effects 6 1 6 88 4
Urban 15 3 4 2 70

Nature  Music Human Effects Urban
Actual

Fig. 3. Confusion matrix of the baseline classification on the
evaluation set.

Since the deep neural network of the baseline system was
trained only on the ‘Making Sense of Sounds’ data set, with
no external data used, and incorporates no semantic knowl-
edge or world model, its classification must be exclusively
based on the acoustic properties of the target sounds. Since
these sounds appear to be rather diverse, two alternative (but
not exclusive) hypotheses can be posed:

1. An unwanted and unnoticed bias in the recording situ-
ation or sound clip preparation facilitates the classifica-
tion.

2. The sound-types within each of the high-level cate-
gories share some acoustic characteristics.

The first hypothesis describes a technical issue. For in-
stance, all the sounds in the Music category could have been
recorded with microphones of better quality and in a quieter
surrounding. Thus, the baseline system would only need to
use the channel characteristics to categorise a sound as music.
The fact that the sounds were sourced from data bases where
a diverse field of users contribute individual clips, recorded
and prepared under a wide variety of circumstances, makes
this hypothesis very unlikely to hold.

“http://cvssp.org/projects/making_sense_of_sounds/site/challenge/

The second hypothesis would entail that there is sufficient
acoustic information to discriminate between the categories.
Whether humans actually use this information remains un-
clear. It is, however, an exciting thought that these abstract
categories might have some acoustic grounding even though
it might only be a contributing factor in human classification,
not a decisive one. Further psychological research is clearly
needed here.

If the acoustic grounding would be confirmed, it would
have far reaching implications. In this case, the sounds of the
different high-level categories might, for instance, have dif-
ferent impact on humans when exposed to them over long du-
rations [22]. If machine classifiers could reach high reliability
in real-world situations, sound profiles of arbitrary locations
could be compiled and set into relation to e.g. health-related
demographic data at those locations.

In applied work in the ‘Making Sense of Sounds’ project
the high-level categories are already used as the primary user-
controlled filter option in custom-made hardware devices de-
signed as tangibles interfaces for the recording and playback
of sound memories [23]. The Audio Memories system, which
encourages joint reminiscing, e.g. within a family, is to clas-
sify new sound recordings according to four of the categories
(Nature, Human, Music and Urban) and to allow the user to
choose them in the playback. A planned user study with tar-
get families will investigate what role the derived categories
play in sound-based recall.

7. CONCLUSION

We introduced the ‘Making Sense of Sounds’ acoustic data
set and the associated machine learning challenge, aiming at
a high degree of generalisation in machine classification by
making high-level human-derived categories the target. A
deep learning-based baseline system performed strongly and
reached an average accuracy of 80.8% on the evaluation data
set.

It remains an open question whether machine and human
classification share any underlying principles or even use sim-
ilar acoustic features. It is also unclear whether the automated
ability to classify an acoustic signal into the given categories
would bring about better overall performance in more spe-
cialised tasks (e.g. through a top-down classification proce-
dure). This, however, might be of minor importance with
regard to applicability: Machine systems interacting closely
with humans might simply need to have this ability for a
smooth integration into human environments and it is unlikely
that they have seen all relevant data in their training, forcing
generalisation.
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