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ABSTRACT 

The accurate classification of malignant grades of brain tumours is crucial for therapeutic 

planning as it impacts on the tumour’s prognosis, where the higher the malignancy levels of 

the brain tumour are, the higher the mortality rate is. It is also essential to provide patients 

with appropriate clinical management that may prolong survival and improve their quality 

of life. Determining the malignant grade of a brain tumour is a critical challenge because 

different malignant grades of brain tumours, in some cases, have inconsistent and mixed 

morphological characteristics. Consequently, the visual diagnosis using only the naked eye 

is a very complex and challenging task. The most common type of brain tumour is glioma. 

According to the World Health Organisation, low-grade glioma, which includes grade I and 

grade II are the least malignant, slow growing, and respond well to treatment. While, high-

grade gliomas, which include grade III and grade IV are extremely malignant, have a poor 

prognosis and may lead to a high mortality rate. Hence, the motivation to develop an 

automated classification system to predict the malignant grade of glioma is the aim of this 

research. To achieve this aim, several novel methods were developed and this includes new 

methods for the extraction of statistical measures, selection of the dominant predictors, and 

the fusion of multi-classification models. The integration of these stages generates an 

accurate and automated decision system to determine the malignant grade of glioma. The 

feature extraction starts from the viewpoint that the objective measure of the brain tumour 

descriptors in MR images lead to an accurate classification of malignant brain tumours. This 

work starts from the standpoint that meta-trainable fusion of multiple classifier models can 

offer a better classification accuracy to recognise the malignant grade of glioma in MR 

images. This study developed a novel strategy based on two stages of multiple classifier 

systems for glioma grades. In the first stage, different machine learning algorithms were 

used. In the second stage, a systematic trainable combiner was designed based on deep neural 

networks. This research was validated using four benchmark datasets of MR images, which 

are publicly available and confirmed with the histopathological diagnosis. The proposed 

system was also evaluated and compared against different traditional algorithms; the 

experimental results showed that the proposed system has successfully achieved better and 

optimal discrimination in glioma grades on all dataset.  



 

1 

 

CHAPTER 1 : Introduction and Motivation 

 

Overview 

This chapter introduces the research developed in this thesis and the background to the 

traditional visual diagnosis of malignant brain tumours. It is used to justify the need to 

develop an automated system to classify glioma grades using medical imaging techniques as 

this will offer a significant help to the clinician during the decision-making process to 

achieve more objective and accurate diagnosis of the different glioma grades. Furthermore, 

this chapter elaborates on the aim and objectives of the study, as well as introducing the 

scope, contributions and direction of the research and exploring the main challenges 

considered in the study. In addition, it provides an introduction to the methods and tools used 

to overcome the challenges throughout the development of this study. 

1.1 Introduction 

The number of newly diagnosed cases of brain tumours is increasing all over the world 

annually. The incidence rate of brain tumours as presented by the Cancer Research UK 

Organisation (CRUO) has shown that the number of new cases recorded in 2013 was about 

10,624 in the UK, while in Europe the statistics indicated that around 57,100 new cases were 

reported in 2012, and worldwide more than 256,000 cases. Similarly, CRUO stated that since 

the late 1970s, the incidence rates of malignant tumours have increased by almost two-fifths 

(39%) in the UK. Inevitably, brain tumours can grow, become more aggressive and lead to 

mortality. For instance, the number of deaths caused by brain cancer due to malignant 

tumours in 2012 was 5,187 cases, and the survival rate was about 14% for ten years or more 

in the UK1. 

Glioma is the most common type of malignant brain tumour and can be classified into four 

malignant grades according to the World Health Organisation (WHO). Low-grade gliomas, 

which include grade I and grade II, grow very slowly with a remarkably better prognosis 

(Weller, 2011). The best therapeutic process offers an extensive resection of the lesion and 

delays adjuvant radiotherapy postoperatively until the progression of the tumour is observed 

                                                 
1 http://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/brain-other-

cns-and-intracranial-tumours#heading-Zero 
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again (Pouratian and Schiff, 2010). The high-grade gliomas, which include grade III and 

grade IV, are managed with an essential resection and chemotherapy and radiotherapy 

(Stupp et al., 2010). The classification of malignant grades of glioma allows the 

determination of the management and prognosis for the patient (Hadziahmetovic et al., 

2011). Therefore, it is crucial to differentiate low-grade gliomas from high-grade gliomas 

preoperatively, as this effectively impacts the prognosis and treatment of a patient’s health 

(Theeler and Groves, 2011, Siker et al., 2006). 

The traditional diagnosis of malignant brain tumours such as glioma relies on the visual 

assessment of the various attributes of medical images. However, making a correct decision 

of the malignant grade needs relatively high experience in the neuroradiology field. 

Furthermore, the inconsistency of different visual characteristics of malignant brain tumours 

leads to more subjectivity in the diagnosis. This process also may need to test the 

pathological information of tumour tissues derived from a biopsy or clinical surgery to yield 

further confirmation of the diagnosis, which is an invasive procedure and the patients may 

suffer many complications during clinical surgery.  

The gold standard approach to determine the correct grade of malignant brain glioma tumour 

is the histopathological examination. This is achieved by the surgical conditions of the 

specimen tissue being examined with a microscope. This process is known as the biopsy test. 

Although biopsy is less invasive and better tolerated by patients, it is still an invasive practice 

and can cause excessive pain. Nonetheless, brain injury may take place due to the removal 

of brain tissue. Moreover, eliminating any healthy tissue may affect the normal functioning 

of the brain. Hence, this approach is considered a costly surgical procedure and can lead to 

many complications (Lasocki et al., 2015). 

Alternatively, computer-aided diagnosis or detection (CAD) has been presented as an 

efficient and reproducible approach to improve upon radiological diagnosis or detection 

performance (Herlidou et al., 1999, Kassner and Thornhill, 2010, El-Dahshan et al., 2014, 

Saad et al., 2015). Computer-aided detection (CAD) has been developed and used 

successfully to improve the detection performance of experts in the medical field, for 

example the research carried out by Helbren et al. (2015), in which the effect of CAD on 

observer’s performance has been investigated within clinical environment through a novel 

methodology based on eye-tracking observers of computerised tomographic colonography. 

They have found that CAD is able to support observers for fast detection of region of interest 

and increase of correct polyp identification for both experienced and inexperienced 
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observers. The usefulness of computer-aided diagnosis (CAD) was also studied in the 

assessment of malignancy of brain tumours. For example, the research conducted by Hsieh 

et al. (2017c), in which they have developed a computer-aided diagnosis system for glioma 

grading to discriminate between grade IV and the lowest glioma grades (II, III). They 

examined the effect of CAD within the clinical environment on the diagnostic performance 

of a group of three radiologists that have different experiences. A comparative analysis was 

conducted between diagnosis with and without the use of CAD. They stated that the 

diagnostic performance of the radiologists for glioma grading in term of classification 

accuracy has improved from 72% to 81% when using CAD compared to when performing 

the glioma grading by only the radiologists. 

The malignant grade of a tumour can be estimated by the analysis of several descriptors of 

a brain tumour. For instance, tumour heterogeneity derived from medical images is a 

significant indicator for the growth of malignancy of a tumour. Subsequently, it has been 

shown that image texture analysis reflects tumour heterogeneity (Ryu et al., 2014). Thus, the 

use of texture analysis as a quantitative measurement of lesion surface patterns is a 

significant approach to measure the tumour heterogeneity. Texture analysis has been used 

for the identification and recognition of morphological characteristics of brain tumours 

(Nielsen et al., 2008, Holli et al., 2010, Bauer et al., 2013, Roy et al., 2013). Medical imaging 

is a robust technology used for creating visual images of the internal organs or tissues of the 

human body. Image processing methods have been employed for medical systems and 

applications and have been used to support clinicians for faster and efficient diagnosis and 

manage proper treatment within different medical fields. These techniques have an impact 

on enhancing the diagnostic performance of medical images and provide clinicians with a 

more objective and efficient second opinion. The accuracy of brain tumour diagnosis has the 

potential to further improve by automating the classification procedure based on objective 

analysis to the characteristics of the medical image of a brain tumour. The classification of 

glioma grades is critical due to different levels of malignancy of brain tumours associated 

with different treatment and prognosis strategies and is associated with a high mortality rate. 

Consequently, this creates the enticement to this study to develop an automated classification 

system of malignant grades glioma, towards objective and accurate classification of glioma 

grades.  
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1.2 Background to Brain Tumour 

In this section, a brief introduction to brain tumours, definition and diagnosis are presented. 

It also introduces the definition of malignant brain tumours such as glioma. 

1.2.1 Brain Tumour 

A typical mechanism of cell division in body tissues is the generation of new cells to take 

the place of the ones that died or have been damaged. When this process goes wrong for any 

reason, new growth of undesirable cells is generated. This growth of extra cells often forms 

a mass of tissue called a lesion or a tumour. Brain tumours are relatively less common than 

another lesions, such as those of the breast and lung cancers, but are considered extremely 

significant because the brain is the most vital human part which controls all the functional 

activities of the body, and malignant brain tumour is associated with a high mortality rate 

(Tonarelli, 2013). Due to the aggressive nature of malignant brain lesion that causes 

uncontrolled mass growth that eventually leads to dangerous complications such as pressure 

to the critical structure inside the brain. Therefore, a malignant brain tumour is a life-

threatening condition. 

1.2.2 Glioma 

Glioma is the most common type of primary brain tumours in adults (Bauer et al., 2013). 

Therefore, in this research work, the focus is given to glioma. The malignant brain tumours 

can be subdivided into high-grade tumours (grades III and IV) and low-grade tumours 

(grades I and II) according to the biological behaviour of brain lesion. They can also be 

divided into three types depending on the cellular origin type: astrocytomas, 

oligoastrocytomas, and oligodendrogliomas (Behin et al., 2003). Low-grade gliomas grow 

slowly and have a good prognosis. While high-grade gliomas have a penchant for invading 

surrounding tissues, highly-vascular tumours and extensive areas of necrosis are mostly 

present. High-grade glioma mainly generates a breakdown to the blood-brain barrier in the 

vicinity of the tumours. Different glioma grades can be visualised using Magnetic Resonance 

(MR) images (Figure 1.1) to assess the presence of various attributes of brain lesions that 

assist in characterising different brain neoplasm descriptors.  

1.2.3 Medical Imagining Diagnosis 

The traditional visual diagnosis starts with providing morphological information about the 

presence of a tumour using imaging techniques such as magnetic resonance imaging (MRI) 
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and Computerised Tomographic (CT), which offer plenty of information regarding the 

malignant growth of a tumour. CT is useful for identifying acute haemorrhage, calcification, 

and skull lesions. MRI is the most common technique, which can better detect the soft 

structure of the lesions. Single Photon Emission Tomography and Positron Emission 

Tomography are generally used for postoperative functions such as distinguishing tumour 

recurrence from necrosis (Hutter et al., 2003). The final step of the diagnostic procedure, 

which may apply for subspecies cases, is by using a biopsy, which includes obtaining a tissue 

sample that belongs to the suspected tumour under surgical intervention and sending it to be 

examined through the histopathological procedure. Eventually, the final assessment of tissue 

sample cells is drawn by histopathologist’s conclusion (DeAngelis, 2001).  

 

 

 

 

 

 

 

 

 

 

 

 

 

1.3 The Significance of the Study 

 The accurate classification of malignant grades of gliomas is crucial to provide patients with 

the appropriate clinical management that may prolong survival and improve their quality of 

life (Chao et al., 2006). Developing an automated system to classify glioma grades will offer 

an objective and accurate decision-making process to determine the malignant level of a 

brain tumour, which will support a clinician to improve the throughput of diagnosis of 

A B C 

Figure 1.1 Samples of Axial T2-weighted magnetic resonance imaging showing different 

glioma grades, where A, B and C represent glioma grade II, III, and IV respectively. 

The hyper-intense regions seen in all these MR slices indicate the dominant unusual 

growth mass in the brain. In image A, the presence of tumour seems to be of a small size 

homogenies lesion in the left side of the brain. Image B shows a tumour in the right side 

of the brain with a bigger tumour in size and seems to have irregular heterogeneous 

tumour. Image C indicates a tumour in the right side of the brain, which seems to have 

irregular mass and high heterogeneous lesion. 



CHAPTER 1 

 

6 

 

malignant grads of brain tumours (Hsieh et al., 2017c). The developed system will also offer 

a second opinion for the preoperative diagnosis of glioma grades. This will lead to better 

prognosis and to manage the most proper treatment for a patient who develops malignant 

brain cancer. 

1.4 Problem Statement and Challenges 

Determining the malignant grade of a brain tumour is a significant challenge because 

different malignant grades of brain tumours, in some cases, have inconsistent and mixed 

morphological characteristics. Consequently, the visual diagnosis using only the naked eye 

is subjective due to inter and intra-observer variability (Saad et al., 2015). There is an 

increased evolution in the incidence rate of a malignant brain tumour over the world, and 

this raises the challenges in the medical health sector as they are associated with high 

mortality rate. A patient who develops brain cancer requires an in-depth clinical diagnosis 

and assesses many health conditions and factors about tumour behaviour to determine the 

most appropriate treatment that can effectively cure brain cancer. The growth of a brain 

tumour to a higher level of malignancy is threatening to human life. Incorrect diagnosis of 

the malignant grade of a glioma leads to inappropriate treatment and raises the risk of 

unsuitable extraneous treatment. The tradition diagnosis of a brain tumour is accomplished 

based on visual diagnosis to assess the visual appearances of tumour descriptors that may 

appear in the medical image of a brain tumour such as the presence of contrast enhancement 

and necrosis. This examination can also be extended to include a biopsy under the clinical 

surgery to confirm the diagnosis and determine the accurate malignant level of a brain 

tumour in cases where there is a probability for a high malignant tumour. However, the 

biopsy is an invasive approach and the visual diagnosis of a brain tumour depends mainly 

on the skills, experience and qualification of the expert.  

1.5 Research Aim and Objectives 

The aim of this study is to develop an automated classification system, which will improve 

objective discrimination among different malignant grades of glioma, describing it in terms 

of WHO standardised clinical grading schemas based on objective and recognised predictors 

extracted from MR images.  

The developed system will offer a great assistant to clinicians towards an accurate and 

objective decision to determine the malignant grade of glioma (Hsieh et al., 2017c). This 
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will lead to better prognosis and manage proper treatment for a patient who develops brain 

cancer (Chao et al., 2006). 

This work will review and explain how automated methods could be defined to generate 

fast, accurate and objective assessment for glioma grades using statistical features measured 

from medical images. 

The above aim will be demonstrated by achieving the following research objectives: 

Obj.1:  Review the literature to understand the problem domain and to identify the research 

requirements, opportunities and boundary of the research undertaken. Also, it will 

evaluate and investigate the appropriate methods and techniques, which support the 

development of automated classification system for glioma grades. The developed 

system will achieve specific goals of non-invasive (without clinical surgery), 

automated and objective analysis. 

Obj.2: Design a new method that supports the automated classification for glioma grades 

based on developing the following stages; the first stage is extracting efficient 

features and the second stage is selecting the most significant feature. The developed 

methods will contribute to improve the quality of the classification process. 

Obj.3: Design a new method within the classification stage, which can support the 

automated classification system to achieve a better discrimination for glioma grades.     

Obj.4: Evaluate the new method experimentally for improving the classification accuracy 

by measuring the performance of the automated system using common quantitative 

technique such as the confusion matrix. This seeks to determine that the new method 

aligns to the recent state-of-the-art. 

To achieve the aim and the objectives of this study, it necessary to address the following 

research questions. 

1- Can the objective measures of the brain tumour descriptors incorporated with 

automated methods enable better grades discrimination in gliomas? 

2- How to select the most efficient features to classify glioma grades more correctly? 

3- How to develop a new classification method that can achieve further accuracy in the 

classification of glioma grades? 

4- How to improve the classification accuracy for glioma grades? 
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1.6  Contributions and Novelty of the Study 

The prediction of malignant grades of a brain tumour is traditionally performed based on a 

visual diagnosis of MRI findings in addition to demonstrating a biopsy test to gain the full 

confirmation of the diagnosis. However, the visual diagnosis is a complex task, and the 

biopsy is an invasive approach that may harm the patient through a clinical surgical 

procedure. Many existing works used the combination of different advanced MRI imaging 

techniques to achieve further improvement in the classification accuracy for glioma grades. 

However, the advanced MRI techniques are costlier and have limited availability in MRI 

clinical centres. Therefore, this study is conducted based on conventional MRI techniques, 

which are readily available in any MRI clinical centre. 

The key contribution of this study is the automated classification system and the 

methodology which is undertaken. In addition to employing several dominant predictors of 

a brain tumour incorporated with the ensemble of different effective machine learning 

algorithms, which can improve the accuracy of distinguishing various WHO glioma grades. 

This will offer support to the clinicians towards an accurate, objective and automated 

decision for glioma grading. 

Four benchmark datasets were used to evaluate the proposed framework. These datasets are 

publicly available online for academic use and are pre-diagnosed with the confirmation of 

the histopathological test. 

The main contributions and novelties of this study are summarised as follows: 

1- New method to extract features from MR images of brain tumours is proposed, based 

on generating ratio predictors and objective analysis extracted from the presence of 

different descriptors of a brain tumour, such as contrast enhancement, non-

enhancement, necrosis, and edema, which offer an objective analysis of MRI 

attributes of a brain tumour. It is noted that the existing work relies on the expert 

domain to analyse these tumour descriptors but this has limitations of inter and intera 

variabilities in the diagnosis. Other existing studies do not take into account the 

objective analysis of the relations of these features either with each other or the 

influence of these relations if integrated with machine learning algorithms on the 

classification of glioma grades. The proposed method is beneficial as the 

discrimination ability of these tumour descriptors can be analysed and built to 

differentiate malignant gliomas. Consequently, more impact from these tumour 
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descriptors can be gained to improve the classification accuracy of glioma grades. 

The main advantage of these features is that they can achieve a solid conclusion for 

the suspected growth of malignant grades of glioma. This is the first study that 

investigates the impact of these features on glioma grading. 

2- A new feature selection method is developed that eliminates redundant features, not 

only related to maintaining the same level of accuracy but also achieving further 

improvement in the classification accuracy for glioma grades. This method is based 

on taking advantage of a fusion between filter and wrapper methods. It is based on 

the correlation analysis incorporated with several classifiers to update and guide the 

selection process. 

3- A comprehensive analysis of three-dimensional textures feature based on the Grey 

Level Co-occurrence Matrix (GLCM) is established to support the development of 

an automated MRI classification system of glioma grades. 

4- A novel method is proposed to support the ensemble of different machine learning 

algorithms that further improve the classification accuracy for glioma grades. This 

includes the development of the meta-trainable strategy based on deep neural 

networks (DNN). The existing works mainly concentrate on either using single 

machine learning algorithm or using one stage of multiple classifier systems. 

Therefore, better classification accuracy can be achieved using a multiple classifier 

systems (MCS) based on two stages of learning for glioma grading.  

5- A novel method is proposed to optimise the output accuracy of DNN in an effort to 

provide a systematic trainable design for the MCS that can be beneficial to improving 

the classification of glioma grades. The existing work applied a few trials, which are 

randomly selected in attempt to achieve the best design and parameters of the neural 

networks (NNs). While applying a systematic approach in developing the DNN can 

play an important role in the optimisation of MCS and thus improve the classification 

accuracy for glioma grades. 

1.7 Scope of the Research Work 

This work is concerned with the automating the classification of the malignant grades of 

gliomas within the medical images processing. This work concentrates specifically on 

determining different malignant grades of a brain tumour, starting from the point at which 

segmented images are delivered to the classification system through to the final decision 

within a valid public standard segmented dataset. Localisation and segmentation of a brain 
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tumour from medical images are significant tasks, and they are intensively pursued by others 

(Roy et al., 2013, El-Dahshan et al., 2014, Menze et al., 2015, Al-Waeli, 2017). 

Consequently, these two tasks are out of the scope of this research. 

There are different types and subtypes of brain tumours. This work concentrates on gliomas 

since they are the most common type of brain tumours. The traditional method of the 

diagnosis of glioma grades relies on a visual diagnosis of a brain tumour image, which is a 

complex task, and could be extended to be an invasive approach through clinical surgery. 

The current work concentrates on a non-invasive methodology and image processing 

analysis based on extracting objective predictors from brain tumour images to achieve an 

objective classification of glioma grades.  

Within the medical imaging techniques, brain tumour characterisation can be demonstrated 

based on different imaging techniques such as CT and MRI. This work focuses on MRI to 

extract the recognised predictors that support the development of an automated classification 

system for glioma grades. The reasons behind using MRI techniques are as follows. Firstly, 

MRI is a safer acquisition technique for brain tumour image and is preferable because it has 

no radiation that harms the patient's body. Secondly, the soft tissue details are also more 

explicit in this technique. Ultimately, this technique has several modalities that can be used 

to show different representations of a brain tumour. 

Within the tumour descriptors used for the characterisation of the brain tumour image, 

several descriptors can be extracted from MRI images to reflect different malignant grades 

of glioma. This study concentrates on the most common and dominant brain tumour 

descriptors, namely, tumour heterogeneity, contrast enhancement, non-enhancement, 

necrosis, and edema. 

Within the assessment of heterogeneity of a brain tumour, this work focuses on the texture 

feature to measure the heterogeneity of a brain tumour, because the texture driven from 

medical images is the most common efficient and objective method to reflect tumour 

heterogeneity. Other image features such as shape and colour are outside the scope of this 

work because no significant shapes or colours can be recognised from medical images of 

glioma grades. 

Within the processing of machine learning algorithms, both unsupervised and supervised 

learning can be used to classify glioma grades. Unsupervised learning is relatively faster 

than the other learning scheme because there is no requirement to perform a training phase 
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and mainly relying on statistical measurements to perform the classification. On the other 

hand, very few works used unsupervised learning because it produces less classification 

accuracy compared to the supervised learning. However, in critical medical fields, such as 

the current work, the high priority is given to achieving a better accuracy. Therefore, the 

work concentrates on the use of supervised machine-learning algorithms, which are widely 

used for classifying glioma grades. 

Within the machine learning, many recent works utilised deep learning approach in several 

applications. However, to achieve the high accuracy, it is essential to support the training 

phase of deep learning with huge sample size of datasets and large computation time needed 

thereby leading to complexities in the design (Papernot et al., 2016). In contrast to the dataset 

availability in the field of this work, indeed at present, it is a significant challenge to acquire 

a large image dataset of glioma grades confirmed with the histopathology test. This 

confirmation is essential for the validation process to any classification or grading system. 

There is a lack of resources within the boundary of the research environment such as a lack 

of advanced parallel computing machine. Accordingly, deep learning was not considered in 

the current research. Instead, the work developed in this thesis is dedicated to developing 

two stages of learning in a multiple classifier systems, which can address the challenge 

mentioned above with deep learning. 

This development will include the improvement of several techniques of image processing 

attainment to the targets of this study. To this end, it is necessary to apply objective 

measurements and combine several recognised features that are used to reflect the 

malignancy level of a brain tumour. In addition, an objective analysis is required to achieve 

a reproducible and repeatable experimental framework.  

1.8 Research Methodology 

The research method utilised in this work is predominantly formative being concerned with 

the definition of concepts, methods and framework. The research plan within this thesis 

reflects common approaches in the literature review in the domain of achieving the research 

aim and objectives. The research methodology of this work has adopted the combination of 

quantitative and empirical strategies (Kothari, 2004).  

This works will pursue to address the ambiguity in the classification of glioma grades by 

developing methods and techniques that are able to avoid the subjectivity in the 

determination of the malignant grade of brain tumours. Several image datasets and different 
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statistical quantitative criteria were used to evaluate the performance of the proposed 

framework quantitatively and to compare it with other existing algorithms. Accordingly, the 

approach adopted in this research is in line with the experimental and quantitative research 

approaches. Consequently, the steps followed during the research work were listed below: 

1- Review in depth the state-of-the-art literature to identify the strengths and limitations 

in existing research works to draw the opportunities and the boundary of the research. 

2- Propose, develop and implement a solution that aims to overcome the research 

problems, and challenges to achieve the aim and objectives of the research. 

3- Experimental evaluations using different datasets based on quantitative statistical 

criteria and compare the performance against existing algorithms. 

4- Analysis the results of the experimental implementation and then draw a conclusion 

and identify the future research trends from the research findings.   

1.9 Work Plan and Requirements of the Research Work 

 This research work within this thesis followed three general phases to explore the research 

domain, requirements, and research opportunities, which lead to achieve the aim and 

objectives of this study (Figure 1.2). These phases are detailed below.                               

Phase 1: Understanding the Challenges and Research Requirements  

Within this phase, the scope of the research domain and opportunities are identified. To 

acquire a deep understanding of the research domain, it is necessary to accomplish a critical 

review of previous relevant works, considering their strengths and weaknesses. This critical 

review, consequently, identifies the research requirements to achieve the aim of the research. 

Understanding a research requirement is essential to address challenges in research. Hence, 

such understanding enables the identification of the research directions to overcome these 

limitations, resulting in more opportunities and better improvements in the development 

process of the proposed solution.  

Phase 2: System Design and Development 

The traditional process to classify malignant grades of a brain tumour is determined based 

on the visual diagnosis including the examination of different clinical information, such as 

the presence of the contrast enhancement, the presence of necrosis, and patient age. The 

diagnosis process could be extended to the histopathological examination under clinical 

surgery (biopsy). However, the visual diagnosis is subjective and the biopsy is an invasive 

process. Therefore, this research follows an alternative approach, which can be determined 
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by designing a decision maker that is able to achieve an objective, automated, and 

reproducible classification for the malignant grade of glioma.  

 

 

 

 

 

 

 

 

 

  

Figure 1.2 Research plan to approach the proposed solution of this study 
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This solution will also provide significant aid to the clinician in accomplishing the diagnostic 

procedure for malignant brain tumour. Within the medical image processing community, the 

development of a classification system requires the following steps. 

Step A:  Data Collection  

Dataset collection is an essential requirement for the development of the classification 

system; this is necessary to evaluate and validate the proposed system. In the current 

investigation, four benchmark datasets were used to evaluate the proposed approach. These 

datasets are anonymous to the user. The use of such public datasets is valuable in the 

development of the classification system for a reliable and reproducible methodology. To 

verify the results provided by the classification process, it is required that the acquired 

dataset has to be diagnosed in advance by the solid confirmation from a histopathological 

test or a clinical surgery. 

 Step B: Identification of Tumour Descriptors  

Identification of significant descriptors of brain tumour that are relevant to the research 

problem is essential and fundamental to support the development of an automated 

classification system for a brain tumour. Specifically, in this research work, several 

significant and common descriptors of a malignant brain tumour are driven from MR slices 

are considered.  

Step C: Feature Extraction 

There are two approaches to accomplish this step. The first approach is by using the features 

provided by a qualified expert who uses their experience to identify and track the behaviour 

of tumour descriptors in medical images. However, this approach is subjective and has the 

drawbacks of intra and inter-observer variations (Fujita et al., 2008). The second approach 

is achieved based on using statistical measure correlated with the tumour descriptors, which 

are driven from medical images of a brain tumour. It is necessary to identify an objective 

measure for each of these tumour descriptors to avoid the subjectivity in the assessment of 

malignant brain tumours. Accordingly, to follow a quantitative research methodology and 

achieve the aim of this study, the second approach is more objective than the first one, 

therefore, in this work; an objective measure for each of the tumour descriptors is considered 

and developed.  

 

 



CHAPTER 1 

 

15 

 

Step D: Feature Selection  

Feature selection is an important task as it selects the most significant features set to enhance 

the performance of the classification system and eliminate redundant features. In this work, 

a robust features selection and reduction method will be developed. 

Step E: Feature Classification  

The final step in the classification system is to classify an unknown sample to one of the 

classes. Many approaches are used to achieve this step. The visual procedure is the 

fundamental approach, which is based on using the morphological appearance of many 

tumour descriptors such as the presence of contrast enhancement to determine the malignant 

level of brain tumour. The second approach is analysing the features extracted from MR 

images of a brain tumour and is based on discovering a threshold value from these features 

to discriminate different malignant grades of brain tumours. The third approach is by taking 

the merit of applying machine learning algorithm using the features extracted from medical 

images to establish a model through training and testing of the extracted features. The 

established model is able to make a prediction on an unknown sample and then classify it to 

one of the tumour classes. The work within this thesis pursues the third approach to avoid 

subjectivity, and invasive choices inherent by the first approach, as well as, to produce a 

more general solution than the one provided by the second approach. Consequently, the 

present investigation will use machine learning algorithms incorporating active features 

driven objectively from MR brain tumour images, which would lead to better and objective 

classification accuracy for glioma grades.   

Phase 3: Implementation and Evaluation  

The implementation of the proposed solution is the complementary step for the research 

work. It is essential to implement the proposed system design in order to ensure the quality 

of the research plan, evaluate and compare the proposed algorithm experimentally against 

other existing approaches. The implementation is achieved by applying all the processes and 

steps that are developed in the system design. It is crucial to analyse system performance 

and the produced results for evaluating the proposed classification system. For the 

implementation platform, MATLAB R2018 software under academic license of the 

University of Salford was used to develop the code, functions and simulations to implement 

the system design. To ensure the generalisation of the classification performance, it is vital 

to apply the cross-validation method. Several objective metrics are used to evaluate and 
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validate the classification performance, which are measured using the resultant confusion 

matrix, for examples, classification accuracy, sensitivity, specificity and precision.  

Iterative development and evolution of the methods within a framework is used to enable 

the developed system in achieving the aim of this research. Evaluating the performance of 

the developed system is required at each stage to guarantee that the impact of the evolution 

is entirely valid. 

1.10 Summary  

This research is dedicated to developing an automated classification system to determine the 

accurate grades of glioma. The research aim has been defined and explored in terms of the 

objectives to address the research questions of this study. This chapter also presents the 

opportunity for the main contributions and novelty in the context of the study as well as 

indicates the significance of the study. This work seeks to define issues related to the 

traditional diagnosis of malignant grades of glioma. It also defined the challenges associated 

with developing a classification system based on machine learning algorithms. The research 

starts from the standpoint that the traditional visual diagnosis to determine an accurate 

glioma grade is a subjective, complex task, and time-consuming. An objective analysis 

incorporating an effective machine-learning algorithm can overcome the limitation in the 

traditional diagnosis and will enable clinicians towards an accurate and objective decision 

to determine the malignant grade of glioma. The second standpoint is that each single 

machine learning algorithm has a shortcoming that tends to reduce the classification 

accuracy in some cases, as no single classifier is suitable for every dataset, while the fusion 

of multiple classification models is promising to overcome this limitation and offer further 

enhancement in the classification accuracy of glioma grades.  

1.11 Thesis Structure  

This thesis is organised into the following chapters:  

Chapter 1:  This chapter includes an introduction to the entire research work, defining the 

challenges, aim and objectives; elaborating on the research methodology, scope, 

contributions, novelty, and the implications of this research work. 

Chapter 2:  This chapter presents a detailed background related to the medical methods and 

concepts undertaken in this research work. This chapter also concentrates on 

defining the state-of-the-art (current approaches) and understanding them within 
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the problem domain and the approaches were taken to address it. The outcomes 

identify the research boundaries and opportunities for the novelty in this research 

with a review of the success criteria against an evaluation framework. 

Chapter 3: This chapter provides details of the datasets utilised in this work and the 

preparation of region of interest-driven from the MR images datasets. It also 

includes the extraction of texture features with 2D (Two Dimensions) and 3D 

(Three Dimensions) analysis of grey-level co-occurrence matrix. This also 

covers the features selection method, which integrates the filter and wrapper 

approaches. In this integrated method, the merit of using several machine 

learning algorithms was taken into account. The chapter also covers results 

evaluation and discussion to apply this method incorporated with the single and 

ensemble classification method. 

Chapter 4:  This chapter presents the development of the classification system for glioma 

grades based on the objective measure of different tumour descriptors 

including necrosis, edema, non-enhancement, and enhancement. It also covers 

the objective assessment of these tumour descriptors to discover the 

discrimination ability of their features to classify glioma grades.  

Chapter 5:  This chapter demonstrates the development of multiple classifier systems based 

on two stages of learning, to determine the malignant grades of glioma towards 

further improving the classification accuracy of glioma grades. It also includes 

results analysis and comparison with other classification algorithms. 

Chapter 6: This chapter presents the development of the multi-class classification of WHO 

glioma grades. It also provides evaluation and results analysis of the developed 

system. The proposed method was developed to enhance the classification 

accuracy of different WHO glioma grades. 

Chapter 7: This chapter describes the overall discussion, evaluation, conclusion and future 

works. It further discusses and compares the overall results obtained by the 

methods developed and approaches taken and built a comparison against the 

recently identified developments in the field. It ends with conclusion for the 

study and suggested trends for future research. 
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CHAPTER 2 : Background and Literature Review 

Overview 

This chapter presents a background to brain tumours with an emphasis on glioma. Different 

characteristics of glioma grades, extracted from MR images, are also explored. Furthermore, 

conventional and advanced MRI techniques, which are involved in the assessment of 

malignant brain tumour, are discussed. 

This chapter besides presenting a comprehensive survey of existing research works. It also 

defines the theoretical backgrounds of the processing framework, exploring a wide range of 

the current approaches and methods aimed to classify malignant grades of a tumour and 

particularly to glioma. This seeks to address the following main stages: feature extraction 

and selection, single classifier systems and multiple classifier systems. The common 

descriptors used to define glioma such as heterogeneity, contrast enhancement and necrosis, 

etc, are also explored. Furthermore, the significant predictors including texture features are 

elaborated. This also seeks to establish a scientific background to identify the research 

requirements and to select the most appropriate and efficient methods to develop an 

automated classification system to determine malignant grades of glioma.  

Ultimately, this chapter is summarised with the research limitations and boundaries, which 

are found in existing work, and potential opportunity for novelty in the research undertaken. 

This also covers a highlight of the proposed solutions to address these limitations. This 

establishes the guidance trends to the research work undertaken in this study.   

2.1 Introduction 

Medical image analysis for brain tumour studies has gained significant research attention in 

recent years due to the raising needs for efficient and objective assessment of a large number 

of medical images of brain tumours (Bauer et al., 2013). The rapid development in medical 

imaging techniques and computer-aided algorithms has enabled pioneer methods to become 

more mature. Practically, computer-aided intelligent algorithms are employed in assisting 

and automating specific radiological tasks such as the detection and classification of tumours 

(Birry, 2013). Computer-aided diagnosis (CAD) has been developing fast in the last two 

decades. The significant purpose of CAD is to support radiologists by using developed 

intelligent algorithms to provide ‘second opinions’ where the visual analysis used for the 
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diagnostic procedure is highly domain experience-dependent, which is subjective and a 

complex task. Therefore, CAD can offer significant help to enhance the diagnostic accuracy 

of radiologists, improve inter- and intra-reader variabilities and reduce cancer missed due to 

fatigue, overlooked or data overloaded (Fujita et al., 2008, Marshkole et al., 2011). CAD can 

improve the diagnostic ability of the radiologist based on the integration between medical 

image analysis and machine learning techniques (Duda et al., 2012). Accordingly, pattern 

recognition techniques including machine learning play vital roles in the development of 

CAD systems (Illán et al., 2011, Graña et al., 2011, Kumar et al., 2013, El-Dahshan et al., 

2014, Moradi et al., 2015, Hsieh et al., 2017b, Citak-Er et al., 2018, Gupta et al., 2019, Latif 

et al., 2019, Gupta et al., 2017). Pattern recognition includes extracting features from the 

region of interest (e.g., tumour) and represented in raw data and making a decision based on 

a classifier outcome, such as classifying the input sample into one of the possible classes. 

Therefore, CAD becomes a significant supportive approach in enhancing diagnostic 

accuracy and confidence even for those with high experience (Helbren et al., 2015, Hsieh et 

al., 2017c). MR image analysis has been the subject of many research works for imaging of 

human organs including the detection and classification of different types and grades of 

tumours such as brain, lung, liver and breast. The pre-operative diagnosis of glioma grades 

is a challenging task, associated with high mortality. The accurate classification of glioma 

grades plays a vital role in survival prediction and for managing appropriate treatments. A 

particular focus of this research work is to achieve a classification of malignant brain 

tumours (glioma), to enable clinicians for an objective, accurate and robust decision-making 

in distinguishing different grades of glioma. This has created the inducement to develop an 

automated classification system of glioma grades. Developing classification systems of a 

brain tumour in medical images are primarily motivated by the necessity of achieving 

maximum possible accuracy. The general stages to develop the classification system for 

brain tumour images are mainly based on features extraction, selection and features 

classification. 

2.2 Brain Tumours  

Brain tumours can be classified into two types: secondary and primary. Secondary brain 

tumours develop when cancer cells are transferred from other parts of the body to the brain 

such as the lung or breast, whereas primary brain tumours arise from tissue cells in the brain. 

The most common group of cancers are primary brain tumours, which are categorised as 

malignant (cancerous) or benign (non-cancerous) tumours. Benign tumours develop slowly, 
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and their diagnosis can be a difficult task because their cells resemble normal ones (Kitange 

et al., 2003). Benign tumours can still be life-threatening if they are in the vital parts of the 

brain, where they put pressure on sensitive nerve tissue or if they increase pressure within 

the brain. Although some benign brain tumours may present a health risk, including the 

threat of disability and death, most of these are successfully treated with surgical removal. 

Radiation can be applied as an alternative therapeutic way especially when life-threatening 

circumstances are provoked due to the location of the benign mass (Doolittle, 2004). 

Malignant tumours are extremely threatening to human life leading to mortality because of 

their invasive and aggressive progress. Furthermore, the uncontrolled mass development of 

a malignant tumour leads to several difficulties such as pressure to vital brain structures.  

The most common type of primary brain tumour in adults is glioma (Schwartzbaum et al., 

2006, Sugahara et al., 1999). Diagnosis of glioma grades is a vital decision because of its 

impact on patient prognosis. Prognosis can be described as the likely outlook of disease on 

whether it is likely to be cured and the person’s life expectancy. Glioma grades can be 

identified by pathological evaluation of a brain lesion. To reach a precise diagnosis, it is 

crucial to understand their morphology, which leads to the classification of tumour grades 

correctly (Barnett, 2007). The common MRI visual characteristics of glioma grade are 

explained in the next sections. 

2.3 MRI Morphological and Clinical Characteristics of Glioma Grades 

Gliomas can be classified based on tumour growth into two categories: low and high grades. 

Low-grade gliomas are benign and have a better prognosis. On the other hand, high-grade 

gliomas are in the malignant category and carry a poorer prognosis. Malignant brain tumours 

can be further categorised into four histological grades with the least aggressive type denoted 

by grade I. Tumour aggressiveness could grow to the second-grade denoted grade II and then 

further malignancy growth will lead to the third-grade denoted grade III. Finally, the most 

aggressive tumour is denoted by grade IV (Louis et al., 2007). 

The glial cells can be classified into three types: Astrocytomas, Oligodendrogliomas and 

Oligoastrocytomas. About 75% of glial tumours is accounted by the Astrocytomas (Behin 

et al., 2003). Astrocytomas according to WHO can be classified further into four histological 

grades ranging from grade I, also denoted as Pilocytic Astrocytomas, to grade IV which is 

known as Glioblastoma Multiform (Moore and Kim, 2010). 
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2.3.1 Malignancy Assessment and Visual Diagnosis  

The malignancy assessment of a brain tumour requires a rather complicated characterisation 

of MR images and it is generally performed by experienced radiologists. This is a critical 

task, which should be accomplished with a significant degree of precision. Several criteria 

(Table 2.1) are commonly used to assist the clinician in the visual diagnosis of glioma grades. 

The table includes tumour descriptors that can be identified from conventional MR images 

(Figure 2.1), as well as visual guidelines that are commonly used for the assessment of 

gliomas grade (Moore and Kim, 2010). However, in clinical practice, there are many other 

suggested descriptors used by some experts and ignored by others. Furthermore, some of 

these descriptors are not essential to present in MR images. 

Table 2.1 Summary of the brain tumour descriptors and their common incidences used for 

visual assessment of the malignancy diagnosis of brain tumour grades (Moore and Kim, 

2010). The incidences of the tumour descriptors are more likely to occur but are not 

essential. 

 Grade I Grade II Grade III Grade IV 

Contrast enhancement 
Commonly 

Enhanced 
Usually Absent Enhanced Enhanced 

Edema None Rare 
Low 

attenuation 
Present 

Necrosis 
Usually 

Absent 
Usually Absent 

Present 

but may 

absent 

Present but is 

not essential 

to occur 

Lesion heterogeneity 

appearance 
None 

None, but it may 

present in some 

cases with 

enhancement 

High Highest 

Median Age at 

diagnosis (years) 
10 34 41 53 

Male/female ratio 1:1 1.18:1 1.8:1 1.5:1 

Survival (years) 
Variable, 

cures 
5 (2–12+) 2 (1–5) 1 (0.25–1.5) 

 

2.3.2 Low Glioma Grades  

Low glioma grades include two sub-grades namely grade I and grade II. Brain tumours with 

glioma grade I are rare in adults and are primarily seen in children, where the survival rate 

is variable. It has a better prognosis, and they are treated with surgery that usually leads to a 

successful cure. Also, they usually do not require postoperative chemotherapy or radiation. 
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The morphological characteristics are as follows: first, they are well circumscribed, as they 

have a well-defined tumour border with homogenise lesions. Calcifications are rare. The 

majority is presented as a brightly enhancing mural nodule with large cystic lesions on T1 

with a contrast agent (Weller, 2011).  

Tumours are usually hyperintense (more intense) on T2-weighted images; however, in some 

cases, the solid component may be hypointense (less intense) in the grey matter, similar to 

that of cerebrospinal fluid (CSF). Low-grade Astrocytoma is commonly enhanced after the 

administration of contrast agents. They usually show enhancement which can be nodular or 

ring-like with a significant cystic component (Grant and Griffin, 2013).   

Brain tumours with grade II (Figure 2.2), which are known as Diffuse Astrocytoma, are low-

grade tumours of a more invasive nature, which arise typically in the hemispheres of young 

adults involving white matter cortex. However, focal circumscribed lesions can also occur. 

The contrast enhancement is usually absent. Grade II tends to grow to a higher histological 

grade within 3 to 10 years. The survival time is from 2 to 12 years. The MRI findings of this 

grade are that they are hypointense or isointense on T1-weighted images, and hyperintense 

on T2-weighted images and Fluid-attenuated Inversion Recovery (FLAIR). The lesion is 

homogeneous with hypointense mass on T1, and necrosis is usually not appeared in this 

grade of glioma (Moore and Kim, 2010). 

Edema 

around the tumour Necrosis Contrast Enhancement 

around the Necrosis 

Figure 2.1 Morphology charateristics of brain tumour including the precence of tumour 

enhancement in T1 after applying the contrast enhacement, necrosis is in the centre of 

tumour and edema is located around the tumour appeared in T2. These MR images are 

for grade IV of glioma (Corso et al., 2008). 
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2.3.3 High Glioma Grades 

High glioma grades include two sub-grades: grade III and grade IV (Figure 2.2). Brain 

tumours with glioma grade III , also denoted as Anaplastic Astrocytoma, have clinical 

characteristics as follows: they are highly heterogeneous in appearance, and indicate more 

extensive infiltration adjacent tissue than grade II tumours (Wintermark et al., 2005). This 

leads to a mixed intensity on MRI. Contrast enhancement is commonly perceived, and rapid 

tumour growth with the development of edema may cause mass shifts. Grade III tumours 

typically invade white matter zones. Tumour cells can usually originate in the edema zone 

as well as outside this zone (Moore and Kim, 2010). The prognosis is poor with a median 

survival of 1–5 years. These tumours have a tendency for progression to Glioblastoma 

Multiform. The most aggressive type of malignant primary brain tumour is Glioblastoma 

Multiform, which is commonly found in adults and has the worst prognosis. The survival 

time is from 0.25 to 1.5 years (Moore and Kim, 2010). These rapidly developing tumours 

may grow from previous lower grades or occur in older patients. The MRI clinical outcomes 

of a brain tumour with grade IV are as follows: a thick and irregular rim of enhancement on 

T1 delineates a lesion. Tumour necrosis usually appears as hypointense areas on T1, 

frequently surrounded by a ring-like zone of contrast enhancement. While on T2 (Figure 2.2) 

the lesion is more heterogeneous than other glioma grades, with hyperintense mass and 

edema (Behin et al., 2003). 

 

 

 

 

 

 

 

 

2.4 Magnetic Resonance Imaging Modalities 

Magnetic Resonance Imaging (MRI) is a modern imaging technique, which utilises the 

fundamental principles of Nuclear Magnetic Resonance. MRI is a non-ionizing technology 

A B C 
Figure 2.2 Brain lesions highlighted by blue circles in axial T2-weighted MR images 

where A, B and C represent glioma grade II, III, and IV respectively. Image A shows 

hyper-intense region with well circumscribed and homogenies lesion. Image B seems to 

have irregular shape with more heterogeneous tumour. Image C seems to have irregular 

mass with lower conspicuity and higher heterogeneous lesion. 
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developed independently by Edward Mills Purcell and Felix Bloch for precise measurements 

of frequency and nuclear magnetism of atomic nuclei, which was used mainly for the 

construction of different materials (Purcell et al., 1946, Bloch, 1946). 

The MRI has been used widely in the medical imaging and assisted clinicians to diagnose 

and manage treatment such as radiation therapy and surgery. This importance is given to 

MRI technology because of its ability to provide an excellent soft tissue contrast, high signal 

to noise ratio and high-resolution images (Blink, 2004). Based on the fact that the most parts 

of biological tissue of the human body consist of water or billions of hydrogen atoms, the 

MRI technology has gained more advances, which is designed on the basis of sensing the 

signals that reflects the interaction between an external magnetic field and protons of the 

hydrogen atoms (Petrou, 2010). Accordingly, the MRI is particularly more appropriate for 

the imaging of biological tissue such as the brain rather than bones because the latter does 

not include many hydrogen atoms. 

Two relaxation times that could be captured through the relaxation process namely T2 and 

T1 relaxation times; T2 is also called spin-spin relaxation, which represents the required time 

to induce the excited net magnetisation to 37% of the original state. During this process, all 

protons are rotating at slightly different frequencies around the z-axis and exchange energy 

is started between each other (Dougherty, 2009). T1 is known as the spin-lattice relaxation 

that represents the required time for relaxing the protons back to recover 63% of the original 

net magnetisation. The required time for T2 relaxation is always shorter than T1 relaxation 

time. Different types of tissues can reflect different relaxation times, e.g., the water is de-

phased much slower than fat tissue (Blink, 2004). 

Fluid-attenuated inversion recovery (FLAIR) sequence is a special sequence that generates 

adaptive T2-w images by eliminating the signal of the brain edema and other tissue types 

with high-water content such as CSF. FLAIR is an important tool in tumour delineation with 

better recognition between tumour and edema as well as tumours that are adjacent to CSF 

and small hyper-intense tumours (Nabizadeh and Kubat, 2015). 

MRI is a very dominant imaging technique and can capture the soft details in tissues; 

however, some pathological structures have not recognised using only MR relaxation 

weighting. Considering that some of the tumours produce an abnormal breakdown of the 

blood-brain barrier, a contrast agent that distributes throughout the extracellular space 

became a significant choice to enhance MR image contrast. Gadolinium chelates are the 
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most common agents used to enhance MR images. Gadolinium is used with T1 and the 

contrast enhancement of T1 images depends on the concentration of Gadolinium injected to 

acquire a better-enhanced brain tumour (Dougherty, 2009). 

2.5 MRI Against CT for Diagnosis of a Brain Tumour  

The most common imaging techniques used for the diagnosis of brain tumours are 

Computerised Tomography (CT) and MRI. CT is one of the largest accessible conventional 

imaging techniques used in most clinical centres. CT scans provide a contrast-enhanced 

image of small amounts of calcification within tumours (Ferlay et al., 2015). It is more cost-

effective and needs a shorter scanning time. However, even though CT has many benefits, 

MRI, when compared with CT, is a more desirable technique when diagnosing brain tumours 

because it has several benefits. Firstly, MRI has a higher soft tissue contrast with high spatial 

resolution. Therefore, it can provide a better sensitivity of the tumour description. Moreover, 

MRI provides multiplanes imaging – with transversal (axial), sagittal and coronal planes. 

Besides, MRI can be repeated for monitoring tumour growth and treatment progress without 

any dangerous ionising radiation. Finally, MRI is a non-invasive technique, which is painless 

and it can be established without contrast enhancement (Saad et al., 2015). Accordingly, this 

thesis concentrates on the MRI technique to extract recognised features required to the 

classification system for glioma grades. 

2.6 Conventional Against Advanced MRI Modalities 

MRI imaging is a non-invasive technique used widely in the clinical diagnosis of brain 

tumours. MRI techniques, in general, can be categorised into two approaches: conventional 

and advanced MRI techniques, the conventional techniques such as T1, T1 with 

enhancement (T1c), T2 and FLAIR-weighted images are offered in any MRI clinical centre, 

while the advanced MRI techniques such as diffusion-weighted magnetic resonance imaging 

(DWI) and MR spectroscopy are costlier and less available in MRI clinical centres. The use 

of the advanced MRI methods as opposed to the conventional MRI approach could lead to 

more accurate results in tissue characterisation of benign against the malignant tumour. A 

possible example would be the research carried by Roshdy et al. (2010), in which the clinical 

diagnosis drawn from both the advanced modalities including DWI, MRS and the 

conventional MRI modalities consisting of T1, T2 and T1c were compared. The obtained 

results suggest that the advanced imaging methods have shown a better result when used for 

the clinical diagnosis of brain lesions and outperform other conventional MRI techniques. 
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Many studies relied on advanced MR modalities in developing a classification system of 

brain tumours (Citak-Er et al., 2018, Aragao et al., 2014, Geneidi et al., 2015, Zhang et al., 

2017). On the other hand conventional MR techniques were also utilised by many other 

recent research work in different applications including the segmentation and classification 

of brain tumours and they achieved promising results (Hsieh et al., 2017b, Hsieh et al., 

2017a, Mohsen et al., 2018, Hasan and Meziane, 2016, Hasan et al., 2016a, Anaraki et al., 

2019, Ye et al., 2017, Khawaldeh et al., 2017). However, the conventional MRI techniques 

are more desirable due to their common availability and lower cost when compared to the 

advanced imaging techniques. Therefore, in this thesis, the concentrate is given to 

conventional MRI techniques. 

Several descriptors are used to assess the malignancy level of a tumour and are exploited to 

extract recognised predictors which are correlated with different malignant grades of a brain 

tumour. Predominantly, the common descriptors used to determine the malignant grades of 

glioma are: heterogeneity, contrast enhancement, necrosis, edema, vascularity and 

cellularity. These tumour descriptors and the methods and features used to measure them are 

explained below. 

2.7 Tumour Heterogeneity 

The extensive varieties of genetic, molecular and cellular modifications, which may occur 

during the progression of tumour growth, are complex and described as heterogeneity. 

Cancers show various degrees of heterogeneity such as gene expression and a cellular 

morphology that can be specifically investigated using different imaging methods.  

Tumour heterogeneity can be recognised from magnetic resonance images from the 

significant variations in the image intensity. Heterogeneity is correlated with tumour 

aggressiveness (Skogen et al., 2016). Particularly, relative growth of tumour grade reflects 

increasing in tumour heterogeneity. Although appropriate indices of heterogeneity have 

already shown good predictors of tumour aggressiveness progression, there is still a lack in 

methods of investigating and evaluating the impact of heterogeneity, due in part to a poor 

understanding of the molecular mechanisms underlying it. A better and more systematic 

appreciation of tumour heterogeneity is crucial for drug development as well as for the 

accurate assessment of response to treatment (Davnall et al., 2012).  

Several approaches are used to measure tumour heterogeneity and analyse image biomarkers 

as malignancy indicators. Significantly, texture analysis reflects an objective analysis for 
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tumour heterogeneity in different medical images (Tantisatirapong, 2015). Furthermore, 

texture features of MR images have been used efficiently for monitoring malignancy 

progression of a pathological lesion and specifically for the recognition and identification of 

morphological characteristics of brain tumours (Holli et al., 2010, Roy et al., 2013). 

The texture feature describes the appearance, arrangement and structure of an object within 

an image. Texture can provide an abundance of visual information (Materka and Strzelecki, 

1998). Image texture analysis can access complex visual patterns comprising sub-patterns or 

entities. Furthermore, texture can be utilised to distinguish the intensity, brightness and 

distribution of image information. Texture analysis provides an efficient and reproducible 

diagnostic tool for MR image analysis (Kassner and Thornhill, 2010). It has been used to 

assess MR images of biological tissues that contain significant amounts of microscopic 

details. Texture analysis can better characterise patterns of lesion compared to the human 

visual perception that is highly subjective and dependent on expertise. Accordingly, tumour 

patterns can be measured automatically based on texture analysis and hence are independent 

of clinician expertise. It has been shown that texture analysis can outperform visual 

examination, in the discrimination between pathological and healthy tissues (Herlidou et al., 

1999, Hsieh et al., 2017c, Dennie et al., 2016, Lerski et al., 2015, Chevrefils et al., 2018). 

Image texture has this advantage because it is highly sensitive to the variation of intensity in 

image pixels. Significantly, texture analysis has been used for tumour detection, diagnosis, 

segmentation and classification as well as for distinguishing between malignant and benign 

lesions.  

Methods to measure image texture feature can be categorised into four groups: statistical, 

transform, model-based and structural processes. The statistical techniques include 

histograms, co-occurrence matrices and run length matrices. The transform approach 

includes Gabor (Qian and Chen, 1993), Fourier (Bracewell, 2000) and Wavelets tools 

(Walnut, 2013), which are efficiently used for different medical applications (Castellano et 

al., 2004). However, transform-based methods, in general, do not consider the spatial 

relationship of texture information, while model-based approaches represent image texture 

based on sophisticated models. The parameters in the model-based method are estimated and 

then prepared for the image analysis. The estimation of their parameters carries a higher 

computational cost and is highly sensitive to orientation selectivity (Castellano et al., 2004). 

Structural-based methods represent a texture as a connected set of pixels with the same 

properties and employ morphological techniques such as opening binary images. The 
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structural methods are recommended for textures with a large structure (macrostructure). 

However, this approach has the drawback of not being able to capture a texture with no 

structure (Maani et al., 2016). Other features that can be extracted from images are the colour 

and shape information. Nevertheless, a brain tumour has no colour information and no 

distinct shape could be used for the assessment of different glioma grades.  

The textural extraction methods of the medical images that are particularly employed for the 

malignancy assessment of tumours are reviewed in the following subsections. 

2.7.1 Transform Texture Analysis 

Transform texture features are multiscale representations resulting from the decomposition 

of an image into a set of sub-images revealing image structures and details at multiple 

orientations and multiple scales. Each sub-image relates to a frequency sub-band. Such 

decompositions are performed as follows: the image data is filtered using linear filter banks. 

Afterwards, each filter output is up/down sampled producing several image representations 

with specific properties such as multiple scales, frequency selectivity and directional 

orientation (Baaziz et al., 2010). Transform texture analysis has been used to assess tumour 

malignancy growth. A possible example for this approach would be the research carried out 

by (Zacharaki et al., 2009), where the Gabor transform was employed to distinguish between 

metastases and glioma, as well as to discriminate glioma grades into high against low grades. 

However, due to a high correlation between adjacent pixels of MRI images, the Gabor 

transform produces many redundant features (Nabizadeh and Kubat, 2015). Transform 

texture features require less computational time and thus facilitate the analysis of large 

datasets (Drabycz et al., 2010, Kassner and Thornhill, 2010). Nonetheless, transform texture 

analysis, in general, has the disadvantage that there is a relative lack of localised frequency 

content of spatial information (Materka and Strzelecki, 1998, Tantisatirapong, 2015, Kumar 

and Singh, 2018).  

2.7.2 First-Order Texture Feature Based on Histogram Analysis 

Texture features based on histogram analysis are a popular method for characterising tumour 

heterogeneity. Histogram analysis incorporated with statistical measurements was used to 

analyse distributions of image intensities as a biomarker for tumour heterogeneity. The 

statistical measures used with histogram analysis are as follows: entropy, standard deviation, 

mean, mode, kurtosis, skewness, maximum, minimum and percentiles. 
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Histogram methods can be significant predictors in the assessment of tumour malignancy. 

Many studies have investigated the use of histogram analysis for the discrimination between 

low and high grades. Specifically, investigation of these statistical measurements has shown 

various degrees of correlation with tumour heterogeneity. For example, it was found that the 

standard deviation shows a correlation with the heterogeneity of brain tumours as its value 

increases with the growth of tumour heterogeneity (Skogen et al., 2013, Skogen et al., 2016). 

Entropy and uniformity have also been explored to measure the tumour heterogeneity. It is 

concluded that the entropy was higher and uniformity is lower for a whole tumour with 

greater heterogeneity (Ganeshan et al., 2012, Ng et al., 2013). It is argued that entropy is 

significantly higher in high-grade gliomas than low-grade tumours while skewness, kurtosis 

and percentiles are less correlated (Ryu et al., 2014).  

Similarly, the fifth percentile derived from the apparent diffusion coefficient (ADC) shows 

promising results for differentiating high and low-grade gliomas (Song et al., 2013, Kang et 

al., 2011). Likewise, further different percentiles have also been used such as the 10th, 25th, 

50th, 75th and 90th to test the correlation between a low glioma grade subtypes and histogram 

analysis using ADC (Tozer et al., 2007). In the same direction, it was claimed that both 90th 

and 95th percentiles produce better results than the standard deviation in predicting the 

histological grade of endometrial cancer (Woo et al., 2014).  

Other studies examined the combination of several measurements calculated from the 

histogram analysis on the classification of the malignancy degrees of a tumour. A possible 

example would the research conducted by Carter et al. (2013) in which several statistical 

measures such as standard deviation, skewness and kurtosis incorporated the histogram 

analysis are combined and evaluated to differentiate benign from malignant ovarian masses. 

Similarly, the combination of mean, entropy and uniformity was determined using a range 

of filters applied to medical images to highlight texture for lung cancer (Ganeshan et al., 

2010), and that for colon cancer (Ng et al., 2013).  

Histogram analysis has been widely used as a prediction tool for tumour heterogeneity. It 

has the advantage of being easy to implement. Furthermore, it presents a non-invasive 

assessment of malignancy of brain tumours rather than the clinical approaches which are 

biopsy-dependent (Just, 2011). Nevertheless, a significant limitation of histogram analysis 

is that it does not consider the spatial distribution of tumour information. Moreover, 

histogram features have a high dependency on data distribution and thus may perform poorly 

if the data has high heterogeneity (Rose et al., 2014). Besides, many texture patterns cannot 
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be recognised using the first order analysis (Pantelis, 2010, Kassner and Thornhill, 2010). 

Also, it has limited robustness in distinguishing unique textures in specific applications as 

this method does not consider the interaction and spatial relationship of the neighbouring 

pixel value (Florez et al., 2018). 

2.7.3 Second Order Texture Analysis 

Second order analysis is an efficient tool in the classification of image patterns. It was 

reported that it is possible to resynthesize textures with the same visual properties if enough 

second-order statistical information is taken into account (Nielsen et al., 2008). For example, 

the grey level run length matrix (GLRLM) is a known technique to extract second-order 

features. However, The major drawback of GLRLM is that it produces features which are 

highly correlated and that it offers insufficient information about the image texture (Tang, 

1998). Hence, it has limited use in practice compared with other texture extraction methods 

(Tantisatirapong, 2015).  

Grey level co-occurrence matrix (GLCM) is a second-order texture method, first proposed 

by Haralick et al. (1973), and is the most powerful method for extracting second-order 

features and measuring the spatial relationship among image pixels. It investigates the 

relationship between a pixel pair in the region of interest of an MRI a brain tumour. 

Furthermore, GLCM has been used commonly for heterogeneity assessment and predicting 

the level of tumour malignancy and it achieved remarkable results in the classification of 

tumours in MRI (Kovalev and Kruggel, 2007, Bonilha et al., 2003, Wibmer et al., 2015, 

Larroza et al., 2016). For instance, GLCM incorporated with 14 textural measures such as 

contrast and entropy was performed to improve the discrimination performance between 

benign and malignant lesions for breast cancer (Gibbs and Turnbull, 2003). Similarly, 

(Gómez et al., 2012) used the advantage of GLCM  in a comprehensive analysis of texture 

evaluation to discriminate between benign and malignant tumours in breast cancer using a 

wide range of angles and distances of the GLCM. Further example used the merit of GLCM 

is the research carried by Subashini et al. (2016), in which five predictors were selected 

manually; these parameters are contrast, dissimilarity, angular second moment, entropy, 

maximum probability and inverse difference moment driven from GLCM and employed for 

the classification of glioma tumours into high against low-grades. Notably, the significant 

strength of GLCM relies on measuring the joint tumour probability of spatial distributions 

of pixel pairs that incorporate statistical predictors such as uniformity, homogeneity, energy, 

entropy and correlation. GLCM has shown a promising result in the detection of the internal 
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intensities arrangement and directionality of tumour image. However, it has the limitations 

of adding complexity, large memory storage and computation time requirements 

(Tantisatirapong, 2015). The combination of several features could lead to potential 

improvement in classification accuracy. For instance, the combination of histogram features 

and GLCM was shown to improve discrimination accuracy between glioma grade IV and 

lower grades (II and III) (Hsieh et al., 2017b). However, the results suggest that the fusion 

of the two features have slightly better results than the use of GLCM individually. Involving 

multiple features may lead to improvements in the classification performance nevertheless 

it is not guaranteed. This approach also adds more complexity and computation time, 

particularly for large datasets. It could also lead to an increase in the number of redundant 

features that degrade the classification accuracy. 

In conclusion, among the different extraction methods dedicated to image texture features, 

the GLCM is the most popular spatial method to determine an objective analysis of texture 

feature of medical images (Maani et al., 2016). GLCM has been proven to outperform other 

feature extraction methods such as the Gabor, wavelet and Fourier transforms (Materka and 

Strzelecki, 1998, Kharrat et al., 2010, Larroza et al., 2016, Liu et al., 2018). A GLCM based 

texture analysis is therefore primarily considered in this thesis. 

2.7.4 Three-Dimensional Texture Analysis 

Texture analysis based on three dimensions provides complementary information that could 

lead to an improvement in the classification accuracy. Significantly, this enhancement can 

be achieved based on information accessible in the Z-dimension of an image which reflects 

a vital part of the signals obtained from MR images. Texture features based on a 3D 

representation have produced promising results in different applications such as biometric 

recognition (Yazdi et al., 2007) and iris identification (Chen et al., 2009).  

An example of the 3D analysis of the image texture feature is the research conducted by 

Chen et al. (2007), where 3D texture analysis based on 3DGLCM was investigated and 

compared to 2DGLCM. In this regard, the obtained results indicated that 3DGLCM has 

better classification results than 2D analysis in distinguishing between malignant and benign 

MRI breast lesions. Similarly, a comparative study between 2D and 3DGLCM was 

demonstrated for the segmentation of brain tumour sub-regions. The results indicate that 3D 

textural features could enhance the discrimination between different tumour sub-regions, 

which is very challenging to distinguish the different parts of a brain tumour with the only 
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naked eye, and without the need for contrast agents  (Mahmoud-Ghoneim et al., 2003). A 

further example is the research undertaken by Fetit et al. (2015), in which the ability of 3D 

texture analysis driven from the fusion of multi-slice of conventional MRI (T1, and T2) is 

evaluated for the classification of paediatric brain tumours. The results obtained suggest that 

the classification accuracy can be boosted up using the 3D texture analysis in the 

classification of childhood brain tumours.  

Texture analysis based on 3DGLCM has the advantage of considering all the information 

available in the image signals. It also reflects the complementary spatial details of the tumour 

tissues. However, it requires large amounts of memory, high complexity and computational 

cost (Hsieh et al., 2017b). Accordingly, to include and investigate all the possible textural 

information extracted from the medical image of a brain tumour, this thesis takes into 

account the 3D analysis of the GLCM in addition to 2DGLCM. 

2.8 Brain Tumour Vascularity 

Tumour vascularity is the relative amount of blood vessels compared to those in the 

surrounding areas (white matter) (Moenninghoff et al., 2010) and correlates with the growth 

of tumour grade (Ruoslahti, 2002). The number of blood vessels in a tumour varies 

structurally with the growth of tumour grades. The relative cerebral blood vessels (rCBV) 

have been used for assessing tumour vascularity, and this feature is measured using the 

perfusion weighted imaging (PWI) technique. The rCBV has been employed successfully in 

predicting glioma grades. For example, it was shown that the rCBV technique has a better 

diagnostic performance compared to other methods such as metabolite ratios driven from 

the proton MR spectroscopy for predicting glioma grades (Law et al., 2003). Similarly, the 

rCBV is assessed against Ktrans, and it is found that the rCBV revealed a better accuracy 

compared to the other technique for glioma grading (Law et al., 2004, Law et al., 2006). In 

the same manner, rCVB, metabolite ratio and apparent diffusion coefficient (ADC) were 

measured to examine their correlation with glioma grading. It was reported that rCVB, 

metabolite ratio and ADC are as follows: lower, higher and higher for lower glioma grade, 

respectively, and vice versa for higher glioma grade (Aragao et al., 2014). Likewise, rCVB 

and fractional anisotropy (FA) values derived from diffusion tensor imaging (DTI) were 

evaluated, and their ability to determine different glioma grades is investigated. As a result, 

the use of DTI was found to play a crucial role in the grading the gliomas. Additionally, a 

combination of both techniques improved the accuracy of glioma grading (Geneidi et al., 
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2015). Ultimately, these approaches have suggested promising results in the classification 

of glioma grades, which were extracted from advanced imaging techniques such as the rCBV 

extracted from PWI, the ktrans measured from diffusion-weighted MR image (DWI), and 

the metabolite ratio obtained from spectroscopy imaging techniques. However, recently, this 

approach has been costlier requiring advanced MRI techniques, exceptional setting and 

significant experience, which have limited availability in the clinical radiology practice. 

2.9 Brain Tumour Cellularity 

Tumour cellularity is the relative proportion of a tumour and healthy cells in a sample. 

Pathological examination of sectioned specimens based on deoxyribonucleic acid (DNA) 

analysis is the traditional technique to assess tumour cellularity. Nonetheless, this technique 

is subjective due to the heterogeneity within lesions. There are cellularity variances among 

the samples viewed during the pathological review (Song et al., 2012). Accordingly, as an 

alternative approach to indicate the cellularity of a brain tumour, apparent diffusion 

coefficient (ADC), which was extracted from diffusion-weighted MR image (DWI) 

technique was used. 

The correlation between brain tumour cellularity and ADC was evaluated. It was found that 

the histopathological information associated with tumour cellularity was significantly 

correlated with ADC and hence it confirms its ability to classify different glioma grades 

(Sugahara et al., 1999, Kono et al., 2001). Similarly, it was assessed successfully to 

determine the malignancy levels of a liver tumour (Taouli et al., 2003). However, this 

technique needs an expensive and advanced MRI techniques and has limited availability in 

MRI clinical centres.  

2.10 Malignancy Diagnosis of Brain Tumour Descriptors 

Several tumour descriptors are used in clinical diagnosis, and can be extracted from 

conventional MR images such as necrosis, edema, post-contrast enhancement and non-

enhancement of a brain tumour, which are used significantly to assess in the malignancy 

level of a brain tumour (Moore and Kim, 2010). Visualisations of these brain tumour 

descriptors (Figure 2.3) show different recognised regions for a brain tumour, which are 

extracted using T1 with enhancement (T1c). The figure also illustrates how the identified 

tumour descriptors can appear through T2 images. It can be noted that the inner regions 

include a solid tumour portion where the solid portion comprises a necrotic area and an active 
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part. The active portion of a brain tumour could be enhanced with contrast partially or fully 

or could be non-enhanced. The solid portion of a tumour may also be surrounded by edema 

which is also known as peritumoral (Corso et al., 2008).  

One of the major indicators to favour the diagnosis the grade of glioma is the presence of a 

necrotic region. Necrosis can be described in pathology as a dead cell in brain tumour tissue, 

whereas on an MRI it appears as areas of non-enhancing hypointensity on T1 (Chow et al., 

2000), commonly encircled by a ring-like zone of contrast enhancement. The presence of 

necrosis has been recommended as a significant predictor for the diagnosis of a higher grade. 

Nonetheless, the presence of tumour necrosis has not been essential for the diagnosis of 

glioma grade IV (Barker et al., 1996).  

The signal intensity of a necrotic region can also be identified from DWI. To elaborate in 

term of visual assessment,  necrosis portion has significantly low signal intensity near to that 

of cerebrospinal fluid (CSF), slightly low signal intensity between that of CSF and that of 

healthy brain tissue, or slightly high, or significantly high compared with healthy brain tissue 

(Lai et al., 2002). Tumour necrosis was employed as a predictor for glioma grades depending 

on whether a necrotic area is absent or not.  

Generally, a radiologist examines the tumour descriptors visually from MR images, 

particularly, evaluating the presence of post-contrast enhancement, non-enhancement 

necrosis and edema, estimating their differences from each other to make a clinical decision. 

When these descriptors are visually present, this raises the probability of whether an 

unknown tumour is of a high or low grade.  

 

 

 

 

 

 

 

 

 

 

 
Figure 2.3 An example of the recognised regions of a brain tumour in the presence of the 

tumour descriptor. These MR images are for grade IV of glioma (Corso et al., 2008). 
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Many studies aimed at separating and recognising these tumour descriptors objectively. An 

example to demonstrate this task is the research carried by Mahmoud-Ghoneim et al. (2003), 

in which a comparative study between 3D against 2DGLCM was performed to differentiate 

necrosis, solid tumour, edema and surrounding white matter. It was found that the use of 

3DGLCM as a 3D texture analysis provides better results for the segmentation of the brain 

tumour subregions. Another possible example would be the research conducted by Li et al. 

(2006) in which the presence of necrosis, edema and post contrast enhancement combined 

with many other clinical data are assessed to predict the malignancy grades of a brain tumour. 

However, these features are computed manually with the help of domain experts. Likewise, 

some of the tumour sub-regions, which were delineated manually, and then used to provide 

multiple features, were employed to predict different grades of glioma (Zacharaki et al., 

2009). Similarly, the presence of a necrotic portion was assessed against histology features 

to improve the diagnostic performance of patient survival time. It was shown that patients 

who have necrosis could get worse survival times. It was found that the diagnostic accuracy 

can be further improved by incorporating necrosis compared to the use of the histology 

features alone (Lasocki et al., 2015). In the same way, (Geneidi et al., 2015) employed 

different statistical measures including mean, minimum and maximum of fractional 

anisotropy (FA) measured from DTI. These measures were extracted from the tumour mass, 

necrotic regions and edema. These predictors were examined to assess the correlation 

between these features and classification of glioma grades into low against high grades. 

Hence, it was found that FA measured from necrotic and tumour mass has a great correlation 

with glioma grading while there was no positive correlation with features extracted from the 

edema. 

To summarise, the presence of the descriptors of a brain tumour as well as the features 

extracted from them have been assessed as predictors to contribute in the diagnosis of the 

malignancy grades of a brain tumour. However, these predictors have been identified 

visually with the help of a domain expert. The visual assessment has the limitations of 

subjectivity and suffers from inter and intera variabilities. Consequently, the inference 

findings based on the visual analysis to identify the tumour descriptors may lead to 

uncertainty in the clinical diagnosis of a brain tumour. Therefore, to have an accurate and 

automated diagnosis of malignancy growth of a brain tumour, investigation in the statistical 

analysis of the presence of these tumour descriptors is significantly required. 
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2.11 Brain Tumour Segmentation  

In order to extract features only from the region of interest (ROI), i.e., a tumour, it is most 

significant to initially split the MR image into ‘meaningful’ (brain tumour) and 

‘meaningless’ (other undesired structures); this process is known as segmentation. 

Segmentation is valuable in the medical applications by classifying medical image pixels to 

different structural areas such as blood vessels, bones and tissues. Also, it is employed to 

classify the pixels of pathological structures such as cancer and multi sclerosis tumours 

(Dvořák et al., 2013). The recommended criteria to achieve a good-quality segmentation of 

ROI are as follows. First, the segmented ROI should have a smooth boundary. Second, the 

adjacent areas to the ROI should have a noticeable difference. Third, the internal region of 

the segmented ROI should be homogenous and not include any holes (Al-Waeli, 2017). 

There are three categories of segmentation: manual, semi-automated and fully automatic. 

The manual segmentation where a qualified expert delineates the extent of the lesion visually 

depending on user interaction and the domain- knowledge of the expert, and thus the 

resulting output is generally recognised as the gold standard or the ground truth. Fully 

automatic segmentation needs no user interaction and requires less processing time. 

However, it is likely to accomplish less satisfactorily on medical images because of the 

complexity and inhomogeneity of anatomical texture. Semi-automatic segmentation 

techniques are accomplished based on integrating the user's supervision with the computer-

aided algorithm, and are used when the pathological region is more accessible to recognise 

visually but not automatically (Tantisatirapong, 2015). Extensive works dedicated to 

automated brain tumour segmentation which are widely expanded because of the rapid 

development in the medical imaging techniques as well as due to the fast progress in 

computer-aided image analysis (Menze et al., 2015, El-Dahshan et al., 2014, Bauer et al., 

2013).  

2.12 Features Selection and Relevance Analysis 

Relevance analysis aims to identify subsets of the most vital features and removes irrelevant 

and redundant features that affect the classification performance. The irrelevant feature can 

be eliminated without any effect on the classification accuracy. Therefore, discarding one of 

them will not affect the classification accuracy (Gómez et al., 2012). Feature relevance 

analysis is used for the following reasons. It increases the accuracy of a classification model 

through selects an accurate feature subset, shrinks the complexity and reduces the storage 
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requirements especially for a system that deals with hundreds or thousands of features 

making the features easier to interpret. It also supports machine-learning algorithms to train 

faster (Tantisatirapong, 2015, Pantelis, 2010). Feature relevance analysis is one of the 

efficient and common methods of the feature selection applications used to select the most 

appropriate feature subset. It was stated that a good feature subset is one that includes 

features highly correlated with the truth class label and uncorrelated with each other (Hall, 

1999). Feature selection applications can be categorised into two main approaches, namely, 

filter and wrapper methods. The filter approach that can also be denoted as the relevance 

analysis method measures the amount of the feature relevance with its truth class label so 

that the fundamental properties of the data for each feature are independent of each other. A 

feature relevance score is usually obtained and then features are ranked. After that, features 

with low scores are eliminated. Afterwards, the selected subset of features becomes the input 

to the classification algorithm (Saeys et al., 2007). A possible examples would be the 

researches carried by (Baboo and Sasikala, 2010, Hsieh et al., 2017b, Citak-Er et al., 2018, 

Gómez et al., 2012, Eliat et al., 2012) in which the features are selected prior to the 

classification process based on the filter approach. The purpose was to select only the 

features that meet the significant p-value of less than the critical value while excluding other 

features that did not reject the null hypothesis. The other approach includes wrapper 

techniques. This differs from the filter methods as they consider the interaction between 

features and the classification outcome and incorporate a learning algorithm to search for the 

best subset of features (Li et al., 2006, Zacharaki et al., 2009). 

Filter techniques that are performed independently to a machine-learning algorithm are fast, 

easy to implement and need low computational cost. However, this approach ignores the 

interaction between feature subsets and the classification outcome. Hence, this may lead to 

the selection of features that do not support the classification outcome. Furthermore, 

ignoring the correlation between features potentially causes higher redundancy in the feature 

space (Luts et al., 2007). While the disadvantage of the wrapper method is that the selection 

is highly dependent on the combination of features being examined. Additionally, the 

framework for this approach has higher computational cost and requires an extensive 

heuristic process to find the optimal feature subset (Guyon and Elisseeff, 2003, Saeys et al., 

2007).  

One-way analysis of variance (ANOVA) is used successfully to investigate the relevance 

analysis (Hasan et al., 2016b, Li et al., 2015), while Pearson correlation is widely used to 



CHAPTER 2 

 

38 

 

measure the linear correlation and dependence between two variables (Ly et al., 2018, 

Labani et al., 2018). The details of these methods are explained in the next subsections. 

2.12.1 One-Way Analysis of Variance 

The one-way analysis of variance is an efficient and common statistical method used for 

evaluating the difference level between two or more independent groups of samples in a 

feature vector. This is performed by testing whether the means of multiple groups are 

significantly different. In this technique, the null hypothesis is that there is no difference in 

the means of groups. This technique relies on the assumption that all instances are normally 

distributed independently with equal variances of features in different classes. This method 

is used as a guide to select the most significant features based on p-value and F-ratio. The p-

value is the probability of the test is at least equal to or less than the critical value of the test, 

i.e., 0.05 or less. When applying "the ANOVA on a two-class scenario, it is equivalent to the 

two-sample t-test assuming equal variances" (Dubitzky et al., 2007). After applying 

ANOVA, the p-value is used to indicate the features that have the high difference between 

different means of groups of samples, where features that have a p-value less than the critical 

value are selected. Hence, features with higher discrimination power are selected and others 

are discarded. 

The value of the F-ratio offers an indicator of class separation where the significant value 

refers to the higher separation. The F-ratio (Eq. 2.3) is computed from applying ANOVA 

and is measured by calculating the ratio of the between-class variance (Eq. 2.1) to the within-

class variance (Eq.2.2) (Johnson and Synovec, 2002). 

𝜎𝐵𝐶
2 =

∑ (𝑋𝑖−𝑋)2𝑛𝑖
𝑛
𝑖

(1 − 𝑘)
                                                            2. 1 

    

where 𝜎𝐵𝐶
2  is the between-class variance, 𝑋𝑖 is mean of the ith class, 𝑋 is the overall mean, 

n is the number of features for each class and k is the number of classes. 

𝜎𝑊𝐶
2 =

(∑ ∑ (𝑋𝑖𝑗−𝑋)2
𝑗 )𝑖 − (∑ (𝑋𝑖−𝑋)2𝑛𝑖)𝑖

(𝑁 − 𝑘)
                                  2. 2 

where 𝜎𝑊𝐶
2  is the within-class variance, 𝑋𝑖𝑗 is the ith features of the jth class and N is the 

total number of features for all classes. 

𝐹 − 𝑟𝑎𝑡𝑖𝑜 =
𝜎𝐵𝐶

2

𝜎𝑊𝐶
2                                                             2. 3 
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After measuring the F-ratio and referring to the ANOVA and critical values table, if any 

feature has a p-value less than the critical value then the feature is selected. Usually when 

the p-value is less than 0.05, the feature is considered as a significant feature. ANOVA has 

been used widely in many applications as a rapid statistical method and a good indicator to 

measure the significance level of extracted feature before classification. Nevertheless, 

similar to any other filter method used for features selection and reduction task, the relevance 

analysis examined for a feature is demonstrated independently to any other feature. 

Therefore, the interaction between features is not taken into account as well as the impact of 

a subset of features on the classification outcome is ignored. Therefore, in this study, this 

problem is addressed and overcome by using a wrapper strategy through using different 

machine learning algorithms incorporated with ANOVA and the search process is guided by 

Pearson correlation and several machine learning algorithms.  

2.12.2 Pearson Correlation 

Pearson Correlation is a well-known efficient statistical method used to measure the linear 

association between two vectors. It examines the strength of the linear relationship between 

the two continuous variables. The correlation coefficient is determined upon a range that 

varies from -1 through 0 to +1. No correlation is represented by 0 while the perfect 

correlation between the two vectors is determined by either -1 or +1. When the correlation 

is positive, it means that both vectors are increasing. While, when one increases as the other 

decreases represents a negative correlation. Pearson correlation coefficient is calculated 

using Eq. 2.4 (Swinscow and Campbell, 2002).  

 

 𝑃𝑒𝑎𝑟𝑠𝑜𝑛 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 (𝑟) =  
 ∑ (𝑥𝑖 − 𝑥 )(𝑦𝑖 − 𝑦 )𝑁

𝑖

(𝑁 − 1)𝑆𝐷(𝑥)𝑆𝐷(𝑦)
                                  2. 4    

where x and y are two feature vectors; 𝑥 and 𝑦 are the mean of the feature vectors 

respectively; N is the total number of samples and SD is the standard deviation. 

The null hypothesis is that there is no association between the two variables undertaken the 

test. After the Pearson correlation is measured, Eq. 2.5 (Swinscow and Campbell, 2002) is 

applied, then both results of the Pearson correlation and the degree of freedom (Df) are used 

to get the significance level p-value. Note that if the p-value is less than the critical value, 

then the null hypothesis is rejected indicating strong evidence that there is a linear correlation 

between the two variables. 
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𝑃𝑡 = 𝑟 × √
𝐷𝑓

1 − 𝑟2
                                                                    2. 5 

where Pt is the t-test, r is the Pearson correlation coefficient, Df
  is the degree of freedom 

which is equal to N-2, where N is the total number of samples. 

2.13 Feature Classification 

Classification is the categorisation of objects into classes such as grouping samples into 

abnormal or normal. Image feature classification is a crucial step for automation and 

integration of the diagnostic system. Classification methods are categorised into two 

approaches: unsupervised and supervised. Also, the classification methods can be developed 

based on two trends: single classifier system and multiple classifier systems. Further details 

are described in the following subsections. 

2.13.1 Single Classifier System 

A single classifier system is accomplished based on using only one classification model such 

as Decision Tree (DT), Support Vector Machine (SVM),  Artificial Neural Network (ANN), 

K-Nearest Neighbour (KNN), Linear Discriminate Analysis (LDA) (Deepa and Devi, 2011). 

In medical image analysis, many studies have commonly used single classifier system to 

perform different tasks such as the segmentation, detection and classification, utilising both 

supervised and unsupervised approaches.  

Possible examples that used the supervised approach would be the research carried by 

(Devos et al., 2005, Li et al., 2006, Luts et al., 2007, Zacharaki et al., 2009), in which a single 

classifier system based on SVM was used successfully for tumour grade identification. 

However, DT and SVM classifiers have shown superior results as compared to other 

classifiers including logistic regression, K-nearest neighbour, and the linear discriminate 

analysis in binary and multi-class classification of brain tumour subtypes using pathological 

medical images (Das et al., 2018). Nevertheless, the KNN classifier has been reported to be 

an excellent classifier in the segmentation and binary classification for medical images of 

cervical cancer (William et al., 2018). Similarly, the KNN classifier outperforms other 

classifiers such as SVM and DT in the detection of sclerosis issues from healthy controls in 

MR brain images (Zhang et al., 2016). 

On the other hand, possible examples that used the single classifier system in unsupervised 

classification approach would be the research conducted by (Ye et al., 2002, Javed et al., 
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2013) in which the single classifier system was demonstrated based on fuzzy rules. Likewise, 

single classifier system in unsupervised approach was used based on clustering methods for 

the classification of malignancy grades of brain tumour in MR images (Inano et al., 2014, 

Subashini et al., 2015). 

To summarise, unsupervised algorithms extract patterns from the input data using statistical 

techniques. Examples of this approach are fuzzy rules and clustering techniques. 

Unsupervised algorithms, in general, are easy to implement and relatively fast because they 

do not require any training process. However, they have limited accuracy by ignoring prior 

knowledge related to the given training samples. Furthermore, the patterns driven using 

unsupervised approaches may produce spurious classes. The second category is the 

supervised classification approach where the classification procedures include two phases of 

processing: training and testing. In the initial training phase, a description of each training 

samples based on image features is determined and used to design a classification model. In 

the testing phase, the model based on the same feature space is used to classify the unseen 

sample. It is worthwhile noting that this approach is the most widely used in medical images 

(Erickson et al., 2017) due to its superior results in classification accuracy, based on takes 

advantage of training on given data, and optimised model that can be used effectively to 

predict the label of unseen samples. Consequently, in this thesis, a supervised classification 

approach is considered. 

There are so many classifiers available and are used in different applications. A detailed 

description of the most common single classifier models (Kulkarni et al., 1998, Kotsiantis et 

al., 2007, Lu and Weng, 2007) and their advantages and disadvantages are introduced in the 

following subsections. 

2.13.1.1 Decision Tree 

 A decision tree (DT) is defined as tree-like structures in which the nodes represent the input 

features and each branch indicates a value that the node can produce an output decision. The 

process starts at the root node and instances are classified and arranged to correspond to the 

input features values (Kotsiantis et al., 2007). This classification algorithm offers many 

advantages such as it is a non-parametric approach and is not dependent on the input data 

distribution. Also, it can deal with the non-linear relationship between class labels and 

features. Finally, it is easy to interpret as it has a relatively simple classification structure 

(Friedl and Brodley, 1997). However, DT also has the limitation as it can underfit or overfit 

the model, especially when using a small sample size of the dataset (Song and Lu, 2015). 
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2.13.1.2 Linear Discriminant Analysis  

Linear discriminant analysis (LDA) is a parametric classification (Fisher, 1936), in which 

the linear relationship between feature vectors is used to discriminate between classes. To 

guarantee the maximal separation between classes, it maximises the ratio of between-class 

variance to the within-class variance. This method has the advantage of its simplicity, and it 

is fast as it performs well when there are less overlapping between the sample distributions. 

However, it is affected by the data distribution thereby performing poorly when there is a 

significant overlapping among class’s data (Lu et al., 2005). 

2.13.1.3 Support Vector Machine 

Support vector machine (SVM) identifies a hyperplane that separates input data into two 

classes. Input data is mapped into a features space with higher dimensionality. Maximising 

the gap between the two classes, thereby, the wide possible distance between the hyperplane 

and the two categories are then used to predict the class label by mapping them into the same 

space based on which side of the hyperplane enclose to the new instances. The key strength 

of SVM is its robustness to fuzzy values and noise in the dataset as well as its ability to 

handle higher dimensional input spaces and smaller data sets, which could lead to an 

improvement in the generalisation performance of the classification. To elaborate further, 

SVM can deal efficiently with learning tasks where the number of training instances is 

smaller with respect to the number of features. This is because SVM usually selects a small 

number of support vectors during the learning process (Dubitzky et al., 2007). The typical 

limitation of this classification model is associated with the selection of the kernel function 

(Prajapati and Patle, 2010). The ultimate aim of SVM is to find the optimal hyperplane that 

maximises the generalisation ability of the trained model. However, if the training data is 

not linearly separable, the obtained classifier may not have high generalisation ability even 

though the hyperplanes are determined optimally. Thus, to enrich linear separability, the 

original input space is mapped into a high-dimensional dot-product space called the feature 

space. Hence, to avoid dealing directly with that high-dimensional space and to retain nearly 

the simplicity of separating hyperplane of SVM, different additional supported functions 

known as kernel are used. The Kernel function used with SVM can be linear or non-linear; 

examples for the nonlinear kernel are Quadratic and Gaussian (Das et al., 2018, Hamel, 

2009). 
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2.13.1.4 K-Nearest Neighbour 

The K- Nearest Neighbour (KNN) algorithm is simply based on the searching process to the 

proximity of k-samples between a test sample and other instances with similar behaviour 

(Cover and Hart, 1967). This searching process is guided by a distance function such as 

Euclidean, Camberra and Manhattan function. The distance metric plays a significant role 

to measure the distance between a test sample and the training samples. This metric should 

minimise the distance between samples belong to the same class label and maximise the 

distance between samples from the different class label. The final decision for the class label 

of a new test instance is made based on identifying the most frequent class label of k-nearest 

instances. This algorithm has achieved an efficient performance in solving different 

classification problem (Chen and Shah, 2018, Wu et al., 2018). However, it is highly 

sensitive to noise as well as to the choice of similarity metric used to compare instances  

(Kotsiantis et al., 2007).  

2.13.1.5  Artificial Neural Networks 

The artificial neural networks (ANNs) are efficient methods able to discover the intricate 

and non-linear relationship between the input features and the desired output. This method 

is inspired by the working way of biological nervous systems in the human brain and has 

been used widely and successfully in several applications such as diagnostic purposes, 

security systems, forecasting, pattern recognition and still wider. Many advantages can be 

achieved using ANNs including adaptive-learning, fault tolerance and parallelism strength 

(Deepa and Devi, 2011). However, a large number of training samples are generally 

recommended to achieve the most significant enhancement in classification accuracy 

(Kotsiantis et al., 2007, Sahiner et al., 2008). Different types of neural networks (NNs) are 

designed to solve different problems for various applications. Feedforward neural networks 

(FFNN) is the common type used successfully for pattern recognition, classification and 

object recognition (Birry, 2013). 

FFNN is well-known, and popular model of ANNs used to address different problems in the 

diagnosis of various medical applications. It has been widely used due to its ability to sense 

the nonlinear and complicated relationship between inputs and outputs (Hwang and Hu, 

2001, Jiang et al., 2010, Othman and Basri, 2011). The design of the NNs includes several 

layers. The first layer that receives information from the input features to be processed. The 

output layer where the outcomes of the processing are produced; and one or more layers in 
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between known as hidden layers. There is no neuron in the first layer while a different 

number of neurons can be assigned to the hidden layers whereas the number of neurons in 

output layers depends on the number of classes available in the input data. In the structure 

of FFNN, signals are allowed to travel one way only from the input layer to the output layer 

where all neurons are fully connected (Graupe, 2013). The network is trained on a set of data 

to produce input-output mapping. As a result, the weights of the connections of NNs are 

determined and then the network is used to demonstrate the classifications of a new set of 

data (Kotsiantis et al., 2007).  

The signal is transferred within the network structure through an activation function assigned 

in each neuron in the NNs. The most common activation function used widely in the 

application of pattern recognition is a hyperbolic tangent function (Eq. 2.6) (Graupe, 2013, 

Lekutai, 1997). In opposed to other activation functions, the hyperbolic tangent function is 

more deferential (Özkan and Erbek, 2003, Negnevitsky, 2005) based on mapping the input 

signal into the non-linear, smooth and large scale from +1 to -1, where the +1  and -1 output 

values represent plus and minus infinity respectively (Figure 2.4). This enables the function 

to take into account both sides of the output single computed from the activation function 

without neglecting to the outcome produced from the negative part.  

𝑓(𝑥) = 𝑡𝑎𝑛ℎ(𝑥) =
1 − 𝑒−2𝑥

1 + 𝑒−2𝑥
                                             2. 6 

 

 

 

 

 

 

 

 

 

 

Figure 2.4 The hyperbolic tangent function used as an activation function for neural 

networks 
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The main aspects that determine the outcome behaviour of NNs are input and activation 

functions of the neurons, the weight of each input connection. The most popular and 

commonly used learning algorithm to predict the weights of the connections in the neural 

network is the backpropagation algorithm (Lekutai, 1997). This is based on iterative 

adjusting the weights of each neuron to lower the local error, minimising the errors between 

the produced output of the networks and target. It performs several weight modifications 

through iterative updating process before it reaches a proper weight configuration. 

Practically, carefully determining the appropriate size of the hidden layer as well as the 

number of neurons per the layers is a significant challenge. This is because an overestimate 

neurons can lead to overfitting and eventually make the search for the global optimum more 

problematic, while an underestimate of the neurons number results in poor approximation 

and generalisation capabilities (Camargo and Yoneyama, 2001). It has been proven that 

using two hidden layers and a sufficient number of neurons in the hidden layer can 

approximate an arbitrarily complex mapping within a finite support (Hwang and Hu, 2001). 

Generally, the common practices to select the number of hidden layers and number of 

neurons in each hidden layer are investigated heuristically through performing several runs 

of NNs using a different number of neurons in the hidden layers.  

2.13.2 An Overview of Convolutional Neural Network 

Convolution neural network (CNN) is the most common deep learning approach dedicated 

for the classification and recognition for large-scale image datasets, and it is used widely in 

many applications, for examples music information retrieval (Han et al., 2017), remote-

sensing image classification (Maggiori et al., 2017), and speech recognition and language 

processing (Qian et al., 2016, Abdel-Hamid et al., 2012, Swietojanski et al., 2014). CNN is 

designed based on three main layers namely the convolution layer, the pooling layer 

(subsampling layer) and fully connected layer (Karpathy, 2016).  

This approach has the advantage of not needing to incorporate the feature extraction or 

selection process before being applied suggesting a strong point. However, training a CNN 

from scratch is time-consuming and challenging, as it needs a huge labelled dataset for 

training before the model is ready for classification, which is not always available 

particularly for medical data (Mohsen et al., 2018). Furthermore, it is a computationally 

expensive architecture and requires tuning a large number of parameters that need 

optimisation, lead to a high risk of overtraining particularly for a small sample size of data 

and subsequent low performance on data that are not utilised in the training process 
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(Chakraborty et al., 2019). It also requires advanced hardware for example, processing large 

number of filters for the large size of images (Litjens et al., 2017, Ravì et al., 2017). 

Furthermore, it is highly affected by class imbalance problem which is common in medical 

image datasets and it is necessary to combine a solution to this problem such as upsampling 

from the minority class (Buda et al., 2018), which can also lead to overfitting and low 

performance in the testing phase (Zhang et al., 2017). Accordingly, the implementation and 

application based on this approach are not feasible for such research problem undertaken in 

this thesis and effective results may or may not granted particularly for a small number of 

samples and limited hardware resources. Therefore, this approach is not investigated in this 

research work. 

2.13.3  Multiple Classifier Systems 

The best enhancement in the classification accuracy is not always guaranteed by using the 

single classifier. In the literature, many existing experimental works report the success of the 

multiple classifier systems in the classification task for various application domains (Oza 

and Tumer, 2008). Multiple classifier systems are based on a combination of more than one 

classification model. In developing the design of MCS, there are common questions that 

should be addressed carefully. Firstly, how to select the best set of classifiers, and secondly 

how to combine these classifiers. To answer these questions, it is essential to consider the 

classification accuracy as the most important criterion for selecting a base classifier. Other 

classifier abilities can also be considered such as the capability to handle noise and outliers. 

Additionally, the classifier should be sensitive to variations in the input data, training run or 

initialization (Hastie et al., 2001, Kuncheva, 2014). The other crucial aspect is to ensure that 

the ensemble members are not identical; that is, if the outcomes of the members are the same, 

then there will be no difference in the results compared to a single classifier approach. 

Therefore, it is necessary to ensure diversity of the classifier outcomes to achieve an 

improvement in the performance. More details are relayed in the following subsections.  

2.13.3.1 Ensure Diversity  

It is significant to ensure the diversity of the output decisions produced from different 

classifiers as this has an important impact on enhancing classification performance. It was 

reported that an ideal combination of classifier ensembles should have high diversity and 

low classification error (Kuncheva, 2014). In more details, the diversity can be generated by 

the management of either individual classifier inputs, outputs, or models (Giacinto et al., 
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2000). The most popular approaches to ensure the diversity of classifier ensembles are 

feature subsampling and data resampling. Dividing the input data into different subsamples 

and using them to train classifiers individually leads to significant variance in the classifier 

outcomes. Bagging (Breiman, 1996), and boosting (Freund, 1995, Polikar, 2006) are the 

most common methods in data resampling. The Bagging technique determines subsampling 

with replacement to gain independent training datasets for each classifier, and a majority 

vote is used to obtain the final decision. Boosting on the other hand adjusts the input data 

distribution perceived by each classifier from the results of classifiers trained previously, 

and a weighted voting rule is applied to generate the final decision. However, boosting is 

more prone to overfitting the training data, which could reduce the output accuracy of data 

classification (Abdallah et al., 2018). Regarding feature subsampling, the Random Subspace 

Ensemble method, for example, is more adequate to a large number of features. It uses 

different subsets of features randomly sampled to train MCS members.  

Ensuring the diversity of ensemble outcomes based on the subsampling of input data and 

features has a notable influence on improving classification accuracy. Nevertheless, it 

sacrifices part of either input instances or features mainly for a small number of input 

samples. Hence, this may have a negative impact on the learning phase, and it would truncate 

the chance to recognising unseen cases that could lead to reducing the classification quality. 

Therefore, to avoid this drawback, in this research work, and specifically for data with a 

small number of samples, the diversity ensemble outcomes is generated based on the 

manipulation of classification models’ design that is performed based on utilising different 

setting and parameters of the ensemble members.   

2.13.3.2 Combiner Design 

 The possible approaches to designing the fusion stage of MCS are as follows: 

1. Non-trainable: An example of this category is the majority vote that is usually applied in 

many MCS. The correct class for a test sample is decided based on counting the vote for 

each class predicted by the base classifiers and selects the majority class. 50% of the vote 

+1 is generally used. Most of the ensemble method used this approach due to its simplicity 

and efficiency in the implementation. 

2. Trainable: The basic and typical example of this approach is weighted voting. 

3. Meta classifier: This category includes a two-stage learning phase. The first is constructed 

by the ensemble of multiple classifiers whereas the second stage treats output decisions 

of the ensemble members as inputs into a new machine learning algorithm.  
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The fusion development based on both majority voting or weighted voting is an efficient 

method being less complicated and easy to implement. With the merits of these approaches, 

it is possible to have a direct design of an ensemble of a considerable number of weak 

classifiers, without necessarily involving the most efficient classification model in the 

ensemble design. However, improving system performance is not guaranteed compared to a 

single classification model unless a heuristic evaluation is carried out. 

Meta classifier approach is further advanced techniques of the ensemble methods and has 

shown promising results in different medical applications (Tsirogiannis et al., 2004). 

However, they require more complex design and the dimensionality of the output space rises 

rapidly with the number of classifiers and classes. Also, it is hard to identify or interpret the 

characteristics of the produced feature space and this is because the meta-combiner should 

be trained with a dataset different from the one used for the individual classifiers (Ponti Jr, 

2011). 

In conclusion, notably, each classification method based on single classifier system has a 

limitation which can lead to misclassification errors. However, patterns that are misclassified 

by different classifiers are not necessarily the same. Therefore, it is anticipated that the use 

of multiple classifiers can improve the decision about the patterns under classification. 

Utilising appropriate methods and techniques to fusion multiple classifiers minimises the 

overall effect of these errors and can overcome the drawback of weak classifiers and thus 

enhance the classification performance. Therefore, in this thesis, both single and multiple 

classifier systems will be examined and evaluated for the classification of malignant grades 

of glioma. 

2.14  Multi-Class Classification 

Developing a machine learning algorithm to accomplish multiclass classification poses a 

challenge compared to binary classification. Most classification models are designed for 

two-class problems and cannot be used in multiclass problems. Moreover, in some cases, 

they show insufficient efficiency and lower performance when applied to multiclass 

classification problems. Hence, it is more difficult to handle multiclass datasets than two-

class problems (Zhou and Liu, 2006, Iram et al., 2014). Various methods were proposed in 

the literature for carrying out multiclass classification. In more detail, three major categories 

of methods were highlighted. The first group includes classifiers that can be extended to 

handle multiclass classification problems such as DT, NNs, SVM and k-NN. The second 
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category includes converting the multiclass classification problem into several binary 

classification problems. For instance, methods such as the one against all, one against one, 

and error correcting output coding (ECOC) can be used for multiclass problem conversion. 

The third group is illustrated by a hierarchical classification (HC) approach (Mehra and 

Gupta, 2013). Further details on the hierarchical method are explained as follows. HC was 

proposed to solve multiclass classification problems based on taking advantage of binary 

classification construction inside the tree of HC. This method was proposed by Kumar et al. 

(2002) and was called Binary Hierarchical Classifier. This approach uses M−1 binary 

classifiers to classify M-class problem. The binary classifiers are arranged in a tree-like 

structure with M leaf nodes, each corresponding to a given class (Aly, 2005). HC was 

reported as an efficient approach and used to classify different datasets and was shown to 

gain promising results compared to ECOC (Rajan and Ghosh, 2004). Similarly, (Chen et al., 

2004) have used the HC and each node of the Hierarchical tree is based on SVM in which 

the obtained results show improved performance compared to bagged classifiers using 

remote sensing data. Accordingly, to deal with multi-class classification, this research work 

considers the hierarchical structure in the development of multi-class classification system 

for glioma grades. 

2.15 Performance Evaluations  

The final phase for a classification system is the evaluation of classification performance. 

Several techniques are employed for this purpose. The confusion matrix in general is the 

common evaluation source which provides several evaluation metrics including true positive 

(TP), false negative (FN), false positive (FP), true negative (TN), sensitivity or recall or true 

positive rate (TPR), specificity or true negative rate (TNR), classification accuracy or correct 

classification rate (CCR), positive predictive rate (PPR) or precision, negative predictive rate 

(NPR). These metrics are widely used to evaluate the classification performance in medical 

image based applications (Mahmoud-Ghoneim et al., 2003, Deepa and Devi, 2011, Das et 

al., 2018). 

Determining the confusion matrix is a fundamental step in reporting the performance 

evaluation of a classification system (Figure 2.5), whereby it is used to measure most 

common performance evaluation tools, a further detailed definition of these evaluation tools 

are as follows. TP means that the sample is originally positive, and the prediction system 

makes it true and classifies it as positive. FN means the sample is originally positive and the 
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prediction system makes it is false and classifies it as negative. FP means the sample is 

originally negative and the prediction system makes it false and classifies it as positive. TN 

means the sample is originally negative and the prediction system makes it true and classifies 

it as negative. 

 

 

Predicted Class 

Class 0 (N) Class 1 (P) 

A
ct

u
al

 

C
la

ss
 Class 0 (N) TN FP 

Class 1 (P) FN TP 

Figure 2.5 Confusion matrix 

To further elaborate, sensitivity measures the proportion of true (actual) positives which are 

correctly identified, for example, the percentage of sick people, who are correctly identified 

by the diagnostic system as having the disease (Deepa and Devi, 2011). It is measured by 

dividing the number of samples that are classified correctly using a prediction system over 

the number of samples involved in the experiment and taken from the same class. It is also 

known as the proportion of positives that are correctly classified; an actual positive rate with 

the probability of detection or recall defined by Eq. 2.7. 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                                2. 7 

Whereas, specificity determines the proportion of negatives that are correctly recognised, 

for example, the percentage of healthy people, who are correctly identified by the diagnostic 

system as healthy samples. It also has the same value of sensitivity that is measured from 

the other class. For example, for two classes: class A and B, if the sensitivity is computed 

for class A, it can be considered as the specificity for class B and vice versa, the sensitivity 

of class B is considered as the specificity for class A. Specificity is known as a true negative 

rate which is defined by the Eq. 2.8. 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
                                                           2. 8 

 

The correct classification rate (CCR or ACC) measures the total number of samples correctly 

classified using a prediction system and is calculated from all classes involved in the 

experiment. It is computed by the summation of the total number of true positives and true 
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negatives divided by the total population used in the classification, which is defined by Eq. 

2.9.  

𝐴𝐶𝐶 = 𝐶𝐶𝑅 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
                                              2. 9 

  

Precision or positive predictive rates for class 0 and negative predictive rate for class 1, are 

defined as in Eqs. 2.10 and 2.11, respectively. 

 

𝑃𝑜𝑠𝑡𝑖𝑣𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 (𝑃𝑃𝑉)𝑓𝑜𝑟(𝑐𝑙𝑎𝑠𝑠 0) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                  2. 10 

 

𝑁𝑎𝑔𝑎𝑡𝑖𝑣𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 (𝑁𝑃𝑉)𝑓𝑜𝑟(𝑐𝑙𝑎𝑠𝑠 1) =
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
                2. 11 

 

F-metric is a popular evaluation metric, which is more appropriate to sense the difference in 

the system accuracy if there are unbalanced distributions of samples in the dataset. F-metric 

represents the harmonic average that trade-off between sensitivity and precision and it is 

defined by Eq. 2.12  (Bashir et al., 2016, Gu et al., 2009).  

 

𝐹 −  𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ∗ [
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
]                                 2. 12 

 

2.16 Recent Findings and Comparison  

Different approaches are used for the classification of glioma grades and thus to facilitate 

the comparison of the reviewed literature mentioned early, the summarisation of the main 

elements of the studies that were developed to classify malignant grades and types of brain 

tumour  is summarised in Table 2.2 and is discussed as follows: 

Hsieh et al. (2017b) proposed a grading system to discriminate between grade IV and the 

lowest glioma grades (II, III). The MR images are segmented manually by an expert. They 

have used the combination of 2DGLCM and histogram features, which are extracted from 

T1c-weighted MR images. A filter approach is used to select the significant features. In the 

classification task, they have suggested that a logistic regression classifier outperforms 

neural networks. They evaluated the classification model using one dataset with 107 patients 

through the LOO cross-validation technique.  
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Table 2.2 Summary of the recent finding and comparison of different approaches dedicated for the classification of glioma grades  
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(Hsieh et 

al., 2017b) 

Single 

classifier 

system 
LOO T1c 

2DGLCM+ 

histogram 
Filter 

Logistic 

regression 

B
in

ar
y
 

34 

glioblastomas 

and 73 lower-

grade gliomas. 

Sensitivity here 

is for low grades 

88 82 90 80 

(Hsieh et 

al., 2017a) 

Single 

classifier 

system 
LOO T1c 

Texture-

LBP 

Filter + 

wrapper 

approach 

Logistic 

regression 

B
in

ar
y
 

34 

glioblastomas 

and 73 lower-

grade gliomas. 

Sensitivity here 

is for low grades 

93 97 92 85 

(Subashini 

et al., 2016) 

Single 

classifier 

system 

Splitti

ng the 

data 

T2 

Texture-

GLCM 

shape and 

intensity 

wrapper 

approach 

Naïve 

Bayes 

B
in

ar
y
 200 samples 

(100-low-grade, 

100 high-grade) 

91 - - - 

(Zacharaki 

et al., 2009) 

Single 

classifier 

system 
LOO 

T1, T1c, 

T2, FLAIR 

and 

perfusion 

texture-

Gabor, 

shape and 

intensity 

Filter + 

wrapper 

approach 

SVM 

B
in

ar
y
 

102 brain 

tumours, II (22), 

III (18), 

glioblastomas 

(34). 

88 85 96 - 
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Table 2.2 continued 
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(Zacharaki 

et al., 2009) 

Single 

classifier 

system 
LOO 

T1, T1c, 

T2, 

FLAIR 

and 

perfusion 

texture-

Gabor, 

shape and 

intensity 

Filter + 

wrapper 

approac

h 

SVM 

M
u
lt

i-
cl

as
s 102 brain 

tumours, II (22), 

III (18), 

glioblastomas 

(34). 

62.50 - - - 

(Khawalde

h et al., 

2017) 

Deep 

learning 
Partition 

the data 
FLAIR - - CNN 

M
u
lt

i-
cl

as
s 

109 subjects 91.16 92.25 - 91.79 

(Ryu et al., 

2014) 
- - 

DWI, 

ADC 

Texture-

GLCM 
- t-test 

B
in

ar
y
 40 patients 

(II(8), III(10), 

IV(22)) 

80 87.50 78.10 - 

(Geneidi et 

al., 2015) 
- - 

DTI, PWI, 

T2 

Statistical 

MRI-

features 

- t-test 

B
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ar
y
 

15 (low-grade), 

9 (high-grade) 
100 100 100 100 

 

(Inano et 

al., 2014) 

Single 

classifier 

system 
- DTI 

Statistical 

MRI-

features 

- 
Kmean 

clustering 
B

in
ar

y
 

14 (low-grade), 

19 (high-grade) 
80.40 84.80 75.50 - 
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The classification performances in terms of classification accuracy, sensitivity, specificity, 

and precision are 88%, 82%, 90%, and 80% respectively. Similarly, Hsieh et al. (2017a) 

used the same methodology to differentiate between grade IV and the lowest glioma grades 

(II, III) while the differences are the use of local binary pattern (LBP) for features extraction 

and the combination of filter and wrapper methods for feature selection in attempting to 

enhance the classification accuracy of glioma grades. The results showed that the 

classification performances in terms of classification accuracy, sensitivity, specificity, and 

precision are 93%, 97%, 92% and 85% respectively. 

Subashini et al. (2016) conducted a classification system for glioma grading into low-grade 

and high-grade tumours using 200 samples that includes 100 low-grade images and 100 

high-grade images. They validated the classification model through training the model on 

164 samples and then the trained model was used to test 36 samples. The combination of 

image texture features based on GLCM, shape and intensity features were used as an input 

features to the system. A comparison of three classifiers was performed and the Naïve Bayes 

classifier achieved the highest accuracy compared to the others at 91%. 

Zacharaki et al. (2009) developed a classification system to determine different brain tumour 

types and grades. Several types of features including texture- Gabor, shape and intensity are 

extracted from manually segmented brain tumour images using the combination of 

conventional and advanced MRI namely T1, T1c, T2, FLAIR and perfusion. The 

combination of filter and wrapper approaches are utilised to select the best subset of features. 

For the classification task, the classification accuracy of SVM was found to achieve better 

results than both KNN and LDA classifiers. The classification performance to classify high-

grades (III, IV) versus low-grade (II) in terms the classification accuracy, sensitivity, and 

specificity are 88%, 85% and 96% respectively. They also performed multi-class 

classification for glioma grades, the classification accuracy achieved for glioma grading into 

three grades (II, III, and IV) is 62.5%. The multi-class classification was conducted using 

the same framework mentioned above with using the one-versus-all strategy of binary 

classification and the majority vote scheme.  

Khawaldeh et al. (2017) demonstrated deep learning approach based on CNN to classify 

brain images into health, low-grade and high-grade glioma using FLAIR-MR images. They 

used 109 subjects. The result showed a classification accuracy of 91.16%.  
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Other studies used a statistical approach based on student’s t-test with threshold process to 

classify glioma into low and high grades. MRI Texture features based on GLCM were 

extracted from DWI and ADC modalities using 40 patients where the obtained results 

showed classification accuracy of 80% (Ryu et al., 2014). Similarly, MRI statistical features 

were derived from DTI and PWI modalities based on 24 patients where the results indicated 

a classification accuracy of 100%. However, the major limitations of this approach are as 

follows (i) they used an advanced MRI modalities that have limited availability in any MRI 

clinical centre, (ii) the conclusion is built on small sample size, (iii) various thresholds are 

required if different dataset is used, which reduces the generalisation of this approach to 

perform well using different brain tumour images. 

Inano et al. (2014) applied an unsupervised classification approach to discriminate glioma 

grades into low versus high grades. They have extracted MRI statistical features from DTI 

using 14 samples of low-grades and 19 of high-grade glioma. K-mean clustering algorithm 

was used to enable unsupervised clustering of input features. The results have shown a 

classification accuracy of 80.40%.  

Most of the recent studies are performed based on a single classification system due to its 

efficiency in achieving an objective and automated classification as well as the low sample 

size and complexity required in developing a procedure of the classification system design 

compared to the other approach such as the deep learning. However the single classification 

approach has high variation in the classification accuracy due to various sensitivities to input 

data distribution and it can behave differently if tested with a different dataset. Furthermore, 

improved classification accuracy may and may not be granted.  

2.17 Conclusion 

This chapter presents the definition of brain tumours with an emphasis on glioma. The 

common visual descriptors for different malignant grades of glioma were presented. This 

chapter also introduced the general basic representation of MRI modalities. The chapter also 

provides a comprehensive literature survey for the classification of malignant brain tumours 

in MRI images. This review was conducted in terms of feature extraction, selection and 

classification schemes. The malignancy assessment of brain tumours is generally a complex 

task. Therefore, many techniques were evaluated and discussed. This was conducted to select 

the most appropriate methods and techniques in term of determining an accurate and 

automated classification of the malignant brain tumours from MR images. Particularly, the 
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focus was given to the methods and approaches that are used to quantitatively classify glioma 

grades. The chapter also explored several predictors of malignant brain tumour, with a 

concentration on tumour heterogeneity, Necrosis, edema, enhanced and non-enhanced 

tumour. It besides discussed different classification approaches to solve the diagnostic 

problem of glioma grades. The survey also covered the effectiveness of using multiple 

classifier systems to improve the accuracy of the classification system further.  

Based on the outcome of the literature review, the main limitations of the existing studies 

can be summarised, which have a significant impact on identifying the direction of this 

research work, as follows: 

1- The traditional method to assess the malignant degree of brain tumours is mainly 

based on visual diagnosis and clinical analysis of multiple tumour descriptors such 

as tumour heterogeneity, the presence of necrosis and contrast enhancement. 

However, the malignancy assessment of a brain tumour based on the visual diagnosis 

is a complex task. This is due to the mixed visual characteristics of these descriptors 

among different grades of glioma, potentially leading to inaccurate diagnoses and 

misclassification. Moreover, the clinical confirmation in some cases requires biopsy 

or aggressive clinical surgery both of which is invasive and include many clinical 

complications. Indeed, less attention is given to the impact and usefulness of the 

quantitative measures of tumour descriptors including tumour necrosis, edema, non-

enhancement and enhancement on the diagnosis of malignant brain tumours. 

Therefore, it is necessary to assess the importance of these descriptors on the 

classification accuracy of glioma grades. The objective analysis of these descriptors 

of a brain tumour is anticipated to enhance the quality of glioma grading in term of 

classification accuracy. 

2- Some studies have significantly relied on using the combination of conventional MRI 

and advanced imaging modalities to gain further improvement in the classification 

accuracy of glioma grades. However, advanced MRI techniques, as opposed to 

conventional techniques, require more expensive equipment, more experience and 

relatively more time to extract tumour attributes. They also have limited availability 

in MRI clinics. Consequently, developing a classification system for glioma grades 

based only on conventional MRI modalities is of great interest for those who have 

only access to the conventional MRI techniques. 
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3- Many studies recommended two-dimensional textural analysis using GLCM due to 

their efficiency in representing the textural information of an image, which leads to 

promising results in different applications. On the other hand, other studies suggest 

that 3D analysis based on GLCM can lead to better classification results. Hence, 

there is, so far, no explicit clue of which analysis has the most impact in the 

classification of glioma grades. 

4- MRI image patterns have a high correlation with each other and hence extracted 

features inducing high correlation and raising redundancy that could degrade the 

classification accuracy. However, to overcome this problem and eliminate the 

redundant features, the fast and efficient approach suggests the use of the relevance 

analysis between features and their corresponding targets, which is performed 

independently to classification outcome, ignoring the interaction among the features. 

5- Many of the existing works for glioma grading is based on using a single 

classification approach, and very few investigated the advantage of MCS. However, 

to further improve the accuracy in the classification of glioma grades, developing an 

effective MCS has a significant impact on improving the classification accuracy for 

glioma grades 

6- It is necessary with the application of backpropagation Neural Network to find the 

optimal convergence point that maximises the classification accuracy of NNs. 

Indeed, at present, no such method gives a general or standard solution to overcome 

this problem. Hence, to optimise the performance of NN, studies used few trials of 

NNs then track the accuracy results to report the highest one. However, both 

solutions suffer from a lack of generalisation. Furthermore, many existing studies 

have ignored the impact of varies initial weights or the merit of using different 

validation set on the overall performance of neural networks, and it is possible to 

produce an enormous range of different results for using the same NNs design by 

manipulating these two factors.  

7- The existing works that have developed a hierarchical scheme to solve multi-class 

classification problem give less interest to the development of each node of the 

hierarchical strategy and its impact on the classification performance. However, 

some of these studies developed only a single classification approach or used 

different classifiers in different nodes of the hierarchical scheme. The development 

of these nodes on the other hand, with MCS, has received less attention.  
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To overcome the above-mentioned limitations, many methods and techniques are proposed 

to develop an objective and accurate classification of glioma grades in MRI images. Brief 

descriptions of the proposed methods throughout this study are listed below: 

1. Comprehensive texture analysis is developed using 2D and 3DGLCM derived from 

MR images. The extracted textural features of both 2D and 3D have been examined 

to enhance the classification accuracy of glioma grades. 

2. New features are proposed and investigated based on the objective analysis of 

different brain tumour descriptors, including Necrosis, Edema, non-enhancement 

and enhancement tumours. These features incorporated with different machine 

learning algorithms are used to develop the classification system for glioma grades. 

3. A hybrid feature selection method based on the combination of filter and wrapper 

approaches are utilised and incorporated with different machine learning methods to 

guide the search process. This method is proposed to overcome degrading the 

classification accuracy due to the effect of the redundant features.  

4. A meta-trainable ensemble approach is proposed and developed based on the 

development of two stages of learning in multiple classifier systems. Using 

Backpropagation NNs in the fusion stage incorporated with the proposed deep 

iteration neural networks (DINN) has a significant impact on improving the 

classification accuracy. The advantage of the proposed DINN is to optimise the 

performance of NNs, in a systematic way, achieving the optimal accuracy of NNs. 

The proposed meta-trainable ensemble approach improved the classification 

accuracy based on the integration of multiple classifiers and compensating the 

possible drawback that can occur due to weak classifiers.  

5. A new hierarchical ensemble approach is proposed and developed to solve the multi-

class classification problem (multi glioma grades) based on integrating the meta-

trainable ensemble approach in each node of the hierarchical scheme; this proposed 

approach is named Hierarchical Meta-Trainable Multiple Classifier System 

(HMTMCS). 
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CHAPTER 3 : Texture Extraction, Selection and 

Classification 

 

Overview 

This chapter presents the implementation and results analysis of the extraction, selection and 

classification phases for the texture features extracted from MR images. It also presents the 

proposed hybrid features selection algorithm (HFSA), which was developed to enhance the 

classification of glioma grades. The proposed method has the merit of integrating the filter 

and the wrapper methods. This is based on using ANOVA as a filter method and ranking the 

feature space, incorporating the Pearson correlation and several machine learning algorithms 

to guide the selection process, which is updated by the outcome of the final classification 

accuracy of different classifiers. The main purpose of this chapter is to develop an automated 

classification system for glioma grades based on the objective analysis of the tumour 

heterogeneity. The other purpose of this chapter is to evaluate the ability of the proposed 

method to select the most efficient feature set and eliminate redundant ones. Thus, leading 

to further development of the classification system for glioma grades. 

This chapter starts with the details relating to the preparation of the region(s) of interest 

(ROI) of brain tumour images using four datasets of MR images. This work also covers a 

comprehensive analysis of texture features extracted from ROI of brain tumour images using 

2D and 3DGLCM. This chapter covers a demonstration of several experiments conducted to 

evaluate and examine the behaviour of the developed system based on the proposed method. 

Classification performance was analysed and evaluated by comparing the proposed method 

against ANOVA in terms of classification accuracy, sensitivity, precision, specificity and F-

measure. Furthermore, the discrimination ability of the proposed method was evaluated by 

examining the final performance of the developed system using many common classifiers, 

including single classifier and ensemble approaches, which were trained and tested 

individually. The single classifier consists of different classification models namely DT, 

SVM, KNN and LDA. The ensemble approaches include Ensemble Subspace Discriminate 

Analysis (ESDA) and Ensemble Bagged of Decision Tree (EBTree). 
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3.1 Introduction 

It is crucial to differentiate low-grade gliomas and high-grade gliomas preoperatively, as this 

impacts the prognosis and treatment of the patient who has brain cancer (Theeler and Groves, 

2011, Siker et al., 2006, Lasocki et al., 2015). This motivates the development of a non-

invasive, objective and automated system to determine the malignant grade of a brain 

tumour. To achieve this aim, a classification system based on machine learning is developed 

and new methods and techniques are proposed. This system will offer a reproducible and 

efficient method to automate and enhance the classification of a malignant brain tumour. 

MRI is widely used for evaluating brain pathologic lesions because it is a common imaging 

technique and a safer medical imaging method (El-Dahshan et al., 2014, Larroza et al., 

2016). Analysing the MRI morphological descriptors of brain tumours can support clinicians 

in making more objective and accurate decisions (Hsieh et al., 2017c). Both conventional 

and advanced MRI techniques are used for the identification of the malignancy level of brain 

tumours (Kono et al., 2001, Porto et al., 2014). However, advanced MRI techniques are 

limited in terms of their availability in MRI clinical centres and come with high costs for 

advanced equipment. Therefore, in this research work, the classification system is developed 

based only on conventional MRI methods to differentiate between different glioma grades.  

Several conventional MRI modalities can be used to extract image features and utilise the 

classification of malignant brain tumours. For example, T1 modality with contrast 

enhancement (T1c-weighted) has been used to distinguish grade IV against the lower glioma 

grades (Hsieh et al., 2017b). However, this MRI modality is an invasive approach due to the 

involvement of the contrast agent. Also, the enhancement can be seen only in areas where 

the blood barrier inside the brain lesion has become permeable. Hence, it is highly dependent 

on the contrast leakage (Geneidi et al., 2015). In T2 modality, most of the brain tumours 

appear as hyper-intense compared to the surrounding parts. Thus the brain lesion is visually 

easier to identify and commonly used to conduct an initial assessment, identifying brain 

tumour types and differentiating non-tumour from tumours tissues (Tonarelli, 2013). T2-

weighted is a non-invasive technique and is the most common MRI modality utilised for the 

segmentation and classification of brain tumour types and grades (Hasan and Meziane, 2016, 

Kharrat et al., 2010, Ananda Resmi and Thomas, 2010, Mohsen et al., 2018, Al-Waeli, 

2017). The proposed classification system was therefore designed based only on T2-

weighted MRI images.  
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Computer-aided diagnosis using the image features of brain tumours has been put forth as a 

significant approach in improving radiological diagnosis performance (Herlidou et al., 1999, 

Kassner and Thornhill, 2010, El-Dahshan et al., 2014). The malignancy of brain tumours 

can be predicted by the assessment of tumour heterogeneity (Ryu et al., 2014). Automated 

classification of different heterogeneity levels of brain tumours offers more objective and 

accurate decision-making than a human reader. Texture analysis of the surface patterns of a 

lesion is an important approach to measure tumour heterogeneity. Texture analysis is utilised 

widely and plays a key role in the identification and recognition of morphological 

characteristics of brain tumours (Nielsen et al., 2008, Holli et al., 2010, Roy et al., 2013, 

Mohan and Subashini, 2018). Among the different texture feature methods, the grey level 

co-occurrence matrix (GLCM) can significantly access the spatial distribution of image 

intensities and the local texture features leading to an efficient representation of image 

textural features and promising classification results. Furthermore, it has been commonly 

used in various applications in the classification of medical images (Yazdi et al., 2007, Hasan 

and Meziane, 2016, Kovalev and Kruggel, 2007, Bonilha et al., 2003, Wibmer et al., 2015, 

Subashini et al., 2016, Liu et al., 2018).  

The motivations and contributions of this chapter are summarised as follows: 

While two-dimensional textural analysis using GLCM is recommended by many research 

works and shown remarkable results in the evaluation of the malignancy level of brain 

tumours (Larroza et al., 2016, Nakagawa et al., 2018), other studies suggest that three 

dimensional-analyses based on GLCM can lead to better classification results (Chen et al., 

2007, Chen et al., 2009, Sanghani et al., 2018). However, there is, so far, no explicit 

conclusion as to which one of these texture analyses has the best impact on the classification 

of glioma grades. Consequently, it is necessary to investigate a comprehensive analysis of 

the MRI-based 3D textural features, which can lead to achieve an optimised diagnosis of the 

accurate level of the malignancy growth of glioma grades. This creates the incitement 

towards the three-dimensional textural feature analysis based on GLCM, which could be an 

effective approach for the classification of glioma grades. This leads to the first contribution 

of this chapter, which is investigating a comprehensive 3D textural analysis based on GLCM 

incorporating different machine-learning algorithms for the classification of glioma grades 

in MR images (Al-Zurfi et al., 2019). The 3DGLCM matrix is mapped over all slices for 

each patient along the Z-dimension as well as the classic X- and Y-dimensions. A 

comparison of the classification performance based on 3D and 2D texture analysis was 
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conducted in terms of different evaluation matrices such as classification accuracy, 

sensitivity, specificity, precision, and F-measure. The texture analysis was also developed 

using the proposed method and was examined using several different classification models. 

Selecting the most efficient features is one of the main challenges to develop an efficient 

classification system, which is necessary to optimise the classification performance. For this 

concern, a filter approach can be used to select the crucial features. The filter method has 

been utilised in the classification of malignant brain tumours (Hsieh et al., 2017b), due to its 

simplicity and efficiency. However, the filter method could lead to limited classification 

accuracy because the selection process by this method has not taken into account the 

outcome of the classification stage. Other possible approaches to demonstrate the selection 

process are based on the wrapper method, which can achieve better accuracy (Subashini et 

al., 2016, Zacharaki et al., 2011). However, it is computationally an expensive approach. 

MRI image patterns have a high correlation with each other and therefore the extracted 

features induce high correlation. Hence, the features that have a high correlation with others 

and have less relevance can raise redundancy in the feature space (Hall, 1999, Al-Waeli, 

2017) and can degrade the classification accuracy for glioma grades. Consequently, it is a 

significant challenge to select the optimal set of features without considering the issue of the 

interaction among features as well as take into account the classification outcome. This 

forms the ground of the second contribution of this chapter: proposing a hybrid feature 

selection algorithm that is able to capture the most crucial features from a wide range of 

features generated in this work. The proposed method has taken the merit of integrating the 

filter and wrapper approaches. The filter method was applied using the ANOVA technique. 

The wrapper approach was performed by incorporating different machine-learning 

algorithms where the search process is guided by the Pearson correlation and the outcome 

generated by using different subset of features and different classifiers. 

3.2 Input Materials 

Four MR image datasets that are publicly available were used to evaluate the proposed 

system for the classification of glioma grades. These datasets have a confirmation of 

histopathological diagnosis. The first three datasets are known as BRATSS2013 and 

BRATS2015 and BRATS2018; these provided with standard segmented MR images (Menze 

et al., 2015). The BRATS2013 dataset contains thirty patients, with low and high-grade 

histopathological diagnosed gliomas. The group of low-grade gliomas (I and II) includes ten 

patients. The second group of high-grade gliomas (III and IV) contain twenty patients. The 
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low-grade tumours are diagnosed as astrocytomas or oligoastrocytomas. The high-grade 

tumours are diagnosed as anaplastic astrocytomas or glioblastoma multiform tumours. This 

dataset was collected at four different centres: Debrecen University, Bern University, 

Heidelberg University and Massachusetts General Hospital, over the course of several years, 

using different MRI scanners with different field strengths (1.5T and 3T respectively). The 

BRATS2015 dataset includes 274 patients, covering 54 patients with low-grade gliomas (I, 

and II) and 220 patients with high-grade gliomas (III, and IV). The multimodal MRI data 

are available in these two datasets. For each patient, the FLAIR, T2, and T1 images were co-

registered into the T1c data, which has the finest spatial resolution, and then all the images 

were resampled and interpolated into 1×1×1 mm3, with image dimensions of 240 ×240 ×155 

for all MR slices collected. The image file format and bit depth for BRATS2013 and 

BRATS2015 datasets are MHA format with 16 bits (Dong et al., 2017). The BRATS2018 

dataset includes 285 patients, with 75 patients of low-grade gliomas (I, II) and 210 patients 

of high-grade glioma (I, II). The image file format and bit depth are NIFTI format with 16 

bits (Bakas et al., 2017). 

The fourth dataset includes three tumour grades of glioma (Clark et al., 2013). We have 

given the name ‘Cancer dataset’ to these MR images to distinguish it from the other datasets 

used in this work. This dataset is also publicly available and confirmed by the 

histopathological diagnosis. This collection contains ten patients of grade IV 

(Glioblastomas), ten patients of grade II, and ten patients of grade III. Each patient has a 

varying number of slices ranging from 20 to 120, with varying post imaging parameters such 

as different gap spaces and slice thicknesses, ranging from 2 to 7.5 mm. The image file 

format for this dataset is DICOM with 16 bits depth. 

3.3 MRI Pre-Processing 

The overall flow chart of the general stages of the classification system of glioma grades is 

shown in Figure 3.1. It starts with feeding T2-weighted MRI images into the classification 

system. Then the images are pre-processed to prepare them for the feature extraction stage, 

followed by the selection of the significant features and finally the process is ended by the 

classification and performance evaluation stages. In the classification stage, all samples in 

the dataset are passed through two phases of training and testing, where the classification 

performance is then evaluated based on the testing phase. The pre-processing is aiming to 

make the remaining stages more applicable. This includes the preparation of ROI of brain 
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tumours, cropping the image to keep only the ROI; the process is ended with the intensity 

normalisation. The pre-processing steps for MR images are further detailed in the following 

subsections. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Overview of the general stages of the proposed classification system for 

glioma grades. 
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3.3.1 Preparation of Region of Interest of MR Images of Brain Tumour 

The first step in the pre-processing of a classification system is to prepare the region of 

interest (ROI) of MR images of brain tumours carefully to avoid any distortion in the feature 

space; the distortion can occur if features from other regions out of the region of interest are 

involved in the feature extraction. Thus, extraction of features from only the ROI will lead 

to maintaining the quality of feature classification.  

For the BRATS2013 and BRATS2015 datasets, standard segmented MR images are 

provided which are supported by a label identification layer. This layer has an index for the 

regions of the segmented tumour. This identification layer was used to identify the ROI of 

all MR images of brain tumours. Consequently, each patient in the dataset was represented 

by different numbers of MR slices, ranging from 20 to 60 MR images. These MR slices 

contain only the ROI of the brain tumour images where other MR slices without the presence 

of brain tumours are discarded. 

For the Cancer dataset, which is different from the BRATS dataset, the provided images are 

not supported with segmented ROI. Therefore, to prepare the ROI of brain tumour images, 

it was necessary to apply a segmentation process. Since the segmentation task is out of the 

scope of this thesis, therefore to yield the ROI of brain tumour from MR images, the 

segmentation algorithm developed by Al-Waeli (2017) was used. This algorithm segments 

the ROI automatically from the MR images. It applied an automatic localisation of brain 

tumours using genetic algorithms based on bounding 3D-boxes (Hasan et al., 2016c). This 

algorithm relies on randomly creating hundreds of 3D-boxes with different locations and 

sizes in both the right- and left-brain hemispheres. The boxes in the right hemisphere are 

then compared to the corresponding 3D-boxes in the left-brain hemisphere using the 

objective function. This process is iterative and is based on the result of the objective 

function; these 3D-boxes are moved and updated toward the region that maximises the 

outcome of the objective function. The objective function is computed based on measuring 

the absolute value of subtracting the means of the intensities inside the produced 3D-box in 

the right-brain site from the corresponding 3D-box in the left-brain site. The objective 

function is thus computed between the two states (i.e. initial and next state). The value of 

the objective function is low when standing on soft tissue and high when the 3D-box stands 

on the lesion area because the tumour is always more hyper-intense than the surrounding 

soft tissue of the brain in T2-weighted images. Based on the recommended iteration range 

of the genetic algorithm (85 to 18 iterations) which is associated with the corresponding size 
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population ranging from 20 to 100 slices (Al-Waeli, 2017), and since the number of images 

in the obtained dataset ranged from 20 to 120, the maximum and minimum number of 

iterations were set to 85 and 18 iterations respectively. This was done to control the 

termination process of the genetic algorithm to search for the best optimal solution in 

locating the brain tumour in the MR images. 

After the brain tumour is automatically localised, the next task is the segmentation of ROI 

of the brain tumour; this is performed automatically using three-dimensional active contours 

without edge (Hasan and Meziane, 2016). This algorithm is known as the Chan-Vese model; 

it can detect the object boundary not necessarily defined by the gradient, and it is independent 

of whether the boundaries are discontinuous or smooth. The parameters of this algorithm 

that have been evaluated and recommended to optimise the performance of this contour 

evolution are as follows: the length of penalty μ was set to 106, which enabled the algorithm 

to detect and segment the object accurately. The parameters λ1, λ2 control the competition 

force between the internal and external regions of the contour. Generally they hold the same 

values and usually λ1 =λ2=1, leading to a fair competition between these two regions (Nixon, 

2008, Hasan et al., 2016a). 

3.3.2 Image Cropping 

This task involves removing the unnecessary parts out of the ROI of MR images of brain 

tumours. The purpose of this step is to avoid any redundant processing that can be consumed 

for other image parts outside the ROI. This can lead to reducing the computation time, which 

is considered as advantageous when developing an efficient classification system. This is 

performed based on eliminating zero background through an automatic cropping of each MR 

slice. The process of image cropping is conducted based on searching the image through 

four margins: top, bottom, right, and left, to produce a small window that has the ROI of the 

MR images of a brain tumour (Figure 3.2). At the same time, this process should not cause 

any reduction in the ROI of the tumour image. Therefore, to avoid potential loss in the 

tumour region, the dimensions of the produced window were assigned to be less than the 

largest presence of the tumour in all slices by one row and one column. In this reduction 

procedure, the pixel location and intensity were maintained, which is important for the 

feature extraction based on the GLCM. To elaborate, the construction of the GLCM is 

dependent on the pixel pair relationship that requires the pixel locations for the generation 

of these relations. The outputs of this procedure are slices with smaller dimensions compared 
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to the input images without loss of the tumour information. The original intensity of the MR 

slices and the pixel locations were not changed or transformed through this procedure. An 

example of the pre-processing steps were applied to the MR image, with the dimensions 216 

by 176 pixels to obtain the ROI of the brain tumour, started by preparing the ROI of the MR 

slice (Figure 3.2). This was performed as based on the masking process, after which a slice 

with the same dimensions was produced and which had only the ROI of the brain tumour 

(Figure 3.2B). Then, the final stage involved cropping an MR image based on the movement 

of four margins in the produced image, this movement is designed by comparing each two 

neighbouring pixels in the x-axis to control the movement of left and right margins, and in 

the y-axis to control the movement of the top and bottom margins. The movement of the 

margins is stopped when both neighbour pixels are equal to zero, and finally an image with 

lower dimensions at 51 by 42 pixels is produced (Figure 3.2C).  

 

 

 

 

 

 

 

 

 

 

 

3.3.3 Intensity Normalisation 

In the medical field, there is usually a wide variation of intensities in MR images. The 

reasons behind such variation are as follows: the image acquisition from different MRI 

scanners varies, the scanners can come from different manufacturers, there are different 

scanner models, and different models use different magnetic fields. Additionally, different 

acquisition settings of MRI units lead to variations in the intensities of MR images. 

Consequently, it is important for medical image analysis to demonstrate the normalisation 

A B C 

Top margin 

Bottom margin 

Left margin Right margin 

Figure 3.2 Preparation of region of interest of MR image of brain tumour and the 

cropping process of MR slice. A) Original MR slice with dimensions 216 by 176 

pixels, B) Segmented tumour in MR slice with the same dimensions of input image 

C) Cropped MRI slice with dimension 51 by 42 pixels. 
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of the intensity of an image, to have a consistent range of intensity for all MR images 

involved in the feature extraction stage. MR image normalisation is useful for reducing the 

computation time for the analysis of images with a large range of intensities. The MRI image 

dataset obtained in this study comes from different MRI centres, scanners, with different 

magnetic fields; therefore, it was necessary to perform intensity normalisation. It is valuable 

in texture analysis to standardise the intensity range to eliminate dependence on an individual 

MRI setting which can disturb image contrast (Kjaer et al., 1995, Tantisatirapong, 2015). 

Image normalisation consists of adjusting the scale of the intensity of all images to produce 

a standardised range for all the MRI images.  

Furthermore, Intensity normalisation is used widely in texture classifications (Hsieh et al., 

2017b, Hsieh et al., 2017c, Hsieh et al., 2017a). Therefore, in this thesis, the image intensity 

for each T2-weighted image was normalised. The normalisation process is defined by Eq. 

3.1 and 3.2 (Nyúl and Udupa, 1999, Loizou et al., 2009).  

  Let G be an input image while the normalized output image is K. 

𝑅𝑛 =
𝐺𝑖𝑛 − 𝐺𝑚𝑖𝑛 

𝐺𝑚𝑎𝑥 − 𝐺𝑚𝑖𝑛
                                                                   3. 1 

 

Kn = Rn × (Kmax – Kmin)                                                        3.2 

Where Gin is the input intensity of the input image G being considered, 𝐺𝑚𝑖𝑛 and 𝐺𝑚𝑎𝑥 are 

respectively the minimum and maximum intensities of G. Assuming the minimum intensity 

of the grey level is zero, leads to Rn representing the transformation ratio having values in 

the interval [0, 1], and n has a range from 1 to the total number of pixels of an image. For 

example, if an image has the dimensions of 256 by 256, n will be in the range [1- 56536]. In 

the normalisation process, the input intensities of an image are mapped from the range 

(Gmax, Gmin) into a new range (Kmax, Kmin), where Kmax and Kmin represent the 

maximum and minimum values of the normalised image K respectively, and Kn is the 

normalised image produced. 

3.4 Texture Extraction 

It was shown in the literature review that tumour heterogeneity is one of the most significant 

descriptors in assessing the malignancy degree of a tumour. This descriptor is widely used, 

and it has shown promising results in determining the grade of malignant brain tumours 

accurately. The heterogeneity of a brain tumour can be measured by analysing image texture 
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features to predict progression in the malignancy of tumour. It was also shown that GLCM 

can achieve remarkable results in measuring the texture features, leading to considerable 

classification results. The details of both 2D and 3D analyses of GLCM are explained in the 

following subsections: 

3.4.1 Co-occurrence Matrix Based on 2D and 3D Analysis  

GLCM investigates the relationship between a pixel pair in the region of interest of MR 

images of brain tumours. It measures the relative spatial information of a texture image for 

several directions and distances between pixel pairs. The main difference between 2D and 

3D analysis for demonstrating GLCM lies in the number of directions for which θ is being 

considered (Chen et al., 2007). For 2DGLCM, for a certain distance d, four independent 

directions are considered corresponding to θ = 0◦, 45◦, 90◦, 135◦ (Figure 3.3); while for 

3DGLCM, nine angles are constructed in addition to the four angles of the 2D data, 

producing a total of 13 angles for GLCM. The nine directions of the 3DGLCM (Figure 3.4) 

are as follows: θ = (00, 450), (00, 00), (00, -450), (450, 00), (-450, 00), (450, 450), (-450, -450), 

(450, -450) and (-450, 450). 

The construction of a three-dimensional GLCM is similar to that of a two-dimensional 

GLCM; both are designed by searching the probability of a pixel pair for a given distance 

and angle. The significant difference relies on the direction of the searching process. In the 

2DGLCM the search process considers only the two dimensions of the x and y-axes through 

an image matrix. In the 3DGLCM, the search process also considers the third dimension. 

The third dimension of the 3DGLCM is built based on searching the probability of a pixel 

pair along the z-dimension for all MR slices that have a brain tumour. In 3DGLCM, the 

searching process investigates the relationship between a pixel in a reference slice and its 

neighbour in the next slice; this search includes nine angles (Figure 3.4). For example, if the 

neighbour in the next slice has the same coordinates, it is considered as angle 00. Texture 

analysis based on 3DGLCM was conducted in this thesis to add more information to the 

texture analysis of MR images of brain tumours.  
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To select an adequate grey-level for texture extraction by GLCM, Gómez et al. (2012) have 

examined different quantisation grey-level, these are 8, 16, 32, 64, 128, and 256, and they 

have found that the quantisation levels do not improve or worsen the discrimination power 

of texture features. Although the GLCM is an efficient method for spatial texture extraction 

from grey images, it needs further computational time as more levels are included in the 

GLCM. Consequently, the common settings for the construction of a GLCM  that were 

adopted in this research work are as follows; range of grey value that is used for grey level 

intensity is 0 to 255, and the distance is equal to one (Hsieh et al., 2017b, Hsieh et al., 2017c, 

Hsieh et al., 2017a, Kharrat et al., 2010). Thirteen angles with the application of GLCM were 

selected. These angles represent all possible directions of GLCM, which can be developed 

between a pixel and its neighbour pixels located in other slices. Furthermore, the texture 

features based on GLCM were extracted for all slices that have shown a brain tumour. The 

slices that have not presented any portion of brain tumour were discarded from processing 

stages.  

0° 

90° 
135° 45° 

Figure 3.3 Two-dimension co-occurrence matrix generated 

with directions = 0°, 45°, 90°, and 135°, and distance = 1 for 

each reference pixel and its neighbouring pixels. 

Figure 3.4 The relations between a pixel in a reference slice A and its 

neighbours in the next slice B for the Z-axes of 3DGLCM. 
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For a given image, the co-occurrence P and its associated matrixes are defined as follows 

(Haralick et al., 1973): the probability co-occurrence is measured for the pair d and θ, where 

d and θ are the selected distance and direction respectively and defined by Eq. 3.3. 

P=P (i, j | (d, θ))                                                         3.3 

 where P (𝑖, 𝑗) is the (𝑖, 𝑗) 𝑡ℎ entry element of a normalised spatial probability matrix, which 

is obtained by measuring the ratio of each element in the spatial probability matrix divided 

by the total summation of all elements of the probability matrix, and i, j are the pixel 

coordinates in the P (i, j).  

Different statistical predictors incorporated with the GLCM are used to represent the texture 

variability. These textural predictors have been used to measure image texture variance 

(Haralick et al., 1973). The ability of these predictors to classify different texture patterns is 

highly dependent on the complexity and nature of the grey tone transitions of an image. MR 

images of glioma are identified as presenting high heterogeneity between low and high 

grades. Therefore, statistical predictors were used to measure the variation in the texture, 

leading to discrimination between low- and high-grade gliomas. In general, for an 

inhomogeneous image, the co-occurrence matrix will have a large number of entries of small 

values, while for a homogeneous image, the matrix will have a small number of entries of a 

large value (Chen et al., 2007). 

In this thesis, eighteen statistical predictors that represent the most common textural 

predictors were driven from the GLCM (Haralick et al., 1973, Gómez et al., 2012, Hasan 

and Meziane, 2016, Birry, 2013, Tantisatirapong, 2015). These predictors are as follows: 

autocorrelation, contrast, correlation, cluster prominence, cluster shade, dissimilarity, 

energy, entropy, homogeneity, maximum probability, sum of squares, sum average, sum 

variance, sum entropy, information measure of correlation 1, information measure of 

correlation 2, inverse difference normalised, and inverse difference moment normalised. 

These predictors are calculated for each of the co-occurrence matrixes for all angles Ɵ for 

each patient in the dataset. For 2DGLCM, eighteen predictors for each of the four co-

occurrence matrices, which yield each patient represented by seventy-two features. For the 

implementation of the 3DGLCM, each patient is represented in total by eighteen predictors 

multiplied by thirteen directions, which produces two hundred thirty-four textural features. 

The definition and mathematical construction of the statistical textural predictors are 

described in APPENDIX B. 
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3.5 Proposed Hybrid Feature Selection Algorithm  

Eliminating the redundant features can lead to an improvement in the classification 

performance. It also leads to reducing computational complexity by transforming high-

dimensional data into a meaningful representation of a reduced one. A redundant feature is 

an attribute that is highly correlated with one or more of the other features so that the 

irrelevant predictor can be discarded without affecting the classification accuracy (Hall, 

1999, Saeys et al., 2007). The proposed method aims to identify subsets of the most 

significant features affecting the accuracy of classification performance. To select the most 

efficient features, ANOVA technique can be used, which is an effective statistical method 

for detecting the significance level for each predictor in the feature space (Jafari and Azuaje, 

2006). ANOVA is used to predict the significance of a predictor using P-values. The 

predictor that has a small P-value, less than the critical value that is being considered, will 

be significant and would thus be selected. For instance, if the P-value is less than 0.05 or 

5%, the feature will be selected. This method is an efficient and fast approach. However, it 

measures the significance of each feature individually without considering the interactions 

between the predictors and ignoring the outcome of the classification. Therefore, to 

overcome this drawback, a hybrid feature selection algorithm (HFSA) was proposed that 

takes the advantages of ANOVA technique and Pearson correlation integrated with different 

classification models in an iterated search process, whereby the optimal classification 

accuracy and best set of features are achieved (Figure 3.5).  

The automated system starts with the extraction of 3DGLCM from T2-weighted MR images 

of brain tumour using the full set of features. In the classification stage, different common 

classification algorithms were trained and tested individually based on the features extracted. 

After that, the classification performance was evaluated and analysed. The proposed hybrid 

features selection algorithm (HFSA) includes two main stages; the first one is the 

initialisation, and the second is the search algorithm in an iterated process, in which the best 

classification accuracy and best set of features are selected. 

Further details of the proposed algorithm are as follows; at the initialisation, ANOVA was 

herein applied to all features, the features that have more than the P-value (0.5) were 

eliminated. In this stage also, the feature space is ranked from the lowest to the highest 

correlated against the reference features. The reference feature represents the one that has 

highest classification accuracy compared to all other predictors. The Pearson Correlation 

method was used to assess the correlation between features (Chan, 2003, Swinscow and 
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Campbell, 2002), and can take values within the range of the three values, -1, 0 and 1, where 

0 indicates there is no correlation and 1 or -1 point to a higher correlation. 

Start

Intialisation

Is i <= length (F) No End

Yes

Remove one feature

F Exclude F{n-i+1}

Training the classifiers

 

Classifying the testing sample and measure 

the classification accuracy ACCnew

If output accuracy is reduced

 OR If ACCnew < ACi
yes

Keep the 

feature without 

elimination

No

Aci=ACCnew

Training (N-1) Testing samples

Single classifier system

  

Figure 3.5 The flow chart of the proposed hybrid features selection algorithm 

based on machine learning algorithm developed for the automated 

classification of glioma grades. 
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The Pearson correlation was proposed in combination with the ANOVA method to remove 

the redundant features and select the best set of features based on measuring the outcome of 

the interactions among features. The output of this stage is the ranked features F in ascending 

order based on the measurement of Pearson correlation between these features and the 

reference predictor, thereafter the feature set F is fed to the iteration process.  

Let i=1. Let a classifier set  = (1,..., N), N is the total number of classifiers, feature set 

F = (F1, F2, … , Fn); n is the total number of predictors. Let Aci represent the initial 

classification accuracy, which set experimentally based on the result obtained from the first 

run to all classification models and F.  

The loop process is started using the feature F to find the maximum possible accuracy. The 

proposed method uses an iterative process of decrementing the feature space F by one feature 

to generate new feature set M and then performing training and testing for all classifiers  

in a comparable procedure to choose the best classification accuracy (Eq. 3.4 and Eq. 3.5). 

   

𝐴𝐶𝐶 =
1

𝑆
∑ 𝑃(𝑐𝑜𝑟𝑟𝑒𝑐𝑡| (𝑤1, 𝑤2))

𝑆

𝑘=1

                                                      3. 4 

where P is the probability of correct prediction; w1, w2 refers to class one and two 

respectively, S is the total number of samples of w1, and w2. 

Maximum classification accuracy=arg MAX (ACC (, M))                            3.5        

The criteria that is used to select the best set of features is as follows; the process of 

eliminating features starts from the highest correlation to the lowest one, then the produced 

feature set is used to train and test different classifiers. Consequently, if the result of the 

classification accuracy based the generated subset of features is less than the previous state 

(Aci). In other words, if the classification accuracy is reduced compared to the previous states 

then that feature is inserted back and kept in the features set for the next examination. 

Otherwise if the resultant output accuracy is the same as the maximum previous state or 

increased then the elimination process is continued, and the initial accuracy is replaced with 

the new accuracy. This process is iterated and repeated until all features are examined and 

the classification accuracy is investigated. The final output represents the best selected 

feature subset that has the optimal classification accuracy.  
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3.6 Features Classification Using Single and Ensemble Classifiers 

Features classification is a key step in the automation of the diagnostic system. It refers to 

the categorisation of objects into classes. It includes two phases of processing: training and 

testing. In the initial training phase, a description of each classification category based on 

image features is determined and utilised to train classification model. In the testing phase, 

the trained model is used to classify unknown samples. 

A comprehensive analysis of MRI textural features was accomplished to evaluate the impact 

of both 2D and 3D textures in classifying glioma grades. The features extracted from both 

2D and 3D data of GLCM were used to train different common machine learning algorithms, 

namely Linear Discriminate Analysis (LDA), Support Vector Machine (SVM), K-Nearest 

Neighbour (KNN), Decision Tree (DT), EBTree, and ESDA. Thereafter, the testing phase, 

based on leave-one-out (LOO) was determined. Several decision choices and techniques 

were applied within these classification methods to generate additional classifiers (Table 

3.1). Three main justifications for these methods and design choices are as follows; first they 

are the most commonly used, which lead to promising results, and therefore they are selected 

as a default configuration in the Matlab learner application (Abdallah et al., 2018, Ashour et 

al., 2018a, Das et al., 2018, Al-Waeli, 2017). Furthermore, the selected classification models 

are the most suitable to handle both small and large datasets, which can lead to successful 

results in the decision-making process (Kuncheva, 2014). Moreover, these techniques and 

choices are demonstrated in this work to ensure the diversity in the output decisions of the 

classification models whereby robust evaluation and objective comparison can be 

established. Also, approaching the diversity of the output decisions based on these 

predefined design choices are further utilised to enhance the quality of the classification 

performance through the development of the classification system for glioma grades, further 

details are explained in section 5.1. The textural features produced were prepared for the 

classification stage by performing features normalisation, mapping these features into new 

forms, which were more suitable for the classification process. This step is vital in avoiding 

features with large ranges outweighing those with smaller ones. Linear normalisation was 

performed to standardise the extracted features while maintaining the same relationships 

between the original features (Georgiadis et al., 2009).  
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Table 3.1 The parameters settings for the classifiers undertaken. These include four main 

single classifiers namely DT, LDA, SVM, KNN, and two Ensemble methods. In total, 

thirteen classifiers are generated using these different parameters and techniques. 

Classifier 

Name 
Parameters 

DT 

Maximum number of split is 4. 

Split criterion is Gini’s Diversity Index. 

Maximum surrogate per node is 10. 

LDA Regularisation is diagonal covariance. 

SVML SVM with Linear kernel function. 

SVMQ SVM with Quadratic kernel function. 

SVMCUB SVM with Cubic kernel function. 

SVMG SVM with Gaussian kernel function 

KNNF 

KNN where the number of k-neighbours is 1, distance 

metric is Euclidean, and the distance weight is 

identical. 

KNNM 

KNN where the number of k-neighbours is 10, 

distance metric is Euclidean, and the distance weight 

is identical. 

KNNCOS 

KNN where the number of k-neighbours is 10, 

distance metric is cosine, and the distance weight is 

identical. 

KNNCUB 

KNN where the number of k-neighbours is 10, 

distance metric is cubic, and the distance weight is 

identical. 

KNNW 

KNN where the number of k-neighbours is 10, 

distance metric is Euclidean, and the distance weight 

is squared inverse. 

EBTree 

Ensemble classification model where Bagging 

strategy is used, thirty learners of DT as a base 

classifier are used. 

ESDA 

Ensemble classification model where feature subspace 

strategy is used, thirty learners of discriminate 

analysis as a base classifier are used. 
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All the classifiers were validated using the leave-one-out cross-validation method, which is 

essential for avoiding overfitting problem. The ultimate purpose of this stage was to select 

the best classifier that achieved better accuracy and thus develop a classification model that 

can classify unseen new data correctly. 

3.6.1 Ensemble Bagged Tree 

Ensemble Bagged Decision Tree (EBTree) is based on bootstrap aggregation, manipulating 

training data (Abdallah et al., 2018, Kuncheva, 2014). The training subset is bootstrapped 

(resampled randomly with a replacement) to generate a different training subset. The 

manipulation involves splitting the input instances (in the training phase), then feeding them 

as inputs to the classifiers. In this experiment, thirty learners of DT as a base classifier are 

used and a majority vote (50% +1 rule) as a combination strategy was conducted (Breiman, 

1996). 

3.6.2 Ensemble Subspace Discriminate Analysis 

Ensemble Subspace Discriminate Analysis (ESDA) uses different feature subsets to train the 

members of the ensemble and has been reported as being an efficient method in many 

application domains characterised by high-dimensional features (Tin Kam, 1998, Ashour et 

al., 2018a). Examples include data classification and cancer diagnosis (Bertoni et al., 2004, 

Bertoni et al., 2005, Armano et al., 2011). This method involves randomly discriminating 

the dimension of features space into several different subsets of features, these subsets of the 

features are used to train and test the members of the ensemble, and finally the decision is 

made by majority vote. A subspace dimension of the feature subset can be adjusted to select 

the best set of features that improve the classification accuracy. Thirty learners of 

discriminate analysis as a base classifier were used and a majority vote was used to combine 

the base classifiers.  

3.7 Experimental Results and Discussion  

The hybrid features selection method was proposed to find and identify an optimal subset of 

features that can improve the performance of the classification system. A comprehensive 

evaluation of the results in terms of classification accuracy, sensitivity, specificity, precision, 

and F-measure for both the 2D and 3DGLCM was conducted. The purpose of this work is 

to examine the quality of the proposed hybrid feature selection method integrated with 

different classification methods to achieve an accurate classification of glioma grades in MR 
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images. This work will start with a comparison of the results obtained from training and 

testing different classification method using 2D against 3DGLCM. Thereafter, a 

comprehensive analysis of the 3DGLCM will be conducted corresponding to different 

orientations of the 3DGLCM to show the behaviour of the features associated with each 

angle in the classification of glioma grades. These results will highlight the need to use the 

proposed features selection method to select the essential features that can achieve a 

significant improvement in classification performance.  

3.7.1 Results Comparison between 2D and 3D Analysis of GLCM 

In this experiment, BRATS2013 dataset set was used to compare both behaviours of the 2D 

and 3DGLCM. The obtained results show that the maximum classification accuracy was 

achieved by SVML classifier at 93.3% for both 2D and 3D analysis of GLCM (Table 3.2 

and Table 3.3). The strategy that was used in extracting 2DGLCM was based on using 

standard segmented datasets of volumetric data and by considering all the slices that include 

the ROI of the brain tumour enables the classification method based on 2DGLCM to show 

high results. On the other hand, it was noticed that no improvement was achieved in 

classification accuracy using 3DGLCM compared to 2DGLCM, where the same results of 

classification accuracy were maintained at 93.3% by SVML classifier (Table 3.3). It is 

worthwhile to note that using the full set of features associated with 3DGLCM could lead to 

increase the redundancy between features and this could affect negatively the classification 

accuracy. Therefore, to gain a clearer understanding, a comprehensive analysis of 3DGLCM 

in terms of thirteen angles was performed. This was based on discriminating the feature 

space of 3DGLCM based on the angles into the 2D analysis including the four angles (00, 

450, 900, and 1350), and third dimension of the 3D analysis that cover the nine angles (00, 

450), (00, 00), (00, -450), (450, 00), (-450, 00), (450, 450), (-450, -450), (450, -450) and (-450, 

450). Then, they were individually used to train, and test several classification methods. 

Classification performance was analysed in term of the results of the confusion matrices for 

different classifiers trained and tested individually using 2D and 3D of GLCM respectively 

(Table 3.2 and Table 3.3). 
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Table 3.2 Comparative results of different classifiers incorporated with the full set of 

features associated with 2DGLCM using BRTAS2013 dataset. Class1 and Class0 refer to 

high and low grades respectively.  

Classifier 
Actual 

class 

Confusion matrices 
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 %
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 %
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 %

 

Predicted class 

Class0 Class1 

DT 
Class0 8 2 80.00 72.70 76.19 

83.33 
Class1 3 17 85.00 89.50 87.17 

LDA 
Class0 8 2 80.00 72.70 76.19 

83.33 
Class1 3 17 85.00 89.50 87.17 

SVML 
Class0 9 1 90.00 90.00 90.00 

93.33 
Class1 1 19 95.00 95.00 95.00 

SVMQ 
Class0 8 2 80.00 80.00 80.00 

86.67 
Class1 2 18 90.00 90.00 90.00 

SVMCUB 
Class0 8 2 80.00 72.70 76.19 

83.33 
Class1 3 17 85.00 89.50 87.17 

SVMG 
Class0 8 2 80.00 88.90 84.21 

90.00 
Class1 1 19 95.00 90.50 92.68 

KNNF 
Class0 7 3 70.00 70.00 70.00 

80.00 
Class1 3 17 85.00 85.00 85.00 

KNNM 
Class0 8 2 80.00 72.70 76.19 

83.33 
Class1 3 17 85.00 89.50 87.17 

KNNCOS 
Class0 9 1 90.00 75.00 81.81 

86.67 
Class1 3 17 85.00 94.40 89.47 

KNNCUB 
Class0 8 2 80.00 80.00 80.00 

86.67 
Class1 2 18 90.00 90.00 90.00 

KNNW 
Class0 8 2 80.00 80.00 80.00 

86.67 
Class1 2 18 90.00 90.00 90.00 

EBTree 
Class0 7 3 70.00 63.60 66.66 

76.67 
Class1 4 16 80.00 84.20 82.05 

ESDA 
Class0 8 2 80.00 72.70 76.19 

83.33 
Class1 3 17 85.00 89.50 87.17 
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Table 3.3 Comparative results of different classifiers incorporated with the full set of 

features associated with 3DGLCM using BRTAS2013 dataset. 

Classifier 
Actual 

class 

Confusion 

matrices 
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 %
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 %
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 %

 

Predicted class 

Class0 Class1 

DT 
Class0 6 4 60.00 66.70 63.15 

76.67 
Class1 3 17 85.00 81.00 82.92 

LDA 
Class0 8 2 80.00 72.70 76.19 

83.33 
Class1 3 17 85.00 89.50 87.17 

SVML 
Class0 9 1 90.00 90.00 90.00 

93.33 
Class1 1 19 95.00 95.00 95.00 

SVMQ 
Class0 6 4 60.00 66.70 63.15 

76.67 
Class1 3 17 85.00 81.00 82.92 

SVMCUB 
Class0 7 3 70.00 70.00 70.00 

80.00 
Class1 3 17 85.00 85.00 85.00 

SVMG 
Class0 8 2 80.00 72.70 76.19 

83.33 
Class1 3 17 85.00 89.50 87.17 

KNNF 
Class0 7 3 70.00 70.00 70.00 

80.00 
Class1 3 17 85.00 85.00 85.00 

KNNM 
Class0 8 2 80.00 80.00 80.00 

86.67 
Class1 2 18 90.00 90.00 90.00 

KNNCOS 
Class0 8 2 80.00 80.00 80.00 

86.67 
Class1 2 18 90.00 90.00 90.00 

KNNCUB 
Class0 7 3 70.00 77.80 73.68 

83.33 
Class1 2 18 90.00 85.70 87.80 

KNNW 
Class0 8 2 80.00 80.00 80.00 

86.67 
Class1 2 18 90.00 90.00 90.00 

EBTree 
Class0 8 2 80.00 66.70 72.72 

80.00 
Class1 4 16 80.00 88.90 84.21 

ESDA 
Class0 4 6 40.00 33.30 36.36 

53.33 
Class1 8 12 60.00 66.70 63.15 
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For the 2D analysis of GLCM in term of the four angles, it was found that the highest 

classification accuracy was achieved at 93.3% by the classifier SVML and DT by the angles 

450, and 1350 respectively (Figure 3.6), followed by 90% that was achieved by both KNNF, 

and KNNCUB classifier at the orientations 00, and 900 respectively. For the behaviour of 3D 

analysis of GLCM in term of the classification accuracy (Figure 3.7) for the all the nine 

angles of GLCM, the obtained results show that the maximum classification accuracy was 

achieved by DT at 96.7% by the angle (00, 450) outperforming all other classifiers, followed 

by 93.3% by the same classifier at the direction (-450, 450). The SVM model also achieved 

its highest accuracy at 90% at both angles (00, 450), and (-450, 00). Similarly, KNN achieved 

its highest accuracy at 86.7% for all the angles (00, 450), (-450, -450), (-450, 450), (450, -450), 

and (450, 450) (Figure 3.7). Classification performance in terms of sensitivity of the high-

grade gliomas corresponding to the GLCM angles (Figure 3.8, and Figure 3.9) and 

specificity (or sensitivity of low grades) (Figure 3.10, and Figure 3.11) were also measured, 

the results indicated that the angles of both 2D and 3DGLCM showed various behaviours, 

where the best sensitivity of high grades was achieved at 100% by both the DT and ESDA 

classifiers at the orientation (00, 450) (Figure 3.9). While for specificity, the maximum results 

were achieved at 100% by KNNM, KNNCOS, and KNNCUB classifiers at the angle 900 

(Figure 3.10). Ultimately, the results of the analyses of both 2D and 3D show the effects of 

applying different orientations on classification performance. Also, the results show the 

relevant angle that can achieve the best diagnosis quality of glioma grading. Significantly, it 

was noted from results that different orientations of 2D and 3DGLCM show different 

behaviours for the classification of glioma grades. This is due to the significant variance of 

the spatial arrangements of tumour patterns in MRI images by using different texture angles. 

It is seen that there is a significant difference in the behaviours while using the full set of 

features of 3DGLCM and the outcome of individual angles, where the highest accuracy of 

the former was only 93.3% while the obtained results of latter were 96.7% by the angle (00, 

450). Hence, this is a notable indication that redundancy generated in features when the 

features are combined in one set of features, and this causes a relative reduction in 

classification accuracy. Therefore, to tackle this problem and remove these problematic 

features, in an attempt to improving the classification accuracy, the proposed hybrid feature 

selection method was demonstrated and evaluated. To obtain a wide range of evaluations for 

the proposed method, four public MRI datasets were used to investigate the ability of the 

proposed method in selecting the best set of features that leads to improved classification 

accuracy for glioma grades.
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Figure 3.6 The behaviour of the four orientations of 2DGLCM application investigated with different classifiers in term of 

classification accuracy for BRATS2013. 
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Figure 3.7 The behaviour of the nine angles of the third dimension of 3DGLCM application investigated with different classifiers in term of 

classification accuracy for BRATS2013. 
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Figure 3.8 The behaviour of the four orientations of 2DGLCM application investigated with different classifiers in term of sensitivity of 

high-grades glioma for BRATS2013 dataset 



 

 

 

 

8
5

 

 

 

 

 

 

 

 

 

 

 

  

Figure 3.9 The behaviour of the nine angles of the third dimension of 3DGLCM application investigated with different classifiers in term of sensitivity of 

high-grades glioma for BRATS2013 dataset. 
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Figure 3.10 The behaviour of the four orientations of 2DGLCM application investigated with different classifiers in term of 

specificity (sensitivity of low-grades glioma) for BRATS2013 dataset 



 

 

 

 

8
7

 

Figure 3.11 The behaviour of the nine angles of the third dimension of 3DGLCM application investigated with different classifiers in term of 

specificity (sensitivity of low-grades glioma) for BRATS2013 dataset. 
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3.7.2 Evaluation of the Proposed Algorithm Using the BRATS2013 Dataset 

The proposed method for feature selection incorporated different classification methods is 

evaluated and compared against ANOVA technique. This is based on the steps as follows; 

the results obtained from feeding all sets of features associated with the 3DGLCM to all 

classifiers were analysed, then the results gained after applying ANOVA were presented, 

and finally the results acquired by the proposed features selection method are introduced and 

compared. These steps are repeated for all four datasets. It is crucial to select the most 

significant features that lead to improved classification performance. Therefore, the 

ANOVA technique is used and the significant predictors that showed a P-value less than 

0.05 were selected. The ANOVA and Pearson correlation techniques were implemented 

using IBM SPSS Statistics software Version 20 (Burns and Burns, 2008). When the ANOVA 

technique was applied to the BRATS2013 dataset to select the best set of features, the 

experimental results revealed a slight improvement in the classification accuracy, where 

classification accuracy was improved to 80% and 90% by the classifiers DT and KNNCOS 

respectively (Table 3.4). Although the classification model SVML remained at the same 

performance level to show the highest classification accuracy at 93.3%, the dimensions of 

the features space were reduced from 234 to 166 features, reducing complexity while 

maintaining the same classification accuracy. The reason for there being no noticeable 

difference in the results between the use of the full set of features and the use of ANOVA 

was that the redundant features that were unrecognised by ANOVA were still active and had 

not been completely eliminated. Consequently, to tackle this limitation, the proposed HFSA 

was used to eliminate those remaining redundant features and hence improve classification 

performance. In order to evaluate the ability of the proposed HFSA to select the most 

significant features and investigate the impact of this method when integrated with different 

classification methods on the classification results, the proposed HFSA was applied to all 

features associated with the 3DGLCM for BRATS2013 dataset, which has 234 features. Due 

to the predictor (autocorrelation, 00) produces the maximum classification accuracy 

compared to all other features when it was tested individually; therefore, it was selected to 

be the reference feature. After applying the proposed algorithm for feature selection, the 

selected sets of features were evaluated using several classifiers. These classifiers included 

single classifiers, namely DT, LDA, SVM, and KNN, and ensemble classifiers including 

EBTree and ESDA. The results indicated that the selected set of features chosen by the 
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proposed HFSA showed optimal accuracy for classification of glioma grades at 100% using 

KNNF or ESDA classifies (Table 3.5). 

Table 3.4 Comparative results of different classifiers incorporated with the selected set of 

features associated with 3DGLCM after applying ANOVA using BRTAS2013 dataset. 

Classifier 
Actual 

class 

Confusion matrices 
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Predicted class 

Class0 Class1 

DT 
Class0 7 3 70.00 70.00 70.00 

80.00 
Class1 3 17 85.00 85.00 85.00 

LDA 
Class0 8 2 80.00 72.70 76.19 

83.33 
Class1 3 17 85.00 89.50 87.17 

SVML 
Class0 9 1 90.00 90.00 90.00 

93.33 
Class1 1 19 95.00 95.00 95.00 

SVMQ 
Class0 7 3 70.00 77.80 73.68 

83.33 
Class1 2 18 90.00 85.70 87.80 

SVMCUB 
Class0 7 3 70.00 70.00 70.00 

80.00 
Class1 3 17 85.00 85.00 85.00 

SVMG 
Class0 8 2 80.00 72.70 76.19 

83.33 
Class1 3 17 85.00 89.50 87.17 

KNNF 
Class0 6 4 60.00 66.70 63.15 

76.67 
Class1 3 17 85.00 81.00 82.92 

KNNM 
Class0 8 2 80.00 80.00 80.00 

86.67 
Class1 2 18 90.00 90.00 90.00 

KNNCOS 
Class0 9 1 90.00 81.80 85.71 

90.00 
Class1 2 18 90.00 94.70 92.30 

KNNCUB 
Class0 8 2 80.00 80.00 80.00 

86.67 
Class1 2 18 90.00 90.00 90.00 

KNNW 
Class0 8 2 80.00 72.70 76.19 

83.33 
Class1 3 17 85.00 89.50 87.17 

EBTree 
Class0 7 3 70.00 63.60 66.66 

76.67 
Class1 4 16 80.00 84.20 82.05 

ESDA 
Class0 4 6 40.00 30.80 34.78 

50.00 
Class1 9 11 55.00 64.70 59.45 
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Table 3.5 Comparative results of different classifiers incorporated with the selected set of 

features associated with 3DGLCM after applying the proposed hybrid features selection 

method using BRTAS2013 dataset. 

Classifier 
Actual 

class 

Confusion 

matrices 
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Predicted class 

Class0 Class1 

DT 
Class0 9 1 90.00 100.00 94.73 

96.67 
Class1 0 20 100.00 95.20 97.56 

LDA 
Class0 10 0 100.00 71.40 83.33 

86.67 
Class1 4 16 80.00 100.00 88.88 

SVML 
Class0 8 2 80.00 100.00 88.88 

93.33 
Class1 0 20 100.00 90.90 95.23 

SVMQ 
Class0 9 1 90.00 100.00 94.73 

96.67 
Class1 0 20 100.00 95.20 97.56 

SVMCUB 
Class0 9 1 90.00 90.00 90.00 

93.33 
Class1 1 19 95.00 95.00 95.00 

SVMG 
Class0 8 2 80.00 100.00 88.88 

93.33 
Class1 0 20 100.00 90.90 95.23 

KNNF 
Class0 10 0 100.00 100.00 100.00 

100.00 
Class1 0 20 100.00 100.00 100.00 

KNNM 
Class0 8 2 80.00 80.00 80.00 

86.67 
Class1 2 18 90.00 90.00 90.00 

KNNCOS 
Class0 9 1 90.00 100.00 94.73 

96.67 
Class1 0 20 100.00 95.20 97.56 

KNNCUB 
Class0 10 0 100.00 83.30 90.90 

93.33 
Class1 2 18 90.00 100.00 94.73 

KNNW 
Class0 8 2 80.00 100.00 88.88 

93.33 
Class1 0 20 100.00 90.90 95.23 

EBTree 
Class0 6 4 60.00 100.00 75.00 

86.67 
Class1 0 20 100.00 83.30 90.90 

ESDA 
Class0 10 0 100.00 100.00 100.00 

100.00 
Class1 0 20 100.00 100.00 100.00 
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Overall comparative results illustrate that the classification accuracy of most classifiers has 

gained a superior classification accuracy when compared to both the full set of features of 

3DGLCM and the selected set of features by ANOVA (Figure 3.12). In this experiment, the 

classification results were improved from 76.67% to 96.67% by DT, from 83.33% to 86.67% 

by LDA, from 76.67% to 96.67% by SVMQ, from 80% to 100% by KNNF, from 86.67 to 

96.67% by KNNCOS, and from 53.33% to 100% by ESDA classifier. It was noted that the 

proposed features selection method enabled most classifiers to achieve better results 

compared to the ANOVA technique with a better reduction in the dimensions of the features 

space, where produced features by ANOVA was 166 features while the selected set of 

features when using the proposed method was reduced to 14 features (Table 3.6). However, 

a few classifiers did not show a noticeable improvement, such as SVML classifier, and this 

was due to the fact that this classifier relies on linear separation between the two classes and 

ignores any non-linear relationships between different patterns while all other non-linear 

kernels that were used such as Quadratic, Cubic and Gaussian enabled SVM to achieve a 

significant improvement in the accuracy based on the selected set of features by the proposed 

method. KNNM classifier also has not achieved an improvement and remained on the same 

level of accuracy too, and this was due to the nature of the data distribution of input data 

besides the criteria that are used with this classifier can detect new samples based on the 10 

nearest neighbours and this leads to confusing the KNN classifier in the prediction process 

to find the correct class; while smaller number of nearest neighbours, enables KNNF 

classifier uses only one nearest neighbour to predict the correct class, and achieve the optimal 

classification accuracy at 100%. It was noted that there are various behaviours in 

classification accuracy when using different classification models due to the use of different 

sets of features that have diverse data distributions in each input set of features. However, 

the results indicated that the selected set of features by the proposed method have achieved 

a dominant improvement in classification accuracy compared to both selected features by 

the ANOVA method and the original features in most of single classifiers and ensemble 

classification models. 
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Table 3.6 Optimal selected set of features by the proposed algorithm with their 

corresponding angles using BRATS2013 dataset 

Features Angles Features  Angles 

Autocorrelation, Correlation, Cluster 

Prominence, Information Measure of 

Correlation 1, Information Measure 

of Correlation 2 

(00) Excluded (450,00) 

Correlation, Cluster Prominence, 

Information Measure of Correlation 2 

(450) Excluded (-450,00) 

Correlation, Cluster Prominence 900 Excluded (450,450) 

Correlation, Cluster Prominence, 

Homogeneity 

1350 Excluded (-450,-450) 

Contrast  (00,450) Excluded (450,-450) 

Excluded (00,00) Excluded (-450,450) 

Excluded (00,-450)  

 

 

Figure 3.12 Overall comparative results for the application of three cases, the first case is 

the use of the full set of features, the second case is the use of ANOVA, and the third case 

is the use of the selected features chosen by the proposed method. All cases are integrated 

with the same classifiers. The dataset used in this experiment is BRATS2013. 
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3.7.3 Evaluation of the Proposed Algorithm Using the Cancer Dataset 

The framework that is used in the previous experiment to evaluate the proposed method is 

repeated using the Cancer dataset. This dataset includes the MR images of 30 patients with 

three glioma grades. To obtain a binary classification using this dataset, pre-labelling for the 

samples was performed in the preparation of the training phase, where the samples belonged 

to grades II were labelled as a first class, representing the low-grade gliomas and were 

assigned by index 0, the higher-grade gliomas (III and IV) were pre-labelled as a second 

class and assigned by index 1. Hence, the ten patients belong to grade II were labelled as the 

first class, and twenty patients belong to high-grade samples were labelled as the second 

class. The purpose of this experiment was to add further evaluation for the proposed feature 

selection method incorporating different machine-learning algorithms – a single classifier 

system and ensemble classification models to classify low-grade gliomas against high-grade 

gliomas. 

When the full set of features associated with the 3DGLCM was used to train and test the 

same classifiers utilised in this work, the results indicated that the highest classification 

accuracy, sensitivity and specificity compared to all other single and ensemble classifiers 

was achieved by DT at 86.67%, 90%, and 80% respectively (Table 3.7). Afterwards, when 

the selected set of features by ANOVA was used, the results illustrated 90% classification 

accuracy achieved by DT, which outperformed all other classifiers, followed by 70% 

achieved by both SVML and KNNCOS classifiers (Table 3.8). When the proposed method 

was applied to all features associated with the 3DGLCM for the Cancer dataset. The results 

showed that the maximum results in terms of classification accuracy, sensitivity and 

specificity were achieved by DT at 93.33%, 95%, and 90% respectively, followed by 90%, 

95%, 80% achieved by EBTree (Table 3.9). The results indicate that the classification 

accuracy was improved after the use of the selected set of features by the proposed hybrid 

feature selection method (Table 3.9). 
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Table 3.7 Comparative results of different classifiers incorporated with the full set of 

features associated with 3DGLCM using the Cancer dataset. 

Classifier 
Actual 

class 

Confusion matrices 

S
en

si
ti

v
it

y
 %

 

P
re

ci
si

o
n
 %

 

F
-m

ea
su

re
 %

 

A
cc

u
ra

cy
 %

 

Predicted class 

Class0 Class1 

DT 
Class0 8 2 80.00 80.00 80.00 

86.67 
Class1 2 18 90.00 90.00 90.00 

LDA 
Class0 6 4 60.00 50.00 54.54 

66.67 
Class1 6 14 70.00 77.80 73.68 

SVML 
Class0 3 7 30.00 37.50 33.33 

60.00 
Class1 5 15 75.00 68.20 71.42 

SVMQ 
Class0 2 8 20.00 25.00 22.22 

53.33 
Class1 6 14 70.00 63.60 66.66 

SVMCUB 
Class0 2 8 20.00 22.20 21.05 

50.00 
Class1 7 13 65.00 61.90 63.41 

SVMG 
Class0 0 10 0.00 0.00 0.00 

50.00 
Class1 5 15 75.00 60.00 66.66 

KNNF 
Class0 4 6 40.00 44.40 42.10 

63.33 
Class1 5 15 75.00 71.40 73.17 

KNNM 
Class0 3 7 30.00 37.50 33.33 

60.00 
Class1 5 15 75.00 68.20 71.42 

KNNCOS 
Class0 5 5 50.00 45.50 47.61 

63.33 
Class1 6 14 70.00 73.70 71.79 

KNNCUB 
Class0 4 6 40.00 44.40 42.10 

63.33 
Class1 5 15 75.00 71.40 73.17 

KNNW 
Class0 0 10 0.00 0.00 0.00 

50.00 
Class1 5 15 75.00 60.00 66.66 

EBTree 
Class0 3 7 30.00 37.50 33.33 

60.00 
Class1 5 15 75.00 68.20 71.42 

ESDA 
Class0 3 7 30.00 17.60 22.22 

30.00 
Class1 14 6 30.00 46.20 36.36 
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Table 3.8 Comparative results of different classifiers incorporated with the selected set of 

features associated with 3DGLCM after applying ANOVA using the Cancer dataset. 

Classifier 
Actual 

class 

Confusion matrices 

S
en

si
ti

v
it

y
 %

 

P
re

ci
si

o
n
 %

 

F
-m

ea
su

re
 %

 

A
cc

u
ra

cy
 %

 

Predicted class 

Class0 Class1 

DT 
Class0 8 2 80.00 88.90 84.21 

90.00 
Class1 1 19 95.00 90.50 92.68 

LDA 
Class0 7 3 70.00 53.80 60.86 

70.00 
Class1 6 14 70.00 82.40 75.67 

SVML 
Class0 5 5 50.00 55.60 52.63 

70.00 
Class1 4 16 80.00 76.20 78.04 

SVMQ 
Class0 3 7 30.00 30.00 30.00 

53.33 
Class1 7 13 65.00 65.00 65.00 

SVMCUB 
Class0 4 6 40.00 36.40 38.09 

56.67 
Class1 7 13 65.00 68.40 66.66 

SVMG 
Class0 1 9 10.00 14.30 11.76 

50.00 
Class1 6 14 70.00 60.90 65.11 

KNNF 
Class0 4 6 40.00 44.40 42.10 

63.33 
Class1 5 15 75.00 71.40 73.17 

KNNM 
Class0 6 4 60.00 50.00 54.54 

66.67 
Class1 6 14 70.00 77.80 73.68 

KNNCOS 
Class0 7 3 70.00 53.80 60.86 

70.00 
Class1 6 14 70.00 82.40 75.67 

KNNCUB 
Class0 5 5 50.00 45.50 47.61 

63.33 
Class1 6 14 70.00 73.70 71.79 

KNNW 
Class0 1 9 10.00 16.70 12.50 

53.33 
Class1 5 15 75.00 62.50 68.18 

EBTree 
Class0 4 6 40.00 40.00 40.00 

60.00 
Class1 6 14 70.00 70.00 70.00 

ESDA 
Class0 5 5 50.00 35.70 41.66 

53.33 
Class1 9 11 55.00 68.80 61.11 
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Table 3.9 Comparative results of different classifiers incorporated with the selected set of 

features associated with 3DGLCM after applying the proposed hybrid features selection 

method using the Cancer dataset. 

Classifier 
Actual 

class 

Confusion matrices 

S
en

si
ti

v
it

y
 %

 

P
re

ci
si

o
n
 %

 

F
-m

ea
su

re
 %

 

A
cc

u
ra

cy
 %

 

Predicted class 

Class0 Class1 

DT 
Class0 9 1 90.00 90.00 90.00 

93.33 
Class1 1 19 95.00 95.00 95.00 

LDA 
Class0 5 5 50.00 55.60 52.63 

70.00 
Class1 4 16 80.00 76.20 78.04 

SVML 
Class0 4 6 40.00 50.00 44.44 

66.67 
Class1 4 16 80.00 72.70 76.19 

SVMQ 
Class0 6 4 60.00 60.00 60.00 

73.33 
Class1 4 16 80.00 80.00 80.00 

SVMCUB 
Class0 5 5 50.00 71.40 58.82 

76.67 
Class1 2 18 90.00 78.30 83.72 

SVMG 
Class0 7 3 70.00 63.60 66.66 

76.67 
Class1 4 16 80.00 84.20 82.05 

KNNF 
Class0 6 4 60.00 54.50 57.14 

70.00 
Class1 5 15 75.00 78.90 76.92 

KNNM 
Class0 6 4 60.00 60.00 60.00 

73.33 
Class1 4 16 80.00 80.00 80.00 

KNNCOS 
Class0 7 3 70.00 63.60 66.66 

76.67 
Class1 4 16 80.00 84.20 82.05 

KNNCUB 
Class0 6 4 60.00 60.00 60.00 

73.33 
Class1 4 16 80.00 80.00 80.00 

KNNW 
Class0 6 4 60.00 54.50 57.14 

70.00 
Class1 5 15 75.00 78.90 76.92 

EBTree 
Class0 8 2 80.00 88.90 84.21 

90.00 
Class1 1 19 95.00 90.50 92.68 

ESDA 
Class0 3 7 30.00 42.90 35.29 

63.33 
Class1 4 16 80.00 69.60 74.41 
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Overall comparative results obtained before and after the use of ANOVA, and after the use 

of the proposed feature selection method, indicate that the selected set of features by the 

proposed method have achieved superior accuracies with most classifiers compared to all 

experiments. They were improved from 86.67% to 93.33% by DT, 50% to 76.67% by 

SVMCUB, from 50% to 76.67% by SVMG, from 63.33% to 70% by KNNF, from 60% to 

90% by EBTree (Figure 3.13).  

The proposed method has also achieved a significant reduction in the number of dimensions 

of the features space, where the number of features was reduced from 243 to 3 features, and 

irrelevant features were discarded; this is better than the number of features selected by 

ANOVA, where the number of selected features by ANOVA was 109 features. The selected 

set of features by the proposed method were (Autocorrelation, 00), (Homogeneity, 900), and 

(Homogeneity, 00). The best classification accuracy was achieved by DT classifier at 93.33% 

outperformed all other results produced by other classifiers (Figure 3.13). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.13 Overall comparative results between the application of the proposed method 

against ANOVA and the full set of features. The selected features chosen by these 

applications are integrated with different classifiers. The dataset used in this experiment is 

the Cancer dataset.  
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3.7.4 Evaluation of the Proposed Algorithm Using the BRATS2015 Dataset 

The proposed algorithm for feature selection was applied to BRATS2015 to conduct further 

evaluation for the proposed method. This dataset has a standard segmented dataset of MR 

images with 274 patients, which includes 220 patients with high-grade gliomas and 54 

patients with low-grade gliomas. T2-MR images were used to extract 3DGLCM, 

incorporated with 18 predictors with full use of the 13 angles of GLCM. The low-grade 

samples and the high-grade samples of this dataset were pre-labelled by the index 0 and 

index 1 respectively.  

When the full set of features associated with the 3DGLCM was used, the results indicated 

that the highest classification accuracy was achieved by KNNF at 85.77%, followed by 

SVMQ at 85.40% (Table 3.10). After applying the ANOVA technique, the results illustrated 

that the best classification accuracy was also achieved by KNNF classifier, at 86.50% (Table 

3.11). When the proposed features selection algorithm was conducted and integrated with 

different classification models, the results illustrated that the best classification accuracy 

compared to all other classifiers was achieved by KNNF classifier, at 87.96% (Table 3.12).  

Different classifiers have shown various results in terms of sensitivity, specificity and 

classification accuracy, such as SVMQ and SVMG, where their sensitivities were 93.64% 

and 95% respectively, while their specificities were 46.30% and 35.19% respectively, and 

their accuracies were 84.31% and 83.21% respectively (Table 3.12). However, the best 

classifier that showed the best results in terms of sensitivity at 93.18% and specificity at 

66.67% was the KNNF classifier, leading to the best classification accuracy at 87.96% 

(Table 3.12). It was noted that there is a large difference in the classification performance in 

terms of sensitivity and specificity between low-grade and high-grade gliomas. This is 

because that there is a difference in the number of samples between the low grades and high 

grades; this can lead to different representations of each class in the training phase, which 

can reveal a higher sensitivity to the one that has a higher representation. The number of 

samples of higher-grade group is 220 compared to lower-grade class that has 54 samples. 

Therefore the high-grade class reflects higher sensitivity compared to the low-grade class 

(Table 3.10, and Table 3.11, and Table 3.12). When the proposed method was applied, the 

results indicate that the classification accuracy was improved after the use of the selected set 

of features by the proposed hybrid feature selection method (Table 3.12). 
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Table 3.10 Comparative results of different classifiers incorporated with the full set of 

features associated with 3DGLCM using BRTAS2015 dataset. 

Classifier 
Actual 

class 

Confusion matrices 

S
en

si
ti

v
it

y
 %

 

P
re

ci
si

o
n
 %

 

F
-m

ea
su

re
 %

 

A
cc

u
ra

cy
 %

 

Predicted class 

Class0 Class1 

DT 
Class0 6 48 11.11 16.70 13.33 

71.53 
Class1 30 190 86.36 79.80 82.96 

LDA 
Class0 43 11 79.63 45.30 57.71 

77.01 
Class1 52 168 76.36 93.90 84.21 

SVML 
Class0 27 27 50.00 65.90 56.84 

85.04 
Class1 14 206 93.64 88.40 90.94 

SVMQ 
Class0 28 26 51.85 66.70 58.33 

85.40 
Class1 14 206 93.64 88.80 91.15 

SVMCUB 
Class0 27 27 50.00 60.00 54.54 

83.58 
Class1 18 202 91.82 88.20 89.97 

SVMG 
Class0 19 35 35.19 57.60 43.67 

82.12 
Class1 14 206 93.64 85.50 89.37 

KNNF 
Class0 37 17 68.52 62.70 65.48 

85.77 
Class1 22 198 90.00 92.10 91.03 

KNNM 
Class0 27 27 50.00 50.90 50.46 

80.66 
Class1 26 194 88.18 87.80 87.98 

KNNCOS 
Class0 29 25 53.70 47.50 50.43 

79.20 
Class1 32 188 85.45 88.30 86.83 

KNNCUB 
Class0 26 28 48.15 52.00 50.00 

81.02 
Class1 24 196 89.09 87.50 88.28 

KNNW 
Class0 23 31 42.59 60.50 50.00 

83.21 
Class1 15 205 93.18 86.90 89.91 

EBTree 
Class0 22 32 40.74 57.90 47.82 

82.48 
Class1 16 204 92.73 86.40 89.47 

ESDA 
Class0 32 22 59.26 53.30 56.14 

81.75 
Class1 28 192 87.27 89.70 88.47 
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Table 3.11 Comparative results of different classifiers incorporated with the selected set of 

features associated with 3DGLCM after applying ANOVA using BRTAS2015 dataset. 

Classifier 
Actual 

class 

Confusion matrices 

S
en

si
ti

v
it

y
 %

 

P
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o
n
 %

 

F
-m

ea
su

re
 %

 

A
cc

u
ra

cy
 %

 

Predicted class 

Class0 Class1 

DT 
Class0 6 48 11.11 16.70 13.33 

71.53 
Class1 30 190 86.36 79.80 82.96 

LDA 
Class0 43 11 79.63 45.30 57.71 

77.01 
Class1 52 168 76.36 93.90 84.21 

SVML 
Class0 26 28 48.15 63.40 54.73 

84.31 
Class1 15 205 93.18 88.00 90.50 

SVMQ 
Class0 28 26 51.85 65.10 57.73 

85.04 
Class1 15 205 93.18 88.70 90.90 

SVMCUB 
Class0 32 22 59.26 59.30 59.25 

83.94 
Class1 22 198 90.00 90.00 90.00 

SVMG 
Class0 20 34 37.04 62.50 46.51 

83.21 
Class1 12 208 94.55 86.00 90.04 

KNNF 
Class0 35 19 64.81 66.00 65.42 

86.50 
Class1 18 202 91.82 91.40 91.61 

KNNM 
Class0 29 25 53.70 56.90 55.23 

82.85 
Class1 22 198 90.00 88.80 89.39 

KNNCOS 
Class0 27 27 50.00 64.30 56.25 

84.67 
Class1 15 205 93.18 88.40 90.70 

KNNCUB 
Class0 30 24 55.56 55.60 55.55 

82.48 
Class1 24 196 89.09 89.10 89.09 

KNNW 
Class0 27 27 50.00 64.30 56.25 

84.67 
Class1 15 205 93.18 88.40 90.70 

EBTree 
Class0 19 35 35.19 54.30 42.69 

81.39 
Class1 16 204 92.73 85.40 88.88 

ESDA 
Class0 29 25 53.70 49.20 51.32 

79.93 
Class1 30 190 86.36 88.40 87.35 
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Table 3.12 Comparative results of different classifiers incorporated with the selected set of 

features associated with 3DGLCM after applying the proposed hybrid features selection 

method using BRTAS2015 dataset. 

Classifier 
Actual 

class 

Confusion matrices 

S
en

si
ti

v
it

y
 %

 

P
re

ci
si

o
n
 %

 

F
-m

ea
su

re
 %

 

A
cc

u
ra

cy
 %

 

Predicted class 

Class0 Class1 

DT 
Class0 18 36 33.33 51.40 40.44 

80.66 
Class1 17 203 92.27 84.90 88.45 

LDA 
Class0 41 13 75.93 44.10 55.78 

76.28 
Class1 52 168 76.36 92.80 83.79 

SVML 
Class0 30 24 55.56 68.20 61.22 

86.13 
Class1 14 206 93.64 89.60 91.55 

SVMQ 
Class0 25 29 46.30 64.10 53.76 

84.31 
Class1 14 206 93.64 87.70 90.54 

SVMCUB 
Class0 33 21 61.11 61.10 61.11 

84.67 
Class1 21 199 90.45 90.50 90.45 

SVMG 
Class0 19 35 35.19 63.30 45.23 

83.21 
Class1 11 209 95.00 85.70 90.08 

KNNF 
Class0 36 18 66.67 70.60 68.57 

87.96 
Class1 15 205 93.18 91.90 92.55 

KNNM 
Class0 30 24 55.56 52.60 54.05 

81.39 
Class1 27 193 87.73 88.90 88.32 

KNNCOS 
Class0 30 24 55.56 50.80 53.09 

80.66 
Class1 29 191 86.82 88.80 87.81 

KNNCUB 
Class0 29 25 53.70 53.70 53.70 

81.75 
Class1 25 195 88.64 88.60 88.63 

KNNW 
Class0 29 25 53.70 64.40 58.58 

85.04 
Class1 16 204 92.73 89.10 90.86 

EBTree 
Class0 21 33 38.89 58.30 46.66 

82.48 
Class1 15 205 93.18 86.10 89.51 

ESDA 
Class0 32 22 59.26 47.10 52.45 

78.83 
Class1 36 184 83.64 89.30 86.38 
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Overall comparative results acquired before and after the use of ANOVA, and after the use 

of the proposed feature selection method show that the selected set of features by the 

proposed method achieved enhanced accuracies for most classifiers, where the classification 

accuracies were improved from 71.53% to 80.66% by DT, from 85.04% to 86.13% by 

SVML, from 83.58% to 84.67 % by SVMCUB, from 82.12% to 83.21% by SVMG, from 

85.77% to 87.96% by KNNF, from 80.66% to 81.39% by KNNM, from 79.2% to 80.66% 

by KNNCOS and from 83.21 % to 85.04% by KNNW (Figure 3.14). It is evident that the 

performance of many classifiers in term of classification accuracy has improved and the best 

classification accuracy was obtained by KNNF classifier at 87.96%, which outperformed all 

other results produced by other classifiers (Figure 3.14). Both the ANOVA technique and 

the proposed HFSA achieved a notable reduction in the features space as well as they 

achieved an improvement in the classification accuracy that was notable with many 

classifiers. However, the number of selected features by the proposed HFSA was reduced 

from 243 to 129 features (Table 3.13), and irrelevant features were discarded, which is 

smaller than the number of features selected by ANOVA, which was 199 features. The 

results indicated that the proposed HFSA achieved better accuracy in the classification of 

glioma grades using many classifiers. Furthermore, the proposed algorithm integrated with 

machine learning algorithms reduces the dimension of the feature space as well as maintain 

a better classification accuracy. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14 Overall comparative results for the application of ANOVA and the proposed 

feature selection method integrated with many different classifiers; the dataset used in this 

experiment is BRATS2015.  

0
10
20
30
40
50
60
70
80
90

100

C
la

ss
if

ic
at

io
n
 A

cc
u
ra

cy
 %

Classifier Name

Fullset of features After ANOVA Proposed Method



CHAPTER 3 

 

103 

 

 

Table 3.13 Optimal selected set of features by the proposed HFSA with their 

corresponding angles using BRATS2015 dataset.  The names of the features are referred 

by its abbreviations that were defined in the expression of their equations (APPENDIX B, 

B.1.1-B.1.14) 

Features  Angles Features  Angles 

Autoc, contr, corrm, cprom, dissi 

homom, maxpr, sosq, savgh, svarh 

senth, inf1h, inf2h, indnc, idmnc       

(00) Corm, cshad,  dissi   homom     

  sosq, savgh, svarh, indnc     

(450,00) 

Autoc, cprom, dissi, maxpr, sosq    

savgh, svarh, indnc, idmnc      

(450) Autoc, contr, cshad, dissi  

 homom, sosq, savgh, svarh, 

senth  

(-450,00) 

Autoc, corrm, cprom, dissi    

 homom, maxpr, sosq, savgh    

 svarh, senth, inf1h, indnc    

900 Autoc, cprom, cshad, 

homom, sosq, savgh, svarh  

senth    

(450,450) 

Autoc, contr, corrm, cprom, 

homom   maxpr, sosq, savgh, 

svarh, senth   inf2h, idmnc     

1350 Autoc, corrm, cprom, cshad  

homom,  sosq, savgh, svarh  

senth, indnc  

(-450,-450) 

Autoc, contr, cprom, cshad, dissi 

homom, sosq, savgh, svarh, senth 

idmnc    

(00,450) Autoc, corrm, cshad, entro  

sosq, savgh, svarh, senth 

(450,-450) 

Autoc, contr, cprom, homom, 

maxpr, sosq, savgh, svarh   

(00,00) Autoc, cshad, dissi, entro  

sosq, savgh, svarh, senth  

 indnc 

(-450,450) 

Autoc, corrm, cshad, dissi, entro,  

sosq,  savgh, svarh, senth, indnc  

(00,-450)  
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3.7.5 Evaluation of the Proposed Algorithm Using the BRATS2018 Dataset 

The developed classification system incorporated the proposed algorithm for feature 

selection were further evaluated using BRATS2018. This dataset has a standard segmented 

dataset of MR images with 285 patients, which includes 210 patients with high-grade 

gliomas and 75 patients with low-grade gliomas. T2-MR images were used to extract 

3DGLCM, incorporated with the 18 predictors and thus patients were represented by 234 

feature vectors. 

The same proposed framework developed in the previous experiments, was implemented for 

this dataset and three cases incorporated machine learning algorithms were investigated; the 

first case is the use of the full set of features, the second case is the implementation of the 

ANOVA technique, and the third cases is the implementation of the proposed HFSA. The 

results for of these cases in terms of the confusion matrix, classification accuracy, sensitivity, 

specificity, precision, and F-measure are shown in APPENDIX C, Table C.1-Table C.3 . The 

best classification accuracy for the first case is achieved by SVML classifier at 86.32%. 

While, in the second and third cases the highest classification accuracy obtained at 87.02% 

and 88.07% respectively by the same classifier. 

Overall comparative results indicated that the classification performance of most of 

classification models are improved using both ANOVA technique and the proposed HFSA 

(Figure 3.15). For example, the accuracy was improved from 86.31% to 87.02% through the 

use of selected features by ANOVA incorporated with SVML classifier. While the 

classification accuracy was enhanced to 88.07% after applying the proposed HFSA (Figure 

3.15). 

Both the ANOVA technique and the proposed HFSA accomplished a notable reduction in 

the features space as well as they achieved an improvement in the classification accuracy. 

However, the number of selected features by the proposed HFSA was reduced from 243 to 

145 features (APPENDIX C Table C.4), and irrelevant features were discarded, which is 

smaller than the number of features selected by ANOVA, which was 224 features. The 

results indicated that the proposed HFSA achieved better accuracy in the classification of 

glioma grades when integrated with machine learning algorithms through eliminating 

redundant features, leading to reduce the dimensions of the feature space as well as 

maintaining a better classification accuracy. 
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3.7.6 Implementation Time 

The implementation time refers to the time required to conduct the experiments that were 

performed in this work. Particularly, it represents the time that was needed for the training 

and testing a machine-learning algorithm using the features extracted from the MR images. 

This time is based on using a personal computer with the specification of Core i7; the RAM 

was 16 G and parallel processing was enabled. Different implementation times were noted 

to train and test different classifiers based on LOO cross-validation techniques for both 2D 

and 3DGLCM (Table 3.14). It was noted that the time spent on the training and testing of 

the different classifiers was slightly higher for 3DGLCM than for 2DGLCM (Table 3.14). 

The results also showed that the time required for the implementation of the ensemble 

method was relatively higher than the time required to run the single classifier. This time 

was measured using the BRATS2013 dataset and Cancer dataset, and due to both datasets 

including the same number of samples the times needed to run the classification system were 

the same using both the BRATS2013 and the Cancer datasets (Table 3.14). While the time 

required to implement the training and testing phases for the classification system using 

BRATS2015 and BRATS2018 was relatively higher compared to using the other datasets 

(Table 3.15 and Table 3.16). The BRATS2015 and BRATS2018 dataset included a larger 

number of data, with 274 patients and 285 patients respectively, while each of the other 

Figure 3.15 Overall comparative results for the application of the proposed feature selection 

algorithm integrated with many different classifiers against the application of ANOVA and 

the use of full set of features; the dataset used in this experiment is BRATS2018.  
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datasets contained 30 samples. This indicates that the time required during the development 

of the classification system is correlated with the number of samples, where a greater number 

of samples mean more training and testing times required to complete the classification 

process. 

Table 3.14 Implementation time for the training and testing of a different classifier based 

on 2D and 3DGLCM.This time includes training and testing phase of different classifiers 

using LOO cross-validation technique for both BRATS2013 and Cancer dataset. 

Classifier 
Execution time for 

2DGLCM (seconds) 

Execution time for 

3DGLCM (seconds) 

DT 0.4447 0.5611 

LDA 0.4333 0.4402 

SVML 0.4707 0.5159 

SVMQ 0.4062 0.4860 

SVMCUB 0.4461 0.5026 

SVMG 0.4401 0.4562 

KNNF 0.4169 0.5230 

KNNM 0.3941 0.4162 

KNNCOS 0.3772 0.4323 

KNNCUB 0.4938 0.5847 

KNNW 0.3800 0.4388 

EBTree 4.3680 5.2718 

ESDA 5.4086 6.9563 

 

Table 3.15 Implementation time for the training and testing of a different classifier based 

on 2D and 3DGLCM. This time includes training and testing phase of different classifiers 

using LOO cross-validation technique for BRATS2015 dataset. 

Classifier 
Execution time for 

2DGLCM (seconds) 

Execution for 

3DGLCM (seconds) 

DT 2.8179 3.5812 

LDA 1.3961 2.1442 

SVML 1.5821 1.9833 

SVMQ 1.3400 1.7423 

SVMCUB 1.5068 1.8582 

SVMG 0.9710 1.3199 

KNNF 0.7415 0.9295 

KNNM 0.6420 0.8374 

KNNCOS 0.6206 0.8286 

KNNCUB 0.7254 0.9286 

KNNW 0.6512 0.8155 

EBTree 16.4809 21.3421 

ESDA 17.8323 25.4095 
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Table 3.16 Implementation time for the training and testing of a different classifier based 

on 2D and 3DGLCM. This time includes training and testing phase of different classifiers 

using LOO cross-validation technique for BRATS2018 dataset. 

Classifier 
Execution time for 

2DGLCM (seconds) 

Execution for 

3DGLCM (seconds) 

DT 5.7626 6.3756 

LDA 2.4700 3.2265 

SVML 2.1192 2.4478 

SVMQ 1.5687 1.6520 

SVMCUB 1.7485 1.8439 

SVMG 1.0389 1.4407 

KNNF 1.3121 1.4514 

KNNM 0.6546 0.9125 

KNNCOS 0.6809 0.9249 

KNNCUB 0.7569 0.9934 

KNNW 0.6876 0.7924 

EBTree 19.3906 22.5171 

ESDA 20.1630 28.2650 

 

3.7.7 Results Overview and Discussion 

Several experiments and methods were investigated to evaluate the ability of the proposed 

classification system in achieving an accurate classification of WHO glioma grades. To 

achieve this, a wide range of evaluation metrics was used. Also, four public datasets were 

utilised to evaluate the general behaviour of the developed classification system. Several 

different classification methods were used to add further validity to the evaluation and to 

identify the best classification model, which could provide the highest classification 

accuracy to distinguish different WHO glioma grades.  

When implementing the classification system using BRATS2013 dataset, the results 

indicated that the third-axis of 3DGLCM, integrated with the DT classifier, outperformed 

the others and achieved an accuracy of 96.7% at the orientation (00,450) followed by 93.33% 

achieved by both SVML and DT classifier at the orientations 450, and 1350 respectively.  

It was noted that the most robust classifiers appropriate for use with the selected set of 

features by the proposed algorithm for feature selection were KNNF, KNNW, DT, 

SVMCUB, SVMG, and EBTree classifier; these classifiers showed improved classification 

accuracy when evaluated with all the datasets. The other classifiers showed various 

behaviours and generally illustrated improved classification accuracy for most datasets. 
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In the evaluation of the classification system using BRATS2015, the results indicated that 

the improvement in classification accuracy achieved was relatively lower compared to the 

results gained when using the other datasets. The results acquired for BRATS2013, the 

Cancer dataset, BRATS2015 and BRATS2018 were 100%, 93.33%, 87.9% and 88.07% 

respectively (3.7.2, 3.7.3, 3.7.4 and 3.7.5). To investigate the reason(s) behind this 

difference, the BRATS2013 dataset, the BRATS2015 and BRATS2018 dataset were 

analysed. The characteristics of the datasets in terms of the homogeneity levels of the brain 

tumour images were investigated. The rationale for a further investigation into the level of 

homogeneity was due to the belief that there may have been a difference in the homogeneity 

levels of the brain tumour images datasets. Furthermore, there is a significant correlation 

between the level of homogeneity of brain tumour images and generating an accurate 

representation of the texture features extracted from the MR images. It is stated that the 

images of this datasets have been further homogenised (Menze et al., 2015). However, there 

is not much detail regarding the specific level of homogeneity of these datasets. Therefore, 

the local homogeneity levels of MR brain tumour images for all samples that were associated 

with each glioma grade in the datasets were measured based on APPENDIX B, Eq. B.15. 

The results obtained by applying this formula for the MR images in the datasets were 

analysed using the boxplot technique (Ferreira et al., 2016). This technique was used to show 

the differences in data distribution and level of homogeneity of the datasets. Considering the 

differences in the median level of the homogeneity (Figure 3.16), the experimental results 

indicated that the average homogeneity levels measured from MR brain tumour images in 

the BRATS2015 at 0.248 and BRATS2018 at 0.241 were higher than the average level in 

the BRATS2013 dataset at 0.234 (Figure 3.16). Accordingly, high level of image 

homogeneity can reduce the chance of obtaining sufficient representation for the texture 

features. For further elaboration, increasing the level of homogeneity of tumour images can 

lead to ignoring small details of a tumour and not being detected accurately by the texture 

extraction process. Consequently, this increase in the level of homogeneity can reduce the 

amount of texture that is required to differentiate between different patterns of tumours, and 

hence the classification accuracy can be negatively affected and reduced. It is worthwhile to 

note that the low level of homogeneity of brain tumour images can be advantageous for 

better recognising small details in tumour patterns and to discriminate them easily from other 

tumour regions or patterns. A high degree of homogeneity can relatively lead to ignoring 

some significant structures of the tumour and this can lead to confusion in the classification 

process. 
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The most challenging issue in the classification of glioma grades is to discriminate between 

Grade II and Grade III, as these grades have mixed heterogenetic characteristics that make 

their classification problematic and, therefore, it is a significant challenge to achieve 

sufficient classification accuracy between them (Zacharaki et al., 2009). However, an 

efficient classification algorithm was proposed to discriminate between the low grades that 

include grade II, against high glioma grades that include grade III. It has been proven based 

on the results obtained that the proposed classification system has achieved a perfect 

Figure 3.16 Results comparison for the level of homogeneity measured from MR 

brain tumour images of the BRATS2013, BRATS2015 and BRATS2018. The 

difference in median levels of homogeneity can be seen in the middle of the 

figure. 

Median level 
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classification result (100% accuracy) in differentiating low grade-grade gliomas (I, II) from 

high-grade gliomas (III, IV) using BRATS2013 dataset.  

Several methods were deployed to evaluate and validate the proposed HFSA, including 

examining the proposed method using four public datasets of MR images that have 

confirmation of histopathological diagnoses. In addition, a range of different classification 

models was incorporated into the classification system and their performances were 

compared. The results indicated that maximum classification results were achieved in 

discriminating between low- and high-grade gliomas using the BRATS2013 dataset. The 

proposed method also achieved an improvement in classification performance when used 

with the other datasets. Furthermore, the proposed HFSA achieved a greater reduction in the 

features space dimensions compared to the ANOVA technique over all the datasets. 

It was observed that the best classification result was achieved using the BRATS2013 

dataset, where the results revealed that the proposed HFSA boosted the KNN and ESDA 

classifiers to achieve the optimal classification accuracy of 100%. The experimental results 

confirmed that the proposed algorithm is an effective approach to overcoming the limitations 

of redundancy in feature space and enhancing the performance of many machine-learning 

algorithms to achieve improved classification of glioma grades. It improves the classification 

performance by eliminating the feature space from the most redundant features that degrade 

the classification accuracy. 

3.8 Conclusion 

The classification of glioma grades is a challenging task due to the mixed characteristics of 

different heterogeneity levels in the tumour images, which makes for significant difficulty 

in achieving an accurate discrimination between different glioma grades. Despite the high 

level of subjectivity in visual diagnoses of malignant brain tumours, experts can make 

decisions and achieve a certain degree of accuracy in the diagnostic process. However, there 

is always the need for more objective and accurate decision-making to be facilitated. 

Therefore, to overcome these limitations and to improve the classification process of glioma 

grades, an automated classification system was developed to achieve an objective and 

accurate classification of glioma grades. The classification was developed based on the 

texture features that have been widely investigated and studied to enhance the diagnosis and 

classification of the malignancy degree of brain tumours in MR images. The study started 

with the pre-processing of T2-MR images including the preparation of MRI-ROI of brain 
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tumour, the automatic cropping of ROI of brain tumours from MR images, and intensity 

normalisation processes. These were conducted to prepare the MR image of ROI for the next 

steps – features extraction and classification. A comprehensive analysis was then conducted 

based on two and three dimensions of MRI textural features to discriminate between low- 

and high-grade gliomas. This was based on GLCM incorporated eighteen statistics, 

commonly and widely used in the scholarly literature. A new algorithm was proposed for 

selecting the most crucial features in attempting to enhance classification accuracy. The 

proposed algorithm investigated the interactions between features in coincidence with their 

relationships with the output accuracy guided by Pearson correlation method and the 

outcome from different classifiers. The proposed method takes the merits of using Pearson 

correlation and ANOVA, integrated with different classification models to achieve 

improvement in the performance of the classification of malignant brain tumour. Several 

machine-learning algorithms that are popular and commonly used namely DT, LDA, SVM, 

KNN, EBTree and ESDA were investigated. These classifiers were incorporated with the 

selected set of features that were chosen by the proposed HFSA. The purpose of this was to 

select the best classification model that could achieve optimal performance in the 

classification of glioma grades. Different common and significant metrics were used to 

evaluate the performance of the classification system for glioma grades such as classification 

accuracy, sensitivity, specificity, precision and F-measure.  

 It is concluded that the proposed algorithm integrated with the machine-learning method is 

an efficient approach and can achieve significant results in term of enhancing classification 

accuracy and achieving a better features dimension reduction. However, improvement varied 

across the four datasets whereby accuracy was achieved 100% when using the BRATS2013 

dataset, 93.3% when using the Cancer dataset, 87.9% when using the BRATS2015 dataset, 

and 88.07% for the BRATS2018. Therefore, further work will be conducted to develop and 

improve this classification system to achieve constantly improving accuracy in the 

classification of glioma grades. The next chapter will develop an automated classification 

system for glioma grades based on other morphological descriptors of brain tumours and it 

will evaluate and examine the impact of the quantitative features of these tumour descriptors 

on the classification of glioma grades. 
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CHAPTER 4 : MRI Classification System for Glioma 

Grades Based on Necrosis, Edema, Non-Enhanced, 

and Enhanced Tumour  

 

 

Overview 

This chapter presents a novel method to extract significant features of brain tumours from 

MR images, which reflect the objective analysis of different brain tumour descriptors, 

namely necrosis, edema, non-enhanced and enhanced tumours. The purpose of this work is 

to evaluate the discrimination ability of the proposed features, integrated with machine-

learning algorithms, to achieve an accurate and automated classification of malignant grades 

of glioma. These new features were used to train different classification models to 

differentiate high-grade gliomas (III and IV) from low grades (I and II). The proposed 

classification system was evaluated using three datasets, namely BRATS2013 with 30 

patients, BRATS2015 with 274 patients and BRATS2018 with 285 patients. The 

classification results were then compared using different evaluation metrics, namely 

classification accuracy, sensitivity, specificity, precision and F-measure. The classification 

performance of the developed system was validated and generalised using the leave-one-out 

cross-validation technique. 

4.1 Introduction 

The analysis of medical images is highly complex due to the fact that they reflect various 

attributes and different structures of the human body (Toennies, 2017). Therefore, it is 

crucial to have a high level of experience to achieve an accurate diagnosis of medical images. 

The rapid advances in medical image technologies and the large amount of medical data 

create a big challenge in medical fields where experts consume a lot of time and effort to 

achieve an accurate assessment for large amounts of data. Malignant brain tumours have 

different morphological descriptors that can be extracted from medical images and it is a 

significant challenge to assess an accurate malignant grade of brain tumour due to the 
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complexity of the tumour descriptors appearing in medical images. Pre-operative diagnosis 

of glioma grades is essential in order to manage the proper treatment and suitable prognosis 

for patients who develop cancer. The visual diagnosis can even be difficult if there is a 

suspicion that there is malignant growth of the tumour where the patient has to be sent to 

have a clinical invasive process conducted, such as a biopsy. However, the visual diagnosis 

of a malignant brain lesion using only the naked eye is subjective and time-consuming. 

Developing an automated classification system for glioma grades based on a statistical 

analysis of tumour descriptors, means being able to achieve an accurate differentiation 

between different grades of glioma and thereby offering a significant aid to support clinicians 

in determining the accurate grade of glioma. 

Brain tumour descriptors, including necrosis, edema, non-enhancement and enhancement of 

tumours, are important indicators used in the clinical diagnosis of malignant brain tumours 

(Moore and Kim, 2010). The presences of the tumour descriptors are visually assessed within 

the clinical diagnostic procedure to determine the malignant grades of glioma. However, it 

highly depends on the level of the qualification and experience of the expert. It is also time-

consuming and suffers from inter and intra subjectivity (Saad et al., 2015). Furthermore, it 

is stated that despite the optimisation of MRI protocols and sequences, the glioma grading 

through the visual diagnosis on MR images is sometimes unreliable, with the sensitivity for 

classification of glioma grades ranging from 55.1% to 83.3% (Geneidi et al., 2015). 

Accordingly, in attempting to enhance the quality of classification accuracy, an objective 

and efficient approach based on the incorporation of the statistical analysis of the tumour 

descriptors with the machine learning algorithm is developed in this work. The rationale of 

this development is to overcome the variations and subjectivity in the assessment of the 

tumour descriptors by the traditional visual diagnosis. Furthermore, developing the new 

features and integrating them with the machine learning algorithm is because the developed 

predictors associated with the tumour descriptors are independent of the variation of image 

intensities and the resolution of tumour images. To elaborate, this variation can play a 

significant role in providing sufficient representation of texture features that derived from 

image intensities and thereby affecting the classification performance (Tantisatirapong, 

2015). Consequently, to achieve accurate and objective classification of glioma grades, this 

work starts from the standpoint that the statistical analysis of the brain tumour descriptors 

integrated with machine learning algorithm can improve the quality of classification of 

glioma grades. The other standpoint that drives this work is the statistical analysis in relation 



CHAPTER 4 

 

109 

 

to contrast enhancement comparing to the presence of other tumour descriptors can play an 

important role in the differentiation of glioma grades. This creates the incentive to examine 

and measure different statistical ratios measured from these tumour descriptors and the 

influence thereof, on the classification of glioma grades. This work will investigate the 

difference between glioma grades in terms of the proposed statistical measure of the tumour 

descriptors and thus gain a better understanding to identify which one of the proposed 

measures is the most efficient and has the highest role if integrated with a machine learning 

algorithm to develop an automated classification system for glioma grades. 

The automated classification system based on the proposed measures integrated with a 

machine learning algorithm is developed to classify different degrees of glioma with 

accurate and objective results. This also offers a reproducible methodology to determine the 

level of malignancy of brain tumour. This is the first study, which thoroughly investigates 

the influence of the statistical analysis of the proposed measures integrated with a machine 

learning algorithm on the automatic classification of glioma grade. 

4.2 The Proposed Method  

In this chapter, three standard segmented datasets were used, namely BRATS2013, 

BRATS2015 and BRATS2018 (Menze et al., 2015). These datasets have a labelled 

identification layer that was created previously. The identification layer is used to generate 

four masks and to individually bring in labelled regions, including necrosis, edema, non-

enhanced and enhanced tumours.  

Image’s pixels that are included within each labelled region of the tumour descriptor are 

utilised to measure the presence of these descriptors. A search process is conducted to 

compute the total number of pixels in each region for all slices. This procedure is 

accomplished for all patients in the dataset. Then, an average of the results is performed 

according to each patient. As a result, four features are produced, namely Nec_M, Edm_M, 

tnC_M, and tC_M, which represent the presence of necrosis, edema, non-enhanced and 

enhanced tumours, respectively. These four features are defined by Eq. 4.1.   

 

𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟 𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒_𝑀 =
1

𝑍
 ∑ ∑ ∑ {

1  , 𝑖𝑓 𝑆𝐸𝐺(𝑥, 𝑦, 𝑍) = 𝐷𝑒𝑠𝑐𝑟𝑖𝑡𝑝𝑜𝑟 𝑙𝑎𝑏𝑒𝑙

0    , 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                               

 

𝑍

𝑧=1

𝑦

𝑗=1

𝑥

𝑖=1

4. 1 
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Where SEG is the label identification layer provided by the dataset, Z is the total number of 

MR slices that has tumour, x and y are the coordinates of the MR slices. Descriptor 

presence_M is the resultant average of the presence of tumour descriptors; for example, to 

measure the necrosis presence, this factor will be necrosis_M or Nec_M and the descriptor 

label will be the necrosis label provided by the dataset. As a result, four features are 

produced, namely tC_M, tnC_M, Edm_M and Nec_M, indicating contrast enhancement, 

non-enhancement, edema, and necrosis, respectively. 

In addition, four new features are proposed based on measuring the ratio of the presence of 

each tumour descriptor with respect to the total summation of other appearances of tumour 

structures; these ratios are defined by Eq. (4.2) – (4.5).  

   

𝑡𝐶_𝑅 =
𝑡𝐶_𝑀

𝑡𝐶_𝑀 + 𝑁𝑒𝑐_𝑀 + 𝐸𝑑𝑚_𝑀 + 𝑡𝑛𝐶_𝑀
                                                             4. 2 

 

𝑡𝑛𝐶_𝑅 =
𝑡𝑛𝐶_𝑀

𝑡𝑛𝐶_𝑀 + 𝑁𝑒𝑐_𝑀 + 𝐸𝑑𝑚_𝑀 + 𝑡𝑛𝐶_𝑀
                                                         4. 3 

                                                            
                        

 

𝐸𝑑𝑚_𝑅 =
𝐸𝑑𝑚_𝑀

𝑡𝑛𝐶_𝑀 + 𝑁𝑒𝑐_𝑀 + 𝐸𝑑𝑚_𝑀 + 𝑡𝑛𝐶_𝑀
                                                        4. 4 

       
 

𝑁𝑒𝑐_𝑅 =
𝑁𝑒𝑐_𝑀

𝑡𝑛𝐶_𝑀 + 𝑁𝑒𝑐_𝑀 + 𝐸𝑑𝑚_𝑀 + 𝑡𝑛𝐶_𝑀
                                                         4. 5 

   

                     

Where tC_M, tnC_M, Edm_M and Nec_M are the average presence of contrast enhancement, 

non-enhancement, edema and necrosis respectively, whereas tC_R, tnC_R, Edm_R and  

Nec_R are the resultant ratios of tumour enhancement, non-enhancement, edema and 

necrosis respectively. 
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4.3 Assessment of the Brain Tumour Descriptors 

The statistical features extracted from the presence of the brain tumour descriptors including 

Nec_M (Figure 4.1), Edm_M (Figure 4.2), tnC_M (Figure 4.3), tC_M (Figure 4.4) were 

analysed to assess the predictive power of these features on the diagnosis of glioma grades 

using the BRATS2013 dataset. The results of the presence of necrosis (Nec_M), edema 

(Edm_M), non-enhancement (tnC_M) and enhanced tumours (tC_M), were presented and 

investigated for both low and high grades of glioma. All the results are measured for low-

grade glioma (from patient 1 to patient 10) and high-grade glioma (from patient 11 to patient 

30). The x-axes in the figures represent the patient ID number given sequentially throughout 

the experiment where each number is associated with a patient. The numbers from 1 to 10 

on the x-axis in the figure represent the low-grade samples and the numbers ranged from 11 

to 30 are given to the high-grade samples. 

The results show that apart from 1 and 2, most low-grade patients (1 to 10) did not develop 

contrast enhancement. Tumour necrosis was also absent in most patients in the low-grade 

group, while the high-grade group (11 to 30) developed all tumour descriptors (Figure 4.1 

and Figure 4.4). 
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Figure 4.1 Feature results extracted from brain tumour descriptor (necrosis) in MR images. 
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Figure 4.2 Feature results extracted from brain tumour descriptor (edema) in MR images. 
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Figure 4.3 Feature results extracted from brain tumour descriptor (non-enhanced) in MR 

images. 



CHAPTER 4 

 

113 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Accordingly, these features offer valuable indicators where unknown malignant brain 

tumours can be diagnosed as low-grade if there is neither contrast enhancement nor necrosis 

development. However, two patients belonging to the low-grade group behaved differently, 

these are patients 1 and 2 (Figure 4.1 and Figure 4.4). Consequently, it can be considered 

that these two descriptors are good features compared to the others in discriminating between 

low and high glioma grades, especially when there is no evidence for enhancement or 

necrosis in the MR image of a brain tumour. However, the decision can be disconcerted in 

some cases. For example, Patients 1 and 2 show tumour enhancement and necrosis at the 

same time while both subjects belong to the low-grade group (Figure 4.4). Therefore, the 

lesion can be mistakenly graded as high-grade as both low and high-grade tumours can 

develop an enhancement and necrosis. This is a considerable challenge for traditional visual 

diagnosis when assessing the tumour descriptors visually for glioma grading (Law et al., 

2003, Thust et al., 2018). Consequently, this creates the motivation for further analysis on 

these features and assesses the predictive power of the integration of the proposed features 

with machine learning algorithm to determine an automated classification of glioma grades. 
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Figure 4.4 Feature results extracted from brain tumour descriptor (enhanced tumours) in MR 

images. 
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4.4 Results Analysis and Discussion   

The feature classification stage was determined based on a supervised learning process 

where all patients were divided into both the training and testing phases based on the leave-

one-out cross-validation technique. Eight generic features, namely Nec_M, Edm_M, tnC_M, 

tC_M and tC_R, tnC, Edm_R, and Nec_R, were extracted using the proposed method. The 

aim of this work is to investigate the ability of the automated classification system based on 

the proposed features in differentiating glioma grades into low and high grades, towards 

developing an automated, objective, and reproducible methodology to accurately determine 

glioma grades. Two experiments were conducted, and the results were analysed to answer 

the following questions: 

 

 Which one of the tumour descriptors and proposed measures thereof, has the highest 

influence on developing an automated classification system for glioma grading?  

 Which one of the classification models achieves better accuracy and is more 

appropriate for developing an automated classification system that can classify new 

data correctly? 

 

These questions will be answered by evaluating the proposed system using three benchmark 

datasets. This will gain a better understanding of the methods and choices that are more valid 

in developing an automated system able to distinguish the degree of malignancy of glioma. 

In this chapter, the same classifiers undertaken in previous work were used, namely LDA, 

SVM, KNN, DT, EBTree and ESDA, which were investigated with a comparison of the 

classification results. The feature selection was performed based on the proposed hybrid 

features selection algorithm (HFSA). The BRATS2013, BRATS2015 and BRATS2018 

datasets were used to evaluate the classification system. The feature selection and 

classification based on the proposed features begin with applying the proposed automated 

system using the BRATS 2013 dataset. The full set of the proposed features, namely Nec_M, 

Edm_M, tnC_M, tC_M, tC_R, tnC, Edm_R, and  Nec_R, were involved in the training and 

testing of all classifiers. 
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4.5 Evaluation of the Proposed Classification System Using the 

BRATS2013 

In this experiment, the proposed automated classification system was evaluated using the 

BRATS2013 dataset and the results were then analysed. The experimental results obtained 

from testing the full set of the proposed features illustrate that the maximum classification 

performance in terms of classification accuracy, sensitivity, specificity, precision, and F-

measure, was achieved by EBTree at 90%, 95%, 80%, 90.5%, and 92.68%, respectively 

(Table 4.2). While the next highest classification results, in terms of the same metrics, was 

obtained by both KNNF and KNNCOS classifiers at 86.67%, 90%, 80%, 90%, and 90%, 

respectively. This is followed by accuracies of 83.33% achieved by most of the other 

classifiers, such as LDA, SVML, SVMCUB, KNNW, and ESDA (Table 4.2).  However, the 

outcome of DT classifiers shows a lower classification performance in terms of the 

evaluation metrics at 76.67%, 85%, 60%, 81%, and 82.92%, respectively (Table 4.2). In 

attempting to achieve the best possible improvement in the classification performance of the 

automated system, this work is extended by investigating the relevance analysis of the 

features involved in this experiment. Consequently, by using the ANOVA technique, the 

relevance analysis was applied to select the significant features in differentiating between 

low-grade glioma (I, II) and high-grade glioma (III, IV), while discarding others that are 

redundant. Results of the p-value using the ANOVA analysis (Table 4.1) indicate that the 

crucial features were Nec_M, tnC_M, tC_M, tC_R, tnC_R, and Nec_R. while Edm_M and 

Edm_R were discarded, as they did not meet the significance level at 0.05. This also indicates 

that the tumour edema (Edm_M, and Edm_R) showed no difference between the low and 

high-grade glioma and it has no role in differentiation between the two classes of glioma 

grades. 

 

Table 4.1 P-value results of applying ANOVA to the full set of the proposed features 

extracted from the tumour descriptors using BRATS2013.  

Feature P-value Feature P-value 

Nec_M 0.007344 Nec_R 0.02895 

Edm_M 0.122108 Edm_R 0.16485 

tnC_M 0.000292 tnC_R 0.00000 

tC_M 0. 000012 tC_R 0.00016 
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Table 4.2 Comparative results of different classifiers incorporated with the full set of the 

proposed features associated with the tumour descriptors using the BRTAS2013 dataset. 

Class0 refers to low-grade glioma (I, II) and Class1 indicates high-grade glioma (III, IV). 

Classifier 
Actual 

class 
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matrices 
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Predicted class 

Class0 Class1 

DT 
Class0 6 4 60.00 66.70 63.15 

76.67 
Class1 3 17 85.00 81.00 82.92 

LDA 
Class0 7 3 70.00 77.80 73.68 

83.33 
Class1 2 18 90.00 85.70 87.80 

SVML 
Class0 7 3 70.00 77.80 73.68 

83.33 
Class1 2 18 90.00 85.70 87.80 

SVMQ 
Class0 8 2 80.00 72.70 76.19 

83.33 
Class1 3 17 85.00 89.50 87.17 

SVMCUB 
Class0 8 2 80.00 72.70 76.19 

83.33 
Class1 3 17 85.00 89.50 87.17 

SVMG 
Class0 6 4 60.00 75.00 66.66 

80.00 
Class1 2 18 90.00 81.80 85.71 

KNNF 
Class0 8 2 80.00 80.00 80.00 

86.67 
Class1 2 18 90.00 90.00 90.00 

KNNM 
Class0 7 3 70.00 77.80 73.68 

83.33 
Class1 2 18 90.00 85.70 87.80 

KNNCOS 
Class0 8 2 80.00 80.00 80.00 

86.67 
Class1 2 18 90.00 90.00 90.00 

KNNCUB 
Class0 7 3 70.00 77.80 73.68 

83.33 
Class1 2 18 90.00 85.70 87.80 

KNNW 
Class0 7 3 70.00 77.80 73.68 

83.33 
Class1 2 18 90.00 85.70 87.80 

EBTree 
Class0 8 2 80.00 88.90 84.21 

90.00 
Class1 1 19 95.00 90.50 92.68 

ESDA 
Class0 7 3 70.00 77.80 73.68 

83.33 
Class1 2 18 90.00 85.70 87.80 
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The aim of this experiment is to eliminate the redundancy in the feature space and only keep 

the significant features. Therefore, a relevance analysis was conducted based on the ANOVA 

method. It is possible to investigate the level of significance whereby important features can 

be selected and others discarded. This can potentially lead to either improving the 

classification accuracy of the automated system or reducing the dimensions of the feature 

space, leading to further enhancement in the classification performance. The selected 

features by the ANOVA method were then used to train and test all the classifiers. This is to 

investigate the behaviour of these features through the automated classification of glioma 

grades based on different machine learning algorithms. 

The results obtained from examining the automated system based on the selected set of 

features by ANOVA illustrate that the KNNF classifier outperforms all other classification 

methods in terms of classification accuracy, sensitivity, specificity, precision, and F-measure 

at 93.33%, 95%, 90%, 95%, 95%, respectively (Table 4.3). The next highest classification 

accuracies were achieved at 90% by the classifiers: SVMCUB, KNNCOS, and KNNW. 

However, both KNNW and KNNCOS showed the same classification performance in terms 

of the evaluation metrics at 90%, 90%, 90%, 94.7%, and 92.3%, respectively (Table 4.3). 

Meanwhile, there were trade-offs in the sensitivity and specificity between SVMCUB and 

both KNNCOS and KNNW classifiers, where the outcome of SVMCUB in terms of the 

evaluation metrics was 90%, 95%, 80%, 90.5%, 92.68% respectively (Table 4.3). This is 

followed by a lower classification accuracy of 86.67% achieved by both LDA and SVMQ. 

Nevertheless, there is a trade-off in the sensitivity and specificity between LDA and SVMQ   

classifiers, where LDA achieved higher sensitivity at 90% and lower specificity at 80%, 

while SVMQ obtained lower sensitivity at 85% and higher specificity at 90% (Table 4.3). 

The results of testing both ensemble methods indicate that they achieved a lower 

classification accuracy at 83.33%. The outcomes of the other classifiers, such as KNNCUB 

and SVML, have shown the same level of classification performance in terms of 

classification accuracy at 83.33%. The results indicate that the DT classifier achieved the 

lowest classification accuracy at 76.67% (Table 4.3). 
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Table 4.3 Comparative results of different classifiers incorporated with the selected set of 

features extracted from the tumour descriptors by ANOVA using the BRTAS2013 dataset. 

Classifier 
Actual 

class 

Confusion 

matrices 
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Predicted class 

Class0 Class1 

DT 
Class0 6 4 60.00 66.7 63.15 

76.67 
Class1 3 17 85.00 81.0 82.92 

LDA 
Class0 8 2 80.00 80.0 80.00 

86.67 
Class1 2 18 90.00 90.0 90.00 

SVML 
Class0 7 3 70.00 77.8 73.68 

83.33 
Class1 2 18 90.00 85.7 87.80 

SVMQ 
Class0 9 1 90.00 75.0 81.81 

86.67 
Class1 3 17 85.00 94.4 89.47 

SVMCUB 
Class0 8 2 80.00 88.9 84.21 

90.00 
Class1 1 19 95.00 90.5 92.68 

SVMG 
Class0 6 4 60.00 75.0 66.66 

80.00 
Class1 2 18 90.00 81.8 85.71 

KNNF 
Class0 9 1 90.00 90.0 90.00 

93.33 
Class1 1 19 95.00 95.0 95.00 

KNNM 
Class0 9 1 90.00 81.8 85.71 

90.00 
Class1 2 18 90.00 94.7 92.30 

KNNCOS 
Class0 9 1 90.00 81.8 85.71 

90.00 
Class1 2 18 90.00 94.7 92.30 

KNNCUB 
Class0 7 3 70.00 77.8 73.68 

83.33 
Class1 2 18 90.00 85.7 87.80 

KNNW 
Class0 9 1 90.00 81.8 85.71 

90.00 
Class1 2 18 90.00 94.7 92.30 

EBTree 
Class0 7 3 70.00 77.8 73.68 

83.33 
Class1 2 18 90.00 85.7 87.80 

ESDA 
Class0 7 3 70.00 77.8 73.68 

83.33 
Class1 2 18 90.00 85.7 87.80 
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To investigate the influence of each of the proposed features on the automated classification 

of glioma grades using machine learning algorithms, each one of the proposed features were 

individually integrated and tested with different machine learning algorithms. The results 

illustrate that the proposed features reflect varies performance in terms of classification 

accuracy when used with a different classification model (Figure 4.5). However, the best 

feature that showed the maximum classification accuracy for most of the classifiers was the 

tC_R predictor, which achieved 93.3% when examined with a single classifier system, 

including: LDA, SVML, KNNM, and KNNCUB. Furthermore, the same accuracy was also 

achieved when it was tested with the ensemble system by ESDA classifier (Figure 4.5). The 

predictor tC_M   achieved the same classification accuracy of 93.3% when examined with 

the SVML classifier. This was followed with 90% obtained by tC_M when tested with both 

KNNM and KNNCUB, whilst tumour edema reflected the lowest behaviour compared to all 

other features. All the other predictors, including: Nec_M, Edm_M, tnC_M, Edm_R, and 

Nec_R, achieved lower accuracies below 90% when they were examined with all classifiers 

(Figure 4.5).  

In comparison to the P-values obtained from applying the ANOVA method (Table 4.1), 

predictor tC_R appeared as a significant feature, but it was not the best one. Meanwhile, 

other features, such as tnC_R, showed a better significance level (0.0000020) in the P-value 

table (Table 4.1). However, an investigation into automated classification for glioma grades 

based on machine learning showed that the predictor tC_R achieved the best classification 

accuracy (Figure 4.5).  

For further potential enhancement in the classification performance of the automated system, 

additional investigating into the features space was conducted to find the best subset of 

features that can achieve the optimal accuracy with the lowest possible dimension of features 

and thus, the proposed HFSA was applied and examined. It was noted that tC_R 

outperformed all other proposed features when it was examined by many classifiers; 

therefore, it was selected as a reference predictor. Then, the proposed HFSA was 

implemented to select the most crucial subset of features. The selected features chosen by 

ANOVA were then ranked against tC_R. The proposed method was implemented 

automatically based on tracking the output results of different classification methods, which 

are trained and tested for all possible feature subsets.  
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According to the output of the proposed HFSA, the predictor tC_R was selected as the most 

significant feature, signifying that the predictor tC_R achieved the best classification 

accuracy (Table 4.4). This indicates that all subsets of features have not achieved any further 

improvement when examined by the proposed HFSA. The results obtained from applying 

the proposed HFSA illustrate that the best classification performance in terms of 

classification accuracy, sensitivity, specificity, precision, and F-measure were 93.33%, 95%, 

90%, 95%, and 95% respectively, which were achieved by several classifiers, including 

LDA, SVML, KNNM, KNNCUB, KNNM, KNNCUB, and ESDA (Table 4.4). The next 

best results in terms of the evaluation metrics was achieved at 90%, 95%, 80%, 90.5%, 

92.68% respectively, by both SVMCUB and SVMG. This is followed by a classification 

accuracy of 86.67%, achieved by both DT and SVMQ. However, KNNF, KNNW, and 

EBTree classifiers revealed lower classification accuracy at 83.33%. The lowest 

classification accuracy was achieved by KNNCOS at 76.67% (Table 4.4). 

 

Figure 4.5 Comparative results in terms of classification accuracy for training and testing 

different classifiers incorporated individually with the proposed predictors. This test used 

BRATS2013 dataset. 
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Table 4.4 Comparative results for training and testing different classifiers based on the 

selected set of features chosen by the proposed HFSA using the BRATS2013 dataset. The 

selected feature is tC_R, which represents the ratio of presence of the tumour enhancement 

compared to other tumour descriptors. 

Classifier 
Actual 

class 

Confusion 

matrices 
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Predicted class 

Class0 Class1 

DT 
Class0 7 3 70.00 87.5 77.77 

86.67 
Class1 1 19 95.00 86.4 90.47 

LDA 
Class0 9 1 90.00 90.0 90.00 

93.33 
Class1 1 19 95.00 95.0 95.00 

SVML 
Class0 9 1 90.00 90.0 90.00 

93.33 
Class1 1 19 95.00 95.0 95.00 

SVMQ 
Class0 8 2 80.00 80.0 80.00 

86.67 
Class1 2 18 90.00 90.0 90.00 

SVMCUB 
Class0 8 2 80.00 88.9 84.21 

90.00 
Class1 1 19 95.00 90.5 92.68 

SVMG 
Class0 8 2 80.00 88.9 84.21 

90.00 
Class1 1 19 95.00 90.5 92.68 

KNNF 
Class0 8 2 80.00 72.7 76.19 

83.33 
Class1 3 17 85.00 89.5 87.17 

KNNM 
Class0 9 1 90.00 90.0 90.00 

93.33 
Class1 1 19 95.00 95.0 95.00 

KNNCOS 
Class0 9 1 90.00 60.0 72.00 

76.67 
Class1 6 14 70.00 93.3 80.00 

KNNCUB 
Class0 9 1 90.00 90.0 90.00 

93.33 
Class1 1 19 95.00 95.0 95.00 

KNNW 
Class0 8 2 80.00 72.7 76.19 

83.33 
Class1 3 17 85.00 89.5 87.17 

EBTree 
Class0 8 2 80.00 72.7 76.19 

83.33 
Class1 3 17 85.00 89.5 87.17 

ESDA 
Class0 9 1 90.00 90.0 90.00 

93.33 
Class1 1 19 95.00 95.0 95.00 
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Overall comparative results for the selected feature chosen by the proposed HFSA against 

both the full set of the features and the selected features chosen by ANOVA, indicates that 

the classification accuracy was improved using ANOVA as well as the proposed HFSA 

(Figure 4.6). For the ANOVA implementation, it was noted that the accuracies enhanced 

from 83.33% to 90% by both SVMCUB and the KNNM classifier, while the biggest 

improvement achieved with the use of the KNNF, where the classification accuracy went up 

from 86.66% to 93.33%. When the proposed HFSA was implemented, the selected feature 

integrated with the machine learning algorithm achieved an improvement in the 

classification accuracies for most classifiers (Figure 4.6). For example, compared to 

ANOVA, the classification accuracies were enhanced from 76.66% to 86.66% by DT, from 

86.66% to 93.33% by LDA, from 83.33% to 93.33% by SVML, from 90% to 93.33% by 

KNNM, and from 83.33% to 93.33% by KNNCUB. While the classification accuracy in 

terms of the ensemble methods also achieved better results with the ESDA classifier, where 

the accuracy enhanced from 83.33% to 93.33%. 

The results of evaluating the classification performance in terms of classification accuracy 

for the automated classification system using BRATS2013 indicate that both ANOVA and 

the proposed HFSA have shown the same maximum accuracies of 93.33%. However, the 

proposed HFSA achieved better improvement at 93.33% for most classifiers, while ANOVA 

showed this improvement for only one classifier, indicating that the selected feature by the 

proposed HFSA is more appropriate and clearer from redundant features, therefore it can 

achieve better enhanced results using a wide range of different classification models. The 

other advantage of the proposed HFSA is that it achieved a significant reduction in the 

features space where the dimension of the feature space was reduced from eight features to 

only one feature, namely tC_R. While the selected set of features by ANOVA were six 

features, namely Nec_M, tnC_M, tC_M, tC_R, tnC_R, and Nec_R. To summarise, although 

both the ANOVA and the proposed HFSA have shown the same enhancement in the 

classification accuracy based on the proposed features, the proposed HFSA achieved the best 

reduction in the feature space and maintain a good improvement in the classification 

accuracy for glioma grades.  
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4.6 Evaluating the Proposed Classification System Using the BRATS2015 

The automated system to classify glioma grades based on proposed features and incorporated 

machine learning algorithms was developed using the BRATS2015 dataset. The aim of this 

experiment is to add further and general evaluation to the automated classification system 

for glioma grades where the same previous framework implemented with BRATS2013 

dataset was repeated using the BRATS2015 dataset. 

When the full set of the proposed set of features were examined using the single classifier 

system, the results indicated that the highest classification performance in terms of 

classification accuracy, sensitivity, specificity, precision, and F-measure, was achieved by 

the SVML classifier at 89.42%, 98.64%, 51.85%, 89.3%, 93.73%, respectively compared to 

all other single classifiers (Table 4.5). This was followed by the KNNW classifier that 

achieved a slightly lower classification accuracy of 89.05%. The KNNM classifier also 

achieved the second highest accuracy of 87.59%. Whilst, when the proposed HFSA was 

tested with the ensemble system, the results indicated that the EBTree classifier achieved the 

highest classification result, outweighing all other classifiers in this experiment at 90.15%, 

with lower sensitivity at 95.45% and higher specificity at 68.52%, and with a very small 

difference in F-measure at 93.95% compared to SVML classifier (Table 4.5). The results of 

Figure 4.6 Overall comparative results showing the behaviour of the proposed features 

incorporated with different classifiers using BRATS2013. These features are Nec_M, Edm_M, 

tnC_M, tC_M, tC_R, tnC, Edm_R, and Nec_R. The results were compared with the selected set 

of features by ANOVA; these are Nec_M, tnC_M, tC_M, tC_R, tnC_R, and Nec_R, compared 

with the feature selected by the proposed HFSA; the selected feature was tC_R.    
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all other classifiers in terms of classification accuracy ranged from 84.31% to 86.50% (Table 

4.5). 

Table 4.5 Comparative evaluation results showing the full set of the proposed features 

extracted from the tumour descriptors incorporating different machine learning algorithms 

using the BRATS2015 dataset. 

Classifier 
Actual 
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Predicted class 

Class0 Class1 

DT 
Class0 21 33 38.89 84.0 53.16 

86.50 
Class1 4 216 98.18 86.7 92.11 

LDA 
Class0 33 21 61.11 75.0 67.34 

88.32 
Class1 11 209 95.00 90.9 92.88 

SVML 
Class0 28 26 51.85 90.3 65.88 

89.42 
Class1 3 217 98.64 89.3 93.73 

SVMQ 
Class0 27 27 50.00 75.0 60.00 

86.86 
Class1 9 211 95.91 88.7 92.13 

SVMCUB 
Class0 28 26 51.85 70.0 59.57 

86.13 
Class1 12 208 94.55 88.9 91.63 

SVMG 
Class0 18 36 33.33 90.0 48.64 

86.13 
Class1 2 218 99.09 85.8 91.98 

KNNF 
Class0 31 23 57.41 60.8 59.04 

84.31 
Class1 20 200 90.91 89.7 90.29 

KNNM 
Class0 27 27 50.00 79.4 61.36 

87.59 
Class1 7 213 96.82 88.8 92.60 

KNNCOS 
Class0 25 29 46.30 71.4 56.18 

85.77 
Class1 10 210 95.45 87.9 91.50 

KNNCUB 
Class0 25 29 46.30 75.8 57.47 

86.50 
Class1 8 212 96.36 88.0 91.97 

KNNW 
Class0 30 24 55.56 83.3 66.66 

89.05 
Class1 6 214 97.27 89.9 93.44 

EBTree 
Class0 37 17 68.52 78.7 73.26 

90.15 
Class1 10 210 95.45 92.5 93.95 

ESDA 
Class0 26 28 48.15 78.8 59.77 

87.23 
Class1 7 213 96.82 88.4 92.40 
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To investigate the relevance analysis of the proposed features, the ANOVA method is 

applied. The significant levels obtained after applying the ANOVA technique indicates that 

only four features were significant, namely tnC_M, tC_M, tnC_R and tC_R, while the others 

were discarded (Table 4.6). It was noted that the power of the significance level is increased 

where the predictor tC_M shows the best significance level at 1.6311 × 10-24, followed by 

tC_R at 3.8146 × 10-18. This is due to the large number of samples of datasets used in this 

experiment, supporting the ANOVA method to show higher values of significance P-levels. 

 

Table 4.6 Significance levels for features extracted from brain tumour descriptors after 

applying the ANOVA method using the BRATS2015 dataset.  

Feature P-value Feature P-value 

Nec_M 0.168299 Nec_R 0.095622 

Edm_M 0.058754 Edm_R 0.125198 

tnC_M 9.9578 × 10-8 tnC_R 2.1213 × 10-9 

tC_M 1.6311 × 10-24 tC_R 3.8146 × 10-18 

 

After feeding the feature selected by the ANOVA method to the classification system based 

on training and testing different classifiers, the results illustrate that both SVML and EBTree 

classifiers achieved the best results in terms of classification accuracy at 89.05% (Table 4.7). 

However, there is trade-off in the sensitivity and specificity between them, where SVML 

achieved a higher sensitivity at 98.18% and lower specificity at 51.85%, while EBTree 

gained a lower sensitivity at 95.4%, with higher specificity at 62.96%. However, the SVML 

classifier showed a slightly better accuracy than the EBTree classifier in terms of F-measure 

where they achieved 93.50% and 93.33%, respectively. The KNNW classifier achieved the 

second-best classification accuracy of 88.69%. 
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    Table 4.7 Comparative evaluation results for the selected set of features using the 

ANOVA method, incorporating different classifiers using the BRATS2015 dataset. 

Classifier 
Actual 

class 

Confusion matrices 
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Predicted class 

Class0 Class1 

DT 
Class0 21 33 38.89 84.0 53.16 

86.50 
Class1 4 216 98.18 86.7 92.11 

LDA 
Class0 33 21 61.11 70.2 65.34 

87.23 
Class1 14 206 93.64 90.7 92.17 

SVML 
Class0 28 26 51.85 87.5 65.11 

89.05 
Class1 4 216 98.18 89.3 93.50 

SVMQ 
Class0 27 27 50.00 84.4 62.79 

88.32 
Class1 5 215 97.73 88.8 93.07 

SVMCUB 
Class0 28 26 51.85 71.8 60.21 

86.50 
Class1 11 209 95.00 88.9 91.86 

SVMG 
Class0 21 33 38.89 91.3 54.54 

87.23 
Class1 2 218 99.09 86.9 92.56 

KNNF 
Class0 36 18 66.67 72.0 69.23 

88.32 
Class1 14 206 93.64 92.0 92.79 

KNNM 
Class0 31 23 57.41 66.0 61.38 

85.77 
Class1 16 204 92.73 89.9 91.27 

KNNCOS 
Class0 32 22 59.26 61.5 60.37 

84.67 
Class1 20 200 90.91 90.1 90.49 

KNNCUB 
Class0 32 22 59.26 68.1 63.36 

86.50 
Class1 15 205 93.18 90.3 91.72 

KNNW 
Class0 34 20 62.96 75.6 68.68 

88.69 
Class1 11 209 95.00 91.3 93.09 

EBTree 
Class0 34 20 62.96 77.3 69.38 

89.05 
Class1 10 210 95.45 91.3 93.33 

ESDA 
Class0 25 29 46.30 78.1 58.14 

86.86 
Class1 7 213 96.82 88.0 92.20 
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To investigate the effectiveness of each one of the proposed predictors on the classification 

performance of glioma grades, as well as to identify which one of the proposed features 

shows the highest classification accuracy, a comparative evaluation is conducted using the 

BRATS2015 dataset. This is performed by examining the outcome of each predictor 

incorporated with the machine learning algorithms undertaken in this work (Figure 4.7).  As 

a result, the predictor tnC_M reflects the best classification accuracy of 86.66% when tested 

with most of the classifiers, including LDA, KNNM, KNNCUB, and ESDA (Figure 4.7).  

The predictor tC_R has also achieved a competitive accuracy of 85.76% when examined 

with both the KNNM and KNNCUB classifiers. The predictor tnC_R has also shown the 

next dominant accuracy of 85.03% when evaluated with the same classifiers. Following 

these results, the highest classification accuracy achieved by the predictor tC_M is 82.11%, 

with both the KNNM and KNNCUB classifiers. However, the features related to tumour 

necrosis have reflected lower accuracies whereby the best accuracies achieved were with DT 

at 80.65% and LDA at 80.29%. The ESDA classifier also achieved the same accuracy of 

80.29%, using necrosis features. Likewise, all the proposed features associated with tumour 

edema have shown lower accuracies whereby the averages of their results are around 80% 

(Figure 4.7). The classifiers that show the best accuracies using features from tumour edema 

are LDA, SVML, and EBTree, where their results are around 80.29%, while all other 

classification models show lower accuracies below 80%. 

Consequently, it is evident that the best predictors are tnC_M and tC_R due to their superior 

accuracy when compared to all other features associated with tumour descriptors when they 

are integrated with the machine learning algorithm. Accordingly, it can draw the inference 

that the automated system based on presence of the statistical predictors related to the tumour 

descriptors can be a valuable prediction system for glioma grades when it is integrated with 

machine learning algorithms. However, the automated systems based on either the feature 

associated with non-enhancement or the ratio related to contrast enhancement, are the most 

important predictors due to their remarkable results that outweigh all other tumour 

descriptors in the automated classification of glioma grades based on machine learning 

strategies.  
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Notably, the predictor tnC_M achieved the best classification accuracy for glioma grades in 

this experiment. Therefore, it has been chosen to be the reference feature for the initialisation 

of the proposed HFSA. The selected four features by ANOVA were tnC_M, tC_M, tnC_R, 

and tC_R. After demonstrating the proposed HFSA, the selected set of features were only 

two: tnC_M, and tC_R. The best classification performance in terms of classification 

accuracy, sensitivity, specificity, precision, and F-measure was found by the KNNW 

classifier at 90.51%, 96.86%, 64.82%, 91.8%, 94.24% (Table 4.8). The second-best results 

were achieved by the EBTree classifier at 89.42%, 96.36%, 61.11%, 91.0%, and 93.59%, 

respectively. The maximum sensitivity achieved in this experiment, however, was obtained 

by ESDA at 99.09%, with a lower classification accuracy at 87.59%. The results of all other 

classifiers in terms of classification accuracy ranged between 83.58% (achieved by 

KNNCOS) and 89.05% (achieved by different classifiers, such as DT, LDA, and SVML). 

  

 

Figure 4.7 Comparative results in terms of classification accuracy for training and testing 

different classifiers using the proposed predicators using the BRATS2015 dataset. 
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Table 4.8 Comparative evaluation results for the selected set of features by the proposed 

HFSA, incorporating different classifiers using the BRATS2015 dataset.  The selected 

features were tnC_M and tC_R. 

Classifier 
Actual 

class 

Confusion matrices 
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Predicted class 

Class0 Class1 

DT 
Class0 27 27 50.00 90.0 64.28 

89.05 
Class1 3 217 98.64 88.9 93.53 

LDA 
Class0 29 25 53.70 85.3 65.90 

89.05 
Class1 5 215 97.73 89.6 93.47 

SVML 
Class0 28 26 51.85 87.5 65.11 

89.05 
Class1 4 216 98.18 89.3 93.50 

SVMQ 
Class0 26 28 48.15 81.3 60.46 

87.59 
Class1 6 214 97.27 88.4 92.64 

SVMCUB 
Class0 28 26 51.85 73.7 60.86 

86.86 
Class1 10 210 95.45 89.0 92.10 

SVMG 
Class0 22 32 40.74 88.0 55.69 

87.23 
Class1 3 217 98.64 87.1 92.53 

KNNF 
Class0 39 15 72.22 67.2 69.64 

87.59 
Class1 19 201 91.36 93.1 92.20 

KNNM 
Class0 30 24 55.56 73.2 63.15 

87.23 
Class1 11 209 95.00 89.7 92.27 

KNNCOS 
Class0 29 25 53.70 59.2 56.31 

83.58 
Class1 20 200 90.91 88.9 89.88 

KNNCUB 
Class0 32 22 59.26 76.2 66.66 

88.32 
Class1 10 210 95.45 90.5 92.92 

KNNW 
Class0 35 19 64.81 83.3 72.91 

90.51 
Class1 7 213 96.82 91.8 94.24 

EBTree 
Class0 33 21 61.11 80.5 69.47 

89.42 
Class1 8 212 96.36 91.0 93.59 

ESDA 
Class0 22 32 40.74 91.7 56.41 

87.59 
Class1 2 218 99.09 87.2 92.76 
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An overall comparative evaluation has been conducted for all the classifiers based on the 

selected features by the proposed HFSA against both the use of the full set of features and 

the selected set by ANOVA (Figure 4.8). The experimental results indicate that the 

classification performance in terms of classification accuracy was improved using the 

ANOVA method compared to the use of the full set of features. For example, the accuracy 

was enhanced from 86.86% to 88.32% by SVMQ and from 86.13% to 87.22% by SVMG 

(Figure 4.8). It is noted that the highest improvement using ANOVA was obtained by the 

KNNF classifier where the accuracy enhanced from 84.3% to 88.32%. However, there are 

some other classifiers that show lower accuracies when examined with the selected set of 

features by ANOVA. For example, in terms of a single classifier system, the outcome of the 

LDA and KNNM classifiers illustrates a small reduction in the classification accuracy, where 

they reduced from 88.32% to 87.22% and from 87.59% to 85.76%, respectively. In terms of 

the ensemble classification method, there is also a minor reduction in classification accuracy 

shown by both EBTree and ESDA classifiers as their classification accuracies decreased 

from 90.14% to 89.05% and from 87.22% to 86.86%, respectively. Nevertheless, the results 

obtained from applying the proposed HFSA reveals that the classification accuracy improved 

when compared to both the use of the full set of features and the use of the selected set by 

the ANOVA method. Notably, many classifiers achieved an improvement using the selected 

set of features by the proposed HFSA. For example, the accuracies of DT, LDA SVMQ, and 

KNNF were enhanced from 86.49% to 89.05%, from 88.32% to 89.05%, from 86.86% to 

88.32%, and from 84.3% to 87.59%, respectively. However, the results illustrate that the 

best classification accuracy among all methods and choices was obtained by the selected set 

of features by the proposed HFSA at 90.5% by the KNNW classifier (Figure 4.8). 

The other advantage of applying the proposed HFSA is achieving a significant reduction in 

the features space where the dimensions of the input features were reduced from eight to 

only two features, namely tnC_M and tC_R, while ANOVA applied the input features that 

were reduced into four features, namely tnC_M, tC_M, tnC_R and tC_R. Therefore, a 

significant enhancement is achieved in developing the classification system based on the 

integration between the proposed features and the use of the proposed HFSA. The results 

reveal that this method gains a better reduction in features space as well as higher 

classification accuracy for glioma grades. 
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4.7 Evaluating the Proposed Classification System Using the BRATS2018 

The automated classification system for glioma grades based on the proposed features and 

incorporated different machine learning algorithms is implemented using the BRATS2018 

dataset. The rationale for this experiment is to add further evaluation and validation to the 

classification system. 

After extract the proposed features associated with tumour descriptors from BRATS2018 

dataset, it was found experimentally that the features associated with non-contrast 

enhancement reveal zero-values. This indicates that the contrast enhancement in this dataset 

has covered all the active portion of the brain tumour area, which also reflects different 

tumour structure compared to the other BRATS datasets. The absence of the non-enhanced 

area from the tumour is due to the nature of the brain tumour, which indicates greater 

infiltration of the malignant brain tumour to the surrounding parts, and the large leakage of 

Figure 4.8 Overall comparative results to show the behaviour of the automated 

classification system based on three cases as follows: the first case is based on the full set 

of the proposed features, the second case is based on the features selected by ANOVA, 

and the final case is on using the selected set of features by the proposed HFSA. This 

experiment is developed using the BRATS2015 dataset.  
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blood-brain barrios compared to other BRATS datasets. Accordingly, two features are found 

to be zeros, these are TnC_M, and TnC_R and therefore they were discarded from the model 

design in this dataset.  

The implementation starts by measuring the proposed features including Nec_M, Edm_M, 

tC_M, Nec_R, Edm_R, tC_R from ROI of MR brain tumour images for all patients in the 

dataset then the same framework that is used in this work is developed for this dataset starting 

with splitting the dataset into training and testing sets. The training set is used to train the 

classification models that include single and ensemble classifiers then the trained models are 

used to test the testing samples based on LOO-cross validation technique. As a result, the 

classification performances of all models are measured. 

Three cases are implemented to investigate the importance of the proposed features 

incorporating machine learning on the classification accuracy of glioma grades. The first 

case is conducted by using the full set of the proposed features mentioned above to train and 

test the classification models. The second case is implemented based on investigating the 

impact of ANOVA technique incorporating the proposed features on the classification 

accuracy of glioma grades. The third case is developed based on examining the impact of 

the proposed HFSA integrating with the proposed features on glioma grading. The results 

obtained from the first case illustrated that the best classification performance in term of 

classification accuracy is achieved by SVML classifiers at 91.58%. This was followed by 

KNNM classifier that achieved 90.53%. Ensemble systems have shown lowest classification 

accuracy at 90.88% and 90.18% by EBTree and ESDA respectively (APPENDIX C, Table 

C.5). Considering the significance level of P-value that achieved by applying ANOVA 

technique (Table 4.9) and after discarding features less than 0.05,  Edm_R was discarded, 

and only five features were significant, namely Nec_M, tC_M, Nec_R, Edm_R, tC_R. 

Table 4.9 Significance levels for features extracted from brain tumour descriptors after 

applying the ANOVA method using the BRATS2018 dataset.  

Feature P-value Feature P-value 

Nec_M 5.5905× 10-12 Nec_R 1.2404× 10-15 

Edm_M 0.1439 Edm_R 0.0001 

tC_M 1.6720 × 10-25 tC_R 9.0504 × 10-26 
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After feeding the feature selected by the ANOVA method to the classification system based 

on training and testing different classifiers, the results showed that the highest classification 

accuracy achieved by SVMQ classifier at 91.93%, followed by SVMCUB classifier with a 

slightly lower accuracy at 91.23% (APPENDIX C Table C.6). 

To investigate the impact of each one of the proposed predictors on the classification 

performance of glioma grades, as well as to identify which one of the proposed features 

reveals the highest classification accuracy, a comparative evaluation is determined using the 

BRATS2018 dataset. This is performed by examining the outcome of each predictor 

incorporated with the machine learning algorithms undertaken in this work (Figure 4.9). 

Consequently, the predictor tC_R shows the highest classification accuracy when tested with 

most of the classification models. For instance, the classifiers LDA, SVML and ESDA have 

achieved the best classification accuracy at 90.87% based on the tC_R. The predictor tC_M 

has also achieved a competitive accuracy of 90.167% when examined with both the KNNM 

and KNNCUB classifiers. The predictor Nec_R has shown the next dominant accuracy of 

87.36% when evaluated with LDA, ESDA classifiers. Following these results, the predictor 

Nec_M has shown lower accuracy at 83.15% using the same classifiers. While, all the 

proposed features associated with tumour edema have shown the lowest accuracies whereby 

the averages of their results are around 67 %. The classifiers that show the best accuracies 

using features from tumour edema are DT, LDA and SVML. 

Remarkably, the predictor tC_R achieved the best classification accuracy for glioma grades 

in this experiment compared to all other predictors associated with tumour descriptors when 

they are integrated with the machine learning algorithm. Therefore, this predictor has been 

selected to be the reference feature for the initialisation of the proposed HFSA. The selected 

set of the five features by ANOVA were Nec_M, tC_M, Nec_R, Edm_R, tC_R. After 

implementing the proposed HFSA, the selected set of features were four features: tC_R, 

Edm_R, Nec_M, and Nec_R. The best classification performance in terms of classification 

accuracy, sensitivity, specificity, precision, and F-measure were achieved by the SVMCUB 

classifier at 93.33%, 99.05%, 77.33%, 92.44% and 95.63% This is followed by SVMQ 

classifier that achieved accuracy of 91.58%, 96.67%, 77.33%, 92.27% and 94.41% 

respectively (APPENDIX C, Table C.7). 
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An overall comparative evaluation has been established for all the classifiers based on the 

three cases of different input feature subsets to the classification model (Figure 4.10). The 

experimental results illustrated that the classification performance in terms of classification 

accuracy was enhanced using the ANOVA compared to the use of the full set of features. 

For instance, the accuracy was improved from 89.12% to 91.22% by SVMCUB and from 

89.12% to 90.17% by KNNW (Figure 4.10). It is observed that the best improvement using 

ANOVA was gained by the SVMQ classifier where the accuracy enhanced from 90.52% to 

91.92%. However, some other classifiers showed lower accuracies when examined with the 

selected set of features by both ANOVA and the proposed HFSA. Nevertheless, the results 

obtained from demonstrating the proposed HFSA reveals that the classification accuracy 

improved when compared to both the use of the full set of features and the use of the selected 

set by the ANOVA method. Significantly, different classifiers achieved an improvement 

using the selected set of features by the proposed HFSA. For example, the classification 

accuracies were enhanced from 90.52% to 91.57 by SVMQ and from 86.66% 87.715 by 

KNNF classifier. However, the maximum classification accuracy that outperforms all other 

choices were achieved using the selected set of features by the proposed HFSA at 93.33% 

by SVMCUB classifier (Figure 4.10). Another advantageous is achieved by the development 
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Figure 4.9 Comparative results in terms of classification accuracy for training and testing 

different classifiers based on the proposed predicators using the BRATS2018 dataset. 
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of the classification system based on the incorporation between the proposed features and 

the use of the proposed HFSA as the results showed that this method gains a better reduction 

in features space as well as higher classification accuracy for glioma grades.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.8 Results Comparison and Discussion 

The overall summarised results for the datasets, BRATS2013, BRATS2015 and 

BRATS2018 (Table 4.10), show that the automated classification system based on the 

proposed features achieved an improvement for the datasets when the proposed HFSA was 

involved in selecting the most significant features (Table 4.10). This table also shows that 

the final maximum classification accuracy achieved was 93.33% when examined with the 

BRATS2013 dataset, 90.5% when tested with BRATS2015, and 93.33% when tested with 

BRATS2018 dataset. In terms of sensitivity, the classification performance using the 

BRATS2015 dataset exhibits a slightly reduced result. However, specificity, precision and 

F-measure show better enhanced results thereby making better improvement in the 

classification accuracy at 90.5%. A broad scope of the evaluation on the classification 

performance is conducted using the three benchmark datasets, which incorporated different 

popular classification models. This is to assess the automated classification system for 
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Figure 4.10 Overall comparative results to show the behaviour of the automated classification 

system for the proposed HFSA versus ANOVA and the full set of features using the 

BRATS2018 dataset.  
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glioma grades based on the proposed features and machine learning algorithm. The results 

indicated that the selected set from the proposed feature can achieve notable and competitive 

results and therefore these features are efficient predictors able to determine the grading of 

glioma through developing an automated design based on those features and the machine 

learning approach. 

Table 4.10 Results Summary of the classification performance obtained by applying the 

automated classification system based on the proposed features associated with the tumour 

descriptors using BRATS2013, BRATS2015 and BRATS2018 datasets. 

 

 

 

 

 

 

Highlighting the difference in the findings of this chapter compared to the results of Chapter 

3, results indicate a level of competitiveness obtained between the tumour heterogeneity 

investigated in Chapter 3 and the proposed features evaluated in this chapter. To illustrate, 

it was noted that the classification accuracy obtained from developing the classification 

system based on the texture features showed 87.9% when examined with the BRATS2015 

dataset and 88.07% when examined with the BRATS2018 dataset (sections 3.7.4 and 3.7.5). 

While better accuracy of 90.5% for BRATS2015 and 93.33% for BRATS2018 were 

achieved when the new features were examined. However, the textural image features 

showed optimal results when evaluated using BRATS2013 dataset at 100%, while the 

classification system based on the proposed features in this chapter achieved 93.33% using 

the same dataset. For further elaboration, Texture feature depends on detecting the variance 

in the image intensities to differentiate between different dominant patterns associated with 

diverse grades of malignant tumours. Therefore, it has a high sensitivity to the level of 

homogeneity in the image’s patterns, thereby showing a lower outcome when it is tested 

with samples from both the BRATS2015 and BRATS2018 datasets. This is because MR 

images from both BRATS2015 and BRATS2018 datasets have a higher level of 

homogeneity compared to the BRATS2013 dataset. On the other hand, the proposed features 

extracted from the presence of tumour descriptors are independent to the image intensities 
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and are therefore able to play a vital role in overcoming this limitation, indicating more 

robustness in detecting tumour grades of glioma. Consequently, they achieved better results 

compared to tumour heterogeneity when tested with the BRATS2015 and the BRATS2018 

dataset. Nevertheless, the proposed features did not achieve the optimal result compared to 

tumour heterogeneity when tested with the BRATS2013 dataset. The reason behind this is 

the proposed features are dependent on the nature of the presence area of tumour descriptors, 

for example, the tumour enhancement, which is affected by the consequences of the leakage 

in the blood-brain-barrier caused by the growth of a malignant tumour and therefore the 

classification outcome can be degraded and affected. It can also be argued according to the 

experimental findings in this work that the tumour enhancement developed by samples from 

BRATS2013 and BRATS2018 shows a dominant pattern and thereby plays a significant role 

in the differentiation between low-grades and high grades of glioma. While samples from 

the BRATS2015 dataset behave differently as large areas of the low and high-grade tumours 

have not developed contrast enhancement, the non-contrast enhancement was the most 

dominant pattern. This can be evidence that the variability in response to the breakdown in 

the blood-brain-barrier leads to an absence of the contrast enhancement, which consequently 

leads to a reduction in the classification accuracy using the proposed features compared to 

the tumour heterogeneity. 

The proposed predictors were analysed statistically before starting the classification process, 

through investigating the relevance analysis using the ANOVA technique. It was found that 

some of these predictors are significantly different between low and high-grade glioma. 

Further assessment was accomplished by incorporating machine learning algorithms to 

evaluate the predictive power of the proposed features in the classification of glioma grades. 

Many experiments were performed, and the resultant performance evaluation proved that 

the proposed MRI features incorporating machine learning algorithms offered a significant 

discrimination between low-grade glioma (I, II) and high-grade glioma (III, IV). 

It is noted from the performance evaluation of the classification system using three 

benchmarks that the proposed features associated with the tumour descriptors datasets are 

significant features. However, the proposed ratio between tumour enhancement and the other 

tumour descriptors, namely tC_R is found to be the most significant indicator to predict the 

accurate grade of glioma. Therefore, the development of an automated classification system 

based on the proposed predictors and machine learning algorithm can achieve an efficient, 

objective and accurate differentiation for glioma grades. 
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4.9 Conclusion  

In this chapter, eight MRI generic features are proposed and extracted from the presence of 

tumour descriptors, namely tumour necrosis, edema, non-enhancement and enhancement. 

These are utilised to develop an automated classification system for glioma grades. The 

proposed predictors are used to train and evaluate different popular machine learning 

algorithms, including DT, LDA and SVM with four different kernels, and KNN with five 

different designs and two common ensemble systems, namely EBTree, and ESDA. 

Accordingly, thirteen common classifiers were trained, tested, and validated using the leave-

one-out-cross validation technique. The automated system is evaluated and validated based 

on various evaluation metrics. This evaluation includes a comprehensive range of analysis 

and compares the classification performance in terms of classification accuracy, sensitivity, 

specificity, precision, and F-measure. Three benchmark datasets are used, namely, 

BRATS2013, BRATS2015 and BRATS2018, to assess the predictive power of the 

automated classification system based on the proposed features integrated with the machine 

learning algorithm. This is to achieve the aim of this work of determining the accurate grade 

of malignancy of an unknown brain tumour. Several brain tumour descriptors were examined 

using a quantitative method to determine the malignant grade of unknown brain tumours. 

Furthermore, the development of the machine learning algorithm based on the proposed MRI 

predictors will offer a significant aid to assist clinicians in clinical diagnosis and may further 

reduce effort and unnecessary invasive procedures like biopsies through the confirmation 

process for the malignancy grade of a brain tumour. Ultimately, the proposed features 

associated with the tumour descriptor have shown a significant and robust classification 

outcome when evaluated with different common machine learning algorithms using three 

benchmark datasets. However, it is noted that there are various behaviours of classification 

models obtained by using different subsets of features and input data, and it is essential to 

also take into account eliminating redundant features so that the performance of the 

classification system can be enhanced. Therefore, to seek a better solution that can overcome 

the limitation mentioned above, the next chapter will include further development through 

the fusion of different machine learning algorithms based on all tumour heterogeneity and 

all other tumour descriptors, attempting to achieve better improvement in the classification 

accuracy for glioma grades. 
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CHAPTER 5 : An Automated Classification System for 

Glioma Grades Based on Multiple Classifier Schemes 

and Deep Neural Networks in MR images 

Overview  

This work proposes a novel method for developing a multiple classifier systems for glioma 

grades, which uses a deep neural network. This is performed based on developing two stages 

of multiple classifier systems. The first stage includes training and testing of eleven 

classifiers individually namely, DT, LDA, SVM (with four different kernels) and KNN (with 

five different designs). The second stage includes the establishment of the meta-trainable 

design based on Back-Propagation Neural Network (BPNN) and incorporating DINN. This 

chapter presents the details of the design of the proposed DINN. The purpose of this chapter 

is to assess the discrimination ability of the proposed meta-trainable multiple classifier 

systems (MTMCS) to classify malignant glioma grades with more enhanced classification 

accuracy. This will lead to more development in the automated classification system of 

glioma grades. This chapter also presents the implementation, results analysis and 

performance evaluation of the proposed system to classify glioma grades between low and 

high grades using four benchmark datasets.  

5.1 Introduction 

The development of machine learning methods that can accurately evaluate glioma grades 

is of great interest since it can potentially lead to more a repeatable and reliable diagnostic 

procedure (Zacharaki et al., 2009). The rapid development of machine learning has played 

an essential role in the classification and prediction of many cancer types and grades. Support 

Vector Machine (SVM), K-Nearest Neighbour (KNN), Linear and Discriminant Analysis 

(LDA) and Decision Tree (DT) are common machine learning algorithms that are widely 

used for the classification of medical data.  

Deep learning is basically an end to end machine learning approach where it can be applied 

directly to images, and there is no need to make an effort in features extraction or selection. 

However, the deep learning approach requires more advanced hardware and a more 

sophisticated design. Establishing the model also needs a large training dataset set (Dara and 

Tumma, 2018). The sample size is always the key issue to machine learning especially when 
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using the deep learning approach (Pan et al., 2015). For example, the work demonstrated by 

Google Incorporation to establish a deep learning model for face detector uses 10 million 

images downloaded from the internet, and the networks are trained on a cluster with 1,000 

machines (16,000 cores), and the training takes three days (Le, 2013). 

Many studies have developed classifications of brain tumours using a single classification 

model. For instance, a comparative study was conducted on different classification methods 

for glioma grading based on a single classification approach (Zhang et al., 2017). However, 

an approach that takes advantage of the combination of multiple machine learning 

algorithms would lead to an improvement in the classification accuracy (Woźniak et al., 

2014). Therefore, to achieve further improvement in the classification accuracy for glioma 

grades, the use of a multiple classifier systems is investigated, and several machine learning 

algorithms are integrated into one automated grading system. 

Enabling the diversity in the output decisions of the multiple classifier systems is one of the 

significant factors that can lead to enhance the quality of the classification performance 

(Thomas et al., 2018, Kuncheva, 2014). Furthermore, unlike the existing approach that relies 

on random subspace of samples or features that lead to sacrificing some of the significant 

information in the learning phase (Ashour et al., 2018a). This limitation is addressed by 

approaching the diversity by demonstrating different predefined design choices developed 

with different classification models, leading to avoid the random generation to enable the 

diversity in feature space (Table 3.1).  

The majority voting has been applied widely to fuse multi-classification models (Xu et al., 

1992, Bashir et al., 2016), used with Multiple Classifier Systems (MCS). However, the 

majority vote has a limited ability to sense the complex relationships of information among 

different classifiers. Using a learning strategy in the fusion stage of MCS is a far more 

powerful method. Neural Networks (NNs) is an efficient approach and is of great interest 

due to its ability to automatically uncover the nonlinear relationships of different data 

distributions. Deep learning can be designed based on Deep Neural Networks (DNN) with 

multiple hidden layers of nonlinear information processing that can learn complex data 

patterns (Mamoshina et al., 2016). Deep neural network (DNN) is recommended in the 

literature as a more efficient approach than convolution neural networks (convnet) (Mohsen 

et al., 2018) where convnet is considered the most common and successful method dedicated 

to deep learning (Litjens et al., 2017). DNN has been proven to be an effective alternative 

method to traditional deep learning approach, achieved promising results, for example, it 
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was used successfully in the classification of MRI brain tumour types into four classes, these 

are, normal, sarcoma, glioblastoma and metastatic bronchogenic carcinoma tumours 

(Mohsen et al., 2018). Consequently, to obtain a better representation of the relationships 

among many classifiers, DNN-based MCS was developed to stack multiple machine 

learning algorithms in the second stage of the MCS. It is necessary with the application of 

back-propagation neural networks to find the optimal convergence to the global minimum, 

which maximises its accuracy. Indeed, at present, no such method gives a general solution 

to this issue. Therefore, in this chapter, a deep systematic iteration NN (DINN) was 

developed in attempting to tackle this issue, and to further improve the classification 

accuracy of DNN-based MCS for glioma grading. A novel strategy for developing multiple 

classifier systems was proposed to improve the classification accuracy for glioma grades. 

This was based on the development of two stages in the classification system. The first stage 

was determined using eleven classifiers, namely, DT, LDA, SVM (with four different 

kernels), and KNN (with five different designs). These classifiers were trained individually 

based on different features; including the proposed features extracted from the brain tumour 

descriptors, which are associated with tumour necrosis, edema, non-enhancement, 

enhancement, and co-occurrence textural features extracted from T2-weighted MRI 

modality. Then, in the second stage, an efficient method of combining all these classifiers 

was designed, where the fusion stage was developed based on deep neural networks 

incorporating an extensive iteration of DNN. The difference in classification performance 

between the proposed MTMCS and the single classification models was analysed in terms 

of classification accuracy, sensitivity, specificity, precision and F-measure. The performance 

was also evaluated as compared to other common and current MCS including the majority 

voting, EBTree and ESDA. The classification performance of the proposed design is further 

evaluated using four benchmark datasets. For the Cancer dataset, two experiments were 

performed, the first one tests the discrimination between glioma grade IV and the lower 

grades (II, and III), and the second experiment covers the differentiation between the low-

grade II against high-grade glioma (III, and IV). For the BRATS2013, the BRATS2015 and 

the BRATS2018, the experiments include the classification between low-grade glioma (I, 

II), against high-grade glioma (III, IV). The classification system is evaluated using the LOO 

cross-validation technique in all stages, to add more generalisation to the results of the 

classification system’s reliability in unseen cases. Performance evaluation of the 

classification is measured using many evaluation metrics derived from the confusion matrix; 

these are the classification accuracy, the sensitivity of high grades, the sensitivity of low 
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grades (specificity), precision of high and low grades and F-measure of high and low grades. 

The details of the development of the two stages of the proposed MTMCS are explored in 

the following sections.  

5.2 First Stage: Single Classifier System 

The first stage of the proposed MTMCS is providing the MR image-textural features for 

training a different classification model individually. Eleven popular classifiers were 

utilised, these classifiers are DT, LDA, SVM that was developed with four kernels namely 

linear, quadratic, cubic and Gaussian, and KNN that was implemented with five different 

designs namely fine, medium, cubic, cosine, and weighted. The rationale behind applying 

different kernels and designs with SVM and KNN is to increase the diversity of the output 

decisions produced at this stage. The final step of this stage is to build the output decision 

matrix (ODM) where the output decision vectors produced from testing each sample at this 

stage will include a binary stream of ones (positives) and zeros (negatives), to construct the 

final form of the output decision matrix (Eq. 5.1). Leave-one-out cross-validation technique 

is employed in all stages to avoid the problem of overfitting and to add more generalisation 

to the classification system. All samples (N samples) are divided into training (N-1) and 

testing samples. Training samples are used to construct the model, in the learning phase, and 

then this model is used to predict the class label of an unknown test sample. The evaluation 

of the output results is conducted using a confusion matrix, and their metrics such as 

classification accuracy, sensitivity, precision, and F-measure for both classes, are utilised to 

assess the classification performance for every single classifier (Deepa and Devi, 2011). The 

general overview structure of the proposed classification system based on MCS that includes 

two stages of learning is depicted in (Figure 5.1). 

The final output of the first stage is the output decisions matrix (ODM) which is constructed 

based on the decisions produced from the single classifiers trained and tested at the first stage. 

The mathematical representation of the output decision matrix produced from the output 

response for each classifier individually is defined by Eq. 5.1. 

𝑀𝑖𝑗=  {
𝑇𝑟𝑢𝑒           𝑖𝑓 𝑠𝑎𝑚𝑝𝑙𝑒 𝑖 𝑖𝑠 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑏𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 𝑗 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦

𝐹𝑎𝑙𝑠𝑒                                                                                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

            5. 1 

Where True and False in Eq. 5.1 holds either 0 or 1 according to the index label of the test 

sample and the conditions of the equation at the right side, i indicates the index of the tested 

sample, where i < the total number of samples, j refers to the index of the classifier. 
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Figure 5.1 Overall diagram of the 

proposed meta-trainable multiple 

classification system for glioma 

grades, where j indicates the index 

of classifiers, and n represents the 

index of sample S in the dataset. V 

indicates the output decision vector 

generated by a single classifier. 

ODM is the output decision matrix. 
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5.3 Second Stage: Multiple Classifier System 

The proposed automated system based on the MTMCS includes several stages and steps 

starting with features extraction, followed by the feature selection, the single classifier stage, 

and then the multiple classifier stage, and finally it ends with the evaluation of the 

classification performance (Figure 5.1). The second stage in the classification system is the 

ensemble of the classifiers trained previously at the first stage. The result of the first stage is 

ODM (Figure 5.1), which is established based on the vectors associated with the decisions 

of each classifier undertaken in this test. For example, given a matrix, let the classifiers be 

located column wise and the samples row-wise. The intersect between rows and columns 

represent the output decisions, and thus each constructed row will represent an output vector 

associated with a sample (Figure 5.1). After that, a binary classification to the output 

decisions matrix is conducted. This is performed by supplying the output decision vector 

produced from each single classification model to the DNN, where all samples in this vector 

are passed through the training and testing phase using the LOO cross-validation technique. 

The input feature vector to this stage includes streams of ones and zeros, where they 

represent the True and False decisions, reflecting the test of each sample in the dataset. The 

proposed design of incorporating DINN in the second stage is explained thoroughly in the 

next section. 

5.4 Proposed Ensemble Design  

The proposed fusion design is built based on the integration of multiple classification models 

using the back-propagation neural network incorporating a deep iteration NNs. All classifiers 

are integrated into one MCS system. The decisions vector produced from the first stage is 

used to learn DNN (Figure 5.2). The hyperbolic tangent sigmoid transfer function (tansig) is 

commonly used due to its full range output between the two classes (Graupe, 2013), it is 

therefore selected to be the activation function for all neurons in the NNs design. 

A back-propagation strategy is used to optimise the NNs performance. Scaled conjugate 

gradient back-propagation (trainscg) is widely applied to functions with NNs and produces a 

fast response and efficient results (Baptista et al., 2013, Ashour et al., 2018b). Therefore, this 

technique is chosen to be the learning function of the design. DINN is used to evaluate the 

most significant design that reveals the maximum classification accuracy, leading to optimise 

the overall accuracy of the proposed system. In this design, a wide range of different numbers 

of neurons, iterations and hidden layers are examined. Consequently, extensive back-
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propagation neural networks (BNN) were examined and tested in each iteration based on 

testing a broad range of different values of weights and biases of NNs. 

Output Decision 
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Let Ii represent iterations of NNs, where i = 1, 2, …, E; and E is a selected endpoint of 

iterations, Rj represents rounds of NNs, where j = 1, 2, …, N; and N is the total number of 

samples. The round of NNs is similar to the process of the LOO method, which is applied to 

avoid overfitting and get a response for every sample in the dataset. In each round, the input 

samples are divided into training (N-1) samples where one sample is used for testing, and this 

process will continue to iterate all the samples one after the other without repetition or 

randomly selecting any of the samples in the dataset. The deep iteration neural networks 

(DINN) is defined by Eq. 5.2 (AlZurfi et al., 2018). 

     A(i,j)   = P ((i,j) | n, L, Rj, Ii))                                       5.2 

Where n   is the number of neurons in layer L, and P is a probability which represents the 

output of back-propagation NNs (BNN) measured based on the parameters (n, L, Rj, Ii).  

Implementing all possible design of NNs based on these parameters through the training, 

validation and testing phases of NNs led to the construction of the DINN that includes all the 

possible results of NNs using these parameters.  

Figure 5.2 The general overview diagram of Deep Neural Networks with two 

hidden layers. 
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To further clarify the implementation of the proposed ensemble design, which incorporates 

the DINN, an example is presented as follows, given N= 30 samples in the experiment, the 

parameters of Eq. 5.2 become as follows; thirty rounds Rj based on the LOO technique is 

conducted to cover all N samples given to the classification system. In each round, the dataset 

is separated into different sets of training, validation and testing sets, and then the NNs design 

is trained, validated, and tested. In the implementation of the DINN, The BPNN uses different 

validation sets that are selected randomly from the original dataset and not included in neither 

the training phase nor the testing phase. Each generated design of NNs should be self-

optimised using the learning function. In this example, twenty-five patients are selected to be 

in the training phase, four samples in the validation set and one sample in the testing phase. 

In general, one sample through the leave-one-out procedure is selected for the testing phase; 

then the remaining data is divided; 0.85% used for the training phase and 0.15% for the 

validation phase. The order of the samples is re-arranged in each iteration of NNs to examine 

the behaviour of each unique design of BNN. When implementing the DINN, it is necessary 

to ensure that the cross-validation is fully controlled by applying a completely different 

dataset in each of the training, validation, and testing phases. In this example, n is in the range 

of (1, 2, … 30). After the calculation of DINN is completed, the confusion matrix is measured 

by comparing the output results of each possible design generated by the DINN with the true 

class label. Considering a general threshold for the output probability of the NNs of 0.5 where 

if the output sample is greater than 0.5, it will be assigned to one class, otherwise it will be 

considered as belong to the other class. The results are then ranked to select the best model 

that shows the highest classification accuracy. The total number of experiments required to 

complete the implementation of DINN can be calculated by 𝑅𝑗 × 𝐼𝑖 × 𝑛 𝑖𝑛 𝐿. For example, 

if the DNN is trained based on 30 rounds (when 30 samples are used), and 20 iterations, and 

30 neurons in the layer of NNs, as a result, 18,000 experiments are conducted. Similarly, if 

two layers of NN are used, the overall number of experiments required is as follows: 30 

rounds multiplied by 20 iterations multiplied by 30 neurons in the first layer multiply by 30 

neurons in the second layer, which produces 540,000 the number of experiments needed. 

5.5 Algorithm for Redundancy Analysis and Selection of Classifier 

In this section, a novel method is used to investigate redundancy in the first stage of the 

proposed MTMCS in order to remove the most redundant classifiers and keep only the 

significant set that shows a significant contribution in the classification accuracy. This is 

also advantageous in reducing the complexity of the proposed system and for further 
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optimisation in the classification accuracy. This is performed using several steps started with 

the initialisation process where the input to the algorithm will be sorted classifiers in 

descending order according to the classification accuracy. This algorithm is developed to 

select the best set of classifiers (SC) as well as maintaining the classification accuracy of the 

proposed system. More details about this algorithm (Figure 5.3) are illustrated below.  

In the initialisation of the SC algorithm, let the single classifiers in the first stage of the 

proposed MTMCS are Y = (Y1,..., Yn), n is the total number of classifiers. Each single 

classifier Y is tested individually through the training and testing phase. All classifiers Y are 

ranked from the largest to the smallest values according to ACC that is measured at the first 

stage of the proposed MTMCS. Let counter i =1. Let Aci represent the initial accuracy, which 

is set experimentally based on the result obtained from the first run of the MTMCS based on 

all classification models in the experiment. In the following step, an iterated process is 

started with removing one classifier from the input set Y where this elimination starts with 

the classifier associated with the lowest accuracy at Y indexed by (n-i+1) then the proposed 

MTMCS is implemented without this classifier, and the output classification accuracy 

ACCnew is measured. If the resultant accuracy ACCnew becomes less than the previous 

maximum state, or if the classification accuracy is reduced further after removing this 

classifier, meaning that this classifier is important and should be kept. The next step is to 

keep this classifier and insert it into the important set of classifiers. Otherwise, if there is no 

difference between ACCnew and Aci or the ACCnew goes higher, this indicates that this 

classifier is redundant and should be removed. The next step is to remove the classifier in 

ascending order based on the classifier accuracy ACC, and the same process is repeated in a 

loop until all classifiers are completely examined and the output classification accuracy of 

the proposed MTMCS is evaluated. Note that ACC is the classification accuracy evaluated 

for every single classifier at the first stage of the proposed system, while ACCnew is the 

overall classification accuracy measured for the proposed MTMCS. This algorithm can 

produce different cases where each case can have different choices of classifiers with their 

contribution in the final classification accuracy of the proposed system where it is possible 

to choose the case that has the best contribution to the classification performance. It also has 

the flexibility to select different cases where there is a trade-off between the classification 

accuracy and classifier dimensions, providing the ability to choose the case that satisfies a 

problem solution for an application. However, in this work, the most concentration is given 

the classification accuracy as the work deals with a critical medical field. Therefore, the 
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selection is conducted based on the case that shows the highest classification accuracy. The 

ultimate output of this algorithm is the best set of classifiers with the maximum classification 

accuracy. 
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Is i <= length (Y) No End
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Remove one classifier
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the classification accuracy ACCnew
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No
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Figure 5.3 The flow chart of the SC algorithm to select the best of classifiers 

based on the proposed MTMCS 
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5.6 Evaluating the Proposed MTMCS Using the BRATS2013 Dataset 

The purpose of this experiment is to evaluate the proposed MTMCS for the discrimination 

between low grade (I, and II) against higher grades (III, and IV) using the BRATS2013 

dataset. The classification of glioma grades is crucial to preoperatively determine whether 

the malignant brain tumour has a high glioma grade or a lower grade. This is useful for the 

management of suitable treatment and prognosis for a patient who develops a malignant 

brain tumour. The evaluation of the proposed MTMCS starts with the implementation of 

one-layer NNs, where a range of neurons from 1 to 30, and 50 iterations are examined to 

every single neuron. The input to the first stage of MCS is the T2-weighted MRI textural 

features extracted by the eighteen statistics measured from the 2DGLCM. The input to the 

second stage is the output decision matrix (ODM) developed based on the eleven classifiers 

trained and tested individually at the first stage of the proposed system. 

Considering the confusion matrix obtained after applying one-layer of NNs of the proposed 

MTMCS (Table 5.1), where all samples of low and high grades glioma are correctly 

classified by the proposed classification system, indicates the full discrimination rate 

between low and high-grade glioma. The results obtained in terms of classification accuracy, 

sensitivity, specificity, precision and F-measure reached to the full classification rate at 

100% between low-grade glioma (I, II) and high grades glioma (III, IV). 

 

Table 5.1 Confusion matrix for the proposed system based on one-layer NNs for the 

discrimination between low (I, II) and high grades (III, IV) using BRATS2013 

 

Actual 

Predicted 

Low (GI, and GII) High (GIII, and GIV) 

Low (GI, and GII) 10 0 

High (GIII, and GIV) 0 20 

 

The results obtained by applying the proposed MTMCS reveals that optimal classification 

accuracy at 100% achieved using 20 neurons in the layer at the 13th iteration (Figure 5.4 and 

Figure 5.5). There are also many other reliable results obtained by using a different number 

of neurons, for example, when using 17 neurons, the classification accuracy reached 96.7%, 

while a lower number of neurons such as five neurons reflects the same classification 

accuracy at 96.7%. It is noted that many different numbers of neurons enable the proposed 

system to achieve same classification accuracy at 93.33%, this is due to the low errors 
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produced by the majority of the classifiers involved in the experiment. This indicates that 

using strong classifiers in the first stages of the proposed system can contribute to increasing 

the chance of obtaining good results reducing dependence on the tuning of the number of 

neurons. This can raise the chance of finding a suitable number of neurons even with the use 

of random selection, which could be much easier than investigating every single number of 

neurons. However, the proposed MTMCS can select the highest possible number of neurons 

that reveals the best optimal classification accuracy (Figure 5.4 and Figure 5.5).  

Notably, the results obtained by using only one neuron in the proposed system is 93.33%, 

which is the same accuracy of the single classifier system when the highest accuracy 

achieved by SVML is 93.33%. However, various outcomes can be obtained by using a 

different number of neurons in the design of NNs (Figure 5.4). 

It is found experimentally that the use of 20 neurons in one-layer of NNs with a different 

number of iterations revels the optimal classification performance at 100%, for examples the 

use of 13th and 34th iterations. However, 13th iteration requires the lowest number of 

iterations to achieve the optimal results, and therefore it is a better choice. The classification 

accuracy for the first iteration is 80%, or it can also be considered the default implementation 

using 20 neurons in the NNs. The second-best classification accuracy is achieved at 93.33% 

by the iterations 18th and 33th (Figure 5.5). 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4 Classification accuracy results for applying the proposed system using one-

layer NNs corresponding to the number of neurons in the layer to discriminate low 

grades (I, and II) against high glioma grades (III, and IV) using BRATS2013. 
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5.6.1 Redundancy Analysis and Selection of Classifiers 

The analysis of redundancy of the classifiers undertaken in this work is conducted based on 

the selection of the best set of classifier algorithm (SCA). In this algorithm, several runs are 

implemented by using a different set of classifiers, and the final classification accuracy of 

the proposed MTMCS is monitored. The range of these runs should cover the total number 

of classifiers. For example, for the eleven classifiers involved in the first stage of the 

proposed MTMCS, the number of required cases to implement is ranging from one to eleven. 

The best set of classifiers is selected through tracking the influence of every single classifier 

on the outcome of the proposed system. In this work every single classifier is examined 

twice; the first one is tested out of the stack of classifiers while the second one is examined 

in the stack with the other classifiers, and the best accuracy of classification is tracked 

(ACCnew) (Table 5.2). This table shows the process flow of the SCA to select the best set 

of the classifiers. The algorithm starts with sorting the classifiers in descending order 

according to the classification accuracy measured at the first stage of the proposed MTMCS. 

In this work, the classifiers are sorted from SVML classifier that has the accuracy of 93.33% 

to the KNNF classifier with an accuracy of 80% (Table 5.2). After that an initial 

implementation (Run Initial) is performed based on the fusion of all classifiers in the first 

stage of the proposed system. It is found that the initial classification accuracy of the 

proposed MTMCS and it is called Aci that is defined by the SC algorithm is 100%. The 

algorithm then starts an iterated process that by eliminating one classifier at a time and by 

Figure 5.5 Classification accuracy results corresponding to the iteration sequence number 

based on the 20 neurons in the one-layer of NNs to discriminate low grades (I, and II) 

against high glioma grades (III, and IV) using BRATS2013. 
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implementing the proposed MTMCS and by tracking the output accuracy of the proposed 

MTMCS the best set of classifiers will be selected. If the output classification accuracy 

remains at the same level or increases, it means that this classifier is redundant. Otherwise, 

if the new result shows a reduction in the accuracy indicating that this classifier is significant, 

and it needs to be maintained in the stack with the other classifiers. This process is repeated 

until finding the best result of accuracy with a minimum set of classifiers. Run1 shows the 

same accuracy at 100% after removing the KNNF classifier, and therefore the classifier 

KNNF is eliminated so it shows as 0 for all other Runs meaning that this classifier will not 

be included in any other Runs. In Run2, two classifiers are eliminated, these are KNNM, and 

KNNF, the results illustrate that the classification accuracy continued on the same level at 

100% and therefore they are considered redundant classifiers, and both are eliminated and 

show as 0 for other cells (Table 5.2). 

Table 5.2 Selection process conducted based on the SCA.  The first column in the left 

represent the sorted classifiers according to their corresponding classification accuracy at 

the first stage of the proposed MTMCS. Table cells that include 1 and 0 refer to keep and 

removing actions respectively, which are determined to classifiers in different runs for the 

system (Run1 to Run11). ACCnew represents the final classification accuracy of the 

proposed MTMCS through the selection process using BRATS2013 dataset. 
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SVML 1 1 1 1 1 1 1 1 1 1 1 0 

SVMG 1 1 1 1 1 1 1 1 1 1 0 0 

KNNCOS 1 1 1 1 1 1 1 1 1 0 1 1 

SVMQ 1 1 1 1 1 1 1 1 0 0 0 0 

KNNCUB 1 1 1 1 1 1 1 0 0 0 0 0 

KNNW 1 1 1 1 1 1 0 1 1 1 1 1 

DT 1 1 1 1 1 0 1 1 1 1 1 1 

LDA 1 1 1 1 0 0 0 0 0 0 0 0 

SVMCUB 1 1 1 0 1 1 1 1 1 1 1 1 

KNNM 1 1 0 0 0 0 0 0 0 0 0 0 

KNNF 1 0 0 0 0 0 0 0 0 0 0 0 

ACCnew 100 100 100 96.67 100 96.67 96.67 100 100 96.7 100 96.67 

 

In Run3, when the SVMCUB, KNNF and KNNM classifier are eliminated, the results show 

a reduction in the classification accuracy from 100% to 96.67%. This indicates that the 

SVMCUB classifier is essential and it should not be removed and therefore this classifier is 

kept in the stack, which is presented by 1 for all other runs or cells of the table. This 
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procedure is repeated for all classifiers until the last run at Run11 is implemented. It is seen 

at Run11 that the classification accuracy is decreased and therefore the classifier SVML is 

considered as a significant classifier and is kept in the stack with other classifiers. Ultimately 

the finding of this work is that the best set of classifiers that have shown the optimal 

classification accuracy at 100% are namely SVML, KNNCOS, KNNW, DT and SVMCUB, 

which are highlighted in yellow in the table. These classifiers can be selected by different 

cases and can achieve the optimal classification accuracy, while the best choice with the 

lowest number of classifiers are shown at Run10 where only five classifiers are selected and 

achieved the best classification accuracy at 100%. The other advantage of this experiment is 

that the dimensions of the classifier are reduced from eleven classifiers to only five classifiers 

while maintaining the highest classification accuracy at 100%. 

The classification performance in terms of the sensitivity, specificity, precision, and F-

measure indicate that the proposed MTMCS achieved the optimal results at 100% and 

outperformed all other classification methods including the MCS based on the majority vote 

that showed a lower classification accuracy at 86.67% (Table 5.3).  

Table 5.3 Evaluation of the classification performance for the proposed system against the 

majority vote for the discrimination between low grades glioma (I, and II) and the high 

grades (III, and IV) using BRATS2013 dataset. Class1 and Class0 refer to high (III, IV), 

and low grade (I, II) respectively. 
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Predicted class 

Class0 Class1 

Majority Vote 
Class0 8 2 80.00 80.00 80.00 

86.67 
Class1 2 18 90.00 90.00 90.00 

Proposed 

MTMCS 

Class0 10 0 100.00 100.00 100.00 
100.00 

Class1 0 20 100.00 100.00 100.00 

 

5.6.2 Comparison with Other Methods 

The overall comparative results in term of classification accuracy (Figure 5.6) confirm that 

the proposed MTMCS based on one-layer of NNs, which achieved optimal results at 100%, 

outweighing all other single and ensemble classification models. The best next accuracy is 

obtained by the SVML classifier at 93.33% followed by 90% achieved by SVMG. While 

other classification models achieved lower accuracies of 86.67% namely KNNCOS, SVMQ, 



CHAPTER 5 

 

154 

 

KNNCUB, and KNNW, lower accuracies were achieved by DT, LDA, SVMCUB and 

KNNM at 83.33%. The lowest classification accuracy regarding the single classification 

model is obtained by KNNF classifier at 80%. While in term of the ensemble classification 

system, the highest classification accuracy achieved by the majority voting at 86.67% and 

the lowest result obtained by 76.67% classification accuracy. 

This experiment based on BRATS2013 dataset does not extend further, for example, the 

investigation in the proposed HFSA and its impact on the proposed MTMCS. This is because 

there is no incitement to develop it further as the optimal classification accuracy was 

achieved at 100% by the single classifier system and all samples were undertaken in the 

experiment were correctly classified (Section 3.7.2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The total time utilised to implement the proposed MTMCS based on one-layer of NNs for 

BRATS2013 dataset through the process of finding the best parameters (number of neurons, 

and iteration sequence number) of NNs is 986.545 seconds, the average time measured for 

training and testing a sample is 0.155 ± 0.077 seconds. This time is measured using a 

personal computer with COR i7, and RAM 16 G, with enabling of parallel processes. The 

computation time that was required to train DNN varied and was highly dependent on the 

Figure 5.6 Comparative results in terms of the classification accuracy of the proposed 

system (one-layer NNs) versus all other single classification models and ensemble 

methods for the discrimination between low glioma grades (I, and II) and the high grades 

(III, and IV) using BRATS2013. 
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structure of the NNs. The number of layers, the number of neurons, iterations and the time 

spent by the back-propagation process of NNs play a more significant role in determining 

the execution time required to implement the proposed MTMCS. Significantly, the execution 

time will be increased if a broad range of neurons and iterations are involved in the 

experiments. The other factor that dramatically increases the implementation time is the 

number of samples where more samples mean more time required for training and validating 

phases. Consequently, a large dataset essentially requires advanced hardware with the use of 

parallel computing.  

5.7 Evaluating the Proposed MTMCS Using the Cancer Dataset 

The proposed MTMCS is evaluated using the Cancer dataset to conduct a further assessment 

of the efficiency of the proposed system in the classification of glioma grades. This is 

achieved based on conducting two experiments; the first one is to classify the most malignant 

grade of brain tumours grade IV and distinguish it from the lowest glioma grades (II, and 

III) (Experiment 1), and the second one is to discriminate between low-grade II and high-

grade glioma (III, and IV) (Experiment 2). The input image dataset to these experiments is 

the Cancer dataset that has thirty patients, each ten of which have different WHO glioma 

grades (II, III, and IV). The input features are the textural eighteen statistics extracted from 

the GLCM using T2- weighted MR images; these features are used to train and test the 

classification models.  

5.7.1 Experiment 1: Discrimination between Grade IV and the Lower Glioma Grades 

(II and III) 

The purpose of this experiment is to assess the ability of the proposed MTMCS in 

distinguishing grade IV from the lowest glioma grades (II, III), this is crucial because a brain 

tumour with grade IV is extremely malignant, and has a poor prognosis, and high mortality 

rate. The median survival rate for patients who develop a grade IV is usually one year (Moore 

and Kim, 2010). Furthermore, a brain tumour of grade IV requires early and aggressive 

treatment. Therefore, it is crucial to distinguish grade IV from the lower glioma grades 

preoperatively, as this impacts the prognosis and treatment of the patients (Theeler and 

Groves, 2011). Experimentally, it was noted that the 3DGLCM features enable most of the 

classifiers to achieve better classification accuracy as compared to the use of the 2DGLCM, 

and therefore the 3DGLCM is selected as the input features to the proposed MTMCS.  
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The evaluation process starts with implementing the proposed MTMCS based on one-layer 

of NNs; the results reflect various classification accuracies with respect to each number of 

neurons (Figure 5.7). The highest classification accuracy is achieved at 93.33%, by using 22 

neurons (Figure 5.7). The same classification accuracy is achieved using 24 neurons (Figure 

5.7). The lower number of neurons such as 5, 7, 10 and 11 reveals lower classification 

accuracy at 90%. 

 Fifty iterations are developed for every single number of neurons where the classification 

performance of the proposed MTMCS is evaluated in term of the classification accuracy 

(Figure 5.8) where the best classification accuracy of 93.33% is achieved using 22 neurons 

at the 3th iteration (Figure 5.7 and Figure 5.8). It is also noted that various numbers of 

iterations reflect different classification accuracies while the next best accuracy in this 

experiment is achieved at 90% by the 9th iteration while all other iterations reveal lower 

classification accuracies.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7 Classification accuracy results of the proposed MTMCS based on one-layer 

NN corresponding to the number of neurons per layer using the Cancer dataset. This test 

is to classify grade IV against lower grade (II, III). 

0

10

20

30

40

50

60

70

80

90

100

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

C
la

ss
if

ic
at

io
n

 A
cc

u
ra

cy
 %

Neurons Number in Layer



CHAPTER 5 

 

157 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The evaluation of the proposed MTMCS is further extended to implement the proposed 

system using two-layer NNs. The result shows that the classification accuracy has improved 

from 93.33% that achieved by the one-layer NNs to 96.67% obtained by the two-layer NNs. 

The optimal design selected for the proposed MTMCS for this experiment was achieved at 

the 14th iteration, and with the use of 21 neurons in the first layer, and 19 neurons in the 

second layer NNs (Figure 5.9). Most of other examined designs of NNs in this experiment 

reflected accuracies of 93.33% or 90% (Figure 5.9).  

 

 

 

 

 

 

 

 

Figure 5.8 Classification accuracy results of the proposed MTMCS based on the one-

layer NN corresponding to different iterations based on the 22 nodes per layer using the 

Cancer dataset. This test to classify grade IV against lower grade (II, III). 
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A comparative evaluation for the proposed MTMCS based on the two-layer of NNs versus 

all other single and ensemble classification systems is conducted (Table 5.4). The results 

illustrate that the best classification performance achieved by the proposed system in terms 

of classification accuracy, sensitivity, specificity, precision and F- measures compared to all 

the other methods is 96.67%, 100%, 95% 90.9%, 95.23% respectively. For the single 

classifier system, the highest accuracy achieved by both LDA, and KNNF at 83.33%. 

Concerning the ensemble approaches, the highest accuracy is achieved by the majority vote 

at 80%. The results obtained from testing all other classifiers show lower classification 

accuracy ranging from 80% obtained by both DT and SVML to 60% achieved by ESDA 

classifier. 

 

Figure 5.9 Classification accuracy results for the proposed MTMCS using two-layer 

NNs corresponding to number of nodes in the first and second layers in the left and 

right axis, respectively. This test is to classify grade IV against lower grade (II, III) 

using the Cancer dataset. The optimal selected design was found at the 14th iteration 

and 21 neurons in the first layer, and 19 at the second layer.  

C
la

ss
if

ic
at

io
n
 A

cc
u
ra

c
y
 %

 



CHAPTER 5 

 

159 

 

Table 5.4 A comparative evaluation results of the proposed MTMCS (two-layer NNs) 

versus all other existing approaches - single and ensemble systems.  This is for the 

differentiation between grade IV versus the lower-grade glioma, where Class1 refers to 

Grade IV, and Class0 indicates the lower grades (II, III), using the Cancer dataset.  

Classifier 
Actual 

class 

Confusion 

matrices 

S
en
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ti

v
it

y
 %

 

P
re

ci
si
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n
 %

 

F
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ea
su

re
 %

 

A
cc
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cy
 %

 

Predicted class 

Class0 Class1 

DT 
Class0 17 3 85.00 85.00 85.00 

80.00 
Class1 3 7 70.00 70.00 70.00 

LDA 
Class0 16 4 80.00 94.10 86.48 

83.33 
Class1 1 9 90.00 69.20 78.26 

SVML 
Class0 17 3 85.00 85.00 85.00 

80.00 
Class1 3 7 70.00 70.00 70.00 

SVMQ 
Class0 15 5 75.00 88.20 81.08 

76.67 
Class1 2 8 80.00 61.50 69.56 

SVMCUB 
Class0 15 5 75.00 83.30 78.94 

73.33 
Class1 3 7 70.00 58.30 63.63 

SVMG 
Class0 17 3 85.00 81.00 82.92 

76.67 
Class1 4 6 60.00 66.70 63.15 

KNNF 
Class0 17 3 85.00 89.50 87.17 

83.33 
Class1 2 8 80.00 72.70 76.19 

KNNM 
Class0 17 3 85.00 77.30 80.95 

73.33 
Class1 5 5 50.00 62.50 55.55 

KNNCOS 
Class0 16 4 80.00 80.00 80.00 

73.33 
Class1 4 6 60.00 60.00 60.00 

KNNCUB 
Class0 18 2 90.00 78.30 83.72 

76.67 
Class1 5 5 50.00 71.40 58.82 

KNNW 
Class0 17 3 85.00 81.00 82.92 

76.67 
Class1 4 6 60.00 66.70 63.15 

EBTree 
Class0 17 3 85.00 77.30 80.95 

73.33 
Class1 5 5 50.00 62.50 55.55 

ESDA 
Class0 12 8 60.00 75.00 66.66 

60.00 
Class1 4 6 60.00 42.90 50.00 

Majority Vote 
Class0 17 3 85.00 85.00 85.00 

80.00 
Class1 3 7 70.00 70.00 70.00 

Proposed MTMCS 
Class0 19 1 95.00 100.00 97.43 

96.67 
Class1 0 10 100.00 90.90 95.23 
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5.7.1.1 Redundancy Analysis and Selection of Classifiers 

The selection algorithm for the classifiers (SCA) is applied for experiment 1 to select the 

significant classifiers and eliminate the others. This algorithm is applied based on one-layer 

NNs. The output results and the process flow of the algorithm are depicted in Table 5.5. The 

algorithm starts by sorting the classifiers from the largest accuracy achieved by LDA at 

83.33% to the lowest accuracy at 73.33% obtained by the KNNM classifier. Then the iterated 

process of eliminating classifiers and monitoring the output results based on the SC 

algorithm is conducted. 

It is found that the optimal classification accuracy is achieved of 100% at Run7, where the 

selected set of classifiers that achieved this optimal accuracy are namely LDA, KNNF, DT, 

SVML, SVMQ, SVMG, and KNNW, and they are highlighted in yellow in the first column 

on the left (Table 5.5). Incorporating the SC algorithm enabled the proposed MTMCS to 

achieve a notable reduction in dimensions of the classifier from eleven classifiers to only six 

classifiers as well as maintaining the optimal classification accuracy at 100% for the 

discrimination between grade IV and the lower grades of glioma (II, III). 

Table 5.5 Selection process conducted based on the SCA.  The first column in the left 

represents the sorted classifiers according to their corresponding classification accuracy at 

the first stage of the proposed MTMCS. Table cells that include 1 and 0 refer to keep and 

removing actions respectively, which are applied to classifiers in different runs of the 

system (Run1 to Run11). ACCnew represents the final classification accuracy of the 

proposed system through the selection process. This test is classifying grade IV versus 

grades (II, and III). 
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LDA 1 1 1 1 1 1 1 1 1 1 1 0 

KNNF 1 1 1 1 1 1 1 1 1 1 0 1 

DT 1 1 1 1 1 1 1 1 1 0 1 1 

SVML 1 1 1 1 1 1 1 1 0 1 1 1 

SVMQ 1 1 1 1 1 1 1 0 0 0 0 0 

SVMG 1 1 1 1 1 1 0 1 1 1 1 1 

KNNW 1 1 1 1 1 0 1 1 1 1 1 1 

KNNCUB 1 1 1 1 0 0 0 0 0 0 0 0 

SVMCUB 1 1 1 0 0 0 0 0 0 0 0 0 

KNNCOS 1 1 0 0 0 0 0 0 0 0 0 0 

KNNM 1 0 0 0 0 0 0 0 0 0 0 0 

ACCnew 93.33 93.33 93.33 96.7 96.7 93.33 90 100 93.33 93.3 90 93.33 
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The results show that the optimal result at 100% of classification performance by this 

experiment is obtained when 22 neurons are used in the one-layer NNs (Figure 5.10). There 

are also different numbers of neurons with lower classification accuracy at 93.33% with the 

use of 16, or 25 neurons while many other numbers of neurons achieved lower accuracies at 

90% such as 4, 6, 7 and 15 neurons (Figure 5.10). 

It is noted that the optimal design of the proposed MTMCS based on one-layer NNs that 

achieve the best classification accuracy at 100% is based on the 50th iteration (Figure 5.11). 

Followed by 93.33% achieved at the 11th iterations. While other iterations including 27th and 

46th iterations reflect the next best accuracies at 86.67%. Although the 50th iteration has more 

complexity than the 11th iteration, it achieves the optimal and full discrimination between 

grade IV and the lower grades glioma (II, III) and therefore it is selected for the optimal 

design of the proposed automated system for classification of glioma grades. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 5.10 Classification accuracy results of the proposed MTMCS based on one-layer 

NN corresponding to the number of neurons, referring the optimal design achieved at 

Run7 by the SCA. This test is to classify grade IV against lower grade (II, III) using the 

Cancer dataset. 
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5.7.1.2 Comparison with Other Methods 

The overall comparative results of the classification performance of the proposed MTMCS 

based on one-layer NNs versus all other single and ensemble classification methods is shown 

(Figure 5.12). The results reveal that the proposed system outweighs all other methods and 

achieves the optimal classification rate at 100% for distinguishing of grade IV from the lower 

grades glioma (II, III). The next best classification accuracy is achieved at 83.33% by both 

LDA and KNNF classifiers, followed by the accuracy of 80% obtained by the DT and the 

majority voting classifiers. The average accuracy of the majority of other classifiers is 

around 75%. 

 

 

 

 

 

 

Figure 5.11 Classification accuracy results of the proposed MTMCS based on the one-layer 

NN corresponding to different iterations for the 22 neurons and referring the optimal design 

achieved at Run7 by the SCA. This test is to classify grade IV against lower grade (II, III). 
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5.7.2 Experiment 2: Discrimination between Low Grade (II) Against the High Grades 

Glioma (III, and IV) Using the Cancer Dataset 

The purpose of this experiment is to assess the proposed MTMCS for the discrimination 

between grade II against higher grades (III, and IV) using the Cancer dataset. It is 

advantageous to preoperatively determine whether the unknown brain tumour has a high 

glioma grade or a lower grade. This is essential for managing suitable treatment and 

prognosis for a patient with a malignant brain tumour. The classification performance of the 

proposed system is evaluated against different approaches - the single and ensemble 

classification systems. The input features are the eighteen statistical features extracted from 

the 2DGLCM using the T2-MR images. 

The training and testing process are accomplished for both the first stage and the second 

stage of the MTMCS. The second stage is designed based on the one-layer NN. The 

classification performance is evaluated in terms of the classification accuracy by examining 

a different number of neurons in the layer (Figure 5.13). It is observed through this test that 

the best classification accuracy is achieved at 96.67% when 24 neurons are used in the layer 

(Figure 5.13). This optimal result is achieved at the thirteenth iteration (Figure 5.14). 

Considering the resultant confusion matrix of implementing the proposed MTMCS based on 

the design that shows maximum possible classification accuracy at 96.7% (Table 5.6), this 

Figure 5.12 Comparative results in terms of the classification accuracy of the proposed system 

based on one-layer NN against all other single and ensemble classification models. This tested 

is to classify grade IV against lower grade glioma (II, III) using the Cancer dataset. 
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indicates that the propped system successfully recognises all samples of high grades while 

nine out of ten samples are correctly classified as low grades glioma. 

Table 5.6 Confusion matrix for the proposed system using one-layer NN, associated with a 

design that shows the maximum accuracy for the discrimination between low (II) and high 

grades (III, IV). 

 

 

Predicted 

III, and IV II 
A

ct
u

al
 III, and IV 20 0 

II 1 9 

 

After implementing the proposed MTMCS based on one-layer NNs, the results indicate that 

a various number of neurons reflect different classification accuracy, for example, the use of 

6 neurons enables the proposed system to reach an accuracy of 93.33%. While neurons 3, 4, 

7, 9 and 10 show a lower accuracy of 90%. The other number of neurons reflects a lower 

classification accuracy at 86.67% such as 1, 6, 27, 28, 29, and 30 (Figure 5.13). The results 

also reveal that the maximum accuracy at 96.67% is obtained through implementing the 

proposed MTMCS based on the 13th iteration. While all other iterations conducted in this 

experiment achieved lower accuracies, for instance, the second iteration shows an accuracy 

of 86.67%, the first iteration shows 80% classification accuracy while a higher number of 

iterations such as 15, 17, and 23 reflect a lower classification accuracy at 70% (Figure 5.14).   

 

 

 

 

 

 

 

 

 

 

 

Figure 5.13 Classification accuracy results for applying the proposed system using one-

layer NNs corresponding to the number of neurons in the layer to discriminate low grade(II) 

against high glioma grades (III, and IV) using the Cancer dataset. 
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5.7.2.1 Redundancy Analysis and Selection of Classifiers 

The SC algorithm is applied in this experiment to investigate the redundancy of the 

classifiers to achieve further development of the proposed system and to select the best set 

of classifiers that have a significant impact on the final classification performance. It is 

advantageous to investigate the possibility of gaining a reduction in the dimensionality of 

the classifiers set. It is worthy to note that the objective function of the proposed 

classification system is the classification accuracy metric, therefore and based on the SC 

algorithm, any classifier that leads to decrease the classification accuracy or does not show 

any noted impact on the classification accuracy will be eliminated. After applying the SC 

algorithm, it is observed that the optimal results are achieved at 100% at Run5 (Table 5.7) 

where seven classifiers that are selected for this achievement namely DT, LDA, KNNCOS, 

KNNM, KNNCUB, SVML and KNNW (highlighted in the table). Several other choices for 

the use of a different selected set of classifiers are presented (Table 5.7). 

 

 

 

Figure 5.14 Classification accuracy results of applying the proposed system using one-layer 

NNs corresponding to the iteration sequence number using 24 neurons. This test is to 

discriminate grade II against the highest grades (III, IV) using the Cancer dataset. 
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Table 5.7 Selection process of the best set of classifiers according to SC algorithm with the 

corresponding classification accuracy ACCnew for each selected set of classifiers.   Where 

1 and 0 refer to the keep and removing actions of a classifier respectively, Run represents 

running the process for each selected case. This test is classifying grade II versus higher 

grades (III, and IV) using the Cancer dataset. 
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DT 1 1 1 1 1 1 1 1 1 1 1 0 

LDA 1 1 1 1 1 1 1 1 1 1 0 1 

KNNCOS 1 1 1 1 1 1 1 1 1 0 1 1 

KNNM 1 1 1 1 1 1 1 1 0 1 1 1 

KNNCUB 1 1 1 1 1 1 1 0 1 1 1 1 

SVML 1 1 1 1 1 1 0 1 1 1 1 1 

SVMQ 1 1 1 1 1 0 0 0 0 0 0 0 

SVMG 1 1 1 1 0 0 0 0 0 0 0 0 

KNNF 1 1 1 0 0 0 0 0 0 0 0 0 

KNNW 1 1 0 1 1 1 1 1 1 1 1 1 

SVMCUB 1 0 0 0 0 0 0 0 0 0 0 0 

ACCnew 96.66 96.66 93.33 96.66 96.66 100 93.33 93.3 96.66 96.7 93.33 93.33 

 

It is noted that the proposed MTMCS based on one-layer of NNs incorporating the fusion of 

DT, LDA, KNNCOS, KNNM, KNNCUB, SVML, KNNW classifiers has achieved the 

optimal classification accuracy by Run5 at 100% in the discrimination between grade II and 

the higher grades (III, IV). The results show that this achievement is determined with the use 

of 4 neurons in the NNs design (Figure 5.15). The results also illustrate that most of the other 

neurons number including the choices: 2, 5, 7, 8, 9, 10, and 11 neurons exhibit high 

accuracies of either 90% or 93.33%. The achievement of the optimal results at full 

discrimination rate at 100% is determined using 40th iteration. While most of the other 

iterations reflect lower accuracies, 90% of classification accuracy is the next best result 

obtained by the 44th iteration (Figure 5.16).  
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Figure 5.15 Classification accuracy results for the proposed MTMCS based on one-layer 

NNs according to neurons number, referring to the optimal design achieved at Run5 by 

SCA for the discrimination between grade II versus higher grade (III, and IV) using the 

Cancer dataset. 
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Figure 5.16 Classification accuracy results for the proposed MTMCS based on one-layer 

NNs with respect to number of iterations using 4 neurons, referring the optimal design 

achieved  at Run5 by SCA for the discrimination between grade II versus higher grade 

(III, and IV) using the Cancer dataset. 
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5.7.2.2 Comparison with Other Methods 

The overall performance evaluation of Experiment 2 is shown in Figure 5.17, in which a 

comparison of the classification accuracy between the proposed MTMCS based on the one-

layer NNs and all other the single and ensemble classification models is illustrated. It is 

noted that the proposed system has achieved the full discrimination rate of 100% between 

grade II and higher grades (III, IV) outperforming all other classification methods. The next 

best classification accuracy is obtained by the DT classifier at 86.67%, followed by the LDA 

at 73.33%, with slightly lower accuracy at 70% the KNNCOS classifier that comes next. 

With respect to the ensemble systems, the EBTree classifier has achieved the highest 

accuracy at 66.67%, while the lowest accuracy at 53.33% is achieved by the ESDA classifier. 

The results obtained from the evaluation of different popular methods illustrates that the 

proposed MTMCS has the best optimal results compared to all other classification 

algorithms (Figure 5.17). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.17 Comparative results in term of classification accuracy for implementing the 

proposed system versus the other classification system: single and ensemble classifiers, 

this test is based on one-layer NNs to discriminate glioma grade II against higher grades 

(III, IV) using the Cancer dataset. 
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5.7.3 Experiment 3: Evaluating the Proposed MTMCS Based on the Selected Set of 

Features in the First Stage of the System Using the Cancer Dataset 

The purpose of this experiment is to evaluate the proposed MTMCS using the selected set 

of features chosen by the proposed HFSA. This is also to investigate the influence of the 

selected features on the performance of the proposed MTMCS. The outcome of this 

experiment is the discrimination between low glioma grades (II) and high grades (III, and 

IV). This experiment is performed through training and testing the classifiers based on the 

selected set of features that are fed to the first stage of the MTMCS. In the second stage of 

the proposed MTMCS, the ODM is trained and tested by applying the proposed 

methodology.  

The proposed MTMCS is implemented based on one-layer NNs, with number of neurons 

ranging from 1 to 30 and 50 iterations are examined for each neuron. The dataset set used in 

this experiment includes thirty patients; with ten patients of grade II and twenty patients of 

a high grade (III, and IV). This experiment starts with allocating the target vector based on 

assigning the index 0 to the class label of samples with low grades (II) and index 1 to the 

samples with high grades (III, and IV). Then the proposed MTMCS is implemented. 

The selected set of features chosen by the proposed HFSA are namely (Autocorrelation, 00), 

(Homogeneity, 900), and (Homogeneity, 00) which are utilised as an input to the first stage 

of MTMCS. These features have shown the highest classification accuracy achieved by the 

DT classifier at 93.3% compared to all other single and ensemble classification models. The 

input to the second stage of MTMCS is the output decision matrix (ODM) developed based 

on the eleven classifiers trained and tested based on these selected features. The results show 

that the performance evaluation of classification of the proposed system in terms of 

classification accuracy, sensitivity, specificity, precision, and F-measure are 96.67%, 100%, 

90%, 95.2%, 97.56% respectively (Table 5.8). These results are obtained using one-layer 

NNs, and three neurons in the layer and by 10th iteration in the NNs design of the proposed 

system (Figure 5.18 and Figure 5.19). There is also a different design that includes different 

number of neurons which have shown the same highest classification accuracy at 96.6%, for 

examples, using 6, 7, 14, or 19 neurons in the proposed design based on one-layer NNs 

(Figure 5.18). However, to avoid adding more complexity to the design of the proposed 

system, the use of a small number of neurons is recommended as it will maintain the same 

classification accuracy.  
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Consequently, the best choice is to select the lowest number of neurons and this is achieved 

by using three neurons, this has shown the same high accuracy at 96.7%. In this experiment, 

two iterations have shown the highest classification accuracy at 96.6%, these are 10th, and 

48th, where it is possible to use a design developed by any one of these iterations since both 

are enabling the highest classification accuracy. However, the 10th iteration is a better choice 

as it obviously requires a lower number of iterations and thus the use of this option is more 

recommended as it causes less complexity. 

Table 5.8 The classification evaluation performance for the proposed system using the 

selected set of features chosen by the proposed HFSA.  The input dataset for this 

experiment is the Cancer dataset. This test is to discriminate between glioma grade (II) 

indicated by Class0 and high grades (III, IV) assigned by Class1. 
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Predicted class 

Class0 Class1 

Proposed 

MTMCS 

Class0 9 1 90.00 100.0 94.73 
96.67 

Class1 0 20 100.00 95.2 97.56 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 5.18 Classification accuracy results for applying the proposed system using one-

layer NNs corresponding to the number of neurons in the layer. This test is to evaluate the 

selected set of features involved in the first stage of the proposed MTMCS for 

discriminating of low grades (II) against high glioma grades (III, and IV) using Cancer 

dataset. 
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5.7.3.1 Redundancy Analysis and Selection of Classifiers 

In this experiment and after applying the SC algorithm, the results show that the best 

selection of classifiers is the DT alone, as it achieves a classification accuracy of 96.67%. It 

is observed that the elimination process through the SC algorithm of all other classifiers has 

not had a significant effect on the classification accuracy as it remained at the same level of 

accuracy at 96.67%. This indicates that the use of the proposed MTMCS based on one-layer 

NNs incorporates the SCA has the advantage of reducing the classifier dimensions from 11 

to only one classifier while maintaining the same classification accuracy at 96.67%.  

To highlight the difference between experiment 2 and 3, in experiment 2 when the full set 

of features is used, the optimal classification accuracy is obtained at 96.7% after which the 

result is improved to 100% by incorporating the SC method. While in experiment 3, when 

the selected set of features is used, the highest accuracy achieved by the proposed system is 

96.7%, and the classification accuracy remains on the same level despite the use of the SC 

algorithm. The reason behind this is that experiment 3 uses the selected set of features where 

those features can enhance some single members involved in the first stage of the MTMCS 

and boost their accuracies while other classifiers do not show noted improvement in their 

accuracies. Consequently, the fusion of the outputs of these classifiers impacts the behaviour 

Figure 5.19 Classification accuracy results corresponding to the iteration sequence number 

using one-layer NNs to evaluate the selected set of features (in the first stage of the proposed 

MTMCS) in discriminating low grades (II) against high glioma grades (III, and IV) using the 

Cancer dataset. 
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of the output of the proposed MTMCS and therefore the results of experiment 3 have shown 

lower accuracy compared to experiment 2. However, the results of both experiments 2 and 

3 show a superior classification accuracy compared to all other single and ensemble 

classification methods. 

5.7.3.2 Comparison with Other Methods 

Although the full classification accuracy has not been achieved in experiment 3, the 

proposed MTMCS based on those selected set of features has achieved a better classification 

accuracy than all other single and ensemble classification models at 96.67% (Figure 5.20). 

In term of single classification models, the results show that the highest classification 

accuracy is achieved by the DT classifier at 93.33%, and with respect to the ensemble 

methods, the EBTree classifier achieves the next accuracy at 90%. While most of all other 

single and ensemble classifiers reflect a lower classification accuracy, ranging from 63.33% 

to 80%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.20 Comparative results in terms of the classification accuracy of the proposed 

system (one-layer NNs) against all other classifiers; single classification models and 

ensemble methods. This is to evaluate the proposed system based on the selected set of 

features in the first stage of the proposed MTMCS in discriminating between low glioma 

grades (II) and the high grades (III, and IV) using the Cancer dataset. 
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For the experiments conducted with the Cancer dataset, the total time required to implement 

the proposed MTMCS based on one-layer NN is 6787.887521 seconds that is practically 

reduced to 999.377 seconds by enabling parallel processing, while the time need for training 

and testing a sample is 0.150±0.036 seconds. Regarding the implementation of the proposed 

MTMCS based on two-layers NNs, the time required for finding the best optimal result is 

253645.5425 seconds, which is decreased to 35693.57723 seconds using parallel computing, 

while the time required for training and testing a sample is 0.187 ± 0.022 seconds. 

5.8 Evaluating the Proposed MTMCS Using the BRATS2015 Dataset 

The purpose of the work is to assess further the ability of the proposed MTMCS in the 

classification of glioma grades using the BRATS2015 dataset; this dataset includes 274 

patients, with 54 patients with low grades, and 220 patients with high grades. The input to 

this experiment is the textural features using the eighteen statistics measured from the 

3DGLCM. The evaluation process begins with the implementation of the proposed system 

based one-layer NNs (Experiment 1). After that, the evaluation is conducted for the proposed 

system using the selected set of features chosen by the proposed HFSA (Experiment 2). 

Following this, the proposed system is developed based on the combination of all features 

including the texture features and the tumour descriptors (Experiment 3). After that, the 

proposed system is developed based on enabling the diversity in features space for the full 

set of features including the texture features and the tumour descriptors (Experiment 4). The 

main purpose of these experiments is to evaluate the proposed MTMCS in various conditions 

and scenarios to extract the behaviour of the proposed classification system through the 

findings and outcomes of these experiments using the BRTAS2015 dataset. 

5.8.1 Experiment 1: Implementing the Proposed MTMCS Using the Full Set of 

Textural Features 

In this experiment, the input features are the textural statistics based on the full set of features 

measured from 3DGLCM to classify glioma grades using the BRATS2015 dataset. This 

choice is made due to an empirical test that showed that the full set of 3DGLCM had shown 

higher results compared to using only 2DGLCM when both sets are investigated using the 

BRATS2015 dataset. The ODM is built based on the training and testing each classifier 

individually. The produced ODM will have the dimensions - eleven classifiers × 274 

samples.  
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Considering the highest results that are achieved using the proposed MTMCS (Table 5.9), 

there are 36 samples out 54 of low-grades samples are correctly classified as low-grade 

glioma, while 212 out of 220 of high-grades samples are correctly recognised as high-grade 

glioma. The results show that the classification performance for the proposed system in 

terms of classification accuracy, sensitivity, specificity, precision, F-measure are 90.51%, 

96.36%, 66.67%, 92.2%, 94.22% respectively.  

Table 5.9 Evaluation results of the proposed system for the discrimination between low 

glioma grades (I, and II) and the high grades (III, and IV) using the BRATS2015 dataset.  

Where Class1 and Class0 refer to high, and low grade respectively. 

Classifier 
Actual 

class 

Confusion matrices 
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Predicted class 

Class0 Class1 

Proposed 

MTMCS 

Class0 36 18 66.67 81.82 73.46 
90.51 

Class1 8 212 96.36 92.17 94.22 

 

After applying the proposed MTMCS based on one-layer NNs, the results indicate that the 

highest classification accuracy of 90.5% is achieved using 7 neurons in the layer with the 

13th iteration (Figure 5.21 and    Figure 5.22). There are also many other results which reflect 

the same classification accuracy with the use of different numbers of neurons, for example 

when using 18 or 23 neurons. However, with the aim of a reduction in the system complexity, 

the better choice would be 7 neurons and therefore the design based on 7 neurons was 

selected. There are other choices of neurons number including 14, 15 and 19 show a little 

lower classifications accuracy at 90.15%, while many other numbers of neurons illustrate 

various classification accuracies but mostly ranging between 89% and 89.7% (Figure 5.21). 

The experimental results obtained by conducting the proposed MTMCS based on 7 neurons 

in the one-layer NNs indicate that 13th iteration reflects the best classification accuracy at 

90.5% compared to all other iterations. Various iterations show different results of 

classification accuracy, while the next best accuracy at 89.42% is achieved by the 25th 

iteration followed by the accuracy of 89.05% achieved by the 24th iteration (   Figure 5.22). 
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5.8.1.1 Redundancy Analysis and Selection of Classifiers 

The SC algorithm is applied in this experiment to select the best set of classifiers as well as 

to eliminate redundant classifiers. The results obtained from using the proposed MTMCS 

based on one-layer NNs reveal that the best classification accuracy is achieved at 91.24% by 

Run10 (Table 5.10), where the highlighted classifiers are the optimal selected set of 

classifiers (Table 5.10). There is also Run1 that shows a slightly lower accuracy at 90.51% 

where DT classifier is removed, and the classification accuracy continues at the same level 

Figure 5.21 Classification accuracy results for applying the proposed system based on one-

layer NNs corresponding to the number of neurons in the layer to discriminate low grades 

(I, and II) against high glioma grades (III, and IV) using BRATS2015 dataset. 
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   Figure 5.22 Classification accuracy results for applying the proposed system 

corresponding to the iteration sequence number using the seven neurons in the one-layer 

NNs to discriminate low grades (I, and II) against high glioma grades (III, and IV) using the 

BRATS2015 dataset. 
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of accuracy at 90.51%. The results indicate that the SC algorithm introduces a significant 

reduction in the classifier dimensions that they reduced from eleven classifiers to seven 

classifiers with 91.24% of classification accuracy. 

Table 5.10 Selection process of the best set of classifiers with the corresponding 

classification accuracy ACCnew for each selected set of classifiers.   Where 1 and 0 refer to 

the keep and removing actions of a classifier respectively, Run represents running the 

process for each selected case. This test is classifying between low grades (II, III) and high 

grades (III, IV) using the BRATS2015 dataset. 
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KNNF 1 1 1 1 1 1 1 1 1 1 1 0 

SVMQ 1 1 1 1 1 1 1 1 1 1 0 0 

SVML 1 1 1 1 1 1 1 1 1 0 1 1 

SVMCUB 1 1 1 1 1 1 1 1 0 1 1 1 

KNNW 1 1 1 1 1 1 1 0 1 1 1 1 

SVMG 1 1 1 1 1 1 0 1 1 1 1 1 

KNNCUB 1 1 1 1 1 0 0 0 0 0 0 0 

KNNMED 1 1 1 1 0 0 0 0 0 0 0 0 

KNNCOS 1 1 1 0 1 1 1 1 1 1 1 1 

LDA 1 1 0 1 1 1 1 1 1 1 1 1 

DT 1 0 0 0 0 0 0 0 0 0 0 0 

ACCnew 90.51 90.51 89.42 89.42 90.88 90.88 90.51 90.51 90.51 90.51 91.24 88.69 

 

 

It is noted that the classification accuracy of the proposed MTMCS is improved from 90.5% 

to 91.24% when the optimal set of classifiers is selected based on the SC method where the 

classification performance in terms of classification accuracy, sensitivity, specificity, 

precision, F-measure are 91.24%, 97.27%, 66.67%, 92.20%, 94.69% respectively. This 

achievement in the classification accuracy is obtained for applying the proposed MTMCS 

based on one-layer NNs using 9 neurons and the 48th iteration in the design of NNs. 

5.8.1.2 Comparison with Other Methods 

The overall classification performance in terms of classification accuracy shows that the 

proposed MTMCS based on one-layer NNs has achieved an accuracy of 91.24% 

outperforming all other single and ensemble classification models. The next highest 

classification accuracy compared to all other the traditional approaches were achieved at 

85.77% by the KNNF classifier. The next lowest accuracy is achieved by SVMQ at 85.40%, 
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while the lowest classification accuracy is obtained by DT at 71.53%. With respect to the 

ensemble systems, the averaged classification accuracy is around 80%, where the majority 

voting was the one that shows the best accuracy at 84.67% compared to the other ensemble 

approaches (Figure 5.23).    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.8.2   Experiment 2: Implementing the Proposed MTMCS Based on the Selected Set 

of Features 

The results obtained from experiment 1 show a significant accuracy at 90.5% for the 

proposed MTMCS using the full set of the textural features measured from 3DGLCM, after 

which, the classification accuracy has improved to 91.24% using the SC method. To 

investigate the influence of the selected set of features chosen by the proposed HFSA on the 

classification performance of the proposed MTMCS, the selected features were fed to the 

first stage of the proposed system and then the classification system is implemented and 

evaluated. The evaluation starts with performing the proposed MTMCS based on one-layer 

NNs. This was conducted by training and testing the classifier members using the selected 

set of features, then the outcome of these classifiers was combined using the proposed 

methodology. Considering the resultant confusion matrix of the proposed MTMCS, the 

results indicate that the best classification performance in terms of the classification 

Figure 5.23 Comparative results in terms of the classification accuracy of the proposed 

MTMCS based on one-layer NNs against all other single classification models and 

ensemble methods, for the discrimination between low glioma grades (I, and II) and the 

high grades (III, and IV) using the BRATS2015 dataset. 
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accuracy, sensitivity, specificity, precision, F-measure are 89.42%, 96.36%, 61.11, 91, 

93.59% respectively (Table 5.11). 

Table 5.11 Evaluation of the classification performance for the proposed system based on 

one-layer NNs.  This is for the discrimination between low grades glioma (I, and II) and 

the high grades (III, and IV) using the BRATS2015 dataset where Class1 and Class0 refer 

to high (III, IV), and low grade (I, II) respectively. 
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Predicted class 

Class0 Class1 

Proposed 

MTMCS 

Class0 33 21 61.11 80.50 69.47 
89.42 

Class1 8 212 96.36 91.00 93.59 

 

It was noted experimentally that the design that achieved the best classification accuracy at 

89.42% is based on using 21 neurons in the layer of the NNs, and at the 5th iteration (Figure 

5.24 and Figure 5.25). There are also other numbers of neurons that lead to slightly lower 

classification accuracy, at 89% with the use of 11 or 17 neurons in the layer. With respect 

the investigation in the iterations, the results show that different iterations such as at 16th 

reflect the next best classification accuracy at 88%. While all other iterations show lower 

classification accuracy and most of them reflect accuracies averaged around 85% (Figure 

5.25). 

 

 

 

 

 

 

 

 

 

 

Figure 5.24 Classification accuracy results for applying the proposed system using one-

layer NN corresponding to the number of neurons in the layer to discriminate low 

grades (I, and II) against high glioma grades (III, and IV) using BRATS2015. 
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The results obtained by applying the proposed system based on the two-layer NNs indicate 

that that the best design achieved a classification accuracy of 90.51% where the sensitivity, 

specificity, precision, and F-measure of the proposed system are 96.82%, 64.81%, 91.8%, 

94.24% respectively (Table 5.12).  

Table 5.12 Evaluation of the classification performance for the proposed system based on 

the two-layer NNs.  This is for the discrimination between low grades glioma (I, and II) 

and the high grades (III, and IV) using the BRATS2015 dataset where Class1 and Class0 

refer to high (III, IV), and low grade (I, II) respectively. 

Classifier 
Actual 

class 

Confusion matrices 
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Predicted class 

Class0 Class1 

Proposed 

MTMCS 

Class0 35 19 64.81 83.30 72.91 
90.51 

Class1 7 213 96.82 91.80 94.24 

 

It is observed experimentally that the best achievement of 90.51% is obtained using the 9th 

iteration, which reflects the highest classification accuracy compared to all other iterations. 

It is also noted that the number of neurons of this achievement is 5, and 22 in the first and 

the second layer of NNs respectively (Figure 5.26).  There are many other choices of neurons 

Figure 5.25 Classification accuracy results corresponding to the iteration sequence number 

using 21 neurons in the one-layer NNs to discriminate low grades (I, and II) against high 

glioma grades (III, and IV) using BRATS2015. 
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number that revel close results, for example, the first, and second layers of NNs, when using 

11 and 4 respectively achieved an accuracy of 89.78% and using 15 and 28 neurons 

respectively give an accuracy of 89.41%. Most of the other choices of number of neurons 

present similar accuracies around 88% and 89%.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.8.3 Comparing the Results of Experiment 1 and Experiment 2  

Experiment 1 includes the evaluation and implementation of the full set of features presented 

by the 3D texture features and these features were used in the training and testing of the all 

classifiers at the first stage of the proposed MTMCS. Experiment 2 covers the evaluation 

and implementation of the selected set of features chosen by the proposed HFSA. The 

classification performance of both experiment 1 and 2 have shown good accuracy 

outweighing all other single and ensemble classifiers, but there is a slight difference in the 

Figure 5.26 Classification accuracy results for the proposed MTMCS using two-layer NNs 

corresponding to number of neurons per the first and second layers in the left and right axis 

respectively.  This test is to classify low grade glioma (I, II) versus the high grades (III, IV) 

using the BRATS2015 dataset. The optimal selected design was found at the 9th iteration 

with 5 neurons in the first layer, and 22 neurons in the second layer. 
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classification accuracy between them - the obtained accuracy is 90.51 and 89.42 

respectively. To explain this difference further, the results obtained by both experiments are 

compared, and the classification performances are analysed in terms of sensitivity of high 

grades (Figure 5.27), sensitivity of low grades (specificity) (Figure 5.28), F-measure of high 

grades and low grades (Figure 5.29, and Figure 5.30) respectively. The outcome of the 

integrated classifiers is used as an input to the second stage of the proposed MTMCS where 

it is observed that the outcome of the classifiers has various behaviour after using the 

proposed HFSA. Notably, there is an improvement in the classification accuracy in some 

classifiers including the KNNF classifier due to the use of the proposed HFSA, where the 

classification accuracy is enhanced from 85.77% to 87.96%. The selected set of features 

influence the classifiers differently, for example, the classifiers SVMCUB, KNNM, KNNW 

have shown a small reduction in the sensitivity of high grades (Figure 5.27), while the 

sensitivity of low grade is also reduced in some other classifiers such as the LDA and SVMQ 

classifiers (Figure 5.28). Performance evaluation in term of F-measure of both high and low 

grades between the two experiments also confirms that using the proposed feature selection 

method has a variable impact on different classifiers by improving the outcome of some 

classifiers while not others. 

To sum up, using a different set of features enables a single classification system to improve 

the performance of some classifiers in term of classification accuracy and not others. 

Different set of features has a different impact on the performance of the classifiers. Due to 

the proposed MTMCS depending on the outcome of the fusion of all members in the ODM, 

the reduction in the sensitivity of low and high grades of some members has slightly 

degraded the final classification accuracy obtained by the proposed MTMCS. On the other 

hand, when the proposed system is implemented based on the two-layer the classification 

accuracy is increased to 90.5%. This shows that the proposed MTMCS has a stable accuracy 

but in some circumstances, it is necessary to investigate further layers that can lead to 

superior results in the classification accuracy. Hence, to gain further improvement in the 

classification accuracy, the proposed system has been developed based on utilising the full 

set of features that includes the textural features and the proposed features associated with 

tumour descriptors. Also, the development in the automated system will explore enabling 

diversity in features space, which can lead to achieve further improvement in the 

classification accuracy.  
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Figure 5.27 Classification results in term of the sensitivity of high grades to show the 

difference in behaviour between using the fullest of features (3D texture features) and 

after applying the selected features using the proposed HFSA for the discrimination 

between low Glioma grades (I, and II) and the high grades (III, and IV) using 

BRATS2015. 
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Figure 5.28 Classification results in term of the sensitivity of low grades to show the 

difference in behaviour between using the fullest of features (3D texture features) against 

applying the selected features using the proposed HFSA for the discrimination between low 

glioma grades (I, and II) and the high grades (III, and IV) using BRATS2015.  
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Figure 5.29 Classification results in term of the F-measure of high grades to show the 

difference in behaviour between using the fullest of features (3D texture features) and 

after applying the selected features using the proposed HFSA for the discrimination 

between low glioma grades (I, and II) and the high grades (III, and IV) using 

BRATS2015.  
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Figure 5.30 Classification results in term of the F measure of low grades to show the 

difference in behaviour between using the fullest of features (3D texture features) and 

after applying the selected features using the proposed HFSA for the discrimination 

between low Glioma grades (I, and II) and the high grades (III, and IV) using 

BRATS2015.  
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5.8.4 Experiment 3: Develop the Proposed System Using the Textual Feature and the 

Proposed Feature Associated with Tumour Descriptors 

The proposed MTMCS is developed based on all the available features set extracted from 

3DGLCM and features associated with tumour descriptors (FTD). The purpose of this 

experiment is to assess the ability of the proposed system to classify the glioma grades based 

on the combination of all the textural features and proposed features extracted from the 

tumour descriptors (TD).  

The performance evaluation of the classification system starts with implementing the 

proposed MTMCS based on one-layer NNs. The results illustrate that the achieved 

classification accuracy is of 92.70% with the use of 7 neurons and second iteration (Figure 

5.31 and Figure 5.32). While the next best classification accuracy is achieved at 92.34% 

using 17 neurons, other neurons number also shows good accuracies at 92% with such as 2, 

3 and 4 neurons. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.31 Classification accuracy results for demonstrating the proposed MTMCS using 

one-layer NNs corresponding to the number of neurons in the layer to discriminate between 

low grades (I, and II) and high glioma grades (III, and IV), based on the full set of features 

3DGLCM and FTD derived from BRATS2015. 
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5.8.4.1 Redundancy Analysis and Select Classifiers 

The results obtained from applying the SC algorithm to this experiment indicate that the 

classification accuracy has slightly improved from 92.7% to 93.07%, where this 

enhancement is achieved by both Run9 and Run10 (Table 5.13). However, Run10 includes 

a smaller number of classifiers. Therefore, it is a better choice, and thus it is selected for the 

proposed system. Run11 also shows a good classification accuracy at 92.7% where it has 

lower dimensions of classifiers as only five classifiers are needed for this accuracy.     

The other significant achievement in this experiment is that the classifier dimensions have 

been reduced from eleven classifiers to six classifiers that are highlighted in Table 5.13. 

While maintaining a high classification accuracy at 93.07%, these classifiers are namely 

SVML, SVMG, KNNF, KNNM, KNNCOS and LDA. The classification performance for 

the proposed MTMCS for this achievement by Run10 in terms of sensitivity, specificity, 

precision and F-measure are 99.09%, 68.52%, 92.8%, 95.82% respectively (Table 5.14). 

  

 

 

Figure 5.32 Classification accuracy results corresponding to the iteration sequence number 

using one-layer NNs based on the full set of features 3DGLCM and TD to classify low 

grades against high grade glioma using BRATS2015. 
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Table 5.13 Selection process of best set of classifiers with the corresponding classification 

accuracy ACCnew for each selected set of classifiers.  Where 1 and 0 refer to the keep and 

removing actions of classifier respectively, Run represents running the process for each 

selected case. This test is classifying low grades (II, III) versus high grades (III, IV) using 

the BRATS2015 dataset based on the full set of features (3DGLCM and FTD). 

Classifier 

Name 

R
u

n
 I

n
it

ia
l 

R
u

n
1

 

R
u

n
2

 

R
u

n
3

 

R
u

n
4

 

R
u

n
5

 

R
u

n
6

 

R
u

n
7

 

R
u

n
8

 

R
u

n
9

 

R
u

n
1

0
 

R
u

n
1

1
 

SVML 1 1 1 1 1 1 1 1 1 1 1 0 

SVMQ 1 1 1 1 1 1 1 1 1 1 0 0 

KNNW 1 1 1 1 1 1 1 1 1 0 0 0 

SVMCUB 1 1 1 1 1 1 1 1 0 0 0 0 

SVMG 1 1 1 1 1 1 1 0 1 1 1 1 

KNNCUB 1 1 1 1 1 1 0 0 0 0 0 0 

KNNF 1 1 1 1 1 0 1 1 1 1 1 1 

KNNM 1 1 1 1 0 1 1 1 1 1 1 1 

DT 1 1 1 0 0 0 0 0 0 0 0 0 

KNNCOS 1 1 0 1 1 1 1 1 1 1 1 1 

LDA 1 0 1 1 1 1 1 1 1 1 1 1 

ACCnew 92.7 91.97 92.34 92.7 92.34 91.97 92.7 92.34 92.7 93.07 93.07 92.7 

 

 

 

Table 5.14 Evaluation of the classification performance for the proposed system based on 

the one-layer NNs.  This is for the discrimination between low grades glioma (I, and II) 

and the high grades (III, and IV) using the BRATS2015 dataset where Class1 and Class0 

refer to high (III, IV), and low grade (I, II) respectively. 
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Predicted class 

Class0 Class1 

Proposed 

MTMCS 

Class0 37 17 68.52 94.90 79.57 
93.07 

Class1 2 218 99.09 92.80 95.82 
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5.8.4.2 Comparison with Other Methods 

It is observed from the comparison of the proposed MTMCS versus the other single and 

ensemble classifiers that the proposed system based on the combination of the textural 

feature and the proposed features derived from the tumour descriptors has achieved a 

superior classification accuracy at 93.07 % compared to all other classification approaches 

(Figure 5.33, and Table 5.15). Among the single classifiers, SVML achieved the best result 

at 90.15. Similar classification accuracy was obtained by using the MCS based on majority 

vote. This indicates that the integration of these features with the proposed methodology 

enables the majority vote to achieve a good classification accuracy at 90.15%. Following 

these results, the best accuracy was achieved by SVMQ at 89.78%. While all other classifiers 

result is between the lowest accuracy at 77% achieved by LDA to 88.3% by KNN classifiers 

(Figure 5.33, and Table 5.15).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.33  Comparative evaluation in term of classification accuracy for the proposed 

MTMCS system versus the other single and ensemble classifiers to classify low against 

high grade glioma using BRATS2015 based on the full set of features of 3DGLCM and 

proposed tumour features. The proposed MTMCS is performed based on the one-layer NNs 
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Table 5.15 A comparative evaluation results of the proposed MTMCS based on one-layer 

NNs versus all other classification approaches and the majority vote.  This is for the 

classification of low-grade glioma (I, II) versus the low-grade (III, IV) based on the full set 

of features of 3DGLCM and FTD that derived from BRATS2015. 
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Predicted class 

Class0 Class1 

DT 
Class0 26 28 48.15 66.67 55.91 

85.04 
Class1 13 207 94.09 88.09 90.98 

LDA 
Class0 43 11 79.63 45.26 57.71 

77.01 
Class1 52 168 76.36 93.85 84.21 

SVML 
Class0 31 23 57.41 88.57 69.66 

90.15 
Class1 4 216 98.18 90.38 94.11 

SVMQ 
Class0 36 18 66.67 78.26 72.00 

89.78 
Class1 10 210 95.45 92.11 93.75 

SVMCUB 
Class0 35 19 64.81 71.43 67.96 

87.96 
Class1 14 206 93.64 91.56 92.58 

SVMG 
Class0 26 28 48.15 81.25 60.46 

87.59 
Class1 6 214 97.27 88.43 92.64 

KNNF 
Class0 36 18 66.67 66.67 66.66 

86.86 
Class1 18 202 91.82 91.82 91.81 

KNNM 
Class0 30 24 55.56 68.18 61.22 

86.13 
Class1 14 206 93.64 89.57 91.55 

KNNCOS 
Class0 33 21 61.11 60.00 60.55 

84.31 
Class1 22 198 90.00 90.41 90.20 

KNNCUB 
Class0 32 22 59.26 71.11 64.64 

87.23 
Class1 13 207 94.09 90.39 92.20 

KNNW 
Class0 30 24 55.56 78.95 65.21 

88.32 
Class1 8 212 96.36 89.83 92.98 

EBTree 
Class0 34 20 62.96 79.07 70.10 

89.42 
Class1 9 211 95.91 91.34 93.56 

ESDA 
Class0 36 18 66.67 63.16 64.86 

85.77 
Class1 21 199 90.45 91.71 91.07 

Majority 

Vote 

Class0 34 20 62.96 82.93 71.57 
90.15 

Class1 7 213 96.82 91.42 94.03 

Proposed 

MTMCS 

Class0 37 17 68.52 94.87 79.57 
93.07 

Class1 2 218 99.09 92.77 95.82 
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5.8.5 Experiment 4: Develop the Proposed System Based on the Diversity in Feature 

Space 

In this experiment, the proposed system is developed by enabling the diversity in the output 

decision that comes from the classifiers, which can be generated by dividing the features 

space into a different subset of features. The produced subsets of features are utilised in the 

training and testing phases of the classifier members where the outcomes of these members 

are employed to enlarge the ODM. Consequently, each patient in the dataset will have 

various output decisions developed to improve the classification accuracy thus increasing 

the chance of producing correct decisions from different subsets of the feature. The rationale 

for this development in the proposed MTMCS is to investigate the influence of activating 

diversity in the features space, which can lead to further enhancement in the classification 

accuracy of glioma grades. 

In this experiment, the BRATS2015 dataset has been used, which has 274 patients with 54 

patients of low grades and 220 patients of high-grade glioma. In the first stage of this test, 

the proposed classification system is updated by generating further output decision vectors 

produced from a different subset of features based on the strategy of dividing the features 

set to a multi subset of features. This leads to increasing the diversity of the output decision 

vectors, which can overcome the misclassified samples that could occur due to weak 

classifiers. Several subsets of features are produced and used to train and test the classifiers 

(Figure 5.34). These subsets of features are generated as follows; the proposed features 

related to tumour descriptors (FTD) that includes 8 features, the 2DGLCM with 72 features, 

the 3rd part of GLCM with 162 features, the full set of 3DGLCM with 234 features, and the 

overall features set with 242 features (Figure 5.34). Each subset is utilised individually to 

train and test each one of the classifier members and the output decisions for each one of 

them are constructed and combined in the ODM. Consequently, the ODM will have the 

dimensions (11 output decision vectors ×5 sets of features × number of patients) and thus 55 

classifiers are constructed to be used in the second stage of proposed MTMCS. 
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To further elaborate, the total dimensions of the output decisions vector are calculated as 

follows; number of classifiers used × number of features subset × number of patients. 

Accordingly, 274 samples × 55 classifiers equal 15070 tests that are performed in the first 

stage of the proposed MTMCS. The following stage is the training and testing of the ODM 

based on the proposed methodology of MTMCS. 

In the second stage of the proposed MTMCS, for the implementation of one-layer NNs, 274 

tests × 30 neurons × 50 iterations are investigated, as a result, in total, 411000 tests are 

implemented and evaluated. The hardware used in this experiment is Core i7, RAM 16, and 

MATLAB 2018. For the one-layer NNs, the total time spent for the implementation of the 

second stage of the proposed MTMCS, including the cross-validation, training and testing 

of 274 samples (each sample represented by 55 classifiers) × 50 iterations × 30 nodes is 

approximately 65375.523 seconds (18.159 hours), which is reduced practically using 

parallel processing and realistically becomes about 9387.871266 seconds (2.6 hours). The 

average execution time for training N-1 samples and testing one sample is 0.159 ± 0.033 

seconds, where N refers to the total number of samples. 

The results obtained from testing for the proposed MTMCS based on one-layer NNs exhibit 

that the best classification performance achieved in terms of the classification accuracy, 

Figure 5.34 The diagram of the generation of the output decision vectors 

conducted based on the diversity in feature space. Eleven output decision 

vectors refer to the eleven classifiers involved in the first stage of the proposed 

system, which applied to five subsets of features resulting in fifty-five 

classifiers being built. 

  

2DGLCM (4 angles × 18 features)       (11 Classifiers) 

TD (8 features)       (11 Classifiers) 

3rd GLCM (9 angles × 18 features)       (11 Classifiers) 

(11 output decision vectors ×5 subsets × number of patients)  

TD, 2D, 3rD (8+72+162)       (11 Classifiers) 

2D, 3rD (13 angles × 18 features)            (11 Classifiers) 
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sensitivity, specificity (or sensitivity of low grades), precision, and F-measure are 93.07%, 

98.64%, 70.37%, 93.1%, and 95.80% respectively (Table 5.16). 

 

Table 5.16 the results of the performance evaluation of the proposed MTMCS based on 

one-layer NNs incorporated the diversity in features space using the BRATS2015 dataset.  

This test is to classify between low grades glioma (I, II) and high grades glioma (III, IV). 

Class0 and Class1 refer to low and high grades respectively. 

Classifier 
Actual 

class 

Confusion 

matrices 
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 %
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 %
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re
 %

 

A
cc
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cy
 %

 

Predicted class 

Class0 Class1 

Proposed 

MTMCS 

Class0 38 16 70.37 92.68 80.00 
93.07 

Class1 3 217 98.64 93.13 95.80 

 

It is noted that the highest classification accuracy of 93.07% is achieved by the 

implementation of one-layer NN through the use of two neurons, and through using the 42nd 

iteration (Figure 5.35 and Figure 5.36). It is also observed that the classification accuracy 

gradually decreases with the increasing number of neurons in the one-layer NNs. The next 

best accuracy is achieved at 92.34% by 5, 8 and 9 neurons. There are also other numbers of 

neurons that show good results such as the use of 1 neuron that reflects 91.97% accuracy 

and 4 neurons that shows 91.97% accuracy. With respect to the investigation in conducting 

the iterations, it is observed that there are various numbers of iterations reflecting different 

classification accuracy, while the next best classification accuracy is obtained by the 24th 

iteration at 91.97%. There are also other iterations achieved classification accuracies very 

close to the optimal result, for example the 8th iteration reflects 91.61%, while the 6th, 16th 

and 22th achieved 91.24%. 
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Figure 5.35 Classification accuracy results for the proposed system based on one-layer of 

NNs corresponding to the number of neurons in layer based on enabling the diversity in 

features space. This test is to classify between glioma low grades (I, II) and high grades 

(III, IV) using BRATS2015 dataset 

 

0

10

20

30

40

50

60

70

80

90

100

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

C
la

ss
if

ic
at

io
n
 A

cc
u
ra

cy
 %

Neurons Number in Layer

Figure 5.36 Classification accuracy results for the proposed system based on one-layer 

NNs according to the iteration sequence number for two neurons in the layer, 

incorporating the diversity in feature space. This test is to classify between glioma low 

grades (I, II) and high grades (III, IV) using the BRATS2015 dataset. 
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The two-layers NNs of the proposed MTMCS have also been investigated to seek for 

potential improvement in the classification accuracy. The results exhibit that the best 

classification performance achieved for the proposed MTMCS in terms of the classification 

accuracy, sensitivity, specificity (or sensitivity of low glioma grades), precision, and F-

measure are 93.43%, 98.18%, 74.07 %, 93.9 %, and 96% respectively (Table 5.17). 

 

Table 5.17 The results of the performance evaluation of the proposed MTMCS based on 

two-layer NNs and incorporated the diversity in features space using the BRATS2015 

dataset.  This test to classify between low grades glioma (I, II) and high grades glioma (III, 

IV). Class0 and Class1 refer to low and high grades respectively. 

Classifier 
Actual 

class 

Confusion matrices 
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Predicted class 

Class0 Class1 

Proposed 

MTMCS 

Class0 40 14 74.07 90.91 81.63 
93.43 

Class1 4 216 98.18 93.91 96.00 

 

  

It is observed that this achievement in the results is yielded based on the use of 19, and 5 

neurons in the first and second layers respectively at the 24th iteration (Figure 5.37). 

This experiment was extended to investigate the three-layer NNs for the proposed MTMCS 

incorporating diversity in the features space. Giving the confusion matrix for the optimal 

result after applying the proposed MTMCS (Table 5.18), the classification performance in 

terms of classification accuracy, sensitivity, specificity (or sensitivity of low grades), 

precision, and F-measure are 93.80%, 99.09%, 72.22%, 93.6%, and 96.24% respectively. 

These results are achieved by using 6, 18, 6 neurons in the first, second, and third layers 

respectively at the 10th iteration. It should be noted that it is extremely complicated to 

visualise a graph with five dimensions to present the obtained results in this experiment from 

three-layer and different iterations. Therefore, some of the results obtained by conducting 

the proposed MTMCS based on three-layer NNs and the diversity in the features space are 

depicted in (Appendix A). 
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Table 5.18 Results of the performance evaluation of the proposed MTMCS based on three-

layer NNs with enabling the diversity in features space using the BRATS2015 dataset.  

This test is to classify between low grades glioma (I, II) and high grades glioma (III, IV). 

Class0 and Class1 refer to low and high grades respectively. 

Classifier 
Actual 

class 

Confusion matrices 
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 %
 

Predicted class 

Class0 Class1 

Proposed 

MTMCS 

Class0 39 15 72.22 95.12 82.10 
93.80 

Class1 2 218 99.09 93.56 96.24 

 

5.8.5.1 Redundancy Analysis and Select of Best Classifiers 

The SC algorithm is applied and evaluated in this experiment for potential achievement in 

the classification performance of MTMCS based on the full set of features including the 

textural features associated with GLCM and the proposed features extracted from the tumour 

descriptors incorporated the activation of diversity in features space. The classifiers in this 

experiment are applied to five subsets of features where they are defined as follows (Table 

5.20); those that are implemented based on the full set of features including FTD, 2DGLCM, 

Figure 5.37 Classification accuracy with respect to number of neurons per first and 

second layers in the left and right side respectively. The proposed MTMCS is 

implemented based on two-layers NN and incorporated the diversity technique 

using the BRATS2015 dataset. 
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3rd GLCM are indicated by the description: classifier name_ALL. While the rest as follows; 

Classifier_2D refers to the classifiers implementation based on 2DGLCM. Classifier 

name_3rd refers to implementing classifiers based on the third part of GLCM. Classifier 

name_ALL3D refers to the ones conducted based on the features associated with 3DGLCM. 

Classifier name_TD refers to implementing the classifiers based on the proposed features 

associated with tumour descriptors. The algorithm starts with sorting the classifiers into 

descending order (Table 5.20). After the SC algorithm is implemented, the results indicate 

that the classification accuracy has been improved from 93.07% achieved by the initial Run 

to 93.43% obtained by Run11, where the dimensions of classifiers are reduced from 55 

classifiers to 53 classifiers that are highlighted in yellow and two classifiers are eliminated, 

these are KNNCOS_3rd and DT_2D classifiers. It is noted that the classification accuracy is 

increased to its maximum value at 93.80% by Run32 when SVMQA_3rd classifier is 

eliminated in addition to the other two classifiers (Table 5.20). Accordingly, the best 

reduction in the classifiers dimensions is gained by Run32 where classifiers are reduced from 

55 classifiers to 52 classifiers while maintaining the best classification accuracy at 93.80%. 

It is also observed that most of the runs conducted by the proposed MTMCS based on one-

layer NNs incorporating the SC method reflected comparable accuracies close to the optimal 

result at 93.80%, for example, the last two runs defined by Run 45 and 55 are showing 

93.43% accuracy (Table 5.20). Classification performance in term of sensitivity, specificity, 

precision and F-measure is illustrated in (Table 5.19), which was achieved by Run32.  

 

Table 5.19 Results of the performance evaluation of the proposed MTMCS based on one-

layer NNs and incorporated the diversity in features space and SCA using the BRATS2015 

dataset.  This test is to classify between low grades glioma (I, II) and high grades glioma 

(III, IV). Class0 and Class1 refer to low and high grades respectively. 

Classifier 
Actual 
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Confusion 

matrices 
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Predicted class 

Class0 Class1 

Proposed 

MTMCS 

Class0 40 14 74.07 93.02 82.47 
93.80 

Class1 3 217 98.64 93.94 96.23 
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Table 5.20 Selection process of best set of classifiers with the corresponding classification accuracy ACCnew for each selected set of classifiers. 

Where 1 and 0 refer to the keep and removing actions of classifier respectively, Run represents running the process for each selected case. This 

test is classifying low grades (II, III) versus high grades (III, IV) using BRATS2015 dataset based on the full set of features (3DGLCM and 

FTD) and diversity in the features space 
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The time spent for developing and optimising the proposed MTMCS based on one, two and 

three-layer NNs using the BRATS2015 dataset (Table 5.21) is measured and analysed using 

a personal computer with Core i7, RAM 16 M, having enabled the parallel computing, and 

Matlab software Ver. R2018.  The time that was measured, indicated that additional layer of 

NNs leads to raise the implementation time further. It is also noted that time for developing 

the proposed system for this dataset is higher compared to the other datasets where this 

dataset has larger number of samples and this leads to increase the time required for the 

training phase, which consequently increases the implementation time of the proposed 

system. Although that time is significantly reduced by enabling parallel processing, it still 

takes considerable time for the implementation of the proposed MTMCS. However, this time 

is only required for the development of the system, and once the system model is developed 

and optimised, the required time for decision-making process or testing a sample will not 

take more than a few seconds. The time that is calculated for training and testing includes 

the training of N-1 where N is the total number of samples and time for testing one sample, 

this process is repeated for all samples through the LOO cross-validation technique and 

therefore the average ± standard deviation is measured (Mean ± SD) (Table 5.21). Number 

of classifiers being 55 refers to experiment 4 when diversity is activated, while the number 

of classifiers 11 indicates all other experiments. 

Table 5.21 The development time spent by the proposed MTMCS including the total time, 

practical time, training N-1 and testing one sample.  N is the total number of samples 

where the time is calculated according different number of layers and classifiers. This time 

is measured in seconds. 

No. of Layer of 

NNs 

No. of 

classifiers 
Total Time 

Practical time 

using parallel 

processing 

Training (N-1) and 

testing one sample 

Mean ± SD 

One-layer 11 61925.31 9243.96 0.150 ± 0.02 

Two-layer 11 2338032 328009.97 0.189 ± 0.02 

One-layer 55 65375.52 9387.87 0.159 ± 0.03 

Two-layer 55 2409602 343778.08 0.195 ± 0.02 

Three-layer 55 24695916 3522955.17 0.211 ± 0.03 
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5.9 Evaluating the Proposed MTMCS Using the BRATS2018 Dataset 

To add further evaluation for the proposed MTMCS, BRATS2018 is used to train and test 

the automated classification system. Three experiments are implemented using this dataset; 

the first one is implemented based on the use of the texture feature associated with GLCM 

(Experiment 1). The second experiment is implemented based on the full set of features 

including the textural features and the new features developed to measure the tumour 

descriptor (Experiment 2). The third one (Experiment 3) is implemented based on enabling 

the diversity in the feature space using the same methodology develop with BRATS2015 

which is explained in detail in section 5.8.5.  

5.9.1 Experiment 1: Implementing the Proposed MTMCS Using the Textural 

Features 

In this experiment, the input features are the textural statistics based on the full set of features 

associated with GLCM to classify malignant grades of glioma using the BRATS2018 

dataset. In the implementation of the first stage of the MTMCS, the ODM is constructed 

based on the training and testing each classifier individually. The resultant ODM will have 

the dimensions - eleven classifiers × 285 samples.  

Considering the maximum results that are achieved using the proposed MTMCS (Table 

5.22), there are 55 samples out of 75 of low-grades samples are correctly classified as low-

grade glioma, while 203 out of 210 of high-grades samples are correctly identified as high-

grade glioma. The results indicate that the classification performance for the proposed 

system in terms of classification accuracy, sensitivity, specificity, precision, F-measure are 

90.53%, 96.67%, 73.33%, 91% 93.76% respectively.  

Table 5.22 Evaluation results of the proposed system for the discrimination between low 

glioma grades (I, and II) and the high grades (III, and IV) using the BRATS2018 dataset.  

Where Class1 and Class0 refer to high, and low grade respectively. 

Classifier 
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Predicted class 

Class0 Class1 

Proposed 

MTMCS 

Class0 55 20 73.33 88.71 80.29 
90.53 

Class1 7 203 96.67 91.03 93.76 
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It is noticed that these results were obtained when implementing the proposed MTMCS 

based on one-layer NNs using 10 neurons in the layer with the 22nd iteration (Figure 5.38 

and Figure 5.39). There are also many other results which show slightly lower classification 

accuracy at 90.16% with the use of different numbers of neurons, for example when using 

1, 8 and 14 neurons. However, the better choice would be 10 neurons as it shows better 

accuracy, and therefore the design based on 10 neurons was selected (Figure 5.38). 

 

 

 

  

Figure 5.38 Classification accuracy results for applying the proposed system based on 

one-layer NNs corresponding to the number of neurons in the layer to discriminate low 

grades (I, and II) against high glioma grades (III, and IV) using BRATS2018 dataset. 
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Figure 5.39 Classification accuracy results for applying the proposed system corresponding 

to the iteration sequence number using the ten neurons in the one-layer NNs to discriminate 

low grades (I, and II) against high glioma grades (III, and IV) using the BRATS2018 

dataset. 
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5.9.1.1 Redundancy Analysis and Selection of Classifiers 

The SC algorithm is implemented to optimise the classification performance by determining 

the best set of classifiers as well as eliminating redundant classifiers. The results obtained 

from applying this algorithm incorporated with the proposed MTMCS based on one-layer 

NNs showed that the best classification accuracy achieved at 91.58% by Run8 (Table 5.23). 

The highlighted classifiers are the optimal selected set of classifiers (Table 5.23), and the 

number of classifiers is reduced from 11 to 6 classifiers. Also, other runs showed a slightly 

lower classification accuracy at 91.23% with small number of classifiers such as Run6, and 

Run7. Following lower accuracy was achieved at 90.18% by Run10 where the number of 

classifiers is reduced from 11 to 5 classifiers. The results illustrate that the best classification 

performance for the proposed system based on one-layer NNs incorporated with the SC 

algorithm in terms of sensitivity, specificity, precision, F-measure are 97.62%, 74.67%, 

91.52%, 94.47% respectively (Table 5.24).  

Table 5.23 Selection process of best set of classifiers with the corresponding classification 

accuracy ACCnew for each selected set of classifiers.  Where 1 and 0 refer to the keep and 

removing actions of classifier respectively, Run represents running the process for each 

selected case. This test is classifying low grades (II, III) versus high grades (III, IV) using 

the BRATS2018 dataset based on the full set of features (3DGLCM). 
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SVMG 1 1 1 1 1 1 0 0 0 0 0 0 

SVMCUB 1 1 1 1 1 0 1 1 1 1 1 1 
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Table 5.24 Evaluation results of the proposed system based on one-layer NNs incorporated 

with the SC algorithm for the discrimination between low glioma grades (I, and II) and the 

high grades (III, and IV) using the BRATS2018 dataset where Class1 and Class0 refer to 

high, and low grade respectively. 
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Predicted class 

Class0 Class1 

Proposed 

MTMCS 

Class0 56 19 74.67 91.80 82.35 
91.58 

Class1 5 205 97.62 91.52 94.47 

 

5.9.1.2 Comparison with Other Methods 

The overall classification performance in terms of classification accuracy is conducted 

(Figure 5.40). The results showed that the proposed MTMCS based on one-layer NNs has 

achieved an accuracy of 91.58% outperforming all other single and ensemble classification 

models. The next highest classification accuracy compared to all other the traditional 

approaches was achieved at 86.31% by the SVML classifier. While the lowest classification 

accuracy is obtained by KNNF classifier at 78.24%. With respect to the ensemble systems, 

the averaged classification accuracy is around 82%, where the majority voting was the one 

that shows the best accuracy at 84.91% compared to the other ensemble approaches (Figure 

5.40).    

 

 

 

 

 

 

 

 

 

 Figure 5.40 Comparative results in terms of the classification accuracy of the proposed 

MTMCS based on one-layer NNs against all other single and ensemble classification models 

using the BRATS2018. 

0

10

20

30

40

50

60

70

80

90

100

C
la

ss
if

ic
at

io
n
 A

cc
u
ra

cy
 %

Classifier Name



CHAPTER 5 

 

202 

 

5.9.2 Experiment 2: Implementing the Proposed System Using the Textual Feature 

and the Proposed Feature Associated with Tumour Descriptors 

The automated classification system is further developed using all features extracted in this 

work including the full set of features associated with the GLCM and the new features FTD. 

The rationale of this experiment is to examine the ability of the classification system based 

on the proposed MTMCS using the textural features and the new features extracted from the 

tumour descriptors to classify the malignant grades of glioma.  

After implementing the proposed MTMCS based on one-layer NNs, the results illustrate that 

the obtained classification performance in terms of classification accuracy, sensitivity, 

specificity, precision and F-measure are 95.09%, 98.10%, 86.67%, 95.37%, 96.71% 

respectively (Table 5.25). These best results are achieved by implementing the proposed 

MTMCS with the use of 13 neurons and 40th iteration (Figure 5.41 and Figure 5.42).  

Table 5.25 Evaluation of the classification performance for the proposed system based on 

the one-layer NNs. This is for the discrimination between low grades glioma (I, and II) and 

the high grades (III, and IV) using the BRATS2018 dataset. 
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Predicted class 

Class0 Class1 

Proposed 

MTMCS 

Class0 65 10 86.67 94.20 90.27 
95.09 

Class1 4 206 98.10 95.37 96.71 
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Figure 5.41 Classification accuracy results for demonstrating the proposed MTMCS based 

on one-layer NNs corresponding to the number of neurons in the layer based on the full set 

of features 3DGLCM and FTD derived from BRATS2018. 
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5.9.2.1 Redundancy Analysis and Selection of Classifiers 

After applying the SC algorithm to this experiment, the results indicated that the initial run 

achieved the maximum classification accuracy at 95.09% outperforming all other runs. 

Different runs have also been noticed to show slightly lower classification accuracy averaged 

around 94% with lower number of classifiers that is reduced from 11 to 10 classifiers such 

as Run1, Run2 and Run3. However, the best classification accuracy is achieved by the initial 

run based on the eleven classifiers (Table 5.26).  

5.9.2.2 Comparison with Other Methods 

It is observed from the comparison of the proposed MTMCS versus the other traditional 

single and ensemble classifiers that the proposed system based on the combination of the 

textural feature and the proposed features derived from the tumour descriptors has achieved 

a superior classification accuracy at 95.10 % compared to all other classification approaches 

(Figure 5.43). Among the single classifiers, 92.98% of classification accuracy is achieved 

by SVML. Following this result, the SVMQ classifiers obtained 91.22% (Figure 5.43). It is 

also noticed that the combination of the textural features with the new FTD integrated with 

the MTMCS enables the simple majority vote to achieve a significant classification accuracy 

at 90.17%. While all other classifiers result is between the lowest accuracy at 80.35% 

achieved by LDA to 89.82% achieved by both EBTree and SVMCUB classifiers (Figure 

5.43).  

Figure 5.42 Classification accuracy results corresponding to the iteration sequence number 

with the thirteen neurons based on the full set of features 3DGLCM and FTD using 

BRATS2018. 
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Table 5.26 Selection process of best set of classifiers with the corresponding classification 

accuracy ACCnew for each selected set of classifiers.  Where 1 and 0 refer to the keep and 

removing actions of classifier respectively, Run represents running the process for each 

selected case. This test is classifying low grades (II, III) versus high grades (III, IV) using 

the BRATS2018 dataset based on the full set of features (3DGLCM and FTD). 
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Figure 5.43  Comparative evaluation in term of classification accuracy for the proposed 

MTMCS based on one-layer NNs versus the other single and ensemble classifiers to 

classify low against high grade glioma using BRATS2018 based on the full set of features 

of 3DGLCM and the proposed tumour features. 
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5.9.3 Experiment 3: Develop the Proposed System Based on the Diversity in Feature 

Space 

     The full set of features including FTD and GLCM are used with enabling the diversity in 

feature space by splitting the features set into different subsets of features and through the 

same methodology developed in section 5.8.5. Then the classification models are trained and 

tested using these subsets of features whereby different output decisions are produced and 

utilised to build the ODM. The ODM is then employed in the second stage of MTMCS. The 

dimensions of the ODM are 11 classifiers × 285 samples × 5 subsets of features, resulting in 

15675 tests that are implemented in the first stage of the MTMCS. For the implementation 

of the second stage of the proposed MTMCS based on one-layer NNs, 285 tests × 30 neurons 

× 50 iterations are investigated, as a result, in total, 427500 tests are implemented and 

evaluated. 

The results obtained from testing the proposed MTMCS based on one-layer NNs showed 

that the best classification performance achieved in terms of the classification accuracy, 

sensitivity, specificity, precision, and F-measure are 93.33%, 97.62%, 81.33%, 93.6%, and 

95.57% respectively (Table 5.27). 

It is observed that the best classification accuracy of 93.33% is obtained by the 

implementation of MTMCS based on one-layer NN through the use of six neurons, and 

based on 32nd iteration (Figure 5.44 and Figure 5.45). The same classification accuracy at 

93.33% is achieved by using 8 neurons. It is also noted that there are various numbers of 

neurons and iterations reflecting slightly comparable classification accuracy at 92.93% by 

the use of 9 and 15 neurons. While other cases achieved lower classification accuracy at 

92.63% such as 1, 2, 3 and 4 neurons (Figure 5.44). 

Table 5.27 The results of the performance evaluation of the proposed MTMCS based on 

one-layer NNs incorporated the diversity in features space using the BRATS2018 dataset.  

This test is to classify between low grades glioma (I, II) and high grades glioma (III, IV). 

Class0 and Class1 refer to low and high grades respectively. 
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Predicted class 

Class0 Class1 

Proposed 

MTMCS 

Class0 61 14 81.33 92.40 86.52 
93.33 

Class1 5 205 97.62 93.60 95.57 
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Figure 5.44 Classification accuracy results for the proposed system based on one-layer of 

NNs corresponding to the number of neurons in layer based on enabling the diversity in 

features space. This test is to classify between glioma low grades (I, II) and high grades 

(III, IV) using BRATS2018 dataset. 

 

Figure 5.45 Classification accuracy results for the proposed system based on one-layer 

NNs according to the iteration sequence number for six neurons in the layer, incorporating 

the diversity in feature space. This test is to classify between glioma low grades (I, II) and 

high grades (III, IV) using the BRATS2018 dataset. 
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After implementing the proposed MTMCS based on two-layer NNs, the results indicate that 

the classification accuracy is improved to achieve its highest classification performance in 

terms of the classification accuracy, sensitivity, specificity, precision, and F-measure are 

94.39%, 98.10%, 84%, 94.50%, and 96.26% respectively (Table 5.28). This achievement in 

the results is obtained based on the use of 12, and 6 neurons in the first and second layers 

respectively at the 7th iteration (Figure 5.46) 

Table 5.28 The performance evaluation of the proposed MTMCS based on two-layer NNs 

and incorporated the diversity in features space using the BRATS2018 dataset.  This test to 

classify between low grades glioma (I, II) and high grades glioma (III, IV). 
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Predicted class 

Class0 Class1 

Proposed 

MTMCS 

Class0 63 12 84.00 94.03 88.73 
94.39 

Class1 4 206 98.10 94.50 96.26 
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Figure 5.46 Classification accuracy results for the proposed MTMCS using two-layer 

NNs corresponding to number of nodes in the first and second layers in the left and 

right axis respectively. This test is to classify between lower grade (II, III) and high 

grades (III, IV) using the BRATS2018. The optimal selected design was found at the 

7th iteration and 12 neurons in the first layer, and 6 at the second layer. 
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5.9.3.1 Redundancy Analysis and Selection of Classifier 

The same algorithm of selecting the best set of classifiers (SCA) incorporated with the 

proposed MTCMS with enabling the diversity in features space is applied to BRATS2018 

dataset. The rationale of this experiment is to add further evaluation to the developed system 

to investigate a better enhancement in the classification performance of the automated 

system in terms of classification accuracy and model design. The results indicated that the 

classification accuracy was enhanced from 93.33% achieved by the initial Run to 94.74% 

obtained by Run5 (Table 5.30). While the dimensions of classifiers are reduced from 55 

classifiers to 52 classifiers that are highlighted in yellow and three classifiers are eliminated, 

these are LDA_3rd and DT_3rd and KNNF_2D classifiers (Table 5.30). It is observed that 

there are other cases have achieved slightly lower classification accuracy at 94.04% by 

RUN13, RUN20, RUN32 and RUN39 with better elimination of classifiers where the 

number of classifiers is reduced from 55 classifiers to 51 classifiers. It is also noted that most 

of the runs conducted by the proposed MTMCS based on one-layer NNs incorporating the 

SC method obtained slightly comparable accuracies around 93.33 to 94% (Table 5.30). 

Classification performance in term of sensitivity, specificity, precision and F-measure is 

illustrated in Table 5.29, which was achieved by Run5. It is noted that the maximum 

classification accuracy of 94.74% is achieved by the implementation of MTMCS based on 

one-layer NN through the use of twelve neurons and through using the 35th iteration (Figure 

5.47 and Figure 5.48).  

Table 5.29 Results of the performance evaluation of the proposed MTMCS based on one-

layer NNs and enabling the diversity in features space and SCA using the BRATS2018 

dataset.  This test is to classify between low grades glioma (I, II) and high grades glioma 

(III, IV). Class0 and Class1 refer to low and high grades respectively. 
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Predicted class 

Class0 Class1 

Proposed 

MTMCS 

Class0 62 13 82.67 96.88 89.20 
94.74 

Class1 2 208 99.05 94.12 96.51 
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SVML_ALL3DTD 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

SVML_TD 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1

SVMQA_ALL3DTD 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1

KNNCUB_TD 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1

SVMQA_TD 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1

KNNM_TD 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1

DT_ALL3DTD 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1

SVMG_TD 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1

DT_TD 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1

KNNCOS_TD 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1

SVMCUB_ALL3DTD 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1

LDA_TD 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1

SVMCUB_TD 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1

KNNW_TD 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1

SVMG_ALL3DTD 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

KNNM_ALL3DTD 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

KNNCOS_ALL3DTD 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

KNNW_ALL3DTD 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

SVML_2D 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

KNNCUB_ALL3DTD 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

KNNF_TD 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

SVML_ALL3D 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

SVML_3rd 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

KNNF_ALL3DTD 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

SVMQA_ALL3D 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

KNNM_ALL3D 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

KNNCUB_2D 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

SVMG_ALL3D 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

KNNW_ALL3D 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

KNNM_2D 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

KNNW_2D 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

SVMG_2D 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

SVMQA_2D 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

KNNW_3rd 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

KNNCUB_ALL3D 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

KNNCOS_ALL3D 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

SVMCUB_2D 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

SVMQA_3rd 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

KNNCOS_3rd 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

DT_ALL3D 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

KNNCOS_2D 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

SVMCUB_ALL3D 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

SVMG_3rd 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

SVMCUB_3rd 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

KNNCUB_3rd 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

KNNM_3rd 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

DT_2D 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

LDA_2D 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

LDA_ALL3DTD 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

LDA_ALL3D 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

LDA_3rd 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

KNNF_ALL3D 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

KNNF_3rd 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

KNNF_2D 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DT_3rd 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Table 5.30 Selection process of best set of classifiers with the corresponding classification accuracy ACCnew for each selected set of classifiers. 

This test is classifying low grades (II, III) versus high grades (III, IV) using BRATS2018 dataset based on the full set of features (3DGLCM 

and FTD) and diversity in the features space. 
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Figure 5.47 Classification accuracy results for the proposed system based on one-layer of 

NNs corresponding to the number of neurons in layer based on enabling the diversity in 

features space. This test is to classify between glioma low grades (I, II) and high grades 

(III, IV) using BRATS2018 dataset for the RUN5 of SC algorithm. 
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Figure 5.48 Classification accuracy results for the proposed system based on one-layer NNs 

according to the iteration sequence number for twelve neurons in the layer, incorporating the 

diversity in feature space. This test is to classify between glioma low grades (I, II) and high 

grades (III, IV) using the BRATS2018 dataset for the RUN5 of the SC algorithm. 
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5.10  Results Summary and Discussion  

Overall results, from the implementation of the proposed MTMCS using the four datasets, 

are summarised in Table 5.31 and Table 5.32 where the results and findings of this chapter 

are discussed. It has been shown that the proposed methodology based on the integration of 

multiple classifiers and DNN offers an improved classification accuracy for brain glioma 

grades. A wide range of experiments and designs are investigated for the proposed MTMCS 

scheme using four benchmark datasets. The classification performance of the proposed 

system is evaluated and compared against different popular single classifiers and ensemble 

systems.  

In general, the results illustrated that the proposed MTMCS has achieved optimal 

classification results at 100% accuracy when tested with two datasets; these are the 

BRATS2013 and Cancer dataset, while it yields a superior classification accuracy of 93.80% 

and 95.09% when tested with the BRATS2015 and BRATS2018 respectively.  

Furthermore, the proposed MTMCS based on the textural features measured from GLCM 

has achieved a full accuracy rate at 100% using the BRATS2013 dataset, and the same full 

accuracy is achieved with the Cancer dataset when the SC algorithm is utilised. The proposed 

design obtains a classification accuracy of 91.24% with the BRATS2015 dataset when the 

SC method is used. While the highest achievement was 95.09% of classification accuracy 

using BRATS2018 dataset.  

The results obtained from applying the proposed MTMCS based on integrating the full set 

of textural features measured for GLCM and the proposed features extracted from tumour 

descriptors indicate that the classification accuracy is improved to 92.7% using BRATS2015 

and to 95.09% using BRATS2018 dataset. For BRATS2015, the classification accuracy is 

further improved to 93.07% by incorporating the SC method. In attempting to improve the 

classification accuracy further, the proposed MTMCS is updated by activating the diversity 

in the features space through dividing the feature space into five subsets of features and 

utilising the same eleven classifiers in the training and testing of each subset of features. It 

is observed that the results of the implementation of one-layer NNs have not shown a 

significant improvement where the classification accuracy remained at the same level at 

93.07%. However, there is a slight improvement achieved in the specificity that is improved 

from 68.52% to 70.37%. On the other hand, when further hidden layers of NNs are 

investigated.  
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Table 5.31 Results achieved by implementing the proposed MTMCS using the BRATS2013, BRATS2015 and BRATS2018 datasets. Sensitivity 

refers to the high grades. Highlighted cell with (*) means there is no rationale to progress the experiment further. 
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1 Texture-GLCM 100 100 100 100 11 90.51 96.36 66.67 92.17 11 90.53 96.67 73.33 91.03 11 

2 

Texture-

GLCM+SC (one 

layer) 

100 100 100 100 5 91.24 97.27 66.67 92.20 7 91.58 97.62 74.67 91.52 6 

3 
Texture-GLCM + 

FTD (one-layer) 
* * * * * 92.70 98.10 70.30 93.10 11 95.09 98.10 86.67 95.37 11 

4 

Texture-GLCM + 

FTD +SCA (one 

layer) 

* * * * * 93.07 99.09 68.52 92.80 6 95.09 98.10 86.67 95.37 11 

5 

Enabling diversity 

in features space 

(Texture-

GLCM+FTD) one-

layer 

* * * * * 93.07 98.64 70.37 93.10 55 93.33 97.62 81.33 93.60 55 

6 

Enabling diversity 

in features space 

(Texture-

GLCM+FTD) two 

layer 

* * * * * 93.43 98.18 74.07 93.91 55 94.39 98.10 84 94.50 55 

7 

Enabling diversity 

in features space 

(Texture-

GLCM+FTD) one-

layer +SCA 

* * * * * 93.80 98.6 74.0 93.9 52 94.74 99.05 82.67 94.12 52 
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Table 5.32 Results achieved by implementing the proposed MTMCS using the Cancer 

dataset.  Positive in confusion matrix and sensitivity refer to the high grades. 

Cancer dataset, low grade (GII) against high grades (GIII, GIV) 

Method design 
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Without feature reduction 96.67 100 90 95.23 11 

With Feature selection (one-

layer) 
96.67 100 90 95.23 11 

After SCA (one-layer) 100 100 100 100 7 

 

It is observed that the classification accuracy is enhanced to 93.4% by the two-layer NNs 

and more improvement is gained by applying the three-layer NNs where the classification 

accuracy is increased to 93.80%. For BRATS2018 dataset, after implementing the one-layer 

MTMCS and enabling the diversity in feature space, the results showed lower classification 

accuracy at 93.33% and this indicates that redundant classifiers are conflicting with others 

in the pool of 55 classifiers, which impact negatively on the classification accuracy. 

Therefore, the experiment is further extended to investigate the proposed MTMCS based on 

two-layer of NNs and the full set of features that includes texture and FTD incorporated with 

enabling the diversity and thus the result indicated better enhancement and it is improved 

from 93.33% to 94.39%. The integration between the SC algorithm and the developed 

MTMCS is also implemented and the classification accuracy is evaluated. Hence the results 

illustrated notable enhancement in the classification accuracy to achieve 94.74% while the 

number of classifiers needed to obtain this result is reduced from 55 to 52 classifiers. This is 

a significant improvement in the system performance in terms of classification accuracy and 

classifies dimensions. 

It was observed that the development of the proposed system based on adding more hidden 

layers would lead to the enhanced classification accuracy of glioma grades. However, adding 

more than one hidden layer of NNs increase the complexity of the proposed system design. 

Nevertheless, using the proposed methodology of the MCS based on the DINN incorporated 

the selection of the best set of classifiers (SCA) enable the proposed system to achieve the 

optimal classification rate with fewer numbers of layers of NNs. 
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The proposed MTMCS based on three-layer NNs has achieved a significant improvement in 

the classification accuracy. However, it requires high computation time mainly in the 

optimisation of the proposed MTMCS as well as having further complexity compared to 

other layers of NNs. Therefore, in attempting to tackle this issue and reduce the complexity 

in the proposed design, the SC algorithm is applied for further investigation, seeking for the 

best classification performance through conducting the proposed MTMCS based on only 

one-layer NNs. 

The SC algorithm is advantageous as it enables the proposed MTMCS to achieve its 

maximum classification performance without the need to investigate further hidden layers 

of NNs where the same higher classification accuracy at 93.80% is obtained by incorporating 

SC algorithm with the proposed methodology based on only one-layer NNs. This 

achievement is gained with a lower number of classifier members that is only 52 classifiers 

at the second stage of the proposed MTMCS. 

For the Cancer dataset, the full discrimination rate is obtained between grade IV and the 

lower grades (II, III), and between grade II versus the higher grades glioma (III, IV). 

Similarly, for BRATS2013, the full discrimination rate is obtained between low grades (I, 

II) and high grades glioma (III, IV), where all these achievements are conducted by the 

proposed MTMCS based on one-layer NNs and incorporating the SC algorithm. The 

proposed DINN is proven to overcome the problem of random selection of neurons and 

iterations in an attempt to achieve the best design of DNN. This is performed by a systematic 

examination for different intensive designs of NNs based on various numbers of neurons and 

iterations developed and implemented for the proposed system. To further elaborate, there 

are different points of divergence that come from testing different validation sets and initial 

weights, examined within various iterations of DNN. 

Consequently, different network weights are produced in each iteration, where each iteration 

provides different results. The purpose of determining a considerable number of different 

designs of DNN with various subsets of validation is to find the optimal convergence to the 

global minimum value, which represents the best possible design of DNN that would reveal 

the highest classification accuracy. However, this will require a longer computation time in 

the learning phase.  

Some datasets used in this experimental work could be considered relatively small, and this 

may have degraded the accuracy of the NNs. However, using the proposed MTMCS has 
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been proven to overcome this limitation through the integration of different classifiers that 

can handle datasets of small size and thus show remarkable results. Indeed, at present, it is a 

significant challenge to acquire a large image dataset of glioma grades with the approval of 

the histopathology test. This approval is vital to have a solid confirmation of the malignancy 

grade of glioma, thereby providing real validity of the evaluation and validation process of 

any classification or grading system. Consequently, the proposed classification system is not 

affected by this issue, and thus it achieved a promising result and a significant improvement 

in the classification accuracy of glioma grades. Besides, the proposed system can be 

considered critically as an alternative method to the traditional approach of deep learning 

that usually requires an enormous dataset and an intensive computation time. 

A significant improvement is obtained in the results of the classification of MR images of 

glioma grades using the proposed MTMCS. The results show that the proposed MTMCS has 

achieved significant results compared to other single and ensemble classification method 

without the need to involve any selection process in the first stage of the proposed system. 

However, conducting the selection task in the second stage was observed to highly impact 

on the classification performance in terms of classification accuracy and gaining a reduction 

in the dimensions of the classifier member. This significantly improves the classification 

performance through the selection of best set of classifiers (SCA) that are able to contribute 

effectively to the classification system of glioma grades. It was found that the proposed 

system has the advantage of outperforming both the single classification method and the 

ensemble systems. However, it requires a high computation time, advanced computing 

hardware, and parallel computing making it possible to reduce the execution time. 

5.11 Conclusion  

Two stages of a novel multiple classification systems for automated glioma grading have 

been proposed in this chapter. The first stage was designed based on utilising different 

popular classification models developed for the grading of malignancy of brain tumours in 

MR images. In this stage, eleven classification models were trained and tested individually. 

Each of the classification models was trained based on different features including the co-

occurrence of textural features and the proposed features associated with tumour descriptors, 

where these features were extracted from the conventional MRI modalities. The second stage 

adopted the meta-strategy of multiple classifier systems, which is developed based on the 

integration of different classifiers based on DNN. A systematic application of DNN is 
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conducted through the proposed DINN that enable DNN to achieve its highest classification 

accuracy. Consequently, this leads to an improved classification performance of the 

proposed system in the classification of glioma grades.  

To assess the ability of the proposed MTMCS in the discrimination of different WHO glioma 

grades and achieve improved classification accuracy, the proposed MTMCS was 

implemented in different experiments with the use of four benchmark datasets.  

The performance of different classification approaches has been evaluated in terms of 

classification accuracy, sensitivity, specificity, precision and F-measure. A comparison 

between the proposed MTMCS and different methods such as single classifier and ensemble 

systems have been examined in terms of these performance measures. The Leave-one-out 

cross-validation technique has been adopted in all stages to add more generalisation for the 

classification system and to validate the system performance. The results have illustrated 

that the proposed MTMCS has achieved a superior classification accuracy at 93.80% for 

BRATS2015 and 95.09% for BRATS2018 as compared to the existing methods for the 

classification between low-grade glioma (I, II) and high-grade glioma (III, IV). While, for 

the other datasets, the experimental results show that the proposed system has obtained the 

optimal discrimination rate at 100%. To elaborate, for the BRATS2013 dataset, the full 

classification rate is achieved to classify low grades (I, II) from high grades glioma (III, IV), 

and for the Cancer dataset, the full recognition rate is obtained to classify low-grade II versus 

the high grades (III, IV), as well as between grade IV and the lower grades glioma (II, III).  

The experimental outputs have revealed that the integration of different single classifiers 

using deep neural networks is an efficient approach to stack a multi-classification model for 

the classification of different glioma grades. The proposed methodology presented by the 

DINN has further improved the final classification accuracy, thus enabling the MCS to 

achieve better classification accuracy for glioma grades. 
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CHAPTER 6 : Multi-Class Classification for Glioma 

Grades 

Overview  

This chapter presents the proposed system, its evaluation and results analysis to achieve a 

multi-class classification of WHO malignant grades of glioma. This starts by demonstrating 

the proposed hybrid feature selection algorithm (HFSA) incorporating different single and 

ensemble systems. This chapter also investigates the ability of the automated classification 

system incorporated with the proposed HFSA to improve discrimination accuracy for multi-

class classification of glioma grades. Then, in attempting to achieve better classification 

accuracy, the proposed meta-trainable multiple classification systems (MTMCS) integrated 

with a hierarchical strategy is demonstrated to achieve the multi-class classification of 

glioma grades. To further elaborate, the proposed system takes the merit of the hierarchical 

classification scheme and developing the classification system by establishing the proposed 

MTMCS in each node of the hierarchical design. This system is built to enhance the 

automated multi-class classification for glioma grades towards precise and improved 

classification results. In this chapter, the need to develop a multiple classifier systems for 

multi-class classification for different WHO grades of glioma was addressed. MR images of 

public dataset with different WHO glioma grades were used to evaluate the proposed system. 

The input features to every single classifier in the first stage of MTMCS were the texture 

information extracted from T2-MR slices. In the second stage, the output decision vectors 

produced from each classifier were fed to the DNN. Leave-one-out (LOO) cross-validation 

scheme was used in all stages to validate the classification process and to add more 

generalisation to the proposed classification system. The classification performance of the 

proposed system was compared against other current and common approaches such as the 

single classification system, MCS based on the majority vote and other widely used 

ensemble algorithms that include Ensemble Bagged Tree (EBTree) and Ensemble Subspace 

Discriminate Analysis (ESDA). The comparison in classification performance between the 

proposed system and the other existing methods was conducted to evaluate the proposed 

system in the classification of WHO glioma grades. This evaluation is measured in terms of 

the confusion matrix and classification accuracy.  
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6.1 Introduction 

Recognising the correct glioma grade is a significant challenge because the different grade 

of glioma can have high heterogeneity and mixed pathological characteristics of tumour. 

Hence, in this work, the proposed MTMCS based on different machine learning algorithms 

incorporated with MRI features of a brain tumour are employed to determine the correct 

glioma grade (Theeler and Groves, 2011, Siker et al., 2006). The development of a machine 

learning algorithm to undertake multi-class classification is challenging because many 

machine learning methods are designed basically to handle a two-class problem. Therefore, 

most machine learning methods perform well if applied to a two-class classification problem 

compared with its performance if applied to multi-class classification. The hierarchical 

scheme is an efficient method and recommended widely by the literature to overcome the 

challenge of multi-class classification problem (Rajan and Ghosh, 2004, Chen et al., 2004). 

Therefore, this approach was adopted in this study to deal with the multi-class classification 

problem. However, it was shown in the literature, that existing works that aim to achieve 

multi-class classification have developed the hierarchical strategy based only on a single 

classification approach while giving less attention to take the merit of MCS (Kumar et al., 

2002). Due to the existing method including the single classifier system has less ability to 

handle multi-class classification, in addition, it is highly dependent on the input data 

distribution which may lead to low classification accuracy. Consequently, to achieve an 

improved classification accuracy of glioma grades, a new scheme was proposed through the 

integration between the proposed MTMCS and hierarchical scheme. This new system is 

performed by the development of the proposed MTMCS in each node of the tree structure 

of the hierarchical scheme to build an effective classification system for WHO glioma 

grades. LOO cross-validation technique is used in all stages of both approaches to achieve 

valid results and add more generalisation to the classification system. This work was 

proposed to achieve an automated classification of WHO glioma grades with a more accurate 

and precise outcome than other current and common approaches such as the single 

classification system and traditional ensemble approach. Therefore, the proposed system is 

evaluated by comparing the grading accuracy of glioma with other recent common 

approaches including single classifiers and ensemble classification models. 
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6.2 Materials and MRI Input Features   

The dataset used in this chapter is acquired from the cancer archive collection. Thirty patients 

of MRI T2- weighted are used. This dataset is used in this study because it has different 

grades validated with the confirmation of histopathology diagnosis. Each group of glioma 

grades is diagnosed with one of the grades (II, III, and IV), and each one has 10 patients. 

Each patient has a different number of images ranging from 20 to 120 images, with varying 

post imaging setting such as different gap space and slice thickness which ranges from 2 to 

7.5 mm (Clark et al., 2013).  The MRI-T2 slices were utilised as described in Chapter 3, 

including cropping and intensities normalisation. Then, the texture information based on 

eighteen statistics were extracted from the 3DGLCM. The work started with the preparation 

of a multi-class classification of glioma grades, in which each grade of glioma was assigned 

with a unique index label, indicating different classes of glioma, and each patient has been 

indexed with one of the three grades in the training phase. 

6.3 Evaluation of the Proposed Hybrid Feature Selection Method for 

Multi-Class Classification of Glioma Grades 

Three experiments were conducted; in the first experiment, the full set of the textural features 

associated with the 3DGLCM was utilised as an input into the single classifier system. The 

next experiment includes the implementation of the ANOVA technique whereby the selected 

set of features was used as an input into the single classifier system. In the last experiment, 

the proposed HFSA was implemented in which the selected set of features was utilised in 

the training and testing of the single classifier system. The purpose of these experiments is 

to evaluate the proposed HFSA in the multi-class classification of glioma grades and to 

investigate possible enhancement in the classification accuracy of the developed system.  

At the classification stage, the same thirteen classifiers which were used in this work, were 

applied and evaluated, eleven of which were based on the single classifier system namely 

decision tree (DT), linear discriminate analysis (LDA), support vector machine (SVM) with 

four kernels (SVML, SVMQ, SVMCUB and SVMG), and K-nearest neighbour (KNN) with 

five different designs (KNNF, KNNM, KNNCOS, KNNCUB and KNNW). While two 

classifiers were based on an ensemble system namely EBTree and ESDA. These classifiers 

are the most widely used in the classification of different applications and can efficiently 

achieve the multi-class classification task (section 2.14) and (section 3.6).  
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The input features to the classification system are the texture features driven from MRI-T2 

weighted, which were utilised for training the eleven individual classifiers, and then the 

testing phase was determined using a LOO cross-validation technique, in which each sample 

in the dataset set was tested one by one and then the classification performance was 

evaluated. The evaluation of the classification performance was conducted using a confusion 

matrix that contains the classification results of the three grades of glioma.  

In the first experiment, the full set of the 234 features were utilised in the training and testing 

of the thirteen classifiers that include single and ensemble systems. The results indicate that 

different classifiers reflect various classification accuracies. The best classification accuracy 

is obtained by DT classifier at 70%, outperforming all other classifiers. The results obtained 

by a single classification model shows that the next best classification accuracy is achieved 

by KNNF classifier at 50%. This is followed by accuracies of 40% achieved by both 

SVMCUB and KNNM classifiers. The results obtained based on the ensemble system 

illustrate that EBTree classifier achieved better results at 40% compared to the ESDA 

classification method (Table 6.1).   

Table 6.1  Comparative results for applying different classification methods using the full 

set of texture features.  Where Class0, Class1, and Class2 indicate to Grade II, Grade III, 

and Grade IV respectively.   

Classifier 
Actual 

class 

Confusion matrices 
A

cc
u
ra

cy

%
 Predicted class 

Class0 Class1 Class2 

DT 

Class0 7 2 1 

70.00 Class1 2 7 1 

Class2 2 1 7 

LDA 

Class0 2 8 0 

30.00 Class1 6 1 3 

Class2 1 3 6 

SVML 

Class0 5 5 0 

40.00 Class1 6 0 4 

Class2 0 3 7 

SVMQ 

Class0 3 7 0 

36.67 Class1 5 1 4 

Class2 1 2 7 

SVMCUB 

Class0 4 4 2 

40.00 Class1 5 1 4 

Class2 1 2 7 
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Table 6.1 Continued 

Classifier 
Actual 

class 

Confusion matrices 

A
cc

u
ra

cy

%
 Predicted class 

Class0 Class1 Class2 

SVMG 

Class0 2 8 0 

30.00 Class1 6 0 4 

Class2 1 2 7 

KNNF 

Class0 4 5 1 

50.00 Class1 5 3 2 

Class2 0 2 8 

KNNM 

Class0 4 6 0 

40.00 Class1 7 0 3 

Class2 0 2 8 

KNNCOS 

Class0 5 4 1 

46.67 Class1 6 0 4 

Class2 0 1 9 

KNNCUB 

Class0 5 5 0 

40.00 Class1 6 0 4 

Class2 0 3 7 

KNNW 

Class0 1 9 0 

30.00 Class1 6 0 4 

Class2 0 2 8 

EBTree 

Class0 4 6 0 

40.00 Class1 7 1 2 

Class2 0 3 7 

ESDA 

Class0 2 5 3 

33.33 Class1 5 2 3 

Class2 2 2 6 

 

After applying the ANOVA technique, the feature dimensions are reduced from 234 features 

to 122 features. The selected set of features by this method are utilised in the training and 

testing of all classifiers used in this work; the results show that the best classification 

accuracy compared to all other classifiers is achieved by the DT classifier at 73.33%. Lower 

accuracies at 60% are obtained by the KNNM and KNNCUB classifiers, followed by the 

KNNCOS classifier at 56.67%. All other classifier reflects results of accuracies less than 

50%. While with respect to the ensemble systems, the results indicate that both EBTree and 

ESDA achieved lower accuracies at 43.33% and 33.33% respectively (Table 6.2).   
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Table 6.2 Comparative results for testing the selected set of features chosen by the 

ANOVA method incorporated with different classification methods. 

Classifier 
Actual 

class 

Confusion matrices 

A
cc

u
ra

cy
%

 

Predicted class 

Class0 Class1 Class2 

DT 

Class0 7 1 2 

73.33 Class1 1 8 1 

Class2 2 1 7 

LDA 

Class0 5 3 2 

30.00 Class1 5 1 4 

Class2 1 6 3 

SVML 

Class0 5 5 0 

40.00 Class1 6 0 4 

Class2 1 2 7 

SVMQ 

Class0 4 6 0 

36.67 Class1 6 0 4 

Class2 1 2 7 

SVMCUB 

Class0 4 5 1 

33.33 Class1 5 1 4 

Class2 1 4 5 

SVMG 

Class0 5 5 0 

46.67 Class1 6 0 4 

Class2 0 1 9 

KNNF 

Class0 4 6 0 

36.67 Class1 5 1 4 

Class2 0 4 6 

KNNM 

Class0 10 0 0 

60.00 Class1 7 0 3 

Class2 1 1 8 

KNNCOS 

Class0 7 3 0 

56.67 Class1 6 0 4 

Class2 0 0 10 

KNNCUB 

Class0 10 0 0 

60.00 Class1 6 0 4 

Class2 1 1 8 

KNNW 

Class0 4 6 0 

43.33 Class1 7 0 3 

Class2 0 1 9 
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Table 6.2 Continued 

Classifier 
Actual 

class 

Confusion matrices 

A
cc

u
ra

cy
%

 

Predicted class 

Class0 Class1 Class2 

EBTree 

Class0 5 5 0 
43.33 

 
Class1 6 1 3 

Class2 0 3 7 

ESDA 

Class0 3 5 2 
33.33 

 
Class1 5 1 4 

Class2 3 1 6 

 

The next experiment is the implementation of the proposed HFSA, whereby the selected set 

of features is fed into the classification system and used in the training and testing of each 

classifier individually. For the initialisation of the proposed HFSA, the feature (Inverse 

difference normalized predictor, 4545) is selected as a reference predictor and after the 

implementation of the proposed algorithm, the chosen features namely (Inverse difference 

normalized predictor, 4545o), (homogeneity, 0o), (homogeneity, 90o), (Dissimilarity, 45o). 

The results yielded from the use of these features with different classification methods show 

that the maximum classification accuracy compared to all other classifiers is obtained by DT 

classifier at 76.67%. The next best result with slightly lower accuracy at 73.33% is achieved 

by the EBTree classifier. With respect to single classification models, these results are 

followed by the accuracy of 63.33% obtained by SVMQ classifier and 60% achieved by both 

the KNNCOS and KNNCUB classifiers. While all other classifiers reflect smaller accuracies 

for example both LDA and ESDA classifiers achieved an accuracy of 36.67% (Table 6.3). 

Table 6.3 Comparative results for examining the selected set of features chosen by the 

proposed HFSA incorporated with different single and ensemble classification approaches. 

Classifier 
Actual 

class 

Confusion matrices 

A
cc

u
ra

cy
%

 

Predicted class 

Class0 Class1 Class2 

DT 

Class0 8 1 1 

76.67 Class1 1 8 1 

Class2 2 1 7 

LDA 

Class0 4 5 1 

36.67 Class1 7 0 3 

Class2 1 2 7 
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Table 6.3 Continued 

Classifier 
Actual 

class 

Confusion matrices 

A
cc

u
ra

cy
 %

 

Predicted class 

Class0 Class1 Class2 

SVML 

Class0 4 5 1 

40.00 Class1 7 0 3 

Class2 0 2 8 

SVMQ 

Class0 7 2 1 

63.33 Class1 4 4 2 

Class2 0 2 8 

SVMCUB 

Class0 6 3 1 

53.33 Class1 4 3 3 

Class2 0 3 7 

SVMG 

Class0 5 4 1 

46.67 Class1 6 2 2 

Class2 0 3 7 

KNNF 

Class0 5 4 1 

46.67 Class1 3 3 4 

Class2 0 4 6 

KNNM 

Class0 8 1 1 

56.67 Class1 7 1 2 

Class2 1 1 8 

KNNCOS 

 

Class0 9 0 1 

60.00 Class1 6 0 4 

Class2 1 0 9 

KNNCUB 

Class0 8 1 1 

60.00 Class1 7 1 2 

Class2 0 1 9 

KNNW 

Class0 7 2 1 

56.67 Class1 5 2 3 

Class2 0 2 8 

EBTree 

Class0 8 1 1 

73.33 Class1 1 6 3 

Class2 2 0 8 

ESDA 

Class0 4 5 1 

36.67 Class1 8 0 2 

Class2 0 3 7 
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The overall comparison of classification performance for applying the proposed HFSA 

against the ANOVA technique and the set of features was conducted (Figure 6.1). The results 

illustrate that the classification accuracy through the use of selected set of features by 

ANOVA is increased compared to using the full set of features from 70% to 73.33% by DT, 

from 40% to 60% by both KNNCUB and KNNM, from 30% to 46.67% by SVMG, from 

30% to 43.33% by KNNW. While the classification accuracies based on an ensemble system 

is improved from 40% to 43.33% by EBTree, the accuracy of ESDA remained at the same 

level at 33.33% (Figure 6.1). 

When the selected set of features by the proposed HFSA was used in the multi-class 

classification of glioma grades, the results show that the classification accuracy is improved 

compared to both ANOVA methods and the use of the full set of features, where the best 

classification improvement is achieved by the DT classifier at 76.67%. Followed by the 

EBTree classifier where the classification accuracy is enhanced from 40% to 73.33%. The 

next best improvement is obtained by the SVMQ classifier where the accuracy is increased 

from 36.67 to 63.33%. Similarly, the accuracy of the SVMCUB classifier is enhanced from 

40% to 53.33% (Figure 6.1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1 Comparative results for examinations of three cases. 

 The first case is the testing of full set of features, the second case is testing of the selected set 

of features by the ANOVA technique, and the third case is the testing of the selected set of 

features by the proposed HFSA. This test is to evaluate the behaviour of the proposed HFSA 

against other cases using different classification models for multi-class classification of 

glioma grades. 
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Although both the proposed HFSA and ANOVA reveal an enhancement in the classification 

accuracy for the multi-class classification of glioma grades, the proposed HFSA achieved 

better enhancement with many classifiers. Also, the proposed HFSA has achieved a better 

reduction in the feature dimensions, where the feature space is reduced by ANOVA from 

234 to 122 features. The proposed HFSA has reduced the features space to only four features, 

which is considered a significant reduction in the features dimensions while gaining better 

classification accuracy. 

The results show that the proposed HFSA achieved a notable improvement in the 

classification performance from 70% to 76.33% by single classifiers systems including DT 

and EBTree classifiers. It is noted that different classifiers reflect various behaviours for a 

different subset of features and mainly single classifier, showing relatively lower accuracy 

when developed for multi-class classification of glioma grades. While the ensemble system 

shows low classification accuracy due to its dependency on the majority vote that is limited 

to sensing only linear relationships. Nevertheless, in attempting to achieve further 

improvement and better classification accuracy in the multi-class classification of glioma 

grades, the proposed MTMCS is implemented and tested in the multi-classification of glioma 

grades. Furthermore, the hierarchical strategy is applied because of its ability to overcome 

the multi-class classification problem. Therefore this strategy is integrated with the proposed 

MTMCS for multi-class classification of WHO glioma grades, more details are included in 

the next section. 

6.4 Hierarchical Meta-Trainable Multiple Classifier System  

In this work, a hierarchical approach is adopted for the multi-class classification of glioma 

grades due to its superior capability, successfully outperforming other methods, to tackle the 

multi-class classification problem. Where the classifier members are not trained on multi-

classes but instead on binary classification, within the proposed MTMCS through the tree 

structure of the hierarchical design, which they can perform better. The hierarchical strategy 

is integrated with the proposed MTMCS and denoted the hierarchical meta-trainable 

multiple classifier systems (HMTMCS). The proposed HMTMCS is then tested in the multi-

class classification of glioma grades to examine the ability of this approach in improving the 

classification performance of glioma grades into the WHO glioma grades.  

The proposed design was implemented based on developing each node of the tree of the 

hierarchical scheme using the proposed MTMCS. The design structure of the proposed 
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HMTMCS (Figure 6.2) which represents the proposed diagram for multi-class classification 

of the three classes where the proposed MTMCS was developed in Node 1 and Node 2 of 

the hierarchical structure (HS) and then both nodes were utilised for the decision making 

process for glioma grading. The proposed ensemble system has two main stages; the first 

stage is based on developing of single classifiers (1, ..., n), where   represent a 

classification model, and n is the total number of classifiers. Then, the second stage is that 

the ODM produced from the classifiers are provided to DNN. For the classification of three 

classes (1, 2, 3), the proposed design starts with the first level of separation of the tree 

structure which includes the separation between class label 3, and label 2 based on the 

outcome of Node1. Due to the results from the discrimination between grade IV and the 

lowest grades (II, III) obtained at the full rate of 100%, the first separation of the HS starts 

with the development of the proposed MTMCS to classify between grade IV against the 

other grades (II, III). 

The label 3 indicates class 3 (grade IV), label 2 designate grades (II, and III) that will be 

classified to label 4 (class 1 or grade II) and label 5 (class 2 or grade III). In more details, 

one-versus-all classification based on using MTMCS is determined in Node1 of the HS. The 

proposed HMTMCS will make a decision on an unknown sample and classify it as class 3 

if a positive decision results from Node 1. Similarly, the unknown sample will be classified 

as belonging to the label 2 if the output decision of Node 1 is negative. In the second split, 

that is, in Node 2 of the HS, another classification model is developed using the proposed 

MTMCS to discriminate the label 2 into two classes (1 and 2 or grade II and III 

respectively). Similarly, positive and negative decisions generated from Node 2 will decide 

whether the unknown sample belongs to class 2 or 1 respectively (Figure 6.2). 

Accordingly, a binary classification of glioma grades is applied in each tree node of HS, and 

then each node should produce a final decision on testing for an unknown brain tumour. For 

example, let class 3 refer to a brain tumour with grade IV and class 1 and 2 indicate grade II 

and III respectively. If the output decision of Node 1 is positive, then unknown brain tumour 

will be classified as grade IV, while if the output of Node 1 is negative, and then based on 

the output of Node 2, if it is negative, the unknown brain tumour will be classified as grade 

II. Similarly, if the outputs of Node 1 and Node 2 are negative and positive respectively, then 

the brain tumour will be classified as grade III. 
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It should be noted that the setting parameters of classifiers (1, ..., n) undertaken in the 

proposed design are the same as the setting used with the single classifier system, which are 

illustrated in (section 3.6). Each node of the proposed HMTMCS is trained, tested, and 

evaluated independently. Two classification models of the proposed MTMCS are developed 

in the tree nodes of the HS, where both classification models are used to determine the multi-

class classification of glioma grades. It is worth noting that through the development of the 

HMTMCS, it is necessary to change the class label to match the new subset of classes , 

and then performing a new task of training and testing phases with the new class label. That 

is accomplished based on assigning different indices to different class labels. The SC 

algorithm is also investigated in the development of MTMCS within each node of the 

proposed design in which possible enhancement can be achieved. 

LOO cross-validation technique is applied in all stages and all tree nodes of HS of the 

classification system to validate and add more generalisation to the proposed HMTMCS in 

the classification of glioma grades. Eventually, classification performance is evaluated and 

Figure 6.2 An illustration of the proposed hierarchical ensemble structure for 

classification of three classes (1, 2, 3), with two internal nodes, and three leaf nodes. The 

proposed MTMCS is developed in each internal node. 

Proposed MTMCS 
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compared in terms of the confusion matrix and classification accuracy between the proposed 

HMTMCS and other current approaches, including the single classifier and ensemble 

classification systems. 

6.5 Results and Discussion 

According to the HS that is utilised for the proposed MTMCS, which is developed at the 

first splitting of the HS in which the classification is conducted between glioma grades IV, 

and the other grades (II, III). Then at the next splitting of the HS, the system is further 

developed to classify the grades II against the grade III. These two developments of the 

proposed HMTMCS are conducted through two divisions of HS (Figure 6.2). Development 

of the proposed MTMCS at the first splitting of HS was already presented and thoroughly 

explained in (section 5.7.1) in which the results showed full discrimination rate between 

grade IV and the lower glioma grades (II, III). Therefore, in this chapter, the results of the 

development of the proposed MTMCS at only Node 2 will be explained and further 

discussed.  

With regards to the system development at the second splitting of the HS or Node 2, the SC 

algorithm is applied with the proposed system in attempting to enhance the classification 

performance of the proposed system for multi-class classification of glioma grades. 

Considering the results obtained from performing this method, a full discrimination rate at 

100% between grade II and grade III is achieved at Run1 (Table 6.4), in which the 

dimensions of classifiers are reduced by eliminating SVMG classifier. The highlighted 

classifiers in Table 6.4 are considered the significate classifiers that achieved the optimal 

classification accuracy at 100% by Run1; these classifiers are namely DT, LDA, KNNM, 

KNNCUB, KNNF, SVML, SVMCUB, KNNCOS, KNNW, and SVMQ. While other cases 

showed lower classification accuracy ranging from 90% to 95%, it is seen that the SC 

algorithm has significant impact on enhancing the classification performance of the proposed 

MTMCS in terms of accuracy and classifier dimensions in the discrimination between grade 

II and grade III. Consequently, the overall classification accuracy of the proposed system for 

the recognition of an unknown brain tumour has reached the full rate at 100% for all grades 

of glioma. 

Considering the resultant confusion matrix, in which the results show that the proposed 

HMTMCS based on one-layer NNs is able to recognise all samples correctly and achieve 
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the full classification accuracy at 100% (Table 6.5) for all malignant samples using the 

proposed methodology and incorporated the SC algorithm.  

 

Table 6.4 Selection process conducted based on the SCA.  The first column in the right 

represents the sorted classifiers according to their corresponding classification accuracy at 

the first stage of the proposed MTMCS. Table cells that include 1 and 0 refer to keep and 

remove actions respectively, which are applied to classifiers in different runs for the 

system (Run1 to Run11). ACCnew represents the final classification accuracy of the 

proposed system through the selection process using the Cancer dataset. 
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DT 1 1 1 1 1 1 1 1 1 1 1 0 

LDA 1 1 1 1 1 1 1 1 1 1 0 1 

KNNM 1 1 1 1 1 1 1 1 1 0 1 1 

KNNCUB 1 1 1 1 1 1 1 1 0 1 1 1 

KNNF 1 1 1 1 1 1 1 0 1 1 1 1 

SVML 1 1 1 1 1 1 0 1 1 1 1 1 

SVMCUB 1 1 1 1 1 0 1 1 1 1 1 1 

KNNCOS 1 1 1 1 0 1 1 1 1 1 1 1 

KNNW 1 1 1 0 1 1 1 1 1 1 1 1 

SVMQ 1 1 0 1 1 1 1 1 1 1 1 1 

SVMG 1 0 0 0 0 0 0 0 0 0 0 0 

ACCnew 

% 
90 100 90 90 90 90 95 95 95 90 95 95 

 

Table 6.5 Resultant confusion matrix of applying the proposed HMTMCS based on one-

layer of NNs in Node1 and Node2 of the hierarchical design for multi-class classification 

of glioma grades. 

 Predicted Classes 

Actual Classes GII GIII GIV 

GII 10 0 0 

GIII 0 10 0 

GIV 0 0 10 
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These optimal results are yielded by implementing the proposed system based on using 8 

neurons in the one-layer NNs (Figure 6.3 and Figure 6.4). Other neuron numbers have 

achieved good classification results; for example, when 28 neurons are used the results show 

95% classification accuracy. Many other neuron numbers reflect lower classification 

accuracy at 90% such as for 5, 11, 15 and 16 neurons. With respect to the iterations of NNs 

conducted by the proposed methodology (Figure 6.4), various iterations reveal different 

classification accuracies where the majority of the iterations reflect accuracies ranging from 

60 to 70%, while the accuracies of both 39th and 48th iteration are 80%. However, the optimal 

classification accuracy at 100% to discriminate grade II versus grade III is observed at the 

43th iteration. 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3 Classification accuracy results for applying the proposed HMTMCS based on 

one-layer NNs corresponding to the number of neurons in the layer to discriminate grade 

II against high glioma grade III using the Cancer dataset. These results are obtained from 

Run1 conducted by the SC algorithm. 
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The overall comparative results in term of classification accuracy for the proposed system 

versus the single and ensemble classification approaches illustrate that the proposed system 

has achieved the optimal results at 100% outperforming all other approaches. The next best 

accuracy is achieved by DT classifier at 70% followed by the majority voting classifier at 

56.66%, and with slightly lower accuracy at 50% shown by the KNN classifier while all 

other classifiers achieved lower accuracies with the range from 30% to 50% (Figure 6.5). 

The proposed HMTMCS has achieved a full recognition rate between different WHO glioma 

grades. Unlike the single classifiers system for which the multi-class classification is a great 

challenge and can impact negatively on many classifiers, the proposed system can take 

advantage of the proposed MTMCS integrated with the HS, which led to significant 

classification results outperforming all other classification schemes. However, the proposed 

approach and according to the adopted HS has more classes involved, and more splitting by 

the hierarchical tree is required for additional classes. Consequently further system 

development and complexity is needed.  

 

 

Figure 6.4 Classification accuracy results for performing the proposed HMTMCS 

corresponding to the iteration sequence number based on the 8 neurons in the one-layer NNs to 

discriminate grade II against high glioma grade III using the Cancer dataset. These results are 

obtained from Run1 conducted by the SC algorithm. 
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6.6 Conclusion  

The proposed MTMCS was developed in the tree nodes of HS, and consequently a novel 

system HMTMCS was developed for the multi-class classification to classify three WHO 

grades of glioma (II, III, and IV). In the first splitting of the HS, the proposed MTMCS was 

developed to classify grade IV against the lower grade (II, III). The second splitting includes 

the development of the proposed MTMCS to classify grade II versus grade III. The 

classification performance of the proposed system was evaluated in terms of the confusion 

matrix and the classification accuracy. The LOO technique is applied in all stages of this 

work to validate the classification performance and to ensure the generalisation. 

Furthermore, the classification performance is compared in terms of this evaluation method 

with different popular single classifiers and ensemble classification systems. The results 

showed that the proposed system achieved the full accuracy rate at 100% in the classification 

of WHO glioma grades with the optimal recognition for each glioma grade.  

 

Figure 6.5 Comparative results in term of classification accuracy for the proposed 

HMTMCS against both the single classification model and the ensemble system for multi-

class classification. 
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CHAPTER 7 : Discussion, Evaluation, Conclusion and 

Future Trends 

 

Overview 

This chapter provides a summary of the research undertaken and reviews the aim, objectives, 

methodology, contributions and results obtained by the development of an automated 

classification system for glioma grades. The contributions of this work are explored in terms 

of feature extraction, selection and classification. The chapter also highlights the method 

used for performance evaluation, in addition to comparing the classification performance of 

the proposed system against other common approaches, through exploring the robustness 

and classification stability of the system’s performance. Critical evaluation is conducted for 

the proposed system versus other recent methods in terms of features extraction, selection 

and classification. A critical comparison between the proposed system and other recent 

algorithms is discussed and presented. This chapter ends with the conclusion, findings, 

recommendations, possible opportunities, and suggested future works. The purpose of this 

chapter is to present a comprehensive overview and discussion of the research work 

conducted in this thesis with regards to different aspects highlighted and explored thoroughly 

which will give a clear understanding with summary of all the work done in this thesis. 

7.1 Discussion 

This section presents an overview of the research undertaken, starts with reviewing the aim 

and objectives of this thesis followed by an exploration of the research methodology, novelty 

and contributions. The review of novelty and contribution is highlighted in terms of features 

extraction, selection and classification. A summary of the overall results achieved by this 

experimental work is also discussed and reviewed.  

7.1.1 Review Aim and Objectives 

The aim of this thesis is to develop an automated classification system to discriminate 

different glioma grades and describe them in terms of WHO standard clinical grading 

schemes based on objective predictors extracted from MR images. Particularly, it explores 
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an effective solution to the glioma grading problem that would allow an automatic, objective 

and accurate classification for glioma grading. 

This work was concerned with researching how automated methods could be defined to 

generate a fast, accurate and objective assessment for glioma grades from medical images. 

To achieve the aim of this work, the following research objectives were established. 

Obj.1 Review the literature to understand the problem domain and to identify the research 

requirement, opportunities and boundaries of the research undertaken, in addition to 

evaluating and investigating the robust methods and techniques, which support the 

development of an automated classification system for glioma grades towards 

specific goals of a non-invasive (without clinical surgery), automated and objective 

analysis. 

Obj.2 Develop an effective method that would support the automated classification for 

glioma grades based on developing the feature extraction and selection stages. 

Obj.3 Build a new classification approach within the development of the classification stage 

of the automated system for glioma grading which can achieve better discrimination 

for glioma grades.     

Obj.4 Evaluate the new method experimentally for improving the classification accuracy by 

applying it and using common quantitative measures such as the confusion matrix. 

This seeks to determine that the new method aligns to the recent state-of-of the-art. 

 

Initial work was undertaken to explore the research domain of glioma grading (Obj.1) 

through defining them in terms of the WHO grading scheme (Chapter 2), providing the 

possible approaches for the classification of glioma grades for developing an automated 

method to extract features from medical images (Chapter 2). In Chapter 2, the quantitative 

analysis of medical images using an automated method was explored, the refinement of this 

approach in terms of various aspects including features extraction, selection and 

classification with incorporation of machine learning algorithms were sought. At the end of 

the review chapter, the research boundaries, challenges, opportunities and requirements to 

achieve the aim of this study were finalised whereby the research directions were 

determined. A novel method was proposed for features selection and reduction to enhance 

the classification performance of the automated system for glioma grading in terms of 

classification accuracy and features reduction (Obj.2) (Chapter 3), where the classification 
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performance of the developed system based on the proposed method was evaluated using 

different popular quantitative evaluation metrics additional to further evaluation conducted 

using four benchmark datasets. The integration of this method with the machine learning 

algorithms has resulted in a significant improvement in the classification accuracy compared 

with both the original features and ANOVA technique where it achieved an optimal 

classification accuracy using the BRATS2013 at 100% while it achieved 93.3% with the use 

of the Cancer dataset, and 87.9% with use of the BRATS2015. This method has thus obtained 

a significant enhancement in terms of classification accuracy and features reduction. 

Conversely, it is observed that this method achieved lower classification accuracy using both 

Cancer and BRATS2015 datasets where this method relies on image texture feature that is 

highly subjected to the tumour homogeneity of MR images that may influence the level of 

classification accuracy. Nevertheless, in attempting to enhance the classification accuracy, 

new features were extracted from MR image of brain tumour independent to the variance in 

tumour homogeneity of MR image (Obj.2) (Chapter 4). The experimental results showed 

that the automated classification system developed based on the integration of these new 

features and the machine learning algorithm achieved comparable results, where it obtained 

93.33% with the use of BRATS2013 dataset, and 90.51% with the use of BRATS2015 

dataset. However, it is observed from both developed systems in Chapter 3 and Chapter 4 

that the machine learning models exhibit various behaviour and different classification 

accuracies dependant on the use different datasets. This is due to the different sensitivities 

of single classification systems affected by various data distributions generated by different 

datasets. This created the motivation to develop further the classification system that is able 

to overcome this challenge and has more robustness in handling the variation in data 

distribution with a more stable classification accuracy. This was achieved by developing 

two-stage learning strategy through the integration of multi-classification models using 

DNN conducted by the proposed MTMCS (Obj.3) (Chapter 5). A part of the work 

undertaken in Chapter 5 has been published in International Conference on Automation and 

Computing (ICAC'2018) (AlZurfi et al., 2018).  

The multi-class classification of glioma grades was also demonstrated to achieve accurate 

classification of different WHO grades of glioma (II, III, and IV) (Chapter 6). In this 

chapter, the proposed MTMCS was developed by taking advantage of using the hierarchical 

scheme to optimise the multi-class classification of glioma grades. The proposed HMTMCS 

has achieved the optimal classification accuracy at 100% for glioma grading into different 
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WHO grades (II, III, and IV). In this work the most efficient method is used including the 

SC algorithm. The results showed that the SC algorithm has enabled the proposed system to 

reach of its optimal accuracy as well as gaining a significant reduction in the dimensions of 

the classifier members by further reduce the number of classifiers required to achieve the 

optimal classification results of glioma grades.  

All samples used in this work are pre-diagnosed in advance, and thus they are utilised as 

class truth label through the supervised learning process. Consequently, the evaluation 

metrics presented in this research were calculated based on comparing the outcome of the 

proposed classification system with the class truth label (Obj.4). The classification 

performance of the developed system is evaluated in terms of the classification accuracy, 

sensitivity, specificity, precision and F-measure, demonstrated from the confusion matrix 

that is also presented in this thesis. The evaluation also covers the application of the leave-

one-out cross-validation technique, to validate the classification model. In this technique the 

model is tested using new samples that have not been seen by the trained model through 

splitting the dataset into k-folds (multi subsets). Each fold should be used twice, first is in 

the training phase and the second in testing phase with the replacement. This process should 

be repeated to cover all samples in the dataset. The outcome of the proposed system is 

compared with the recent common methods in terms of the evaluation metrics. The 

evaluation process is extended further by comparing the proposed classification system with 

the existing algorithms using four public datasets. The evaluation procedure mentioned 

above is conducted and presented in each chapter of the thesis to create a deep evaluation of 

the developed system based on the new method. 

7.1.2 Review Methodology, Contributions and Implications to the Literature 

The research design adopted in this work is a combination of quantitative and experimental 

research approaches to answer the research questions and achieve the aim and objectives of 

this thesis. Within this research design, all steps and processes of the proposed work are 

developed and evaluated quantitatively, and the empirical design is utilised to emerge the 

findings, analysis results and draw conclusions. The work starts with a review the research 

problem of this work, exploring existing solutions, boundaries and possible opportunities 

and accordingly a proposed solution was formulated. The performance of the proposed 

solution is validated and evaluated through implementing it and using several widely used 

evaluation techniques that objectively measure its performance using several different 
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datasets. This seeks to determine if the new method developed by the proposed solution has 

a competitive outcome and is in line with the standards by the current state-of-the-art. 

The key contribution of this study is the automated classification system and the 

methodology by which this is undertaken for distinguishing various WHO glioma grades. 

This will offer aid to the clinicians to achieve a diagnostic decision and support them towards 

an accurate, objective and automated classification of glioma grades. 

The main contributions and novelties of this study are summarised as follows: 

1- New features extracted from MR images of the brain tumour are proposed, based on 

generating ratio predictors and an objective analysis extracted from the presence of 

different descriptors of a brain tumour, such as contrast enhancement, non-

enhancement, necrosis, and edema, which offer a more reliable analysis of MRI 

attributes of a brain tumour. The existing work relies on the expert domain to analyse 

these tumour descriptors, which have many challenges such as the inter and 

intraobserver variabilities and does not consider the objective analysis of the relations 

with each other. Similarly, the influences of these features or their relations were not 

investigated with machine learning algorithms on the classification of glioma grades. 

The proposed method is beneficial as the discrimination ability of these tumour 

descriptors can be analysed and utilised to differentiate malignant gliomas. 

Consequently, more benefit from these tumour descriptors can be gained to improve 

the classification accuracy of glioma grades. This is the first study that proposes and 

examines the impact of the new features on glioma grading. 

2- A new feature selection method is developed. The advantages of this method are 

eliminating redundant features, not only related to maintaining the same level of 

accuracy but also achieving further improvement in the classification accuracy for 

glioma grades. This method is based on taking advantage of a fusion between filter 

and wrapper methods. It is based on the correlation analysis incorporated with several 

classifiers to update and guide the selection process. 

3- A comprehensive analysis of the three-dimensional textures feature based on 

3DGLCM is developed to support an automated MRI classification system for 

glioma grades. 

4- A novel method is proposed to support the integration of different machine learning 

algorithms that further improve the classification accuracy for glioma grades. This 

includes the development of the meta-trainable strategy based on Deep Neural 



CHAPTER 7 

 

239 

 

Networks (DNN). The existing works mainly concentrate on either using a single 

machine learning algorithm or using one stage of the multiple classifier systems. 

Therefore, better classification accuracy can be achieved by the development of a 

multiple classifier system (MCS) based on two stages of learning for glioma grading.  

5- An effective method is proposed to optimise the output accuracy of DNN, which 

provides a systematic trainable design for the MCS that can be beneficial to improve 

the classification of glioma grades. The existing work applies the few trials and 

selected randomly in attempting to achieve the best design and optimal parameters 

of the NNs. While, in development of the DNN a systematic approach can play an 

important role in the optimisation of MCS and improve the classification accuracy 

for glioma grades. 

6- A new method is proposed to reduce the number of classifiers required for the 

proposed system achieving a significant improvement in the classification accuracy. 

This method also eliminates many of the redundant classifiers and keeps only the 

most active classifiers, which enable the developed system for more efficient 

classification performance for glioma grades, in terms of classification accuracy, and 

dimensions reduction. Consequently, this leads to reduce the complexity of system 

design and add further system enhancement. 

Further discussion on the contributions and novelties that have been achieved by this study 

is found in the following subsections. 

7.1.2.1 Features Extraction 

Many existing current works rely on the combination of using an advanced MRI technique 

in addition to the conventional MRI method in the assessment of glioma grades. However, 

the advanced technique costs more, require advanced instruments and a high level of 

qualification, which is not available in all MRI clinical centres. Alternatively, developing a 

classification system for glioma grades based on the conventional MRI technique would be 

of great benefit to those who do not have access to an advanced MRI technique. Accordingly, 

this thesis has been developed based on the conventional MRI methods particularly, T2- MR 

images for extracting the texture features, while the other tumour descriptors are originally 

provided by using T2, T1, T1c, and Flair MRI modalities. 

It is widely known that the image texture feature is the most common feature to access the 

tumour heterogeneity, specifically the textural predictors extracted from the GLCM are the 
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most efficient features used for brain tumour classification. Therefore, this feature has been 

utilised and assessed in this thesis. It has been shown that these features could be subjected 

to the variance in tumour homogeneity (Chapter 3). Consequently, in attempting to enhance 

the classification performance and solve this problem, new features are proposed within a 

novel approach, which are independent to the variance in tumour homogeneity of medical 

image of a brain tumour. The idea of generating the novel features started from the standpoint 

that quantitative ratios among the presence of the tumour descriptors integrated with 

machine learning algorithm can lead to an effective classification of glioma grades. The 

developed classification design based on the novel features that were assessed thoroughly 

(Chapter 4). A critical comparison between the developed system based on these features 

and the textural-GLCM features are discussed (Chapter 4), where it is proven that the 

developed design based on the new features has achieved comparable results in the 

classification of glioma grades.  

7.1.2.2 Feature Selection 

One of the major challenges in the design of a classification system is the selection of the 

most crucial features that can contribute to enhance the classification accuracy and 

eliminates redundant features. To tackle this challenge, a novel method was proposed and 

utilised for the feature selection and features dimensions’ reduction. This algorithm has been 

called HFSA, which was evaluated and incorporated with different machine learning 

algorithm in the classification of glioma grades. The performance evaluation successfully 

proves the usefulness of this algorithm in enhancing the classification performance in terms 

of classification accuracy and the reduction of features dimensions. It has been confirmed 

that this algorithm enables the single classification model to show better classification 

accuracy over the four MR images datasets. In addition, this algorithm contributes in 

reducing the features space to smaller dimensions that will decrease complexity in the system 

design (Chapter 3). 

The proposed MTMCS has been proven to achieve the best accuracy without the necessity 

to involve features selection method in the first stage of the proposed MTMCS. The 

experimental results showed that the proposed system provides the best classification 

accuracy irrespective of whether the original set of features or the selected set of features are 

used (Chapter 5). The reason behind this is that the proposed system is robust to the 

variation in input features while it is relatively more dependent on the input of the second 

stage rather than the input of the first stage of the proposed system. The proposed MTMCS 
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has taken the merit of each classifier member, in addition to the complementary relationship 

between them. Consequently, this overcomes the limitation that could have occurred from 

using different set of features. However, if the selected set of features causes many 

drawbacks in the sensitivities or the specificities of the classifier members, then this would 

lead to slight degradation in the final classification accuracy. In contrast, it is possible to 

overcome this potential issue and optimise the classification accuracy by adding a further 

hidden layer of NNs within the proposed system in which the classification performance can 

be improved further to a better classification result. 

Selection of best set of classifiers that has a significant contribution to the classification 

accuracy of the proposed system is a big challenge. The outcome of the machine learning 

models, which were integrated within the proposed MTMCS, can play the greatest role in 

drawing the shape of the classification behaviour of the proposed MTMCS. Therefore, the 

SC algorithm was utilised in the second stage of the proposed MTMCS, through taking the 

merit of different outcome of the classifiers members to select the best set of classifiers and 

enhance the classification accuracy of the proposed system. This algorithm was used with 

the proposed MTMCS to overcome the challenge of the classifiers selection and gain further 

reduction in the design of MCS. The results of this algorithm showed a significant ability to 

select the best set of classifiers and enabled the proposed MTMCS to demonstrate better 

classification accuracy. This algorithm is also advantageous in achieving better reduction of 

classifier dimensions, which can lead to gain further decrease in the complexity of the 

proposed system design (Chapter 5).     

7.1.2.3 Classification  

To achieve an effective classification model, which can show a stable classification 

performance in term of classification accuracy regardless of the potential variation in data 

distribution, various datasets or different features is a challenging task. In this research work, 

two directions of developing machine learning-based classification systems for glioma 

grades were explored. The first direction was concerned with developing a single 

classification model, and the second direction was based on developing a MCS. In both 

directions, the best and efficient strategies have been used in attempting to enhance the 

classification accuracy of glioma grades. It was found that the proposed MTMCS, which is 

based on MCS, showed more robustness and stable classification accuracy over all 

experiments and datasets undertaken in this work. The superiority and stability in 

classification performance of the proposed MTMCS are due to developing two stages of 
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learning based on the integration of different classification models where the advantage of 

each single classifier has been considered in a complementary strategy that can overcome 

the limitation that may arise from weak classifiers. However, integrating these classifiers to 

achieve an effective design of MCS is a challenge. Most existing methods rely on the 

majority vote, which is limited to sensing a nonlinear relationship among integrated 

classifiers. Therefore, DNN was utilised to integrate the classification models due to its 

ability to sense the intricate relationship among classifiers, leading to enable the proposed 

MTMCS efficiently to further overcome any drawback that may arise because of weak 

classifiers, which leads to improving the classification accuracy of glioma grades further 

(Chapter 5). Using DNN in the integration of multiple classification models is also 

advantageous because it is a systematic approach examining several weights multiplied by 

the output decisions of the classifier members through generating varied range of weights 

by the backpropagation strategy and the process of searching for the optimal design of NNs 

(Chapter 5). 

The other challenging issue is how to optimise NNs and choose the most efficient design of 

NNs that enable it to achieve the best possible classification accuracy. Possible existing 

solution for this problem is based on determining random trials and selecting the best one 

among them (Khalid and Noureldien, 2014). Although this solution is efficient requiring few 

trials and may lead to better result, it has a lack of generalisation ability and it is not a 

systematic approach. To overcome this challenge, a novel method is performed by 

developing the DINN that enable the DNN to achieve its highest classification accuracy and 

choose the best number of neurons and iterations, leading to the best most efficient design 

of the proposed MTMCS. The proposed system was proven to obtain an efficient 

classification accuracy over all experiments and datasets and showed the most stability and 

robustness in classification performance regardless of the variance generated by using 

different datasets (Chapter 5).  

7.1.3 Overall Results 

The overall summary of results generated in this thesis for BRATS2013, BRATS2015 and 

BRATS2018 datasets are presented in Table 7.1, and for the cancer dataset are shown in 

Table 7.2, in which the work starts with developing an automated classification system based 

on the textural features measured from GLCM extracted from the T2-MR images of brain 

tumours. The textural features were utilised and evaluated by using several machine learning 

algorithms within a single classifier system.  
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Table 7.1 Overall summary and comparisons for the results obtained by the experiments developed based on BRATS2013, BRATS2015 and 

BRATS2018 datasets. Sensitivity and specificity are associated with high and low grades of glioma respectively. Cells marked with asterisk (*) 

indicates the cease of system development as there is no rationale to develop it further. 
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1 Single 
Texture + single 

classifier 
93.33 95.00 90.00 95.00 85.77 90.00 68.52 92.10 86.32 92.86 68.00 89.00 

2 Single 

Texture + single 

classifier + 

proposed HFSA 
100 100 100 100 87.9 93.18 66.67 91.90 88.07 93.33 73.33 90.70 

3 Single 
Proposed FTD + 

single classifier 
83.33 90 70 85.7 89.05 97.27 55.56 89.90 89.12 94.76 73.33 90.87 

4 Single 

Proposed FTD + 

single classifier 

+ proposed 

HFSA 

93.33 95 90 95 90.51 96.81 64.81 91.80 93.33 99.05 77.33 92.44 
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Table 7.1 Continued. 
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6 MCS 

Texture+ proposed 

FTD + proposed 

MTMCS (one layer) 

+SCA 

* * * * 93.07 99.09 68.52 92.80 95.09 98.10 86.67 95.37 

7 MCS 

Texture + proposed 

FTD + proposed 

MTMCS (Two layer 

of NNs) with 

diversity 

* * * * 93.43 98.18 74.07 93.91 94.39 98.10 84.00 94.50 

8 MCS 

Texture + proposed 

FTD + proposed 

MTMCS (one layer 

of NNs) with 

diversity + SCA 

* * * * 93.80 98.64 74.07 93.9 94.74 99.05 82.67 94.12 
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Table 7.2 Overall summary of the results obtained by the experiments conducted based on the Cancer dataset. Sensitivity and specificity are 

associated with high and low grades of glioma respectively. 
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93.33 95.00 90.00 95.0 

3 MCS Texture + proposed MTMCS 96.67 100 90 95.23 

4 MCS Texture + proposed MTMCS +SC 100 100 100 100 
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In this part of the work a novel algorithm for features selection and reduction was proposed. 

The purpose of this algorithm was to enhance the classification performance by eliminating 

the redundant features. This was performed based on the integration of ANOVA technique 

and Pearson correlation in addition to involving different classification algorithms, which 

are utilised in a search strategy to find the optimal set of features. The results obtained from 

applying the developed system based on the original features without the proposed HFSA in 

terms of classification accuracy was 93.33% for BRTAS2013 dataset, 85.77% for 

BRATS2015 dataset and 86.32% for BRATS2018 dataset (Table 7.1, No.1). Afterwards, 

when the proposed HFSA was determined, the classification performances in terms of 

classification accuracy, sensitivity, specificity and precision were improved to optimal 

results at 100% using BRATS2013 dataset (Table 7.1, No.2), and to 87.9%, 93.18, 66.67% 

and 91.90% respectively by BRATS2015 dataset and to 88.07%, 93.33%, 73.33% and 

90.70% respectively by BRATS2018 (Table 7.1, No.2). When the proposed HFSA was 

evaluated with Cancer dataset, the classification performance in term of classification 

accuracy also showed a significant enhancement from 86.67% to 93.33% (Table 7.2, No.1 

and No.2). Consequently, the performance evaluation of the classification system after using 

the proposed HFSA has shown an improved classification accuracy over the four datasets. 

This method used the combination of a filter approach presented by ANOVA, the wrapper 

approach based on Pearson correlation and the outcome generated by testing several 

different subsets of features. To further elaborate, in this algorithm, ANOVA was used to 

remove the redundant features that have no statistical significance in the features space. After 

that the Pearson correlation among features was used to guide the search process for an 

optimal subset of features. This also considers the feedback in term of classification accuracy 

produced from different classifiers. This feedback also includes the outcome of different 

subset of features generated by correlation interaction among the feature set. This generates 

the ability to consider the interaction among features and updating the selection process 

based on the outcome from different machine learning models using the generated subset of 

features. Consequently, this supports the ability of the proposed algorithm to select an 

efficient subset of features, which enables the classification model to achieve the best 

classification performance in terms of classification accuracy and reduction in the feature 

dimensions. 

It has been shown that texture features are dependent on tumour homogeneity, where it is 

analysed statistically using box-plot (Chapter 3). The tumour homogeneity of an image 
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plays an important role in determining the output behaviour of the classification 

performance. While the optimal classification accuracy at 100% is achieved with 

BRATS2013 dataset, the results of other datasets showed lower classification accuracies. 

The reason behind this is that there is large variance in the level of homogeneity of the 

tumour image, and thus the classification accuracy can be affected when there is a high level 

of homogeneity of an image, leading to lower classification accuracy, such as results 

achieved by both BRATS2015 and BRATS2018 dataset. In attempting to enhance the 

classification accuracy, new features were proposed, which were extracted from the tumour 

descriptors of brain tumour namely tumour necrosis, edema, enhancement and non-

enhancement. The results exhibit comparable classification accuracy to the previous 

developed classification system based on textures (Table 7.1, No. 2 and 4). Unlike the texture 

features, these features are independent of tumour homogeneity of an image and therefore 

the developed system based on these features integrated with a machine learning algorithm 

showed competitive classification results as they achieved better results at 90.51% and 

93.33% when assessed with the BRATS2015 and BRATS2018 dataset respectively (Table 

7.1, No. 2 and 4). However, the result obtained from applying the classification system based 

on these features was 93.33 % for BRATS2013 dataset, and thus the developed system based 

on these features did not show optimal accuracy compared to the developed system based 

on the textural features. This is due to the nature of the presence of these tumour descriptors, 

for example, the presence of tumour enhancement which is dependent on the leakage in the 

blood-brain barrier caused by the tumour cell invasion (Li et al., 2015), which consequently 

led to a variance in the classification outcome depending on the behaviours of malignant 

tumours.  

It is observed that both developed systems based on a single classification approach have a 

high variation when examined with different datasets. They are affected by different issue 

such as the difference in data distribution, homogeneity level of image sample, and selecting 

an appropriate classifier. These were the most challenging issues in finding the classification 

system with best classification accuracy. In addition, the developed classification model that 

achieved high accuracy is not the same overall datasets. For example, the results obtained 

by testing the developed system based on a single classification approach illustrated that the 

best classifier compared to all other classifiers was the KNNF classifier for BRATS2013. 

While for the Cancer dataset, the results showed that the classifier achieving the best 

classification performance was the DT classifier. Consequently, the developed classification 
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system based on a single classification approach has a low stability in classification 

performance. In attempting to overcome this challenge, a novel deep learning approach 

based on two stages of learning within multiple classifier systems was proposed. The results 

showed that the classification accuracy of the proposed MTMCS was improved compared 

to the use of a single classification system where the proposed MTMCS based on only the 

textural feature has achieved an optimal classification accuracy at 100% for BRATS2013, 

and 91.24% for BRATS2015 and 91.58% for BRATS2018 (Table 7.1, No. 5). Similarly, it 

achieved high classification rate at 96.67% (Table 7.2, No.3) for the Cancer dataset. While 

the best classification accuracy achieved for the evaluation of the proposed MTMCS with 

BRATS2015 dataset was 93.8%. This best result was obtained through applying the 

proposed MTMCS based on one-layer of NNs and using the texture features and the 

proposed feature associated with tumour descriptors, and through integrating with the SC 

algorithm and enabling the diversity in the feature space (Table 7.1, No. 8). 

To further enhancement the classification performance of the proposed MTMCS, the SC 

algorithm was investigated to select the best set of classifiers that have the highest impact 

on the classification accuracy and produce a better reduction in the classifier dimensions. 

When the SC algorithm was utilised with the proposed MTMCS for BRATS2013 dataset, 

the results illustrated a significant enhancement in the classifier dimension where the 

classifier members were reduced from 11 to 5 classifiers (Chapter 5) as well as maintaining 

the optimal classification accuracy at 100% (Table 7.1, No. 5). While with BRATS2015 

dataset, the classifiers space was reduced from 11 to 7 classifiers (Chapter 5) and the 

classification accuracy achieved was 91.24%, and for BRATS2018, the classifier 

dimensions were further eliminated from 11 to 6 classifiers with 91.58% of classification 

accuracy (Table 7.1, No. 5). This is an important achievement as the reduction in number of 

classifiers decreases the complexity of the system design with a significant classification 

accuracy was achieved.  

When the SC algorithm was investigated with the proposed MTMCS using the Cancer 

dataset, the results showed that the classification performance in terms of classification 

accuracy, was improved from 96.67% to 100% (Table 7.2, No.3 and 4), and in terms of 

classifier dimensions, the result indicated that the classifier dimensions were reduced from 

11 to 7 classifiers (Chapter 5). The SC method has shown a notable improvement when 

utilised with the proposed MTMCS using different datasets. This was achieved by applying 

the proposed MTMCS based on the combination of texture features and proposed FTD, and 
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with enabling the diversity in feature space. The results showed that the proposed approach 

achieved notable classification accuracy at 93.80% for BRATS2015 and 94.74% for 

BRATS2018 (Table 7.1, No. 8) with a less complex design based on only one layer of NNs. 

The advantage in developing the proposed MTMCS incorporating the SC method are as 

follows; (i) superior enhancement was achieved by using only one layer of NNs, (ii) a lower 

number of classifiers were obtained as the classifier dimensions were reduced from 55 to 52 

classifiers (Chapter 5). The SC algorithm enables the proposed MTMCS to select the best 

set of classifiers and maintain the highest classification accuracy by considering the outcome 

from the proposed MTMCS using different subset of classifiers generated by the SC 

algorithm. Consequently, the classification performance was further enhanced in terms of 

classification accuracy and classifier dimensions. 

It was also observed that a significant evolution was achieved in the classification accuracy 

when an additional hidden layers of NNs were added and utilised in the proposed MTMCS, 

where the classification accuracy was improved by using two-layer of NNs to 93.43% for 

BRATS2015 and to 94.39% for BRATS2018 dataset (Table 7.1, No. 7). However, it requires 

high computation time and extensive complexity in the system design. Alternatively, the 

integration of the SC algorithm with the proposed MTMCS based on one-layer and the 

combination of FTD and the texture features has also achieved a notable increase in 

classification accuracy with gaining lower complexity in system design to obtain 95.09% for 

BRATS2018 dataset (Table 7.1, No. 6).  

It is observed that the combination of the new features extracted from the brain tumour 

descriptors and texture features derived from the BRATS2018 have a notable contribution 

to support different machine learning algorithms and particularly in achieving better 

sensitivities and specificities of BRATS2018 compared to BRATS2015 (APPENDIX C 

Table 7, Table 5.15). Accordingly, this leads to achieve better classification accuracy results. 

The reason behind this is that samples from BRATS2018 dataset have better recognised 

features that reflect the structure of the descriptors of brain tumour. In more details, it is 

noted that the statistical ration of contrast enhancement (tC_R) measured from samples of 

BRATS2018 is more significant at 9.0504 × 10-26 (Table 4.9) than the P-value measured 

from samples of the BRATS2015 which showed lower P-value at 3.8146 × 10-18 (Table 4.6). 

This difference in the significance level of contrast enhancement of the two datasets is 

because of the nature of the malignant tumour and its aggressiveness to infiltrate different 

region of the brain tumour. Notably, the different effect on the blood-brain barrier of the 
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brain tumour can occur as the more leakage in the blood-brain-barrier indicating the more 

contrast enhancement in the brain tumour (Xi et al., 2019, Geneidi et al., 2015). 

The SC method has a great influence on enhancing the classification performance of 

proposed MTMCS. This is basically due to the ability of the SC algorithm to eliminate the 

classifier that has lowest impact on the outcome of the classification accuracy of the 

developed system and eliminate the classifier that causes conflict with others thereby 

enabling the proposed system to reach its highest classification performance. Also, 

considering the outcome of the developed system as feedback is a crucial approach to control 

the search strategy for the best subset of classifiers, which can enable the proposed system 

to achieve the best classification accuracy and design.      

In the proposed MTMCS, an intricate design was conducted based on the development of 

two stages of learning of MCS incorporated the DINN. In this design, a number of neurons 

ranging from 1 to 30 in which each neuron was investigated with 1 to 50 iterations, producing 

1500 experiments determined by the proposed MTMCS for one sample in the dataset. 

Experimentally, using large number of neurons or iterations for the proposed MTMCS 

requires extensive computation time on a standard Personal Computer. Consequently, the 

classification accuracy of the proposed MTMCS has been measured against a number of 

neurons ranging from 1 to 30 and number of iterations varied from 1 to 50, which are used 

in the development of DINN. The notable classification accuracy does not vary linearly with 

neither the number of neurons nor the number of iterations used in the development of the 

proposed MTMCS. It is observed that there is no significant pattern of variation between the 

classification accuracy and the number of neurons or number of iterations where the 

variation is highly irregular. In addition, the optimal classification accuracy achieved by the 

proposed MTMCS does not exceed the 50th iteration or 30 neurons in all experiments over 

all datasets. Therefore, these ranges are all that is considered in the design of the proposed 

MTMCS. 

7.2 Evaluation  

The proposed system was evaluated using different common statistical measures including 

the confusion matrix, sensitivity, specificity, precision, and F-measure. These metrics were 

used in the comparing the classification performance of the proposed system against 

different popular single classifier and ensemble classification methods. To validate the 

classification performance and investigate the ability of generalisation, the leave-one-out 
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cross-validation technique was utilised in all stages and for all classification methods applied 

in this work. In the cross-validation technique, the developed system is tested and evaluated 

by using samples not seen by the developed system through the training phase. This method 

is vital to achieve an accurate evaluation and to avoid an overfitting problem. Further 

evaluation was added by examining the classification performance of the proposed system 

using four different benchmark datasets where the behaviour of the proposed system was 

measured, assessed, and compared with other alternative approaches over all the four 

datasets. 

7.2.1 Stability of Classification Accuracy 

It is observed that selecting an appropriate classifier that can perform successfully in the 

classification of a dataset is a challenging task and is the most important issue to find a 

classifier system able to achieve optimal classification accuracy. Particularly in this work, a 

single classifier system achieved the optimal accuracy at 100% using BRATS2013, in which 

samples have good spatial resolution with an appropriate level of homogeneity, which highly 

impacts the amount of texture extracted from the medical images. However, using different 

datasets can reduce the classification performance. It is noted that when the BRATS2015 

dataset was used, in which the level of homogeneity is higher compared to the samples from 

BRATS2013 dataset, the single classifier system achieved lower classification accuracy. It 

is also noted that the best accuracy is not always achieved by the same classifier for different 

datasets. It is observed from the results of different experiments that even though a single 

classifier system can achieve optimal classification accuracy, it has less stability in the 

prediction performance for different datasets. This is possibly a consequence of various 

sensitivities of classifiers to different data characteristics, distributions and sample sizes. 

These findings mentioned above agree with the results of the recent study carried by Zhang 

et al. (2017), in which they discussed the complexity of selecting an optimal classification 

approach for the complex cancer dataset, stating that it is a big challenge to improve the 

stability and generalisation ability and overcome the high variations in the classification 

outcome. 

However, to overcome the above-mentioned challenges, a novel MTMCS has been proposed 

and developed for glioma grading based on the integration of a multi-classification model 

and by continuing to train the weight of output decision of each classifier by DNN, 

overcoming the drawback of a weak classifier in a complementary strategy. In the proposed 

system, classifiers with higher accuracy have a superior role to play and interference 
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information of the classifiers with minor accuracy is excluded. Therefore, the advantages of 

each classifier are entirely considered, and utilised, and improved prediction performance 

was achieved for all datasets, providing significant evidence that the proposed MTMCS is 

more stable in the classification performance and is more robust to the variation of input data 

characteristics. 

7.2.2 System Scalability 

One of the significant factors that are challenging many machine learning algorithms and 

affect the classification performance is the number of samples in the training phase, which 

are used to learn the classification model (Pan et al., 2015). For instance, it is a significant 

issue with the traditional classification system based on the deep learning approach (Mohsen 

et al., 2018, Hegde et al., 2019). However, to overcome this drawback, a new approach was 

adopted by developing the MTMCS. To elaborate, the system is developed based on utilising 

the advantage of the fusion of several classification models that are less affected by the 

problem of limited sample size in the training phase (Kuncheva, 2014). Furthermore, the 

complementary of these classifiers leads to optimise the output decisions of the classifiers 

through an optimising process and to continue learning these output decisions through the 

meta-trainable strategy, which achieves the best possible classification accuracy and more 

scalable performance. Accordingly, the proposed MTMCS has the better scalability to adapt 

the large and small number of samples leading to more robust performance than other recent 

approaches for glioma grading. The proposed MTMCS has also been experimentally 

evaluated using several datasets with different sizes and distributions where the results 

showed that the proposed system has achieved the more stable performance of enhanced 

classification accuracy as compared to the traditional single and ensemble classification 

models. However, due to the complexity of system design generated from developing two 

stage of learning, the more samples would lead to larger computation time in the training 

phase. 

7.2.3 Critical Evaluation 

In this section, the entire work developed in this thesis is discussed and critically evaluated 

in comparison with different alternative approaches that are recommended by the literature 

as efficient and successful approaches. The discussion covers the comparison in terms of 

three aspects including features extraction, selection, and classification.    
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7.2.3.1 Features Extraction  

This work starts with exploring the problem domain and possible opportunities for 

classification of glioma grades. Consequently, several tumour descriptors were investigated 

where the concentration was given to tumour heterogeneity, necrosis, edema, enhancement 

and non-enhancement due to their popularity and that they can be extracted from the 

conventional MRI modalities, which are usually available in clinical MRI centre. However, 

there are other tumour descriptors which can be utilised for assessing the malignancy level 

of glioma grades such as tumour vascularity and cellularity, which require a high level of 

qualification, more costs, and an advanced MRI technique (Kono et al., 2001, Geneidi et al., 

2015).  

Among the tumour descriptors, tumour heterogeneity is the most widely used and, especially 

for studies, utilises quantitative analysis to characterise a tumour using the statistical features 

extracted from medical images. Tumour heterogeneity is also successfully investigated in 

the classification and segmentation of many types and grades of brain tumours (Roy et al., 

2013, Tantisatirapong, 2015). Therefore, the heterogeneity descriptor of brain tumour was 

considered in this work through extracting several popular statistics measured from GLCM 

using MR T2-weighted images (Gómez et al., 2012, Larroza et al., 2016) (Chapter 3).    

Tumour necrosis, edema, enhancement and non-enhancement are common tumour 

descriptors used in the visual diagnosis for evaluating the malignancy of glioma grades. They 

are also frequently provided as a standard segmented data in addition to the whole region of 

brain tumour by two benchmark datasets (BRATS2013, and BRATS2015). The 

identification of these tumour descriptors is an important and challenging task (Menze et al., 

2015). Consequently, in this thesis the usefulness of these tumour descriptors and the 

proposed features thereof were investigated through novel quantitative criteria to assess the 

malignancy level of glioma grades. These features were utilised in the development of an 

automated classification system for glioma grades (Chapter 4). Several MRI modalities 

were suggested by the literature to assess the brain tumour characteristics. For example, T1c-

weighted was used for texture extraction and employed in developing a classification system 

for glioma grades (Hsieh et al., 2017b). Despite this modality being the least invasive 

procedure with contrast enhancement, it is highly dependent on leakage in the blood-brain 

barrier, which can affect the tumour structure and consequently affect the amount of texture 

extracted from this modality. However, the proposed work in this thesis, which is concerned 

with tumour heterogeneity, extracted texture features based on T2-modality by a non-
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invasive process and brain tumours are usually possible to recognise visually using this MR 

modality. Nevertheless, the proposed features associated with FTD were measured using the 

standard segmented dataset, which originally used T1c modality in delineation of the brain 

tumour sub-regions.  

It was argued that the visual diagnosis based on conventional MRI technique is less sufficient 

compared to the advanced MRI method in the classification between low-grade glioma and 

high grades (Law et al., 2003). In that research work, recognised information extracted from 

advanced MRI has shown a better result than the traditional diagnosis based on conventional 

MRI (the diagnosis was performed by two qualified experts blinded to the actual label of 

glioma grades). However, the decision for glioma grading has been made based on a visual 

diagnosis that is a complex task and prone to the subjectivity. Several current studies 

suggested the use of advanced MRI techniques alone or combined with conventional MRI 

modalities for the classification of glioma grades (Ryu et al., 2014, Inano et al., 2014, Zhang 

et al., 2017, Citak-Er et al., 2018). However, the advanced MRI techniques are costly, require 

special experience, and advanced MRI equipment. Therefore, developing a classification 

system based on conventional MRI modalities is of great interest especially for those who 

do not have access to advanced MRI resources. Consequently, the proposed work in this 

thesis was designed completely based on the conventional MRI technique. 

7.2.3.2 Features Selection  

Features selection is a vital task and necessary in classification design to select the most 

significant features and eliminate redundant features. The features selection and feature 

dimensionality reduction decrease storage requirements, reduce complexity and 

computational cost, reduces training and implementation times and thus leads to improved 

classification accuracy (Pantelis, 2010, Tantisatirapong, 2015, Al-Waeli, 2017).  

An examples of studies that have demonstrated features selection method to enhance the 

classification of brain tumours would be the research conducted by Ryu et al. (2014), Hsieh 

et al. (2017a), Hsieh et al. (2017b) in which they have used a filter approach to select the 

most important features. Although the impact of using this method on the classification 

accuracy was not mentioned in their works clearly where the behaviour of the classification 

system before and after applying the selection method was not reported, this approach is 

effective, fast and simple to implement. However, this approach is conducted independently 

to the outcome of the classification accuracy and the interactions among the features have 
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not been considered. This can significantly influence the behaviour of the classification 

system. Using the better and most effective approach, the wrapper method is demonstrated 

to select the most important subset of features in developing a classification system for 

grading of glioma (Citak-Er et al., 2018). While Zacharaki et al. (2009) have combined the 

use of the filter and wrapper approaches, the filter method was used first and then the selected 

subset of features was fed to the wrapper technique to get more enhancement in classification 

results. Even though the influence of each method on the classification accuracy was not 

mentioned in their work, this approach is working effectively and can overcome the 

limitation explored by the filter approach through considering the outcome of the classifiers 

as a guide to update the search process to yield the optimal subset of features. However, they 

have used a wrapper method based on a single classifier where there is no guarantee if a new 

dataset is used that the method will generate the desired level of accuracy as a different single 

classifier has various responses to a different dataset. To overcome this limitation, in this 

thesis, the filter and wrapper method was combined and several classifiers instead of one 

classifier were incorporated in the wrapper strategy where the search process does not 

depend on only one classifier and any classifier able to capture better accuracy will be 

considered and take the place of a weak classifier. The other advantage of the proposed work 

is evaluating the impact of using the original features, filter, and the proposed method on the 

classification performance, which give a clearer understanding of the need to address the 

problem of features selection and reduction and assess the effect of the proposed solution on 

the classification accuracy (Chapter 3). 

It is reported in the literature that features extracted from MR image have high correlation 

with each other and this can be considered a significant challenge for any classification 

system, which can negatively affect classification performance. It is also stated that "a good 

feature subset is one that contains features highly correlated with the class and uncorrelated 

with each other" (Hall, 1999). Therefore, the proposed HFSA has taken the merit of ranking 

the features according to the Pearson correlation measured among the features extracted 

from the MR images and incorporated the outcome from different classifiers and different 

subsets of features to guide the search process. This seeks for the optimal subset of features 

associated with the highest classification accuracy for glioma grades. 

7.2.3.3 Classification  

This thesis aims to develop a machine learning algorithm in the classification stage of the 

automated system and particularly a supervised machine learning algorithm was developed 
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in this work. This is due to the ability of supervised machine learning approach to create an 

effective classification model to predict new unseen samples within a reproducible 

methodology based on learning strategy. The other motivation for this is that the capability 

of the supervised machine learning algorithm to discover nonlinear relationships among 

distinctive features, which can lead to promising results in the classification accuracy of the 

automated classification system.  

Several  recent studies have developed single machine learning approach in the classification 

stage for glioma grading (Citak-Er et al., 2018, Zhang et al., 2017, Hsieh et al., 2017a, 

Zacharaki et al., 2009, Zacharaki et al., 2011, Hsieh et al., 2017c, Subashini et al., 2016, Li 

et al., 2006). However, each single classification approach has its limitation and there is no 

guarantee the same classifier can show high classification accuracy if a different dataset is 

involved. The fusion of multi-classification models would lead to enhance the classification 

accuracy and could overcome the drawbacks of weak classifiers. Thus, the proposed work 

in this thesis has integrated popular and efficient classification models within the 

development of two stages of learning to construct an efficient MCS for glioma grading. 

For the development of the MCS, many common approaches used the majority vote (Bashir 

et al., 2016, Georgiadis et al., 2009) for the fusion of single classifiers such as the EBTree 

and ESDA (Kuncheva, 2014). However, the majority vote is not able to sense nonlinear 

relationships among classifier members. To tackle this limitation, the proposed design has 

used DNN to integrate the classifier members due to its capability to sense nonlinear and 

intricate relationships among classifiers. This method is also able to weight the classifiers, 

utilising them in further deep learning to seek for more improvement in the classification 

accuracy. 

At present there is no general method to select the optimal number of neurons and layers of 

NNs while either the existing studies used few trials or random selection to tackle this issue. 

In attempting to solve this challenge, the advantage of performing many iterations for NNs 

was considered, which can potentially lead to the optimal convergence point, enabling the 

NNs to achieve the optimal classification accuracy. Consequently, a systematic process 

within the proposed DINN was developed by using a wide range of neurons and iterations, 

which lead to achieve the optimal classification accuracy and design of the proposed system. 

Two stages of learning in the MCS have been investigated, and DINN was incorporated to 

integrate multi-classification models and achieve the best design of the proposed system that 

can lead to optimal classification accuracy of glioma grades. 
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An overall comparison of the proposed MTMCS versus different current approaches 

including single classification and ensemble systems, which are critically evaluated in the 

thesis, is depicted in Table 7.3. This comparison is conducted in terms of different aspects 

as follows; within the number of learning stages, single classifiers system and traditional 

ensemble systems were conducted based on one stage of learning while the proposed system 

was extended to include two stages of learning. With regards to number of classifiers, single 

classifier and the traditional ensemble approaches are designed based on one classifier while 

the proposed MTMCS is developed based on the integration of multi-classification models. 

The previous-mentioned two aspects significantly lead to generate higher complexity in the 

proposed system design compared to the single classifier and traditional ensemble 

approaches. Consequently, the time spent for the training phase of the proposed system 

would be relatively longer than the single classifier and traditional ensemble approaches. 

The single classifier system is therefore considered the fastest approach in term of 

implementation time and has the least complexity of design and this motivated many current 

studies to develop a single classifier system in different applications. Although, some type 

of single classifier system can achieve the optimal classification accuracy under some 

controlled conditions such as selecting the most appropriate classifier or using supported 

dataset, it has a lower stability in classification accuracy achieved where it has high variation 

in the classification outcome if different data characteristics, input features, or different 

dataset are utilised. However, the proposed system can achieve the optimal classification 

accuracy with more robustness to the variation in input datasets and thus better stability, the 

high-level of classification accuracy is maintained compared to the single classifier system 

and traditional ensemble approaches. Furthermore, in comparison to the traditional ensemble 

approach the proposed system has used the most efficient strategy using DNN that is 

developed in the combiner design to integrate classifier members. DNN method can sense 

the intricate and nonlinear relationships among classifiers, outperforming the existing 

ensemble approaches that rely on the majority vote that lacks sensing nonlinear relationships. 

Consequently, this leads to obtaining further optimisation and more enhancement in the 

classification accuracy of the proposed system for glioma grades (Table 7.3). 
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Table 7.3 Overall comparison of different approaches investigated in this work for glioma 

grading 

Aspect of 

comparisons 

Single 

classification 

system 

Ensemble system Proposed MTMCS 

Learning One-stage One -stage Two-stages 

Classifier 

Number 

One 

classifier 
One classifier Multi classification model 

Training 

time 
Fast 

Fast to moderate, 

subjected to the 

design and type of 

classifier involved. 

Slow, depending on the 

number of input samples and 

optimisation parameters 

such as number of neurons, 

iterations and layers of NNs 

Complexity Low Moderate High 

Stability in 

classification 

accuracy 

Low, highly 

affected by 

input data 

Low, subjected to the 

behaviour of single 

classifier used 

Optimal regardless of the 

variation in input datasets 

Combiner 

design 

Not 

supported 
Majority Vote DNN 

 

7.2.4 Comparative Studies  

In this section the results obtained from the research findings by this thesis are presented and 

compared with the other recently published works (Table 7.4). The reader should note that 

while the first study is conducted on BRATS2015 dataset, the other researches are not based 

on the same dataset, therefore the finding listed in Table 7.4 are not directly comparable.  

The first study presented in the table applied deep learning approach based on convolution 

NNs directly to MR images using BRATS2015 dataset, to classify glioma grades into low 

(I, II) against high glioma grades (III, IV) (Ye et al., 2017). They have used a 10-fold cross-

validation technique in the evaluation of the classification performance. An up-sampling 

technique was used by replicating cases in the training phases so that the effect of an 

imbalanced dataset on the training phase can be eliminated. It worth noting that the variation 

in the results generated in that work is due to the use of random samples that may be repeated 

more than once in different folds (multi-subsets of data). Thus, they reported their result as 

the mean ± SD (Table 7.4). However, a replicating strategy was adopted to increase the 

number of samples for the minority class in the training phase.   
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Table 7.4 Comparison of the proposed system versus the previous studies  
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(Ye et al., 

2017) 

Deep learning 

upsampling 
10-fold 

T1c 

 
- - - Binary 

Brats 2015 

(274) 

82.1±

7.1 

88.9±6

.2 

57.0±1

6.9 

89.2

±4.7 

(Anaraki et 

al., 2019) 
Deep learning 

 Partition 

the data 

into 

training and 

testing 

T1c 

 
- - - 

Multi-

class 
722 patients 90.9 - - - 

(Citak-Er et 

al., 2018) 

Single classifier 

system 
10-fold 

T1, T2, 

diffusio

n W, 

diffusio

n tensor, 

perfusio

n and 

spectros

copic 

imaging 

Statistical 

measures 

from 

advanced 

MRI, 

mean of 

intensities 

of the MR 

regions 

Filter + 

wrapper 

approach 

SVM Binary 

34 patients 

I (3), II (12) 

III (8), IV 

(20)  

93 96.4 86.7 92.9 
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Table 7.4 Continued 
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Proposed 

System 
MCS 

Leave-one-

out 

T2, T1 

T1c, Flair 

Texture-

GLCM, and 

proposed 

FTD 

Without 

features 

selection  

Proposed 

MTMCS 
Binary 

BRATS2015 

(274) 93.80 

 

98.64 74.07 93.9 

Proposed 

System 
MCS 

Leave-one-

out 

T2, T1 

T1c, Flair 

Texture-

GLCM, and 

proposed 

FTD 

Without 

features 

selection 

Proposed 

MTMCS 
Binary 

BRATS2018 

(285) 
95.09 98.10 86.67 95.37 

Proposed 

System 
MCS 

Leave-one-

out 
T2 

Texture-

GLCM 

Without 

features 

selection 

Proposed 

MTMCS 
Binary 

BRATS2013

(30) 
100 100 100 100 

Proposed 

System 
MCS 

Leave-one-

out 
T2 

Texture-

GLCM 

Without 

feature 

Selection  

Proposed 

MTMCS 
Binary 

Cancer Data 

(30) 
100 100 100 100 

Proposed 

System 
MCS 

Leave-one-

out 
T2 

Texture-

GLCM 

Without 

Feature 

Selection 

Proposed 

MTMCS 

Multi-

class 

Cancer Data 

(30) 
100 100 100 100 
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This results in a model with relatively high classification accuracy on current data, and with 

undesired classification results can be obtained on a new dataset, in addition to the fact that 

the risk of the over-fitting problem could not be avoided by cross-validation process (Zhang 

et al., 2017). 

The proposed system in this thesis achieved effective results using four benchmark datasets, 

which obtained optimal classification accuracy of 100% for both the BRATS2013 and 

Cancer datasets. While it yields better results of 95.09% using BRATS2018 and it achieves 

93.80% using BRATS2015, which is higher than the performance of deep learning approach 

suggested by Ye et al. (2017) based on the BRATS2015 dataset where their work has 

achieved 82.1%±7.1 classification accuracy for glioma grades. 

Similarly, Anaraki et al. (2019) have developed a deep learning approach for the multi-class 

classification of brain tumour types and grades based on T1c-weighted MR modality. This 

approach was conducted based on convolution NNs and applied directly to the MR images 

using 722 patients. The classification accuracy of multi-class classification for the three 

grades of glioma (II, III, and IV) is 90.9%. In the same manner, Zacharaki et al. (2009) 

achieved 62.50% to classify glioma into three grades (II, III, IV) (Table 2.2). However, the 

system proposed by the current thesis has achieved 100% full classification results in the 

classification of the WHO three grades of glioma (II, III, and IV), outperforming the 

classification result of other recent work. 

A further critical comparison of the proposed system against the traditional deep learning 

approach such as CNN is discussed in this section. The deep learning approach, and due to 

its advantages and the availability of large datasets in different fields, is used in different 

applications (section 2.13.2). However, the requirement to large dataset in the training phase 

is the most challenging issue in achieving an effective classification model and hence the 

classification performance of this approach is affected, while using small samples in the 

training phase can lead to a low performance if new samples are tested (Hegde et al., 2019, 

Mazurowski et al., 2019). In general, the availability of  datasets of medical images is a 

significant challenge (Mohsen et al., 2018) and especially to work undertaken in this thesis 

as not any MRI dataset is possible to consider unless there is a confirmation of the 

histopathology diagnosis. To elaborate, recently and particularly on medical dataset, the 

deep learning approach becomes popular and can achieve better result for medical dataset in 

segmentation systems (Havaei et al., 2017, Rodríguez Colmeiro et al., 2017). It is less 

popular in decision-making systems particularly for MRI based automated system for glioma 
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grading and this is due to the mechanism of how the approach works and how it deals with 

an image. In more details, for segmentation systems, the deep learning approach is dealing 

directly with image pixels (Kamnitsas et al., 2017, Işın et al., 2016). Furthermore, with the 

availability of very large number of images for each patient and each image having a large 

number of pixels, and since each pixel represents a sample, this means that there is a vast 

number of samples that can be utilised in the training phase to build the model and thereby 

supporting the model to classify the image pixels efficiently. In particular applications where 

there are possibilities to provide a vast number of samples, breakthrough advances were 

achieved recently by the deep learning approach e.g., more than one million labelled images 

in ImageNet (Russakovsky et al., 2015, Shen et al., 2017), more than ten million annotated 

image developed by Google Corporation (Le, 2013). On the other hand, in the decision-

making system, the decision has to be made to classify patients and not the image pixels or 

image regions. Consequently, a patient and regardless of how many numbers of images or 

pixels, is represented by one sample in the features space, hence this limit the number of 

samples utilised to train the model as in practice the number of samples is reflected by the 

number of patients in the training phase of the decision-making system (Citak-Er et al., 

2018). Accordingly it is not feasible to efficiently train the classification model of the deep 

learning approach on a limited number of patients (Mazurowski et al., 2019).  

The proposed classification system based on MTMCS overcome this limitation through 

developing two stages of learning and utilising several common classifiers in this first stage 

where these classifiers have the ability to handle small and large datasets (Kuncheva, 2014, 

Jun and Jian, 2005, Feng et al., 2014). In addition, CNN is computationally expensive 

(Caicedo et al., 2019) and requires tuning huge number of parameters that need optimization, 

which increases risk of overfitting that lead to a low performance particularly when training 

the model using a small dataset (Mazurowski et al., 2019, Zhou et al., 2014) . The developed 

system in this thesis utilized fixed and stable parameters for the classifiers involved in the 

first stage of the developed classification system. The developed system also adapts 

imbalanced datasets through the complementary ensemble strategy of different single 

classifiers (Kuncheva, 2014) whereby the experimental results showed stable and superior 

classification results when evaluated using different datasets. However, the outcome of deep 

learning approach is highly affected by the class imbalanced problem that is common in 

medical dataset. Furthermore, it is necessary for deep learning application to demonstrate an 
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additional technique to cope with this problem (Buda et al., 2018) which increases the chance 

of overfitting that leads to low performance in the testing phase (Zhang et al., 2017). 

The application of CNN is recognised as an end to end approach, which is applied directly 

to image pixels with ignoring the advantages of the features extraction and selection. While 

these stages provide significant support to the classification model, leading to better quality 

in the classification performance in terms of improved classification accuracy and efficient 

system design (El-Dahshan et al., 2014). In current thesis, smart, significant and new features 

were extracted, as well as the vital features and classifiers were selected, which they are 

investigated and developed to improve the performance of the automated classification 

system for glioma grades. Furthermore, the complementary of the new methods with the two 

stages of learning optimises the classification performance of the developed system. 

Accordingly, it can draw the inference that the proposed approach, which is developed and 

comprehensively evaluated and validated using four benchmark datasets, is more suitable to 

the classification problem undertaken in this work than the deep learning approach such as 

CNN, leading to more effective accuracy for the classification of glioma grades.  

Many studies have developed a classification system for glioma grades based on a single 

classifier system due to its efficiency and low complexity required in developing procedures 

of the classification system design. These are explored in details in (Table 2.2). However, 

single classifier system has been proven experimentally for lacked stability in the 

classification accuracy as it has various sensitivities to diverse datasets and can behave 

differently if tested with a different dataset. Furthermore, most of the recent works 

demonstrated the evaluation of the classification model using only one dataset. While using 

different datasets can provide a comprehensive evaluation of system behaviour. Nonetheless, 

the proposed system in this thesis overcomes this limitation by integrating different methods 

based on two stages of learning and by combining effective classification models 

incorporating with DNN to optimise the classification accuracy of glioma grades. Also, the 

developed system has been evaluated using four different datasets. Accordingly, the 

developed system achieved higher classification accuracy with optimal results at 100% with 

two datasets and superior results at 93.80% and 95.09 for the BRATS2015 and BRATS2018 

dataset respectively. 
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7.3 Conclusion  

The inconsistency of many morphological behaviours and tumour descriptors of different 

glioma grades leads to high complexity in glioma grading.  Additionally, an increase in the 

malignancy growth from lower tumour grade to the higher grade is associated with high 

mortality. It is a critical challenge to achieve an accurate diagnosis of glioma grade, through 

the visual diagnosis that highly depends on the extent of experience. Low and high glioma 

grades follow different treatment protocol. Low glioma grades, which includes grade I, and 

grade II could follow an extensive resection of lesion and may need radiotherapy 

postoperatively (Pouratian and Schiff, 2010). However the high-grade gliomas, which 

include grade III and grade IV, are managed with an essential resection, chemotherapy and 

radiotherapy (Stupp et al., 2010). It is necessary to provide patients with the proper clinical 

treatment, prolonging survival and quality of life, and thus it creates the need for accurate 

tumour characterisation (Pantelis, 2010, Chao et al., 2006). Consequently, to overcome this 

challenge, this study proposes a novel automated system for classification of glioma grades, 

which is based on quantitative features extracted from MR images incorporated with two 

stages of learning. In the first stage, different popular machine learning algorithms are 

trained and evaluated, in the second stage; the multi-classification models are integrated 

based on deep neural networks. 

This work has many contributions, mainly the classification approach itself; the quantitative 

features extracted from the MR images, which are utilised in the integration of multi-

machine learning algorithms within two stages of learning (meta-learning). This is 

performed based on deep neural network that integrates multi-classification models to 

provide an automated, efficacious, robust classification approach for glioma grades, which 

is comparable to the state-of-the-art. 

The proposed classification system has achieved an optimal classification accuracy in the 

classification of different WHO grades of glioma, where it has obtained the full 

discrimination rate of 100% in the differentiation between low-grade glioma (I, II) and high-

grade glioma (III, IV) using BRATS2013 dataset. Similarly, the full accuracy rate of 100% 

was also achieved in the discrimination between grade IV and the lower grades (II, III), and 

the separation between grade II and the high-grade glioma (III, IV) using the Cancer dataset. 

The classification accuracy achieved was 93.8% in discriminating between low-grade 

glioma (I, II) and high-grade glioma (III, IV) using the BRATS2015 dataset. The proposed 

system also achieved the full classification rate at 100% in the multi-class classification of 
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glioma grades into the three WHO grades (II, III, and IV). Furthermore, the proposed system 

has been compared with other current approaches used widely in the classification of medical 

images as well as the comparison made against recent approaches developed for the 

classification of brain tumour types and grades. The results of the comparison confirmed that 

the proposed system has outperformed the other recent developed systems and has achieved 

optimal and robust classification accuracy for glioma grades. 

The proposed system overcomes the potential effect of using a limited size of samples that 

can cause deficiency in the training phase, and it showed superior results and even with small 

sample sizes. This is due to the integration of different robust classifiers that has such 

advantages in the ensemble stage. 

The proposed system has many strengths, and advantageous aspects, which were listed as 

follows: 

 Systematic: the proposed system is systematic approach developed through 

predefined sequence of actions that are implemented in order irrespective of the data 

set. Consequently, it is a standardised framework that is not dataset-dependent.  

 Automatic: the developed system is fully automated and does not need any 

intervention by an expert. 

 Robustness: unlike many single classification approaches which are sensitive to the 

data distribution giving no guarantee of a model with high accuracy showing 

significant classification results if a different dataset is involved. The developed 

classification system proposed in this research is less affected by changing the dataset 

showing high stability in classification accuracy for the entire four benchmark 

datasets. Similarly, the proposed system outperforms the traditional ensemble 

approaches where the latter approach is highly dependent on the majority vote 

technique in the integration design where the majority vote is not able to sense the 

nonlinear relationships among classifiers. While the proposed system develops DNN 

instead that can sense more intricate relationships among classifiers, leading to more 

effective classification accuracy for glioma grades.  

 Selection best subset of classifiers: one of the major challenging aspects in the 

design of MCS is how to choose the best classifier members that can result in the 

best results. While in this work, an efficient algorithm is proposed to tackle this 

challenge and select the best subset of classifiers from many different classifiers 

where the suggested algorithm is also beneficial in reducing the dimensions of 
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classifiers, which is consequently crucial for complexity reduction of the system 

design based on MCS. 

The developed automated classification system for glioma grade will offer great help as a 

second opinion to support radiologist and experts in the assessment of the malignancy grades 

of glioma and produce an accurate, automated and objective decision generated by prediction 

model using highly technological methods, quantitatively designed based on a machine 

learning algorithm. 

7.4 Research Recommendations and Future Trends  

This thesis uses four different benchmark datasets publicly available for academic use, which 

have different acquisition settings such as various slice thickness, slice space, strength of 

scanner magnetic field. However, these datasets are post acquired dataset that means this 

work has no control over the dataset setting. While the protocol used to acquire the image 

dataset such as the strength of scanner magnetic field and slice thickness have a significant 

influence on the image resolution and thus image texture features can be affected and hence 

this impact the classification performance (Savio et al., 2010, Tantisatirapong, 2015). It is 

recommended, for example, to use a high strength magnetic field by MRI to achieve better 

image texture details. Future work could be conducted by controlling these image acquisition 

protocols and examine the effect of different ranges of the acquisition factors and 

demonstrate an optimisation study through experimentally finding the optimal acquisition 

setting that achieves a best classification of glioma grades.   

Several image features for brain tumour are investigated, particularly, features associated 

with tumour heterogeneity, which are widely used in many different medical applications 

such as segmentation, and classification of brain tumours. These features were investigated 

and showed successful results in this study. The challenge with these features was the 

homogeneity of the tumour image, which can play a significant role in the amount of texture 

that can be recognised and thereby affecting the classification accuracy results. The inference 

was drawn from an image sample that the low level of homogeneity can support the texture 

recognition, which consequently leads to enhancing the ability of the classification system 

for more improved classification accuracy of glioma grades. Further studies are needed to 

identify the exact level of homogeneity acceptable to allow best classification accuracy with 

a classification system. This is beyond the scope of this study, and out of our control as all 

samples that are undertaken in this study are post-acquired dataset, where this study does not 
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involve in the creation of this dataset and all samples are provided from a public dataset. 

Future work can be directed by changing the level of homogeneity of image samples and 

track the change in classification accuracy, which will be useful to determine the tolerance 

range of homogeneity that can support the classification model for best and optimal 

classification accuracy for glioma grades based on image texture features. A suggestion 

would be useful that if modification criteria is used to the brain tumour images, through 

changing the image homogeneity, and then the effect on classification accuracy of glioma 

grades can be pursued and investigated. 

The automated classification system was developed based on several brain tumour 

descriptors and image features extracted from MR images while there are many other tumour 

descriptors and image features can be used. Future trend could involve the combination of 

the image features undertaken in this thesis with other tumour descriptors or features such 

as tumour vascularity and cellularity and examine the impact of these features on the glioma 

grading which could lead to further improvement in the classification accuracy of glioma 

grades. 

This work concentrated on the classification of different WHO glioma grades while it is 

possible as a future trend to design a classification system for glioma grades and types, which 

is also a valuable target, as each tumour type requires different treatment and prognosis.  

The classification of glioma grades followed the WHO scheme where the glioma can be 

classified into four grades (I, II, III, and IV). This work determined the classification of four 

grades through the binary classification between low grades (I, II) and high grades (III, IV). 

However, in this research work, the multi-class classification task was accomplished for only 

the three grades (II, III, and IV). This is due to the limited availability of datasets that 

supported four separated grades with the histopathology confirmation. It is also noted that 

many recent studies commonly perform multi-class classification of glioma grades 

considering only the three grade of glioma (II, III, and IV) (Zacharaki et al., 2009, Anaraki 

et al., 2019, Zhang et al., 2017, Ryu et al., 2014, Sajjad et al., 2019). This is probably due to 

the limited availability of the data with glioma grade I, which is usually cured compared to 

other glioma grades (Moore and Kim, 2010) which reduces the number of samples 

availability for grade I and also reduces the motivation to consider it in the classification 

system. Future trend could consider the four WHO grades of glioma. However, this could 

be a big challenge as limited samples of grade I will not be sufficient for those who develop 

automated systems based on a machine learning strategy.  
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As a future trend, larger samples are needed whereby it is possible to use deep learning if 

sufficient data and advanced hardware are available. Future work could demonstrate 

different approach of deep learning in attempting to achieve the most optimal classification 

accuracy. It is also recommended to take into account the merit of feature extraction methods 

for brain tumour images. 

This work focused on the integration of different popular and efficient classification models 

in terms of successful achievement in accuracy and handling small sample data. However, 

there are many alternative classifiers can be examined and developed. Future study could 

propose a new methodology through utilising and integrating new classifiers and 

investigating the impact of the developed method on the optimisation of the classification 

accuracy. Since this research work developed a new method to select the best subset of 

classifiers, this could help and guide the future research direction to answer the question 

regarding the selection of best classification model that will be the best choice for more 

optimal classification results.  

The proposed system was quantitatively developed and evaluated based on comprehensive 

experimental design. The aim of this work is to classify different WHO glioma grades within 

an automated computer-based analysis. Future work could be conducted to study the effect 

of the developed system on improving the diagnosis performance of group of radiologists 

within a clinical environment. The impact of the proposed system on the diagnosis 

performance of the experts can be analysed for glioma grading.   

The proposed system has been proven to be an efficacious classification approach for both 

binary classification and multi-class classification. However, the complexity of system 

design is the critical challenge, which requires considerable implementation time for training 

and optimisation where the parallel processing and advanced hardware is highly 

recommended. The proposed system is not dataset-dependent so as a Future work it can be 

applied and developed in a different application or dataset for possible enhancement and 

achieves an optimal classification result.  

 



 

269 

 

REFERENCES 

Abdallah, I., Dertimanis, V., Mylonas, H., Tatsis, K., Chatzi, E., Dervilis, N., Worden, K. & 

Maguire, E. Fault diagnosis of wind turbine structures using decision tree learning 

algorithms with big data.  Proceedings of ESREL, 2018 Trondheim, Norway. Taylor 

& Francis Group, 3053-3061. 

Abdel-Hamid, O., Mohamed, A., Jiang, H. & Penn, G. Applying Convolutional Neural 

Networks concepts to hybrid NN-HMM model for speech recognition.  2012 IEEE 

International Conference on Acoustics, Speech and Signal Processing (ICASSP), 25-

30 March 2012 2012. 4277-4280. 

Al-Waeli, A. M. H. 2017. An Automated System for the Classification and Segmentation of 

Brain Tumours in Mri Images Based on the Modified Grey Level Co-Occurrence 

Matrix. PhD, University of Salford, UK. 

Al-Zurfi, A. N., Meziane, F. & Aspin, R. A Computer-aided Diagnosis System for Glioma 

Grading using Three Dimensional Texture Analysis and Machine Learning in MRI 

Brain Tumour.  2019 IEEE 3rd International Conference on Bio-engineering for 

Smart Technologies (BioSMART), 2019 Paris, France. IEEE. 

Aly, M. 2005. Survey on multiclass classification methods. Neural Networks, 19(1), 1-9. 

AlZurfi, A., Meziane, F. & Aspin, R. Automated glioma grading based on an efficient 

ensemble design of a multiple classifier system using deep iteration neural networks 

matrix.  Proceedings of the 24th International Conference on Automation and 

Computing (ICAC'2018), 2018 Newcastle University, Newcastle upon Tyne, UK. 

IEEE. 

Ananda Resmi, S. 2013. Development of Techniques for the Automatic Extraction and Grade 

Detection of Glioma Tumors from Conventional Brain Magnetic Resonant Images. 

PhD, Cochin University of Science and Technology, INDIA. 

Ananda Resmi, S. & Thomas, T. 2010. Texture Description of low grade and high grade 

Glioma using Statistical features in Brain MRIs. International Journal of Recent 

Trends in Engineering and Technology, 4(3), 27-33. 

Anaraki, A. K., Ayati, M. & Kazemi, F. 2019. Magnetic resonance imaging-based brain 

tumor grades classification and grading via convolutional neural networks and 

genetic algorithms. Biocybernetics and Biomedical Engineering, 39(1), 63-74. 

Aragao, M. d. F. V., Law, M., de Almeida, D. B., Fatterpekar, G., Delman, B., Bader, A., 

Pelaez, M., Fowkes, M., de Mello, R. V. & Valenca, M. M. 2014. Comparison of 

perfusion, diffusion, and MR spectroscopy between low-grade enhancing pilocytic 

astrocytomas and high-grade astrocytomas. American Journal of Neuroradiology, 

35(8), 1495-1502. 

Armano, G., Chira, C. & Hatami, N. A New Gene Selection Method Based on Random 

Subspace Ensemble for Microarray Cancer Classification.  6th IAPR International 

Conference of Pattern Recognition in Bioinformatics., 2011 Berlin, Heidelberg. 

Springer Berlin Heidelberg, 191-201. 

Ashour, A. S., Guo, Y., Hawas, A. R. & Xu, G. 2018a. Ensemble of subspace discriminant 

classifiers for schistosomal liver fibrosis staging in mice microscopic images. Health 

information science and systems, 6(1), 21. 

Ashour, D. S., Abou Rayia, D. M., Maher Ata, M., Ashour, A. S. & Abd Elnaby, M. M. 

2018b. Hybrid feature extraction techniques for microscopic hepatic fibrosis 

classification. Microscopy Research and Technique, 81(3), 338-347. 



REFERENCES 

 

270 

 

Baaziz, N., Abahmane, O. & Missaoui, R. 2010. Texture feature extraction in the spatial-

frequency domain for content-based image retrieval. Computer Vision and pattern 

Recognition. arXiv:1012.5208. 

Baboo, S. S. & Sasikala, M. S. 2010. Multicategory classification using support vector 

machine for microarray gene expression cancer diagnosis. Global Journal of 

Computer Science and Technology, 10(15), 38-44. 

Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J. S., Freymann, J. B., 

Farahani, K. & Davatzikos, C. 2017. Advancing The Cancer Genome Atlas glioma 

MRI collections with expert segmentation labels and radiomic features. Scientific 

data, 4(1), 170117-170117. 

Baptista, F. D., Rodrigues, S. & Morgado-Dias, F. Performance comparison of ANN training 

algorithms for classification.  Intelligent Signal Processing (WISP), 2013 IEEE 8th 

International Symposium on, 2013 Funchal, Portugal. IEEE, 115-120. 

Barker, F. G., Davis, R. L., Chang, S. M. & Prados, M. D. 1996. Necrosis as a prognostic 

factor in glioblastoma multiforme. Cancer, 77(6), 1161-1166. 

Barnett, G. H. 2007. High-grade gliomas: diagnosis and treatment, Berlin, Springer. 

Bashir, S., Qamar, U. & Khan, F. H. 2016. A multicriteria weighted vote‐based classifier 

ensemble for heart disease prediction. Computational Intelligence, 32(4), 615-645. 

Bauer, S., Wiest, R., Nolte, L. P. & Reyes, M. 2013. A survey of MRI-based medical image 

analysis for brain tumor studies. Physics in Medicine and Biology, 58(13), R97-

R128. 

Behin, A., Hoang-Xuan, K., Carpentier, A. F. & Delattre, J.-Y. 2003. Primary brain tumours 

in adults. The Lancet, 361(9354), 323-331. 

Bertoni, A., Folgieri, R. & Valentini, G. Random subspace ensembles for the bio-molecular 

diagnosis of tumors.  NETTAB 2004 (Fourth International Workshop on Network 

Tools And Application in Biology), 2004 Italian. 

Bertoni, A., Folgieri, R. & Valentini, G. 2005. Feature selection combined with random 

subspace ensemble for gene expression based diagnosis of malignancies. In: 

APOLLONI, B., MARINARO, M. & TAGLIAFERRI, R. (eds.) Biological and 

Artificial Intelligence Environments:15th Italian Workshop on Neural Nets, WIRN 

VIETRI 2004. Netherlands: Springer. 

Birry, R. A. K. 2013. Automated classification in digital images of osteogenic differentiated 

stem cells. PhD, University of Salford. 

Blink, E. J. 2004. mri: Physics. Online PDF file [Online].  [Accessed 2016.http://www.mri-

physics.net/]. 

Bloch, F. 1946. Nuclear induction. Physical review, 70(7-8), 460. 

Bonilha, L., Kobayashi, E., Castellano, G., Coelho, G., Tinois, E., Cendes, F. & Li, L. M. 

2003. Texture analysis of hippocampal sclerosis. Epilepsia, 44(12), 1546-1550. 

Bracewell, R. N. 2000. The Fourier transform and its applications, Boston, Mass. [u.a.], 

McGraw Hill. 

Breiman, L. 1996. Bagging predictors. Machine Learning, 24(2), 123-140. 

Buda, M., Maki, A. & Mazurowski, M. A. 2018. A systematic study of the class imbalance 

problem in convolutional neural networks. Neural Networks, 106249-259. 

Burns, R. P. & Burns, R. 2008. Business research methods and statistics using SPSS, 

London, Sage. 

Caicedo, J. C., Roth, J., Goodman, A., Becker, T., Karhohs, K. W., Broisin, M., Csaba, M., 

McQuin, C., Singh, S., Theis, F. & Carpenter, A. E. 2019. Evaluation of Deep 

Learning Strategies for Nucleus Segmentation in Fluorescence Images. bioRxiv, 

335216. 

http://www.mri-physics.net/
http://www.mri-physics.net/


REFERENCES 

 

271 

 

Camargo, L. S. & Yoneyama, T. 2001. Specification of Training Sets and the Number of 

Hidden Neurons for Multilayer Perceptrons. Neural Computation, 13(12), 2673-

2680. 

Carter, J. S., Koopmeiners, J. S., Kuehn‐Hajder, J. E., Metzger, G. J., Lakkadi, N., Downs, 

L. S. & Bolan, P. J. 2013. Quantitative multiparametric MRI of ovarian cancer. 

Journal of Magnetic Resonance Imaging, 38(6), 1501-1509. 

Castellano, G., Bonilha, L., Li, L. M. & Cendes, F. 2004. Texture analysis of medical images. 

Clinical Radiology, 59(12), 1061-1069. 

Chakraborty, S., Paul, S., Sarkar, R. & Nasipuri, M. Feature Map Reduction in CNN for 

Handwritten Digit Recognition. 2019 Singapore. Springer Singapore, 143-148. 

Chan, Y. 2003. Biostatistics 104: correlational analysis. Singapore Med J, 44(12), 614-9. 

Chao, S. T., Barnett, G. H., Liu, S. W., Reuther, A. M., Toms, S. A., Vogelbaum, M. A., 

Videtic, G. M. M. & Suh, J. H. 2006. Five-year survivors of brain metastases: A 

single-institution report of 32 patients. International Journal of Radiation Oncology 

Biology Physics, 66(3), 801-809. 

Chen, G. H. & Shah, D. 2018. Explaining the Success of Nearest Neighbor Methods in 

Prediction. Foundations and Trends® in Machine Learning, 10(5-6), 337-588. 

Chen, W.-S., Huang, R.-H. & Hsieh, L. 2009. Iris Recognition Using 3D Co-occurrence 

Matrix. In: TISTARELLI, M. & NIXON, M. S. (eds.) Advances in Biometrics: Third 

International Conference, ICB 2009, Alghero, Italy, June 2-5, 2009. Proceedings. 

Berlin, Heidelberg: Springer Berlin Heidelberg. 

Chen, W., Giger, M. L., Li, H., Bick, U. & Newstead, G. M. 2007. Volumetric texture 

analysis of breast lesions on contrast‐enhanced magnetic resonance images. 

Magnetic Resonance in Medicine, 58(3), 562-571. 

Chen, Y., Crawford, M. M. & Ghosh, J. Integrating support vector machines in a hierarchical 

output space decomposition framework.  Geoscience and Remote Sensing 

Symposium, 2004. IGARSS'04. Proceedings. 2004 IEEE International, 2004 

Anchorage, AK, USA. IEEE, 949-952. 

Chevrefils, C., Périé, D., Parent, S. & Cheriet, F. 2018. To distinguish flexible and rigid 

lumbar curve from MRI texture analysis in adolescent idiopathic scoliosis: A 

feasibility study. Journal of Magnetic Resonance Imaging, 48(1), 178-187. 

Chow, K. L., Gobin, Y. P., Cloughesy, T., Sayre, J. W., Villablanca, J. P. & Viñuela, F. 

2000. Prognostic factors in recurrent glioblastoma multiforme and anaplastic 

astrocytoma treated with selective intra-arterial chemotherapy. American journal of 

neuroradiology, 21(3), 471-478. 

Citak-Er, F., Firat, Z., Kovanlikaya, I., Ture, U. & Ozturk-Isik, E. 2018. Machine-learning 

in grading of gliomas based on multi-parametric magnetic resonance imaging at 3T. 

Computers in Biology and Medicine, 99(1), 154-160. 

Clark, K., Vendt, B., Smith, K., Freymann, J., Kirby, J., Koppel, P., Moore, S., Phillips, S., 

Maffitt, D., Pringle, M., Tarbox, L. & Prior, F. 2013. The Cancer Imaging Archive 

(TCIA): Maintaining and Operating a Public Information Repository. Journal of 

Digital Imaging, 26(6), 1045-1057. 

Corso, J. J., Sharon, E., Dube, S., El-Saden, S., Sinha, U. & Yuille, A. 2008. Efficient 

Multilevel Brain Tumor Segmentation With Integrated Bayesian Model 

Classification. IEEE Transactions on Medical Imaging, 27(5), 629-640. 

Cover, T. & Hart, P. 1967. Nearest neighbor pattern classification. IEEE Transactions on 

Information Theory, 13(1), 21-27. 

Dara, S. & Tumma, P. Feature Extraction By Using Deep Learning: A Survey.  2018 Second 

International Conference on Electronics, Communication and Aerospace 

Technology (ICECA), 2018 Coimbatore, India. 1795-1801. 



REFERENCES 

 

272 

 

Das, D., Mahanta, L. B., Ahmed, S., Baishya, B. K. & Haque, I. 2018. Study on Contribution 

of Biological Interpretable and Computer-Aided Features Towards the Classification 

of Childhood Medulloblastoma Cells. Journal of Medical Systems, 42(8), 151. 

Davnall, F., Yip, C. S., Ljungqvist, G., Selmi, M., Ng, F., Sanghera, B., Ganeshan, B., Miles, 

K. A., Cook, G. J. & Goh, V. 2012. Assessment of tumor heterogeneity: an emerging 

imaging tool for clinical practice. Insights Imaging, 3(6), 573-89. 

DeAngelis, L. M. 2001. Brain tumors. New England Journal of Medicine, 344(2), 114-123. 

Deepa, S. & Devi, B. A. 2011. A survey on artificial intelligence approaches for medical 

image classification. Indian Journal of Science and Technology, 4(11), 1583-1595. 

Dennie, C., Thornhill, R., Sethi-Virmani, V., Souza, C. A., Bayanati, H., Gupta, A. & 

Maziak, D. 2016. Role of quantitative computed tomography texture analysis in the 

differentiation of primary lung cancer and granulomatous nodules. Quantitative 

imaging in medicine and surgery, 6(1), 6-15. 

Devos, A., Simonetti, A., Van Der Graaf, M., Lukas, L., Suykens, J., Vanhamme, L., 

Buydens, L., Heerschap, A. & Van Huffel, S. 2005. The use of multivariate MR 

imaging intensities versus metabolic data from MR spectroscopic imaging for brain 

tumour classification. Journal of Magnetic Resonance, 173(2), 218-228. 

Dong, H., Yang, G., Liu, F., Mo, Y. & Guo, Y. 2017. Automatic brain tumor detection and 

segmentation using U-Net based fully convolutional networks. In: VALDÉS 

HERNÁNDEZ, M. & GONZÁLEZ-CASTRO, V. (eds.) Medical Image 

Understanding and Analysis. MIUA 2017. Communications in Computer and 

Information Science. Cham: Springer. 

Doolittle, N. D. 2004. State of the science in brain tumor classification. Seminars in 

Oncology Nursing, 20(4), 224-230. 

Dougherty, G. 2009. Digital image processing for medical applications, UK, Cambridge 

University Press. 

Drabycz, S., Roldán, G., De Robles, P., Adler, D., McIntyre, J. B., Magliocco, A. M., 

Cairncross, J. G. & Mitchell, J. R. 2010. An analysis of image texture, tumor location, 

and MGMT promoter methylation in glioblastoma using magnetic resonance 

imaging. Neuroimage, 49(2), 1398-1405. 

Dubitzky, W., Granzow, M. & Berrar, D. P. 2007. Fundamentals of data mining in genomics 

and proteomics, New york, USA, Springer Science & Business Media. 

Duda, R. O., Hart, P. E. & Stork, D. G. 2012. Pattern classification, New York, John Wiley 

& Sons. 

Dvořák, P., Kropatsch, W. & Bartušek, K. 2013. Automatic brain tumor detection in T2-

weighted magnetic resonance images. Measurement Science Review, 13(5), 223-230. 

El-Dahshan, E.-S. A., Mohsen, H. M., Revett, K. & Salem, A.-B. M. 2014. Computer-aided 

diagnosis of human brain tumor through MRI: A survey and a new algorithm. Expert 

Systems with Applications, 41(11), 5526-5545. 

Eliat, P.-A., Olivié, D., Saïkali, S., Carsin, B., Saint-Jalmes, H. & de Certaines, J. D. 2012. 

Can dynamic contrast-enhanced magnetic resonance imaging combined with texture 

analysis differentiate malignant glioneuronal tumors from other glioblastoma? 

Neurology research international, Article ID 195176. 

Erickson, B. J., Korfiatis, P., Akkus, Z. & Kline, T. L. 2017. Machine learning for medical 

imaging. Radiographics, 37(2), 505-515. 

Feng, W., Zhang, Q., Hu, G. & Huang, J. X. 2014. Mining network data for intrusion 

detection through combining SVMs with ant colony networks. Future Generation 

Computer Systems, 37(1), 127-140. 

Ferlay, J., Soerjomataram, I., Dikshit, R., Eser, S., Mathers, C., Rebelo, M., Parkin, D. M., 

Forman, D. & Bray, F. 2015. Cancer incidence and mortality worldwide: Sources, 



REFERENCES 

 

273 

 

methods and major patterns in GLOBOCAN 2012. International Journal of Cancer, 

136(5), E359-E386. 

Ferreira, J. E. V., Pinheiro, M. T. S., dos Santos, W. R. S. & da Silva Maia, R. 2016. 

Graphical representation of chemical periodicity of main elements through boxplot. 

Educación química, 27(3), 209-216. 

Fetit, A. E., Novak, J., Peet, A. C. & Arvanitis, T. N. 2015. Three‐dimensional textural 

features of conventional MRI improve diagnostic classification of childhood brain 

tumours. NMR in Biomedicine, 28(9), 1174-1184. 

Fisher, R. A. 1936. The use of multiple measurements in taxonomic problems. Annals of 

Eugenics, 7(2), 179-188. 

Florez, E., Nichols, T., Lirette, S., Howard, C. & Fatemi, A. 2018. Developing a Texture 

Analysis Technique using Fluid-Attenuated Inversion Recovery (FLAIR) to 

Differentiate Tumor from Edema for Contouring Primary Intracranial Tumors. SM 

Journal of Clinical and Medical Imaging, 4(2), 1023. 

Freund, Y. 1995. Boosting a weak learning algorithm by majority. Information and 

computation, 121(2), 256-285. 

Friedl, M. A. & Brodley, C. E. 1997. Decision tree classification of land cover from remotely 

sensed data. Remote Sensing of Environment, 61(3), 399-409. 

Fujita, H., Uchiyama, Y., Nakagawa, T., Fukuoka, D., Hatanaka, Y., Hara, T., Lee, G. N., 

Hayashi, Y., Ikedo, Y., Gao, X. & Zhou, X. 2008. Computer-aided diagnosis: The 

emerging of three CAD systems induced by Japanese health care needs. Computer 

Methods and Programs in Biomedicine, 92(3), 238-248. 

Ganeshan, B., Abaleke, S., Young, R., Chatwin, C. R. & Miles, K. A. 2010. Texture analysis 

of non-small cell lung cancer on unenhanced computed tomography: initial evidence 

for a relationship with tumour glucose metabolism and stage. Cancer imaging, 10(1), 

137-143. 

Ganeshan, B., Skogen, K., Pressney, I., Coutroubis, D. & Miles, K. 2012. Tumour 

heterogeneity in oesophageal cancer assessed by CT texture analysis: Preliminary 

evidence of an association with tumour metabolism, stage, and survival. Clinical 

Radiology, 67(2), 157-164. 

Geneidi, E. A. S., Habib, L. A., Chalabi, N. A. & Haschim, M. H. 2015. Potential role of 

quantitative MRI assessment in differentiating high from low-grade gliomas. The 

Egyptian Journal of Radiology and Nuclear Medicine, 47(1). 

Georgiadis, P., Cavouras, D., Kalatzis, I., Glotsos, D., Athanasiadis, E., Kostopoulos, S., 

Sifaki, K., Malamas, M., Nikiforidis, G. & Solomou, E. 2009. Enhancing the 

discrimination accuracy between metastases, gliomas and meningiomas on brain 

MRI by volumetric textural features and ensemble pattern recognition methods. 

Magnetic Resonance Imaging, 27(1), 120-130. 

Giacinto, G., Roli, F. & Fumera, G. Design of effective multiple classifier systems by 

clustering of classifiers.  Proceedings 15th International Conference on Pattern 

Recognition. ICPR-2000, 2000 Barcelona, Spain. IEEE, 160-163.vol 2. 

Gibbs, P. & Turnbull, L. W. 2003. Textural analysis of contrast‐enhanced MR images of the 

breast. Magnetic Resonance in Medicine, 50(1), 92-98. 

Gnep, K., Fargeas, A., Gutiérrez‐Carvajal, R. E., Commandeur, F., Mathieu, R., Ospina, J. 

D., Rolland, Y., Rohou, T., Vincendeau, S. & Hatt, M. 2017. Haralick textural 

features on T2‐weighted MRI are associated with biochemical recurrence following 

radiotherapy for peripheral zone prostate cancer. Journal of Magnetic Resonance 

Imaging, 45(1), 103-117. 



REFERENCES 

 

274 

 

Gómez, W., Pereira, W. & Infantosi, A. F. C. 2012. Analysis of co-occurrence texture 

statistics as a function of gray-level quantization for classifying breast ultrasound. 

IEEE Transactions on Medical Imaging, 31(10), 1889-1899. 

Graña, M., Termenon, M., Savio, A., Gonzalez-Pinto, A., Echeveste, J., Pérez, J. M. & 

Besga, A. 2011. Computer Aided Diagnosis system for Alzheimer Disease using 

brain Diffusion Tensor Imaging features selected by Pearson's correlation. 

Neuroscience Letters, 502(3), 225-229. 

Grant, L. A. & Griffin, N. 2013. Grainger & Allison's Diagnostic Radiology Essentials, New 

York, USA, Elsevier Health Sciences. 

Graupe, D. 2013. Principles of artificial neural networks, Singapore, World Scientific. 

Gu, Q., Zhu, L. & Cai, Z. 2009. Evaluation Measures of the Classification Performance of 

Imbalanced Data Sets. In: CAI, Z., LI, Z., KANG, Z. & LIU, Y. (eds.) Computational 

Intelligence and Intelligent Systems, vol 51. Berlin, Heidelberg: Springer Berlin 

Heidelberg. 

Gupta, M., Rajagopalan, V., Pioro, E. P. & Rao, B. V. V. S. N. P. 2017. Volumetric analysis 

of MR images for glioma classification and their effect on brain tissues. Signal, 

Image and Video Processing, 11(7), 1337-1345. 

Gupta, N., Bhatele, P. & Khanna, P. 2019. Glioma detection on brain MRIs using texture 

and morphological features with ensemble learning. Biomedical Signal Processing 

and Control, 47(1), 115-125. 

Guyon, I. & Elisseeff, A. 2003. An introduction to variable and feature selection. Journal of 

machine learning research, 31157-1182. 

Hadziahmetovic, M., Shirai, K. & Chakravarti, A. 2011. Recent advancements in 

multimodality treatment of gliomas. Future Oncology, 7(10), 1169-1183. 

Hall, M. A. 1999. Correlation-based feature selection for machine learning. PhD, 

University of Waikato, Hamilton, NewZealand. 

Hamel, L. H. 2009. Knowledge discovery with support vector machines, Hoboken, New 

Jersey., John Wiley & Sons. 

Han, Y., Kim, J., Lee, K., Han, Y., Kim, J. & Lee, K. 2017. Deep Convolutional Neural 

Networks for Predominant Instrument Recognition in Polyphonic Music. IEEE/ACM 

Transaction. Audio, Speech and Lang. Proc., 25(1), 208-221. 

Haralick, R. M., Shanmugam, K. & Dinstein, I. 1973. Textural Features for Image 

Classification. IEEE Transactions on Systems, Man, and Cybernetics, 3(6), 610-621. 

Hasan, A., Meziane, F., Aspin, R. & Jalab, H. 2016a. Segmentation of Brain Tumors in MRI 

Images Using Three-Dimensional Active Contour without Edge. Symmetry, 8(11), 

132. 

Hasan, A. M. & Meziane, F. 2016. Automated screening of MRI brain scanning using grey 

level statistics. Computers & Electrical Engineering, 53(1), 276-291. 

Hasan, A. M., Meziane, F. & Jalab, H. A. Performance of grey level statistic features versus 

Gabor wavelet for screening MRI brain tumors: A comparative study.  Information 

Communication and Management (ICICM), International Conference on, 2016b 

Hatfield, UK. IEEE, 136-140. 

Hasan, A. M., Meziane, F. & Kadhim, M. A. Automated Segmentation of Tumours in MRI 

Brain Scans.  Proceeding BIOSTEC 2016 Proceedings of the International Joint 

Conference on Biomedical Engineering Systems and Technologie, 2016c Rome, 

Italy. 55-62. 

Hastie, T., Tibshirani, R. & Friedman, J. 2001. The elements of statistical learning. 2001, 

USA, Springer. 



REFERENCES 

 

275 

 

Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A., Bengio, Y., Pal, C., 

Jodoin, P.-M. & Larochelle, H. 2017. Brain tumor segmentation with Deep Neural 

Networks. Medical Image Analysis, 3518-31. 

Hegde, R. B., Prasad, K., Hebbar, H. & Singh, B. M. K. 2019. Comparison of traditional 

image processing and deep learning approaches for classification of white blood cells 

in peripheral blood smear images. Biocybernetics and Biomedical Engineering, 

39(2), 382-392. 

Helbren, E., Fanshawe, T. R., Phillips, P., Mallett, S., Boone, D., Gale, A., Altman, D. G., 

Taylor, S. A., Manning, D. & Halligan, S. 2015. The effect of computer-aided 

detection markers on visual search and reader performance during concurrent reading 

of CT colonography. European Radiology, 25(6), 1570-1578. 

Herlidou, S., Rolland, Y., Bansard, J. Y., Le Rumeur, E. & de Certaines, J. D. 1999. 

Comparison of automated and visual texture analysis in MRI: Characterization of 

normal and diseased skeletal muscle. Magnetic Resonance Imaging, 17(9), 1393-

1397. 

Holli, K. K., Harrison, L., Dastidar, P., Wäljas, M., Liimatainen, S., Luukkaala, T., Öhman, 

J., Soimakallio, S. & Eskola, H. 2010. Texture analysis of MR images of patients 

with mild traumatic brain injury. BMC Medical Imaging, 10(1), 1. 

Hsieh, K. L.-C., Chen, C.-Y. & Lo, C.-M. 2017a. Quantitative glioma grading using 

transformed gray-scale invariant textures of MRI. Computers in Biology and 

Medicine, 83(1), 102-108. 

Hsieh, K. L.-C., Lo, C.-M. & Hsiao, C.-J. 2017b. Computer-aided grading of gliomas based 

on local and global MRI features. Computer Methods and Programs in Biomedicine, 

139(1), 31-38. 

Hsieh, K. L.-C., Tsai, R.-J., Teng, Y.-C. & Lo, C.-M. 2017c. Effect of a computer-aided 

diagnosis system on radiologists' performance in grading gliomas with MRI. PLOS 

ONE, 12(2), e0171342. 

Hutter, A., Schwetye, K. E., Bierhals, A. J. & McKinstry, R. C. 2003. Brain neoplasms: 

epidemiology, diagnosis, and prospects for cost-effective imaging. Neuroimaging 

Clinics of North America, 13(2), 237-250. 

Hwang, J.-N. & Hu, Y. H. 2001. Handbook of neural network signal processing, Boca 

Raton, Florida, CRC press. 

Illán, I. A., Górriz, J. M., López, M. M., Ramírez, J., Salas-Gonzalez, D., Segovia, F., 

Chaves, R. & Puntonet, C. G. 2011. Computer aided diagnosis of Alzheimer’s 

disease using component based SVM. Applied Soft Computing, 11(2), 2376-2382. 

Inano, R., Oishi, N., Kunieda, T., Arakawa, Y., Yamao, Y., Shibata, S., Kikuchi, T., 

Fukuyama, H. & Miyamoto, S. 2014. Voxel-based clustered imaging by 

multiparameter diffusion tensor images for glioma grading. NeuroImage: Clinical, 

5396-407. 

Iram, S., Al Jumeily, D., Fergus, P. & Hussain, A. Exploring the Hidden Challenges 

Associated with the Evaluation of Multi-class Datasets Using Multiple Classifiers.  

Complex, Intelligent and Software Intensive Systems (CISIS), 2014 Eighth 

International Conference on, 2014 Birmingham, UK. IEEE, 346-352. 

Işın, A., Direkoğlu, C. & Şah, M. 2016. Review of MRI-based Brain Tumor Image 

Segmentation Using Deep Learning Methods. Procedia Computer Science, 102317-

324. 

Jafari, P. & Azuaje, F. 2006. An assessment of recently published gene expression data 

analyses: reporting experimental design and statistical factors. BMC Medical 

Informatics and Decision Making, 6(1), 27. 



REFERENCES 

 

276 

 

Javed, U., Riaz, M. M., Ghafoor, A. & Cheema, T. A. 2013. MRI brain classification using 

texture features, fuzzy weighting and support vector machine. Progress In 

Electromagnetics Research B, 5373-88. 

Jiang, J., Trundle, P. & Ren, J. 2010. Medical image analysis with artificial neural networks. 

Computerized Medical Imaging and Graphics, 34(8), 617-631. 

Johnson, K. J. & Synovec, R. E. 2002. Pattern recognition of jet fuels: comprehensive 

GC×GC with ANOVA-based feature selection and principal component analysis. 

Chemometrics and Intelligent Laboratory Systems, 60(1), 225-237. 

Jun, T. & Jian, Y. Developing an intelligent data discriminating system of anti-money 

laundering based on SVM.  2005 International Conference on Machine Learning and 

Cybernetics, 18-21 Aug. 2005 2005. 3453-3457 Vol. 6. 

Just, N. 2011. Histogram analysis of the microvasculature of intracerebral human and murine 

glioma xenografts. Magnetic Resonance in Medicine, 65(3), 778-789. 

Kamnitsas, K., Ledig, C., Newcombe, V. F. J., Simpson, J. P., Kane, A. D., Menon, D. K., 

Rueckert, D. & Glocker, B. 2017. Efficient multi-scale 3D CNN with fully connected 

CRF for accurate brain lesion segmentation. Medical Image Analysis, 3661-78. 

Kang, Y., Choi, S. H., Kim, Y.-J., Kim, K. G., Sohn, C.-H., Kim, J.-H., Yun, T. J. & Chang, 

K.-H. 2011. Gliomas: Histogram Analysis of Apparent Diffusion Coefficient Maps 

with Standard- or High-b-Value Diffusion-weighted MR Imaging—Correlation with 

Tumor Grade. Radiology, 261(3), 882-890. 

Karpathy, A. 2016. Connecting images and natural language. Ph. D. thesis, Stanford 

University. 

Kassner, A. & Thornhill, R. 2010. Texture analysis: a review of neurologic MR imaging 

applications. American Journal of Neuroradiology, 31(5), 809-816. 

Khalid, A. & Noureldien, N. A. 2014. Determining the Efficient Structure of Feed-Forward 

Neural Network to Classify Breast Cancer Dataset. International Journal of 

Advanced Computer Science and Applications, 1(2014), 87-90. 

Kharrat, A., Gasmi, K., Messaoud, M. B., Benamrane, N. & Abid, M. 2010. A hybrid 

approach for automatic classification of brain MRI using genetic algorithm and 

support vector machine. Leonardo Journal of Sciences, 17(1), 71-82. 

Khawaldeh, S., Pervaiz, U., Rafiq, A. & Alkhawaldeh, R. S. 2017. Noninvasive Grading of 

Glioma Tumor Using Magnetic Resonance Imaging with Convolutional Neural 

Networks. Applied Sciences, 8(1), 27. 

Kitange, G. J., Templeton, K. L. & Jenkins, R. B. 2003. Recent advances in the molecular 

genetics of primary gliomas. Current Opinion in Oncology, 15(3), 197-203. 

Kjaer, L., Ring, P., Thomsen, C. & Henriksen, O. 1995. Texture analysis in quantitative MR 

imaging: tissue characterisation of normal brain and intracranial tumours at 1.5 T. 

Acta Radiologica, 36(2), 127-135. 

Kono, K., Inoue, Y., Nakayama, K., Shakudo, M., Morino, M., Ohata, K., Wakasa, K. & 

Yamada, R. 2001. The role of diffusion-weighted imaging in patients with brain 

tumors. American Journal of Neuroradiology, 22(6), 1081-1088. 

Kothari, C. R. 2004. Research methodology: Methods and techniques, New Delhi, New Age 

International. 

Kotsiantis, S. B., Zaharakis, I. & Pintelas, P. 2007. Supervised machine learning: A review 

of classification techniques. Emerging Artificial Intelligence Applications in 

Computer Engineering: Real Word AI Systems with Applications in EHealth, HCI, 

Information Retrieval and Pervasive Technologie. Vol 160, 3-24. Netherlands: IOS 

press. 



REFERENCES 

 

277 

 

Kovalev, V. & Kruggel, F. 2007. Texture Anisotropy of the Brain's White Matter as 

Revealed by Anatomical MRI. IEEE Transactions on Medical Imaging, 26(5), 678-

685. 

Kulkarni, S. R., Lugosi, G. & Venkatesh, S. S. 1998. Learning pattern classification-a 

survey. IEEE Transactions on Information Theory, 44(6), 2178-2206. 

Kumar, M. & Singh, K. M. 2018. Retrieval of head–neck medical images using Gabor filter 

based on power-law transformation method and rank BHMT. Signal, Image and 

Video Processing, 12(5), 827-833. 

Kumar, S., Ghosh, J. & Crawford, M. M. 2002. Hierarchical Fusion of Multiple Classifiers 

for Hyperspectral Data Analysis. Pattern Analysis & Applications, 5(2), 210-220. 

Kumar, S., Moni, R. & Rajeesh, J. 2013. An automatic computer-aided diagnosis system for 

liver tumours on computed tomography images. Computers & Electrical 

Engineering, 39(5), 1516-1526. 

Kuncheva, L. 2014. Combining Pattern Classifiers Methods and Algorithms, Hoboken, New 

Jersey, USA, John Wiley & Sons. 

Labani, M., Moradi, P., Ahmadizar, F. & Jalili, M. 2018. A novel multivariate filter method 

for feature selection in text classification problems. Engineering Applications of 

Artificial Intelligence, 70(1), 25-37. 

Lai, P. H., Ho, J. T., Chen, W. L., Hsu, S. S., Wang, J. S., Pan, H. B. & Yang, C. F. 2002. 

Brain abscess and necrotic brain tumor: discrimination with proton MR spectroscopy 

and diffusion-weighted imaging. American Journal of Neuroradiology, 23(8), 1369-

1377. 

Larroza, A., Bodí, V. & Moratal, D. 2016. Texture Analysis in Magnetic Resonance 

Imaging: Review and Considerations for Future Applications. In: 

CONSTANTINIDES, C. (ed.) Assessment of Cellular and Organ Function and 

Dysfunction using Direct and Derived MRI Methodologies. InTech. 

Lasocki, A., Tsui, A., Tacey, M., Drummond, K., Field, K. & Gaillard, F. 2015. MRI 

Grading versus Histology: Predicting Survival of World Health Organization Grade 

II–IV Astrocytomas. American Journal of Neuroradiology, 36(1), 77-83. 

Latif, G., Iskandar, D. N. F. A., Alghazo, J. M. & Mohammad, N. 2019. Enhanced MR 

Image Classification Using Hybrid Statistical and Wavelets Features. IEEE Access, 

7(1), 9634-9644. 

Law, M., Oh, S., Babb, J. S., Wang, E., Inglese, M., Zagzag, D., Knopp, E. A. & Johnson, 

G. 2006. Low-Grade Gliomas: Dynamic Susceptibility-weighted Contrast-enhanced 

Perfusion MR Imaging—Prediction of Patient Clinical Response 1. Radiology, 

238(2), 658-667. 

Law, M., Yang, S., Babb, J. S., Knopp, E. A., Golfinos, J. G., Zagzag, D. & Johnson, G. 

2004. Comparison of cerebral blood volume and vascular permeability from dynamic 

susceptibility contrast-enhanced perfusion MR imaging with glioma grade. AJNR. 

American journal of neuroradiology, 25(5), 746. 

Law, M., Yang, S., Wang, H., Babb, J. S., Johnson, G., Cha, S., Knopp, E. A. & Zagzag, D. 

2003. Glioma grading: sensitivity, specificity, and predictive values of perfusion MR 

imaging and proton MR spectroscopic imaging compared with conventional MR 

imaging. American Journal of Neuroradiology, 24(10), 1989-1998. 

Le, Q. V. Building high-level features using large scale unsupervised learning.  2013 IEEE 

International Conference on Acoustics, Speech and Signal Processing, 2013 

Vancouver, BC, Canada. IEEE, 8595-8598. 

Lekutai, G. 1997. Adaptive self-tuning neuro wavelet network controllers. Virginia Tech. 



REFERENCES 

 

278 

 

Lerski, R. A., de Certaines, J. D., Duda, D., Klonowski, W., Yang, G., Coatrieux, J. L., 

Azzabou, N. & Eliat, P.-A. 2015. Application of texture analysis to muscle MRI: 2 

– technical recommendations. EPJ Nonlinear Biomedical Physics, 3(1), 2. 

Li, G.-Z., Yang, J., Ye, C.-Z. & Geng, D.-Y. 2006. Degree prediction of malignancy in brain 

glioma using support vector machines. Computers in Biology and Medicine, 36(3), 

313-325. 

Li, X., Zhu, Y., Kang, H., Zhang, Y., Liang, H., Wang, S. & Zhang, W. 2015. Glioma 

grading by microvascular permeability parameters derived from dynamic contrast-

enhanced MRI and intratumoral susceptibility signal on susceptibility weighted 

imaging. Cancer Imaging, 15(1), 4. 

Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., van der 

Laak, J. A. W. M., van Ginneken, B. & Sánchez, C. I. 2017. A survey on deep 

learning in medical image analysis. Medical Image Analysis, 42(1), 60-88. 

Liu, R., Elhalawani, H., Fuller, C. & Zhu, H. 2018. Stability Analysis of CT Radiomics 

Features With Respect to the Variation of Manual Segmentation in Oropharyngeal 

Cancer. 100. 

Loizou, C. P., Pantziaris, M., Seimenis, I. & Pattichis, C. S. Brain MR image normalization 

in texture analysis of multiple sclerosis.  9th International Conference on Information 

Technology and Applications in Biomedicine, 2009 Larnaca, Cyprus. IEEE, 1-5. 

Louis, D. N., Ohgaki, H., Wiestler, O. D., Cavenee, W. K., Burger, P. C., Jouvet, A., 

Scheithauer, B. W. & Kleihues, P. 2007. The 2007 WHO Classification of Tumours 

of the Central Nervous System. Acta Neuropathologica, 114(2), 97-109. 

Lu, D. & Weng, Q. 2007. A survey of image classification methods and techniques for 

improving classification performance. International journal of Remote sensing, 

28(5), 823-870. 

Lu, J., Plataniotis, K. N. & Venetsanopoulos, A. N. 2005. Regularization studies of linear 

discriminant analysis in small sample size scenarios with application to face 

recognition. Pattern Recognition Letters, 26(2), 181-191. 

Luts, J., Heerschap, A., Suykens, J. A. & Van Huffel, S. 2007. A combined MRI and MRSI 

based multiclass system for brain tumour recognition using LS-SVMs with class 

probabilities and feature selection. Artificial Intelligence in Medicine, 40(2), 87-102. 

Ly, A., Marsman, M. & Wagenmakers, E. J. 2018. Analytic posteriors for Pearson's 

correlation coefficient. Statistica Neerlandica, 72(1), 4-13. 

Maani, R., Kalra, S. & Yang, Y.-H. 2016. A review of texture classification methods and 

their applications in medical image analysis of the brain. Handbook of pattern 

recognition and computer vision. Singapore: World Scientific. 

Maggiori, E., Tarabalka, Y., Charpiat, G. & Alliez, P. 2017. Convolutional Neural Networks 

for Large-Scale Remote-Sensing Image Classification. IEEE Transactions on 

Geoscience and Remote Sensing, 55(2), 645-657. 

Mahmoud-Ghoneim, D., Toussaint, G., Constans, J.-M. & de Certaines, J. D. 2003. Three 

dimensional texture analysis in MRI: a preliminary evaluation in gliomas. Magnetic 

Resonance Imaging, 21(9), 983-987. 

Mamoshina, P., Vieira, A., Putin, E. & Zhavoronkov, A. 2016. Applications of Deep 

Learning in Biomedicine. Molecular Pharmaceutics, 13(5), 1445-1454. 

Marshkole, N., Singh, B. K. & Thoke, A. 2011. Texture and shape based classification of 

brain tumors using linear vector quantization. International Journal of Computer 

Applications, 30(11), 21-23. 

Materka, A. & Strzelecki, M. 1998. Texture analysis methods–a review. Technical university 

of lodz, institute of electronics, COST B11 report, Brussels, 9-11. 



REFERENCES 

 

279 

 

Mazurowski, M. A., Buda, M., Saha, A. & Bashir, M. R. 2019. Deep learning in radiology: 

An overview of the concepts and a survey of the state of the art with focus on MRI. 

Journal of Magnetic Resonance Imaging, 49(4), 939-954. 

Mehra, N. & Gupta, S. 2013. Survey on multiclass classification methods. International 

Journal of Computer Science and Information Technologies, 4(4), 572-576. 

Menze, B. H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., Burren, Y., 

Porz, N., Slotboom, J., Wiest, R., Lanczi, L., Gerstner, E., Weber, M. A., Arbel, T., 

Avants, B. B., Ayache, N., Buendia, P., Collins, D. L., Cordier, N., Corso, J. J., 

Criminisi, A., Das, T., Delingette, H., Ç, D., Durst, C. R., Dojat, M., Doyle, S., Festa, 

J., Forbes, F., Geremia, E., Glocker, B., Golland, P., Guo, X., Hamamci, A., 

Iftekharuddin, K. M., Jena, R., John, N. M., Konukoglu, E., Lashkari, D., Mariz, J. 

A., Meier, R., Pereira, S., Precup, D., Price, S. J., Raviv, T. R., Reza, S. M. S., Ryan, 

M., Sarikaya, D., Schwartz, L., Shin, H. C., Shotton, J., Silva, C. A., Sousa, N., 

Subbanna, N. K., Szekely, G., Taylor, T. J., Thomas, O. M., Tustison, N. J., Unal, 

G., Vasseur, F., Wintermark, M., Ye, D. H., Zhao, L., Zhao, B., Zikic, D., Prastawa, 

M., Reyes, M. & Leemput, K. V. 2015. The Multimodal Brain Tumor Image 

Segmentation Benchmark (BRATS). IEEE Transactions on Medical Imaging, 

34(10), 1993-2024. 

Moenninghoff, C., Maderwald, S., Theysohn, J. M., Kraff, O., Ladd, M. E., El Hindy, N., 

van de Nes, J., Forsting, M. & Wanke, I. 2010. Imaging of adult astrocytic brain 

tumours with 7 T MRI: preliminary results. European radiology, 20(3), 704-713. 

Mohan, G. & Subashini, M. M. 2018. MRI based medical image analysis: Survey on brain 

tumor grade classification. Biomedical Signal Processing and Control, 39139-161. 

Mohsen, H., El-Dahshan, E.-S. A., El-Horbaty, E.-S. M. & Salem, A.-B. M. 2018. 

Classification using deep learning neural networks for brain tumors. Future 

Computing and Informatics Journal, 3(1), 68-71. 

Molina, D., Pérez-Beteta, J., Luque, B., Arregui, E., Calvo, M., Borrás, J. M., López, C., 

Martino, J., Velasquez, C., Asenjo, B., Benavides, M., Herruzo, I., Martínez-

González, A., Pérez-Romasanta, L., Arana, E. & Pérez-García, V. M. 2016. Tumour 

heterogeneity in glioblastoma assessed by MRI texture analysis: a potential marker 

of survival. The British Journal of Radiology, 89(1064), 20160242. 

Moore, K. & Kim, L. 2010. Primary Brain Tumors: Characteristics, Practical Diagnostic and 

Treatment Approaches. In: RAY, K. S. (ed.) Glioblastoma: Molecular Mechanisms 

of Pathogenesis and Current Therapeutic Strategies. New York, NY: Springer. 

Moradi, E., Pepe, A., Gaser, C., Huttunen, H., Tohka, J. & Initiative, A. s. D. N. 2015. 

Machine learning framework for early MRI-based Alzheimer's conversion prediction 

in MCI subjects. Neuroimage, 104(1), 398-412. 

Nabizadeh, N. & Kubat, M. 2015. Brain tumors detection and segmentation in MR images: 

Gabor wavelet vs. statistical features. Computers & Electrical Engineering, 45(1), 

286-301. 

Nakagawa, M., Nakaura, T., Namimoto, T., Kitajima, M., Uetani, H., Tateishi, M., Oda, S., 

Utsunomiya, D., Makino, K., Nakamura, H., Mukasa, A., Hirai, T. & Yamashita, Y. 

2018. Machine learning based on multi-parametric magnetic resonance imaging to 

differentiate glioblastoma multiforme from primary cerebral nervous system 

lymphoma. European Journal of Radiology, 108147-154. 

Negnevitsky, M. 2005. Artificial intelligence: a guide to intelligent systems, England, 

Pearson Education. 

Ng, F., Kozarski, R., Ganeshan, B. & Goh, V. 2013. Assessment of tumor heterogeneity by 

CT texture analysis: can the largest cross-sectional area be used as an alternative to 

whole tumor analysis? European journal of radiology, 82(2), 342-348. 



REFERENCES 

 

280 

 

Nielsen, B., Albregtsen, F. & Danielsen, H. E. 2008. Statistical nuclear texture analysis in 

cancer research: a review of methods and applications. Critical Reviews™ in 

Oncogenesis, 14(2-3). 

Nixon, M. A., A. 2008. Feature Extraction Image Processing, Hungary, Elsevier. 

Nyúl, L. G. & Udupa, J. K. 1999. On standardizing the MR image intensity scale. Magnetic 

Resonance in Medicine: An Official Journal of the International Society for Magnetic 

Resonance in Medicine, 42(6), 1072-1081. 

Othman, M. F. & Basri, M. A. M. Probabilistic neural network for brain tumor classification.  

Intelligent Systems, Modelling and Simulation (ISMS), 2011 Second International 

Conference on Intelligent Systems, Modelling and Simulation, 2011 Kuala Lumpur, 

Malaysia. IEEE, 136-138. 

Oza, N. C. & Tumer, K. 2008. Classifier ensembles: Select real-world applications. 

Information Fusion, 9(1), 4-20. 

Özkan, C. & Erbek, F. S. 2003. The comparison of activation functions for multispectral 

Landsat TM image classification. Photogrammetric Engineering & Remote Sensing, 

69(11), 1225-1234. 

Pan, Y., Huang, W., Lin, Z., Zhu, W., Zhou, J., Wong, J. & Ding, Z. Brain tumor grading 

based on Neural Networks and Convolutional Neural Networks.  2015 37th Annual 

International Conference of the IEEE Engineering in Medicine and Biology Society 

(EMBC), 25-29 Aug. 2015 2015 Milan, Italy. IEEE, 699-702. 

Pantelis, G. 2010. Computer Assisted Diagnosis of Brain Tumors based on Statistical 

Methods and Pattern Recognition Techniques. PhD, UNIVERSITY OF PATRAS. 

Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z. B. & Swami, A. The 

Limitations of Deep Learning in Adversarial Settings.  2016 IEEE European 

Symposium on Security and Privacy (EuroS&P), 2016 Saarbrucken, Germany. 372-

387. 

Patel, D., Vankawala, F. & Bhatt, B. A Survey on Identification of Glioblastoma Multiforme 

and Low-Grade Glioma Brain Tumor Type.  2019 International Conference on 

Communication and Signal Processing (ICCSP), 4-6 April 2019 2019 Chennai, 

India. 0335-0339. 

Petrou, M. 2010. Texture in biomedical images. Biomedical Image Processing. New York: 

Springer. 

Polikar, R. 2006. Ensemble based systems in decision making. IEEE Circuits and systems 

magazine, 6(3), 21-45. 

Ponti Jr, M. P. Combining classifiers: from the creation of ensembles to the decision fusion.  

Graphics, Patterns and Images Tutorials (SIBGRAPI-T), 2011 24th SIBGRAPI 

Conference on Graphics, Patterns, and Images Tutorials, 2011 Alagoas, Brazil. 

IEEE, 1-10. 

Porto, L., Jurcoane, A., Schwabe, D. & Hattingen, E. 2014. Conventional magnetic 

resonance imaging in the differentiation between high and low-grade brain tumours 

in paediatric patients. European Journal of Paediatric Neurology, 18(1), 25-29. 

Pouratian, N. & Schiff, D. 2010. Management of Low-Grade Glioma. Current Neurology 

and Neuroscience Reports, 10(3), 224-231. 

Prajapati, G. L. & Patle, A. On Performing Classification Using SVM with Radial Basis and 

Polynomial Kernel Functions.  3rd International Conference on Emerging Trends in 

Engineering and Technology, 19-21 Nov. 2010 2010 Goa, India. 512-515. 

Purcell, E. M., Torrey, H. C. & Pound, R. V. 1946. Resonance absorption by nuclear 

magnetic moments in a solid. Physical review, 69(1-2), 37. 

Qian, S. & Chen, D. 1993. Discrete gabor transform. IEEE transactions on signal 

processing, 41(7), 2429-2438. 



REFERENCES 

 

281 

 

Qian, Y., Bi, M., Tan, T. & Yu, K. 2016. Very Deep Convolutional Neural Networks for 

Noise Robust Speech Recognition. IEEE/ACM Transactions on Audio, Speech, and 

Language Processing, 24(12), 2263-2276. 

Rajan, S. & Ghosh, J. An empirical comparison of hierarchical vs. two-level approaches to 

multiclass problems. In: ROLI, F., KITTLER, J. & WINDEATT, T., eds. 

International Workshop on Multiple Classifier Systems, 2004 Berlin, Heidelberg. 

Springer, 283-292. 

Ravì, D., Wong, C., Deligianni, F., Berthelot, M., Andreu-Perez, J., Lo, B. & Yang, G. 2017. 

Deep Learning for Health Informatics. IEEE Journal of Biomedical and Health 

Informatics, 21(1), 4-21. 

Rodríguez Colmeiro, R. G., Verrastro, C. A. & Grosges, T. Multimodal Brain Tumor 

Segmentation Using 3D Convolutional Networks.  International MICCAI Brain 

lesion Workshop, 2017 Cham. Springer International Publishing, 226-240. 

Rose, C. J., O'Connor, J. P. B., Cootes, T. F., Taylor, C. J., Jayson, G. C., Parker, G. J. M. 

& Waterton, J. C. 2014. Indexed distribution analysis for improved significance 

testing of spatially heterogeneous parameter maps: Application to dynamic contrast-

enhanced MRI biomarkers. Magnetic Resonance in Medicine, 71(3), 1299-1311. 

Roshdy, N., Shahin, M., Kishk, H., El-Khouly, S., Mousa, A. & Elsalekh, I. 2010. Role of 

New Magnetic Resonance Imaging Modalities in Diagnosis of Orbital Masses: A 

Clinicopathologic Correlation. Middle East African Journal of Ophthalmology, 

17(2), 175-179. 

Roy, S., Nag, S., Maitra, I. K. & Bandyopadhyay, S. K. 2013. A Review on Automated Brain 

Tumor Detection and Segmentation from MRI of Brain. arXiv preprint 

arXiv:1312.6150 [Online]. 

Ruoslahti, E. 2002. Specialization of tumour vasculature. Nature Reviews Cancer, 2(2), 83-

90. 

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., 

Khosla, A., Bernstein, M., Berg, A. C. & Fei-Fei, L. 2015. ImageNet Large Scale 

Visual Recognition Challenge. International Journal of Computer Vision, 115(3), 

211-252. 

Ryu, Y. J., Choi, S. H., Park, S. J., Yun, T. J., Kim, J.-H. & Sohn, C.-H. 2014. Glioma: 

Application of Whole-Tumor Texture Analysis of Diffusion-Weighted Imaging for 

the Evaluation of Tumor Heterogeneity. PLoS ONE, 9(9), e108335. . 

Saad, N. M., Bakar, S. A. R. S. A., Muda, A. S. & Mokji, M. M. 2015. Review of brain 

lesion detection and classification using neuroimaging analysis techniques. Jurnal 

Teknologi, 74(6), 73-85. 

Saeys, Y., Inza, I. & Larrañaga, P. 2007. A review of feature selection techniques in 

bioinformatics. Bioinformatics, 23(19), 2507-2517. 

Sahiner, B., Chan, H.-P. & Hadjiiski, L. 2008. Classifier performance estimation under the 

constraint of a finite sample size: Resampling schemes applied to neural network 

classifiers. Neural Networks, 21(2), 476-483. 

Sajjad, M., Khan, S., Muhammad, K., Wu, W., Ullah, A. & Baik, S. W. 2019. Multi-grade 

brain tumor classification using deep CNN with extensive data augmentation. 

Journal of Computational Science, 30(1), 174-182. 

Sanghani, P., Ang, B. T., King, N. K. K. & Ren, H. 2018. Overall survival prediction in 

glioblastoma multiforme patients from volumetric, shape and texture features using 

machine learning. Surgical Oncology, 27(4), 709-714. 

Savio, S. J., Harrison, L. C., Luukkaala, T., Heinonen, T., Dastidar, P., Soimakallio, S. & 

Eskola, H. J. 2010. Effect of slice thickness on brain magnetic resonance image 

texture analysis. BioMedical Engineering OnLine, 9(1), 60. 



REFERENCES 

 

282 

 

Schwartzbaum, J. A., Fisher, J. L., Aldape, K. D. & Wrensch, M. 2006. Epidemiology and 

molecular pathology of glioma. Nat Clin Pract Neuro, 2(9), 494-503. 

Shen, D., Wu, G. & Suk, H.-I. 2017. Deep Learning in Medical Image Analysis. Annual 

Review of Biomedical Engineering, 19(1), 221-248. 

Siker, M. L., Chakravarti, A. & Mehta, M. P. 2006. Should concomitant and adjuvant 

treatment with temozolomide be used as standard therapy in patients with anaplastic 

glioma? Critical Reviews in Oncology/Hematology, 60(2), 99-111. 

Skogen, K., Ganeshan, B., Good, C., Critchley, G. & Miles, K. 2013. Measurements of 

heterogeneity in gliomas on computed tomography relationship to tumour grade. 

Journal of Neuro-oncology, 111(2), 213-219. 

Skogen, K., Schulz, A., Dormagen, J. B., Ganeshan, B., Helseth, E. & Server, A. 2016. 

Diagnostic performance of texture analysis on MRI in grading cerebral gliomas. 

European Journal of Radiology, 85(4), 824-829. 

Soh, L.-K. & Tsatsoulis, C. 1999. Texture analysis of SAR sea ice imagery using gray level 

co-occurrence matrices. IEEE Transactions on Geoscience and Remote Sensing, 

37(2), 780-795. 

Song, S., Nones, K., Miller, D., Harliwong, I., Kassahn, K. S., Pinese, M., Pajic, M., Gill, 

A. J., Johns, A. L., Anderson, M., Holmes, O., Leonard, C., Taylor, D., Wood, S., 

Xu, Q., Newell, F., Cowley, M. J., Wu, J., Wilson, P., Fink, L., Biankin, A. V., 

Waddell, N., Grimmond, S. M. & Pearson, J. V. 2012. qpure: A Tool to Estimate 

Tumor Cellularity from Genome-Wide Single-Nucleotide Polymorphism Profiles. 

PLOS ONE, 7(9), e45835. 

Song, Y.-y. & Lu, Y. 2015. Decision tree methods: applications for classification and 

prediction. Shanghai Archives of Psychiatry, 27(2), 130-135. 

Song, Y. S., Choi, S. H., Park, C.-K., Yi, K. S., Lee, W. J., Yun, T. J., Kim, T. M., Lee, S.-

H., Kim, J.-H., Sohn, C.-H., Park, S.-H., Kim, I. H., Jahng, G.-H. & Chang, K.-H. 

2013. True Progression versus Pseudoprogression in the Treatment of 

Glioblastomas: A Comparison Study of Normalized Cerebral Blood Volume and 

Apparent Diffusion Coefficient by Histogram Analysis. Korean Journal of Radiol, 

14(4), 662-672. 

Stupp, R., Tonn, J.-C., Brada, M., Pentheroudakis, G. & Group, O. b. o. t. E. G. W. 2010. 

High-grade malignant glioma: ESMO Clinical Practice Guidelines for diagnosis, 

treatment and follow-up. Annals of Oncology, 21(suppl_5), v190-v193. 

Subashini, M. M., Sahoo, S. K., Karthikeyan, S. P. & Raglend, I. J. 2015. A Grade Prediction 

Methodology for Astrocytoma Using Modified K-Clustering Network. In: 

KAMALAKANNAN, C., SURESH, L. P., DASH, S. S. & PANIGRAHI, B. K. 

(eds.) Power Electronics and Renewable Energy Systems. New Delhi: Springer. 

Subashini, M. M., Sahoo, S. K., Sunil, V. & Easwaran, S. 2016. A non-invasive methodology 

for the grade identification of astrocytoma using image processing and artificial 

intelligence techniques. Expert Systems with Applications, 43(1), 186-196. 

Sugahara, T., Korogi, Y., Kochi, M., Ikushima, I., Shigematu, Y., Hirai, T., Okuda, T., 

Liang, L., Ge, Y., Komohara, Y., Ushio, Y. & Takahashi, M. 1999. Usefulness of 

diffusion-weighted MRI with echo-planar technique in the evaluation of cellularity 

in gliomas. Journal of Magnetic Resonance Imaging, 9(1), 53-60. 

Swietojanski, P., Ghoshal, A. & Renals, S. 2014. Convolutional Neural Networks for Distant 

Speech Recognition. IEEE Signal Processing Letters, 21(9), 1120-1124. 

Swinscow, T. D. V. & Campbell, M. J. 2002. Statistics at Square One, London, Bmj  

Tang, X. 1998. Texture information in run-length matrices. IEEE Transactions on Image 

Processing, 7(11), 1602-1609. 



REFERENCES 

 

283 

 

Tantisatirapong, S. 2015. Texture analysis of multimodal magnetic resonance images in 

support of diagnostic classification of childhood brain tumours. PhD, University of 

Birmingham,UK. 

Taouli, B., Vilgrain, V., Dumont, E., Daire, J.-L., Fan, B. & Menu, Y. 2003. Evaluation of 

Liver Diffusion Isotropy and Characterization of Focal Hepatic Lesions with Two 

Single-Shot Echo-planar MR Imaging Sequences: Prospective Study in 66 Patients 

1. Radiology, 226(1), 71-78. 

Theeler, B. J. & Groves, M. D. 2011. High-Grade Gliomas. Current Treatment Options in 

Neurology, 13(4), 386-399. 

Thomas, P., Bril El Haouzi, H., Suhner, M.-C., Thomas, A., Zimmermann, E. & Noyel, M. 

2018. Using a classifier ensemble for proactive quality monitoring and control: The 

impact of the choice of classifiers types, selection criterion, and fusion process. 

Computers in Industry, 99(1), 193-204. 

Thust, S. C., Heiland, S., Falini, A., Jäger, H. R., Waldman, A. D., Sundgren, P. C., Godi, 

C., Katsaros, V. K., Ramos, A., Bargallo, N., Vernooij, M. W., Yousry, T., Bendszus, 

M. & Smits, M. 2018. Glioma imaging in Europe: A survey of 220 centres and 

recommendations for best clinical practice. European Radiology, 28(8), 3306-3317. 

Tin Kam, H. 1998. The random subspace method for constructing decision forests. IEEE 

Transactions on Pattern Analysis and Machine Intelligence, 20(8), 832-844. 

Toennies, K. D. 2017. Guide to Medical Image Analysis, London, Springer. 

Tonarelli, L. 2013. Magnetic resonance imaging of brain tumor. CEwebsource.com [Online].  

[Accessed 2016. available https://www.semanticscholar.org/paper/Magnetic-

Resonance-Imaging-of-Brain-Tumor-

Tonarelli/37994c218084367dce4a61b9069885b0f9da2c40]. 

Tozer, D. J., Jäger, H. R., Danchaivijitr, N., Benton, C. E., Tofts, P. S., Rees, J. H. & 

Waldman, A. D. 2007. Apparent diffusion coefficient histograms may predict low-

grade glioma subtype. NMR in Biomedicine, 20(1), 49-57. 

Tsirogiannis, G. L., Frossyniotis, D., Nikita, K. S. & Stafylopatis, A. A meta-classifier 

approach for medical diagnosis.  Hellenic Conference on Artificial Intelligence, 2004 

Berlin, Heidelberg. Springer, 154-163. 

Walnut, D. F. 2013. An introduction to wavelet analysis, Springer Science & Business 

Media. 

Weller, M. 2011. Novel diagnostic and therapeutic approaches to malignant glioma. Swiss 

Medical Weekly, 141(1), w13210. 

Wibmer, A., Hricak, H., Gondo, T., Matsumoto, K., Veeraraghavan, H., Fehr, D., Zheng, J., 

Goldman, D., Moskowitz, C., Fine, S. W., Reuter, V. E., Eastham, J., Sala, E. & 

Vargas, H. A. 2015. Haralick texture analysis of prostate MRI: utility for 

differentiating non-cancerous prostate from prostate cancer and differentiating 

prostate cancers with different Gleason scores. European Radiology, 25(10), 2840-

2850. 

William, W., Basaza-Ejiri, A. H., Obungoloch, J. & Ware, A. A Review of Applications of 

Image Analysis and Machine Learning Techniques in Automated Diagnosis and 

Classification of Cervical Cancer from Pap-smear Images.  IST-Africa Week 

Conference (IST-Africa), 2018 Gaborone, Botswana. IEEE, Page 1 of 11-Page 11 of 

11. 

Wintermark, M., Sesay, M., Barbier, E., Borbély, K., Dillon, W. P., Eastwood, J. D., Glenn, 

T. C., Grandin, C. B., Pedraza, S. & Soustiel, J.-F. 2005. Comparative overview of 

brain perfusion imaging techniques. Stroke, 36(9), e83-e99. 

https://www.semanticscholar.org/paper/Magnetic-Resonance-Imaging-of-Brain-Tumor-Tonarelli/37994c218084367dce4a61b9069885b0f9da2c40
https://www.semanticscholar.org/paper/Magnetic-Resonance-Imaging-of-Brain-Tumor-Tonarelli/37994c218084367dce4a61b9069885b0f9da2c40
https://www.semanticscholar.org/paper/Magnetic-Resonance-Imaging-of-Brain-Tumor-Tonarelli/37994c218084367dce4a61b9069885b0f9da2c40


REFERENCES 

 

284 

 

Woo, S., Cho, J. Y., Kim, S. Y. & Kim, S. H. 2014. Histogram analysis of apparent diffusion 

coefficient map of diffusion-weighted MRI in endometrial cancer: a preliminary 

correlation study with histological grade. Acta Radiologica, 55(10), 1270-1277. 

Woźniak, M., Graña, M. & Corchado, E. 2014. A survey of multiple classifier systems as 

hybrid systems. Information Fusion, 16(1), 3-17. 

Wu, X., Yang, J. & Wang, S. 2018. Tea category identification based on optimal wavelet 

entropy and weighted k-Nearest Neighbors algorithm. Multimedia Tools and 

Applications, 77(3), 3745-3759. 

Xi, Y.-b., Kang, X.-w., Wang, N., Liu, T.-t., Zhu, Y.-q., Cheng, G., Wang, K., Li, C., Guo, 

F. & Yin, H. 2019. Differentiation of primary central nervous system lymphoma 

from high-grade glioma and brain metastasis using arterial spin labeling and dynamic 

contrast-enhanced magnetic resonance imaging. European Journal of Radiology, 

11259-64. 

Xu, L., Krzyzak, A. & Suen, C. Y. 1992. Methods of combining multiple classifiers and their 

applications to handwriting recognition. IEEE Transactions on Systems, Man, and 

Cybernetics, 22(3), 418-435. 

Yang, X., Tridandapani, S., Beitler, J. J., Yu, D. S., Yoshida, E. J., Curran, W. J. & Liu, T. 

2012. Ultrasound GLCM texture analysis of radiation‐induced parotid‐gland injury 

in head‐and‐neck cancer radiotherapy: An in vivo study of late toxicity. Medical 

physics, 39(9), 5732-5739. 

Yazdi, M., Adelpour, Z., Bahraini, B. & Jahromi, Y. K. 2007. Novel ridge orientation based 

approach for fingerprint identification using co-occurrence matrix. World Academy 

of Science, Engineering and Technology, International Journal of Computer, 

Electrical, Automation, Control and Information Engineering, 1(11), 3414-3418. 

Ye, C.-Z., Yang, J., Geng, D.-Y., Zhou, Y. & Chen, N.-Y. 2002. Fuzzy rules to predict 

degree of malignancy in brain glioma. Medical and Biological Engineering and 

Computing, 40(2), 145-152. 

Ye, F., Pu, J., Wang, J., Li, Y. & Zha, H. Glioma grading based on 3D multimodal 

convolutional neural network and privileged learning.  IEEE International 

Conference on Bioinformatics and Biomedicine (BIBM), 2017 Kansas City, MO, 

USA. 759-763. 

Zacharaki, E. I., Kanas, V. G. & Davatzikos, C. 2011. Investigating machine learning 

techniques for MRI-based classification of brain neoplasms. International Journal 

of Computer Assisted Radiology and Surgery, 6(6), 821-828. 

Zacharaki, E. I., Wang, S., Chawla, S., Soo Yoo, D., Wolf, R., Melhem, E. R. & Davatzikos, 

C. 2009. Classification of brain tumor type and grade using MRI texture and shape 

in a machine learning scheme. Magnetic Resonance in Medicine, 62(6), 1609-1618. 

Zhang, X., Yan, L.-F., Hu, Y.-C., Li, G., Yang, Y., Han, Y., Sun, Y.-Z., Liu, Z.-C., Tian, Q., 

Han, Z.-Y., Liu, L.-D., Hu, B.-Q., Qiu, Z.-Y., Wang, W. & Cui, G.-B. 2017. 

Optimizing a machine learning based glioma grading system using multi-parametric 

MRI histogram and texture features. Oncotarget, 8(29), 47816-47830. 

Zhang, Y., Lu, S., Zhou, X., Yang, M., Wu, L., Liu, B., Phillips, P. & Wang, S. 2016. 

Comparison of machine learning methods for stationary wavelet entropy-based 

multiple sclerosis detection: decision tree, k-nearest neighbors, and support vector 

machine. SIMULATION, 92(9), 861-871. 

Zhou, B., Lapedriza, A., Xiao, J., Torralba, A. & Oliva, A. Learning deep features for scene 

recognition using places database.  Advances in neural information processing 

systems, 2014. 487-495. 



REFERENCES 

 

285 

 

Zhou, Z.-H. & Liu, X.-Y. 2006. Training cost-sensitive neural networks with methods 

addressing the class imbalance problem. IEEE Transactions on Knowledge and Data 

Engineering, 18(1), 63-77. 

 

 

BIBLIOGRAPHY 

MATLAB and Image Processing Toolbox Release R2018a, The MathWorks, Inc., Natick, 

Massachusetts, United States.  

 

Uppuluri, Avinash (2008). GLCM Texture Features 

(https://uk.mathworks.com/matlabcentral/fileexchange/22187-glcm-texture-features), 

MATLAB Central File Exchange. Retrieved February 12, 2016. 

Carl Philips and Daniel Li (2008). 3D statistical texture algorithm 

(https://uk.mathworks.com/matlabcentral/fileexchange/19058-cooc3d). Retrieved February 

5, 2016. 

 

 

 

 

  

https://uk.mathworks.com/matlabcentral/fileexchange/22187-glcm-texture-features
https://uk.mathworks.com/matlabcentral/fileexchange/19058-cooc3d


 

286 

 

APPENDIX A 

The classification accuracy results for different number of neurons within the proposed 

MTMCS based on three-layer NNs, and with applying the diversity in feature space. The 

highest accuracy is achieved when 6, 18, 6 in the first, second, third layers respectively at 

the 10th iteration. Some iterations results are reported to show the difference in output results 

according to different number of neurons in the layers of NNs.  To simplify the view of the 

results, precision of two decimal places are used. Layer 1, layer 2, layer 3 indicate the first 

layer, second layer, and third layer of NNs respectively. ACC indicates the classification 

accuracy 
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1 1 1 0.91 2 4 1 0.87 3 7 1 0.91 4 10 1 0.91 

2 1 1 0.89 3 4 1 0.89 4 7 1 0.91 5 10 1 0.89 

3 1 1 0.89 4 4 1 0.89 5 7 1 0.9 6 10 1 0.91 

4 1 1 0.89 5 4 1 0.91 6 7 1 0.91 7 10 1 0.91 

5 1 1 0.91 6 4 1 0.91 7 7 1 0.89 8 10 1 0.88 

6 1 1 0.89 7 4 1 0.9 8 7 1 0.9 9 10 1 0.89 

7 1 1 0.91 8 4 1 0.9 9 7 1 0.9 1 11 1 0.85 

8 1 1 0.9 9 4 1 0.89 1 8 1 0.86 2 11 1 0.9 

9 1 1 0.89 1 5 1 0.89 2 8 1 0.89 3 11 1 0.89 

1 2 1 0.91 2 5 1 0.9 3 8 1 0.88 4 11 1 0.9 

2 2 1 0.91 3 5 1 0.91 4 8 1 0.9 5 11 1 0.89 

3 2 1 0.9 4 5 1 0.91 5 8 1 0.9 6 11 1 0.91 

4 2 1 0.88 5 5 1 0.91 6 8 1 0.91 7 11 1 0.89 

5 2 1 0.89 6 5 1 0.89 7 8 1 0.91 8 11 1 0.9 

6 2 1 0.89 7 5 1 0.89 8 8 1 0.91 9 11 1 0.89 

7 2 1 0.89 8 5 1 0.91 9 8 1 0.9 1 12 1 0.87 

8 2 1 0.91 9 5 1 0.9 1 9 1 0.86 2 12 1 0.9 

9 2 1 0.89 1 6 1 0.84 2 9 1 0.91 3 12 1 0.9 

1 3 1 0.89 2 6 1 0.88 3 9 1 0.9 4 12 1 0.88 

2 3 1 0.88 3 6 1 0.89 4 9 1 0.89 5 12 1 0.91 

3 3 1 0.89 4 6 1 0.91 5 9 1 0.88 6 12 1 0.9 

4 3 1 0.91 5 6 1 0.91 6 9 1 0.9 7 12 1 0.91 

5 3 1 0.87 6 6 1 0.9 7 9 1 0.9 8 12 1 0.9 

6 3 1 0.89 7 6 1 0.91 8 9 1 0.89 9 12 1 0.9 

7 3 1 0.91 8 6 1 0.91 9 9 1 0.91 1 13 1 0.88 

8 3 1 0.91 9 6 1 0.91 1 10 1 0.86 2 13 1 0.89 

9 3 1 0.9 1 7 1 0.87 2 10 1 0.89 3 13 1 0.88 

1 4 1 0.91 2 7 1 0.89 3 10 1 0.89 4 13 1 0.89 
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5 13 6 0.88 4 17 6 0.90 3 21 6 0.91 2 25 6 0.88 

6 13 6 0.90 5 17 6 0.89 4 21 6 0.89 3 25 6 0.88 

7 13 6 0.89 6 17 6 0.92 5 21 6 0.91 4 25 6 0.89 

8 13 6 0.89 7 17 6 0.86 6 21 6 0.91 5 25 6 0.89 

9 13 6 0.89 8 17 6 0.90 7 21 6 0.88 6 25 6 0.89 

1 14 6 0.81 9 17 6 0.90 8 21 6 0.86 7 25 6 0.88 

2 14 6 0.91 1 18 6 0.82 9 21 6 0.91 8 25 6 0.90 

3 14 6 0.89 2 18 6 0.89 1 22 6 0.80 9 25 6 0.90 

4 14 6 0.88 3 18 6 0.88 2 22 6 0.87 1 26 6 0.84 

5 14 6 0.89 4 18 6 0.89 3 22 6 0.89 2 26 6 0.87 

6 14 6 0.89 5 18 6 0.90 4 22 6 0.89 3 26 6 0.88 

7 14 6 0.89 6 18 6 0.93 5 22 6 0.90 4 26 6 0.90 

8 14 6 0.89 7 18 6 0.91 6 22 6 0.89 5 26 6 0.89 

9 14 6 0.88 8 18 6 0.89 7 22 6 0.89 6 26 6 0.89 

1 15 6 0.85 9 18 6 0.89 8 22 6 0.91 7 26 6 0.90 

2 15 6 0.86 1 19 6 0.85 9 22 6 0.91 8 26 6 0.89 

3 15 6 0.90 2 19 6 0.89 1 23 6 0.82 9 26 6 0.91 

4 15 6 0.89 3 19 6 0.90 2 23 6 0.89 1 27 6 0.84 

5 15 6 0.89 4 19 6 0.88 3 23 6 0.89 2 27 6 0.88 

6 15 6 0.90 5 19 6 0.89 4 23 6 0.88 3 27 6 0.88 

7 15 6 0.91 6 19 6 0.91 5 23 6 0.88 4 27 6 0.88 

8 15 6 0.91 7 19 6 0.91 6 23 6 0.88 5 27 6 0.92 

9 15 6 0.91 8 19 6 0.91 7 23 6 0.91 6 27 6 0.89 

1 16 6 0.81 9 19 6 0.90 8 23 6 0.88 7 27 6 0.89 

2 16 6 0.88 1 20 6 0.84 9 23 6 0.90 8 27 6 0.91 

3 16 6 0.88 2 20 6 0.89 1 24 6 0.81 9 27 6 0.88 

4 16 6 0.88 3 20 6 0.87 2 24 6 0.88 1 28 6 0.80 

5 16 6 0.88 4 20 6 0.90 3 24 6 0.86 2 28 6 0.86 

6 16 6 0.90 5 20 6 0.89 4 24 6 0.88 3 28 6 0.89 

7 16 6 0.88 6 20 6 0.89 5 24 6 0.89 4 28 6 0.89 

8 16 6 0.90 7 20 6 0.88 6 24 6 0.88 5 28 6 0.88 

9 16 6 0.88 8 20 6 0.90 7 24 6 0.89 6 28 6 0.88 

1 17 6 0.83 9 20 6 0.90 8 24 6 0.90 7 28 6 0.89 

2 17 6 0.89 1 21 6 0.85 9 24 6 0.90 8 28 6 0.92 

3 17 6 0.89 2 21 6 0.86 1 25 6 0.84 9 28 6 0.89 
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APPENDIX B 

B.1 Statistical Textural Descriptors 

Several statistical predictors that are recommended and widely used to recognise the image 

textural feature are utilised in this research work. These textural predictors are measured 

from the co-occurrence matrix of brain tumour images, which represent the local texture 

analysis of image patterns. They are successfully utilised to discriminate between different 

textural patterns (Gómez et al., 2012, Yang et al., 2012, Al-Waeli, 2017, Tantisatirapong, 

2015) , and therefore they are used to measure image textural feature to discriminate between 

low and high glioma grades (Hsieh et al., 2017b, Hsieh et al., 2017c, Patel et al., 2019) . 

Further details and equations are explained in the followings subsection. 

B.1.1 Autocorrelation 

The autocorrelation predictor is used as an indicator for the variation in texture features. 

Images of a coarse texture will reveal a higher correlation than an image of a fine texture, 

indicating high values for high-grade tumours and low values for low-grade tumours. The 

autocorrelation function is defined by Eq. B.1 (Gómez et al., 2012, Nielsen et al., 2008).     

𝑎𝑢𝑡𝑜𝑐𝑜𝑟𝑟𝑙𝑎𝑡𝑖𝑜𝑛 = 𝑎𝑢𝑡𝑜𝑐 = ∑ ∑ (𝑖, 𝑗)𝑃(𝑖, 𝑗)

𝑀−1

𝑗=0

𝑀−1

𝑖=0

                                            B. 1 

where P is the probability co-occurrence matrix. 𝑖 and 𝑗 are the cell coordinates in the P, and 

M is the number of grey levels used.   

B.1.2 Contrast  

The contrast predictor presents local variations between a pixel and its neighbour. The 

increase of this variation favours the distribution being away from the diagonal of the co-

occurrence. This predictor indicates low variations for low-grade tumour and higher weights 

for higher grades of malignancy of a tumour. It is defined by Eq. B.2 (Haralick et al., 1973). 

𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = 𝑐𝑜𝑛𝑡𝑟 = ∑ ∑ (𝑖 − 𝑗)2𝑃(𝑖, 𝑗)

𝑀−1

𝑗=0

𝑀−1

𝑖=0

                                                    𝐵. 2 
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B.1.3 Correlation 

The correlation predictor is used to measure the linear dependency between a pixel and its 

neighbours. This predictor tends to have relatively high values for normal lesions and lower 

values for increased malignancy grades of the tumour. The predictor function is defined by 

Eq. B.3 (Gómez et al., 2012, Yang et al., 2012). 

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 = 𝑐𝑜𝑟𝑟𝑚 = ∑ ∑ 𝑃(𝑖. 𝑗)
(𝑖 − 𝑢𝑥)(𝑗 − 𝑢𝑦)

𝜎𝑥𝜎𝑦
 

𝑀−1

𝑗=0

𝑀−1

𝑖=0

                                            𝐵. 3 

Where 𝜎𝑥, 𝜎𝑦, 𝑢𝑥 and 𝑢𝑦, are the standard deviations and means of Px , and Py, respectively, 

which are defined by Eqs. B.4-B.9. 

Let M represent the grey level selected, while Px (𝑖) is the 𝑖th element of the marginal 

probability matrix, obtained by summing the rows of P (i, j) and given by the Eq. B.4. 

𝑃𝑥(𝑖) = ∑ 𝑃(𝑖, 𝑗)

𝑀−1

𝑗=0

                                                                                             B. 4 

Similarly, Py(j) is defined as jth element of the marginal probability matrix, obtained by 

summing the columns of P(i,j) and given by Eq. B.5. 

𝑃𝑦(𝑗) = ∑ 𝑃(𝑖, 𝑗)

𝑀−1

𝑖=0

                                                                                                 𝐵. 5 

𝑢𝑥 = ∑ ∑ 𝑖

𝑀−1

𝑗=0

 . 𝑃(𝑖, 𝑗)

𝑀−1

𝑖=0

                                                                                          𝐵. 6 

𝑢𝑦 = ∑ ∑ 𝑗

𝑀−1

𝑗=0

 . 𝑃(𝑖, 𝑗)

𝑀−1

𝑖=0

                                                                                          𝐵. 7 

𝜎𝑥
2 = ∑ ∑ (𝑖 − 𝑢𝑥)2

𝑀−1

𝑗=0

𝑀−1

𝑖=0

𝑃(𝑖, 𝑗)                                                                             𝐵. 8 

𝜎𝑦
2 = ∑ ∑ (𝑗 − 𝑢𝑦)

2
𝑀−1

𝑗=0

𝑀−1

𝑖=0

𝑃(𝑖, 𝑗)                                                                              𝐵. 9 
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B.1.4 Cluster Prominence 

This predictor measures a peak of data distribution of the probability co-occurrence matrix. 

A low magnitude of this predictor indicates a small variation in the grey-spatial levels of the 

co-occurrence matrix. It weights low values for low-grade tumours and high values for high-

grade tumours. The function of this predictor is defined by the Eq. B.10 (Gómez et al., 2012, 

Ananda Resmi and Thomas, 2010). 

𝐶𝑙𝑢𝑠𝑡𝑒𝑟 𝑝𝑟𝑜𝑚𝑖𝑛𝑒𝑛𝑐𝑒 = 𝑐𝑝𝑟𝑜𝑚 = ∑ ∑ (𝑖 + 𝑗 − 𝑢𝑥 + 𝑢𝑦)
4

𝑀−1

𝑗=0

𝑀−1

𝑖=0

𝑃(𝑖, 𝑗)                        𝐵. 10 

B.1.5 Cluster Shade 

This predictor is used to measure the symmetry of data distribution; it is also used to measure 

the skewness of the GLCM. A high magnitude of this predictor indicates asymmetry of the 

GLCM. It indicates low values for low-grade tumours and high values for high grades of 

malignant tumour. This predictor is defined by Eq. B.11 (Gómez et al., 2012, Ananda Resmi, 

2013).   

𝐶𝑙𝑢𝑠𝑡𝑒𝑟 𝑠ℎ𝑎𝑑𝑒 = 𝑐𝑠ℎ𝑎𝑑 = ∑ ∑ (𝑖 + 𝑗 − 𝑢𝑥 + 𝑢𝑦)
3

𝑀−1

𝑗=0

𝑀−1

𝑖=0

𝑃(𝑖, 𝑗)                           B. 11 

B.1.6 Dissimilarity 

This predictor is used to measure the difference between the grey-level intensities. It 

indicates a low magnitude for low-grade tumours and high values for high-grade tumours. 

This predictor function is defined by the Eq. B.12 (Gómez et al., 2012, Molina et al., 2016).  

𝐷𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = 𝑑𝑖𝑠𝑠𝑖 = ∑ ∑ |𝑖 − 𝑗|𝑃(𝑖, 𝑗)

𝑀−1

𝑗=0

𝑀−1

𝑖=0

                                                𝐵. 12 

B.1.7 Energy  

This predictor is used as an indicator for the uniformity of the texture in an image. It is also 

known as an angular second moment and is used to measure the homogeneity of an image. 

A homogeneous texture will include only a little grey level, so that the GLCM will have few 

but relatively high magnitudes of the probability of the GLCM. Hence, the energy will be 

high when the image is homogeneous. It tends to weight high values for low-grade tumours 

and low values for high-grade tumours. It is defined by Eq. B.13 (Yang et al., 2012). 
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𝐸𝑛𝑒𝑟𝑔𝑦 =  𝑒𝑛𝑒𝑟𝑔 = ∑ ∑ 𝑃(𝑖, 𝑗)

𝑀−1

𝑗=0

𝑀−1

𝑖=0

                                                             𝐵. 13 

B.1.8 Entropy  

This predictor is used to measure the randomness of the grey-level distribution. The entropy 

shows relatively smaller values when entries in the GLCM are unequal and it is highest when 

the probabilities in the GLCM are equal. Therefore, an inhomogeneous region will result in 

a higher entropy magnitude, while a homogeneous image will result in a lower entropy value. 

It tends to weight low values for the low grades of malignant tumour and high values for 

higher grades of malignancy. It is defined by Eq. B.14 (Haralick et al., 1973, Molina et al., 

2016). 

       

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 =  𝑒𝑛𝑡𝑟𝑜 = − ∑ ∑ 𝑃(𝑖, 𝑗)𝑙𝑜𝑔𝑃(𝑖, 𝑗)

𝑀−1

𝑗=0

𝑀−1

𝑖=0

                                           𝐵. 14 

B.1.9 Homogeneity 

The homogeneity predictor is used to measure the closeness of the distribution of entries in 

the GLCM to the diagonal of the probability matrix. The relative increase of the distribution 

away from the diagonal indicates a lower value of homogeneity. It tends to indicate relatively 

higher values for homogenous images. The predictor function is defined by Eq. B.15 (Soh 

and Tsatsoulis, 1999, Yang et al., 2012). 

𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 =  ℎ𝑜𝑚𝑜𝑚 = ∑ ∑
1

1 + (𝑖 − 𝑗)2
. 𝑃(𝑖, 𝑗)

𝑀−1

𝑗=0

𝑀−1

𝑖=0

                                           𝐵. 15 

   

B.1.10 Maximum Probability 

The maximum probability predictor is the maximum value of the GLCM. This predictor is 

used to indicate the most probability of a predominant pixel pair of the GLCM. It is defined 

by Eq. B.16 (Gómez et al., 2012). 

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =  𝑚𝑎𝑥𝑝𝑟 = 𝑀𝐴𝑋𝑖,𝑗𝑃(𝑖, 𝑗)                                                  𝐵. 16  
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B.1.11 Sum of Squares  

This predictor is also known as the variance; it places relatively high weights on the elements 

that differ from the mean value of the GLCM. It increases when the grey spatial values differ 

from their averages. Therefore, a higher value of this predictor indicates a higher 

heterogeneity of texture. The function of this predictor is defined by Eq. B.17 (Haralick et 

al., 1973, Gnep et al., 2017). 

𝑆𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒 =   𝑠𝑜𝑠𝑞 = ∑ ∑ (𝑖 − 𝑢)2

𝑀−1

𝑗=0

𝑀−1

𝑖=0

. 𝑃(𝑖, 𝑗)                                            𝐵. 17 

B.1.12 Sum Average, Sum Entropy, Sum Variance 

These predictors are used to show the general indications to reflect the heterogeneity regions 

of an image. They tend to have relatively low values for low-grade tumours and slightly 

higher values for a high-grade tumour. The sum average, sum entropy and sum variance are 

defined by Eqs. B.18-B.20 respectively (Gómez et al., 2012, Pantelis, 2010). 

𝑠𝑢𝑚 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 = 𝑠𝑎𝑣𝑔ℎ = ∑ 𝑖. 𝑃𝑥+𝑦(𝑖)

2𝑀−1

𝑖=1

                                                                       𝐵. 18 

𝑆𝑢𝑚 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 =  𝑠𝑒𝑛𝑡ℎ = − ∑ 𝑃𝑥+𝑦(𝑖). 𝑙𝑜𝑔𝑃𝑥+𝑦(𝑖)

2𝑀−1

𝑖=1

                                                    𝐵. 19 

𝑆𝑢𝑚 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =  𝑠𝑣𝑎𝑟ℎ = ∑ (1 − 𝑠𝑢𝑚 𝑒𝑛𝑡𝑟𝑜𝑝𝑦)2 .

2𝑀−1

𝑖=1

𝑃𝑥+𝑦(𝑖)                                      𝐵. 20 

 

where  𝑃𝑥+𝑦 is defined by Eq. B.21.  

𝑃𝑥+𝑦(𝑘) = ∑ ∑ 𝑃(𝑖, 𝑗)

𝑀−1

𝑗=0

𝑀−1

𝑖=0

         , 𝑖 + 𝑗 = 𝑘    𝑎𝑛𝑑      𝑘 = 0,1,2, … … . .2𝑀                        𝐵. 21 

B.1.13 Information Measure of Correlation 1 and Correlation 2 

These predictors are used to measure the linear dependency between a grey spatial tone and 

its neighbours. They are also used to measure deformation in the texture regions. These 

predictors are defined by Eq. B.22 and Eq. B.23 (Gómez et al., 2012, Gnep et al., 2017). 



APPENDICES 

 

293 

 

𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 1 =  𝑖𝑛𝑓1ℎ =
𝐻𝑋𝑌 − 𝐻𝑋𝑌1

𝑀𝐴𝑋(𝐻𝑋, 𝐻𝑌)
                   𝐵. 22 

𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 2 = 𝑖𝑛𝑓2ℎ

= (1 − 𝑒𝑥𝑝[−2(𝐻𝑋𝑌2 − 𝐻𝑋𝑌)])1/2                                                           𝐵. 23 

Where HX, HY, HXY, HXY1, and HXY2 are defined by Eqs.  B.24 - B.28 respectively. 

𝐻𝑋 = − ∑ 𝑃𝑥(𝑖). 𝑙𝑜𝑔𝑃𝑥(𝑖)

𝑀−1

𝑖=0

                                                                                        𝐵. 24 

𝐻𝑌 = − ∑ 𝑃𝑦(𝑖)𝑃𝑦(𝑖)

𝑀−1

𝑖=0

                                                                                                 𝐵. 25 

𝐻𝑋𝑌 = − ∑ ∑ 𝑃(𝑖, 𝑗). 𝑙𝑜𝑔𝑃(𝑖, 𝑗)

𝑀−1

𝑗=0

𝑀−1

𝑖=0

                                                                           𝐵. 26 

𝐻𝑋𝑌1 = − ∑ ∑ 𝑃(𝑖, 𝑗). 𝑙𝑜𝑔 (𝑃𝑥(𝑖)𝑃𝑦(𝑗))

𝑀−1

𝑗=0

𝑀−1

𝑖=0

                                                               𝐵. 27 

𝐻𝑋𝑌2 = − ∑ ∑ 𝑃𝑥(𝑖). 𝑃𝑦(𝑗). 𝑙𝑜𝑔 (𝑃𝑥(𝑖)𝑃𝑦(𝑗))

𝑀−1

𝑖=0

𝑀−1

𝑖=0

                                                      𝐵. 28 

B.1.14 Inverse Difference Normalised and Inverse Difference Moment Normalised 

These predictors are used to reflect the homogeneity of a textural region. The inverse 

difference normalised indicates the smoothness of the texture. The inverse difference 

moment normalised is inversely related to both energy and contrast. The functions of these 

predictors are defined by Eq. B.29 and Eq. B.30 (Gómez et al., 2012, Tantisatirapong, 2015).  

𝐼𝑛𝑣𝑒𝑟𝑠𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 =  𝑖𝑛𝑑𝑛𝑐 =  ∑ ∑
𝑃(𝑖, 𝑗)

1 +
|𝑖 − 𝑗|

𝑀

𝑀−1

𝑗=0

𝑀−1

𝑖=0

        𝐵. 29 

  

𝐼𝑛𝑣𝑒𝑟𝑠𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑚𝑜𝑚𝑒𝑛𝑡 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =  𝑖𝑑𝑚𝑛𝑐 = ∑ ∑
𝑃(𝑖, 𝑗)

1 +
(𝑖 − 𝑗)2

𝑀

𝑀−1

𝑗=0

𝑀−1

𝑖=0

          𝐵. 30 
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APPENDIX C 

 

Table C.1 Comparative results of different classifiers incorporated with the full set of 

features associated with 3DGLCM using BRTAS2018 dataset. 

Classifier 
Actual 

class 

Confusion 

matrices 

S
en

si
ti

v
it

y
 %

 

P
re

ci
si

o
n
 %

 

F
-m

ea
su

re
 %

 

A
cc

u
ra

cy
 %

 

Predicted class 

Class0 Class1 

DT 
Class0 43 32 57.33 72.9 64.17 

83.16 
Class1 16 194 92.38 85.8 88.99 

LDA 
Class0 61 14 81.33 58.7 68.15 

80.00 
Class1 43 167 79.52 92.3 85.42 

SVML 
Class0 51 24 68.00 77.3 72.34 

86.32 
Class1 15 195 92.86 89.0 90.90 

SVMQ 
Class0 50 25 66.67 73.5 69.93 

84.91 
Class1 18 192 91.43 88.5 89.92 

SVMCUB 
Class0 46 29 61.33 68.7 64.78 

82.46 
Class1 21 189 90.00 86.7 88.31 

SVMG 
Class0 41 34 54.67 78.8 64.56 

84.21 
Class1 11 199 94.76 85.4 89.84 

KNNF 
Class0 43 32 57.33 58.9 58.10 

78.25 
Class1 30 180 85.71 84.9 85.30 

KNNM 
Class0 45 30 60.00 77.6 67.66 

84.91 
Class1 13 197 93.81 86.8 90.16 

KNNCOS 
Class0 47 28 62.67 71.2 66.66 

83.51 
Class1 19 191 90.95 87.2 89.04 

KNNCUB 
Class0 44 31 58.67 73.3 65.18 

83.51 
Class1 16 194 92.38 86.2 89.19 

KNNW 
Class0 47 28 62.67 73.4 67.62 

84.21 
Class1 17 193 91.90 87.3 89.55 

EBTree 
Class0 45 30 60.00 71.4 65.21 

83.16 
Class1 18 192 91.43 86.5 88.88 

ESDA 
Class0 49 26 65.33 67.1 66.21 

82.46 
Class1 24 186 88.57 87.7 88.15 
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Table C.2 Comparative results of different classifiers incorporated with the selected set of 

features associated with 3DGLCM after applying ANOVA using BRTAS2018 dataset. 

Classifier 
Actual 

class 

Confusion 

matrices 

S
en

si
ti

v
it

y
%

 

P
re

ci
si

o
n
 %

 

F
-m

ea
su

re
  
%

 

A
cc

u
ra

cy
%

 

Predicted class 

Class0 Class1 

DT 
Class0 43 32 57.33 72.9 64.17 

83.16 
Class1 16 194 92.38 85.8 88.99 

LDA 
Class0 61 14 81.33 58.1 67.77 

79.65 
Class1 44 166 79.05 92.2 85.12 

SVML 
Class0 51 24 68.00 79.7 73.38 

87.02 
Class1 13 197 93.81 89.1 91.41 

SVMQ 
Class0 47 28 62.67 72.3 67.14 

83.86 
Class1 18 192 91.43 87.3 89.30 

SVMCUB 
Class0 47 28 62.67 69.1 65.73 

82.81 
Class1 21 189 90.00 87.1 88.52 

SVMG 
Class0 39 36 52.00 78.0 62.40 

83.51 
Class1 11 199 94.76 84.7 89.43 

KNNF 
Class0 41 34 54.67 59.4 56.94 

78.25 
Class1 28 182 86.67 84.3 85.44 

KNNM 
Class0 44 31 58.67 75.9 66.16 

84.21 
Class1 14 196 93.33 86.3 89.70 

KNNCOS 
Class0 47 28 62.67 69.1 65.73 

82.81 
Class1 21 189 90.00 87.1 88.52 

KNNCUB 
Class0 44 31 58.67 74.6 65.67 

83.86 
Class1 15 195 92.86 86.3 89.44 

KNNW 
Class0 47 28 62.67 73.4 67.62 

84.21 
Class1 17 193 91.90 87.3 89.55 

EBTree 
Class0 47 28 62.67 69.1 65.73 

82.81 
Class1 21 189 90.00 87.1 88.52 

ESDA 
Class0 50 25 66.67 68.5 67.56 

83.16 
Class1 23 187 89.05 88.2 88.62 
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Table C.3 Comparative results of different classifiers incorporated with the selected set of 

features associated with 3DGLCM after applying the proposed hybrid features selection 

method using BRTAS2018 dataset. 

Classifier 
Actual 

class 

Confusion 

matrices 

S
en

si
ti

v
it

y
%

 

P
re

ci
si

o
n
 %

 

F
-m

ea
su

re
  
%

 

A
cc

u
ra

cy
%

 

Predicted class 

Class0 Class1 

DT 
Class0 44 31 58.67 75.9 66.16 

84.21 
Class1 14 196 93.33 86.3 89.70 

LDA 
Class0 59 16 78.67 57.8 66.66 

79.30 
Class1 43 167 79.52 91.3 84.98 

SVML 
Class0 55 20 73.33 79.7 76.38 

88.07 
Class1 14 196 93.33 90.7 92.01 

SVMQ 
Class0 47 28 62.67 71.2 66.66 

83.51 
Class1 19 191 90.95 87.2 89.04 

SVMCUB 
Class0 47 28 62.67 71.2 66.66 

83.51 
Class1 19 191 90.95 87.2 89.04 

SVMG 
Class0 37 38 49.33 77.1 60.16 

82.81 
Class1 11 199 94.76 84.0 89.03 

KNNF 
Class0 41 34 54.67 60.3 57.34 

78.60 
Class1 27 183 87.14 84.3 85.71 

KNNM 
Class0 42 33 56.00 72.4 63.15 

82.81 
Class1 16 194 92.38 85.5 88.78 

KNNCOS 
Class0 46 29 61.33 71.9 66.18 

83.51 
Class1 18 192 91.43 86.9 89.09 

KNNCUB 
Class0 44 31 58.67 75.9 66.16 

84.21 
Class1 14 196 93.33 86.3 89.70 

KNNW 
Class0 44 31 58.67 68.8 63.30 

82.11 
Class1 20 190 90.48 86.0 88.16 

EBTree 
Class0 49 26 65.33 72.1 68.53 

84.21 
Class1 19 191 90.95 88.0 89.46 

ESDA 
Class0 49 26 65.33 72.1 68.53 

84.21 
Class1 19 191 90.95 88.0 89.46 
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Table C.4 Optimal selected set of features by the proposed HFSA with their corresponding 

angles using BRATS2018 dataset.  The names of the features are referred by its 

abbreviations that were defined in the expression of the equations (APPENDIX B, B.1.1-

B.1.14) 

Features  Angles Features  Angles 

 cprom2d0, dissi2d0, homom2d0  

maxpr2d0, sosvh2d0, svarh2d0      

 inf1h2d0, inf2h2d0, indnc2d0      

(00)  autoc3d450, corrm3d450    

 cprom3d450, cshad3d450    

 dissi3d450, energ3d450    

 entro3d450, homom3d450    

 sosvh3d450, savgh3d450    

 svarh3d450, senth3d450    

 indnc3d450    

(450,00) 

autoc2d45, contr2d45, corrm2d45   

prom2d45, cshad2d45, energ2d45   

entro2d45,homom2d45,sosvh2d45     

 svarh2d45, senth2d45, inf1h2d45     

 indnc2d45     

(450)  autoc3d-450,contr3d-450   

corrm3d-450, cprom3d-450   

 cshad3d-450, energ3d-450   

 homom3d-450, sosvh3d-450   

 savgh3d-450 , svarh3d-450   

 senth3d-450 , inf1h3d-450   

 inf2h3d-450   

(-450,00) 

 corrm2d90,cprom2d90, dissi2d90     

 nerg2d90,homom2d90,maxpr2d90,    

sosvh2d90, inf1h2d90, inf2h2d90     

 indnc2d90     

900 autoc3d4545,contr3d4545   

cprom3d4545,cshad3d4545   

 energ3d4545, entro3d4545   

 sosvh3d4545, savgh3d4545   

 svarh3d4545,   senth3d4545   

 idmnc3d4545   

(450,450) 

contr2d135,cprom2d135,cshad2d1

35,dissi2d135,energ2d135,entro2d

135,homom2d135,sosvh2d135   

svarh2d135,senth2d135, 

inf2h2d135    

1350 autoc3d-45-45, contr3d-45-45 

cprom3d-45-45, cshad3d-45-45 

energ3d-45-45, entro3d-45-45 

homom3d-45-4,5maxpr3d-45-

45 

sosvh3d-45-45, svarh3d-45-45 

senth3d-45-45, indnc3d-45-45 

 idmnc3d-45-45 

(-450,-450) 

autoc3d045,contr3d045 

,cprom3d045cshad3d045, 

energ3d045,homom3d045    

sosvh3d045,svarh3d045,  

senth3d045,inf1h3d045,   

idmnc3d045    

(00,450) autoc3d45-45, cprom3d45-45  

cshad3d45-45,energ3d45-45 

entro3d45-45, sosvh3d45-45  

 savgh3d45-45, svarh3d45-45  

 senth3d45-45, idmnc3d45-45 

(450,-450) 
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Table C.4 Continued 

corrm3d00,cprom3d00,  maxpr3d00     (00,00) autoc3d-4545, contr3d-4545  

cprom3d-4545, cshad3d-4545  

dissi3d-4545,  energ3d-4545  

entro3d-4545, homom3d-4545  

sosvh3d-4545, savgh3d-4545  

svarh3d-4545, senth3d-4545  

indnc3d-4545, idmnc3d-4545 

(-450,450) 

autoc3d0-45,contr3d0-45, 

cprom3d0-45, energ3d0-45   

entro3d0-45,  homom3d0-45   

sosvh3d0-45,  savgh3d0-45   

svarh3d0-45,  senth3d0-45   

inf1h3d0-45,  indnc3d0-45   

 idmnc3d0-45   

(00,-450)  
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Table C.5 Comparative evaluation results showing the full set of the proposed features 

FTD extracted from the tumour descriptors incorporating different machine learning 

algorithms using the BRATS2018 dataset. 

Classifier 
Actual 

class 

Confusion matrices 

S
en

si
ti

v
it

y
 %

 

P
re

ci
si

o
n
 %

 

F
-m

ea
su

re
  
%

 

A
cc

u
ra

cy
 %

 

Predicted class 

Class0 Class1 

DT 
Class0 56 19 74.67 83.58 78.87 

89.47 
Class1 11 199 94.76 91.28 92.99 

LDA 
Class0 54 21 72.00 84.38 77.69 

89.12 
Class1 10 200 95.24 90.50 92.80 

SVML 
Class0 56 19 74.67 91.80 82.35 

91.58 
Class1 5 205 97.62 91.52 94.47 

SVMQ 
Class0 56 19 74.67 87.50 80.57 

90.53 
Class1 8 202 96.19 91.40 93.73 

SVMCUB 
Class0 55 20 73.33 83.33 78.01 

89.12 
Class1 11 199 94.76 90.87 92.77 

SVMG 
Class0 53 22 70.67 89.83 79.10 

90.18 
Class1 6 204 97.14 90.27 93.57 

KNNF 
Class0 53 22 70.67 76.81 73.61 

86.67 
Class1 16 194 92.38 89.81 91.07 

KNNM 
Class0 52 23 69.33 92.86 79.38 

90.53 
Class1 4 206 98.10 89.96 93.84 

KNNCOS 
Class0 54 21 72.00 85.71 78.26 

89.47 
Class1 9 201 95.71 90.54 93.05 

KNNCUB 
Class0 52 23 69.33 94.55 80.00 

90.88 
Class1 3 207 98.57 90.00 94.09 

KNNW 
Class0 52 23 69.33 86.67 77.03 

89.12 
Class1 8 202 96.19 89.78 92.87 

EBTree 
Class0 58 17 77.33 86.57 81.69 

90.88 
Class1 9 201 95.71 92.20 93.92 

ESDA 
Class0 53 22 70.67 89.83 79.10 

90.18 
Class1 6 204 97.14 90.27 93.57 
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Table C.6 Comparative evaluation results for the selected set of features FTD using the 

ANOVA method, incorporating different classifiers using the BRATS2018 dataset. The 

selected features were (Nec_M, tC_M, Nec_R, Edm_R, tC_R). 

Classifier 
Actual 

class 

Confusion matrices 

S
en

si
ti

v
it

y
 %

 

P
re

ci
si

o
n
 %

 

F
-m

ea
su

re
  
%

 

A
cc

u
ra

cy
 %

 

Predicted class 

Class0 Class1 

DT 
Class0 56 19 74.67 83.58 78.87 

89.47 
Class1 11 199 94.76 91.28 92.99 

LDA 
Class0 54 21 72.00 84.38 77.69 

89.12 
Class1 10 200 95.24 90.50 92.80 

SVML 
Class0 56 19 74.67 90.32 81.75 

91.23 
Class1 6 204 97.14 91.48 94.22 

SVMQ 
Class0 58 17 77.33 90.63 83.45 

91.93 
Class1 6 204 97.14 92.31 94.66 

SVMCUB 
Class0 56 19 74.67 90.32 81.75 

91.23 
Class1 6 204 97.14 91.48 94.22 

SVMG 
Class0 53 22 70.67 89.83 79.10 

90.18 
Class1 6 204 97.14 90.27 93.57 

KNNF 
Class0 55 20 73.33 76.39 74.83 

87.02 
Class1 17 193 91.90 90.61 91.25 

KNNM 
Class0 55 20 73.33 93.22 82.08 

91.58 
Class1 4 206 98.10 91.15 94.49 

KNNCOS 
Class0 53 22 70.67 82.81 76.25 

88.42 
Class1 11 199 94.76 90.05 92.34 

KNNCUB 
Class0 55 20 73.33 91.67 81.48 

91.23 
Class1 5 205 97.62 91.11 94.25 

KNNW 
Class0 56 19 74.67 86.15 80.00 

90.18 
Class1 9 201 95.71 91.36 93.48 

EBTree 
Class0 57 18 76.00 85.07 80.28 

90.18 
Class1 10 200 95.24 91.74 93.45 

ESDA 
Class0 53 22 70.67 88.33 78.51 

89.82 
Class1 7 203 96.67 90.22 93.33 
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Table C.7 Comparative evaluation results for the selected set of features by the proposed 

HFSA, incorporating different classifiers using the BRATS2018 dataset.  The selected 

features were (tC_R, Edm_R, Nec_M, and Nec_R). 

Classifier 
Actual 

class 

Confusion matrices 

S
en

si
ti

v
it

y
 %

 

P
re

ci
si

o
n
 %

 

F
-m

ea
su

re
  
%

 

A
cc

u
ra

cy
 %

 

Predicted class 

Class0 Class1 

DT 
Class0 56 19 74.67 83.58 78.87 

89.47 
Class1 11 199 94.76 91.28 92.99 

LDA 
Class0 53 22 70.67 84.13 76.81 

88.77 
Class1 10 200 95.24 90.09 92.59 

SVML 
Class0 55 20 73.33 90.16 80.88 

90.88 
Class1 6 204 97.14 91.07 94.00 

SVMQ 
Class0 58 17 77.33 89.23 82.85 

91.58 
Class1 7 203 96.67 92.27 94.41 

SVMCUB 
Class0 58 17 77.33 96.67 85.92 

93.33 
Class1 2 208 99.05 92.44 95.63 

SVMG 
Class0 50 25 66.67 90.91 76.92 

89.47 
Class1 5 205 97.62 89.13 93.18 

KNNF 
Class0 53 22 70.67 80.30 75.17 

87.72 
Class1 13 197 93.81 89.95 91.84 

KNNM 
Class0 53 22 70.67 92.98 80.30 

90.88 
Class1 4 206 98.10 90.35 94.06 

KNNCOS 
Class0 56 19 74.67 78.87 76.71 

88.07 
Class1 15 195 92.86 91.12 91.98 

KNNCUB 
Class0 54 21 72.00 91.53 80.59 

90.88 
Class1 5 205 97.62 90.71 94.03 

KNNW 
Class0 54 21 72.00 87.10 78.83 

89.82 
Class1 8 202 96.19 90.58 93.30 

EBTree 
Class0 57 18 76.00 87.69 81.42 

90.88 
Class1 8 202 96.19 91.82 93.95 

ESDA 
Class0 51 24 68.00 86.44 76.11 

88.77 
Class1 8 202 96.19 89.38 92.66 
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Table C.8 Comparative evaluation results of the proposed MTMCS based on one-layer 

NNs versus all other classification approaches and the majority vote. This test is based on 

the full set of features of 3DGLCM and FTD that derived from BRATS2018 dataset. 

Classifier 
Actual 

class 

Confusion 

matrices 

S
en

si
ti

v
it

y
 %

 

P
re

ci
si

o
n
 %

 

F
-m

ea
su

re
 %

 

A
cc

u
ra

cy
 %

 

Predicted class 

Class0 Class1 

DT 
Class0 59 16 78.67 84.3 81.37 

90.53 
Class1 11 199 94.76 92.6 93.64 

LDA 
Class0 61 14 81.33 59.2 68.53 

80.35 
Class1 42 168 80.00 92.3 85.71 

SVML 
Class0 60 15 80.00 92.3 85.71 

92.98 
Class1 5 205 97.62 93.2 95.34 

SVMQ 
Class0 59 16 78.67 86.8 82.51 

91.23 
Class1 9 201 95.71 92.6 94.14 

SVMCUB 
Class0 58 17 77.33 81.7 79.45 

89.47 
Class1 13 197 93.81 92.1 92.92 

SVMG 
Class0 47 28 62.67 85.5 72.30 

87.37 
Class1 8 202 96.19 87.8 91.81 

KNNF 
Class0 54 21 72.00 72.0 72.00 

85.26 
Class1 21 189 90.00 90.0 90.00 

KNNM 
Class0 51 24 68.00 81.0 73.91 

87.37 
Class1 12 198 94.29 89.2 91.66 

KNNCOS 
Class0 53 22 70.67 79.1 74.64 

87.37 
Class1 14 196 93.33 89.9 91.58 

KNNCUB 
Class0 49 26 65.33 81.7 72.59 

87.02 
Class1 11 199 94.76 88.4 91.49 

KNNW 
Class0 52 23 69.33 80.0 74.28 

87.37 
Class1 13 197 93.81 89.5 91.62 

EBTree 
Class0 57 18 76.00 83.8 79.72 

89.82 
Class1 11 199 94.76 91.7 93.20 

ESDA 
Class0 59 16 78.67 80.8 79.72 

89.47 
Class1 14 196 93.33 92.5 92.89 

Majority 

Vote 

Class0 56 19 74.67 86.2 80.00 
90.18 

Class1 9 201 95.71 91.4 93.48 

Proposed 

MTMCS 

Class0 65 10 86.67 94.2 90.27 
95.09 

Class1 4 206 98.10 95.4 96.71 
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APPENDIX D 

D.1 Implementation and Further Technical Details 

This includes the technical steps and implementation process. Matlab 2018 student licence 

has been used to write the code, build the function, and process the implementation. Matlab 

learner application is used initially to generate the code for learning models then the code 

has been modified and updated. The Matlab learner application is limited to accomplish the 

training and testing for more than 50 samples based on LOO-cross validation, while the code 

has been developed to adapt any number of samples by LOO- cross-validation. SPSS IBM 

software VER. 24 is utilised for measuring ANOVA and Pearson correlation techniques. Dia 

software is used as a tool to generate the UML graphical design of the developed system. 

UML class diagram is used to add a further illustration to the implementation details of the 

developed methods in the thesis. The results and the outcome of the methods developed in 

the research work are presented in each chapter of the thesis. The results are also summarised 

and discussed in chapter 7.  

D.2 System Validation 

In this research work, four MR images datasets are used to evaluate and validate the novel 

methods proposed in this work. Two stages of learning were established to develop the 

automated classification system for glioma grades. To validate the developed system, leave-

one-out cross-validation technique has been utilised in all stages. In the first stage of the 

proposed MTMCS, the dataset was divided into two parts; these are the training part that is 

used to train the classification model and the testing part that is used to test the trained model. 

In this stage the dataset was splitted into two parts to validate the trained model on new data 

that has not been seen during the training phase. The reason behind splitting the data into 

two parts only is that all single classifiers involved were developed based on fixed 

parameters and there is no any tuning process is conducted for the parameters for all 

experiments, and therefore there is no need to divide the data into additional part that is 

required to optimise the model before testing it. This is different from the second stage of 

the MTMCS where the dataset is divided into three parts namely training subset, validation 

subset and testing subset. The training subset is used to train the model, while the validation 

subset is utilised to optimise the parameters of the DNNs such as weights and biases, and to 

select the best design choices of the DNN, which has first divergence from the global 
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minimum and thereby selecting the best DNN model. Then the optimised model is used to 

test the testing subset to evaluate the results of the developed classification system. 

D.3 MRI-Preparation 

This stage is implemented to prepare the ROI from MR brain tumour images, which includes 

bringing in ROI and cropping the images to provide image with only ROI of brain tumour 

for the next stages. Each patient in the dataset has two sets of images; the first set is the 

original MRI series and the second set is the labelled MRI series. The labelled MRI images, 

which is denoted in this work as the label identification layer (SEG), has four labels to 

indicate four tumour regions (Figure 2.3). In the labelled image, each pixel is labelled and 

pre-assigned by the dataset as follows:  

Label ‘0’ indicates background. 

Label ‘1’ indicates tumour necrosis. 

Label ‘2’ indicates tumour edema.  

Label ‘3’ indicates tumour non-contrast enhancement. 

Label ‘4’ indicates tumour enhancement. 

The label identification layer is utilised to bring in only the ROI of brain tumour images. To 

elaborate, the ROI represents the active portion of the tumour, which includes necrosis, 

enhanced, and non-enhanced tumour. To achieve this, masking process is applied which is 

designed to bring in only tumour portions that include only tumour necrosis, non-contrast 

enhancement, and enhancement and discard edema portion. This is implemented by 

designing additional images matrix and is called a mask. This mask is designed to include 

only logical values (only ones and zeros) and depending on the label identification layer to 

bring in only ROI. This  mask have ones corresponding to the pixels that have label ‘1’, label 

‘3’, and label ‘4’ and zeros to other regions of the image. Then a logical multiplication 

between this mask and the original MRI image is determined. As a result images with only 

the ROI are obtained. 

The next step is to eliminate the redundant zeros-pixel located in column and rows out of the 

ROI. This is achieved through applying automated search process starts from four directions 

inside the image, then a comparison between each two neighbouring columns for searching 

the x-axis is conducted and the same process is repeated for the y-axis. If any difference in 

the values from this comparison is captured, the search process is terminated on the column 

and rows larger than the area of the ROI by one column and row. As a result, the cropped 

image with only ROI is produced (Figure 3.2). 
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 D.4 Features Extraction 

This stags is dedicated to extract the image features from the ROI brain tumour image. These 

features include the textural features and the new features associated with tumour descriptors 

(FTD). For the texture extraction, the implementation starts with building the co-occurrence 

matrix from each ROI acquired from T2-MR series of each patient (section 3.4.1). This 

construction of GLCM is based on 13 angles, distance equal to 1, and the quantisation level 

is (0 to 255). Thirteen angles are used, result in thirteen matrices are produced after 

implementing the GLCM. From each GLCM matrix, 18 statistical predictors are measured; 

the formulas of these predictors are presented in (APPENDIX B, B.1.1-B.1.14). After the 

predictors are implemented, each patient is represented by 18 measures × 13 matrices, and 

hence each patient is represented by 234 feature values. The first four angles of GLCM are 

used to represent the 2DGLCM, while all the 13 angles of GLCM are utilized to indicate the 

3DGLCM. At the final step of feature extraction, the output feature vectors are saved in 

excel file, and the corresponding grade target (the truth label for each patient) is also assigned 

to each vector in same excel sheet. Label 0 and 1 were also assigned to the feature vectors, 

indicating low and high grades samples respectively and according to the pre-diagnosis 

information provided by the dataset. The contents of the target vector are then used in the 

training phase of the supervised classification process where both the target vector and the 

feature vectors are provided to learn the classification model. The Target vector is also used 

in the evaluation process through comparing it by the output probability produced by the 

classification model during the testing phase. 

Regarding the extraction of the new features proposed in chapter 4, the areas of the presence 

of the tumour descriptors were measured by utilizing the labelled pixel of the input image 

and calculating the total number of the labelled pixels for each labelled region in all images. 

For examples to measure the presence area of tumour necrosis, a search process is conducted 

to measure the total number of image pixels assigned by labelled ‘1’. Similarly to get the 

presence of tumour edema, the number of pixels labelled with ‘2’ is accounted. The same 

strategy is applied to calculate other tumour presences non-enhanced and enhanced tumour. 

After that the total number is divided on the number of images that have ROI to produce the 

features Nec_M, Edm_M, tnC_M, tC_M. New relationships are constructed from these areas 

using Eqs 4.1-4.5. As a results eight features are produced to present each patient in the 

dataset, then these features are also saved in the excel file and assigned with grade labels 

(Target). 
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Algorithm steps for feature extraction: 

Step 1: Start 

Step 2: Read ROI images 

Step 3: Normalize intensity of image to the range [0 to 255] 

Step 4: Build the Gray Level Co-Occurrence Matrix for the image 

Step 5: Utilising the values from the matrix, measure the textural predictors using Eqs. 

(APPENDIX B, B.1.1-B.1.14) 

Step 6: Given the labelled pixels of images, compute the FTD features using Eqs (4.1-

4.5) 

Step 7: Repeat the steps from Step 2 to Steps 5 to list out the features for all images in 

the dataset 

Step 8: End 

 

D.5 Building the Classification Model 

Several single and ensemble classification models were built and implemented in this work, 

including eleven single classifiers and three ensemble classification systems. The same 

configuration and design choices of the classification models (Table 3.1) were applied for 

the four datasets. The reason behind this is to achieve consistent performance and robust 

comparison between the models evaluated on different datasets. Building the model starts 

with configuration the classification models then feeding the data into the models to 

implement the training phase. Then the trained model is validated using LOO cross-

validation technique. 

Algorithm steps for feature classification: 

Step 1: Start 

Step 2: Read extracted features of input data 

Step 3: For i=1 to: the number of patients 

Step 4: Remove the features of one patient from the input data and store it in the testing Set 

Step 5: Train the classification model 

Step 6: Test the trained model using the features stored in the testing set 

Step 7: Store the output decision of testing the model in A 

Step 8: Add the removed sample to the training set and chose a different one 

Step 9: End for 
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Step 10: Compute Confusion Matrix 

Step 11: End 

 

D.6 Unified Modelling Language  

The Unified Modelling Language (UML) is a tool to draw the code classes, methods, 

attributes and the relationship between classes. Class diagram is a graphical representation 

to show the relationship between classes. Dia software is used as a visualisation tool to draw 

the UML diagram for the code classes of all the methods developed in the thesis. Particularly, 

the classes show the implementation procedure, which are explained as follows: 

D.6.1 Proposed Hybrid Features Selection Algorithm 

The UML diagram of the proposed Hybrid Features Selection Algorithm (HFSA) that is 

used to select the most significant features (Figure D.1) is started with the initialisation stage 

that is explained in details in section 3.5. The UML diagram has the Main Class that 

represents the starting point of the implementation process and it has all initial values for 

reading the input data. The input data represents the feature vectors that are extracted from 

MR images. These vectors are arranged in a matrix or excel sheet. As a result each column 

represents a statistical predictor, and each row indicates a patient. The last column indicates 

the target list. In this class, the input feature is splitted into two lists. The first list includes 

the TargetData that represents the ground truth label of glioma grades, and the second list is 

inputData that includes the input feature vectors. This class is designed to call all other 

classes, and return the results from other classes that are explored as follows: 

1. Splitting_features: The Main Class call this class and it is used to split the features 

through removing one feature (Remove_oneFeature) and then the produced features 

are saved in (NewSetofFeatures). The feature elimination starts with the one that has 

highest correlation with the reference predictor and then this process is repeated in 

descending order to exam all features vectors in the input data. 
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Figure D.1 Implementation of UML class diagram for the hybrid feature selection 

algorithm using Dia software tools. 
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2. Classification Model: This class is utilised to implement, train and test eleven 

classification models using different subset of features where the Splitting_features 

class is connected with one or more classification models in this class. This class and 

through each classification models use the class splitting_Data that is built to split 

the input data into two subsets these are the TrainingData and the TestingData where 

this splitting of the dataset are demonstrated based on LOO cross-validation 

technique. The TrainingData and the TargetData are used to train the classification 

model while the trained model is then used to test the TestingData. Afterwards the 

classification performance is evaluated by calculating the confusion matrix that can 

be used to determine the evaluation metrics such as the classification accuracy, 

sensitivity and specificity. Eleven classifiers are implementing this class through 

train and test each classification models. The classification models are represented 

by the classes:  DT, LDA, SVML, SVMQ, SVMCUB, SVMG, KNNF, KNNM, 

KNNCOS, KNNCUB and KNNW. 

3. Monitoring the Classification Accuracy: this class is called by the Classification 

Model class, it is responsible for tracking the classification accuracy based on 

examining different subset of features through the implementation of different 

classification models. The classification accuracy is compared and updated for each 

classifier and then the new subset of features (Updating_NewSetofFeatures) is also 

updated according the results of the tests. This class has the Selecting the best set of 

Features class that is used to pick up the highest classification accuracy and the best 

subset of features that reflects that maximum classification accuracy. The method is 

ended when the full length of features is examined; afterwards the highest 

classification accuracy with the corresponding subset of features is selected. 
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D.6.2 First Stage of the Proposed MTMCS 

The UML diagram of the first stage of the proposed MTMCS is illustrated in Figure D.2, the 

classes related to train, test the classification models have followed the same methodology 

and class diagram presented in Figure D.1 but without the classes designed for the features 

selection. The Classification Model class is called by the Main Class and it is used to 

implement, train, test and evaluate the eleven classification models. This class also has the 

class of Splitting_Data and the class of Generating Output Decision matrix_ODM. The 

latter class is utilised to generate the output decisions (ODs) from testing the trained models 

using the TestingData and then saving them in new Binary_Matrix. The ODs are binary 

numbers that includes 1 and 0 indicate high and low grades respectively. The TargetData is 

assigned in the Binary_Matrix to represent the Target of the samples and to prepare them for 

the next stage of learning. The output of this stage is the output decision matrix ODM 

(ODM_data) that has the data associated with patient’s index arranged in row-wise and the 

data produced from the classifiers arranged in column wise. The size of this matrix is the 

number of patient’s × the number of classifiers. 

D.6.3 Second Stage of the Proposed MTMCS 

The UML diagram of the second stage of the proposed MTMCS is depicted in Figure D.3. 

In the Main Class of this diagram, the process starts by reading ODM (ODM_data) 

generated by the first stage then this data is splitted into two lists: the TargetData and 

inputData. Further details of the classes are explored as follows: 

1. Neural Network Model: this class is called by the Main Class. This class is used to 

build, train and validate the NN model. In this class, the backpropagation method 

(Matlab function: trainscg) is implemented to optimise the weights and biases of the 

NN network through training the NN model using the TrainingData and TargetData 

and validating the model through using the ValidationData and TargetData. This 

class is connected with the Network Layer class that is used to get number of layer. 

The Network Layer is connected with the Network Neuron class that is utilised to 

provide number of neurons per layer and to activate each neuron by the activation 

Matlab function (tansig). The Neural Network Model class is also connected with 

the Network Iteration class to assign number of iterations for the NN model. 
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Figure D.2 Implementation of UML class diagram for the first stage of the MTMCS using 

Dia software tools. 
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2. Splitting_Data: the Neural Network Model class uses this class to split the input 

data into three different subsets: the TrainingData, ValidationData and TestingData. 

Two subsets are used in the training phase where the training data is splitted into the 

TrainingData of 85% and ValidationData of 15%. The testing phase uses LOO 

technique whereby the trained model is tested using new samples that are not 

included in the training phase.  

3. Classification: the Neural Network Model class is implementing this class to test the 

trained model using the TestingData, and then results are evaluated. 

Figure D.3 Implementation of UML class diagram for the second stage of the MTMCS 

using Dia software tools. 
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4. Checking Classification Accuracy:  this class is called by the Classification class 

and it is used to measure the classification accuracy using the TestingData and 

TargetData. This class has the Selecting the best Model design class that is used to 

select model design that reflects the highest classification accuracy. 

D.6.4 Proposed Algorithm for Selecting the Best Set of Classifiers 

The UML diagram of the proposed algorithm for selecting the best set of classifiers (SCA) 

is presented in Figure D.4. Further details of diagram design are explained as follows: 

1. Main Class: the input data to this class is the ODM. Starting with splitting the input 

data into two lists: the TargetData and the inputData. This class is started with call 

the Spliting_Classifiers class. 

2. Splitting_Classifiers: this class is used to generate new set of classifiers based on 

removing classifiers one by one. The direction of this process is implemented 

automatically from the classifier that has lowest classification accuracy and moving 

through examine all classifiers until reaching the highest one (section 5.5). As a 

results a new set of classifiers is produced.  

3. MTMCS: the Main Class call this class, it includes two stages of learning and the 

UML of this class is presented in Figure D.2 and Figure D.3. In this class, the 

classification model is trained, tested and evaluated based on updating different 

subset of classifiers. The Splitting_Classifiers class is providing this class with the 

new subset of classifiers. 

4. Monitoring Classification Accuracy: this class is called by the MTMCS class and it 

is used to measure the classification accuracy based the new subset of classifiers. 

This class also includes comparing the classification accuracy with the initial or the 

previous state. It has the Selecting the best set of classifiers class, which is designed 

to find the best subset of classifiers that reflects the maximum classification accuracy. 
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Figure D.4 Implementation of UML class diagram for selecting the best set of classifiers 

algorithm (SCA) using Dia software tools. 
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APPENDIX E 

The following code has been generated by the author to implement the proposed HFSA and 

the classification models. The code includes the Matlab functions with further development 

and modifications. The code of the classification models has been developed to adapt any 

number of samples in the implementation of LOO-cross validation. The classification 

models have been designed to automatically implement the training, testing, evaluation 

phases, and measuring the final classification results based on LOO-cross validation 

technique. An additional option has been added in establishing the classification model by 

providing a trained model using the whole dataset. If this option is used, the input dataset 

needs to be divided in advance into training and testing subsets, and then the training subset 

is delivered to the code, thereafter the testing phase is conducted to fulfil the cross-validation 

technique.  

 

A=FS1; % FS1 represents the selected index of features from the initial stage 

A1=A; 

%IC is the initial accuracy set experimentally by testing the full set of features 

maxacc_1=IC;  

For i=1:length(FS1-1) 

AN=A(end-i+1) 

A1(A1==AN)=[];  

% BT represents the input data with the full set of features 

Bm=BT;  

Bm=Bm(:,[A1,end]);   

BIN=Bm; 

 %% 1 

rng('default') 

[ACC,cm,ind,Label_out,classificationTree_ALL]=DT_CROSSV(BIN); 

DT(i).ACC=ACC; 

DT(i).confusion=cm; 

DT(i).indx=ind; 

DT(i).labelout=Label_out; 

DT(i).model=classificationTree_ALL; 

%% 2 

rng('default') 

[ACC,cm,ind,Label_out,classificationLDA_ALL]=LDA_CROSSV(BIN); 

LDA(i).ACC=ACC; 

LDA(i).confusion=cm; 

LDA(i).indx=ind; 

LDA(i).labelout=Label_out; 

LDA(i).model=classificationLDA_ALL; 

%% 3 

rng('default') 

[ACC,cm,ind,Label_out,classificationSVML_ALL]=SVML_CROSSV(BIN); 
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SVML(i).ACC=ACC; 

SVML(i).confusion=cm; 

SVML(i).indx=ind; 

SVML(i).labelout=Label_out; 

SVML(i).model=classificationSVML_ALL; 

%% 4 

rng('default') 

[ACC,cm,ind,Label_out,classificationQA_ALL]=SVMQA_CROSSV(BIN); 

SVMQA(i).ACC=ACC; 

SVMQA(i).confusion=cm; 

SVMQA(i).indx=ind; 

SVMQA(i).labelout=Label_out; 

SVMQA(i).model=classificationQA_ALL; 

%% 5 

rng('default') 

[ACC,cm,ind,Label_out,classificationSVMCUB_ALL]=SVMCUB_CROSSV(BIN); 

SVMCUB(i).ACC=ACC; 

SVMCUB(i).confusion=cm; 

SVMCUB(i).indx=ind; 

SVMCUB(i).labelout=Label_out; 

SVMCUB(i).model=classificationSVMCUB_ALL; 

%% 6 

rng('default') 

[ACC,cm,ind,Label_out,classificationSVMG_ALL]=SVMG_CROSSV(BIN); 

SVMG(i).ACC=ACC; 

SVMG(i).confusion=cm; 

SVMG(i).indx=ind; 

SVMG(i).labelout=Label_out; 

SVMG(i).model=classificationSVMG_ALL; 

%% 7 

rng('default') 

[ACC,cm,ind,Label_out,classificationKNNF_ALL]=KNNF_CROSSV(BIN); 

KNNF(i).ACC=ACC; 

KNNF(i).confusion=cm; 

KNNF(i).indx=ind; 

KNNF(i).labelout=Label_out; 

KNNF(i).model=classificationKNNF_ALL; 

%% 8 

rng('default') 

[ACC,cm,ind,Label_out,classificationKNNM_ALL]=KNNM_CROSSV(BIN); 

KNNM(i).ACC=ACC; 

KNNM(i).confusion=cm; 

KNNM(i).indx=ind; 

KNNM(i).labelout=Label_out; 

KNNM(i).model=classificationKNNM_ALL; 

%% 9 

rng('default') 

[ACC,cm,ind,Label_out,classificationKNNW_ALL]=KNNW_CROSSV(BIN); 

KNNW(i).ACC=ACC; 

KNNW(i).confusion=cm; 
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KNNW(i).indx=ind; 

KNNW(i).labelout=Label_out; 

KNNW(i).model=classificationKNNW_ALL; 

%% 10 

rng('default') 

[ACC,cm,ind,Label_out,classificationKNNCOS_ALL]=KNNCOS_CROSSV(BIN); 

KNNCOS(i).ACC=ACC; 

KNNCOS(i).confusion=cm; 

KNNCOS(i).indx=ind; 

KNNCOS(i).labelout=Label_out; 

KNNCOS(i).model=classificationKNNCOS_ALL; 

%% 11 

rng('default') 

[ACC,cm,ind,Label_out,classificationKNNCUB_ALL]=KNNCUB_CROSSV(BIN); 

KNNCUB(i).ACC=ACC; 

KNNCUB(i).confusion=cm; 

KNNCUB(i).indx=ind; 

KNNCUB(i).labelout=Label_out; 

KNNCUB(i).model=classificationKNNCUB_ALL; 

LIST(i,:)=[DT(i).ACC,LDA(i).ACC,SVML(i).ACC,SVMQA(i).ACC,SVMCUB(i).ACC,S

VMG(i).ACC,...  

KNNF(i).ACC,KNNM(i).ACC,KNNCOS(i).ACC,KNNCUB(i).ACC,KNNW(i).ACC]; 

list=LIST(i,:) 

maxacc_new=max(list(:)) 

DT(i).max_res=maxacc_new; 

DT(i).listA=list; 

%% 

if (maxacc_new < maxacc_1)% test [ if max_old - max_new  > 0]  

B_active(i)=A(end-i+1)  

B_active(B_active==0)=[]; 

A2=A1(1:end-length(B_active)+1); 

A3=A(end-i+1); 

A1=[A2,A3, A1(end-length(B_active)+2:end)]; 

else       

maxacc_1=maxacc_new;   

B_del(i)= A(end-i+1) 

B_del(B_del==0)=[]; 

end 

end 

%% the supported functions in single files for classification models---------- 

% each model train, test and evaluate the input data 

%% ---- DT---------------------------------------------------------------- 

function[ACC,cm,ind,Label_out,classificationTree_ALL]=DT_CROSSV(BIN) 

Bm2=BIN; 

rng('default') 

parfor i=1:size(Bm2,1) 

trainingData=Bm2; 

Xnew=trainingData(i,1:end-1); 

trainingData(i,:)=[]; % 

response=trainingData(:,end);          
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predictors=trainingData(:,1:end-1);  

rng('default') 

  

% Train a classifier 

% This code specifies all the classifier parameters and trains the classifier. 

classificationTree = fitctree(... 

    predictors, ... 

    response, ... 

    'SplitCriterion', 'gdi', ... 

    'MaxNumSplits', 4, ... 

    'Surrogate', 'off', ... 

    'ClassNames', [0; 1]); 

[label,score,cost] = predict(classificationTree,Xnew) 

Label_out(i).label=label; 

score_out(i).score_1=score; 

cost_out(i).cost_1=cost; 

end 

pred=[Label_out.label]; 

Target=Bm2(:,end)'; 

[c,cm,ind,per] = confusion(Target,pred); 

ACC=1-c; 

trainingData=Bm2; 

response=trainingData(:,end);          

predictors=trainingData(:,1:end-1); 

%% training for the whole dataset,  

% THIS IS an additional option to train all samples 

classificationTree_ALL = fitctree(... 

    predictors, ... 

    response, ... 

    'SplitCriterion', 'gdi', ... 

    'MaxNumSplits', 4, ... 

    'Surrogate', 'off', ... 

    'ClassNames', [0; 1]); 

end 

%% LDA 

function[ACC,cm,ind,Label_out,classificationDiscriminant_ALL]=LDA_CROSSV(BIN) 

Bm2=BIN; 

rng('default') 

parfor i=1:size(Bm2,1) 

trainingData=Bm2; 

Xnew=trainingData(i,1:end-1); 

trainingData(i,:)=[];  

response=trainingData(:,end);          

predictors=trainingData(:,1:end-1);  

rng('default') 

classificationDiscriminant = fitcdiscr(... 

    predictors, ... 

    response, ... 

    'DiscrimType', 'diagLinear', ... 

    'FillCoeffs', 'off', ... 
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    'SaveMemory', 'on', ... 

    'ClassNames', [0; 1]); 

  

[label,score,cost] = predict(classificationDiscriminant,Xnew) 

Label_out(i).label=label; 

score_out(i).score_1=score; 

cost_out(i).cost_1=cost; 

end 

pred=[Label_out.label]; 

Target=Bm2(:,end)'; 

[c,cm,ind,per] = confusion(Target,pred); 

ACC=1-c; 

%% Training for the whole dataset 

trainingData=Bm2; 

response=trainingData(:,end);          

predictors=trainingData(:,1:end-1); 

%%  built the model 

rng('default') 

rng(1); 

classificationDiscriminant_ALL = fitcdiscr(... 

    predictors, ... 

    response, ... 

    'DiscrimType', 'diagLinear', ... 

    'FillCoeffs', 'off', ... 

    'SaveMemory', 'on', ... 

    'ClassNames', [0; 1]); 

end 

%% SVML 

function[ACC,cm,ind,Label_out,classificationSVM_All]=SVML_CROSSV(BIN) 

Bm2=BIN; 

rng('default') 

parfor i=1:size(Bm2,1) 

trainingData=Bm2; 

   

Xnew=trainingData(i,1:end-1); 

trainingData(i,:)=[];  

response=trainingData(:,end);          

predictors=trainingData(:,1:end-1);  

rng('default') 

%% built the model 

% Train a classifier 

% This code specifies all the classifier options and trains the classifier. 

classificationSVM = fitcsvm(... 

    predictors, ... 

    response, ... 

    'KernelFunction', 'linear', ... 

    'PolynomialOrder', [], ... 

    'KernelScale', 'auto', ... 

    'BoxConstraint', 1, ... 

    'Standardize', true, ... 
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    'ClassNames', [0; 1]); 

  

[label,score,cost] = predict(classificationSVM,Xnew) 

Label_out(i).label=label; 

score_out(i).score_1=score; 

cost_out(i).cost_1=cost; 

end 

pred=[Label_out.label]; 

Target=Bm2(:,end)'; 

[c,cm,ind,per] = confusion(Target,pred); 

ACC=1-c; 

%% Training for the whole dataset 

trainingData=Bm2; 

response=trainingData(:,end);         

predictors=trainingData(:,1:end-1); 

%%  built the model 

rng('default') 

rng(1); 

classificationSVM_All = fitcsvm(... 

    predictors, ... 

    response, ... 

    'KernelFunction', 'linear', ... 

    'PolynomialOrder', [], ... 

    'KernelScale', 'auto', ... 

    'BoxConstraint', 1, ... 

    'Standardize', true, ... 

    'ClassNames', [0; 1]); 

end 

%% SVMQA 

function[ACC,cm,ind,Label_out,classificationSVM_ALL]=SVMQA_CROSSV(BIN) 

Bm2=BIN; 

rng('default') 

parfor i=1:size(Bm2,1)  

trainingData=Bm2;  

Xnew=trainingData(i,1:end-1); 

trainingData(i,:)=[];  

response=trainingData(:,end);          

predictors=trainingData(:,1:end-1);  

rng('default') 

classificationSVM = fitcsvm(... 

    predictors, ... 

    response, ... 

    'KernelFunction', 'polynomial', ... 

    'PolynomialOrder', 2, ... 

    'KernelScale', 'auto', ... 

    'BoxConstraint', 1, ... 

    'Standardize', true, ... 

    'ClassNames', [0; 1]); 

[label,score,cost] = predict(classificationSVM,Xnew) 

Label_out(i).label=label; 
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score_out(i).score_1=score; 

cost_out(i).cost_1=cost; 

end 

pred=[Label_out.label]; 

Target=Bm2(:,end)'; 

[c,cm,ind,per] = confusion(Target,pred); 

ACC=1-c; 

%% Training for the whole dataset 

trainingData=Bm2; 

response=trainingData(:,end);         

predictors=trainingData(:,1:end-1); 

%%  built the model 

rng('default') 

rng(1); 

classificationSVM_ALL = fitcsvm(... 

    predictors, ... 

    response, ... 

    'KernelFunction', 'polynomial', ... 

    'PolynomialOrder', 2, ... 

    'KernelScale', 'auto', ... 

    'BoxConstraint', 1, ... 

    'Standardize', true, ... 

    'ClassNames', [0; 1]); 

end 

%% SVMCUB 

function[ACC,cm,ind,Label_out,classificationSVM_ALL]=SVMCUB_CROSSV(BIN) 

Bm2=BIN; 

rng('default') 

parfor i=1:size(Bm2,1)  

trainingData=Bm2; 

Xnew=trainingData(i,1:end-1); 

trainingData(i,:)=[];  

response=trainingData(:,end);          

predictors=trainingData(:,1:end-1);  

rng('default') 

classificationSVM = fitcsvm(... 

    predictors, ... 

    response, ... 

    'KernelFunction', 'polynomial', ... 

    'PolynomialOrder', 3, ... 

    'KernelScale', 'auto', ... 

    'BoxConstraint', 1, ... 

    'Standardize', true, ... 

    'ClassNames', [0; 1]); 

[label,score,cost] = predict(classificationSVM,Xnew); 

Label_out(i).label=label; 

score_out(i).score_1=score; 

cost_out(i).cost_1=cost; 

end 

pred=[Label_out.label]; 
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Target=Bm2(:,end)'; 

[c,cm,ind,per] = confusion(Target,pred); 

ACC=1-c; 

trainingData=Bm2; 

response=trainingData(:,end);         

predictors=trainingData(:,1:end-1); 

%%  built the model 

rng('default') 

rng(1); 

classificationSVM_ALL = fitcsvm(... 

    predictors, ... 

    response, ... 

    'KernelFunction', 'polynomial', ... 

    'PolynomialOrder', 3, ... 

    'KernelScale', 'auto', ... 

    'BoxConstraint', 1, ... 

    'Standardize', true, ... 

    'ClassNames', [0; 1]); 

end  

%% SVMG 

function[ACC,cm,ind,Label_out,classificationSVM_ALL]=SVMG_CROSSV(BIN) 

Bm2=BIN; 

rng('default') 

parfor i=1:size(Bm2,1)  

trainingData=Bm2; 

Xnew=trainingData(i,1:end-1); 

trainingData(i,:)=[];  

response=trainingData(:,end);        

predictors=trainingData(:,1:end-1);  

%%  built the model 

rng('default') 

classificationSVM = fitcsvm(... 

    predictors, ... 

    response, ... 

    'KernelFunction', 'gaussian', ... 

    'PolynomialOrder', [], ... 

    'KernelScale', 'auto', ... 

    'BoxConstraint', 1, ... 

    'Standardize', true, ... 

    'ClassNames', [0; 1]); 

[label,score,cost] = predict(classificationSVM,Xnew) 

Label_out(i).label=label; 

score_out(i).score_1=score; 

cost_out(i).cost_1=cost; 

end 

pred=[Label_out.label]; 

Target=Bm2(:,end)'; 

[c,cm,ind,per] = confusion(Target,pred); 

ACC=1-c; 

trainingData=Bm2; 



APPENDICES 

 

323 

 

response=trainingData(:,end);          

predictors=trainingData(:,1:end-1); 

%%  built the model 

rng('default') 

rng(1); 

classificationSVM_ALL = fitcsvm(... 

    predictors, ... 

    response, ... 

    'KernelFunction', 'gaussian', ... 

    'PolynomialOrder', [], ... 

    'KernelScale','auto' , ... 

    'BoxConstraint', 1, ... 

    'Standardize', true, ... 

    'ClassNames', [0; 1]); 

end 

%% KNNF 

function[ACC,cm,ind,Label_out,classificationKNN_ALL]=KNNF_CROSSV(BIN) 

Bm2=BIN; 

rng('default') 

parfor i=1:size(Bm2,1) 

trainingData=Bm2; 

Xnew=trainingData(i,1:end-1); 

trainingData(i,:)=[];  

response=trainingData(:,end);          

predictors=trainingData(:,1:end-1);  

rng('default') 

classificationKNN = fitcknn(... 

    predictors, ... 

    response, ... 

    'Distance', 'Euclidean', ... 

    'Exponent', [], ... 

    'NumNeighbors', 1, ... 

    'DistanceWeight', 'Equal', ... 

    'Standardize', true, ... 

    'ClassNames', [0; 1]); 

  

[label,score,cost] = predict(classificationKNN,Xnew) 

Label_out(i).label=label; 

score_out(i).score_1=score; 

cost_out(i).cost_1=cost; 

end 

pred=[Label_out.label]; 

Target=Bm2(:,end)'; 

[c,cm,ind,per] = confusion(Target,pred); 

ACC=1-c; 

%% Training for the whole dataset 

trainingData=Bm2; 

response=trainingData(:,end);          

predictors=trainingData(:,1:end-1); 

%% built the model 
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rng('default') 

rng(1); 

classificationKNN_ALL = fitcknn(... 

    predictors, ... 

    response, ... 

    'Distance', 'Euclidean', ... 

    'Exponent', [], ... 

    'NumNeighbors', 1, ... 

    'DistanceWeight', 'Equal', ... 

    'Standardize', true, ... 

    'ClassNames', [0; 1]); 

end 

%% KNNM 

function[ACC,cm,ind,Label_out,classificationKNN_all]=KNNM_CROSSV(BIN) 

Bm2=BIN; 

rng('default') 

parfor i=1:size(Bm2,1) 

trainingData=Bm2; 

Xnew=trainingData(i,1:end-1); 

trainingData(i,:)=[];  

response=trainingData(:,end);           

predictors=trainingData(:,1:end-1);  

rng('default') 

classificationKNN = fitcknn(... 

    predictors, ... 

    response, ... 

    'Distance', 'Euclidean', ... 

    'Exponent', [], ... 

    'NumNeighbors', 10, ... 

    'DistanceWeight', 'Equal', ... 

    'Standardize', true, ... 

    'ClassNames', [0; 1]); 

[label,score,cost] = predict(classificationKNN,Xnew) 

Label_out(i).label=label; 

score_out(i).score_1=score; 

cost_out(i).cost_1=cost; 

end 

pred=[Label_out.label]; 

Target=Bm2(:,end)'; 

[c,cm,ind,per] = confusion(Target,pred); 

ACC=1-c; 

%% Training for the whole dataset 

trainingData=Bm2; 

response=trainingData(:,end);          

predictors=trainingData(:,1:end-1); 

%%  built the model 

rng('default') 

rng(1); 

classificationKNN_all = fitcknn(... 

    predictors, ... 
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    response, ... 

    'Distance', 'Euclidean', ... 

    'Exponent', [], ... 

    'NumNeighbors', 10, ... 

    'DistanceWeight', 'Equal', ... 

    'Standardize', true, ... 

    'ClassNames', [0; 1]); 

end 

%% 

function[ACC,cm,ind,Label_out,classificationKNN_all]=KNNCUB_CROSSV(BIN) 

Bm2=BIN; 

rng('default') 

parfor i=1:size(Bm2,1)  

trainingData=Bm2; 

Xnew=trainingData(i,1:end-1); 

trainingData(i,:)=[];  

response=trainingData(:,end);          

predictors=trainingData(:,1:end-1);  

rng('default') 

classificationKNN = fitcknn(... 

    predictors, ... 

    response, ... 

    'Distance', 'Minkowski', ... 

    'Exponent', 3, ... 

    'NumNeighbors', 10, ... 

    'DistanceWeight', 'Equal', ... 

    'Standardize', true, ... 

    'ClassNames', [0; 1]); 

[label,score,cost] = predict(classificationKNN,Xnew) 

Label_out(i).label=label; 

score_out(i).score_1=score; 

cost_out(i).cost_1=cost; 

end 

pred=[Label_out.label]; 

Target=Bm2(:,end)'; 

[c,cm,ind,per] = confusion(Target,pred); 

ACC=1-c; 

%% Training for the whole dataset 

trainingData=Bm2; 

response=trainingData(:,end);         

predictors=trainingData(:,1:end-1); 

%%  built the model 

rng('default') 

classificationKNN_all = fitcknn(... 

    predictors, ... 

    response, ... 

    'Distance', 'Minkowski', ... 

    'Exponent', 3, ... 

    'NumNeighbors', 10, ... 

    'DistanceWeight', 'Equal', ... 
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    'Standardize', true, ... 

    'ClassNames', [0; 1]); 

end 

function[ACC,cm,ind,Label_out,classificationKNN_ALL]=KNNCOS_CROSSV(BIN) 

Bm2=BIN; 

rng('default') 

parfor i=1:size(Bm2,1) 

trainingData=Bm2; 

Xnew=trainingData(i,1:end-1); 

trainingData(i,:)=[];  

response=trainingData(:,end);          

predictors=trainingData(:,1:end-1);  

rng('default') 

classificationKNN = fitcknn(... 

    predictors, ... 

    response, ... 

    'Distance', 'Cosine', ... 

    'Exponent', [], ... 

    'NumNeighbors', 10, ... 

    'DistanceWeight', 'Equal', ... 

    'Standardize', true, ... 

    'ClassNames', [0; 1]); 

[label,score,cost] = predict(classificationKNN,Xnew) 

Label_out(i).label=label; 

score_out(i).score_1=score; 

cost_out(i).cost_1=cost; 

end 

pred=[Label_out.label]; 

Target=Bm2(:,end)'; 

[c,cm,ind,per] = confusion(Target,pred); 

ACC=1-c; 

trainingData=Bm2; 

response=trainingData(:,end);          

predictors=trainingData(:,1:end-1); 

rng('default') 

rng(1); 

classificationKNN_ALL = fitcknn(... 

    predictors, ... 

    response, ... 

    'Distance', 'Cosine', ... 

    'Exponent', [], ... 

    'NumNeighbors', 10, ... 

    'DistanceWeight', 'Equal', ... 

    'Standardize', true, ... 

    'ClassNames', [0; 1]); 

 End 

 

More than two thousands code lines have been generated to implement the work presented 

in the current thesis. All the designed files and Matlab functions of this this work have been 

attached in DVD. 


