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Abstract 

Scientific workflow systems are an established means to model and execute experiments 

or processing pipelines. Nevertheless, designing workflows can be a daunting task for users 

due to the complexities of the systems and the sheer number of available processing nodes, 

each having different compatibility/applicability characteristics. 

This Thesis explores how concepts of the Semantic Web can be used to augment workflow 

systems in order to assist researchers as well as non-expert users in creating valid and 

effective workflows. 

A prototype workflow creation/management system has been developed, including 

components for ontology modelling, workflow composition, and workflow repositories. 

Semantics are incorporated as a lightweight layer, permeating all aspects of the system and 

workflows, including retrieval, composition, and validation. 

Document image analysis and recognition is used as a representative application domain 

to evaluate the validity of the system. A new semantic model is proposed, covering a wide 

range of aspects of the target domain and adjacent fields. Real-world use cases demonstrate 

the assistive features and the automated workflow creation. On that basis, the prototype 

workflow creation/management system is compared to other state-of-the-art workflow 

systems and it is shown how those could benefit from the semantic model. 

The Thesis concludes with a discussion on how a complete infrastructure based on 

semantics-enriched datasets, workflow systems, and sharing platforms could represent the 

next step in automation within document image analysis and other domains. 
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1 Introduction 

In addition to a general introduction of the subject matter, this chapter provides the 

motivation, objectives, main contributions, related publications, and arrangement of the PhD 

Thesis. 

Scientific experiments, like any other processes, involve a collection of subtasks and data. 

Given the tasks are executed in a valid, predetermined sequence and the data is passed 

through appropriately, a meaningful result is produced. If the data is digital, then such 

processes can be automated and used repeatedly.  

Any computer program can represent an automation of such nature, but specifically 

modelling scientific experiments as software processes provides several benefits: flexibility, 

understandability, transparency, ease of use, efficiency, fault tolerance, and data provenance. 

Some of these aspects can be achieved by using software scripts – a high-level form of 

programming using scripting languages; but only workflow systems offer solutions for all 

aspects. These systems represent an even higher level of abstraction in programming than 

scripts and typically include advanced features like graphical composition of workflows and 

distributed computing.  

Nevertheless, workflow systems are not yet widely used within the scientific community 

(see [5]). One reason is that the state-of-the-art workflow tools still require a deep technical 

knowledge of the system and often programming skills. Another drawback is that workflow 

components (subtasks and data) can be combined in so many different ways and are so 

numerous that creating an effective and efficient workflow is a major challenge. The goal of 

this PhD project was to research if and how the addition of semantic data can help to 

overcome these issues. 

The next section provides an overview of automation in general and its connection to 

workflow systems. 
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1.1 Processes and Automation 

Scientific experiments, production processing pipelines1, or business workflows in 

general are all processes in the sense that they are composed of “a series of actions or steps 

taken in order to achieve a particular end”, as defined by the Oxford Dictionary of English 

[6]. Automation is therein described as “the use or introduction of automatic equipment in a 

manufacturing or other process or facility”. The definitions show that the two concepts are 

closely linked. In order to automate something, it first must be described as a sequence of 

activities. They also show the focus on manufacturing due to the historical origin of the idea 

of automation. 

In computer science, but also in other disciplines, an experiment is usually a composition 

of software methods that process certain input data and produce a result that gives insight 

into the methods or the data. A production processing pipeline is very similar, with the main 

difference that a major emphasis is placed on efficiency (e.g. speed), robustness, and possibly 

flexibility.  

Scientific workflow systems are the instrument of choice to formally describe experiments 

(or pipelines) and execute them. They represent a more dataflow-oriented specialisation of 

workflow systems. 

 

There are parallels to industrial production processes which can be used to illustrate the 

developments in software process automation (see Figure 1). The first revolution can be 

compared to the emergence of computer programs which were executed independently. Data 

was managed mostly manually. The assembly lines of the second revolution are similar to 

scripting approaches, where fixed concatenations of programs can be called repeatedly. The 

third revolution has common features to the use of workflow systems in computing. Both 

offer more flexibility, robustness, and quality.  

                                                 
1 We will use the term pipeline or processing pipeline for well-defined software processes that take a specific 

type of data as input and produce a specific output. Although a pipeline is a workflow, we use the term pipeline 

where we want to distinguish the concept of the software process from an actual workflow representation 

created with a workflow system. 



3 

 

The fourth revolution is happening in today’s industry and is the most interesting one for 

this work. It changes the industrial landscape by incorporating cloud computing, the Internet 

of Things, and general-purpose robotics. This can only be achieved if the overall system has 

information on and control over each individual component (machinery and product parts). 

As a result, assembly lines can be self-organising and very flexible. Now there is automation 

in the setup of the production process itself (which is an automation of the production). 

Similarly, to achieve automation in software workflow creation, each individual part 

(software tools and data items) must be enriched by (semantic) data in order to enable a 

composition system to make decisions and create valid workflows. 

The next section introduces the domain of document image analysis and describes the 

significance to this PhD research.  

 

 

Figure 1 - The four industrial revolutions (Christoph Roser at AllAboutLean.com) 

 

1.2 Relation to Document Image Analysis 

Document image analysis (DIA) aims at automatic interpretation of document images (e.g. 

scans of printed books) [7]. Since all data is typically available in digital form, the field is 

most suited for modelling processes as scientific workflows. Nevertheless, based on what is 

reported in the literature, researchers in document image analysis only recently started to 

show interest in using workflows. In contrast, within the domains of astrophysics and 
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bioinformatics process modelling has been used for many years, possibly because those are 

traditionally data-rich and processing intensive fields.  

The increased interest in workflows within DIA is likely driven by the rapidly growing 

volume and type of scanned documents such as books, archival prints, and newspapers, but 

also by the increase in available processing methods and data formats (due to research and 

development).  

Typical tasks include the creation of experimental digitisation pipelines to recognise the 

layout of document images (i.e. scanned pages), to automatically transcribe the text content 

(Optical Character Recognition - OCR), to post-process (e.g. text post-correction), to perform 

high-level content understanding, and to evaluate the performance of methods. The term 

digitisation is commonly used to relate to the image acquisition (scanning) and subsequent 

processing steps. 

To achieve those tasks, there is a plethora of tools and methods featuring: 

• Different target platforms (operating system or other prerequisites for installed 

software).  

• Different input/output formats (various image file formats, page content 

representation formats, text encoding variations etc.) 

• Specific strengths/weaknesses and constraints (e.g. tools that specifically target 

historical data). 

• Different levels of required settings (no settings, default settings, or context-

specific settings).  

Even for a basic digitisation pipeline, the options to consider are numerous: variations of 

pre-processing steps (enhancement, binarisation etc.), page analysis and recognition software 

and its parameters, input image formats, output formats with different features, and possibly 

post-processing methods. For experiments or feasibility studies, performance evaluation 

methods must be considered as well.  

There is a growth in digitised printed material and there are numerous unsolved DIA 

challenges. Marc Wilhelm Kuster confirms this in his keynote for the 2011 International 

Conference on Document Analysis and Recognition [8] and adds that most of humanity’s 

printed material is yet to be digitised. Le Bourgeois et al. [9] provide an extensive overview 
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of challenges in digitisation and digital libraries. They stress the need for collaboration 

between libraries and the research community. 

In real-world situations, users in libraries, archives, and other institutions involved in 

digitisation of documents often use an arbitrary combination of tools to complete their tasks 

(commonly without knowing the limitations). One possible reason for this is the 

aforementioned ‘status quo’ of too many and too different tools and data formats. There is 

not enough easy-to-access information to make a sophisticated decision (it is easier to just 

use what is known, even if the quality of the results might not be the best). Even experts tend 

to use standard methods because setting up more complex experiments is too labour-

intensive. This also makes it difficult to establish a newly developed method for a certain 

problem in the community, even if it performs better than a standard approach. Furthermore, 

there is no one-fits-all method. Commercial text recognition systems, for instance, perform 

well on different types of documents, but they are optimised for robustness and wide 

applicability, not to maximise the recognition quality for niche material (which might be the 

target data). 

More details on document image analysis are provided in Chapter 3. The next section 

formalises the motivation for the PhD project. 

 

1.3 Motivation 

It lies in the nature of scientific domains to accumulate new approaches and solutions to 

problems. The emergence of the Internet led to an acceleration of available software tools, 

data collections and formats, and published processes. It is this vastness of possible 

component combinations that poses a major problem for researchers and other users. For 

each problem, there are usually several alternative methods that can be applied, each 

restricted to different inputs, producing outputs in different formats, and requiring specific 

settings or training. It is very difficult, even for experts, to keep track of developments and 

build up or maintain the required knowledge to select the most suitable tools for a task at 

hand. 
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Scientific workflow systems are a step in the right direction, but, to date, creating 

workflows is a challenging task requiring various skills and deep knowledge of the used 

system. For non-experts, it is virtually impossible to understand or design workflows other 

than trivial ones. Existing workflow systems generally require software development 

experience to be able to use them in a productive way. There is little automation or assistance. 

An easy-to-use workflow composition system can be the answer. Given a high level of 

automation, workflow creation can become more accepted and used. In combination with 

searchable workflow repositories, scientific methods (software tools or proven workflows) 

would be more visible and, as a result, users could discover them using the properties they 

require for a specific use case (source data, target data etc.). 

Most of the information on existing software, data, and formats only exists in written form, 

intended for human consumption. One main aspect of this PhD project was to research the 

use of machine-processable semantic information to enhance scientific workflow systems. 

This and the general objectives are described in the next section. 

 

1.4 Objectives and Methodology 

The aims of the PhD research were to investigate automation approaches for scientific 

workflows and develop strategies and solutions to simplify the creation and use of workflows 

for experiments and processing pipelines in a representative target domain (document image 

analysis and recognition). Or in other words, to prove or disprove the following hypothesis: 

By creating a formal model for document image analysis, by semantically annotating 

components and data, and by using this information algorithmically within a workflow 

system it is possible to automate common tasks (within such system) and assist users in 

workflow creation and management. 

It should be stressed that, while workflows themselves represent the automation of a 

process, this PhD project focusses on the automation of the creation of workflows. 

 

The objectives are as follows: 
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1. To device a modelling approach for representing semantic knowledge suitable for 

use in workflow systems. 

2. To develop a semantic model for the domain of document image analysis, covering 

aspects relevant for workflow design and management. 

3. To develop algorithms that use semantic information to support the user in 

workflow-related tasks (i.e. discover methods for more automation/support, for 

instance in workflow design). 

4. To create a framework that enables to create, manage and use semantic 

information in combination with the above algorithms and general workflow-

related functionality. 

5. To test the model, the algorithms, and the framework on real-world data from the 

domain of document image analysis.   

 

The research was carried out by: 

• Determining a suitable approach to model semantic information that is expressive 

enough and can be applied to workflow components. 

• Creating a semantic model for document image analysis using an ontology 

engineering approach. 

• Developing a prototype of a workflow composition and management system that 

incorporates the semantic model as well as features for assisted and automated 

workflow composition (using semantic data). 

• Proving the validity of the approach by applying it to real-world use cases and 

evaluating impact, advantages and disadvantages in detail. 

 

 

By following the above methodology, a number of contributions to knowledge were 

achieved, the main of which are outlined next section. 
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1.5 Main Contributions 

The key contributions of this work can be summarised as follows: 

• A new approach for incorporating semantic information into scientific workflow 

systems: a label-based layer of data adds knowledge on the meaning of workflow 

components (subtasks/activities and data). 

• A semantic model for workflow components in the domain of document image 

analysis and recognition: an ontology for the target domain created using a 

standard methodology for ontology engineering. 

• A workflow system prototype: a fully-functional workflow composition tool and 

a workflow repository including the proposed semantic layer. 

• Algorithms for (semi-)automation of workflow composition and discovery: new 

algorithms using a matching approach to make use of the semantic information 

and add assistive features to the workflow system. 

• Proposed worked-out solutions to real-world use cases using the semantics-

enriched workflow system, showing the impact of the assistive features. 

 

The main outcome of the PhD research can be seen as the foundations of a complete future 

workflow system that, among others, enables non-domain experts to create valid workflows 

and researchers to conduct more complex experiments. 

 

The next section lists publications by the author with direct or tangential relation to this 

PhD research. 

 

1.6 Publications 

Below are peer-reviewed publications by the author related to this work. 

 

Directly Related 

(1) “Ontology and Framework for Semantic Labelling of Document Data and Software 

Methods”, C. Clausner, A. Antonacopoulos, Proceedings of 13th IAPR International 
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Workshop on Document Analysis Systems (DAS2018), Vienna, Austria, April 24-27, 2018, 

pp. 73-78. 

Peer-reviewed publication for selected topics from the PhD project. The paper was 

selected for oral presentation at the DAS2018 workshop in Vienna, Austria. 

 

(2) “Creating a Complete Workflow for Digitising Historical Census Documents: 

Considerations and Evaluation”, C. Clausner, J. Hayes, A. Antonacopoulos, S. Pletschacher, 

Proceedings of the 2017 Workshop on Historical Document Imaging and Processing 

(HIP2017), Kyoto, Japan, November 2017, pp. 83-88. 

Digitisation workflow used as case study in Chapter 7. 

 

(3) “Unearthing the Recent Past: Digitising and Understanding Statistical Information from 

Census Tables”, C. Clausner, J. Hayes, A. Antonacopoulos, S. Pletschacher, Proceedings of 

Second International Conference on Digital Access to Textual Cultural Heritage (DATeCH 

2017), Goettingen, Germany, 01 - 02 June 2017. 

More information regarding Chapter 7. 

 

Informed from 

Competition papers for the International Conference on Document Analysis and Recognition 

(ICDAR) (2011 - 2017)  

• “Historical Document Layout Analysis Competition”, A. Antonacopoulos, C. 

Clausner, S. Pletschacher, C. Papadopoulos, ICDAR2011, Beijing, China, September 

2011. 

• “Competition on Historical Newspaper Layout Analysis”, A. Antonacopoulos, C. 

Clausner, S. Pletschacher, C. Papadopoulos, ICDAR2013, Washington DC, USA, 

August 2013. 

• “Competition on Historical Book Recognition”, A. Antonacopoulos, C. Clausner, C. 

Papadopoulos, S. Pletschacher, ICDAR2013, Washington DC, USA, August 2013. 
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• “Competition on Recognition of Documents with Complex Layouts”, A. 

Antonacopoulos, C. Clausner, C. Papadopoulos, S. Pletschacher, ICDAR2015, 

Nancy, France, August 2015.  

• “Competition on Recognition of Documents with Complex Layouts”, C. Clausner, 

A. Antonacopoulos, S. Pletschacher, ICDAR2017, Kyoto, Japan, November 2017. 

A series of competitions in layout analysis and end-to-end page analysis and content 

recognition, showing the author’s experience in creating workflows using the concepts of the 

PhD research. 

 

“Aletheia - An Advanced Document Layout and Text Ground-Truthing System for 

Production Environments”, C. Clausner, S. Pletschacher, A. Antonacopoulos, Proceedings 

of the 11th International Conference on Document Analysis and Recognition (ICDAR2011), 

Beijing, China, September 2011, pp. 48-52.   

Aletheia is now a complete document analysis system with commercial success, showing 

the author’s experience in software development in the target domain. 

 

“Scenario Driven In-Depth Performance Evaluation of Document Layout Analysis 

Methods”, C. Clausner, S. Pletschacher, A. Antonacopoulos, Proceedings of the 11th 

International Conference on Document Analysis and Recognition (ICDAR2011), Beijing, 

China, September 2011, pp. 1404-1408.   

A flexible evaluation approach for page layout analysis methods. This work demonstrates 

landscape of different use cases and available methods, leading to a scenario-driven approach 

using evaluation profiles. 

 

“A robust hybrid approach for text line segmentation in historical documents“, C. Clausner, 

A. Antonacopoulos, S. Pletschacher, Proceedings of the 21st International Conference on 

Pattern Recognition (ICPR2012), Tsukuba, Japan, November 11-15, 2012, IEEE-CS Press, 

pp. 335-338. 

A segmentation method developed within a major EU-funded project, showing the 

author’s experience in developing and applying components for digitisation pipelines. 
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“The IMPACT Dataset of Historical Document Images”, C. Papadopoulos, S. Pletschacher, 

C. Clausner, A. Antonacopoulos, Proceedings of the 2013 Workshop on Historical Document 

Imaging and Processing (HIP2013), Washington DC, USA, August 2013, pp. 123-130.  

Publication about large dataset for historical printed material, showing the author’s 

experience in data collection and metadata provision. 

 

“The ENP Image and Ground Truth Dataset of Historical Newspapers”, C. Clausner, C. 

Papadopoulos, S. Pletschacher, A. Antonacopoulos, Proceedings of the 13th International 

Conference on Document Analysis and Recognition (ICDAR2015), Nancy, France, August 

2015, pp. 931-935. 

Publication about large dataset for historical printed material, showing the author’s 

experience in data collection and metadata provision. 

 

“Europeana Newspapers OCR Workflow Evaluation”, S. Pletschacher, C. Clausner, A. 

Antonacopoulos, Proceedings of the 2015 Workshop on Historical Document Imaging and 

Processing (HIP2015), Nancy, France, August 2015, pp. 39-46. 

Evaluation of complete, large-scale OCR workflow, representing typical use cases in the 

target domain. 

 

“Quality Prediction System for Large-Scale Digitisation Workflows”, C. Clausner, S. 

Pletschacher, A. Antonacopoulos, Proceedings of the 12th IAPR International Workshop on 

Document Analysis Systems (DAS2016), Santorini, Greece, April 11-14, 2016. 

Prediction of OCR workflow performance (use case in DIA). 

 

1.7 Thesis Overview 

The remainder of this Thesis is organised as follows: 

• Chapter 2 (Automation and Scientific Workflows) introduces workflows and 

workflow systems, including a review of scientific workflow systems. This 
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chapter also describes existing approaches for workflow automation, some of 

which are based on semantic models. 

• Chapter 3 (A Semantic Model for Document Image Analysis and Recognition) 

concentrates on semantic models and explains the development of a new ontology 

for document image analysis workflows. In addition, the role of the Semantic Web 

in the context of scientific workflows is described. 

• In Chapter 4 (Designing a Semantics-Enriched Workflow System) a design for a 

new prototype workflow system is presented, which incorporates semantic 

features and automation approaches as a proof-of-concept for the methods and 

concepts that have been developed during this PhD research. 

• Chapter 5 (System Implementation) provides details on the implementation of the 

system design from Chapter 4. 

• Chapter 6 (Experiments, Use Cases, and Evaluation) makes use of the semantic 

model and the prototype to explore a number of use cases in the domain of 

document image analysis. The expressiveness of the proposed model is evaluated 

and it is explored how workflows can be composed with the system. 

• Chapter 7 (Case Study: Digitisation of Historical Census Data) describes how the 

workflow system can be applied to a real digitisation project. 

• Chapter 8 (Discussion and Conclusions) concludes the Thesis with a detailed 

discussion and suggestions for future work, including the use of the proposed 

concepts in other systems and workflow sharing platforms. 

• The appendices contain the full ontology for document image analysis and 

recognition from Chapter 3, the list of classes of the developed prototype workflow 

system from Chapter 5, and a list of software tools employed in the use cases of 

Chapter 6. 

 

1.8 Summary 

Scientific workflow systems were introduced as a high-level modelling and execution 

approach for experiments and other processes. It was pointed out that current systems have 
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shortcomings in terms of automation and assistance, effectively hindering inexperienced 

users in creating valid workflows. This problem is intensified by the target domain’s (and 

other domains’) status quo of a vast and growing landscape of software tools, data 

collections, and data formats. This and the increasing need for solutions in the more specific 

domain of document image analysis were stated as the motivation for this PhD project.  

The main objective was to research the use of a semantic layer in workflow systems, to 

achieve automation in workflow composition and management. The chapter concluded by 

listing the key contributions (approach for semantic layer, ontology for document image 

analysis, prototype workflow system, and case study) and related publications by the author. 

The next chapter reviews workflows and workflow systems in general and analyses the 

use of semantics. 
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2 Automation and Scientific Workflows 

This chapter provides theoretical background on workflows, Grid Computing, and 

automation approaches. Prominent state-of-the-art workflow systems are detailed and 

compared. 

 

2.1 Workflows and Distributed Computing 

As defined by the Workflow Management Coalition [10], a workflow is “the automation 

of a business process, in whole or part, during which documents, information or tasks are 

passed from one participant (a resource; human or machine) to another for action, according 

to a set of procedural rules". Fox and Gannon [11] refined this, defining a workflow as "the 

automation of the processes, which involves the orchestration of a set of Grid services, agents 

and actors that must be combined together to solve a problem or to define a new service". 

The term Grid (Grid Computing, The Grid) originated from the idea of making computing 

as widespread, reliable, and easy-to-use as an electrical power grid [1]. It is a synonym for 

distributed computing environments. Today, Cloud Computing is often used as a “catch all” 

term, although there are distinctions, as Foster et al. [2] point out. Figure 2 provides an 

overview on their interpretation of distributed systems. 

 

Figure 2 - Grid and cloud computing (see [2]) 
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Originating from the business sector, workflows are increasingly adopted by the scientific 

community ([12, 13]). In the beginning this was mostly driven by research in physics and 

bioinformatics, where large amounts of data needed to be processed. The so-called scientific 

workflows have slightly different requirements in comparison to their counterparts from 

business process automation. Fahringer and Qin [1] describe scientific workflows as the 

“main programming model for the development of scientific applications on distributed 

systems”. They also state the three major properties as: 

(1) Execution on distributed systems where resources can vary. 

(2) Composition by scientists who are not necessarily programming experts. 

(3) Complex control and data flow requirements. 

 

2.2 Workflow Systems  

Workflow systems are software tools to create, modify, manage, and execute workflows. 

Yu and Buyya [14] propose a taxonomy for the classification of workflow systems, 

characterising them based on workflow design, information retrieval, workflow scheduling, 

fault tolerance, and data movement. 

Advantages and disadvantages of using workflows (scientific workflows in particular) can 

be grouped into three categories, based on the paradigm they originate from. 

 

(1) Characteristics of distributed systems: 

Distributed systems are usually heterogeneous with regard to computer systems 

(processing architecture, number / size of resources, operating system etc.) and networking 

(protocols, bandwidth etc.). This heterogeneity and the fact that often resources can join and 

leave the system at any time, lead to the requirement of adaptability, usually provided by a 

middleware layer. One major advantage, especially for large research projects, is scalability. 

The adaptable character of distributed systems allows the gradual growth, starting from only 

a few resources up to potentially millions of web services, data sources, processing nodes 

etc. [1]. 
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Furthermore, distributing processing and data has the advantages of promoting 

collaboration between organisations and obtaining specific processing capabilities by 

spanning multiple administrative domains [14]. 

 

(2) Scripted execution: 

Workflows represent a special form of scripted execution of processes. Scripting has a 

long tradition in research and was used before scientific workflow systems emerged. 

Advantages are reusability of scripts or part of scripts [15], repeatability of experiments, and 

automation in general [16].  

 

(3) Workflow system and graphical user interface: 

Workflow systems provide a high-level view of data and processing resources as well as 

of the control and data flow, making it easier to understand and modify workflows. Further 

common features are extended logging and monitoring, provenance management, failure 

tolerance, and sharing of workflows and/or result data. [5] 

The service-oriented design (loosely coupled resources) of workflows provides a high 

degree of flexibility. Barker and Hemert [16] describe workflows as “the glue for distributed 

services, which are owned and maintained by multiple organisations”. 

Graphical design tools allow the composition of workflows without the need to understand 

the underlying workflow scripting and modelling language [17]. 

Cohen-Boulakia and Leser [5] mention several negative issues with the current state-of-

the-art. Foremost, they write that today’s systems are too complex for most domain scientists 

and offer little advantage over scripting. Further alleged problems are inadequate 

performance, difficult debugging, low reliability, incompatibilities (between data formats 

and invocation methods), and lack of standards. 

 

The structure of workflow systems and distributed systems in general can be compared 

with the architecture of a conventional single computer [1]. The lowest layer (for a computer 

this is the hardware) is composed of the distributed resources such as servers, computer 

clusters, storage and network devices, and others. Fahringer and Qin call this the “Fabric”. 
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The next layer up is the middleware, with distributed operating system (equivalent to a 

conventional operating system such as Linux) and workflow systems as the programming 

environment (equivalent to an integrated development environment such as Microsoft Visual 

Studio). Workflows can be interpreted as an application or program and therefore represent 

the uppermost layer. 

Yu and Buyya [14]  propose a more complete model, building upon the model proposed 

by the Workflow Management Coalition [10]. They distinguish between processes for build 

time (workflow design and definition) and run time (workflow execution / control and 

interaction with Grid resources). At build time, Grid users create workflows using a Grid 

workflow application modelling and definition tool, producing a workflow specification. At 

run time, a grid workflow enactment service handles workflow scheduling, data movement, 

and fault management. It thereby interacts with the Grid middleware, which in turn handles 

Grid resources. Modelling tools and enactment services further interact with Grid 

information services holding resource and application information. 

 

Several scientific workflow systems have been developed, often targeting very specific 

needs and research areas. Only a few however, have evolved to more complete and generic 

solutions. The most prominent of those systems are Taverna [17, 18], Kepler [19], Triana 

[20], and Pegasus [21, 22]. The following subsections provide details on the four frameworks, 

as well as another system called ASKALON [1], because it is of relevance for this work (used 

as basis for prototype). Table 1 provides a brief comparison. Curcin and Ghanem [23] provide 

an in-depth review of Taverna, Kepler, Triana, and others. Talia [12] also reviewed those 

systems (including Pegasus) and, in addition, mentions several open issues concerning 

workflow systems in general, including: 

• Adaptive workflow execution models (to deal with elastic infrastructures). 

• High-level tools for workflow composition (currently, the basic building blocks 

of workflows are simple and regular). 

• Interoperability and openness (often proprietary data and ad hoc formats are used; 

standards are needed). 
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• Big Data management and knowledge discovery workflows (higher-level and 

scalable systems are required). 

• Internet-wide distributed workflow execution (workflow systems are already 

distributed, but the scale is still limited). 

• Cloud-based service-oriented workflows (more research needed for using this 

technology for heterogenous platforms). 

• Exascale computing systems (research needed for massively parallel processes) 

• Fault-tolerance (only few systems support this properly). 

• Provenance and annotation (lack of management, visualisation, and evaluation of 

provenance data). 

 

The Taverna, Kepler, Triana, Pegasus, and ASKALON systems are introduced next. All 

are candidates for adding the semantic features proposed in this thesis.  

 

Table 1 - Comparison of three workflow systems 

 Taverna Kepler Triana Pegasus ASKALON 

Availability Open source Open source Open source Open source 
Closed source, binaries 

available on request 

Activities 
Web services, 

Java snippets 

Local 

programs, web 

services 

Service tasks, 

control tasks 

Execution task, 

data 

management 

Web services, control 

flow 

Language 

Dedicated, 

XML-based 

format 

Dedicated 

XML format 

MoML 

Dedicated XML 

format for 

components 

Dedicated XML-

based format 

DAX 

Dedicated XML 

format AGWL 

Nesting (sub-

workflows) 
Yes Yes 

Yes, via task 

groups 
Yes (sub-DAG) Yes 

Implementation Java-based Java-based Java-based Java and Python Java-based 

Incarnations 

Desktop 

version, server 

version 

Desktop 

version, 

various add-on 

modules 

Desktop 

version, Triana 

service 

Pegasus 

command line 

tool 

Desktop version, 

runtime middleware 

services 

Active 

development 
Yes Yes 

No (last update 

08/2014) 
Yes Unknown 
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2.2.1 Taverna 

Taverna [17, 24-26] was originally developed by Oinn et al. at the University of 

Manchester for the purpose of conducting experiments in bioinformatics. It has also found 

widespread recognition in other fields, including document analysis (see for instance [27, 

28]). It is solely based on web services, but local execution is possible through command line 

tool wrappers (that create local web services). Workflows are represented through a 

proprietary graph structure which can be stored using a dedicated XML-based format.  

There is a very limited pool of standard types of processing nodes, but more complex 

workflows can be achieved by incorporating Java software snippets into the workflow 

(allowing for instance if-else conditions). Iteration (loops) are handled implicitly: if the input 

data of a processing node is a list of data items, they will be processed one after the other. 

The Eclipse2-based desktop version provides a graphical user interface with drag-and-drop 

features and online workflow repository integration (Figure 3). There is also a server-based 

version which can be accessed through a graphical web interface and web services. 

 

 

Figure 3 - Taverna Workbench (http://dev.mygrid.org.uk/wiki) 

 

 

                                                 
2 www.eclipse.org 
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Taverna provides a functional, data-centric programming approach, where many functions 

are handled implicitly (hidden from the user). This makes it easier to concentrate on “what 

to do” instead of describing “how to do it”, but it also leads to limitations (e.g. less control 

in processing loops) (see [29]). 

In Taverna, the user is responsible for choices of resources and/or services. Workflows 

are therefore not flexible, with the only exception being the possibility of defining a set of 

optional services for one task (although the method of late binding is not clear) [1]. 

The graphical representation provides a good overview of a workflow but can be 

cumbersome to navigate for larger experiments (as can be seen in Figure 4, for example). 

Execution progress of a running workflow is conveniently reflected in the workflow graph 

through colour changes. Integrated sharing functions make reuse of workflows easier, 

although only keyword-based search is available. Currently, there are no constraints on how 

to connect workflow elements, which creates a major risk for workflow composition errors. 

Creating ad hoc workflows for quick experiments is not straightforward since all processors 

(processing nodes) need to be web services. This complicates the usage of local software 

tools. Oinn et al. [17] mention options for open source tool wrappers that create web services, 

but this solution still adds significant overhead to experiments and requires additional 

knowledge of software programming.  

The workflow representation format has undergone several major changes over time, from 

SCUFL (Simple, Conceptual, Unified Flow Language) to “t2flow” and eventually to 

SCUFL2 for the latest version of Taverna. 
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Figure 4 - Large Taverna workflow (www.myexperiment.org/workflows/1198.html) 

 

2.2.2 Kepler 

The Kepler system was created by Ludäscher et al. [19] as an extension of the Ptolemy II 

software [30], an actor-oriented design tool. Workflow components are therein represented 

by actors which represent operations or data sources [23]. Kepler extends Ptolemy II by 

adding a web service actor, allowing a wider range of scientific workflows. 

An independent component of the Kepler system called director forms the execution 

model, which makes decisions when to schedule the execution of each actor. Kepler’s design 

is influenced by its original focus on data analysis and modelling (e.g. physics ecosystems or 

bioinformatics web services). Dataflow is based on tokens which contain the data and are 

passed from actor to actor. 

Figure 5 shows the Kepler desktop tool featuring a well-designed drag-and-drop graphical 

workflow composition interface [11].  
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Figure 5 - The Kepler workflow system (https://code.kepler-project.org) 

 

Workflows in Kepler are more static in the sense that the execution order of processes is 

predetermined and cannot be based on the outcome of a processing node [23]. Ludäscher et 

al. mention several research topics that need to be addressed further in Kepler [19]: 

• Higher-order constructs for better control flow and less complex workflows 

• Third-party data transfers to optimise dataflow between web services 

• Detached execution (background execution for time-consuming workflows) 

• Fault tolerance 

• Data provenance 

• Semantic links (in order to determine which actors and datasets fit together 

semantically) 

The latter is described as a “hard problem” and ontologies are mentioned as possible 

solution for semantic type systems (see also [31]). 
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Abstract workflows (workflows that have placeholder components) are not supported in 

Kepler (i.e. only concrete workflows are supported). Also, domain scientists are required to 

have knowledge of low-level implementation technologies (e.g. for data movement) [1].  

 

2.2.3 Triana 

Triana [20, 32], created by Majithia et al., is a complete workflow environment including: 

service discovery methods, composition methods, transparent execution methods, and 

publishing of services. It originates from an astrophysics project for gravitational wave 

detection. It entails a graphical user interface (Problem Solving Environment – PSE, see 

Figure 6) with drag-and-drop functionality for units (activities) and cables (control flow and 

dataflow). Units can be web services, group tasks, or control tasks.  

Triana has its own dedicated XML-based format for storing components (Taskgraph), but 

it also provides a reader component for the widely used business process description format 

BPEL4WS [33]. 

 

 

Figure 6 - The Triana system (http://www.trianacode.org/) 

 

Processing nodes in Triana only allow one output port (not multiple ports with different 

data types, as possible in other systems) [23]. Component composition is made type-safe 

through attached data type information. One of Triana’s strongest points is the mature user 

interface including GUI builders for interactive workflows [34].  
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Triana does not provide failure recovery as such (e.g. no retrying of a service) but it 

provides user feedback of failed workflow components [34]. The Triana project does not 

seem to be active any more, the last update to the Triana source code on GitHub [35] being 

in 2014. 

By providing a high-level programming interface (GAT/GAP – Grid Application Toolkit 

and adapter API), Triana hides low-level implementation technologies from the user. 

However, this is not the case for hardware resources. Users have to make hardware-related 

decisions at design time [1]. 

 

2.2.4 Pegasus 

The Pegasus Workflow Management System [21, 22] (by the University of South 

California) is based on abstract workflows modelled by directed acyclic graphs. Nodes 

therein represent tasks and edges represent data and control flow. Abstract graphs are made 

executable (concrete) step by step using a mapping engine to allocate local or remote 

execution and data resources. This can extend the original graph by data management nodes. 

Workflows are stored in a dedicated XML-based format called DAX (Directed Acyclic 

graphs in XML). 

The Pegasus system has been used in several domains such as bioinformatics, 

oceanography, geology, and astronomy (see [12]). Recently, it was used for analysing 

gravitational waves from the LIGO (Laser Interferometer Gravitational-Wave Observatory) 

project. 

Pegasus itself does not provide a graphical user interface. However, there are third-party 

systems that build upon Pegasus, providing graphical workflow composition (e.g. WINGS 

[36], see also subsection 2.5.1). 

 

2.2.5 ASKALON 

The ASKALON system is comprised of a composition tool (Figure 7) and middleware 

execution and scheduling services. It was originally developed by Fahringer and Qin [1, 37, 

38] from the University of Innsbruck. Workflows consist of activities (atomic / web services, 
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loop, if-else, sequence, graph) and data items. The composition is based on UML activity 

diagrams and partly based on previous work by Pllana, Qin, and Fahringer [39]. Dataflow is 

achieved through connecting input and output ports of activities. 

Workflows are stored and shared using the system-specific AWDL format (Abstract 

Workflow Description Language). 

ASKALON is closed source (source code not public), but executables are available on 

request. Workflows have a detailed and powerful control flow via explicit conditional (e.g. 

“if”) and loop activities. As a result, workflow composition closely resembles programming 

and is less intuitive than more abstract approaches (such as used in Taverna). 

 

All of the presented systems use their own specific workflow language. The next section 

provides more details on workflow representation approaches in general. 

 

Figure 7 - ASKALON user interface (http://www.askalon.org/) 
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2.3 Workflow Languages and Modelling Paradigms 

Almost every workflow system uses a proprietary workflow representation or language. 

In general, these languages are based on one of the following paradigms: Directed Acyclic 

Graphs (DAG) [13], Petri nets [40-42], or Event-Driven Process Chains (EPC) [43]. 

Nevertheless, some effort has been directed towards standardisation using UML activity 

diagrams [1] or the Business Process Execution Language (BPEL) [33] which is the quasi 

standard for defining business processes [44]. Juhnke et al. [45] propose a variation called 

SimpleBPEL with the goal of making BPEL more accessible to non-experts.  

Other proposals include the development of new workflow languages that present a 

superset of all existing workflow representation approaches [23]. List and Korherr [46] 

propose a generic meta-model to compare and evaluate seven business process modelling 

languages, including EPC, UML activity diagrams, and Petri nets. Ivanova and Stromback 

[47] propose a general model (based on Open Provenance Model – OPM [48]) which 

combines features of popular workflow systems to enable independent querying of 

workflows. In a more recent work, Plankesteiner et al. [49] present a fine-grained 

interoperability solution for four workflow systems (ASKALON, MOTEUR, WS-PGRADE 

and Triana). They split the problem into abstract level (solved with an Interoperable 

Workflow Immediate Representation – IWIR – a bridging language) and concrete level 

(solved via bundles of IWIR representation and concrete task representations for workflow 

instantiation and execution). 

For scientific workflow systems, there is no prevailing standard for workflow 

representation. Interoperability efforts have been made, but all require substantial conversion 

work and all have limitations when compared to the native workflow languages. While BPEL 

is successful in business workflows, it is not suitable as intermediate scientific workflow 

language [49]. 

Despite the many different modelling approaches, there are some common features: 

• Atomic tasks (activities, actors, processing nodes, units, services): An algorithm 

or method executed by a computational unit. Atomic tasks can be seen as a black 

box with given inputs and expected outputs. 
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• Compound tasks (such as sub-workflows or sequences): Nesting for better 

reusability and understandability. 

• Data: Input for and output from tasks or the whole workflow. Data objects have a 

data type and can be compounded in some cases (i.e. data collections) 

• Data flow (data connections, links, cables, tokens): Specifies the way data flows 

from task to task. 

• Control flow (conditions, loops, directors, control activities): Specifies the 

structure of a workflow, together with the data flow. Control flow steers the 

processing at execution time, reacting to the data at hand. 

 

Another important point for interoperability is the sharing of created workflows. This is 

discussed next. 

 

2.4 Workflow Repositories 

To enable efficient sharing and reuse, workflow systems need to be complemented by 

workflow repositories. Out-of-the-box, most systems only allow to view and possibly reuse 

the workflows that have been previously created locally. A repository, on the other hand, is 

an independent database of existing workflows, allowing for searching, retrieval, and 

sharing. Repositories can be stand-alone or linked into the user interface of workflow 

systems. The latter allows direct import of existing workflows or components into local 

projects. Searches can typically be carried out via keywords or metadata (e.g. author). 

Several workflow repositories have been proposed, some of them being used widely. One 

of the most successful is myExperiment [50, 51], a web-based solution, also featuring social 

aspects to comment on and discuss workflows as well as create user groups and experiments. 

The aforementioned system Taverna integrates with the myExperiment platform and allows 

to directly use publicly available workflows. At the time of writing, there are 2,137 Taverna 

workflows published on myExperiment (the oldest from 2007). Considering the long time 

period and the variety of research domains, this is not a very large number. Also, only 13 

workflows were published in 2017 (see www.myexperiment.org). 
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Cohen-Boulakia and Leser [5] reviewed further repositories. They state that “major 

features and functionalities must be added to be truly useful to end-users”. Currently, 

searching for workflows can only be done using keywords and not the actual nature 

(components or input and output data) of the workflows. 

Garijo et al. [15] mention myExperiment and CrowdLabs [52] as emerging repositories 

that made sharing easier. At the same time, they caution that reuse is still a major challenge 

because the workflows or fragments need to be fully understood to be used correctly. The 

authors say that this hurdle causes developers (researchers) to start workflows from scratch. 

 

Web Service Discovery (WSD) is related to workflow repositories as both offer interfaces 

for discovering processing entities (with input and output data). In WSD, service providers 

can register and thereby publish a service in a Web Service Registry with the UDDI 

(Universal Description Discovery and Integration) standard [53], for example. The UDDI 

format is platform-independent and is designed to work in cooperation with other web service 

standards such as SOAP (Simple Object Access Protocol) and WSDL (Web Services 

Description Language). 

UDDI contains three main components: 

1. “White pages” for information about the provider (the business). 

2. “Yellow pages” for a classification of the service using standard taxonomies. 

3. “Green pages” for information about how to access the web service. 

While this represents standardised semantic information, it is limited to a basic description 

of a web service as a whole, not its detailed functioning or components. 

 

The next section provides an overview of existing uses of semantics in workflows and 

automation in workflow systems. 

 

2.5 Automation and Semantic Features 

Even though current workflow systems and repositories are certainly powerful tools, they 

lack a certain degree of automation and assistance (see [54]). When designing workflows 
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with Taverna for instance, the user needs to know exactly which processing nodes are 

required to reach a specific goal. Neither does Taverna give feedback on the data type 

compatibility of nodes nor does it suggest or add data conversion nodes where necessary. 

There seems to be a consensus that the usage of semantics is most promising to help to 

overcome these shortcomings. 

The term ontology is often used in context of semantics and modelling. The Oxford 

Dictionary [6] defines an ontology as “A set of concepts and categories in a subject area or 

domain that shows their properties and the relations between them”. More information can 

be found in Chapter 3. 

So far, little research has been conducted to model and exploit semantic data for scientific 

workflows. Often, concepts and standards for the Semantic Web are adopted. Gil et al. [55] 

propose a method based on workflow templates that allow for semantic constraints and other 

concepts (more in 2.5.1). They represent workflows using W3C’s Web Ontology Language 

(OWL) [4]. This concept has been refined by Hauder et al. [56], aiming at validating data 

mining workflows and helping users in the design process.  

Gubala et al. [57] also make use of the OWL standard, integrating it with a Petri net based 

workflow model (a Petri net is a mathematical modelling solution for distributed systems). 

They try to achieve a tool that “understands the domain-specific information for an 

application and that can deal with semantics of the application’s elements” (discussed in 

2.5.2).  

Garijo et al. [15] analysed 177 workflows to identify common semantic denominators to 

provide abstract, high-level views in their system to improve understandability of workflows. 

As a result, they report data-oriented and workflow-oriented motifs. Data-oriented motifs 

include: data retrieval, data preparation, data movement, data cleaning, data analysis, and 

visualisation. Workflow-oriented motifs include: synchronous / asynchronous invocations, 

internal macros, human interactions, atomic workflows, workflow overloading, and 

composite workflows. The authors analyse the frequency of those motifs and propose a few 

good practices for workflow development (e.g. modularisation). The goal of an automatic 

abstraction of workflow components is only outlined and has not been realised. 
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Nadarajan, Chen-Burger, and Malone [58] outline a strategy for workflow composition in 

video processing using semantics in a design layer. They analysed the capabilities of Triana, 

Taverna, Kepler, and others with respect to video processing with semantic support. They 

conclude that none of the systems are satisfactory, stating that the incorporation of semantic 

technologies is too limited and not sufficiently integrated. Specifically, they argue, ontology 

handling and manipulation should be part of a system and not purely external (third-party 

tools). They proposed a theoretical framework with a design layer, a workflow layer, and a 

processing layer, but an implementation has not been realised. 

Fahringer and Qin [1] and Siddiqui et al. [59] provide an extensive overview on semantic-

based workflow composition, discussing ontology-based workflow representation, 

implementation approaches, and experimental evaluation. Fahringer and Qin incorporated 

semantic features into the ASKALON workflow system, details are provided in 2.5.3. 

Siddiqui et al. propose a rule-based semantic framework for automatic synthesis of complex 

(sequential / parallel) activities from basic activities. They demonstrate this on an example 

for video processing, but do not make clear how their approach can be easily transferred to 

other domains. The definition of semantic rules is a very complex task, requiring extensive 

knowledge of Semantic Web technologies and the Protégé software [60]. The authors 

mention that activity providers can annotate their activities with rules, but they do not discuss 

how non-experts can be enabled to do so. 

Xing, Dikaiakos, and Sakellariou [61] propose an ontology for the grid infrastructure itself 

to allow reasoning on resources, middleware, services, applications, and users. They defined 

a core ontology including concepts for: grid middleware, grid components (storage, user 

interface etc.), grid applications, users, resources (computing, network etc.), and services 

(scheduler, monitor etc.). Although the ontology is still rather basic, it is a promising 

proposition. However, issues such as reasoning and ontology querying have not been 

addressed. 

Automatic workflow composition and retrieval from repositories can be based on standard 

reasoning algorithms from the artificial intelligence domain as described by Gil et al. [62] 

for instance. This is discussed further in section 2.6. 
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The following subsections review several state-of-the-art approaches for automation in 

workflow systems based on semantic information. 

 

2.5.1 Semantics in the WINGS Workflow System 

The WINGS (Workflow INstance Generation and Specialization) workflow system [36, 

55, 56, 63, 64] is a workflow composition extension for execution systems such as Pegasus 

(see [36] and subsection 2.2.4). It features semantic constraints for workflow components. 

Its origins are from the field of designing text data mining experiments but it has since been 

used for other applications (see [64]). Figure 8 shows the main user interface with a visual 

representation of an example workflow and semantic constraints for variables. 

The initial stage of a workflow in WINGS is called a template, containing only abstract 

components and data sources. This is followed by an instantiation stage (where components 

are made explicit) and an execution stage (where components are mapped to available 

resources; done in an external workflow execution system). 

A workflow template and its components are modelled using an ontology based on OWL-

DL (Web Ontology Language – Description Logic). Semantic reasoning is performed using 

Jena [65] (a modular semantic inference system allowing for different reasoning engines). 

Although the original system only used the ontology-based approach to model the 

workflows themselves, later work exploited the semantic nature to add constraints to 

components in order to aid the composition process (see [56] for example). Constraints are 

formulated with RDF (Resource Description Framework) syntax. The following example 

shows a constraint to restrict the input data of a text analysis method to single-labelled 

datasets (by defining that multiple labels are invalid) [56]: 

(?c pc:hasInput ?idv) 

(?idv pc:hasArgumentId “Feature”) 

(?idv dcdom:isMultiLabel “true”^^xsd:boolean) 

-> (?c ac:isInvalid “true”^^xsd:boolean) 

 

More complex constraints can be specified via Jena rules. The core ontology for 

workflows and constraints cannot be modified from within WINGS. The user interface 
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exposes “raw” RDF syntax (such as “Document2 rdf:type dccdom HTMLFile” from Figure 

8). Although this approach is flexible and powerful, a user requires deep understanding and 

knowledge of Semantic Web technologies. 

 

 

Figure 8 - WINGS workflow composition system (www.wings-workflows.org) 

 

2.5.2 Semantic Workflow Composition Based on Petri Nets 

Petri Nets are a modelling formalism for distributed systems based on directed graphs with 

nodes for transitions and places (or conditions). Gubala and Bubak [57] describe a Petri-net-

based workflow system with semantic features for operation retrieval from a registry (a form 

of a workflow repository). Every operation is thereby registered via an OWL (Web Ontology 

Language) description for inputs, outputs, preconditions, and effects. 

Gubala and Bubak argue that a registry based on standard taxonomies, such as provided 

by the UDDI standard (see section 2.4), is “not sufficient to support proper service discovery” 
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[57]. Their composition system matches different components into a workflow, making use 

of the semantic data. The tool produces a data flow between components by associating the 

required input with the produced output. The data matching is separated into three 

constraints: a content constraint (what is contained), a format constraint (how is it expressed), 

and a storage constraint (how is it stored). Figure 9 shows an overview of the operation 

discovery process. 

 

Figure 9 - Operation discovery (adopted from Gubala and Bubak) 

 

The system is Java-based and makes use of open source web services and Semantic Web 

technologies such as Axis SOAP and the Jena reasoner. Ontologies are managed via Grid 

Organisational Memory (GOM) [66] and other components. It is designed for purely non-

interactive use and therefore does not provide a graphical user interface. 

The automated workflow composition uses an iterative algorithm that attempts to fill in 

unresolved dependencies by using components discovered in a service registry and then 
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integrating them in a suitable way (as part of a sequence composition, a branching construct 

(AND / XOR), or within a loop). 

The proposed system (a prototype was implemented) uses a strict matching algorithm 

based on reasoning and therefore requires complete and well-annotated data. Similar to the 

WINGS system, ontology editing and semantic annotation require expert users, although the 

final application is targeted at non-expert users. 

 

2.5.3 Semantic Features of the ASKALON Workflow System 

Within ASKALON (see 2.2.5) [1, 59] semantic concepts are realised as Activity 

Functions, representing abstract activities with semantic metadata. Input and output data of 

activity functions are data classes which can be assigned exactly one semantic meaning (a 

label). Users can then design workflows using activity functions instead of activity types (i.e. 

concrete atomic activities in ASKALON). The system can assist the composition process by 

providing only semantically compatible components. 

Ontologies in ASKALON are pure class relationships (“is a” relation). Both data and 

functions have their own separate class tree. 

Abstract activity functions need to be mapped to available concrete activity types before 

a workflow can be executed in ASKALON. This can be done using an algorithm that matches 

the input and output data types (or data classes). Partial matches are allowed if a conversion 

activity is available. 

Concrete activities need to be labelled with a semantic function to be considered as a 

candidate during the matching process. The creator of an activity type therefore needs to 

carefully assign the semantic meaning as only one definition is allowed (the activity is created 

for one specific purpose). 

On top of the domain-specific ontology sections ASKALON also defines an upper 

ontology to model the basic concepts such as function and data (see Figure 10). The class 

“Data Conversion” is used to explicitly denote an activity function to be a data converter of 

some kind.  

Semantic features are stored in OWL and can be edited with an external editor (for 

example Protégé [60]). Jena is used for reasoning (class relationships). 
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The semantic annotation scheme in ASKALON is limited as it purely represents an 

abstraction of activities. An abstract activity (i.e. an activity function) can be assigned only 

one specific meaning from a tree-like ontology. The matching mechanism, which assigns 

concrete activities, is strict and only allows partial matches under specific circumstances. 

Example ontologies in Qin and Fahringer’s work [1] have a very narrow application space. 

They describe mainly a use case for a specific meteorology project. The respective ontology 

has low reusability value (see Figure 11). 

 

Figure 10 - Upper ontology in ASKALON (see [1]) 
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Figure 11 - Example ontology for ASKALON (partial). Meteorology. (after Qin and Fahringer) 

 

 

2.5.4 Semantic Grid 

Wu and Chen [67] developed a theoretical framework called the “Semantic Grid”. They 

provide an overview of general methodologies from grid computing and the Semantic Web 

and describe how the two can be combined. Specifically, the following subjects are 

discussed: knowledge representation (logic, ontology, RDF, OWL, and others), dynamic 

problem solving (multi-agent systems, ontology management etc.), trust computing, data 

integration (e.g. semantic mapping and querying), service flow management (matching, 

composition, and verification), data mining in the semantic grid, and applications. 

Wu and Chen present a prototype of a workflow management framework called 

“Dartflow”. A workflow is therein composed of function units that are defined by a 6-tuple 

(N, I, O, P, E, ψ) where: 

Function
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1. N is the name of the unit 

2. I is the set of inputs 

3. O is the set of outputs 

4. P is the precondition 

5. E is the effect 

6. ψ is the dependency function from the output to the input set 

 

Each functional unit and the whole workflow can be annotated using OWL-S, a semantic 

mark-up language for web services (see [68]). The annotation is restricted to one semantic 

class per object (unit, input item, or output item). 

The composition process is rule-based and covers three categories: 

1. Domain rules: Abstract rules for service selection and composition such as: choice 

rule, condition rule, exclusion rule, and sequence rule. 

2. Business rules: Concrete service binding rules (e.g. preference rule). 

3. User rules: Rules for response time and cost of a service. 

Wu and Chen argue that it is not feasible to generate a whole business process based on 

automated service composition using planning methods from the field of Artificial 

Intelligence (AI). Instead, they propose a composition framework based on a flexible 

workflow method to create parts of processes using an automated method (see Figure 12). A 

matching algorithm is used to find suitable functional units based on their inputs and outputs. 

Service discovery is implemented using a proprietary request format and reasoning 

engine. 

 Wu and Chen describe case studies for traditional Chinese medicine applications and 

transport management. They focus on the theoretical framework and technical 

implementation. Practical considerations such as how ontologies are created or how users 

interact with the system are not discussed. Furthermore, Dartflow seems unavailable for 

download or purchase and has no apparent dedicated online presence.  
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Figure 12 - Service composition framework for the semantic grid (see [67]) 

 

2.6 Planning Algorithms 

To achieve fully automated workflow composition, a method needs to be devised that 

produces a valid and executable workflow from a set of activities and preconditions. In the 

field of Artificial Intelligence, planning algorithms are used for such purposes. This section 

introduces approaches for planning and their possible application to workflow composition. 

State space search is a general approach where a system or agent is defined by a state and 

actions to change the state. The goal of the planning is reached when a specific state is 

reached (see [69]). More specifically, the state space is represented by: 

• S: a set of all possible states. 
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• A: a set of all possible actions. 

• Action(s): a function that returns which actions are available for a certain state. 

• Result(s, a): a function that returns the state which results when action a is 

performed in state s. 

• Cost(s, a): A function that returns the cost associated with action a in state s. 

 

In the context of workflow composition, a state is represented by a workflow, which might 

be partial. Possible actions are adding workflow components (for instance activities) and 

connecting data sources. A search is complete when an executable workflow is found that 

outputs the desired data and (optionally) adheres to predefined constraints. 

Given the large amount of possible actions (hundreds or thousands, depending on the 

number of available atomic activities and their data ports), the search space dramatically 

increases in size with each action. An exhaustive search is therefore unrealistic for anything 

but trivial workflows. 

Ambite and Kapoor [70] use a partial-order planner (for general information see [71]) to 

create a data workflow that satisfies a user’s request. Their algorithm keeps an agenda of 

services (activities) with unachieved inputs. Each search step refines the plan by satisfying 

one missing input from the agenda, using a semantic matching service. An empirical analysis 

(by Ambite and Kapoor) shows that the algorithm is effective, but also indicates that the 

planning time can be prohibitively long for large search spaces. 

A complete automation of workflow composition using planning algorithms seems 

unfeasible at this time (see [62]). Rather efforts should be focussed on solving sub-problems 

such as choosing suitable workflow templates from a repository, adding data conversion 

activities (shims), or creating processing sequences (node-to-node processing without 

branching).  

 

2.7 System Design and Advanced Features 

When designing and developing a workflow system and/or repository, certain guidelines 

should be followed. The most prevalent design strategies are described in this subsection. 
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Surveying the literature, it becomes apparent that there is a plethora of models and 

languages for scientific workflows. It is therefore sensible not to create something completely 

new but to keep to standards or widely accepted concepts. This view is shared by Barker and 

van Hemert [16]. They also propose further research directions including, but not limited to: 

collaboration between multiple domains, consideration of conventional scripting languages 

(e.g. Perl), high level of abstraction, and favouring web-based solutions. 

Different user groups may require different views on a workflow system. Ludäscher et al. 

[19] propose three levels of abstraction: (1) Conceptual level (workflows might become 

executable only after refinement); (2) Analytical level (knowledge discovery workflows for 

scientists); (3) Low-level workflows (for grid engineers).  

In document image analysis the above view hierarchy could be adapted to high-level view 

(e.g. for librarians), mid-level view (e.g. for researcher), and low-level view (e.g. for IT 

expert). A fourth conceivable user group are workflow system experts that can make 

adjustments to or extend the workflow model. Nadarajan et al. use the term “Modeller” [58]. 

Workflow templates represent one way of a conceptual-level of abstraction. Templates are 

blueprints and cannot be executed until concrete workflows have been created from them. 

The WINGS system is entirely based on templates (see Section 2.5.1) and the ASKALON 

system allows the creation of templates in form of activity functions (see Section 2.5.3). 

Advanced features of a workflow system can include workflow optimisation and 

simulation. Curcin et al. [72], for example, use a stochastic model to perform execution 

simulations of Taverna workflows. Jansen-Vullers and Netjes [73] surveyed several business 

process simulation tools based on Petri nets and event-driven process chains. Chen and 

Deelman [74] propose to simulate workflows to estimate runtime performance, including 

system overheads and (random) failures. 

 

2.8 Workflows in Document Image Analysis 

Only relatively recently scientific workflows have started to be of significant interest 

within the document image analysis research community. Two different approaches using 

the Taverna system were reported in 2011. Lamiroy and Lopresti [75] applied workflows to 
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achieve an open end-to-end architecture for benchmarking. The other approach, by 

Neudecker et al. [27], was developed as part of the EU-funded IMPACT project [76]. Several 

tools developed within the project were combined into the Interoperability Framework. 

Taverna workflows allow for setting up different experiments and production pipelines. 

Figure 13 shows a workflow that has been created using the Taverna Workbench tool. As 

mentioned earlier, the workflow designer needs to be aware of available processing nodes 

and their function as well as data compatibility (input and output formats). 

In order to be able to create a model that is beneficial for the composition of workflows 

in document image analysis, all aspects of the field have to be taken into account in detail. 

Only if the model is as complete as possible, it is likely to find acceptance among domain 

experts (and other users). The next chapter provides an overview of semantics and presents 

a new model for document image analysis. 

 

 

Figure 13 - Taverna workflow for comparing Optical Character Recognition (OCR) engines ([27]) 
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2.9 Summary 

This chapter introduced workflows and their use to model and execute experiments or 

processes in general. Different modelling approaches, workflow systems, and workflow 

repositories were discussed (Taverna, Kepler, Triana, Pegasus, ASKALON, myExperiment 

etc.). 

It was pointed out that system complexity and lack of automation are a hinderance for 

users. Integrating semantic information and using it for workflow composition and 

management was presented as possible solution. Several concepts and systems with semantic 

features were outlined (e.g. WINGS). 

The chapter concluded with a discussion of planning algorithms for workflow 

composition, concepts for workflow system design, advanced system features, and recent 

work in document image analysis with respect to workflows. 

The next chapter focusses on engineering an ontology for document image analysis for 

use in workflow systems.  
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3 A Semantic Model for Document Image Analysis 

and Recognition 

Knowledge of a domain must be incorporated into a formal model to be usable for 

workflow composition or related tasks. This chapter first provides an overview of semantics 

and knowledge representation in general and then describes the development of a new model 

for the domain of document image analysis. 

 

3.1 Knowledge Representation and Semantics 

The overarching goal of creating models and encoding information is the representation 

of a part of the real world in order to better understand it or process it in some form. Although 

scientific workflow languages are modelling approaches, they mainly focus on the syntactic 

aspect of combining actors (activities) in a certain way to automate the execution of a process 

such as a scientific experiment. To enable a machine to assemble such workflows, the 

meaning of each available component has to be described in machine-readable form.  

Various definitions of the term semantics exist in the context of different fields of 

application (for instance linguistics and scientific classification). For this work, the concepts 

from artificial intelligence and the Semantic Web are of interest, wherein semantics is the 

explicitly expressed intended meaning of a resource so that it can be processed by a computer 

(or machine). Central to this is the term ontology, which can be defined as “a description of 

knowledge about a domain of interest, the core of which is a machine-processable 

specification with a formally defined meaning.” [77] 

 Many ideas from the Semantic Web can be directly applied to scientific workflows. 

Especially the Web Ontology Language (OWL) and the modelling paradigms it entails are 

of interest in this work. Hitzler, Krötzsch, and Rudolph [77] provide an extensive theoretical 

and practical discussion of OWL including the Resource Description Framework (RDF) it is 

based on. In accordance with the concepts mentioned above, they list three keystones of the 

Semantic Web: 
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• “Building models: the quest for describing the world in abstract terms to allow for 

an easier understanding of a complex reality”. 

• “Computing with knowledge: the endeavour of constructing reasoning machines 

that can draw meaningful conclusions from encoded knowledge”. 

• “Exchanging information: the transmission of complex information resources 

among computers that allows us to distribute, interlink, and reconcile knowledge 

on a global scale”. 

 

While other approaches to represent information exist, the solutions of Semantic Web are 

ideal for the application in workflow systems because both share the ideas of global resources 

and applications of artificial intelligence. Furthermore, several standards have been defined 

for representing semantic information, enabling the use of existing modelling tools and 

reasoners (a reasoner infers consequences from factual knowledge). 

The next two sections provide an introduction to ontologies and an overview of document 

image analysis and recognition (the target domain), followed by the description of the 

methodology and the creation of a semantic model that can be used for workflows. 

 

3.2 Ontology Engineering 

For a comparatively long time, the creation of ontologies followed only informal 

guidelines. There was no specific methodology for the design or evaluation of an ontology. 

This has changed over the recent years and now the term ontology engineering is preferred 

([78, 79]). In this section, it is outlined how to approach a new ontology in a methodical way. 

 

An ontology can be referred to as “the shared understanding of some domain of interest 

which may be used as a unifying framework” [78], enabling: 

• Improved communication. 

• Inter-operability. 

• Re-use and sharing. 



45 

 

An ontology always includes a vocabulary of terms and a specification of their meaning 

(definition). 

 

Uschold and Gruninger [78] outline guidelines for building ontologies, taking into 

account: identification of purpose and scope (scoping phase), ontology capture, ontology 

coding, integration of existing ontologies, evaluation, and documentation. 

The capture is therein described by three steps: 

1. Identification of key concepts and relations in the target domain. 

2. Defining the concepts and relations in an unambiguous way. 

3. Identifying terms that represent the concepts and relations. 

Coding is the formalisation of the outcome of the capture phase, using a specific ontology 

language. This includes also the commitment to basic terms such as “class” or “relation”, 

sometimes called a meta-ontology. 

In addition, they provide general guidelines, stressing principles of: 

• Clarity (provide distinctions where ambiguity can occur; provide examples; use 

natural language for definitions). 

• Coherence (i.e. internal consistency). 

• Extensibility (selection of vocabulary with sharing and future extension in mind). 

The scoping phase can be organised as a brain-storming session, where all related terms 

are collected, followed by a grouping stage where the terms are categorised for 

inclusion/exclusion and grouped by similarity. 

When producing the definitions of terms, it is recommended to favour a middle-out 

approach over a top-down or bottom-up strategy. That means the most fundamental terms in 

each work area are used as a starting point from which is then moved forward towards more 

specific as well as toward more general terms. 

 

The next subsection introduces four ontology engineering strategies. The one called  

METHONTOLOGY[3] is endorsed by Fernández-López [79] as the most mature of the 

reviewed approaches. 
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3.2.1 Ontology Creation Methodologies 

Fernández-López [79] reviewed several methodologies for building ontologies. He relates 

the IEEE Standard 1074 for software engineering to ontologies on the basis that they are (or 

are part of) software products. He uses nine criteria for the analysis, including but not limited 

to: detail of specification, strategies for building ontologies, life cycle, and ontologies 

developed with the approach. Four methodologies are outlined below (most detail given for 

METHONTOLOGY).  

 

Uschold [80] proposed a design approach based on the experience of creating an ontology 

for enterprise modelling processes. Design guidelines are provided for: identifying the 

purpose, building (capture, coding, and integration with other ontologies), evaluation, and 

documentation. The methodology is incomplete with regards to life cycle and offers little 

detail. [79] 

 

Grüninger and Fox [81] also formalised their approach based on experience in creating a 

business-related ontology. The process is to move from informal to formal using the 

following steps: capture of motivation, formulation of informal competency questions, 

specification of terminology, rephrasing the competency question using the terminology, 

specification of axioms and definitions, and characterisation of completeness. 

In common with Uschold’s approach, this methodology lacks detail and the definition of 

a life cycle. [79] 

 

The SENSUS-based methodology [82] makes use of a large knowledge base for machine 

translation (the SENSUS ontology [83]). The proposed steps are: specify seed terms, link 

terms to SENSUS, include all terms from seed to SENSUS root, add missing terms, and 

expand to full subtrees (where many seed terms appear in a subtree). 

The SENSUS-based approach also omits the definition of a life cycle [79]. In general, it 

is the most unique of the compared methodologies, but it is inherently limited by the domain 

coverage of the SENSUS ontology. 
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The METHONTOLOGY framework [3] includes techniques for ontology development 

and a life cycle description. Fernández-López et al. [3] draw from their experience in 

knowledge engineering (e.g. expert systems) but note that there is a main difference in 

comparison to ontologies: Knowledge-bases can usually be built up incrementally in many 

cycles. Ontologies, on the other hand, need to be more complete from the beginning because 

they are built to be shared and reused widely. 

The development process for ontologies is defined by the following steps: 

• Planning (main tasks to be done and their order; time; resources such as people 

and software). 

• Purpose and scope definition (“Why is this ontology being built?”, “What are its 

intended uses and end users?”, the answer should be part of a requirement 

specification document). 

• Knowledge gathering (including listing of the sources used). 

• Conceptualisation (building a conceptual model from the gathered knowledge, 

describing problem and solution). 

• Formalisation (transformation of the conceptual model to a formal one). 

• Integration of existing ontologies (to avoid duplication and assist in reuse). 

• Implementation (make the ontology machine readable via a formal language). 

• Evaluation. 

• Maintenance (e.g. extension or modification). 

 

Just as software projects, ontologies should be engineered using a proper life cycle 

strategy. Figure 14 shows the METHONTOLOGY life cycle with the aforementioned 

activities and stages. Other approaches, such as the waterfall life cycle, are considered 

inadequate for ontologies because of their evolving nature. While waterfall and basic 

incremental life cycles cause problems, the proposed method of evolving prototypes can cope 

with growing ontologies (see Figure 15). This approach allows the ontology to grow 

depending on the needs: “This model lets you modify, add, and remove definitions in the 

ontology at any time.”[3] 
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The formalisation step of METHONTOLOGY does not specify a formal language that is 

to be used. Formal languages are discussed in the next subsection. 

 

Figure 14 - States and activities of METHONTOLOGY (adopted from [3]) 

 

 

Figure 15 - How the ontology grows: a) Fixed / waterfall; b) Basic incremental; c) Evolving prototypes 

(adopted from [3]) 

 

3.2.2 Meta-Ontology, Formal Language and Expressivity 

To make an ontology machine-readable, it has to be translated to a formal language. As 

mentioned earlier, part of this step is also the selection of a suitable meta-ontology. 

For an informed decision on the basic structure of the ontology, three aspects must be 

considered: expressivity, reasoning algorithm complexity, and ease of use. The more 
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expressive the ontology, the closer it can reflect the real world and model detailed 

relationships and interdependencies. However, with increased expressivity there is also an 

increased algorithm complexity for reasoners (inference engines). This can be a problem for 

systems that offer real-time user interaction, such as workflow composition systems. In 

addition, the importance of the ease of use should not be underestimated. A system that is 

intrinsically complex and difficult to understand is less likely to be adopted by users in 

comparison to a system that uses a straightforward semantic model. Figure 16 illustrates these 

considerations. 

 

Figure 16 - Expressivity, algorithm complexity, and ease of use of ontologies and systems using them 

 

Obrst et al. [84] describe three ontology representation levels (Figure 17) which provide 

an overview and help to find a distinction between the terms being used. 

To implement an ontology, a suitable language must be chosen. Traditional options are   

CLASSIC, BACK, LOOM, or Ontolingua (see [3]). Alternatively, an ontology can be coded 

with any higher-level programming language (such as C++ or Java). In the context of the 

Semantic Web the Resource Description Framework (RDF) or Web Ontology Language are 

used (see [77]). 
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METHONTOLOGY includes evaluation as a distinct action but does not provide a 

specific evaluation method. Therefore, an overview of ontology evaluation approaches is 

given in the next subsection. 

 

  Level Example Constructs  

Meta-

Level to  

Object-

Level 

 

Knowledge Representation 

(KR) Language (Ontology  

Language) Level:  
Meta Level to the Ontology 

Concept Level 

Class, Relation, Instance,  

Function, Attribute,  

Property, Constraint, Axiom,  

Rule 

Language 

 

Meta-

Level to  

Object-

Level 

Ontology Concept/Type (OC)  

Level:   
Object Level to the KR  

Language Level,  

Meta Level to the Instance Level 

Label, Activity, Data Port etc. 

Ontology  

(General) 

 Instance (OI) Level:  
Object Level to the Ontology 

Concept Level 

Commercial Licence, 

ABBYY FineReader OCR, 

Document Image etc. 

Knowledge  

Base   

(Particular) 

 

Figure 17 - Ontology representation levels (adapted from Obrst et al. [84]) 

 

3.2.3 Evaluation of Ontologies 

Obrst et al. [84] describe several approaches or perspectives on how to evaluate an 

ontology, including: 

• Domain coverage. 

• Complexity / granularity. 

• Use cases / scenarios / applications / data sources. 

• Consistency. 

• Completeness. 

• Representation language (e.g. expressivity). 

In addition, they make the distinction between a component-based “glass box” approach 

and a “black box” approach. The black box approach can be especially useful if the ontology 

is to be evaluated in combination with a specific software system (like a semantic search 

engine). 



51 

 

One evaluation criterion is of special relevance for the research described in this Thesis: 

use cases and domain requirements. The validation of the workflow system prototype using 

real-world examples is one of the objectives of the PhD research. It is therefore sensible (even 

unavoidable) to include the developed ontology as well in this examination. 

Obrst et al. [84] write that the same competency questions that are used during requirement 

specification and conceptualisation can also be used to validate the finished system 

(representing a form of a “test suite”).  

 

3.2.4 Ontology Maintenance 

In most applications, even if an ontology is complete, it requires constant attention in the 

form of correcting flaws, refining descriptions, and extending concepts. In 

METHONTOLOGY this is part of the life cycle and is called maintenance. A dedicated 

maintainer therein includes, adds, or modifies existing definitions as required. The life cycle 

model of evolving prototypes supports these activities.    

Flahive, Taniar, Rahayu, and Apduhan [85] describe a process of ontology update tailored 

for grid workflow environments (i.e. distributed workflow execution). They formalise and 

validate the replacement of a section of an ontology O2 with a subset of another ontology O1 

using two phases: 

1. Extraction of subset S1 from O1: Creating a subontology, refining it using four 

operations: Extend, add, merge, and update. 

2. Replace concepts in O2 by S1: Discovering merge points and replacing parts of O2 

with the subontology, finalised using validity checks. 

 

Before describing how an ontology was created, a short summary of the target domain is 

given in the next section. 

 

3.3 Document Image Analysis and Recognition 

An overview of the domain helps to understand the key concepts used in the ontology 

creation. This section provides basic definitions, examples, and use cases. 
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3.3.1 Overview 

O’Gorman and Kasturi [86] and Ferilli [7] provide comprehensive overviews of the field, 

including data formats, image processing, segmentation, document understanding, and 

natural language processing. O’Gorman and Kasturi state the objective of document image 

analysis as “to recognize the text and graphics components in images, and to extract the 

intended information as a human would”. Ferilli provides a more abstract definition for 

document image analysis to be “concerned with the automatic interpretation of images of 

documents”[7].  

Figure 18 shows a typical scenario for document image analysis. Often the term 

digitisation is used synonymously for a whole image analysis pipeline. The original meaning, 

however, is the conversion from a physical document to digital form via image acquisition 

(scanning, digital photography). Image acquisition also covers the conversion of other digital 

formats (such as PDF or HTML) to image formats as is required for digital-born documents. 

 

 

Figure 18 - Digitisation scenario 

  

O’Gorman and Kasturi as well as Ferilli offer extensive definitions of the term document 

and document image. For this work, it should suffice to provide the following examples that 

can be represented by digital images (contrary to speech, for instance): Book, newspaper, 

Greek roll, picture / photograph, webpage, bank cheque, number plate, and shopping receipt. 
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Ferilli organises documents by the following categories: 

• Support – Tangible / physical (written, printed, impressed etc.) and intangible 

(digital documents, speech, music etc.) 

• Time of production 

• Historical interest 

• Medium 

• Structure – The meaningful arrangement of document components to form the 

document as a whole and/or the inner structure of a single component 

• Representation formalism – Related to the target audience/interpreter (human or 

computer) 

 

 

Figure 19 - Typical sequence of steps for document image analysis (adapted from [86]) 

 

Figure 19 shows an often-used sequence of steps as described by O’Gorman and Kasturi 

[86]. One of the best-known fields within document image analysis is Optical Character 

Recognition (OCR). Other major areas are: page layout analysis, segmentation, graphics 

recognition, and document restoration. There is also a considerable overlap with other 

disciplines such as the related document analysis, linguistics, image processing, pattern 

recognition, and machine learning. 
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Although often called digitisation “pipelines” (indicating sequential processing), typical 

workflows include branching (specialised processing for different types of documents) and 

feedback loops (for improving earlier steps based on extracted information).  

A few often-used processing steps are explained below. 

 

3.3.2 Typical Processing Steps 

In this subsection selected processing steps are presented because they apply to many 

different types of workflows (e.g. image pre-processing) or because they apply to a very 

prevalent class of documents (e.g. OCR used for textual documents). 

 

Image pre-processing / pixel-level processing 

Pre-processing is applied to enable or enhance subsequent processing steps. It is a low-

level form of processing, considering little or no information of the image content. Both input 

and output are digital images. Typical methods include: binarisation (conversion from colour 

or greyscale to bitonal black-and-white), cropping, rotating, and contrast enhancement. 

 

Page layout analysis / segmentation 

Segmentation is the process of subdividing an image (area) into smaller homogeneous 

areas. The criteria for homogeneity vary for different applications but usually include texture, 

foreground density, or colour / grey value properties. 

A document page can be segmented into blocks (regions, zones). In combination with 

block classification we speak of page layout analysis. This can also include higher-level 

structures like nesting of blocks, layers, and reading order (sequence of blocks). 

Blocks can be segmented further into text line segments and word segments, for example. 

 

Optical Character Recognition (OCR) 

Also known as text recognition, OCR is the process of recognising the shapes of characters 

and assigning a code (or class) according to a text encoding scheme (e.g. Unicode). OCR 

methods often include segmentation to some extent (text lines, words, shapes / glyphs). 
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Output of an OCR method can be in plain text format (just characters and whitespaces) or 

in a structured format with metadata and annotations. 

 

3.3.3 Data Formats 

Data is central to scientific workflows. Data formats are therefore of special interest for 

this PhD research. Common input, intermediate, an output formats include:  

• Image files with: 

o Different encodings. 

o Different compression rates (none vs. lossless vs lossy) 

o Different colour ranges (bitonal, greyscale, colour) 

• Text files with: 

o Different encodings (e.g. Unicode) 

o Plain text vs. annotated text (i.e. with tags for different types of annotation) 

• XML-based files like: 

o ALTO XML [87] (for OCR results including layout elements and 

recognised text with metadata) 

o PAGE XML [88] (for ground truth of page content including layout 

elements with attributes, transcribed text, reading order and more) 

 

3.3.4 Applications 

Important real-world examples can provide use cases for scientific workflows in 

document analysis and give direction for future research. The Google Book Search project 

[89] falls in this category. A complex pipeline was developed, including components for page 

ordering, language identification, chapter detection, book clustering, and more. Another 

example for a large-scale project is “Digitizing a Million Books” by Sankar et al. [90]. Apart 

from a description of the manual and automated processes that were applied, the authors 

provide a list of open research challenges, including: language/script-related issues, OCR 

quality, robust search, compression and delivery, historic media (e.g. palm leaves), and non-

textual content. 
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Digitisation pipelines and their evaluation can lead to complex workflows. Figure 20 

shows the evaluation workflow used by Pletschacher et al. [91] in the Europeana Newspapers 

Project. In context of performance evaluation ground truth is the perfect result of an 

automated processing method. Ground truth must, by definition, be created (or at least 

validated) by a human. Performance evaluation is crucial for comparing methods but also for 

improving methods (development or training). 

If semantic information is to be used to help with workflow creation, a common 

terminology must be developed and organised. This is discussed in the next section. 
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Figure 20 - Evaluation workflow of Europeana Newspapers Project [91] 
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3.4 Ontology for Document Image Analysis 

This section describes how a new ontology for the domain of document image analysis 

and recognition was created. It follows the ontology engineering methodology of choice 

(METHONTOLOGY [3]) from Section 3.2, chosen for its maturity, completeness of life 

cycle approach, and general applicability (e.g. to different domains such as chemistry and 

linguistics) [79]. 

 

3.4.1 Specification 

This subsection contains the ontology specification document as suggested by 

METHONTOLOGY.  

 

Domain:  Document image analysis 

Date:  June 28th, 2018 

Purpose: Ontology to describe workflows in document image analysis, including 

scientific experiments and production digitisation pipelines. 

Level of formality: Semi-informal 

Scope: Methods and data objects related to document image analysis, including 

overlapping domains such as document analysis, image processing, pattern 

recognition, natural language processing, machine learning etc. The 

granularity has to be high enough in order to enable automated reasoners to 

decide which components to use to create a workflow for a specific goal 

(experiment, pipeline). Target users will be domain experts (researchers), 

method creators, and non-experts (regarding the domain; e.g. librarians). 

 

3.4.2 Knowledge Acquisition 

This step is not strictly a task within the ontology development life cycle, but it is 

important nonetheless. It is part of the documentation process, leading to a comprehensible 

outcome. 



59 

 

Information about scientific workflows was ascertained via the literature review for this 

PhD research. The focus for additional knowledge acquisition was to identify sources of 

classification and structures for the domain of document image analysis and related fields. 

The following resources were considered: 

Existing ontologies: 

• The ACM Computing Classification System [92]. 

 

Text books: 

• “Automatic Digital Document Processing and Management” [7]. 

• “Digital image processing” [93]. 

 

Project outcomes: 

• “Digitisation Tools Matrix” created by the SUCCEED project [94]. 

• Keyword collection and categorisation used for tagging document image datasets 

in the EU-funded projects IMPACT [95] and Europeana Newspapers [96]. 

 

Web resources: 

• Wikipedia3 (domain-related terms and definitions). 

 

Proceedings: 

• International Journal on Document Analysis and Recognition (IJDAR) (Collection 

of terms taken from journal paper titles from 1998 to 2016 (19 volumes)). 

 

3.4.3 Conceptualisation 

This step is used to build up a complete vocabulary for the domain, mainly by collecting 

and grouping terms (concepts, instances, verbs, and attributes). 

The first action was to arrange terms from the resources that were gathered in the 

knowledge acquisition step into a “term cloud” (Figure 21). These terms were collected from 

paper titles, table of contents, definitions, taxonomies, and similar sources. This provides a 

                                                 
3 https://www.wikipedia.org 
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wide coverage of the domain, which is the goal of the ontology (to be able to describe 

experiments and other workflows). 

 

Figure 21 - Initial term cloud for conceptualisation 
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For the grouping phase, it was first considered where the information of the ontology will 

be applied within a workflow system. It was known from the literature that all workflow 

representation paradigms have in common that they are structured as some form of a graph 

containing activity elements (actors, processes) and data objects (or data connections, ports, 

cables).  

Since the intention is not to replicate the workflow structure itself in the ontology, a 

labelling approach was considered a good starting point. Therein semantic labels would be 

assigned to workflow components, to enrich them with ‘meaning’. Consequently, the term 

cloud was further refined in two branches: one concentrating on workflow activities and the 

other one on workflow data objects. 

Each of the two branches of the term cloud was refined iteratively by: 

• Removing irrelevant terms. 

• Spatially grouping related terms. 

• Spatially arranging groups (related groups close together). 

Then, terms were inserted or highlighted that represent a group or a sub-group. Figure 22 

shows the term cloud after refinement for workflow activities. Table 2 lists the terms that 

represent the main groups found by the conceptualisation process. Figure 23 provides more 

detail (sub-groups) of the activity related terms. 

 

Table 2 - Root ontology terms for workflow activities and data objects 

Activity related terms Data related terms 

Activity domain Source 

Processing level Age 

Data Creation / Transformation Physical production method 

Adaptability / Applicability Acquisition method / replication steps 

Automation Precision 

Licence Content type 

Platform Content encoding 

Maturity Source / target content 

 Data granularity 

 Data condition 

 Data attributes 

 Topic 
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The formalisation step (creating a formal or semi-compatible model using a representation 

system) from METHONTOLOGY was merged with the implementation step (creating a 

machine-readable model). Software tools can be used to visualise and edit ontologies on-the-

fly, making a dedicated manual formalisation unnecessary. 

 

 

Figure 22 - Refined term cloud for workflow activities 
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Figure 23 – Activity-related ontology terms 

 

3.4.4 Integration 

As stated in the knowledge acquisition step, the ACM Computing Classification System 

[92] was considered as input for the new ontology. The system is a poly-hierarchical ontology 

including base concepts such as: hardware, computer systems organisation, networks, 

software and its engineering, theory of computation, mathematics of computation, 

information systems, security and privacy, human-centred computing, computing 
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methodologies, applied computing, and social and professional topics. It covers a wide range 

of computing-related terms and was therefore an ideal source for reusing concepts. One 

example is the branch “Computing - Information systems – Information retrieval” which was 

adopted as “Activity domain – Computing – Information management – Data retrieval”. 

 

3.4.5 Implementation 

It was already decided earlier to use a labelling approach (workflow components labelled 

using the ontology), but it was not decided how complex the ontology should be (i.e. what 

basic types of concepts and relations are to be used). The strategy adopted was therefore as 

follows: create an elementary ontology first and test if it is expressive enough for the intended 

use for automation in workflow creation (Chapter 6). It could then be extended as required.  

The most basic approach would be to only use the identified terms without adding any 

structure, essentially creating a keyword-based solution. Because this would also complicate 

the use of the system (users would have to browse hundreds of possible keywords), a 

hierarchical structure was chosen. Since the goal is the labelling of workflow components, 

the basic concept of the ontology was defined as label type. Label types can then form 

hierarchies of type and subtype (similar to class – subclass relationships). Using this model, 

workflows can then be annotated using labels, each of which has a specific label type. 

For the implementation of the semantic model the Semantic Web was chosen as basis for 

reasons of standardisation, tool support, and extensibility. 

Ontology creation was made part of the workflow system prototype (Chapter 4 and 

Chapter 5) to achieve a user experience that is tailor-made for the target application (assisted 

/ automated workflow composition and use). The user interface is described in detail in the 

next two chapters. Here it should suffice to list the general process of building the ontology. 

The most basic concepts – activity and data object – are predefined. The terms that have 

been collected in the conceptualisation stage can be added in hierarchical form (taxonomies 

or partonomies) according to the corresponding grouping. Each term has four fields that 

should be filled with clear and unambiguous natural language (semi-informal approach): 

1. Caption 

2. Definition 
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3. Examples 

4. Related terms 

 

The full ontology, with currently over 350 label types, can be found in Appendix A – 

Label type hierarchies of the developed ontology. More details on user interface, formal 

language, and storage file format are provided in Chapter 5. 

 

3.4.6 Evaluation 

METHONTOLOGY suggests to evaluate the created ontology by looking for 

incompleteness, inconsistencies, and redundancies. As described in subsection 3.2.3, it seems 

feasible to follow the evaluation criterion based on use cases ([84]) (in line with the PhD 

methodology in Section 1.4). Chapter 6 lists several examples from the domain of document 

image analysis, together with an analysis of the application of the developed workflow 

system (including the presented ontology). During the research, the proposed ontology was 

used to annotate a large number of software tools (activities with data input and output) and 

workflows. The ontology was thereby evaluated and modified where necessary. Terms were 

added, removed, merged, or split to better fit the real world. 

 

3.5 Summary 

This chapter introduced concepts of representing semantic knowledge. Ontologies are 

central to this, containing terms and relations of a domain. 

Like software projects, ontologies can be engineered using a well-define methodology 

including a full life cycle. One of the more mature approaches is METHONTOLOGY. It was 

selected to develop a new ontology for document image analysis. The design steps were 

described in detail; they included: specification, knowledge acquisition, conceptualisation, 

integration, implementation, and evaluation. 

Two related objectives from Section 1.4 are concluded. Objective 1 (device suitable 

modelling approach) is satisfied by an ontology-based solution making use of Semantic Web 



66 

 

technology. Objective 2 (semantic model for target domain) is fulfilled by the engineered 

ontology for document image analysis and recognition. 

 

The next chapter provides details on the design of a prototype workflow system. 
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4 Designing a Semantics-Enriched Workflow System 

In Chapter 3, it was decided how to enrich workflow components with semantic data and 

which ontology representation language to use. Subsequently, a new ontology for document 

image analysis was engineered. In the framework of the PhD research, the next step is to find 

ways to use semantic information algorithmically to achieve more automation and to support 

users in workflow design and management tasks.  

This chapter describes the design of a complete workflow system including semantic 

aspects and algorithms but also general workflow management. The system was then 

implemented (Chapter 5) and used for experiments and evaluation (Chapters 6 and 7). Only 

in the context of such a comprehensive system can the usefulness of the semantics-based 

concepts and solutions be judged satisfactorily. 

 

4.1 Workflow Model 

The workflow model is the foundation for the whole system. Chapter 2 introduced several 

existing approaches and modelling paradigms. A decision had to be made to reuse the base 

model of an established system or create a new one. This also ties in with the implementation 

phase (Chapter 5). Table 3 provides an overview of advantages and disadvantages of the 

different options. 

The activity-based approach of the ASKALON system [1, 97] was the model of choice 

due to its extensive documentation, its extensibility, and its foundation in a modelling 

standard (Activity Diagrams in UML - Unified Modelling Language). 

 

The basic components of workflows (activities, data ports, and data tables) are introduced 

in the next subsections. 

 

Table 3 - Advantages and disadvantages of different workflow base models 

Base workflow model Advantages Disadvantages 

Taverna Has been used for document 

image analysis workflows 

Several major changes in code 

basis in relatively short time 
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Base workflow model Advantages Disadvantages 

Source code available  

Integration with myExperiment  

Kepler Mature (based on existing grid 

technology) 

Static execution order 

Source code available  

Triana Model includes data types  Less active 

Source code available Only one data output port per 

activity 

Pegasus Only one type of activity Control flow “hidden” in edges 

of workflow graph 

Source code available  

ASKALON Well-documented Source code unavailable 

More explicit model (easy to 

extend) 

 

New model Full control / freedom of design “Reinventing the wheel” 

 

4.1.1 Concept of Activity 

The name “Activity” for processing nodes was chosen by Qin and Fahringer [1] due to 

correlations to UML Activity Diagrams. Workflows can be expressed and visualised using 

this standard notation. However, while UML defines actions as smallest units, these are not 

part of the proposed workflow model (where activities are the main components). The 

proposed concept of an activity is consistent with the UML definition: the specification of a 

parameterised sequence of behaviour. Figure 24 shows the basic notation that will also be 

used for the remainder of this thesis. 

Atomic activities are the most basic form of processes. As the name suggests, they cannot 

be subdivided into smaller units (at least in the context of workflows). If an activity represents 

a specific existing software tool or method (for instance ABBYY FineReader 11), it is a 

concrete atomic activity and can be executed. If, on the other hand, a generic group of 

software tools or methods is to be modelled (OCR engines, for example), abstract atomic 

activities are used. 
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An activity can have input and output parameters which are modelled as data ports. These 

are described in more detail after an introduction to control flow. 

 

 

Activity name

Input 
parameter

Output 
parameter

 

Figure 24 - UML notation of an activity. The activity is represented by a rounded rectangle. Input and 

output parameters are represented by rectangles on the border of the activity (inputs left or top; outputs right 

or bottom). 

 

4.1.2 Control Flow 

To model complex software processes, more than just atomic activities are required. Qin 

and Fahringer [1] proposed several types of activities for control flow. These are described 

in the following. 

 

For Loop Activities can be used to model iterative processes and are suitable for handling 

data collections, for instance. Since they only represent control flow, a child activity is 

required that is itself atomic or contains atomic activities. Four dedicated data ports denote 

the parameters of a “for loop” as known from programming languages: 

• Start position  “for (i=1; i≤10; i+=2)” 

• End position  “for (i=1; i≤10; i+=2)” 

• Step width   “for (i=1; i≤10; i+=2)” 

• Current position  “for (i=1; i≤10; i+=2)” 

 

Loop ports are a special case in the workflow model because they are input ports and 

output ports at the same time. This has two major effects:  

(1) The loop iteration can be controlled from outside the loop. 

(2) Loop parameters can be used as input values for other operations (to access data 

collections for instance). 
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If not linked to external data sources, the loop parameters can be specified using the 

concept of fixed integer values. Normal dataflow is allowed from the loop activity to its child 

and vice versa (see next subsection for dataflow). 

In UML activity diagrams “for loops” can be represented in a generic and a specific form 

(see Figure 25). Both are so called expansion regions or, more generally, structured nodes. 

 

iterative for

while

do

 

Figure 25 - UML loop notations (left: generic form; right: specific form) 

 

Direct Acyclic Graph (DAG) Activities can be used to model more complex control 

flow. Child activities thereby form a network (a graph) and are executed in a predefined 

sequence. To avoid endless repetition, cycles are not allowed (acyclic). Starting point of 

execution are child activities that have no predecessor in the graph. The further sequence of 

processing is defined by the directed edges of the graph.  

Parallel execution can be achieved by either having multiple starting nodes or by 

specifying multiple successors (two or more outgoing edges) at one point in the control flow. 

Between sibling activities, dataflow can be modelled by connecting output ports with 

input ports of the succeeding activity. In addition, the parent activity can pose as data source 

and data sink. 

UML allows nesting of activities. Figure 26 depicts a directed graph activity with three 

child activities. 
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Image processing pipe

Page scan SegmentsImage conversion Pre-processing Segmentation

 

Figure 26 - Nesting of activities in UML (sequences denoted by connected data ports) 

 

If-Else Activities represent conditional branches within a workflow. Each branch contains 

a child activity that is executed if a condition is fulfilled (only the first branch that evaluates 

to true, is executed). A condition can be one or a combination of following condition types: 

• Empty condition: Evaluates to true (can be used as else-branch). 

• Combined condition: Evaluates multiple child conditions, combining them with 

either AND or OR operation (this is an extension to the if-activity proposed by 

Qin and Fahringer, allowing for more complex conditions). 

• NOT condition: Can have a single child condition, negating its result. 

• Input port condition: Evaluates the value of an input port of the if-else activity. 

Only Integer and Boolean are allowed as data type. Integer values are evaluated to 

false if zero and true otherwise. 

• Comparison condition: Compares two values (left and right operand) using a 

selected operator (equals, not equals, less than, less or equal, greater than, greater 

or equal). The operands can be data objects of input ports or fixed values. 

The condition of an if-branch can therefore be represented by a tree of child conditions, 

allowing for complex constructs. 

Figure 27 shows the UML notations of if-else activities (or decision nodes). To achieve a 

consistent data flow, individual results of the inner activities need to be merged to one single 

output of the if-else activity (merge node in UML).  
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Figure 27 - Decision nodes in UML activity diagrams (left: with fork and merge; right: structured node) 

 

The presented types of activity are sufficient to model complex workflows. Additional 

types of activities can be added for convenience or clarity. Fahringer and Qin [1] also propose 

sequence activities (special case of DAG activity) and “while loop” activities. 

 

While control flow determines the general structure of a workflow, dataflow determines 

how activities are linked to each other. This is described next. 

 

4.1.3 Data and Dataflow 

Dataflow is a central aspect of scientific workflows (as mentioned in Chapter 2). The final 

outcome of an experiment (the result data) is arguably the main interest of researchers.  But 

for reproducibility and integrity, information on data transformations and data provenance in 

general can be important as well. This subsection explains how the proposed system handles 

data and dataflow.  

Forms of data ports 

In accordance with UML, all types of activities can have several (or none) input and output 

data ports. Most activities have at least one input and one output port (e.g. an OCR activity 

with image input and text output). Examples of activities without input ports are data creation 

processes, where the data is generated within the activity itself (for instance a random number 
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generator). Activities with no output ports are less obvious. Visualisation modules could be 

categorised as such (having a transient output). 

Some types of activities require further data ports. A for loop activity, for example, has 

four additional loop ports (start, end, step, and position). 

Data types 

As proposed by Qin and Fahringer [1], ports are assigned either single data objects or data 

collections (multiple data objects). A data object has a predefined data type. While data types 

can also represent semantic information, they are lower-level information compared to the 

semantic layer explored in this PhD research. Data types represent a strict means to establish 

whether data ports are compatible or not. 

Input ports can be assigned multiple types (in contrast to ASKLANON’s model where 

only one type is supported), allowing for a more flexible workflow design (it is common for 

software tools to support several file formats, for instance). Output ports, however, support 

only one data type, to enforce deterministic workflows. Otherwise type compatibility could 

not be checked at design time, only at execution time.  

Data tables 

Data tables are an extension of the concept of data collections (and are a new concept 

proposed for this PhD research). Whereas a data collection represents a list of single data 

objects, a data table represents a two-dimensional matrix of data objects. Each column of a 

table is represented by a data collection of a specific type. Figure 28 illustrates the structure 

of a data table. 

Data tables can be used as data sources within a workflow or as part of a data repository 

(see also 4.2). Unlike single data objects or data collections, they are not part of the dataflow 

of a workflow (i.e. they are not passed around between activities). A workflow can have 

multiple data tables, all of which can be accessed from each activity of the workflow. The 

columns of a table resemble output ports of an activity. 
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Data Table 

 Data Collection 1  Data Collection 2  Data Collection n  

 Column 1 : Type 1  Column 2 : Type 2 … Column n : Type n  

Obj 1,1  Obj 1,2 … Obj 1,n 

Obj 2,1  Obj 2,2 … Obj 2,n 

…  … … … 

Obj m,1  Obj m,2 … Obj m,n 

 

Figure 28 - Model of a data table 

 

Dataflow 

Dataflow between activities is achieved through source ports for input ports and port 

forwarding for output ports. Depending on the type of the activity, a source port can be an 

input port of the parent activity (for-loop), a sibling activity (graph activity), or any port 

visible for the parent for instance. Similarly, output ports of a child activity can be forwarded 

to their parent, for example.  

In case of data collections, another form of dataflow is required. By specifying a source 

port and a port that provides a position within the collection, it is possible to fill the collection 

with single data objects.  

The content of a data object is usually determined when the workflow is executed. 

However, if primitive types are used (Integer, Decimal, or String), fixed values can be 

assigned at design time (e.g. “2”, “0.5”, or “blue”). 

Figure 29 shows an example dataflow diagram with a for-loop activity and a nested atomic 

activity. Data tables are global resources within a workflow and can therefore act as input 

data for any activity. The for-loop has start and end position as inputs and the current position 

as output. The position is used to retrieve input data items from the table and to add result 

data items to an output data collection. The atomic activity forwards its output to the parent 

activity (the loop). 

The next subsection introduces abstract workflows (workflow templates). 
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Figure 29 – Example dataflow for two activities 

 

4.1.4 Workflow Templates 

Workflow templates can be used to model general knowledge about conducting certain 

types of scientific experiments or constructing production pipelines, without the need to 

commit to specific software tools or datasets. They are usually created by a domain expert 

but can then be used by any user for assisted or automated workflow design (see also 2.5.1, 

2.5.3, and 2.7). 

The concept of templates is realised by means of abstract workflows. Like abstract classes 

in software design, abstract workflows cannot be instantiated and are therefore not 

executable. A workflow is abstract if it contains one or more abstract activities (Qin and 

Fahringer use the term activity function). Similarly, a control flow activity is abstract if one 

of its children is abstract. An atomic activity, on the other hand, is explicitly marked as 

abstract or not abstract (i.e. concrete). 

An example of a workflow template for performing OCR on a set of scanned document 

pages is shown in Figure 30. It contains a loop activity with a nested abstract atomic activity. 

The abstract activity can be replaced by any activity performing OCR (a commercial system 

and an open source system in this example). 
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Figure 30 - A workflow template (left) and instantiated (concretised) workflows (middle and right) 

 

4.1.5 Semantic Layer 

The concept of semantic labels was introduced in Chapter 3. For the workflow system, 

this was concretised to three forms: labels, label types, and label groups (this is a completely 

new concept, not supported in the ASKALON workflow model). 

Label types can be interpreted as classes. One label type represents a specific feature of 

an activity or a data object within a certain domain. Types can form hierarchies, which are 

also called taxonomies or partonomies. A label group contains exactly one type hierarchy 

and defines a cardinality (label slots), which can be used to specify how many labels of the 

group can be assigned to an activity or data object. A label can be understood as an instance 

of a label type (attached to an activity or data object).  

It can be summarised that label types form an ontology (the semantic model) and labels 

are used to attach semantic information to objects of a workflow. Label groups are a 

supplementary concept with the main intend to improve usability (labels that have been 

assigned the maximum number of times, as specified by the label slot number, can be hidden 

from the user). 

Within the workflow system, data ports and activities can be annotated with semantic 

labels from the ontology (see Figure 31). The information can be used for workflow 

composition and other features. 
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Figure 31 - Illustration of semantic annotation via labels (labels can be attached to data ports and to the 

activity itself) 

 

4.1.6 User Groups and Perspectives 

Different users of the workflow system have varying knowledge of the system and 

workflow components (see Figure 32 for examples). To improve the usability of the 

framework in the future, user group and perspective management should be added.  

The example ontology was extended by a User label slot group, a User groups label slot, 

and a corresponding label taxonomy (see Figure 33). Real-world taxonomies are more 

complex, but the example is sufficient to describe the respective workflow system features. 

Using the ontology extension, each user is then labelled with one or multiple of the user 

groups (and other label types if defined later). Similarly, certain aspects of the workflow 

system and workflow components can be labelled, including: 

• User interface controls: Specific controls can be hidden from high-level users and 

only shown to low-level users such as administrators.  

Activity 
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• Workflow and activity descriptions: Multiple descriptions can be created, each 

targeting a specific user group (or groups). To this end, labels can be assigned to 

the description objects. 

 

 

Figure 32 - Example for different views on a workflow system 

 

 

Figure 33 - User groups in the example ontology 
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4.2 Repositories 

The concept of workflow repositories was introduced in Section 2.4. For the proposed 

workflow system, this was extended to three distinct repository types: 

• Workflow repositories: a collection of workflows and/or templates. 

• Activity repositories: a collection of concrete atomic activities (representing 

software tools or services). 

• Data repositories: a collection of data items that can be used as input for 

workflows. 

 

In general, the workflow system should provide functionality to create and manage 

multiple repositories. The following features are considered necessary for the PhD research: 

• List and add repositories. 

• See content of repository (workflows / activities / data). 

• Open item for viewing / editing. 

• Add items to repository. 

• Remove items from repository. 

• Search for items. 

 

4.3 Workflow Creation 

The proposed system requires a user interface to create and edit workflows. Essential 

features are: 

• Add, edit, remove activities. 

• Visualise activities hierarchically (nested activities shown as child activities). 

• Add, edit, remove, link data ports. 

• Add, edit, remove, link data tables. 

• Annotate components semantically (labelling). 

• Store and open workflow. 
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One of the objectives of the PhD research was to discover methods for more automation 

in the workflow design process. The semantic data, with which activities and data objects 

can be labelled, can be used to implement automated or assistive features. One such feature 

is activity matching, which is described next. 

 

4.3.1 Activity Matching 

A major hurdle for workflow designers is finding the right software tool for a certain task. 

Within workflow design, this manifests in two tasks: (1) adding a new child activity and (2) 

replacing an existing activity (for instance an abstract atomic activity in a workflow 

template). Both tasks have in common that an activity must fit into a target environment with 

certain semantic labels and data types. Within the system, activity matching can assist the 

user in finding fitting activities from a repository. 

To be able to identify suitable activity candidates when adding an activity to a workflow 

or when replacing an existing activity, a matching algorithm based on semantic information 

can be formulated. 

The algorithm can be visualised as a black box, taking activity labels, data port labels, and 

data types as input and producing a match score as output (see Figure 34). The match score 

can then be used to sort multiple activities by suitability. An implementation of such an 

algorithm is described in the next chapter. 

 

 

Figure 34 - Concept of activity matching 
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4.3.2 Workflow Validation 

The purpose of workflow validation is to improve the quality of workflows by analysing 

certain aspects and providing the user with feedback. The following aspects should be 

included in the system: 

• Workflow object validation: basic checks if important workflow properties are 

specified, helping users to find and understand the workflow. In addition, it is 

checked if the workflow is empty (no root activity) or abstract (not executable). 

• Activity validation: Basic checks for activity properties and check if the activity 

has data ports. 

• Missing child activities: checks if there are any activities that should have a child 

activity but do not have one (e.g. for-loop activity). 

• Cycle detection: checks for cycles in acyclic graph activities (cycles are not 

permitted). A depth-first graph search is performed for each separate set of child 

activities. 

• Unconnected data ports: checks for “loose ends” (input ports that have no source 

or output ports that are not forwarded anywhere). 

• Data type matching: checks that data sources or forwarded data matches the data 

type of the target port. 

• Data cardinality matching: checks that the cardinality of data sources or forwarded 

data matches the cardinality of the target port (cardinality means single data object 

versus data collection) 

• Missing data types: checks whether all data ports have a data type specified. 

Ignores abstract activities. 

• Label matching: checks that data sources or forwarded data matches the semantic 

label type of the target port. 

 

The matching and validation represent semi-automated functionality. The next subsection 

describes the workflow composition features that do not require any user interaction. 

 

4.3.3 Automation 

One of the objectives of this PhD project was to explore if semantic features can be used 

to simplify certain tasks within workflow design and use. Complete automation represents 

the highest achievement in that respect because it would enable non-experts to use the system. 

While automating every aspect of the workflow design life cycle and execution-related tasks 
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is beyond the scope of this work, specific sub-tasks can be completed in a fully automated 

way. These are discussed next. 

 

Workflow Concretisation 

As explained in Section 4.1.4, workflow templates are used to model generic tasks or 

experiments with no commitment to concrete executable activities (software tools / methods). 

Concretisation is the task of making a workflow template executable by filling in 

placeholders with non-abstract activities from a provided repository. 

Although activity repositories are not defined in the overarching model, they can be easily 

realised using workflow repositories that only contain ‘dummy’ workflows with exactly one 

activity (usually an atomic activity).  

An algorithm for the workflow concretisation can make use of the activity matching 

described earlier. Match scores can take into account semantic labels and data types of data 

input and output ports as well as labels of the activity itself.  

 

Data Conversion 

Dataflow is one of the central aspects of scientific workflows. A mismatch of the data 

formats from one activity to the next will lead to an error at execution time. A workflow 

system should therefore be able to uncover and, ideally, help to fix the problem at design 

time. 

Data type mismatches can be identified during workflow validation. An automated 

approach to correct the mismatch could add a conversion activity and re-route the dataflow 

through the new activity. An algorithm can be developed that replaces a mismatching activity 

with a directed graph activity containing a data converter and the old activity. 

Figure 35 illustrates a conversion for an example, showing a workflow before and after 

such algorithm was applied. 

 

This concludes the description of the proposed features regarding workflow creation. The 

next section discusses ontology-related features.  
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Figure 35 - Data conversion (UML) (Left: before adding conversion step; Right: after adding conversion 

step) 

 

4.4 Ontology Management 

Ontologies could be managed entirely by external tools that are based on the Resource 

Description Framework (RDF) or the Web Ontology Language (OWL) – both are Semantic 

Web technologies. However, an integrated solution that supports all required functionality in 

one system is preferable for usability reasons. Specialised tools can hide unnecessary 

complexities to which users would otherwise be exposed to. The label-based semantic 

annotation approach only uses a small subset of RDF or OWL. A generic ontology editor 

would not be limited to that subset. 

An ontology editor should provide the following functionality: 

• Browsing (for use during workflow composition). 

• Editing (for creating and maintaining ontologies). 

• Storing (for local use and sharing). 

• Migration and versioning (for ontology life cycle management). 
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4.5 Summary 

A workflow model based on activities and data connections was presented (following the 

UML Activity Diagram concepts). The design is inspired by ASKALON’s workflow 

paradigm but was heavily adapted to satisfy the needs of this PhD research. The extensions 

include data tables, semantic annotation using labels, a matching algorithm, and user-related 

features. 

Objective 3 (semantics-based algorithms for automation and supporting users) from 

Section 1.4 can be seen as fulfilled by the presented algorithms for activity matching, 

workflow concretisation, and assisted data conversion. Objective 4 (a framework for 

workflow creation/management using the ontology and algorithms) is partially fulfilled 

(design stage complete, implementation stage described next). 

 

The proposed design should enable assistive features to help users to create workflows. In 

order to test and evaluate this, a working system is required. The next chapter discusses the 

implementation of such a system.  
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5 System Implementation 

This chapter provides a detailed description of how the workflow system proposed in 

Chapter 4 was implemented. The physical realisation of a comprehensive workflow 

framework (with semantics-enabled functionality) is key to test the hypothesis that the 

incorporation and algorithmic use of semantic metadata can assist users in workflow design 

and related tasks. 

To facilitate future reuse and integration, Java was selected as programming language. All 

systems described in Chapter 2 are Java-based and could make use of the semantic features 

and algorithms. 

 

Being developed as a proof of concept, the new system requires the following core 

components: 

• Ontology editor (to create and maintain an ontology). 

• Workflow composition tool (to create example workflows and test semantics-

based features). 

• Workflow repository (to test semantic search and provide input for workflow 

composition). 

 

The prototype was developed to a state where it is fully functional regarding the core 

components. A complete workflow system typically has additional features that were omitted 

for the prototype (because they are irrelevant for the PhD research). These include: 

• Workflow scheduling and execution. 

• External tool integration (web services or local processes). 

• Data provenance functionality. 

• Failure handling. 

• Distributed design (remote resources). 
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The software development was conducted using the Rapid Application Development 

(RAD) method [98] because it suits the evolving nature of the PhD project. The approach 

contains the following main principles (inapplicable sections left out): 

1. “Key objective is for fast development and delivery of a high-quality system at a 

relatively low investment cost.” 

2. “Attempts to reduce inherent project risk by breaking a project into smaller 

segments and providing more easy-of-change during the development process.” 

3. “Aims to produce high quality systems quickly, primarily through the use of 

iterative prototyping (at any stage of the development) […] and computerized 

development tools. These tools may include Graphical User Interface (GUI) 

builders […] and object-oriented techniques.” 

4. “Key emphasis is on fulfilling the business need, while technological or 

engineering excellence is of lesser importance.” 

5. “Project control involves prioritizing development and defining delivery deadlines 

or ‘timeboxes’. If the project starts to slip, emphasis is on reducing requirements 

to fit the timebox, not increasing the deadline.” 

6. “Generally includes Joint Application Development […]” 

7. “Iteratively produces production software, as opposed to a throwaway prototype.” 

8. “Produces documentation necessary to facilitate future development and 

maintenance.” 

9. “Standard systems analysis and design techniques can be fitted into this 

framework.” 

 

With respect to point 3, the default designer tool of the Eclipse IDE (integrated 

development platform) was used, which produces Java Swing user interface components. In 

addition, the software design included standard object-oriented concepts such as inheritance, 

templates, and interfaces as well as design patterns (e.g. Observer pattern, Factory pattern 

and Singleton). 
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In the following, system components will be illustrated using simplified UML diagrams 

of selected interfaces and classes. Extended diagrams and a full implementation list can be 

found in Appendix B – List of All Implemented Interfaces and Classes. 

 

5.1 System Overview 

The prototype system is comprised of three main software components, each with 

graphical user interface (see Figure 36): 

(1) Ontology editor: used to create and edit ontologies by defining label type hierarchies.  

(2) Workflow repository hub: offers functionality to create and manage collections of 

workflows (repositories) as well as list and search for workflows. The repository hub 

is linked to a specific ontology (here the ontology for document image analysis).  

(3) Workflow editor: is used to create or edit workflows. The editor is a standalone tool 

but can also be instantiated by the repository hub. Like the hub, the workflow editor 

(and the current workflow) is linked to the ontology of choice to provide the user with 

available label types (when adding semantic information to workflow components). 
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Figure 36 - Architecture of prototype (rectangles: standalone software tools; circles: central objects) 

 

The system design from Chapter 4 was translated to Java classes and interfaces in order 

to facilitate the desired functionality. An overview of the key elements is provided next. 
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Figure 37 - UML Diagram for repository, workflow, and activity 

 

The main classes and relationships of the proposed workflow model can be seen in Figure 

37. A WorkflowRepository is therein composed of Workflow objects, which is in turn 

composed of Activity objects. The four essential types of activities (Section 4.1) are modelled 

as child classes of Activity. 

Semantic metadata is integrated via Label objects. An ontology thereby defines groups of 

label types. Activities and data objects can then be tagged with specific labels from within 

these taxonomies (Figure 38). 

 

This concludes the system overview. The next sections provide details on user interface, 

class structure, and data formats used for the prototype. 
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Figure 38 - UML diagram for ontology and labels 

 

5.2 Ontology Editor 

The concept of semantic labels was introduced in Chapter 3 and refined in Chapter 4. For 

the prototype implementation this led to three elements: label types, label groups, and label 

instances (see again Figure 38). Implementing a dedicated ontology editor has the advantage 

of being able to confront the user only with relevant features and hide other complexities of 

the Semantic Web (i.e. concepts that are not required for the chosen modelling approach). 

The following subsections introduce ontology-related features of the workflow system. 

 

5.2.1 User Interface 

The ontology editor (Figure 39) provides a graphical user interface for building and 

maintaining ontologies. It includes the management of taxonomies (label groups) and their 

assignment to labellable objects using a cardinality (label slots). 

Label types are visualised in a tree view, organised by taxonomy (root label type; see 

Figure 39 top left). Apart from a necessary ID, label types can also contain informational 

metadata (see Figure 39 top right). 

A taxonomy can be assigned to one of the predefined labellable objects (here activity or 

data object; see Figure 39 bottom). Label slots define the maximum number of labels (per 

taxonomy) that can be assigned to an object (i.e. the cardinality). 

As mentioned in previous chapters, an ontology is an ever-evolving construct. Similar to 

software systems, a versioning approach is crucial. The editor allows the specification of an 
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ontology version number as well as the definition of rules for migrating from an older 

ontology to the current one (see subsection 5.2.3). 

As supplementary feature, the export of a label type hierarchy as a table in comma-

separated values (CSV) format was added. This was used to create the table in Appendix A 

– Label type hierarchies of the developed ontology. 

 

 

Figure 39 - Ontology editor 

 

5.2.2 Ontology Data Format 

Due to the limited set of basic concepts of the ontology (label types / groups for activities 

and data objects) and because it is straightforward to encode the hierarchical structure in 

XML, a dedicated XML-based data format was specified (as opposed to adopting an existing 

data format). Reader and writer classes were added to the prototype system. Listing 1 shows 

a shortened file content of an example ontology. 
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Using a dedicated format improves the readability of files and the robustness of the 

system. A disadvantage is that only specialised software tools can work with data stored 

therein. An alternative would be of interest for future versions of the system. The concept of 

labels, label types, and label groups can also be expressed using the Web Ontology Language 

(OWL) standard [4]. Established editors (such as Protégé [60]) could be then used to create 

ontologies. Section 5.5 provides details of the translation approach for ontologies and 

semantic data of workflow components. 

 

Listing 1 - Ontology XML format (example) 

 

 

5.2.3 Ontology Migration Rules 

Small changes of an ontology, such as extending a label type taxonomy, do not require 

any migration solution because no inconsistencies within existing resources can occur. As 

soon as the hierarchy structure is changed however, existing data may become invalid. There 

are two options to deal with this problem: disallow the handling of data that has been created 

using a previous ontology or enable an implicit migration to the latest version. 

The second solution can save time, if a considerable amount of workflow data has been 

semantically annotated already. But even using an automated approach, a manual inspection 

of the migration result is still recommended. 

<Ontology version="2"> 

  <LabelTypeHierarchies> 

    <LabelType caption="Domain" name="domain"> 

      <Description>…</Description> 

      <LabelType caption="Document Image Analysis" name="dia"> 

… 

  <ActivityLabelSlots> 

    <LabelSlotGroup name="processing-type" slots="3"/> 

… 

  <MigrationRules version="1"> 

    <SourceType id="processing-type.acquisition"> 

      <TargetType id="dataTransformation.acquisition"/> 

… 
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A rule-based method was implemented which uses explicit transformation rules that 

represent a one-to-many relation. A (source) label type of a previous ontology can be 

associated with targets from the current ontology, adhering to one of the following options: 

• No target label type: the label will be deleted. 

• One or multiple target label types: the label will be replaced. 

 

 

Figure 40 - Ontology migration rules dialogue (top left: version number and label type tree of an older 

version of the ontology; top right: version number and label type tree of the latest version of the ontology; 

bottom left: list of existing migration rules for old to new version (and controls to create or delete rules); 

bottom right: target label type(s) of selected migration rule (and controls to add or remove label types) 

 

Figure 40 shows the dialogue that is used to define the migration rules (accessible from 

the ontology editor). The rules are saved as part of the current ontology. The user interface 

provides two label type trees for a previous ontology (selected by the user) and one for the 

current ontology respectively. Migration rules are listed by their source label types (bottom 
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left). The associated target label types for the currently selected source type are shown on the 

bottom right. 

This concludes the description of the ontology editor. The next section provides details on 

features related to repositories. 

 

5.3 Repository Hub 

In this section, workflow repositories (introduced in Section 2.4) and data repositories are 

discussed in more detail. Although they represent complementary functionality (the 

workflow system can be operated without), repositories increase the usability by making 

existing resources easily accessible. The resources include: full workflows, partial workflows 

/ activities, and data objects (single data items, collections, or data tables). 

 

5.3.1 Workflow Repositories 

Figure 41 shows the hierarchy of the most relevant classes from the prototype application 

(see Appendix B – List of All Implemented Interfaces and Classes for an extended diagram). 

A repository therein represents a simple collection of workflows. Additional functionality, 

such as search, is realised through associated classes (e.g. filters). 
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Figure 41 - UML diagram for workflow repository and filter 

 

An instance of the class FileFolderWorkflowRepository is linked to a folder of the local 

file system and aggregates all workflows that are stored within (as XML files). A 

CombinedRepository can contain several child repositories and can be seen as a meta 

repository. A ChildActivityRepository lists all child activities of a given workflow as 

individual workflows. Future systems could encompass more complex repositories using 

databases or web services. 
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Figure 42 - Repository Hub 

 

A software tool called “Repository Hub” (see Figure 42) provides an entry point into the 

workflow management of the prototype system. The user interface implements of a master-

details view design, with a list of workflow repositories on the left (master) and the 

workflows of the selected repository on the right (details). A preview of the currently selected 

workflow is shown at the bottom. The following features are provided: 

• List and add workflow repositories (Figure 42 top left). 

• See content of repository – workflows (Figure 42 top right). 

• Preview workflow (Figure 42 bottom); open workflow for viewing / editing. 

• Add / delete workflows (Figure 42 top right toolbar). 

• Workflow search (Figure 42 top left toolbar). 
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Figure 43 shows the workflow search dialogue. The main search functionality is realised 

using a cascade of filters, each calculating a subset of workflows based on their current 

setting. In addition, the search results can be refined using text search (in workflow and 

activity metadata) and an option to only return concrete (i.e. non-abstract) workflows. Adding 

more filters in the future is straightforward (a data type filter for workflow inputs and outputs, 

for instance). 

 

 

Figure 43 - Workflow search interface 

 

The label-based search is controlled via checkboxes – one for each label type. The domain-

specific ontology (see Section 3.4) is thereby used to obtain a list of all possible labels. 

Unused label types (types not used in any workflow), however, are not shown in the user 

interface. Numbers next to the checkboxes indicate how many workflows are labelled by the 

corresponding type. Once the user ticks a checkbox, only workflows with the specific label 

are shown in the search result. The numbers for the boxes are updated accordingly. 
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Since a workflow object itself does not have semantic properties in the proposed model, 

the root activity of the workflow and its input and output data ports are used instead. In future 

implementations this can be extended to all activities within a workflow (optionally). 

The search result shows title and description of the found workflows. Further details on 

input and output ports are available via tooltips. A mouse click on a result item opens the 

respective workflow in the Workflow Editor (see next section). 

 

5.3.2 Data Repositories 

Like workflows and software tools (i.e. atomic activities), datasets represent an important 

resource for research and development. For this reason, data repositories were added to the 

design (Section 4.2). 

As mentioned in Section 4.1.3, workflows can contain data tables. A data repository is 

defined as the sum of all data tables of a workflow repository. This design reduces the 

development effort because several core and user interface components can be used for both 

workflow and data repositories. The workflows are not required to contain activities and can 

therefore be pure data sources. 

Search functionality for data tables is integrated as part of the workflow search dialogue 

described in the previous subsection. Checkboxes for labels of table columns can be found 

at the at the bottom of the filter panel (see Figure 44). 

Data tables can be enriched with semantic labels. They can therefore be used for the 

automation of workflow composition by providing relevant input data (example sets, tool 

settings etc.). The prototype system only supports data tables with static content, but future 

extensions can include dynamic implementations that link to databases or other sources. 

More information on data tables can be found in the next section, which provides details 

on workflows and related components. 
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Figure 44 - Searching for data tables within a repository 

 

5.4 Workflow Editor 

A workflow is composed of activities, of which one is called root activity, representing 

the entry point of the workflow. Activities can be classed into atomic activities and control 

flow activities that can have child activities (see Section 4.1). The set of all activities can be 

represented by a tree structure, with atomic activities as leaf nodes. 

The Workflow Editor (Figure 45) was implemented to either work stand-alone or in 

conjunction with the Repository Hub. The main window shows the activity tree on the left 

side and details of the currently selected item on the right side. It should be noted that the 

root of the tree within the editor represents the workflow object itself and not the root activity, 

which is represented by the (only) child item of the workflow node. 

The workflow object entails basic metadata such as name, version, author, and description. 

Activity data is split into general data (ID, caption, description, semantic labels, data ports, 

etc.) and specific data that is different for each of the activity classes (if-else, for loop, graph, 

atomic). 

The following subsections provide details on the different aspects of workflows as 

implemented within the prototype system. 

 



100 

 

 

Figure 45 - Workflow Editor (left: tree view of activities; right: details of selected activity) 

 

5.4.1 Data Ports 

Dataflow and data objects were discussed in Section 4.1.3. This subsection explains how 

data-related concepts were implemented.  

Dataflow is modelled through DataPort and DataObject (see Figure 46). Each activity 

can have several input and output ports. Data objects can take the form of SingleDataObject 

(for instance an Integer value or an image file) or a DataCollection (i.e. a list of data objects). 

Figure 47 shows the data port dialogue of the workflow editor. Data ports can and should 

be enriched with a caption, a description, semantic labels, and data types (see below). An ID 

is designated automatically.  
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<<Interface>>

Activity

<<Interface>>

DataPort

<<Interface>>

InputPort

<<Interface>>

OutputPort
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1

n

<<Interface>>

DataObject
1 1

SingleDataObject DataCollection

 

Figure 46 - UML class diagram for data ports and data objects 

 

 

Figure 47 - Data port dialogue 
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Data types 

The prototype implementation uses a basic data type system based on a pre-defined type 

hierarchy (stored in a specific XML-based format).  

Input ports can be assigned multiple types. Output ports support only one data type. Figure 

48 shows the data type selection dialogue. The usage of a predefined type is thereby not 

enforced; generic types can be chosen as well. Type equality is determined by the IDs of the 

specified data types. 

If primitive types are used (Integer, decimal, or string), data objects can be assigned fixed 

values at design time. 

 

 

Figure 48 - Data type selection 
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Data connections 

Dataflow between activities is achieved through source ports for input ports and port 

forwarding for output ports. The workflow editor determines automatically what ports are 

available as source or for forwarding and only presents these to the user (see Figure 49 for 

an example). 

In case of data collections, another form of dataflow is required. By specifying a source 

port and a port that provides a position within the collection, it is possible to fill the collection 

with single data objects. The type of the position provider port must be “Integer”. 

 

The next subsection provides implementation details on workflow activities. 

 

 

Figure 49 - Selection of input port source 

 

5.4.2 Activities 

This subsection provides implementation details of the different activity types introduced 

in Section 4.1.1 and Section 4.1.2. 

Atomic Activities represent a software tool or service. They can also be used as a 

placeholder within workflow templates. The workflow editor denotes this explicitly through 

a tick box (“abstract”) within the workflow details panel. Figure 50 shows a concrete activity 

in the workflow editor. 
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Figure 50 - Details of a concrete atomic activity (method name and version are provided and “Abstract 

activity” is not checked) 

 

For Loop Activities model iterative processes. Each loop activity needs to have exactly 

one child activity (of any type). Figure 51 shows the workflow editor view of a loop activity. 

Four loop ports are used to specify start position, end position, step with, and current position. 

Loop ports are input ports and output ports at the same time (see Figure 52).  

If not linked to external data sources, the loop parameters can be specified using fixed 

integer values, as described in the previous subsection. Normal dataflow is allowed from the 

loop activity to its child (via source port definitions) and vice versa (via output port 

forwarding). 
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Figure 51 - Details of a “for loop” activity (special loop ports at the bottom right) 

 

<<Interface>>

DataPort

<<Interface>>

InputPort

<<Interface>>

OutputPort

<<Interface>>

LoopPort

LoopPortImpl

ForLoopActivity

 

Figure 52 – UML class diagram containing loop port 

 

Direct Acyclic Graph (DAG) Activities can be used to model sequences and parallel 

processing. Figure 53 shows an example of a simple non-parallel pipeline of three activities. 

The nodes of the graph (representing the child activities) can be freely arranged by the user. 

The layout is saved in the workflow XML data file. 
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Parallel execution is achieved by using multiple start nodes or by specifying multiple 

successors at one point in the control flow. A special concept thereby are optional execution 

branches. These are reserved for (abstract) workflow templates and represent processing 

paths that need not be used in a final (concrete) workflow. Furthermore, a minimum number 

of successors can be defined for an activity, to indicate how many of the optional paths must 

be realised (for the workflow to be valid). One example is a workflow that compares the 

performance of two or more methods. Other use cases for this feature are provided in the 

next chapter. 

Dataflow is created by connecting output ports with input ports between activities.  

 

 

Figure 53 - Details of Directed Acyclic Graph activity in Workflow Editor 

 

If-Else Activities represent conditional branches. Figure 54 shows an example in the 

Workflow Editor. The specialised panel on the bottom right consists of three parts:  

1) A list of all conditional branches with one child activity each. 

2) The condition tree of the currently selected branch. 

3) The details of the currently selected condition. 
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The example in Figure 54 uses an empty else-branch. The input image of the workflow is 

only binarised if certain conditions are fulfilled, otherwise it is not changed. To be able to 

model such branches, the input data must be routed to the output port of the if-else activity. 

Currently, that is not possible within the prototype system. Instead, an empty atomic activity 

is used, which passes through any incoming data. 

 

The next subsection describes how semantic labels can be assigned within the workflow 

system. 

 

 

 

Figure 54 - Details of If-Else activity in Workflow Editor (bottom: branches and conditions enlarged) 
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5.4.3 Semantic Labels 

Data ports and activities can be annotated with semantic labels. This functionality can be 

accessed via dedicated panels in the Data Port dialogue (Figure 47 on page 101) and the 

activity details section (Figure 50 on page 104).  

New labels can be chosen from the ontology within a dedicated dialogue (Figure 55). Once 

a label of a specific type has been assigned, no second label with the same type can be added. 

The allowed number of labels from a label group is restricted by the corresponding 

cardinality (number of label slots) that is defined in the ontology. 

Assigned labels are displayed as “tiles” with heading (the root type), type name (button), 

and a button to remove the label (“X”). Clicking the type name opens a dialog showing the 

whole branch of the label type in the ontology (from the selected type to the root type). 

 

 

Figure 55 - Dialogue for adding a semantic label (here: label for a data port) 

 

5.4.4 Data Tables 

Data tables represent a special concept of a workflow-wide data source (see also 4.1.3). 

Figure 56 shows the diagram for the related interfaces and classes. 

A data table represents a two-dimensional matrix of data objects. Data tables can be used 

as data sources within a workflow or as part of a data repository (see 5.3.2). Unlike single 



109 

 

data objects or data collections, they are not part of the dataflow of a workflow (i.e. they are 

not passed around between activities).  

A workflow can have multiple data tables, all of which can be accessed from each activity 

of the workflow. The columns of a table resemble output ports of an activity, in fact, they are 

implemented using the same Java interface within the prototype implementation. Figure 57 

shows the dialogue for selecting the source of a data port. All tables and their columns are 

listed as viable source. 

 

 

 

Figure 56 - UML class diagram for data tables 

 

 

Figure 57 - Table columns as data source 

 

Data tables can be created in the Workflow Editor and they appear as first child nodes 

under the workflow root in the main tree (see Figure 58). ID, caption and description can be 
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specified in the details panel on the right. Table columns are added similarly to activity input 

or output ports and can be annotated with semantic labels. 

A table cell is represented by a “DataObject”. Although data objects can also be 

collections, cells are currently limited to single data objects. The content of a table can be 

edited with a dedicated editor (Figure 59). Adding values fills the “Fixed Content” attribute 

that is also used for input ports of activities. 

 

The next subsection discusses the implementation of abstract workflows (templates). 

 

 

Figure 58 - Data tables in the Workflow Editor 

 

 

Figure 59 - Editing the content of data tables 

 

5.4.5 Workflow Templates 

The concept of templates (see Section 4.1.4) is realised by means of abstract workflows. 

A workflow is abstract if it contains one or more abstract activities.  
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The workflow editor shows the status of abstractness in the workflow properties (Figure 

60) and activity properties. Control flow activities are implicitly abstract if they have an 

abstract child activity. Atomic activities are explicitly marked as abstract or not abstract. 

 

 

Figure 60 - Workflow properties 

  

The editor contains a method for concretisation of the current workflow, wherein abstract 

activities are automatically (or with user interaction) replaced by matching concrete activities 

from a specified repository (more details in subsection 5.4.8).  

 

The algorithm for semantic activity matching (used during concretisation) is described in 

the next subsection. 

 

5.4.6 Activity Matching 

An activity matching algorithm (see also Section 4.3.1) was developed that is based on 

the following properties: activity labels, data port labels, and data types. The matching is 

carried out by comparing a set of reference properties against multiple candidate sets of 

properties. Depending on the task, the reference properties have different origins. When 

replacing an activity, the properties are derived from the activity that is to be replaced 

(input/output ports and activity labels). On the other hand, when adding a nested activity, the 

properties are aggregated from the parent activity and possibly siblings (if the target is a 

directed graph activity). 
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Figure 61 shows an overview of the classes and interfaces used for matching. A more 

complete class diagram can be found in Appendix B (page 244). Central are the interfaces 

Matcher and MatchValue. Based on labels and/or data types as inputs, a matcher calculates 

a match value. The match value contains a score (high means good match) and match details. 

The general approach for matching data types or labels is the same. Each reference 

property is compared against all properties of the current target set. The match score (0 to 

100%) is calculated as a composite of all individual comparisons. Eventually, one match 

score for each pair of reference and target property set is obtained. The details of each score 

(e.g. compared properties and reason for low value) are thereby collected for possible 

inspection by the user. Listing 2 shows a simplified version of the matching algorithm for 

one object with semantic labels. 

A special case is the combination of semantic label-based matches and data-type-based 

matches at activity level. If the reference activity does not specify a data type, the data-type-

based match score will always be 100% (because any type is allowed). However, this score 

carries little information since there was nothing to match. To combine this score with the 

label-based score with equal weight (arithmetic mean) reduces the impact of the other score 

which carries more information (semantic match). As a counter-measure, a weighted 

arithmetic mean is used instead. The weight is higher, if the matching carries more 

information (i.e. if the reference activity specifies a data type). 

 

<<Interface>>

Matcher

T
<<Interface>>

MatchValue

T

getMatchScore

LabellableObjectMatcher

<<bind>>
T -> HasLabels

match

ActivityLabelMatcher

<<bind>>
T -> Activity

ActivityDataTypeMatcher

 

Figure 61 - UML class diagram for matchers 
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Listing 2 – Label-based matching for one object (pseudocode) 

 

(*) The value of 10% was chosen heuristically. The exact value does not matter since match 

scores are used for relative comparison between several matches. What is important is that a 

partial match has a lower score than a full match. 

 

Inputs:  

    referenceObject (object with semantic labels) 

    objectToMatch (object with semantic labels) 

 

//Calculate average of match scores of all labels of the reference object 

scoreSum = 0 

matchCount = 0 

for each label of referenceObject (referenceLabel) 

    //Find best match between referenceLabel and any label of objectToMatch 

    maxScore = 0 

    for each label of objectToMatch (labelToMatch) 

        score = matchLabel(referenceLabel, labelToMatch) 

        if (score > maxScore) 

            maxScore = score   

    scoreSum += maxScore 

    matchCount++ 

return scoreSum / matchCount (average score) 

 

function matchLabel(referenceLabel, labelToMatch) 

    //Root label type? -> No match (root types are just general categories) 

    if (referenceLabel.parent == null) 

        return 0% 

    //Equals? -> Full match 

    if (referenceLabel == labelToMatch) 

        return 100% 

    //Different root type? -> No match 

    if (referenceLabel.root != labelToMatch.root) 

        return 0% 

    //Reference label subtype of label to match? -> No match 

    //(reference label is more generic than the label to match) 

    if (referenceLabel.isSubtypeOf(labelToMatch) 

        return 0% 

    //Partial match -> recursion (lowers score by 10%* each time) 

    //(reference label is specialised child of label to match) 

    return matchLabel(referenceLabel.parent, labelToMatch) – 10% 
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Match results are presented in order of score. Figure 62 shows the workflow editor’s 

dialogue for replacing an existing activity. The user can select a repository and apply search 

filters if desired. In addition, certain aspects of the matching can be specified (to match by 

labels only, for instance).  

 

 

Figure 62 - Matching for replacing an existing activity 

 

 

Figure 63 - Details of match result 

 

Details on how the match score was composed can be retrieved on demand (Figure 63). 

The actual replacement can be initiated by selecting a result item. In a final step, the data 

ports of the existing and the new activity must be aligned, and metadata can be confirmed or 

modified (see Figure 64).  
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Figure 64 - Port alignment and metadata specification for replacing an activity 

 

     

Figure 65 - Port alignment: Left: well aligned; Right: misaligned 

 

The matching for adding a new child activity works in a similar fashion, with the exception 

that the port alignment can be omitted. 

The dialogue for replacing an activity visualises both old and replacement activity at once 

in a nested way. The current activity (coloured in purple) and its data ports are wrapped 

around the replacement activity (green). Input and output ports of the two activities are shown 

side-by-side to enable a quick visual association. The user can change the position of each 

data port by using up or down arrows. Each data port of the replacement activity is also 

colour-coded according to how well it fits the counterpart of the old activity (see Figure 65). 
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The colour thereby ranges from green (perfect match) to red (no match). The match scores 

are calculated using the same algorithm that is also used for finding a matching activity. 

Using the port matching approach, an auto-alignment feature was implemented. The 

algorithm finds and assigns the best matching port for each reference port. Non-matching 

ports are added at a position after the last reference port and therefore have no counterpart. 

 

The next subsection introduces validation – a feature to help to create complete and usable 

workflows. 

 

5.4.7 Workflow Validation 

Validation is an assistive feature to improve the quality of workflows by analysing certain 

aspects and providing the user with feedback (see also Section 4.3.2). Validation was added 

to the prototype system using a modular design that promotes extensibility (see Figure 66).  

The following checks are available: workflow object validation, activity validation, 

missing child activities, cycle detection, unconnected data ports, data type matching, data 

cardinality matching, missing data types, and semantic label matching. 

 

WorkflowValidator

validate

<<Interface>>

Workflow

WorkflowValidationResult

<<Interface>>

WorkflowValidationModule

ActivityValidationModule CycleDetectionModule ...

 

Figure 66 - UML class diagram for workflow validation 
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Validation results are presented hierarchically with three main categories: errors, 

warnings, and notes (“info”). Each result item contains detailed information on the nature of 

the corresponding issue. Where applicable, items are also linked to a corresponding workflow 

component (e.g. an activity). Selecting the result item then prompts the main workflow editor 

to show the linked component. 

Figure 67 shows the validation dialogue with example results. A specialised panel at the 

bottom of the window offers controls to directly solve the corresponding problem or a step-

by-step description for a manual resolution. 

 

The activity matching and validation represent semi-automated functionality. The next 

section describes the workflow composition features that do not require any user interaction. 

 

 

Figure 67 - Validation dialogue 
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5.4.8 Concretisation and Data Conversion 

Workflow concretisation was outlined in Section 4.3.3 as means of making a workflow 

template executable by substituting placeholders with non-abstract activities from a provided 

repository (activity repositories are realised using workflow repositories that only contain 

workflows with exactly one atomic activity).  

The developed algorithm for the workflow concretisation makes use of the activity 

matching described in Section 5.4.6. Listing 3 provides an overview. 

 

Listing 3 – Workflow concretisation algorithm (pseudocode) 

 

 

Match scores are calculated similarly to the method described earlier, taking into account 

semantic labels and data types of data input and output ports as well as labels of the activity 

itself. One difference is made (when running the automated concretisation) with how data 

type mismatches are handled. Contrary to the interactive tasks, a mismatch is treated in a 

stricter manner, essentially excluding all activities from the repository which do not fit the 

data type profile (or type compatibility).  

A “Strictness” threshold (adjustable by the user, see Figure 68 top right) is used to reject 

activities that have a low match score. The lower the threshold, the higher is the chance of 

concretising the whole workflow. However, using a low threshold risks producing a 

workflow that is not fit for purpose.  

function concretise(Workflow workflow, Activity[] activityRepository, boolean interactive) { 

 Activity[] abstractActivities = workflow.findAbstractActivities(); 

  

 sortAscendingByNumberOfBestMatches(abstractActivities, activityRepository); 

 

 for each activity in abstractActivities { 

  Activity[] concreteMatchingActivities = findBestMatches(activity, activityRepository); 

  if (concreteMatchingActivities.size > 1 && interactive) 

   refineMatchingResultByUser(concreteMatchingActivities); 

  workflow.replaceActivity(activity, concreteMatchingActivities[0]); 

 } 

} 
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The order in which abstract activities are replaced by concrete ones is defined by the 

number of best matching activities (all activities from the repository with the highest match 

score, as long as the score is not zero). The purpose of this sorting is to replace the activities 

with the least number of matches first. The information concerning which activities have 

been replaced can help in choosing the following activities (which have more options for 

replacements).  

The replacement of a single activity is carried out using the automated data port alignment 

that was discussed in Section 5.4.6. If an abstract activity is replaced by another abstract 

activity (e.g. a template), the concretisation process is repeated recursively. 

At the end of the process the concretisation dialogue shows an overview of the 

replacements that have been carried out and a success indicator. Figure 68 shows the 

concretisation result for the template that is introduced in  Figure 60 (page 111). Examples 

for interactive workflow concretisation are described in Chapter 6. 

 

 

Figure 68 – Workflow concretisation 

 

Automated data conversion was introduced in Section 4.3.3. It represents a way of dealing 

with data type mismatches (which would lead to an error at execution time).  

The prototype reports data type mismatches during workflow validation. A specialised 

user interface panel offers an automated and a manual way of correcting the problem (see 

Figure 69). 
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The automated approach adds a conversion activity and re-routes the dataflow through the 

new activity. The algorithm can be summarised as follows: 

For a given source activity with a source data port and target activity with a target data 

port: 

(1) If the parent activity of the target activity is not a directed graph activity, replace 

the parent activity with a new graph activity and add the target activity as a child 

(2) Add an abstract atomic converter activity to the directed graph activity 

(3) Add an input and an output port to the converter activity, using the data types from 

the source port and the target port 

(4) Link the source port to the input port of the converter activity 

(5) Link the target port to the output port of the converter activity 

(6) Invoke the concretisation procedure (see above) 

 

 

Figure 69 - Data type mismatch workflow validation error 

 

5.4.9 Workflow XML Format 

Workflows are stored using a special XML-based format. Listing 4 shows a shortened 

version of the example workflow in Figure 53 (page 106). Each activity type has a 

corresponding XML element. The concept of child activities can be translated directly to 

nested XML elements. The example has a for-loop activity containing a DAG activity which 

in turn contains an atomic activity. 
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Listing 4 - Example workflow in XML format (simplified) 

 

 

Semantic labels are stored as sub-elements within the workflow components that can be 

labelled (activity, data object). As mentioned in subsection 5.2.3, major changes in the used 

ontology require some form of migration solution. A prerequisite for such a process is to 

include information (in the workflow) on which ontology was used to create the labels. The 

Ontology Editor (see 5.2.1) allows the definition of an ontology version number (an Integer). 

When saving a workflow, it is annotated using the current ontology version and, in turn, when 

<Workflow author="clc" name="Page segmentation" version="1.0" ontologyVersion="2"> 

<Description>…</Description> 

<DataTable …> 

 <TableColumn …> 

 … 

</DataTable> 

<ForLoopActivity caption="Main Loop" id="main_loop"> 

 <InputPort allowedTypes="file.image" id="InputPortImpl0"> 

  <DataCollection caption="Page scans"> 

   <Label type="domain.dia"/> 

… 

  </DataCollection> 

 </InputPort> 

 <OutputPort id="OutputPortImpl0" positionSource="LoopPortImpl7" …> 

  <DataCollection caption="Page layout files"/> 

 </OutputPort> 

…    

 <DirectedGraphActivity caption="Image processing pipe" id="processing-pipe"> 

  <InputPort allowedTypes="" id="InputPortImpl2" …> 

   <SingleDataObject caption="Page scan"/> 

  </InputPort> 

  <OutputPort id="OutputPortImpl2" source="OutputPortImpl1" type=""> 

   <SingleDataObject caption="Page segmentation file"/> 

  </OutputPort> 

  

  <Vertex height="30" width="128" x="65" y="130" …> 

   <AtomicActivity abstract="true" caption="Image conversion" …> 

   … 

  </Vertex> 

  <Vertex height="30" width="128" x="265" y="130" …> 

   <IfElseActivity caption="Selective Image Enhancement" …> 

    <Branch …> 

    … 
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opening a workflow, its labels can be migrated to the latest revision. The migration is 

discussed in the next subsection. 

 

5.4.10 Ontology Migration 

When a workflow is loaded from a file, any contained semantic label must be part of the 

current ontology, otherwise it will be ignored (the system currently allows a single ontology). 

Nevertheless, an ontology may contain migration rules to translate labels of an older ontology 

to the new version (see again 5.2.3). Figure 70 shows this process in context of parsing a 

workflow XML file. The algorithm ensures that the loaded workflow only contains valid 

labels. Saving the updated workflow therefore means invalid labels will be lost. 

The Workflow Editor notifies the user in case labels have been changed or ignored (see 

Figure 71).  

 

Opening workflow

Parse XML

Old ontology 
format?

Add all labels

No
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objects and their labels

Has another label?
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exists?

No

Label type valid?Add label  to object Yes

No

Ingore label

Yes

Has target label 
types?

No

Yes

Iterate over target 
label types

 

Figure 70 - Flow chart for label type migration 
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This concludes the description of the basic implementation of the workflow system 

including: ontology editor, repositories, and workflow editor. Before discussing support for 

the Web Ontology Language, a short final subsection introduces a visualisation approach for 

workflows. 

 

 

Figure 71 - Ontology / label migration messages 

 

5.4.11 Workflow UML Visualisation 

An experimental workflow renderer was added to the Workflow Editor that uses a UML-

like activity graph. For simplicity, directed graph activities are drawn in a horizontal layout 

(child activities one after the other) and if-else activities are drawn in a vertical layout 

(branches stacked one over the other).  

Figure 72 shows an example with a graph activity, Figure 73 shows an example with if-

else activity, Figure 74 shows a for-loop activity (dashed), and Figure 75 shows a more 

complex workflow with all activity types. 
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Figure 72 - UML-like workflow visualisation of example with directed graph activity (top: entire 

workflow; bottom: left part enlarged) 
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Figure 73 - UML-like workflow visualisation of example with if-else activity 

 



126 

 

 

Figure 74 - UML-like workflow visualisation of example with for-loop activity 
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Figure 75 - UML-like workflow visualisation of complex example (bottom: enlarged left part) 
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5.5 Web Ontology Language Support 

The label-centric ontology and the semantic information of a workflow are a subset of the 

Web Ontology Language (OWL) in terms of expressiveness. To prove this claim, the 

prototype has been extended by an export module that saves the semantic data in OWL2 

XML format [4]. A standardised format also makes the data interchangeable with other 

systems and enables the use of third-party semantic reasoners, for example. 

OWL is widely used in the context of the Semantic Web and the respective OWL2 XML 

format is the most recent recommendation of the World Wide Web Consortium (W3C). 

The native data formats of the prototype are two specially developed XML formats for 

storing ontologies and workflows (including semantic information). The aim was therefore 

to define a mapping from the data model of the system to OWL that leads to equivalent 

persistently stored data. The decision to use proprietary formats was made in the early stages 

of the PhD research, in expectation of benefits such as: faster implementation, better 

readability (by a human), and more efficiency in terms of file size. This is discussed at the 

end of this section. 

 

5.5.1 Label Types in OWL 

As a first step, the functionality to save an ontology containing a label type hierarchy was 

developed. As described in Section 5.2, this includes label taxonomies and label slots. Both 

can be described using OWL classes and object properties. Table 4 shows the mapping for 

all aspects of a label type ontology. 

 

Table 4 - Mapping of XML format aspects for ontologies (dedicated vs OWL2) 

Ontology aspect Implementation concept 

and example for 

dedicated XML format 

Implementation concept and example for 

OWL2 XML format 

Label type 

declaration 

Dedicated XML element 
<LabelType name="…"/> 

Class declaration 
<Declaration> 

  <Class IRI4="#…"/> 

</Declaration> 

                                                 
4 IRI: International Resource Identifier 
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Ontology aspect Implementation concept 

and example for 

dedicated XML format 

Implementation concept and example for 

OWL2 XML format 

Label type 

hierarchic relation 

Nested XML elements 
<LabelType name="…"> parent 

  <LabelType name="…"/> child 

</LabelType> 

Explicit class relationship definition 
<SubClassOf> 

  <Class IRI="#…"/> child 

  <Class IRI="#…"/> parent 

</SubClassOf> 

Label type metadata 

(e.g. caption and 

description) 

XML attributes and text 

elements 
<LabelType caption="…" …> 

  

<Description>…</Description> 

</LabelType> 

OWL annotation properties (declaration and 

assertion)  
<Declaration> 

  <AnnotationProperty IRI="#labelCaption"/> 

</Declaration> 

<Declaration> 

  <AnnotationProperty IRI="#labelDescription"/> 

</Declaration> 

 

<AnnotationAssertion> 

  <AnnotationProperty IRI="#labelCaption"/> 

    <IRI>#...</IRI> class 

    <Literal datatypeIRI = 

"&rdf;PlainLiteral">…</Literal> 

</AnnotationAssertion> metadata 

Allowed label 

assignments 

Explicit XML elements with 

nested elements  
<ActivityLabelSlots> 

  <LabelSlotGroup name="…" 

…/> 

</ActivityLabelSlots> 

<DataObjectLabelSlots> 

  … 

</DataObjectLabelSlots> 

Classes and object properties 
<Declaration> 

  <Class IRI="#Activity"/> 

</Declaration> 

<Declaration> 

  <Class IRI="#DataObject"/> 

</Declaration> 

 

<Declaration> 

  <ObjectProperty IRI="#has…"/> 

</Declaration> 

 

<ObjectPropertyDomain> 

  <ObjectProperty IRI="#has…"/> 

  <Class IRI="#Activity"/> 

</ObjectPropertyDomain> 

 

<ObjectPropertyRange> 

  <ObjectProperty IRI="#has…"/> 

  <ObjectProperty IRI="#has…"/> 

  <Class IRI="#…"/> 

</ObjectPropertyRange> 

 

Label slot 

cardinality 

XML attribute 
<LabelSlotGroup … 

slots="3"/> 

Cardinality definition 
<ObjectPropertyRange> 

  <ObjectProperty IRI="#has…"/> 

  <ObjectMaxCardinality cardinality="3"> 

    <ObjectProperty IRI="#has…"/> 

    <Class IRI="#…"/> 

  </ObjectMaxCardinality> 

</ObjectPropertyRange> 
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As shown, a label ontology can be fully represented by OWL using the corresponding 

XML-based standard format. A switch within the Ontology Editor allows the user to choose 

to save the current ontology in the dedicated format or in OWL2 XML format. To ensure 

syntactical correctness, the prototype validates the produced XML data against the official 

schema [99].  

 

 

Figure 76 - Label ontology as visualised in Protégé 

 

Further validation was achieved by opening and inspecting a saved ontology with the 

Protégé Editor (see Figure 76). Two extra classes called “Thing” and “LabelType” can be 

seen in the screenshot. The former is the super class of all classes in OWL and is created 

implicitly. The “LabelType” class is not strictly necessary and was added to improve 
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readability. The fact, that a class is a label type, can also be inferred from the object properties 

(“#has…”) that link activities and data objects with label slots.  

 

5.5.2 Workflow Labels in OWL 

While the label type hierarchy represents terminological information, the actual labels of 

the activities and data objects within a workflow represent factual (or assertional) 

knowledge. The dedicated XML format of the prototype combines structural and sematic 

workflow information. The same is not possible with OWL2 XML since OWL is not a 

workflow representation language. The mapping described in the following therefore applies 

only for the sematic data within a workflow. 

To begin with, in OWL, the factual data about the labels is an extension of the label 

ontology that is described above. In OWL2 XML this can be expressed through an 

“<import>” statement, which links to another OWL document via a URL. This requires the 

label ontology to be available online (technically, a URL can point to a local file but that 

would drastically limit the usefulness of the ontology). 

Table 5 shows the mapping to OWL which is mostly based on assertions (class, object 

property). 

 

Table 5 - Mapping of XML format aspects for semantic workflow data (dedicated vs OWL2) 

Ontology aspect Implementation concept 

and example for 

dedicated XML format 

Implementation concept and example for 

OWL2 XML format 

Label assignment 

to activity or data 

object 

Nested XML elements 
<Activity> 

  <Label /> 

</Activity 

Named individuals, class assertions, and object 

property assertions 
<Declaration> 

  <NamedIndividual IRI="#Activity_…p"/> 

</Declaration> 

<Declaration> 

  <NamedIndividual IRI="#Activity_…_Label_…"/> 

</Declaration> 

 

<ClassAssertion> 

  <Class IRI="http://...#Activity"/> 

  <NamedIndividual IRI="#Activity_…"/> 

</ClassAssertion> 

 

<ObjectPropertyAssertion> 

  <ObjectProperty IRI="#has…"/> 
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Ontology aspect Implementation concept 

and example for 

dedicated XML format 

Implementation concept and example for 

OWL2 XML format 

  <NamedIndividual IRI="#Activity_…"/> 

  <NamedIndividual IRI="#…Label_…"/> 

</ObjectPropertyAssertion> 

Label type XML attribute 
<Label type="…"/> 

Class assertions 
<ClassAssertion> 

  <Class IRI="http://...#(label type)"/> 

  <NamedIndividual IRI="#…Label_…"/> 

</ClassAssertion> 

Label metadata 

(e.g. comments) 

XML text elements 
<Label …> 

  <Comments>…</Comments> 

</Label> 

Data property assertions 
(not yet implemented) 

 

 

Figure 77 - Semantic workflow data as visualised in Protégé 

 

Within the prototype software, the semantic data can be saved explicitly as OWL2 XML 

from within the Workflow Editor. Figure 77 shows the semantic data of an example workflow 

in Protégé. Workflow activities, data objects, and all labels are therein represented by named 
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individuals. It can be seen that the factual data is indeed an extension of the label ontology – 

the whole label type hierarchy is included. 

 

5.5.3 Discussion and Future Use of OWL 

For future iterations of the workflow system it can be considered to fully replace the 

dedicated label ontology XML format with the OWL2 format. A module to read an ontology 

from OWL XML has not been implemented yet since it is a straightforward software 

engineering task and does not provide extra value for this PhD research. 

That the proprietary format is indeed more storage space efficient can be predicted from 

Table 4 and Table 5. A comparison of the file sizes of the example ontology from Section 

5.5.2 supports this suggestion. The dedicated XML format leads to a file of 10KB whereas 

OWL2 XML requires 52KB for the same information. 

The readability is arguably better with the specialised XML format. Based on Listing 5 

the readers can form their own opinions. Human readability can simplify the development of 

a system since it helps debugging and testing. Additionally, the dedicated XML format 

required less implementation effort. One reason was that the concepts of the semantic model 

and the workflow model could be directly translated to an unconstrained XML format. 

Another reason is the complexity of OWL, which covers a much wider range of use cases. 

This was intensified by the limitations of the documentation that is currently available 

(OWL2 XML is a new format). 

 

The final section of this chapter discusses the complexity and performance of presented 

algorithms and features. 
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Listing 5 - Representation of example ontology in proprietary XML and OWL2 XML (shortened) 

 

 

Proprietary XML: 

<LabelTypeHierarchies> 

  <LabelType caption="Domain" name="domain"> 

    <Description>A specific step in a processing pipeline …</Description> 

      <LabelType caption="Document Image Analysis" name="dia"> 

        <LabelType caption="Image Processing" name="image-processing"/> 

        <LabelType caption="Image Pre-Processing" name="image-preprocessing"/> 

        <LabelType caption="Geometric Correction" name="geometric-correction"/> 

        <LabelType caption="Segmentation" name="segmentation"> 

          <LabelType caption="Region/Block" name="region"/> 

          <LabelType caption="Text Line" name="text-line"/> 

… 

 

OWL2 XML: 

  <Declaration> 

    <AnnotationProperty IRI="#labelCaption"/> 

  </Declaration> 

… 

  <Declaration> 

    <Class IRI="#LabelType"/> 

  </Declaration> 

… 

  <Declaration> 

    <Class IRI="#domain"/> 

  </Declaration> 

… 

  <AnnotationAssertion> 

    <AnnotationProperty IRI="#labelCaption"/> 

    <IRI>#domain</IRI> 

    <Literal datatypeIRI="&amp;rdf;PlainLiteral">Domain</Literal> 

  </AnnotationAssertion> 

… 

  <SubClassOf> 

    <Class IRI="#domain"/> 

    <Class IRI="#LabelType"/> 

  </SubClassOf> 

… 

  <Declaration> 

    <ObjectProperty IRI="#hasprocessing-type"/> 

  </Declaration> 

… 

  <ObjectPropertyDomain> 

    <ObjectProperty IRI="#hasprocessing-type"/> 

    <Class IRI="#Activity"/> 

  </ObjectPropertyDomain> 

… 

  <ObjectPropertyRange> 

    <ObjectProperty IRI="#hasprocessing-type"/> 

    <ObjectMaxCardinality cardinality="3"> 

      <ObjectProperty IRI="#hasprocessing-type"/> 

      <Class IRI="#processing-type"/> 

    </ObjectMaxCardinality> 

  </ObjectPropertyRange> 

… 
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5.6 Algorithm Complexity and Performance 

The runtime of any type of reasoning (inference) algorithm is generally linked to the 

expressivity of the ontology language used. Hitzler et al. [77] note that “usually the higher 

expressivity comes at the expense of speed: the runtime of algorithms for automated 

inference tends to increase drastically when more expressive formalisms are used.”  

Because the proposed semantic model makes use of cardinalities other than the basic cases 

of “0” and “1”, an OWL flavour of medium expressivity (OWL DL) must be used (in contrast 

to OWL Lite and OWL Full). The sublanguage OWL DL has a worst-case computational 

complexity NExpTime (solvable by a non-deterministic Turing machine in time 𝑂(2𝑝(𝑛)) for 

a polynomial p(n)) [77]. Nevertheless, the cardinalities are not necessarily involved in any 

reasoning related to workflow composition and are only evaluated for user interface 

enhancement. Disregarding the cardinalities, OWL Lite can be used for complexity 

considerations. The worst-case computational complexity of OWL Lite is ExpTime 

(exponential runtime, solvable by a deterministic Turing machine in 𝑂(2𝑝(𝑛)) time).  

The general theoretical complexity of semantic reasoning might only be of secondary 

importance for this work. More interesting is the performance of specific algorithms such as 

the label-based activity matching (Section 5.4.6). To match two objects with semantic labels, 

for instance, a maximum runtime of 𝑂(𝑛 ∗ 𝑚 ∗ 𝑑) is required, where n and m are the label 

counts of the objects and d is the depth of the ontology (longest path from root to a leaf label 

type). 

Table 6 contains the results of performance measurements for different actions. The 

execution environment was a 64 bit Windows PC with an Intel Xeon CPU at 3.3 GHz, 16 

GB RAM, and Oracle Java JDK version 1.8 (with default settings). 
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Table 6 - Runtime measurements for the workflow system prototype 

Action Average Time (ms)* Standard Dev. 

Search for “manual” tools in the example 

activity repository (16 result items from 

104 activities), including result rendering 

35.4 0.9 

Activity matching (source activity with 

two data ports, 4 labels) for 104 target 

activities, without rendering of results 

4.2 0.1 

Workflow concretisation (segmentation 

example, 3 abstract activities) selecting 

from 104 activities, without user interface 

operations 

45.7 1.2 

Text-based search (search term “image”) 

within all workflows (46 results from 126 

workflows), including result rendering 

68.8 1.2 

(*) The average time was calculated from five independent runs of the respective action. 

 

5.7 Summary 

A workflow system implementation based on the Java programming language was 

presented. The strategy was to include all features to compose and use workflows in an easy-

to-use way (e.g. searchable repositories, semantics-based matching, and concretisation), but 

also to include all aspects supporting this, including workflow templates, workflow 

validation, and ontology management. This holistic approach, incorporating all mentioned 

aspects, can help to reduce the learning curve for the system. The users will only be exposed 

to relevant functions and user interface components (for instance when creating or editing an 

ontology internally as opposed to externally using Protégé, for example). 

Building upon the design in Chapter IV, objective 4 from Section 1.4 is now satisfied. The 

presented prototype represents a complete framework for all relevant workflow-related tasks, 
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using new semantic approaches for automation and user support. This chapter also provides 

more details on the solutions for objectives 1. (modelling approach) and 3. (algorithms). 

 

This is the end of the workflow system description. The next chapter focuses on the 

evaluation of the system.  
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6 Experiments, Use Cases, and Evaluation 

The previous chapters described theoretical foundations, design, and implementation of 

an ontology for document image analysis and of a workflow system with semantic features. 

In this chapter, the validity, the possibilities, the advantages, but also the limitations of the 

proposed approach are explored, using real-world use cases from the domain of document 

image analysis (the system can be used for other domains – discussed in the last chapter, 

Section 8.5.1). 

The main goal of this and the next chapter is to test the hypothesis by means of real-world 

data (objective 5 of Section 1.4). Using data from the target domain helps to establish more 

convincingly if semantic data and their use can aide users and make workflow systems easier 

to use.  

 

All aspects of the proposed solutions were evaluated, the main ones being: 

• The label-based ontology (see Chapter 3). 

• Repositories (see Section 4.2). 

• Workflow creation and management (see Section 4.3). 

 

For a more relatable and praxis-oriented analysis, real data was favoured over synthetic 

data. To this end, the prototype workflow system was used to build up example data in the 

form of: 

• A repository containing activities that represent software tools of the domain of 

document image analysis. 

• Example workflows for common document image analysis tasks. 

The data was then used to test the semantics-based features of the system but also 

complementary functionality. 

The experimentation itself was thereby a valuable source of feedback for improving the 

models and software tools. 
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Before examining the workflow model and system, the ontology presented in Chapter 3 

is evaluated in the following section.  

 

6.1 Evaluation and Extension of the Ontology for Document Image 

Analysis 

As discussed earlier in this Thesis, to enable a larger degree of automation in workflow 

creation, specific information must be incorporated into the workflow components. The 

solution proposed in this work uses semantic labels for activities and data objects. As has 

been described in previous chapters, the entirety of all types of labels for a certain domain 

represents an ontology. The usefulness of assistive and automated features strongly depends 

on the expressiveness of the label types. An ontology should therefore capture many different 

and, most crucially, relevant aspects of the domain it represents.  

As mentioned in Section 3.4, a use-case centric evaluation approach (see [84]) is a valid 

and direct method to prove the applicability of an ontology. Accordingly, the aim of this 

evaluation effort (and of the wider research work) was to create a semantic model that has 

real-world relevance. 

Workflow repositories are one main aspect of the proposed system (see Sections 2.4 and 

4.2) as they allow semantic search and retrieval by both human users as well as by other 

features of the software framework (i.e. automation-related features). Activity repositories 

are specialised workflow repositories where each workflow contains, by convention, only 

one activity (a concrete atomic activity). 

Building a semantically annotated activity repository serves two purposes: 

(1) Test the expressivity of the ontology: Can the concepts and terms of the ontology 

express all aspects of selected software tools (purpose, input data, and output data)? 

(2) Provide the basis for experiments regarding workflow creation: The activities are 

building blocks for concrete executable pipelines or scientific experiments. 
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Led by these arguments, it was decided to build up an activity repository referencing 

actual, existing software tools from the target domain. The process is described in the 

following subsection. 

 

6.1.1 Building an Activity Repository 

Over 100 software tools were identified for creating an example activity repository. 

Sources of information included:  

• Reports from EU-funded projects (such as SUCCEED [94]). 

• Dedicated websites (by tool creators). 

• The tool framework of the Pattern Recognition and Image Analysis (PRImA) 

research lab at the University of Salford (an extensive collection of tools and data 

formats for document image analysis, see [100]). 

 

The proposed model of a workflow system specifies an activity as having metadata, data 

ports, and semantic labels (for the activity itself and for each data port (see Section 4.1.1). 

The task was therefore, based on the information above, for each software tool, to: 

(1) Create an atomic activity and add it to a repository (using the repository hub and the 

workflow editor). 

(2) Add metadata (description, version) and semantic labels (using activity-related 

taxonomies of the proposed ontology) to the activity object. 

(3) Create data input and output ports matching the capabilities of the tool. 

(4) Annotate the data ports with semantic labels (using the data-related taxonomies of the 

ontology). 

 

As a reminder, the proposed ontology contains label types for activities and data objects 

covering the following categories: 

• For activities: automation, licence, platform, domain, processing level, data 

transformation, adaptability, and maturity. 
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• For data: original source, age, production method, acquisition method, precision, 

content type, encoding, content of interest, granularity, condition, properties, and 

topic. 

 

The semantic labels were extracted from the tool documentation / technical specification, 

considering the concepts from the ontology but also looking for aspects that could not be 

modelled (discussed in next subsection). Within the documentation of the Abbot tool (an 

XML conversion tool), for example, it is stated that: 

“This is pre-release software. It may fail to compile. It might have undocumented features. 

It certainly has unimplemented features. It definitely has bugs.” 
 

In such case, the activity can be labelled as “Maturity - Experimental”. 

 

 

Figure 78 - Example of an atomic activity in UML notation (including labels for data ports and activity) 

 

Figure 78 shows an example activity in detail (using the UML notation introduced in 

Section 4.1.1 extended by semantic labels in blue annotation boxes), including data ports and 

labels. The respective software tool is the PRImA Layout Evaluation Tool for evaluating the 

performance of page segmentation methods. For clarity, labels are written in a shortened 
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form and not their full representation (which is the path within the ontology starting from the 

root label type and ending at a leaf of the corresponding taxonomy).  

Notably, one label root type (“Domain”) is used several times for one object. This shows 

the usefulness of cardinalities greater than one within the semantic model. This was 

introduced as label slots in Section 4.1.5. Multiple labels from one label type taxonomy can 

thereby be used to annotate an object (the labels have different types are part of the same 

sub-tree in the ontology).  

The fact that both input ports have the same data type (“file.doc.content.pagexml”) 

underlines the importance of semantic annotation. Without additional information, an 

automated method would not be able to distinguish between the two inputs. This information 

is represented through the label types “Precision” (“Ground truth” vs. “Estimated”). 

 

An important fact is that software tools and activities are not strictly one-to-one relations 

but rather one-to-many relations. This means, if a tool has multiple distinct functions, it can 

appear in multiple activities. These tools are applicable to different use scenarios and 

accordingly support several output data types. Examples are ABBYY FineReader Engine 

(used as OCR engine or for image pre-processing) and Aletheia (used for creation of different 

types of ground truth). In these cases, the specific application is reflected by the activity 

captions.  

Table 7 – Example activities (by category and in alphabetic order) provides an overview 

of the collected software tools. A more detailed list can be found in Appendix C – Software 

tools used for activity repository. 
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Table 7 – Example activities (by category and in alphabetic order) 

Conversion Annotation Acquisition Evaluation 
Information 

Management 

Text 

Processing 
Image Processing Analysis / Recognition 

abbot Aletheia 

Document 

capturing by 

camera 

HOCR Eval Agora 

Apache 

OpenNLP 

Named Entity 

Recognition 

ABBYY 

Image Pre-

processing 

PRImA 

Region 

Extraction 

ABBYY 

Business 

Card Reader 

OCRopus 

OCR 

PRImA 

Table 

Exporter 

From The 

Page 

Document 

scanning 

ISRI 

Evaluation 

Tool 

File Analyzer 

Apache 

OpenNLP 

Sentence 

Detector 

ABBYY 

Binarisation 

PRImA Text 

Line 

Extraction 

ABBYY 

Block 

Segmentation 

OneNote 

Handwriting 

Recognition 

PRImA Text 

Extraction 
GEDI 

LayoutEval 

Profile 

Creation 

LayoutEval jMet2Ont 
ASV Toolbox 

- JlanI 

Aletheia 

Dewarping 

Ground 

Truth 

Creation 

PRImA 

Word 

Extraction 

ALTO-Edit 

PRImA 

Table 

Classifier 

PRImA 

PAGE to 

SVG 

Islandora  

MILE OCR 

Performance 

Evaluator 

MapForce 
Berkeley 

Parser 

Cam-

Scanner 

Sauvola 

Binarisation 

AWE Layout 

Editor 

PRImA 

Text Line 

Segmenter 

PRImA 

Page 

Conversion 

PRImA 

Crowd 

Prototype 

Visualisation 

NCSR OCR 

Evaluation 

Tool 

Metadata 

Extraction 

Tool 

Brevity 
Document 

Deskewer 
Scan Tailor Clara OCR 

PRImA 

Typewritten 

OCR 

PRImA 

PAGE to 

PDF 

PRImA 

JPageViewer 

Layout 

Analysis 

Performance 

Visualisation 

PRImA 

Dewarping 

Evaluation 

Pandoc CLAWS 

Hecto-

graphy 

Foreground 

Extractor 

tifftool 

ABBYY 

FineReader 

Engine 11 

PRImA 

Word 

Segmenter 

 

PRImA Page 

Feature 

Extractor 

PDF-

XChange 

Viewer 

PRImA Page 

Validation 

PRImA 

JFeature-

Extractor 

cue.lang-uage 

Hot Metal 

Font 

Enhancer 

Unpaper 

Fraunhofer 

News-paper 

Segmenter 

Shape-

Catcher 

Transcript 

PRImA 

PAGE 

Visualisation 

PRImA OCR 

Evaluation 

Tool 

PRImA Table 

Cell Post-

Processor 

Graph-based 

Dependency 

Parser 

GIMP 

Wavelet 

image de-

noising 

Functional 

Extension 

Parser 

SharpEye 

Musical 

Score 

Recognition 

Word-Freak 

 

Text and 

Error 

Profiler 

PRImA Page 

Metadata 

Extractor 

IMPACT 

Spelling 

Variation Tool 

Image 

Magick 

 

Goggles 
Tesseract 

3.03 

   

MALLET 

Document 

Classifi-cation 

NCSR 

Binarisation 

Ground 

Truth Maker 

Type-

Wright 

Monty-

Chunker 

NCSR 

Border 

Removal 

GTText ZBar 

Monty-

Lemmasiser 

NCSR Page 

Curl 

Correction 

PRImA 

Layout 

Aligner 

 

Monty-

Tokenizer 

Otsu 

Binarisation 
Lios 

PRImA Text 

Normalisation 

PRImA 

Dewarping 

NCSR 

Character 

Segmentation 

Stanford 

Parser 

PRImA 

Glyph 

Extraction 

ocrad 

 

 



144 

 

6.1.2 Discussion 

The semantic annotation of the 104 activities (representing software methods) was a 

viable, independent way to evaluate the ontology for completeness because the tools are used 

to perform common tasks in document image analysis, but they were not used as information 

source during the first ontology life cycle. The specifications of the software tools contain 

information on input and output data. That information could be encoded well using the 

existing label types. The available tool descriptions, reflecting activity-related concepts, 

could also be modelled well using the available label types. All software methods could be 

semantically annotated to a high degree with respect to data ports, functionality, and 

metadata. About 1,700 labels were used, averaging to ca. 16 labels per tool/activity. 

 

Occurrences where certain information could not be reflected using the proposed semantic 

model are discussed in the remainder of this subsection. 

 

6.1.2.1 Speed and Performance 

Several tool descriptions state performance-related characteristics. Abbot, for example, 

mentions:  

“Abbot is designed to be furiously fast (it will automatically parallelize the conversion 

across n processor cores)”.  
 

Aspects like this are not part of the ontology and they are difficult to quantify. General 

information could be included in future extensions of the ontology (“Parallelisation” or 

“Multi-threading” for example). Chapter 8 contains more thoughts on this subject. 

 

6.1.2.2 System Requirements 

Some software tools (mostly the commercial ones) list detailed system requirements such 

as memory and hard disk space. At the moment the ontology only offers platform-related 

labels. Further labels could be added in the future, but this must be considered carefully since 

the existence of certain label types may raise expectations by users. If only a fraction of all 
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activities is labelled with system requirements, the other tools might not be discovered during 

a search because this information was not available at repository entry time. 

 

6.1.2.3 Method / Processing Details 

The ontology is a model of the real world and, as such, a simplification (by definition). 

The level of detail must be chosen as a trade-off between model complexity / usability and 

coverage of the target domain. The ABBYY Image Pre-processing tool, for example, 

encompasses deskewing, text line straightening, photo correction, cropping, colour 

correction and more. Currently, the ontology only allows for a depth such as “Activity 

domain – Computing – Visual computing – Image and video processing – Pixel-based”. Sub-

types can be added without breaking the compatibility of existing workflows, but, as 

mentioned before, this must be considered carefully. A certain level of abstraction can help 

to make the system easier to use. The exact activity / software features can be incorporated 

in the workflow description field. 

 

6.1.2.4 Algorithm Design 

One major resource for creating the presented ontology were IJDAR journal papers 

(International Journal of Document Analysis and Recognition). Therefore, a significant 

amount of algorithm-related terms was collected during the conceptualisation stage. Most of 

these terms were intentionally left out from the final ontology because they have little 

significance for the target application – the composition and management of workflows. One 

example originates from the description of the AGORA tool:  

“The algorithms involved in AGORA use two maps to segment noisy images: a shape map 

that focuses on connected components and a background map that provides information 

on white areas corresponding to block separations in the page”.  
 

However, certain features of algorithms and methods are part of the ontology, if they have 

an impact on the applicability/use of activities, for example: supervised or unsupervised 

learning. 
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6.1.2.5 Documentation, Activity and Community 

One real-world aspect that is not captured well by the ontology is the degree of available 

user documentation, project activity, user community-related points (e.g. can help be 

expected when needed) and similar characteristics. These can be a factor when choosing 

between several tools that have the same range of functionality. The Aletheia system, for 

example, provides an extensive user guide, several case studies and video tutorials. In 

addition, it is under active development, increasing the chances of problems being fixed at 

some point, if they arise. Existing labels falling in this category are grouped under Software 

Licence and Maturity. 

 

6.1.2.6 Multifunctional Software Tools 

It was mentioned before that some software tools appear in different activities of the 

repository because they offer significantly different functions. Other tools have a similar 

brevity of features. CamScanner, for example, includes mobile document scanning, image 

correction and enhancement, and text recognition. An alternative to adding two or more 

activities is to add one activity with multiple output ports, each labelled semantically for one 

main function of the software. When integrated in a larger workflow, the user or the system 

can select the output port which fits best for the task at hand. The CamScanner activity was 

consequently created with two output ports: “Image Scan” (including the image enhancement 

results) and “OCR Result”. It should be noted that this solution is only viable if the software 

tool can perform these actions in one go (otherwise multiple activities are required, or a more 

complex workflow model would have to be developed). 

 

The next subsection lists cases where the review lead to improvements of the ontology. 

  

6.1.3 Extension of Ontology 

The purpose of the evaluation was to validate the ontology but also to improve it where 

necessary or useful. The following modifications were made: 
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• Insertion of “Natural language” as subtype of “Data properties – Text-related – 

Language”: This was done to be able to label certain input data as containing 

natural language in general (e.g. for natural language processing methods). Other 

languages could be formal languages such as programming languages. 

• Addition of label type “Tabular” as subtype of “Content Encoding - Structured”. 

This can be a useful cue to find a suitable converter tool. 

• Addition of label type “Layout analysis” as subtype of “Activity Domain – 

Computing – Visual computing – Content analysis and recognition”. This was 

necessary for methods that perform page layout analysis and text recognition but 

only output the recognised text (e.g. “ocrad”). The information that the layout of 

the input image is taken into consideration is important as it can have a significant 

impact on the OCR performance (due to column separation etc.). 

• Addition of label type “Barcode / QR code” and subtype of “Content of interest – 

Visual – Graphical”. There was no explicit way of denoting barcode-encoded data 

input (as applicable for the “ZBar” tool, for instance). 

   

Apart from the aforementioned limitations, the properties of the 104 activities (involved 

in this research) could be reflected using the semantic labels from the proposed ontology for 

document image analysis. In total, 1,696 labels were assigned within the activity repository 

(at the time of writing). 

 

The next sections focus on workflow search and composition, applying the presented 

activity repository.  

 

6.2 Evaluation of Search Functionality in Repositories 

Search for items in a repository is a main feature of the Repository Hub of the proposed 

system. Users can search for workflows, data tables, or activities (needed during workflow 

creation). A successful search presents the user with items that are relevant in the respective 

situation. 
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The search functionality of the workflow management system was analysed using the 

newly created activity repository as a data basis. As described in Section 5.3, the search 

interface provides filters for all label types that are used within the workflows of the 

repository (the activity repository contains workflows with one activity each), here 

representing real-world software tools (see Figure 79 and Figure 43 on page 97). The filters 

(represented by checkbox controls) are thereby grouped into: 

• Workflow features (activity labels). 

• Input data (input port labels). 

• Output data (output port labels). 

 

In addition, a grouping according to taxonomies (root label types) is applied (for example 

“Automation” and “Licence” as seen in Figure 79).  The hierarchical structure of the ontology 

is represented through indentation of the filter controls (checkboxes). 

 

 

Figure 79 - Search filters in Repository Hub (root label types in bold; child label types indented according 

to depth in hierarchy; numbers reflect the number of labels found within the current repository) 

 

The goal was to find an objective measure for the efficiency of the interface in 

combination with the ontology (for document image analysis). The number of user 

interactions to achieve a useful search result can be seen as such a measure. In context of the 

search dialogue, this can be interpreted as the number of required filter selections to 
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sufficiently reduce the search result (from a large number of results to a small number of 

results). 

A specific value for the number of search result items that are considered sufficient for a 

user had to be chosen. This was done in the following manner. 

Let U be a hypothetical user of the search interface I. Let n be the number of search results, 

nmax the maximum number of search results, and nsuff(U) the number of search results that 

satisfy user U.  

The user interface I presents U with nvis number of items at a time. Finally, the number of 

interactions with I by user U is called aUI. See Figure 80 as illustration. 

It was decided to set nsuff(U) equal to nvis which is 14 by default. The reduction of search 

results is thus defined as “sufficient” if the result items fit the default window size.  

The evaluation then determines the maximum number of interactions aUI,max that reduce n 

from nmax to nsuff(U). In practical terms this means: How many checkboxes does the user have 

to tick, to be able to see the filtered search result at one glance (without need to scroll)? 

 

 

Figure 80 - User interaction with search interface  

 

Note that this is an evaluation with strict constraints for the purpose of finding a measure 

and achieve reproducible results. Actual users can resize the search dialogue to fit more 

results or scroll to view more items. 

 

U I 

 

   

 

 

 

nvis n 
aUI 

User 

Interface 

S
earch

 resu
lts 

Interactions 

Filter 

controls 



150 

 

To find the maximum number of required checkbox selections aUI,max (equal to mouse 

clicks), at each step the checkbox with the highest number of corresponding labels was 

selected (i.e. the worst case). Label types that represent an abstract grouping and have no 

siblings (“Computing” in the “Activity Domain” taxonomy, for instance) were left out 

because their only function is to future-prove the ontology. Only child label types of these 

abstract parent types were used to annotate activities. 

The experiment was conducted for all label types at once but also for each major label 

group individually (workflow features, input data, output data). Table 8 shows the outcome. 

The list of workflows (representing software tools in this case) can be narrowed down with 

only a few steps. In the worst case, the user has to tick nine checkboxes.  

The average number of selections will be considerably lower in real-world use. In some 

cases, just one click is sufficient (the label “Performance Evaluation” represents nine 

workflows, for instance). 

 

Table 8 - Results of workflow search experiment 

Label Group 

Maximum Number of 

Checkbox Selections 

aUI,max 

Workflow features 5 

Input data 5 

Output data 5 

All 9 

 

In general, the search by semantic label is a valid approach for finding activities or 

workflows. The concept of checkbox-style filters with attached counts presents a hierarchical 

straightforward method to narrow down search results (not dissimilar to systems used in 

online datasets or online shops for example).  

A future implementation of the workflow system will require a complete user interface 

design process and possibly an evaluation involving users from different target groups. 
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The following subsection contains an analysis that was performed to gain some insight 

into the distribution of labels within the activity repository.  

 

6.2.1 Activity Repository Decision Tree 

To analyse the labels that have been assigned to the activities in the example repository, a 

method known from data mining was used: decision tree creation. 

The labels of all activities can be interpreted as binary attributes (features) of the form: 

𝑎𝑡𝑡𝑟𝑖 = {
TRUE, 𝑖𝑓 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 ℎ𝑎𝑠 𝑙𝑎𝑏𝑒𝑙 𝑜𝑓 𝑡𝑦𝑝𝑒 𝑖
𝐹𝐴𝐿𝑆𝐸, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, ∀  𝑖 ∈ 𝐿 

Where L is the set of all labels that have been assigned to one or more activities in the 

repository. These attributes can be arranged in a table with one column per label type and 

one row per activity (104 in the example repository). The label types are thereby handled 

separately for activity-related, input-data-related, and output-data-related labels, leading to 

152 attribute columns for the example repository. 

Decision trees represent a divide and conquer approach (see [101]). The objects of interest 

are divided step-by-step into smaller sets. How many decisions have to be made depends on 

the quality of the respective attributes (the decision tree nodes). Decision tree algorithms try 

to create the optimal tree by ordering the attributes in a specific way. The ID3 algorithm uses 

a measure called Information Gain (IG) to rank the attributes according to how well they help 

to divide the set of activities (for more information see [101]). 

The open source data mining tool WEKA [102] includes an implementation of ID3. Figure 

81 shows the decision tree creation step and Figure 82 shows the first four levels of the 

resulting tree. WEKA also offers an attribute selection algorithm based on the information 

gain. Table 9 shows the 20 most dividing label types and the 20 least dividing, according to 

the IG measure. 

From the results it can be observed that certain label types lead to a quick reduction of 

search results. If the target platform of a workflow is known to be a Windows operating 

system, starting a search by selecting “Activity – Platform - Windows” can make the 

subsequent search easier. 

 



152 

 

In the following section, features related to workflow composition are evaluated, using an 

example workflow for a common task in document image analysis. 

 

 

 

Figure 81 - Decision tree creation (left) and information gain ranking (right) in WEKA software tool 
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Figure 82 - Decision tree for activity labels (partial) 

 

Table 9 - Label types sorted by information gain (20 best and 20 worst ranked label types) 

Score Label type 

0.9989 activity.platform.windows 

0.9976 input.contentOfInterest.visual 

0.9933 input.content-encoding.image 

0.9904 output.precision.estimated 

0.9869 output.content-encoding.structured 

0.9612 output.contentOfInterest.visual.text 

0.9612 activity.maturity.stable 

0.9391 input.contentOfInterest.visual.text 

0.9215 activity.license.free 

0.9215 input.content-encoding.structured 

0.8667 activity.automation.automated 

0.8539 output.content-type.data 

0.8404 activity.adaptability.configurable 

0.8113 output.contentOfInterest.visual 

0.8113 activity.processingLevel.high-level.classification 

0.7957 activity.dataTransformation.enhancement 

0.7793 activity.maturity.experimental 

0.7793 activity.dataTransformation.extraction 

0.7623 activity.license.paid-for 

0.7623 activity.platform.platform-independent.java 
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Score Label type 

… 
 

0.0782 output.granularity.logical.document-related.article 

0.0782 output.data-attributes.text-related.language 

0.0782 input.topic.economy.financial 

0.0782 input.production-method.manual 

0.0782 input.production-method.machine.typewritten 

0.0782 input.production-method.machine.printed.typeset 

0.0782 input.content-type.metadata 

0.0782 input.condition.production-faults 

0.0782 activity.processingLevel.high-level 

0.0782 activity.platform.mobile.ios 

0.0782 activity.license.paid-for.volume 

0.0782 input.content-type.model 

0.0782 output.production-method.machine.printed.typeset 

0.0782 input.contentOfInterest.visual.graphical.barcode 

0.0782 input.originalSource.captured.scenes 

0.0782 input.originalSource.produced.physical.paper.newspaper 

0.0782 input.granularity.logical.document-related.document 

0.0782 input.data-attributes.text-related.visual.complex-background 

0.0782 input.data-attributes.text-related.visual.multi-font 

0.0782 input.contentOfInterest.visual.composite.music 

 

6.3 Evaluation of Workflow Composition Functionality 

This section explores the assistive and automated features of the prototype workflow 

composition software using a typical use case from the domain of interest. While this section 

presents a workflow of low complexity (to focus more clearly on the evaluated tasks), 

Chapter 7 presents a more complex case study. 

Image segmentation is a fundamental task in layout analysis “that, given the source 

document representation (vector or raster), returns a partition of its area into portions of 

content representing significant pieces of the layout.” [7] Segmentation is often required 

because other tasks require (or work better with) specific page layout objects such as blocks 

or text lines. 

First, a workflow for segmentation is introduced, followed by the application of assistive 

and automated features of the prototype system. 

 

6.3.1 Workflow for Page Segmentation 

A workflow can either be explicit (concrete) and directly executable or it can be abstract, 

where certain activities within the workflow are generic placeholders for specific types of 

software tools. The latter facilitates reusability of workflows since only the general structure 

(control flow) is fixed and details can be filled in using different software methods (creating 
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different specialised workflows). Section 5.4.5 introduced this concept as workflow 

templates.   

A template for page segmentation (a common task within document image analysis) was 

created, containing three core activities: segmentation itself but also image conversion and 

pre-processing. Figure 83 shows the UML notation of the example workflow.  

 

iterative

Image processing pipe

Page 
scan

Seg-
ments

Image 
conversion

Pre-
processing

Segmen-
tation

Page scans

Page layout files
 

Figure 83 - Example workflow template with a for-loop and directed graph activity (UML notation) 

 

In the workflow, document images (page scans) are segmented one by one, producing 

result files containing the page layout (segments). Three abstract atomic activities are used 

as placeholders for image conversion, image pre-processing, and segmentation tools (in that 

sequence). Metadata and semantic labels were specified accordingly (see Table 10 for used 

labels). The complete template therefore consists of five activities: a for-loop activity, a 

directed graph activity, and the three placeholders. 

The following subsections describe how to create a concrete workflow (and instance of 

the template) from the template within the workflow editor of the system prototype. 
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Table 10 – Labels used for the example workflow (limited to objects relevant to the case study) 

Activity 
Labelled 

Object 

Semantic Labels 

Label Root Label 

Loop Activity Data creation / transformation Segmentation / tokenisation 

  Activity domain Layout analysis 

 Input port Data granularity Page 

  Content encoding Raster image 

  Content type Data 

  Content of interest Visual content 

Image 

Conversion 

Activity Data creation / transformation Conversion 

  Automation Automated 

 Input port Content encoding Raster image 

 Output port Content encoding Raster image 

Pre-processing Activity Data creation / transformation Enhancement 

  Automation Automated 

 Input port Content encoding Raster image 

 Output port Content encoding Raster image 

Segmentation Activity Data creation / transformation Segmentation / tokenisation 

  Automation Automated 

  Processing level Classification / recognition 

  Activity domain Layout analysis 

 Input port Data granularity Page 

  Content encoding Raster image 

  Content type Data 

  Content of interest Visual content 

 Output port Data granularity Region / zone 

  Content encoding Structured 

  Content type Data 

  Content of interest Visual content 
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6.3.2 Replacing an Activity 

Assisted activity replacing is an important feature of the proposed system. It uses the 

semantic label-based matching algorithm introduced in Section 5.4.6.  

To demonstrate the effectiveness of the matching algorithm in context of the example 

workflow and the activity repository from Section 6.1.1, two tests were carried out for the 

Replace Activity function. First, including the semantic labels for the matching and, second, 

excluding the semantic features. 

 

The Replace Activity function was triggered for the atomic activity called “Pre-

processing” (the other two atomic activities can be handled similarly). The corresponding 

dialogue offers (Figure 84):  

• Source repository selection (the activity repository from section 6.1 was chosen 

here). 

• Label filter controls (not required in this experiment). 

• Matching controls (parameters for the matching algorithm). 

• Result item panel (workflows with associated match scores). 

 

With the “Match labels” option enabled, the matching algorithm returned nine items with 

a score of 100%, three items with a 92% score, and the remaining activities with scores 

ranging from 83% down to 0%. All nine activities with the maximum score represent relevant 

image pre-processing software tools that would be applicable to the workflow at hand. The 

three “runner-ups” are pre-processing activities but are based on an interactive user interface 

and do not match the “automated” label of the template.  

Figure 84 shows the matching result and the details for one match with 92% score. The 

user can then browse the results and make a decision (to either use one of the returned 

activities, refine search results, or remove the placeholder activity from the workflow). 
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Figure 84 - Activity matching result with details (missing label for "automated" highlighted) 

 

The test was repeated with the “Match labels” option disabled. The matching algorithm 

then only uses data types of input and output ports to calculate the match score. Matching 

only by data type resulted in 27 items with a score of 100%. Considering the previous finding 

(9 items with 100%), two thirds of these activities are (semantically) unsuited for the 

workflow template. This highlights the usefulness of semantic information (match results are 

more relevant). 

The step of replacing the placeholder activity with a result item is straightforward 

(performed via mouse click on result item). Aligning data ports is not necessary for this 

example since both activities have exactly one input and one output port. The outcome, 

shown in Figure 85, is as expected (the abstract pre-processing activity is replaced by the 

Border Removal activity in this example). 
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The experiment showed that the semantic annotation and the use of this information for 

the task of replacing an activity represent an effective and useful enrichment of the workflow 

system. Users benefit by being presented with search results in an order more relevant to the 

context. Semantics-enabled match scores better reflect the applicability of activities than 

match scores that are based on data type information only.  

It should be noted that using the semantic labels during matching does not reduce the 

number of search results. It only affects the ordering and visualisation (match score captions). 

The user can still navigate to all result items. 

 

The next subsection shows how to let the workflow system choose activities to create a 

viable workflow from the given template. 

 

 

Figure 85 – Pre-processing activity of workflow template replaced with "Border Removal" activity 

 

6.3.3 Automated and Assisted Workflow Concretisation 

The previous subsection described a semi-automated feature of the workflow system. 

Now, the prototype’s potential of a fully-automated method is explored: instantiating a 

workflow template (i.e. concretisation, see Section 4.3.3). 
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A workflow is called abstract, if at least one of its child activities is abstract (see Section 

4.1.4). The same principle applies to control flow activities such as loop and graph activities. 

Therefore, the abstractness can be traced to the lowest-level activities (leaf nodes in the 

activity tree). The task of concretisation can be summarised as replacing all abstract leaf 

activities (placeholders within a template) of the abstract workflow.  

 

The workflow editor of the prototype system shows a “Concretise” button if the current 

workflow is abstract (see also Section 5.4.8). The corresponding dialogue, shown in Figure 

86, contains options to: 

• Select a repository that is used as activity source (containing concrete atomic 

activities). 

• Choose between fully automated concretisation and an interactive (assisted) mode. 

 

 

Figure 86 - Setup of workflow concretisation 

 

Performing the automated concretisation using the example activity repository from 

Section 6.1 results in a valid workflow (Figure 87). Nevertheless, due to the size of the 

repository, there are many valid combinations of activities. In a future iteration, more data 

could be gathered to help to decide for an activity. If a workflow repository with a substantial 

number of templates is available, for instance, usage data (count, common combinations with 

other activities) can form the basis for a more informed decision. A similar solution would 

involve the extension of the ontology to be able to add more fine-grained semantic 

information to the workflow templates and candidate activities in the repository. The 

advantage of this solution is that it does not require the extension of the prototype system 

itself. 
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Figure 87 - Result of automated workflow concretisation (top: three concrete atomic activities; bottom: 

concretisation log) 

 

Another alternative to resolving ambiguities is with user interaction. The “Assisted” 

setting allows the user to resolve conflicts on-the-fly. The algorithm in Listing 3 (page 118) 

contains a call-back function that is called if multiple matching concrete activities are found 

that could replace the current abstract activity. In that case, a dialogue to refine the activity 

collection is shown (Figure 88), containing the following elements: 

• Top: A message stating which abstract activity presents a problem and a 

description of the problem. The user can also check which activity placeholders 

have already been replaced by which new activities. 

• Left: Filter controls to narrow down the list of activities. Only filter check boxes 

for the labels used in the activities at hand are shown, limiting the amount of filter 

options significantly (making it easier to spot relevant differences). 

• Right: Grid view of all matching activities with their description and data port 

details (tooltip). 
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The user has a choice of selecting one activity (by clicking on it) or to use the filter controls 

to reduce the number of matches and let the tool make the final decision (“Continue” button).  

The user interaction is also invoked if matching activities are found but the match score is 

lower than the strictness threshold. In such a case, the user is asked for confirmation. 

 

The next subsection describes how to achieve a baseline quality of the created workflow 

using the validation feature of the system. 

 

 

Figure 88 - Interactive workflow concretisation 
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6.3.4 Evaluation of Workflow Validation 

Workflow validation (see subsections 4.3.2 and 5.4.7) is intended to aid the user to 

produce a workflow of good quality. To evaluate the validation functionality of the system 

prototype, two tests were performed. First, the example workflow template for page 

segmentation (see subsection 6.3.1) was validated and the results examined. Second, cycle 

detection was tested using an additional example workflow. 

 

Validation of Segmentation Workflow Template 

When applied to the example template (the user triggers the validation in the Workflow 

Editor), several problems are reported. Figure 89 shows selected messages and the 

corresponding panel with options to resolve the issues. If applicable, the workflow editor 

(open at the same time) highlights the workflow component that causes/contains the problem. 

Resolving basic issues can help to prevent more complex problems at a later stage (which 

might be difficult to trace back to the source). In addition, completing all captions and 

descriptions will help other users who will use the template in the future. 

The issues reported for this specific workflow template (page segmentation) are listed and 

discussed below: 

• Mismatch between the data types of two connected ports: The example shown in 

Figure 89a is caused by one of the ports having no data type specified and the other 

port using “file.image”. It is not always desirable to narrow down the data type of 

a template (more general application). However, limiting the type to any type of 

image seems reasonable and both data ports should be aligned in this sense. 

• Semantic mismatch between connected ports: Figure 89b shows the report for two 

connected ports that do not match well on a semantic level. The validation message 

provides some details on which labels are involved. The user can solve this 

problem in the workflow editor. Labels for similar data objects should be assigned 

in a consistent way. Future implementations of the editor could include a feature 

to aid the user in this respect (e.g. copy labels from one port to a connected port). 

• Abstract workflow: This message (see Figure 89c) is not relevant for the current 

example since a workflow template is abstract on purpose. Nevertheless, the user 
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might be working on creating an executable workflow and simply forgot to 

concretise one abstract child activity. 

• Missing activity (or workflow) data: Figure 89d show the message and correction 

panel which is shown if data fields such as caption or description are blank. As in 

software development and other domains, proper documentation is a crucial factor 

concerning the quality of the software (a workflow in this case). The missing data 

can be entered by the user directly in the correction panel. 

• Missing data type: The message shown in Figure 89e is only shown for non-

abstract (i.e. concrete) activities. To demonstrate the validation for this case, the 

workflow was concretised using the automated method described in Section 5.4.8. 

The correction panel contains controls to specify the data type(s) for the respective 

port using the dialogue that is also available in the workflow editor.  
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a)   

 

b)   

 

c)     

 

d)   

 

e)   

Figure 89 - Selected validation messages for the segmentation example workflow (a: data type mismatch; 

b: label mismatch; c: abstractness; d: missing description; e: missing data type) 
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Test of Cycle Detection 

The validation method can also find cycles in directed graph activities. To test the cycle 

detection, the graph activity of example workflow was modified to intentionally connect the 

segmentation output back to the image conversion activity. Figure 90 shows the result of the 

workflow validation (the cycle was detected and reported). Currently, this can only be 

resolved by the user (by deleting edges in the directed graph). 

 

       

Figure 90 - Cycle detection (left: directed graph activity with cycle; right: validation error message) 

 

In conclusion, the validation approach is effective. The designer can improve the 

workflow step-by-step, correcting problems and revalidating immediately (via a button at the 

bottom of the validation dialogue). 

 

6.4 Summary 

This chapter showed how the main components and functions of the system were tested 

and validated. The strategy thereby was to use realistic data and examples to evaluate 

individual aspects of the model and the implemenation. 

The semantic annotation of the items in the activity repository was used to evaluate the 

ontology for document image analysis with regards to completeness (coverage of the 

domain), using an independent source of knowledge (software method/tool descriptions and 

specifications) that was not used during the ontology engineering phase. The ontology proved 

to cover the relevant aspects of the target domain (small shortcomings were corrected). 

Features that help users with workflow creation were tested using a basic document image 

processing pipeline. These mostly included semantics-supported functions such as filter-

based search in workflow repositories, activity matching, and template concretisation, but 
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also other concepts such as user interaction and general workflow validation (to achieve 

completeness and validity). 

This chapter comes close to confirming the PhD’s hypothesis (semantic data and 

algorithmic use can assist users and simplify workflow design) and fulfilling objective 5. 

(test ontology and framework on real data) of Section 1.4. Nevertheless, a more 

comprehensive use case was deemed necessary for a final answer. The next chapter descibes 

such use case, based on a real-world digitisation project. 
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7 Case Study: Digitisation of Historical Census Data 

Chapter 6 described pragmatic experiments and basic use cases to work towards an answer 

whether the PhD’s hypothesis is true or not. It was shown how workflow components can be 

semantically annotated using the proposed ontology for document image analysis. It was also 

shown how this information can be used (algorithmically) to simplify or assist with various 

workflow-related tasks. However, to better understand what users might be confonted with 

in a real scenario, larger and more complex workflows need to be considered. This chapter 

establishes an answer to the hypothesis (and objective 5., Section 1.4) by exploring problems 

and solutions for a UK-funded digitidastion project. 

Feasibility studies are often used to understand the problem characteristics, to determine 

the best processing approach (pipeline) using state-of-the-art methods, and ascertain the 

quality level possible regarding the digitisation of a large amount of physical material (books, 

newspapers etc.) of a given type or period. Designing a processing pipeline and evaluating it 

on sample data, however, is a complex task that requires experts with in-depth knowledge 

and a good overview of the domain of document image analysis. For this reason, digitisation 

is often outsourced to service providers which, in turn, frequently apply off-the-shelf text 

recognition systems (perhaps with some parameters set after a few experiments) combined 

with extensive manual correction.  

Using a workflow system could be an alternative. Advantages include, but are not limited 

to: repeatable processes, reuse of existing solutions, improved understandability (and 

therefore easier validation of processes), inclusion and comparison of multiple analysis and 

recognition tools to achieve best results, and data provenance (e.g. to report back to funding 

bodies). 

In this chapter: 

• A real-world use case is presented: the Census 1961 digitisation feasibility study. 

• The different aspects of the proposed workflow system are applied to the census 

scenario and the consequences are evaluated and discussed in depth.  

• Gerenal conclusions from using the workflow-based approach and semantic 

enrichment are drawn. 
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Pipeline vs. Workflow 

In digitisation projects the term pipeline is often used to denote a collection of software 

tools and scripts that, in concert, take scanned documents as input, analyse and recognise the 

content, and output the results in the desired format. This resemebles a workflow and one 

could argue that a pipeline is a workflow (albeit not formalised in a workflow language / 

model). Nevertheless, to avoid misunderstandings, the term pipeline will be used when 

referring to a process that was created and used for the Census 1961 Project. The term 

workflow will be used for something that was created with the proposed workflow system. 

 

7.1 Census 1961 Digitisation Feasibility Study 

The study was conducted in two parts by the University of Salford in cooperation with the 

Office for National Statistics (ONS) [103] and Jisc [104] from September 2015 to December 

2016 (see [105] and [106]). Its purpose was to ascertain the feasibility of digitising the 1961 

Census data (from the only surviving set of low-quality scans of the original documents) in 

an automated way with the ultimate goal of establishing an online resource similar to recent 

censuses. The main questions to be answered were: What is the best way (selection of 

methods and parameters) of digitising the material to maximise the quality of the output and 

will the quality of the resulting information be high enough to satisfy the requirements of a 

trustworthy Census 1961 database for public access? 

A prototype of a fully-functional digitisation pipeline was developed, including: image 

pre-processing, page analysis and recognition, post-processing, and data export. Each 

individual part of the pipeline was evaluated individually by testing a range of different 

approaches on a representative data sample. Well-established performance evaluation 

metrics were used to precisely measure the impact of variations in the workflow on different 

types of data (image quality, page content etc.). 

Details about the census data, digitisation pipeline, and performance evaluation are 

provided next. 
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7.1.1 Dataset 

The full 1961 Census data for England and Wales consists of approximately 140,000 

scanned pages. From these, a representative subset of about 4,000 pages was selected. Most 

of the material consists of different types of tables that were either typeset (accumulative 

reports) or computer printouts (Small Area Statistics – SAS). The scans are characterised by 

a wide range of image quality with various production and scanning related issues and 

artefacts. Figure 91 shows three examples. 

 

   

Figure 91 - Examples of Census 1961 scans 

 

7.1.2 Ground Truth 

Ground truth can be seen as the ideal result of a page recognition method, or, in other 

words, the result a perfect OCR system would produce. It is required as reference when 

evaluating OCR results. For the study, 41 representative images were chosen. The production 

was carried out with the Aletheia Document Analysis System [107] (see Figure 92). Where 

useful, pre-produced data (OCR results) from FineReader Engine 11 [108] was corrected, 

otherwise the ground truth was created from scratch. Both page layout and text content were 

transcribed. The output format is PAGE XML [88], a well-established data format 

representing physical and logical document page content. 
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Figure 92 - Aletheia Document Analysis System 

 

7.1.3 Digitisation Pipeline 

As part of the study, a processing pipeline was designed and all essential parts were 

implemented and applied to the aforementioned dataset. Figure 93 shows an overview of the 

digitisation pipeline. The target was to extract the table information from image files (scans) 

and export it as comma-separated values (CSV) that can be fed into a database.  
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Figure 93 – Census digitisation pipeline 

 

The processing steps can be summarised as follows: 

• Pre-processing: Different pre-processing approaches tailored to different types of 

images. Main goal: improve OCR. 

• Page analysis and recognition: Includes page segmentation, region classification, 

and text recognition. An OCR engine is used, and detailed, versatile outputs are 

produced (PAGE XML format). The engine is interchangeable, ABBYY 

FineReader Engine 11 [108] and the open source Tesseract OCR 3.04 [109] were 

used. Figure 94 illustrates the output of FineReader Engine 11 for an example from 

the Census data. 

• Table classification: Identification of tables on image. Required for next step. 

• Template matching: Alignment of table templates with OCR engine outputs (see 

Figure 95). Once aligned, the recognised text is transferred into the template. 

• Post-processing: Improving results using rules. 

• Data conversion: Creating comma-separated table from collection of PAGE XML 

files. 
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Figure 94 - Input image (left) and FineReader OCR result (right; visualised with Aletheia software tool) 

 

 

Figure 95 - Illustration of template matching (the goal is to find the best matching position of the template 

(red) with the page content (green)) 

 

7.1.4 Performance Evaluation 

The output of OCR engines can be evaluated by comparing it against the ground truth. A 

requirement is that both pieces of data (OCR result and ground truth) are available in the 

same data format.  

Text-based performance measures were used to establish a quality baseline for both 

deployed OCR engines. To be able to consider a variety of pipeline setups efficiently, a 

? 
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framework of scripts, evaluation tools, and analysis approaches was created. That way, 

experiments could be set up and modified easily with as little manual labour as possible. 

Figure 96 provides an overview of the framework. A cascade of scripts processes a subset of 

the Census data using all possible combinations of pre-processing steps, OCR engine 

settings, evaluation tools, and evaluation settings.  

For the most part, the Layout Evaluation Tool [110], developed by the PRImA Research 

Lab, was used. Figure 97 shows the graphical interface of the tool, visualising an evaluation 

result. 

 

Based on the execution and experience of the Census 1961 feasibility study, the next 

section discusses how the workflow system with semantic features can aid with this project 

and other projects of this nature. 

 

 

Figure 96 - Processing and evaluation framework 
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Figure 97 - Visualisation of evaluation result within the PRImA Layout Evaluation tool 

 

7.2 General Considerations for Applying the Workflow System 

Using the Census 1961 project as a representative for feasibility studies, someone tasked 

with carrying out a pilot for a similar digitisation project will be confronted with the 

following questions: 

• What pre-processing steps are suitable for scans of printed documents with issues 

caused by aging? 

• What recognition engines are available that fit our needs (licence, execution 

platform etc.) 

• Can the data be processed directly or is conversion required and if yes, what are 

suitable converters? 

• What does a typical processing pipeline look like? 

• If additional data is required (e.g. ground truth), how can it be produced? 

• How can the performance of a pipeline be measured? 

 

Depending on the experience of the person or team conducting the project, it might not be 

obvious where to start. A reasonable first step would be to search for existing solutions. In 

the context of workflows, template repositories represent knowledge and information that 
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experts provided and made available in form of proven methodologies. In the next two 

sections, the creation of workflow templates and their usage will be described (from two 

different points of view). 

 

7.3 Workflow Template Creation 

Experts may want to create workflow templates for either their own future use or for 

sharing knowledge. Similar to object-oriented software design, reusability can be improved 

by using a modular design. In terms of workflows this means, instead of creating one large 

template of a digitisation pipeline, the expert can create several more generic sub-workflows 

which model specific parts of the pipeline. 

In the following, workflow templates extrapolated from the census study are presented. 

 

7.3.1 Form / Table Analysis and Recognition 

Figure 98 shows the UML notation of a workflow template for table recognition (also 

applicable to form recognition). It consists of a Directed Graph activity and four abstract 

atomic activities. Table 11 shows the semantic labels that were assigned to the main activity 

of the template and its data ports. Data types were not specified to make the template more 

generic. 

 

 

Figure 98 - Workflow template for form or table recognition (UML notation) 
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Table 11 - Semantic labels of form or table analysis and recognition activity 

Activity / Port Label Group Semantic Label 

Form / table 

analysis and 

recognition 

Data creation / transformation Information Extraction 

Processing level Classification / recognition 

Adaptability Configurable 

Activity domain Table / form analysis and recognition 

Image Data granularity Page 

Content encoding Raster image 

Content type Data 

Content of interest Text 

Tables / forms 

Original source Paper document 

Table template Data granularity Cell 

Glyph 

Precision Ground truth 

Content encoding Structured 

Content type Data 

Location 

Content of interest Text 

Tables / forms 

Extracted fields Data granularity Cell 

Precision Estimated 

Content encoding Structured 

Content type Data 

Annotations 

Content of interest Text 

Tables / forms 

 

7.3.2 Pre-Processing Method Selection 

Different image pre-processing methods were applied within the census project, 

depending on which data subset an image belongs to. This aspect is represented by the 

workflow depicted in Figure 99. Therein, one of two pre-processing tools is called with 

specific (external) settings or no pre-processing is performed. The workflow is not a template 

since it uses concrete activities, but it can be used as a module that can be inserted into 

different other workflows. 

A second workflow was created to model the methodology of selecting a suitable image 

pre-processing method (see Figure 100 for UML notation). It runs different pre-processing 

methods for all input images, runs an image analysis and recognition method, evaluates the 

results, and outputs the best pre-processing method. 
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The module for conditional pre-processing was inserted using the “Search repository for 

activity” feature of the editor. Alternatively, it could be added as a child workflow, but this 

functionality is not fully implemented. 

 

 

Figure 99 - Workflow for conditional image pre-processing (UML notation) 

 

The workflow has two abstract atomic activities (“Analysis / Recognition” and 

“Evaluation”) and is therefore a template that must be concretised before it can be executed. 

The rationale for this is to allow the selection of pre-processing methods for different use 

cases, depending on what the images are used for. 

Pre-processing tools and settings are provided via a data table. In the UML diagram the 

table is illustrated like an activity with output ports only. Figure 101 shows the template and 

the content of the data table in the Workflow Editor. 

Within the census project, more pre-processing steps were evaluated by combining 

different methods. For simplicity, this was not modelled here. Adding more branches to the 

conditional pre-processing module could be used to this end. 

Table 12 shows selected semantic labels of the template. Most important are the labels for 

the root activity and the abstract activities since these are the objects a user is most likely to 
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interact with. The other activities are part of the inner workings of the workflow and will be 

handled as a black box by most users. 

 

 

 

Figure 100 - Workflow template for image pre-processing selection; top: overview, bottom: enlarged 

inner for loop (UML, simplified) 
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Figure 101 - Image pre-processing method selection template in Workflow Editor 

 

Table 12 - Selected semantic labels for Image Pre-Processing Selection workflow template 

Activity / Port Label Group Semantic Label 

Root activity Data creation Information extraction 

Automation Automated 

Adaptability Configurable 

Activity domain Comparative performance analysis 

Analysis / Recognition Data creation Information extraction 

Automation Automated 

Processing level High-level 

Activity Domain Content analysis and recognition 

Evaluation Data creation Information extraction 

Automation Automated 

Activity domain Comparative performance analysis 

Port “Recognition Result” Precision Estimated 

Port “Ground Truth” Precision Ground truth 

Port “Evaluation Result” Precision Measured 

Content type Performance information 

 

 



181 

 

7.3.3 Table Template Creation 

An example that a workflow can be useful even if it cannot be executed in a fully 

automated way is provided in Figure 102. For the census digitisation pipeline to work, table 

templates are required. They are used to align the results of an OCR engine with a given 

template (containing the layout and cells of one or multiple tables that appear on the 

respective page of the census material). The activity “Correction” (highlighted) is labelled as 

“Automation – Manual”, indicating that human intervention is required. In theory, this can 

still be automated by adopting crowdsourcing where the correction task is presented to 

volunteers or paid workers. Similar hybrid workflows are already used in the industry. 

 

The next section focusses on workflow template discovery. 

 

 

Figure 102 - Table template creation workflow (UML) 

 

7.4 Finding Workflow Templates 

In this section, it will be described how suitable workflow templates can be discovered. 

Two different angles are explored, referred to as User L and User C. Neither user is an expert 

in document image analysis. Let User L be from a library or digital archive background and 

let User C be from a computer science / software development background. Other user groups 

exist but two examples are thought to be sufficient to demonstrate the flexibility of the 

proposed system.  
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Workflow Discovery - User L: 

User L would be an expert with regard to the census data, having detailed knowledge on 

the condition, metadata, formats etc. The first step is to select a suitable workflow repository 

within the Repository Hub tool. In the future, repositories could be organised by domain, if 

the sizes become difficult to handle. For this experiment, a combined repository was created 

that contains all activities and workflow templates (as introduced earlier). Since the 

repository contains all workflow sources, the step of selecting a repository is trivial. 

Searching for workflows which take tables as input data (Content of interest – Visual – 

Mixed – Tables / Forms) results in two items (see Figure 103): 

• ABBYY FineReader Engine and 

• Form or table analysis and recognition. 

 

 

Figure 103 - Workflow discovery by content of interest 

 

If too many items are returned, the list can be narrowed down using other filters (e.g. 

execution environment and licence). 

When looking at the search results, FineReader engine seems the better choice at first 

since it requires only an image whereas the table analysis workflow requires a table template 

as well. Furthermore, FineReader is a concrete workflow and therefore directly executable. 

But, investigating further, it becomes clear that FineReader is too generic for the task at hand 

(extracting table data to eventually feed it into a database). FineReader outputs an OCR 
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result, a PAGE XML file, in this instance. The librarian might already know or can find out 

that the PAGE format does not support a table structure and the extracted data is therefore 

not suitable. In a production system, concrete workflows could be tested with example data 

in case not enough information is provided within the workflow documentation.  

The output of the table analysis workflow is called (more promisingly) “Extracted Fields” 

and it is selected as starting point (continued in next subsection). 

 

Workflow Discovery - User C: 

It is assumed that a computer scientist understands that somewhere in the process the text 

of the table cells needs to be recognised. The repository can be searched for workflows that 

perform Optical Character Recognition (OCR) (Activity domain – Computing – Visual 

computing – Content analysis – OCR). By default, only the root activities of workflows are 

regarded when filtering. To include all activities of all workflows, the search option “Include 

child activities” can be selected. This returns all workflows or workflow templates that 

contain an OCR step anywhere in their structure. For the example repository this returns nine 

result items. Further refinement using “Automation – Automated” and “Adaptability – 

Configurable” narrows the list down to four items (see Figure 104).  

 

 

Figure 104 - Workflow discovery by activity domain 

 

The table recognition workflow is amongst the result items and the user could read the 

descriptions to make a decision on which workflow to use. A useful feature of the filter 
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controls (the checkboxes) is that they can be used to see what other semantic labels the current 

selection of workflows contains. This can help to find more suitable filter options, if required. 

 

Having selected a workflow or template, the steps required to arrive at an executable 

workflow are described in the following sections. 

 

7.5 Template Concretisation 

This section explains how to continue creating an executable workflow from the initially 

selected template. As before, the two viewpoints are used. 

 

Concretisation – User L: 

  A novice to workflow systems will not be aware of all available routes to a successful 

workflow. But since a suitable template was found in the previous step, it is straightforward 

to use that as a basis and open the workflow in the editor. The Workflow Editor displays that 

the workflow is abstract and not executable. The concretisation is offered as a solution (see 

subsection 5.4.8) and can be carried out with the combined repository (all workflows and 

activities) in the automated mode. 

 

For the example, the concretisation replaced one abstract activity (OCR replaced with 

PRImA FineReader Integration), but the remaining abstract activities could not be replaced 

using the default settings (strictness 90%). Figure 105 shows the initial result. 
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Figure 105 - Partial concretisation of table recognition template (top: result of automated process; 

bottom: result of assisted process) 

 

The user now has two options on how to continue (in future versions of the prototype, the 

dialogue could inform the user of those options): 

(1) Gradually decrease the strictness threshold and re-concretise until all activities are 

replaced or the lowest threshold is reached. For the template at hand this strictness is 

80%. Nevertheless, this can lead to unsuitable workflows (see subsection 6.3.3) and 

an inexperienced user might not feel confident to change advanced settings. Instead, 

option two can be used. 

(2) Use the assisted concretisation. By switching from “Automated” to “Assisted”, 

conflicts can be resolved by the user interactively. For the example workflow template, 

this results in three interactions: 

• “Pre-processing” activity: Twelve matching items are found, none of which 

are obvious choices for the table recognition workflow. In such a case, the user 

can opt to ignore this abstract activity (“Do not replace”) and handle the 

problem later. 
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• “Table location and field extraction”: Five activities are shown as matches 

(sorted by match score). The first two (“Layout Aligner” and “Table 

Exporter”) are related to table recognition and the user can choose one by 

clicking on the result item. It is assumed that the best match was selected 

(problems caused by wrong choices in this step can be uncovered and corrected 

later using workflow validation). 

• “Post-processing”: The user is presented with nine items, the best match being 

the “Page Post-Processor” (assumed to be selected for this use case). 

 

The result of the concretisation is a workflow which is still partially abstract (the pre-

processing step) and needs further refinement (see Figure 105 bottom), which is described in 

later subsections. Before that, an alternative route is explained in the following. 

 

Concretisation – User C: 

Inspecting the workflow template for table recognition, it becomes apparent that the input 

is one single image. The census data, however, consists of whole sets of images. A user with 

experience in software development will know that this can be resolved using a loop of some 

kind. After starting a new workflow from scratch (“Create Workflow” in the Repository 

Hub), a loop can be added by creating a for-loop activity. An initial input port representing a 

data collection ensures that the workflow can handle the census dataset. 

The previously found template “Form or table analysis and recognition” can be added to 

the loop by adding a child activity via the search dialogue (“Add activity” – “Search 

repository for activity”). A simple text search is sufficient since the name is known (see 

Figure 106). 

Instead of concretising the workflow using the automated or assisted method that was used 

in the User L’s scenario, a manual approach can be used with more control over the activity 

replacement. The user thereby replaces all atomic activities that are marked as “abstract” 

with concrete ones from a repository (or a newly created one).  

Table 13 shows the matching results for the four abstract activities of the table recognition 

template. As semantic filter “Automation – Automated” was used. Choosing a suitable 
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activity is the responsibility of the user. The decision-making process can include reading the 

descriptions of the best matching activities and possibly test them with the target data. 

Replacing an abstract activity has an influence on the match scores of the remaining 

activities that are yet to be replaced. The order of replacing can therefore be of relevance. If 

possible, the user should start with the most important activity or the one they are most 

confident about. The two rightmost columns of Table 13 show the order in which the 

activities were replaced in this experiment and the new match scores (just before an activity 

is replaced and after other activities were replaced). The symbols “↑”, “↓”, “=” indicate 

whether the match scores increased, decreased, or stayed identical respectively. 

The pre-processing activity presents the same problem as mentioned earlier (user L’s point 

of view). Even a domain expert cannot make an informed decision in cases like this. The next 

section focusses on possible solutions. 

 

 

Figure 106 - Adding a new activity via text search 
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Table 13 - Matching results for table recognition template 

Abstract Atomic 

Activity 

Matching Concrete 

Activities with Highest 

Scores 

Initial 

Match 

Score 

Replacement 

Order 

New 

Match 

Score 

Pre-processing Document Deskewer 83% N/A (not 

replaced) 

= 83% 

Hot Metal Font Enhancer 83% = 83% 

Border Removal 83% = 83% 

Hectography Foreground 

Extractor 

78% = 78% 

Page Curl Correction 78% = 78% 

Dewarping 78% = 78% 

ImageMagick 75% = 75% 

OCR PRImA FineReader 

Integration 

84% 1 N/A 

PRImA TypeWritten OCR 76% 

Ocrad 73% 

OCRopus 71% 

Table Location and 

Field Extraction 

Layout Aligner 86% 2 ↑ 88% 

Table Exporter 66% ↑ 72% 

Page post-processor 60% ↑ 66% 

Post-Processing Page post-processor 80% 3 ↑ 84% 

Text and Error Profiler 76% = 76% 

IMPACT Spelling variation 

tool 

72% ↓ 66% 

PRImA Text Normalisation 71% ↓ 63% 

Unpaper 66% ↓ 55% 

Word Segmenter 49% ↑ 58% 

 

7.6 Pre-Processing Activity Selection 

It is the responsibility of the designer to provide as much information as possible for each 

component of a workflow template. This can include related templates, recommended 

software tools (in form of atomic activities), and parameter values including their meaning. 

For the pre-processing step of the example template, it is recommended to select a method 

depending on the input data, using the workflow for image pre-processing selection (see 7.3).  

If there are insufficient resources for ground truth production (involves manual work, but 

required for the selection workflow), an alternative is to use a pre-processing method that 

improved the recognition results in most cases and never decreased the success (for instance 

ImageMagick with the “enhance” option). If the template designer does not include enough 
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information, the user of the workflow system can search the repository for suitable workflows 

from the domain of performance analysis. Suitable semantic search filters are: 

• Activity domain – Computing – Performance evaluation 

• Data creation / transformation – Enhancement (with option “Include child 

activities”) 

• Input data – Content encoding – Raster image 

 

The pre-processing selection template (see again Figure 99) can be discovered in such a 

way. The workflow contains concrete image processing tools, but it is generic regarding the 

analysis / recognition that is performed after the pre-processing and the evaluation of the 

results. Again, the template designer should inform the user which steps are required to arrive 

at an executable workflow. Alternatively, the steps from the previous subsection can be 

repeated here. In conclusion, the first step is to replace the “Analysis / Recognition” 

placeholder with the same OCR method that was used earlier (ABBYY FineReader).  

The second step is to find an appropriate performance evaluation method. Since the OCR 

step is already integrated, a search by activity matching returns several valid candidates, 

including: 

• PRImA OCR Evaluation. 

• NCSR OCR Evaluation. 

• HOCR Eval. 

 

The decision can then be based on secondary semantic properties such as processing 

platform and licence. For this case study, the PRImA OCR Evaluation is selected. 

 

To be able to execute a workflow, in most cases, it also needs to be connected to an 

external data source. The next section explains how this can be done for the pre-processing 

selection workflow. 
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7.7 Providing External Input Data 

A complete workflow system will offer assistive features to import external data and 

annotate it semantically. The prototype does not contain such functionality, but it can be 

emulated using data tables (see Section 4.1). 

The workflow editor offers assistance to reach an executable workflow (validation 

dialogue; see 5.4.7). With regard to input data, unconnected ports are listed and solutions are 

presented (Figure 107). One data table with the following two columns is enough: 

1) Census pages 

2) Corresponding ground truth 

 

The table data can then be routed to the respective input ports (displayed in the validation 

panel). What has been disregarded in the described procedure so far is where the actual data 

(files, for instance) originates from. The census pages are available as images and can be 

linked directly. A production workflow system is likely to have several mechanisms to do 

so, such as local files, database connections etc. The ground truth data, however, needs to be 

created manually. Two possible scenarios are described below. 

 

 

Figure 107 - Unconnected input ports in pre-processing selection workflow 
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Ground Truth Creation – User L: 

Ground truth data for the census files might already be available within the library or the 

user has a favourite tool to create ground truth. If the data format does not match the required 

format (or formats) of the evaluation activity from the workflow (i.e. the PRImA OCR 

Evaluation tool), the workflow is faulty. The validation reports this as an error and offers 

three solutions: 

• Check the data types and correct them if they are wrong. 

• Use another activity that has suitable data ports. 

• Add a converter. 

 

The latter option was discussed in Section 6.3 and is the solution that needs the least 

knowledge regarding the workflow design. Nevertheless, a converter can only be added if a 

suitable one is listed in an activity repository, otherwise the operation ends with a warning 

and only an abstract converter activity is added. That, in return, means that the workflow is 

not executable until a concrete converter is provided or the workflow is changed according 

to the remaining solutions listed above. 

If, for this example, the ground truth is available in ALTO XML format (widely used by 

libraries), a suitable converter exists: the PRImA Page Conversion Tool. It can convert 

different page layout formats (including ALTO) to PAGE XML, which is an allowed data 

type for the evaluation activity. 

Figure 108 shows the result of the modifications made to the workflow template, with 

added data table, filled in concrete atomic activities, and data conversion step. 
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Figure 108 - Executable image pre-processing selection workflow; top: whole workflow, bottom: enlarged 

inner for loop (changes made to template highlighted) 
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Ground Truth Creation – User C: 

If ground truth data needs to be created from scratch and no specific ground truthing tool 

is to be used, the user can search for suitable workflows or activities in the respective 

repositories. The OCR Evaluation Tool allows for inputs in form of plain text files or PAGE 

XML files. The user can run a semantic search, looking for workflows with the following 

labels: 

• Automation – Manual or Automation – Assisted 

• Output data – Ground truth / gold standard 

• Content of interest – Visual content – Text 

 

One matching tool is the Aletheia Document Analysis System. Once the ground truth is 

created with Aletheia, the data can be used straightaway, without the need for a converter. 

 

The output of the image pre-processing selection workflow is a tool ID and corresponding 

settings that can be used in the census digitisation pipeline to improve the overall result 

quality. How the pre-processing step can be integrated in the census workflow is explained 

in the next section. 

 

7.8 Adding a Pre-Processing Step 

The census template concretisation (Section 7.5) is incomplete, with the pre-processing 

step still being abstract. The previous subsections described how a suitable image processing 

method can be selected. This method now needs to be integrated into the digitisation 

workflow template. Again, two possible paths are considered. 

 

Adding an Activity – User L: 

The most direct way of adding the selected pre-processing activity is to use the “Replace 

Activity” feature of the Workflow Editor and search for the software tool in the activity 

repository (using the tool ID that was an output value of the selection workflow). If the pre-
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processing tool is not listed in the repository, it can be imported directly from the image pre-

processing template, using following steps: 

• Select the abstract “Pre-processing” activity. 

• Choose “Replace Activity” in the workflow editor. 

• Select “Activities of a selected workflow…” as source. 

• Find and select the image pre-processing template. 

• Choose the desired activity (e.g. ImageMagick tool). 

• Finish the replacement operation as usual (see Section 5.4.6). 

The tool settings, also an output of the selection workflow, can be copied directly to the 

“fixed value” field of the respective input port. 

 

Adding an Activity – User C: 

Although the steps described above are valid and produce an executable workflow, the 

result is not future-proof since the pre-processing activity would have to be changed each 

time the input data changes (a different set of census data, for instance). Instead, a more 

generic solution can be used. User C might have noticed (or the template designer added a 

note) that a section of the pre-processing selection template is a workflow module, available 

as separate workflow in the repository (called “Conditional Image Pre-processing”, see again 

7.3). 

The abstract pre-processing activity of the census digitisation workflow can be replaced 

by the discovered sub-workflow. The input values for tool name and settings can be copied 

from the result of the executed selection workflow. If the census input data changes, the pre-

processing selection can simply be run again and the result values can be copied to the input 

ports of the conditional image pre-processing activity. There is no need to change the 

workflow structure. 

 

The main steps towards a usable workflow have been taken. The next section describes 

the remaining tasks. 
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7.9 Finalising the Census Workflow 

The remainder of the work required to reach an executable and effective workflow is an 

iterative process of workflow validation and handling of issues that arise. In addition to 

problems that were discussed earlier, this could include the following items (organised by 

the two scenarios). 

 

Workflow Finalisation – User L: 

 The workflow template for table recognition was designed to process only one input 

image. If the user connects a data collection (for instance a column of a data table) with the 

input port of the root activity, a mismatch is produced and the validation reports this as error 

(see Figure 109). 

 

 

Figure 109 - Validation error for data cardinality mismatch 

 

At this point, the user must intervene and make a decision (given it was not just a mistake). 

The workflow system cannot know whether the intention is to execute the corresponding 

section of the workflow only once with a specific data item from the source collection or 

whether to iterate over the data collection and repeat the processing for each item.  

In the census example, there is a dataset consisting of multiple page scans and a 

digitisation pipeline that deals with one page at a time. Therefore, the correct solution is to 
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wrap the pipeline in a for-loop activity. Figure 110 shows the transformations the workflow 

systems applies to the workflow. 

 

  

Figure 110 - Adding a loop to resolve data cardinality mismatch (top: cardinality mismatch; bottom: 

solution using a for-loop activity) 

 

Workflow Finalisation – User C: 

As mentioned in Section 7.5, in this scenario, the user has already created a loop activity 

and added the digitisation pipeline as child activity. Nevertheless, the so-called loop ports 

also need to be connected to the correct ports in order to indicate which item from a data 

collection to use at any given time and how many iterations are to be executed. The workflow 

validation warns of unconnected ports, but the actual “wiring” is the responsibility of the 

user. This can be achieved by providing sources for input ports and forwarding for output 

ports (see 5.4.1). 

 

A few remaining points to complete the workflow are only mentioned in short since they 

can be dealt with in similar fashion as other issues described before: 
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• Template data: The pipeline requires an input called “Template”. A suitable 

workflow was provided by the template designer (“Table Template Creation”) and 

can be used. 

• Table classification: The census data contains different types of tables, each of 

which requires a different table template (see previous point). An additional 

activity needs to be used in case different table types are to be fed into the table 

recognition workflow. A suitable atomic activity exists (“PRImA Table 

Classifier”) and can be integrated into the workflow. 

 

7.10 Discussion 

The aim of this case study was to investigate whether the proposed semantics-enabled 

workflow system can be used to replicate a pilot project like the Census 1961 Feasibility 

Study. The focus thereby were the semantic features and their impact on assistive or 

automated functions of the system. 

Table 14 provides an overview of the steps to create an executable census digitisation 

workflow, separated into the two use scenarios (User L and User C). The right-most column 

indicates whether semantic features were used for a specific step. 

It can be concluded that basic steps of the workflow composition process can be 

automated. In combination with workflow templates, complex constructs can be created, 

likely even by users that are not experts in either document image analysis or workflow 

systems. Modular design (smaller workflows that can be combined) and composition aided 

by semantic features help to overcome obstacles. Specifically, using semantics has the 

following effects for the given use case: 

• Improved workflow and activity discovery: Data types can have a very diverse 

meaning and are not sufficient for automation of workflow composition tasks. But 

also, a manual search profits from using an agreed ontology. A keyword-based 

search can lead to incomplete results since research groups, businesses, and other 

parties often use their own terminology that differs from others. Wrong results 

may be returned if keywords are ambiguous. The term “performance evaluation”, 
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for instance, has very different meanings in document image analysis and arts & 

media. 

• Enablement of automated and assistive functions: The label-based semantic 

matching approach enables features that would fail otherwise. A matching purely 

based on data types of activities would lead to ambiguities that render automated 

functions ineffective and assistive function inefficient. 

• Reusability: Enriching a workflow (or a workflow module) with meaningful 

semantic labels helps to make it more reusable because it can be discovered more 

easily by other researchers and because the purpose of the module is clearly 

defined. 

 

The ontology and the model based on multiple taxonomies was expressive enough for the 

described use scenario. Nevertheless, there are certain limitations: 

• The creation of complex templates and the composition of large workflows 

requires knowledge of the workflow system. Structures such as nested loops, 

multi-condition if-else branches, and parallelisation cannot be constructed in a 

fully automated way. 

• The success of the automated and assistive features strongly relies on the quality 

of the semantic labelling and the completeness of repositories (templates, 

activities, and data sources). 

 

Not all aspects of the Census 1961 project were covered in this section, but the required 

steps are the same: template creation, workflow discovery, assisted composition, data 

linkage, and validation. 
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Table 14 - Overview of Census digitisation workflow creation 

Step Used Features 

(Scenario L) 

Used Features 

(Scenario C) 

Usage of semantic 

features 

Workflow template 

creation 

Composition Labelling 

Activity Search Label-based 

Data Tables Labelling 

Validation Label matching 

Workflow Discovery Search by input / 

output data features 

Search by activity 

features 

Label-based 

Metadata None 

Concretisation Automated and/or 

assisted concretisation 

Replacing abstract 

activities 

Label matching, Label 

filtering 

 Text-based search None 

Linking external 

data 

Automatic data 

conversion 

Data creation Label-based search, 

Label matching 

Filling in modules / 

selected activities 

Replacing with child 

activity of another 

workflow 

Reusing a workflow 

module to replace an 

activity 

None 

Handling data 

collections 

Automated loop 

creation 

Connecting loop data 

ports 

None 

Finalisation Validation and correction Partial use 

 

7.11 Summary 

In this chapter, a project from the domain of document image analysis was used to test the 

expressivity of the proposed ontology and the support the workflow system implementation 

provides users – using a real-world setting. Hypothetical users with assumed different 

background knowledge were used to explore the use of the prototype system from different 

angles. 

The findings confirm the results from Chapter 6 in that the ontology is expressive enough 

for modelling processing pipelines and activities related to document image analysis. The 

assistive features are useful and should help users in composing relevant workflows 
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(although future studies with real users would be beneficial to explore and remove points of 

friction). 

 This chapter strengthened the claim that objective 4. of Section 1.4 (complete framework 

for workflow composition and management) is indeed fulfilled. The case study covered all 

aspects a user would interact with when using such a framework. All essential functionality 

is available, with the limitations of it being a prototype. Objective 5. (real-world use cases) 

is also seen as completed.  

 

The next and final chapter provides a discussion of the workflow system in context of the 

goals of the PhD research.   
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8 Discussion and Conclusions 

At the beginning of this Thesis, workflow systems were introduced as a means to model 

and execute scientific experiments and processing pipelines. While scientific workflows have 

several advantages over traditional techniques (e.g. scripts), the modelling tools have a steep 

learning curve.  

The use of semantic information was proposed as a means to enhance workflow systems. 

A taxonomy-based semantic labelling scheme with an ontology for the domain of document 

image analysis and recognition was presented. A prototype workflow composition and 

management system was developed, incorporating semantics in all components, to be able to 

test the respective algorithms and other aspects. Lastly, experiments and a real-world case 

study were discussed, assessing the semantic features for assisting users and automating 

tasks. 

In this chapter, the presented semantic model and workflow system features are examined 

carefully regarding the objectives of this PhD research. The key contributions are discussed 

and relations to other systems are established. In addition, current limitations and future work 

are outlined. At the end of the chapter overall conclusions are presented. 

 

8.1 Fulfilment of Objectives 

The main aims of the PhD research were to investigate approaches for automation within 

scientific workflow systems and to develop strategies and solutions to assist with the creation 

and management of workflows.  

The hypothesis5 is proved. The proposed semantic modelling approach is powerful enough 

to enable useful assistive features for several tasks in workflow design/composition, use, and 

management (if a well-designed ontology for the target domain is used). Fully automated 

features are limited to small/local algorithmic interventions, but features with user interaction 

work well throughout. 

                                                 
5 “By creating a formal model for document image analysis, by semantically annotating components and 

data, and by using this information algorithmically within a workflow system it is possible to automate common 

tasks (within such system) and assist users in workflow creation and management.” See Section 1.4. 
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The respective research objectives (Section 1.4) are discussed below. 

 

1. To determine a suitable approach for semantic modelling 

A semantic modelling approach based on taxonomies was proposed, taking into account 

several aspects of workflow environments: data (objects), workflow components, workflows, 

and user groups. It was shown that, in combination with workflow templates, the semantic 

model (the ontology) is expressive enough to enable various assistive and automated features 

for composition and retrieval of workflows.  

Technologies from the Semantic Web were chosen as modelling paradigm because they 

fit well with the distributed nature of workflows and because mature standards and tools 

exist. 

By concentrating on one aspect of semantic relations (class relationships in the form of 

label type hierarchies), both the definition and the use of the ontology have low complexity, 

while meeting the demands of expressiveness. 

 

2. To create a semantic model for document image analysis that covers all relevant 

aspects 

An ontology for document image analysis and recognition was developed, following a 

well-defined methodology and reflecting real-world data. Sources for the knowledge 

acquisition phase included existing taxonomies, text books, research project outcomes, and 

journal papers. The ontology was then validated (and extended) by creating an activity 

repository for over 100 software tools (for document image analysis) and by creating 

workflows for digitisation projects (e.g. Census 1961 Feasibility Study). 

 

3. To develop algorithms that use semantic information to support the user in workflow-

related tasks 

Algorithms were developed for semantic matching of workflow components and (semi-) 

automated workflow concretisation (filling in semantically fitting activities). Both allow for 

a smoother workflow design/composition process. 
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4. To develop a framework that incorporates the semantic model as well as features for 

(semi-)automated workflow composition 

A workflow system prototype with semantic capabilities was designed and implemented. 

Three main modules cover all relevant aspects for semantics-enabled workflow management: 

• Ontology Editor for creating and maintaining ontologies. 

• Workflow Editor for composing, annotating, and viewing workflows. 

• Repository Hub for aggregating workflows (or activities or data tables) and 

providing search functionality. 

Automation and assistance were added in form of: 

• Label-based search and retrieval or workflows. 

• An algorithm for semantic matching of activities. 

• An approach for workflow template concretisation (substituting abstract activities 

with concrete activities that represent software tools). 

• Workflow validation (to help to complete workflows and/or enhance the quality 

of workflows). 

 

5. To prove the validity of the approach by applying it to real-world use cases 

The findings from the experiments (chapters 6 and 7) show that the presented model is 

expressive enough to describe real-world scenarios, encompassing the following elements: 

software tools (methods), data, data flow, control flow, semantic knowledge, and levels of 

abstraction. Basic workflows can be composed using semi-automated (assistive) and fully-

automated methods. When used together with workflow templates (created by experts), 

complex structures can also be created by non-experts in the target domain and/or the 

workflow system.  

Several workflows for a large digitisation project (1961 Census for England and Wales) 

were worked out and analysed. The flexibility of the proposed approach was shown by 

considering different types of users, approaching workflows from different angles. 

 

The primary research objectives were achieved and, in addition, the following secondary 

outcomes were presented.  



204 

 

1. A tree-based approach was chosen to visualise the hierarchy of activities, 

complemented by freely arrangeable diagrams for control flow in directed acyclic 

graphs. This represents a low-level view, most likely to be used by workflow system 

experts. A higher-level view, based on UML Activity Diagram notation, was 

implemented in addition. 

2. A mechanism to provide specialised definitions for different user groups (with 

different levels of domain and/or technical knowledge) can support the cooperation 

between experts of different domains. This encompasses additions to the ontology and 

to the workflow system. 

 

8.2 Key Contributions 

The main contributions can be summarised as: 

(1) A new approach for incorporating semantic information into workflow systems. 

(2) A new semantic model for document image analysis and recognition. 

(3) A workflow system prototype with support for semantic data and related features. 

(4) Algorithms for (semi-)automation of workflow composition and discovery. 

(5) Solutions to real-world use cases using the semantics-enriched workflow system. 

 

The five points are discussed below. 

 

Label-based semantic modelling (1) 

A new approach for incorporating a semantic layer to workflow models was proposed. 

Labels that are part of an ontology - based on multiple taxonomies - are used to specify the 

meaning of workflow components and data objects. The semantic information is treated less 

strictly than data types to be more forgiving regarding assignment and use of labels. Instead 

of a simple yes-or-no reasoning, a heuristic algorithm is used to calculate a match score when 

searching for workflows, components, or data. 
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Ontology (2) 

Using the proposed model, an ontology for document image analysis and recognition was 

engineered, considering multiple sources of information in the data collection, 

conceptualisation, and evaluation stages (text books, existing taxonomies, journal papers, 

project outcomes, software tools, and digitisation pipelines). The ontology thereby covers all 

important aspects of the domain: 

• Research- and industry-related terms / concepts. 

• Separate taxonomies for data and activity. 

• Scientific (e.g. activity domain) and practical information (e.g. software licence). 

 

Workflow system (3) 

A functionality-rich workflow system prototype was implemented to explore and 

demonstrate ways to use the semantic information (for creating and using workflows 

efficiently). It can be used as an example of how to add semantic features to existing 

workflow systems. A unique characteristic is the holistic approach of the semantic 

extensions, including ontology editing, labelling, composition, retrieval, and user interface. 

 

Algorithms (4) 

New algorithms for semantic matching and workflow concretisation were developed. The 

semantic information is therein treated in a non-traditional way (less strict, resulting in a 

match percentage) to achieve flexibility. 

 

Worked out use cases (5) 

In addition to an evaluation of each component of the system prototype (Chapter 6), 

worked out solutions for a large-scale project were presented in Chapter 7. The system was 

successfully used, in a hypothetical scenario, to create workflows for an existing digitisation 

project (Census 1961 for England and Wales). To test the flexibility of the model, different 

points of view were explored (different types of hypothetical users). All discussed aspects of 

the proposed approach were thereby employed: semantic annotation, (semi-)automated 



206 

 

workflow composition, repositories, workflow search, activity matching, and workflow 

validation. 

 

The next section discusses several other approaches of incorporating and using semantic 

information in workflow systems. 

 

8.3 Comparison to other Semantics-based Approaches 

There are several workflow systems with intrinsic semantic features or semantic 

extensions (see Section 2.5). The most straightforward comparison that can be made is to the 

ASKALON system (see Section 2.5.3) since its workflow model was used as the basis for 

the presented prototype. ASKALON uses a very rigid semantic approach where each 

workflow activity can be assigned exactly one function (semantic meaning). In praxis this 

means, users need to know exactly what they are looking for. They then either find a matching 

activity or not (there is no way to discover something in-between, i.e. something that is 

closely related to the search terms but does not fit precisely). 

Ontologies need to be created using external tools and are very specific, resembling an 

abstract workflow, precisely reflecting a dedicated scientific setup/experiment (judging from 

the examples the authors present). Reuse for different setups is therefore questionable.  

Annotation of data objects is not supported (as opposed to the proposed system). 

Automation regarding dataflow is therefore limited to data type checks.  

The proposed label-based approach is less rigid in comparison which enables more reuse 

and better discoverability. An extension based on weighting could emulate ASKALON’s 

functionality (see also the next section). The proposed system would then have the option of 

strict matches (where required) and still retain the option of flexible matches. Strictness can 

be useful in situations where a non-match would definitely lead to an invalid workflow. 

 

WINGS (see Section 2.5.1) uses a strict constraint-based approach where workflow 

components are filtered out from search results if a constraint applies. The constraints are 

entered directly using syntax from the Semantic Web, therefore requiring expert knowledge. 
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This allows for more flexible semantic descriptions, but it is also more complex in terms of 

definition and processing. In contrast, the model proposed in this PhD research is lightweight 

and straightforward to use (the user interface aids the semantic annotation). Nevertheless, the 

two approaches are not mutually exclusive and could be combined (e.g. using labels for most 

cases and adding strict constraints where needed), in cases where certain combinations of 

activities or data should be completely forbidden. Currently, the proposed system cannot 

forbid any combinations. It only shows a low match score, for instance, and leaves the final 

decision to the user. 

 

 Gubala and Bubak’s Petri net-based system (see Section 2.5.2) is purely automated and 

does not allow for user interaction. The use cases in this Thesis showed that assistive features 

with user actions can be an effective way of resolving conflicts where not enough semantic 

data is available. Real-world use will inevitably entail incomplete workflow component 

descriptions and other obstacles. An interactive system with some automation seems more 

suited to actual real-world problem scenarios. Furthermore, the Petri net system has never 

been developed beyond a prototype stage. 

 

The conceptual Semantic Grid and the associated Dartflow (see 2.5.4) only represent a 

theoretical framework which seems incomplete. Iterations (or loops), for example, are not 

mentioned or evaluated. It is web-service-oriented and therefore not fully comparable to the 

proposed system with workflow templates. However, the authors describe a useful 

architecture for managing multiple ontologies. This could be adopted if the proposed system 

is to be used for multiple domains at once. 

 

Most of the state-of-the-art systems use Semantic Web technologies. It is therefore 

conceivable that some semantic information could be shared across systems. Additionally, 

semantic features could be combined to achieve a more expressive system (although this also 

increases the complexity). 
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8.4 Limitations 

In this section, several limitations and possible solutions are discussed. 

 

Related to semantic model 

The proposed semantic model uses hierarchical relations of label types for annotating 

workflow components and data (low complexity, expressive enough for the discussed tasks). 

Complex relationships (useful when very detailed modelling is required), possibly with 

numerical values, cannot be reflected. However, the use of workflow templates can 

compensate for this and allows the pre-composition of reusable sub-workflows (that can be 

created by experts).  

Numerical and other constraints could be added in future by extending the model using 

the respective features from the semantic modelling paradigms and languages (OWL, for 

instance). In addition, certain numeric aspects could be modelled using ranges of values (age 

groups for printed documents, for example: 1900 – 1950, 1950 – 2000 etc.). 

 

Related to matching and search algorithms 

The flexibility of the matching algorithm (match score 0% to 100%) can lead to unsuitable 

(in terms of achieving the most useful results) workflows if the user fully relies solely on 

automated features. Where a strict approach (a yes/no semantic inference method) might fail 

to produce a result, the proposed approach might return an executable but ineffective 

workflow. A visualisation method highlighting weak semantic matches can be developed to 

help users to focus on potential problems (e.g. connected data ports that have differing 

semantic purposes).  

The semantic workflow search component of the system already qualifies search results 

(with scores), aiding users to decide for or against the discovered workflows. 

 

Related to semantic annotation 

The automated and assistive features are only as good as the data they have access to (a 

general limitation of any system requiring information). If activity, template, and data 

repositories lack semantic information, the system might not be able to produce valid 
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workflows. The inclusion of user interaction can help to some extent, but non-experts might 

not be able to complete a partial workflow either. Future workflow frameworks will require 

some form of quality assurance, including the proposed workflow validation method in one 

form or another. In addition, repositories could be moderated to guarantee annotations are as 

complete as possible (which is a reasonable requirement, as shown by the use case presented 

in this Thesis). 

Adding semantic information to software methods takes time – a valuable resource. It 

might be difficult to convince developers to invest additional time on top of designing and 

implementing a method. However, having a good ecosystem of semantically labelled 

workflows could save time overall. Labelling could be a good practise similar to adding 

comments to source code (which also takes time in the short run and saves time in the long 

run). 

Too much semantic annotation can also be problematic for the proposed approach, 

possibly leading to a dilution of information. A solution could be to add weights to labels, 

either in the ontology or at the time of use (e.g. semantic search). The matching algorithm 

can be extended to treat labels with higher weights as more important. 

 

Related to user interface 

The presented prototype is not yet fully suitable for inexperienced users. Workflows can 

be composed using a tree visualisation of activities, but a graphical composition approach 

(e.g. with drag and drop functionality) needs to be added for more complete user experience 

(better understandability, faster composition etc.). This has, however, little relevance with 

respect to the objectives of this PhD research (evaluation of semantic approaches). 

Nevertheless, a small step has been taken in that direction by adding a UML-like visualisation 

component (see Section 5.4.11). 

The inclusion of user groups in the semantic model and its application to the embodiment 

of the user interface can help to lessen learning curves and make the system more widely 

accessible (as already implemented for aspects such as component descriptions). 
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The next section discusses future applications and extensions with respect to the ontology, 

workflow model, and the overall system. 

 

8.5 Applications and Future Work 

The implementation of a complete and mature system was out of scope for this PhD 

research. In this section, several points are discussed which reflect the natural next steps of 

the different aspects of the workflow framework. 

 

8.5.1 Ontology 

A multi-faceted ontology for document analysis was proposed in Chapter 3. Nevertheless, 

extensions and repurposing are to be expected in the future in order to adapt to new 

developments in the domain. 

 

8.5.1.1 Ontology Extensions 

It was pointed out that, in the context of scientific workflows, an ontology is never 

complete (additions and refinements for new use cases). To this end, special care was taken 

to make the example ontology futureproof. For instance, some high-level terms contain only 

one child label type at the moment but can be extended as needed. Furthermore, certain parts 

were omitted within this work for practical reasons. Natural languages are one example. As 

straightforward future extension, an ISO standard for languages (ISO 639-, -2, or -3) is 

recommended.  

Since extensions are part of the ontology engineering process, they should also follow the 

complete lifecycle of the used methodology (knowledge acquisition, conceptualisation, 

formalisation, integration, and evaluation; see Section 3.2). 

 

8.5.1.2 Application to other Domains 

All examples throughout this work are from within the field of document image analysis. 

Nonetheless, the underlying model (with concepts of activity and data) is generic and can be 

applied to many other areas. Hierarchically organised information, as used within an 
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ontology, is intrinsic to most domains in science, business, and others. Specific use cases (of 

workflow systems) from the literature are: meteorology, bioinformatics, and data mining. 

Many concepts of the proposed ontology can be reused without modification. Examples 

are activity-related terms such as: 

• Automation (manual, semi-automated, fully-automated) 

• Platform (platform-independent, Linux, Windows etc.) 

• Processing level (low-level, high-level) 

• Maturity 

• Data creation / transformation (acquisition, conversion, enhancement etc.) 

Reusable data-related aspects include: 

• Precision (ground truth, estimated, measured, random) 

• Content type (data, metadata, …) 

 

To create an ontology in another domain, the already implemented editor can be used (for 

the formalisation stage of ontology engineering). Although the system currently supports 

only one model at a time, future iterations could treat ontologies just as an additional 

resource. A natural development would be to use ontology repositories (with support for 

versioning, change logs, search for suitable (base) ontologies, extension of ontologies etc). 

While there are no limits to the dimensions of a semantic model, all-encompassing 

ontologies should be avoided for practical reasons. A mixture of different domains can lead 

to misunderstandings, for instance through use of similar terms with different meanings. The 

best praxis is a well-defined, focussed application domain and ontology. 

 

8.5.1.3 Infrastructure 

In the system prototype, an ontology is stored as a local XML file. For interoperability, an 

ontology should be made available online and managed centrally. Similarly to what is already 

the case with data format standards, the management would fall to a task group, volunteers, 

or other consortium. An open approach is preferable, enabling users to submit suggestions 

and feedback (like open source software projects on GitHub). An ontology would then be 
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accessible via a web service (for semantic queries) or as download (in the proposed XML 

format). Software components should be (and are already) made available as open source 

and should be well-documented. 

Maintainers of existing workflow systems, repository platforms, and online datasets could 

then be encouraged to adopt the semantic layer. 

These points also correspond with the keystones of the Semantic Web (which the proposed 

model and system are based on), as outlined in Section 3.1: 

• Building models (abstracting the world). 

• Computing with knowledge (reasoning machines). 

• Exchanging information (distribute, interlink, and reconcile knowledge). 

 

An evolution of the semantic models is anticipated and useful. Possible changes to the 

workflow model are more fundamental and should be considered carefully. These are 

discussed next. 

 

8.5.2 Workflow Model 

The workflow model defines which basic components are available to create workflows. 

Possible changes include new activity types, data table extensions, and activity references. 

 

8.5.2.1 Additional Activity Types 

Only a limited number of types of workflow activities was introduced in this work. 

Additional control flow activities will be required (or at least will be useful) in order to design 

more complex workflows. 

“While loop” activities can complement the already described “for loop”. The child 

activity can thereby be reiterated while a certain condition is met. The counterparts from 

programming languages – “do while” and “repeat until” – can be included in this concept. 

“Sequence” activities are special cases of a directed acyclic graph. Child activities are 

processed one after the other in a predefined order. This type of activity does not have to be 
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part of the basic workflow model. Instead, it could be implemented in the user interface layer, 

based on “DAG” activities and enforcing simple sequences of vertices. 

 

8.5.2.2 Writable Data Tables 

Data tables were introduced in Section 5.4.4 as read-only sources for static and/or dynamic 

data that can be accessed from all activities in a workflow. Such tables have columns that act 

like output ports that have a data collection. By extending this concept in a way that table 

columns can also represent input ports, data tables can be made writable. 

Data tables with write access can be used to store workflow results persistently, which, at 

the moment, can only be done within an activity (invisible within the workflow). 

Implementing the data management within the workflow system can lead to more clarity 

because the whole life cycle of the data can be modelled. Figure 111 shows the template 

creation workflow from section 7.3 (Figure 102) extended by a data table that acts as image 

source and output target. 

 



214 

 

 

Figure 111 - Data table that acts as source and target of activity data 

 

Another application is using a data table to store the internal state of a workflow. Usually, 

data flows from activity to activity. Intermediate results cannot be stored for later access 

within the workflow. One example is finding the maximum from a list of numerical values. 

In Section 7.3 this was circumvented by adding a placeholder activity “Find Maximum” 

which returned the list index of the maximum. Figure 112 shows a workflow that explicitly 

finds the maximum of a data collection of values. It uses a data table to store the internal state 

of the process (current maximum and value index). 
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Figure 112 - Data table used as internal state for finding the maximum of values 

 

8.5.2.3 Activity References 

It may be necessary to be able to add one and the same abstract activity in several places 

within a workflow template. An example is a performance comparison workflow where the 

quality of two different methods (e.g. different OCR systems) is measured. It is crucial that 

the same performance evaluation activity is used for both methods. Figure 113 outlines the 

workflow. It should be noted that the evaluation must be done using two separate instances, 

because the quality measurement method takes results of one method and ground truth as 
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input and outputs a success rate (or similar). Since two methods are to be compared, the 

evaluation must be executed twice. 

The proposed workflow model does not currently contain the concept of actual identical 

activities. A template can be designed using two similar abstract placeholder activities, but 

there is no concept of enforcing them to be replaced by the same concrete activity later. 

A solution is the introduction of activity references. Like references in programming 

languages and symbolic links in file systems, they act as links to a physical object. For the 

example, only one abstract evaluation activity would be specified. In place of the second 

activity, a reference to the other would be added (see second workflow in Figure 113). 

This concept is similar to sub-workflows in ASKALON [1], with the difference that these 

are defined independently of the main workflow. It is therefore possible to add a sub-

workflow but never use it. This is not possible with activity references (the referenced activity 

is always part of the workflow). 

Activity references have not yet been implemented as part of the prototype system. 

Nevertheless, since activities can be addressed via their ID, adding this feature is 

straightforward. 

 

Modifications of the workflow model mostly affect the expressivity of the scientific 

workflows. The next subsection discusses changes to the workflow system. These are of more 

practical nature (usability, visualisation etc.). 
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Figure 113 - Performance comparison workflow without (top) and with (bottom) activity references 

 

8.5.3 Workflow System 

Some additional features are not reflected in the prototype system but are outlined below. 

 

8.5.3.1 Automation 

Workflow template concretisation is already implemented but depends heavily on the 

availability of fitting workflow components. Planning algorithms were discussed in Section 

2.6 as a solution for deeper automation of workflow composition. While automating the 
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creation of complex workflows is unrealistic, a more powerful solution than the basic 

concretisation approach (Section 5.4.8) is achievable. 

Given a large enough training set of existing workflows and templates, a solution based 

on machine learning could also be attempted. The presented matching algorithm (Section 

5.4.6) can be used as part of an evaluation function. 

 

8.5.3.2 User Perspectives and User Interface 

The user interface of the presented prototype is pragmatic and was not specifically created 

with user experience in mind. The intention was to be able to study the underlying 

mechanisms which can lead to a user friendly and accessible workflow system in the future.  

Certain aspects were already considered: 

• Description texts and user interface elements that are customised to user groups. 

• Interactive workflow composition where the system presents the user with suitable 

components and information on why they are suitable. 

• Interactive workflow validation where the system proposed solutions and shows 

context sensitive user interface controls. 

• Hierarchical search and matching filters where only the relevant label filter 

elements are shown. 

 

For a comprehensive system, more easy-to-understand graphical interface modules need 

to be added. If the decision is made to extend the prototype to a complete system, existing 

methods should be used as role models. An UML-based method seems suitable, but 

refinements might be necessary. Especially for large workflows, UML activity diagrams do 

become convoluted and difficult to read. 

User perspectives should permeate the whole system and only information that is relevant 

to the current user should be shown and in a way the user wants to see it. And yet, all 

information should still be available on demand if the circumstances require it to make 

informed decisions (for instance, if the simplified descriptions of activities are not sufficient 

to decide which activity to use, the user can opt to access the more specialised descriptions).  
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8.5.3.3 Workflow Profiling and Optimisation 

A major advantage of workflow systems, in comparison to scripting, for instance, is that 

control flow and data flow are formally described. This enables advanced features such as 

performance prediction and workflow optimisation. To achieve this, additional metadata 

must be made available. This can include information on average execution time of an 

activity on a reference system, memory requirements, and more. Bottlenecks and weaknesses 

of a workflow can then be identified and possibly removed automatically. 

Workflow profiling is the measurement of performance data at execution time. It does not 

require any of the aforementioned metadata, on the contrary, profiling can be used compile 

such metadata. 

 

8.5.3.4 Data Provenance 

For reproducible experiments, all data transformations and interpretations of a process 

must be documented. Workflow systems can be easily extended to collect this type of 

metadata because the dataflow between activities is well described. Semantic labels can be 

used to enrich the collected data. Especially attributes of the processed data may only be 

known at execution time. 

A similar mechanism within a workflow system is logging of debug and error information. 

Workflow system engineers need to be able to pinpoint the origin of execution failures. Each 

activity should produce detailed reports in case of a fault. The execution system is responsible 

to collect and store this data. 

 

8.5.3.5 Distributed Resources 

All components of a workflow system can be (and arguably should be) of a distributed 

nature. This includes: 

• Semantic model (ontology) 

• Workflow/template repositories 

• Activity repositories 

• Data repositories 

• Data 
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• Methods for concrete activities 

• User interface 

 

One advantage of a distributed approach is that single components can be 

modified/updated individually, from dedicated experts. The ontology for document image 

analysis, for instance, can be extended by a scientist from the domain. Other users need not 

to be involved. 

Repositories can be implemented much more efficiently using database systems. This can 

be achieved significantly easier in a distributed environment. Using web services for 

executable activities decouples the workflow from a specific execution platform. Each 

software tool that is linked to an activity can be installed on a remote platform (e.g. Linux or 

Windows server) and can be exposed solely via web service standards. Consequently, data 

should be handled in a distributed way as well. 

Finally, the user interface itself can be provided as a service, through a web application. 

While this is not a requirement (all distributed resources can be also accessed from a local 

application), it is a design decision that seems natural and useful. First steps in that direction 

have been made already with for the Taverna system [18], for instance. 

The distribution of resources is also related to other research questions such as 

performance optimisation, fault tolerance, data provenance, trust and others. 

 

8.5.3.6 Web Ontology Language and other Formats 

For future iterations of the workflow system it can be considered to fully replace the 

proprietary label ontology XML format with the OWL2 format to support interoperability 

and extensibility. A module to read an ontology from OWL XML has not been implemented 

yet since it is a straightforward software engineering task and does not provide extra value 

for this PhD project. 

It is desirable that a given workflow can be run on various workflow execution systems. 

This requires the conversion of the workflow description from the proposed representation 

to a target language. Semantic information will be lost in this process, but the structure of the 

workflow – the basis for execution – will be preserved. 
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The straightforward export target is the ASKALON system [1] since it was a main source 

of inspiration for the proposed workflow model. Especially the similarity of activity types 

and data object concepts (single vs. collection) should simplify a translation. 

 

8.5.3.7 Integration with other Systems 

A component that can be directly reused is the semantic search algorithm for retrieval of 

workflows from repositories. The labelling can be fully independent from the implementation 

specifics of the other system (labels can be stored in a separate database, for instance). 

Equally, the search algorithm can be applied independently. 

Semantic matching and assisted workflow composition would require a deeper 

integration. Nevertheless, certain aspects of workflow systems seem universal, providing a 

starting point for such an integration. Activities and data ports are the basis for all workflows, 

even though the nomenclature differs. The Taverna source code, for example, contains 

interfaces such as “Datalink”, “DataflowInputPort”, and “Processor”. 

All systems discussed in this thesis make use of the Java programming language. This is 

a good basis for interoperability but, given the complexity of the frameworks, a meaningful 

integration would require a close collaboration with the respective development teams. 

 

A final summary is given in the next section. 

 

8.6 Concluding Remarks 

A new label-based approach to add a lightweight semantic layer to workflow systems and 

repositories was presented. A prototype was implemented which includes (but is not limited 

to) features for ontology editing, workflow and template composition, component retrieval, 

and workflow management. Algorithms for automation and semi-automation were 

developed, making use of the semantic model. An ontology for document image analysis and 

recognition was engineered and formalised using the prototype system, following an 

established design methodology. This allowed for a validation of the proposed system by 

developing workflows for a large-scale end-to-end digitisation project. 
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The approach was found to be sufficiently expressive for various assistive and automated 

features and yet to avoid the complexities of higher-level constructs of Semantic Web 

technologies. The hierarchical nature of the data and unambiguous definitions of terms can 

guide users to discover suitable semantic labels when annotating workflows or when 

searching for workflows, software methods, or data sources. A flexible mode of operation 

and distributing tasks such as ontology design and template creation, can make the workflow 

systems more accessible to non-experts. 

Specific steps and strategies were outlined on how to extend the system or integrate the 

semantic features with existing workflow frameworks. The proposed semantic model, the 

created ontology, and the developed algorithms represent a viable foundation for a complete 

infrastructure surrounding workflow systems and repositories. 
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Appendix A – Label type hierarchies of the developed 

ontology (document image analysis) 

 

Activity             

    ├──────── Automation           

    │     ├──────── Manual         

    │     ├──────── Automated         

    │     └──────── Machine assisted / user-driven       

    ├──────── Licence           

    │     ├──────── Free         

    │     │     └──────── Non-commercial       

    │     ├──────── Paid for         

    │     │     ├──────── Pay once       

    │     │     ├──────── Volume       

    │     │     └──────── Subscription       

    │     └──────── Open Source         

    ├──────── Platform           

    │     ├──────── Windows         

    │     ├──────── Mac OS         

    │     ├──────── Linux         

    │     ├──────── Platform independent       

    │     │     ├──────── Java       

    │     │     └──────── Web       

    │     └──────── Mobile         

    │       ├──────── iOS       

    │       └──────── Android       

    ├──────── Activity Domain           

    │     └──────── Computing         

    │       ├──────── Visual Computing       

    │       │     ├──────── Image and video processing   

    │       │     │     ├──────── Geometric image/video processing 

    │       │     │     └──────── Pixel-based image/video processing 

    │       │     ├──────── Content analysis and recognition   

    │       │     │     ├──────── Text and symbol recognition 

    │       │     │     │     ├──────── OCR 

    │       │     │     │     ├──────── Math. expr. rec. 

    │       │     │     │     └──────── Date recognition 

    │       │     │     ├──────── Table / form analysis and recognition 

    │       │     │     ├──────── Chart recognition   

    │       │     │     ├──────── Map and plan reading 

    │       │     │     ├──────── Object / shape recognition 

    │       │     │     │     └──────── Face recognition 

    │      │     │     └──────── Layout analysis  

    │       │     └──────── Computer graphics   

    │       ├──────── Text processing       

    │       │     └──────── Natural language processing   

    │       │       ├──────── Language identification 

    │       │       ├──────── Sentiment mining   

    │       │       ├──────── Summarising   

    │       │       ├──────── Part-of-speech tagging 

    │       │       └──────── Named entity recognition 

    │       ├──────── Machine learning       

    │       ├──────── Information Management     

    │       │     └──────── Data retrieval     

    │       ├──────── Performance evaluation     

    │       │     ├──────── Comparative performance analysis   

    │       │     └──────── In-depth performance analysis   
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    │       └──────── Forensic studies       

    ├──────── Processing Level           

    │     ├──────── Low-level processing       

    │     └──────── High-level processing       

    │       ├──────── Detection / Identification     

    │       │     └──────── Verification / authentication   

    │       ├──────── Classification / recognition     

    │       └──────── Understanding       

    ├──────── Data Creation / Transformation         

    │     ├──────── Acquisition         

    │     ├──────── Conversion         

    │     ├──────── Segmentation / tokenisation       

    │     ├──────── Enhancement         

    │     ├──────── Enrichment         

    │     │     └──────── Annotation / labelling     

    │     ├──────── Information extraction       

    │     └──────── Visualisation / presentation       

    ├──────── Adaptability / Applicability         

    │     ├──────── Configurable         

    │     ├──────── Trainable         

    │     │     ├──────── Supervised       

    │     │     └──────── Unsupervised       

    │     ├──────── Interactive         

    │     └──────── Generic / unconstraint       

    └──────── Maturity           

      ├──────── Stable         

      ├──────── Experimental         

      └──────── Industrial         

Data Object             

    ├──────── Original Source           

    │     ├──────── Produced data         

    │     │     ├──────── Physical source medium     

    │     │     │     ├──────── Paper document     

    │     │     │     │     ├──────── Book   

    │     │     │     │     ├──────── Newspaper   

    │     │     │     │     ├──────── Magazine   

    │     │     │     │     └──────── Journal   

    │     │     │     ├──────── Whiteboard / blackboard   

    │     │     │     └──────── Poster     

    │     │     └──────── Virtual source medium     

    │     │       └──────── World Wide Web     

    │     └──────── Captured data         

    │       └──────── Real / natural scenes     

    │         └──────── 3D scenes     

    ├──────── Age           

    │     ├──────── Historical         

    │     │     └──────── Medieval       

    │     ├──────── Contemporary         

    │     └──────── Ancient         

    ├──────── Physical Production Method         

    │     ├──────── Manual         

    │     └──────── Machine         

    │       ├──────── Printed       

    │       │     ├──────── Typeset     

    │       │     └──────── Computer printout     

    │       └──────── Typewritten       

    ├──────── Acquisition / Replication Method         

    │     ├──────── Analog / physical to digital       

    │     │     ├──────── Scanning       

    │     │     └──────── Camera       

    │     ├──────── Copied         

    │     │     ├──────── Photocopy       

    │     │     ├──────── Carbon copy       

    │     │     ├──────── Microfilm / microfiche     

    │     │     └──────── Faxed       

    │     └──────── Synthesis         

    ├──────── Precision           

    │     ├──────── Ground Truth / gold standard       

    │     ├──────── Measured         
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    │     ├──────── Estimated         

    │     ├──────── Random         

    │     └──────── Fuzzy         

    ├──────── Content Type           

    │     ├──────── Data         

    │     ├──────── Metadata         

    │     │     ├──────── Quality       

    │     │     │     └──────── Performance Information   

    │     │     ├──────── Features       

    │     │     ├──────── Structure       

    │     │     │     └──────── Table of contents     

    │     │     ├──────── Annotations       

    │     │     ├──────── Authorship       

    │     │     └──────── Spatial     

    │     │          └──────── Location   

    │     ├──────── Settings         

    │     ├──────── Model         

    │     ├──────── Lexicon / index         

    │     └──────── Corpus / database         

    ├──────── Content Encoding           

    │     ├──────── Textual         

    │     │     └──────── Annotated       

    │     ├──────── Structured         

    │     ├──────── Raster image         

    │     │     ├──────── Colour Image       

    │     │     └──────── Bitonal       

    │     └──────── Mathematical / geometrical       

    │      ├──────── Vector-based       

    │      │     └──────── Stroke-based     

    │      └──────── Polygonal       

    ├──────── Content of Interest         

    │     └──────── Visual content         

    │       ├──────── Text       

    │       ├──────── Graphical       

    │       │     ├──────── Separators     

    │      │     └──────── Barcode / QR code   

    │       ├──────── Image       

    │       │     ├──────── Photograph     

    │       │     │     └──────── Person(s)   

    │       │     │       └──────── Face(s) 

    │       │     └──────── Drawing     

    │       └──────── Mixed / composite content     

    │         ├──────── Tables / forms     

    │         ├──────── Charts     

    │         ├──────── Maps / plans     

    │         ├──────── Mathematical expression   

    │         ├──────── Chemical notation     

    │         └──────── Musical notation     

    ├──────── Data Granularity           

    │     ├──────── Physical / visual granularity       

    │     │     ├──────── Document-related       

    │     │     │     ├──────── Double-page   

    │     │     │     ├──────── Page     

    │     │     │     ├──────── Region / Zone     

    │     │     │     ├──────── Text line     

    │     │     │     ├──────── Word     

    │     │     │     └──────── Glyph     

    │     │     └──────── Natural language-related     

    │     │       ├──────── Sentence     

    │     │       ├──────── Token / chunk     

    │     │       └──────── Syllable     

    │     └──────── Logical granularity         

    │       ├──────── Document-related       

    │       │     ├──────── Document     

    │       │     ├──────── Chapter     

    │       │     ├──────── Section     

    │       │     ├──────── Article     

    │       │     └──────── Paragraph     

    │       └──────── Table       
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    │         ├──────── Column     

    │         ├──────── Row     

    │         └──────── Cell     

    ├──────── Data Condition           

    │     ├──────── Noisy         

    │     │     ├──────── Speckles    

    │     │     │     └──────── Salt-and-pepper noise  

    │     │     └──────── Clutter    

    │     │      └──────── Thresholding-related noise  

    │     ├──────── Production-related         

    │     │     ├──────── Document characteristics   

    │     │     │     ├──────── Pasted clippings   

    │     │     │     ├──────── Textured paper   

    │     │     │     ├──────── Uneven character spacing  

    │     │     │     ├──────── Narrow border   

    │     │     │     ├──────── Low paper-to-content contrast  

    │     │     │     ├──────── Halftoning   

    │     │     │     └──────── Dithering   

    │     ├──────── Document faults     

    │     │     ├──────── Bleed-through    

    │     │     ├──────── Ink from facing page   

    │     │     ├──────── Smeared ink    

    │     │     ├──────── Touching characters   

    │     │     │     ├──────── Horizontally   

    │     │     │     └──────── Vertically   

    │     │     ├──────── Uneven ink distribution   

    │     │     ├──────── Filled-in characters    

    │     │     ├──────── Sort shoulder artefacts   

    │     │     ├──────── Broken characters    

    │     │     ├──────── Faint characters    

    │     │     ├──────── Blurred characters    

    │     │     └──────── Non-straight text lines   

    │     ├──────── Wear / use         

    │     │     ├──────── Medium damage    

    │     │     │     ├──────── Folds   

    │     │     │     ├──────── Tears   

    │     │     │     ├──────── Holes   

    │     │     │     │     ├──────── Punch holes  

    │     │     │     │     └──────── Unintended holes  

    │     │     │     ├──────── Missing parts   

    │     │     │     ├──────── Stains   

    │     │     │     ├──────── Scratches   

    │     │     │     └──────── Staples   

    │     │     └──────── Additions    

    │     │      ├──────── Visible repairs   

    │     │      │     ├──────── Paper repairs  

    │     │      │     └──────── Clear tape  

    │     │      ├──────── Informative   

    │     │      │     ├──────── Annotations  

    │     │      │     └──────── Stamps  

    │     │      └──────── Corrections   

    │     │       └──────── Manual corr.  

    │     ├──────── Ageing         

    │     │     ├──────── Warping    

    │     │     ├──────── Discolouration    

    │     │     │     ├──────── Global   

    │     │     │     └──────── Edges   

    │     │     ├──────── Disintegration    

    │     │     │     └──────── Uneven edges   

    │     │     ├──────── Mould    

    │     │     └──────── Fading content    

    │     └──────── Acquisition / conversion-related issues     

    │      ├──────── Geometric issues    

    │      │     ├──────── Skew   

    │      │     │     ├──────── Global  

    │      │     │     └──────── Non-uniform  

    │      │     ├──────── 90-degree rotation   

    │      │     ├──────── Upside down   

    │      │     ├──────── Perspective distortions  
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    │      │     └──────── Page curl   

    │      ├──────── Content / background-related   

    │      │     ├──────── Incomplete capture  

    │      │     ├──────── Tight / narrow margins  

    │      │     ├──────── Included other objects  

    │      │     │     ├──────── Part of proceeding or succeeding obj. 

    │      │     │     ├──────── Medium structure (e.g. book cover) 

    │      │     │     ├──────── Paper clips  

    │      │     │     ├──────── Fingers  

    │      │     │     ├──────── Insects  

    │      │     │     └──────── Background (e.g. scan bed) 

    │      └──────── Method flaws    

    │       └──────── Imaging-related   

    │        ├──────── Show-through  

    │        ├──────── Uneven illumination 

    │        │     └──────── Shadows 

    │        ├──────── Out-of-focus  

    │        ├──────── Low contrast  

    │        └──────── Missing / changed content 

    │         └──────── Due to threshld. 

    ├──────── Data Attributes / Properties         

    │     ├──────── Language     

    │     │     ├──────── Natural language     

    │     │     │     └──────── English   

    │     │     └──────── Mixed languages    

    │    Document-related     

    │     ├──────── Visual properties     

    │     │     ├──────── Text-related     

    │     │     │     ├──────── Script   

    │     │     │     │     ├──────── Braille  

    │     │     │     │     └──────── Latin  

    │     │     │     ├──────── Font-related   

    │     │     │     │     ├──────── Cursive  

    │     │     │     │     ├──────── Monospace  

    │     │     │     │     ├──────── Hand / typeface class 

    │     │     │     │     │     ├──────── Blackletter 

    │     │     │     │     │     ├──────── Antiqua 

    │     │     │     │     │     └──────── Manuscript 

    │     │     │     │     ├──────── Decorated text  

    │     │     │     │     │     ├────────  Flourishes 

    │     │     │     │     │     ├────────  Multi-colour 

    │     │     │     │     │     └────────  Reverse video 

    │     │     │     │     └──────── Multi-font   

    │     │     │     │      ├────────  Mixed typeface 

    │     │     │     │      └────────  Mixed sizes 

    │     │     │     └──────── Drop caps    

    │     │     ├──────── Columns   

    │     │     │     ├──────── One column  

    │     │     │     ├──────── Two columns  

    │     │     │     └──────── Multi-column  

    │     │     ├──────── Rotated content   

    │     │     ├──────── Complex backgrnd   

    │     │     │     ├──────── Watermarks  

    │     │     │     └──────── Impressions / embossings   

    │     │     ├──────── Illustrations    

    │     │     │     └──────── Multi-coloured   

    │     │     ├──────── Decorations     

    │     │     │     └──────── Frames / borders  

    │     │     ├──────── Line drawing / line-art   

    │     │     └──────── CAPTCHAs      

    │     └──────── Structural     

    │       ├──────── Running titles       

    │       ├──────── Footnotes      

    │       └──────── Bibliographic reference     

    └──────── Topic           

      ├──────── Economy         

      │     └──────── Financial / business     

      │       ├──────── Bank checks     

      │       ├──────── Invoices     
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      │       └──────── Bank notes / paper currency   

      ├──────── Social science / environmental       

      │     ├──────── Maps       

      │     │     ├──────── Topographical maps   

      │     │     ├──────── Road maps     

      │     │     └──────── Land use maps     

      │     └──────── Traffic and automotive     

      │       ├──────── Number plates     

      │       └──────── Traffic signs     

      ├──────── Science and Engineering       

      │     ├──────── Architectural       

      │     │     ├──────── Floor plans     

      │     │     └──────── Architectural drawings   

      │     ├──────── Medical       

      │     ├──────── Engineering drawings     

      │     └──────── Patents       

      ├──────── Media / entertainment       

      │     └──────── Advertisements       

      └──────── Computing         
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Appendix B – List of All Implemented Interfaces and 

Classes 

The source code is available on GitHub: 

https://github.com/PRImA-Research-Lab/semantic-labelling 

 

Sequence Diagram for Workflow System Use 

 

 

https://github.com/PRImA-Research-Lab/semantic-labelling
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Extended UML diagram for ontology-related classes and interfaces 
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Extended UML diagram for workflow repository-related classes and 

interfaces 
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Extended UML diagram for matching-related classes and interfaces 
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Extended UML diagram for workflow-related classes and interfaces 
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Extended UML diagram for data-related classes and interfaces 

 

 

Alphabetic List of Classes and Interfaces 

This is an alphabetic overview of all interfaces and classes that have been implemented 

(important ones are highlighted): 

# Class / Interface Short Description 

1 Activity Interface for workflow activities (tools, 

algorithms, control flow, ...) with input and output 

data ports. 

2 ActivityDataTypeMatcher Matcher implementation using the data type of 

activity ports. 

3 ActivityDetails Panel with input fields for basic properties of a 

workflow activity. 

4 ActivityFactory Factory for different types of activity objects 

(atomic, loop, if-else etc.). 

5 ActivityIterator Iterator for an activity tree (depth-first traversal) 

6 ActivityLabelMatcher Matcher implementation comparing semantic 

labels of the activity itself and all data ports. 

7 ActivityMatchingResultDetailsDialog Dialogue with tree for all match values of an 

activity matching. 
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# Class / Interface Short Description 

8 ActivityMatchingResultGrid Grid view with scrolling, showing all items of a 

matching result. 

9 ActivityMatchingResultItemPanel A clickable panel for a single matching result item. 

10 ActivityMatchingResultItemPanel. 

ActivityMatchingResultItemListener 

Listener interface for result items of workflow 

search or activity matching. 

11 ActivityMatchingResultView Interface for user interface views showing activity 

matching results. 

12 ActivityMatchValue MatchValue implementation for Activity matching 

results (has sub values). 

13 ActivityMatchValueTreeItem DefaultMutableTreeNode extension for result 

items of an activity matching. 

14 ActivityTreeNode Abstract tree node for workflow activities. 

15 ActivityType Type of workflow activity. Contains constants for 

all available types. 

16 ActivtyValidationModule Checks for missing activity data (name, caption, 

ports). 

17 AddLabelDialog Dialogue to add a new label to an activity. Presents 

a tree with all available label types. 

Note: Root types cannot be used for labels. 

18 AtomicActivity Workflow activity representing an algorithm, a 

tool, or a method. 

19 AtomicActivityNode Tree node for atomic workflow activities. 

20 AtomicActivityPanel Extension for basic activity panel. Specialised for 

atomic activities. 

21 BaseActivity Base implementation of workflow activities. Has 

common properties such as lanels, id, type, 

caption, description, data ports etc. 

22 BaseDataObject Abstract base class for data objects (e.g. single 

data object) with common properties such as labels 

and caption. 

23 ChildActivityRepository Special workflow repository that lists all child 

activities of a given workflow. 

24 CombinedCondition IfCondition implementation that combined several 

child conditions using a specified operator (AND, 

OR). 

25 CombinedConditionNode Tree node for 'AND' or 'OR' multi-conditions. 

26 CombinedConditionPanel Details panel for if-else conditions that implement 

AND or OR. 

27 CombinedRepository A meta repository combining several workflow 

repositories. 

28 ComparisonCondition Implementation of if-else condition that compares 

two values using a specified operator. 

29 ComparisonConditionNode Tree node for conditions that compare two values 

using a specific operator. 

30 ComparisonConditionPanel Details panel for if-else conditions that compare 

two values using a specified operator (e.g. >=). 

31 CompositeActivityMatcher Matcher combining multiple sub-matchers. 

32 ConditionsRootNode Root node for if-else condition tree. 
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# Class / Interface Short Description 

33 CreateActivityDialog Dialogue for creating a new workflow activity. 

Shows a list of available activity types. 

34 CreateActivityDialog. 

ActivityTypeListModel 

List model for activity types (such as atomic, loop, 

…). 

35 CycleDetectionValidationModule Checks for cycles in acyclic graph activities. 

36 DataCardinalityMatchValidationModule Checks that data sources or forwarded data 

matches the data cardinality of the target port 

(single data object vs. data collection). 

37 DataCollection Interface for a collection of data objects. A 

collection is a data object itself. 

38 DataCollectionImpl Default implementation for data collections. 

Contains a list of sub-items. 

39 DataConversionHelper Functionality to add a data conversion step for a 

specific port to a workflow. 

40 DataObject Interface for workflow data objects. 

41 DataObjectFactory Factory for workflow data ports and objects. 

42 DataPort Interface for data ports (input or output). 

43 DataPortAlignment Container for aligning data ports (manual or 

automatic). 

44 DataPortAlignmentPanel Panel to allow the user to align data ports. 

45 DataPortAlignmentPanel. 

DataPortAlignmentTile 

Small panel for one data port. Contains button to 

open data port details dialogue and up/down 

buttons 

to align the ports of the current activity with the 

ports of the replacement activity. 

46 DataPortCorrectionPanel Validation result panel with data port editing 

feature. 

47 DataPortDialog Dialogue to create or edit a data port (input port or 

output port). 

48 DataPortImpl Abstract base implementation for data ports, 

providing common fields such as data object, id, 

parent activity. 

49 DataPortPanel Panel representing a single input or output data 

port of an activity. 

50 DataPortPanel.DataObjectPanelListener Listener interface for data object events (such as 

removal of a data object). 

51 DataRepository Interface for repositories holding data sources that 

can be used in workflows. 

52 DataTable Aggregation of data collections which represent 

table columns. 

53 DataTableColumn Specialisation of an OutputPort. No extended 

functionality yet. 

54 DataTableColumnImpl Specialised data port implementation for output 

ports of data tables (representing the columns). 

55 DataTableDetails Panel with input fields for basic properties of a 

data table. 

56 DataTableModel Implementation of a table model for workflow 

data tables. 
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# Class / Interface Short Description 

57 DataTableTreeNode Tree node for data tables within the workflow. 

58 DataTypeDialog Dialogue for data type selection from a tree with 

all available data types. 

59 DatatypeMatchValidationModule Checks that data sources or forwarded data 

matches the data type of the target port. 

60 DefaultDataTable Default implementation for DataTable. 

61 DefaultXmlValidator Wrapper for XML schema validator 

62 DefaultXmlNames (Ontology) Collection of element and attribute names for 

XML containing an ontology. 

63 DefaultXmlNames (Workflow) Collection of element and attribute names for 

XML containing a workflow. 

64 DescriptionLabelDialog Dialogue to manage labels for description objects 

(that can have labels). 

65 DescriptionWithLabels Special description that can be labelled (for user 

perspectives). 

66 DetailsPanel Abstract panel class for workflow component 

details. 

67 DirectedGraphActivity Activity containing a directed acyclic graph 

(DAG) of child activities. 

68 DirectedGraphActivity.ActivityNode Graph node containing one activity. 

69 DirectedGraphActivity. 

DirectedGraphActivityListener 

Listener interface for directed graph activity events 

70 DirectedGraphActivityNode Tree node for 'directed acyclic graph' activities. 

71 DirectedGraphActivityPanel Extension for basic activity panel. Specialised for 

'directed acyclic graph' activities. 

72 FileFolderRepositoryIndex (now 

LocalRepositoryIndex) 

Index of file folder repositories. Saves and loads 

the index to the temp directory. Singleton. 

73 FileFolderWorkflowRepository A simple repository implementation that reads all 

XML workflow files from a specified disk folder. 

74 Filter Common interface for workflow filters. 

75 FilterChangeListener Listener interface for workflow filter change 

events. 

76 FindMatchingActivityDialog Dialogue to find matching activities from a 

repository to replace a selected workflow activity 

or add a child activity. 

77 FindMatchingActivityDialog. 

SimpleMatchValue 

Most basic activity match value that has a fixed 

match score of 100%. 

78 ForLoopActivity Workflow activity representing a for loop. 

79 ForLoopActivityNode Tree node for 'for loop' activities. 

80 ForLoopActivityPanel Extension for basic activity panel. Specialised for 

'for loop' activities, showing the loop ports. 

81 HasChildActivities Interface for objects that can have one or more 

child activities. 

82 HasLabels Interface for objects that can have semantic labels. 

83 IdGenerator Generator for unique IDs (activities, data ports 

etc.). 
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# Class / Interface Short Description 

84 IfCondition Interface for if-else conditions such as NOT 

condition or input port condition. 

85 IfElseActivity Activity implementation for conditional branching 

using if else else ... 

86 IfElseActivityNode Tree node for 'if-else' activities 

87 IfElseActivityPanel Extension for basic activity panel. Specialised for 

'if-else' activities. 

88 IfElseComparisonPort Implementation for if-else port mostly delegating 

to an InputPortImpl object. Used as operand for 

comparison operations. 

89 IfElseConditionPort Implementation for if-else condition ports mostly 

delegating to an InputPortImpl object. 

90 IfElseConditionTreeNode Abstract tree node for if-else condition trees. 

91 IfElseConditionsTreeModel Tree model for if-else conditions. 

92 IfElsePort Data port for if-else conditions and comparisons. 

Extension of InputPort. 

93 InputPort Data input port for workflow activities. 

94 InputPortCondition Condition that evaluates the value of an input port 

(that can be of type bool or int). 

95 InputPortConditionNode Tree node for if-else conditions that evaluate an 

input data port. 

96 InputPortConditionPanel Details panel for if-else conditions that evaluate 

and input port. 

97 InputPortImpl Default implementation of activity input port. 

98 Label A semantic label (e.g. for an activity or a data 

port). Represents an instance of a label type. 

99 LabelFilterElement Filter element for label filters and matchers. 

100 LabelGroup Group of semantic labels of one type (e.g. a 

taxonomy). 

101 LabelGroup. 

TooManyLabelsInGroupException 

Exception indicating that the label group is full 

and no more labels can be added. 

102 LabellableObjectFilter Filter for objects that have semantic labels. 

103 LabellableObjectMatcher Semantic label based matcher. 

104 LabellableObjectMatcher. 

LabelMatchValue 

MatchValue implementation for Label. 

105 LabelListPanel Container for label panels representing all labels of 

a workflow activity. 

106 LabelMatchValidationModule Checks that data sources or forwarded data 

matches the label type of the target port. 

107 LabelPanel Small panel with label root type (heading), label 

(button), and remove button. This panel is used in 

the activity details panel (labels of the activity). 

108 LabelPanel.LabelPanelListener Listener for label panel events ('remove label' 

clicked, ...). 

109 Labels Container for labels (can be used in conjunction 

with interface 'HasLabels'). 

110 LabelSelectionTreeRoot Root node for semantic label type selection tree. 
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# Class / Interface Short Description 

111 LabelType Ontology label type. A type can be abstract (super 

type for one or more sub-types; equivalent to 

'concept'/'class') or it can be concrete (no sub-

types; equivalent to 'individual'/'instance'). 

112 LabelTypesRootTreeNode Tree node implementation for the ontology tree 

root. 

113 LabelTypeTreeModel Tree model implementation for ontology label 

types. 

114 LabelTypeTreeNode Tree node implementation for ontology label 

types. 

115 LabelWorkflowFilter Workflow filter implementation using labels. 

116 LabelWorkflowFilterPanel Panel with check boxes for all label types of a 

workflow. 

117 LoopHelper Functionality to add a loop activity to resolve a 

data cardinality mismatch. 

118 LoopPort Special data port for 'for loop' activities (e.g. for 

start, end, or step width). 

119 LoopPortImpl Default implementation for LoopPort. Based on 

default input port implementation. 

120 Matcher Matches a collection of objects against certain 

criteria and returns a match percentage. Template. 

121 MatchValue Interface template for workflow component 

matching. 

122 MigrationEngine Migrates the labels of a workflow from an older 

ontology to the latest one. 

123 MigrationMessagesDialog Dialogue to display ontology / label migration 

results. 

124 MissingAttributePanel Panel with text edit field to update a text attribute 

of an activity or a workflow (workflow validation). 

125 MissingChildActivitiesValidationModule Checks if there are any activities that should have 

a child activity but do not have one. 

126 MissingDataTypePanel Panel with data type selection control a data port 

of an activity (workflow validation). 

127 MissingDatatypesValidationModule Checks whether all data ports have a data type 

specified. Ignores abstract activities. 

128 NotCondition Implements NOT operator for a child if-else 

condition. 

129 NotConditionNode Tree node for 'NOT' if-else condition. 

130 NotConditionPanel Details panel for NOT if-else condition. 

131 Ontology Ontology of labels for activities and data ports. 

Singleton. 

132 Ontology.DefaultRootType Access to default root label types. Deprecated. 

133 OntologyEditor Graphical editor for label type hierarchies and 

label slots of activities/data objects. 

134 OntologyInitialiser Interface for classes that initialise an ontology with 

label type hierarchies (taxonomies). 
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# Class / Interface Short Description 

135 OntologyMigrationRulesDialog Dialogue that allows the definition of rules for 

migration from an older ontology to the current 

one. 

136 OntologyWriter Interface for writers that save an ontology to a file. 

137 OtherOntology Wrapper for ontology class to allow the 

instantiation of multiple ontologies (the base class 

is a singleton). 

138 OutputPort Interface for data output ports for workflow 

activities. Specialises DataPort. 

139 OutputPortImpl Default implementation for activity output ports. 

140 OwlOntologyWriter XML writer for ontology label types. Uses OWL 

XML format. 

141 OwlWorkflowSemanticsWriter XML writer for semantic information of 

workflows. Uses OWL XML format. 

142 OwlXmlNames Element and attribute names for OWL XML 

format. 

143 Pair Simple pair of objects (left and right). 

144 PortLinkTreeNode Tree node for data port link selection (source or 

forwarding). 

145 ProblemResolutionDescriptionPanel Simple text panel that shows possible user actions 

to resolve a validation problem. 

146 RecentDocuments Collection of recent documents (workflows) that 

can be saved to / loaded from the temp dir. 

147 ReplaceActivityDialog Dialogue to choose what activity details to copy 

from a current activity to a replacement activity. 

148 RepositoryHub Manager for workflow repositories 

• Show registered repositories 

• Add/remove repositories 

• Show all workflows of a repository 

• Add, open, edit, remove workflows 

149 SelectPortLinkDialog Dialogue for selecting a source of an input port or 

a 'forwarded from' for output ports. 

150 SimpleOntologyWriter XML writer for ontology label types. Uses a 

custom XML format. 

151 SingleDataObject Data object implementation that represents a single 

piece of data such as a file, an integer, or a text 

string. 

152 TableConentDialog Dialogue for workflow data table content. Shows 

an editable table view. 

153 TextSearchWorkflowFilter Filter that looks for a search string with workflow 

and root activity meta data. 

154 UnconnectedDataPortsValidationModule Checks for 'loose ends' (input ports that have no 

source or output ports that are not forwarded 

anywhere). 

155 User Interface for workflow system users. 

156 UserImpl Default implementation for the 'User' interface. 

157 UserManagement Singleton for user-related functionality. 
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# Class / Interface Short Description 

158 ValidationResultTreeItem Tree item specialisation for workflow validation 

result items (errors, warnings etc.). 

159 ValidationTreeCellRenderer Specialised tree renderer that adds icons for 

validation errors, warnings and notes. 

160 WelcomePanel Placeholder panel for workflow component details 

that is displayed when the editor is opened. 

161 Workflow Wrapper for an activity (root activity) with 

metadata and optional sub-workflows. 

162 WorkflowConcretisationDialog Dialogue for making an abstract workflow 

concrete (assisted or automated). 

163 WorkflowConcretisationInteractionDialog Dialogue for user interaction during workflow 

concretisation. 

164 WorkflowConcretisationManager Interface for concretisation events, possibly 

requiring user interaction. 

165 WorkflowConcretiser Tries to make an abstract workflow concrete by 

replacing all abstract atomic activities with 

concrete ones from a activity repository. 

166 WorkflowDataType Data type for workflow activity data ports. Has a 

parent and children, creating a tree structure. 

167 WorkflowDataTypeHierarchy Singleton containing all predefined data types that 

can be used in activities. 

168 WorkflowDataTypeHierarchy. 

DataTypeSaxHandler 

SAX handler implementation to parse data type 

hierarchies. 

169 WorkflowDetails Panel with fields for workflow attributes such as 

name, author and version. Also offers an entry 

point for workflow concretisation. 

170 WorkflowEditor Main class for graphical workflow editor (Swing 

user interface). 

171 WorkflowFilter Interface for filters that can be applied to an 

workflow list. 

172 WorkflowImpl Default implementation for the Workflow 

interface. 

173 WorkflowObjectValidationModule Workflow validation module that checks the main 

workflow object itself. 

174 WorkflowRepository Interface for repositories holding workflows. 

175 WorkflowRepositoryLabelExporter Export of all used labels and their counts from all 

workflows of a repository.  

Table format: 

 Workflow, [label type 1], [label type 2], ... 

 aletheia, 1, 0, ... 

176 WorkflowRootNode Root node for workflow and activity tree. 

177 WorkflowSearchResultGrid Grid view for workflow search result items. 

Scrollable. 

178 WorkflowSearchResultItemPanel Panel for a single workflow search result item. The 

item is clickable and the respective action can be 

handled with a listener. 

179 WorkflowSearchResultView View interface for workflow search results from a 

repository. 
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# Class / Interface Short Description 

180 WorkflowSearchTool Dialogue to search workflow repository using 

label filters. 

181 WorkflowTreeModel Tree model for workflows (includes workflow root 

and all activities). 

182 WorkflowTreeNode Abstract tree node for workflow trees (workflow 

root or activity node). 

183 WorkflowUmlDialog Experimental dialogue with UML view of 

workflow (activity diagram). 

184 WorkflowUmlView Experimental UML renderer for a workflow 

(activity diagram). 

185 WorkflowValidationDialog Validation of workflow and presentation of results 

(errors, warnings and notes). 

186 WorkflowValidationModule Interface for workflow validation module that 

checks a single issue. 

187 WorkflowValidationResult Result item of workflow validation. Can have 

nested items, creating a tree structure. 

188 WorkflowValidator Validation of workflows. Contains a set of 

validation modules. 

189 XmlLabelTypeHierarchyInitialiser Loads the label type hierarchies (taxonomies) for 

an ontology from an XML file. 

190 XmlLabelTypeHierarchyInitialiser. 

OntologySaxHandler 

SAX handler implementation to parse label type 

hierarchies. 

191 XmlWorkflowReader Reader for workflow XML files (SAX). 

192 XmlWorkflowReader. 

WorkflowSaxHandler 

SAX handler implementation to parse a workflow 

XML file. 

193 XmlWorkflowWriter XML writer for workflows (DOM). 
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Appendix C – Software tools used for activity 

repository 

# Tool Description 

1 abbot Abbot is a tool for undertaking large-scale conversion of XML document collections in order to make 

them interoperable with one another. In particular, Abbot can make one or more collections conform 

to a designated schema (including a schema used to define one of the collections). In the simplest case, 

where the "target schema" is a proper subset of the schema(s) used to define the collections in question, 

Abbot operates more-or-less automatically. More complicated cases require that you define specific 

transformations in a configuration file, but that configuration file uses a simple language unrelated to 

either XSLT or Schema. 

By default, Abbot converts documents into TEI Analytics -- a TEI subset designed for text analysis 

applications. 

 

https://github.com/CDRH/abbot 

2 ABBYY Business 

Card Reader 

ABBYY Business Card Reader 2.0 (for Windows) automatically digitizes paper business cards data 

and transforms it into systemized contact database. This software designed to help professionals boost 

their productivity, raise the effectiveness of their business communications, save time and eliminate 

tedious retyping. The application works perfect with virtually any scanning device. 

 

https://www.abbyy.com/business-card-reader-for-windows/ 

3 ABBYY FineReader 

Engine 11 

ABBYY FineReader Engine lets developers, integrators and BPOs integrate optical text recognition 

technologies into their applications. Based on the ABBYY recognition platform, this SDK enables 

scanned documents and images to be transformed into searchable and editable document formats – 

and delivers award-winning OCR, intelligent character recognition (ICR), barcode, checkmark and 

field-level/zonal recognition and PDF conversion. 

 

https://www.abbyy.com/ocr-sdk/ 

4 ABBYY Image Pre-

processing 

“[…] a set of image pre-processing tools and allows you to watch how this or that tool influences 

recognition quality. You can use general pre-processing tools (like page orientation and skew 

correction), filter colors, use special pre-processing tools for photos, and enhance appearance of the 

images.” 

 

http://help.abbyy.com/FineReader/FineReader12/English/GettingImage/AdjustImage.htm 

5 ABBYY 

Binarisation 

Prior to analysing the structure of the document and identifying its blocks, an OCR program will 

binarize the image, i.e.: it will convert a colour or a greyscale image into a monochrome one (1 bit).  

Modern documents will often include complex design elements as textures and background images. If 

an OCR program would use only a very simple binarisation there will be too many excess dots left 

around the characters, which will have an adverse effect on the quality of recognition. 

The same is true about binarising background images. Therefore, it is crucial that the program can 

separate the text from the underlying textures and images. To solve this issue ABBYY technologies 

use two pre-processing procedures Intelligent Background Filtering and Adaptive Binarization. 

 

https://abbyy.technology/en:features:ocr:adaptive_binarisation 

6 ABBYY Block 

Segmentation 

Before characters and words can be recognised by an OCR engine, the print space of the image has to 

be identified, and from there paragraphs and lines. This tool can be used to identify blocks on a scanned 

document. 

 

http://www.digitisation.eu/tools-resources/tools-for-text-digitisation/abbyy-block-segmentation/ 

7 AGORA Analysis and indexation of Historical and Degraded Documents: pre-processing, layout analysis and 

character recognition. 

 

In this paper, we describe how meta-data of indexation can be extracted from historical document 

images using an interactive process with a software called AGORA. The algorithms involved in 

AGORA use two maps to segment noisy images: a shape map that focuses on connected components 

and a background map that provides information on white areas corresponding to block separations in 
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the page. Using a first segmentation result obtained by using these two maps, meta-data can be 

extracted according to scenarios produced by the users. These scenarios are defined very simply during 

an interactive stage. The user is able to make processing sequences adapted to the different kinds of 

images he is likely to meet and according to the desired meta-data. Finally, we describe different 

experimentations that have been done during the BVH project to test the usability and the 

performances of AGORA software. [204] 

8 Aletheia Aletheia is an advanced system for accurate and yet cost-effective analysis, recognition and annotation 

of scanned documents. It aids the user with a number of automated and semi-automated tools which 

were developed and fine-tuned based on feedback from major libraries across Europe and from their 

digitisation service providers which are using it in a production environment. 

Cutting-edge features are, among others, the support of top-down ground truthing with sophisticated 

split and shrink tools as well as bottom-up ground truthing supporting the aggregation of lower-level 

elements to more complex structures. The integrated rules and guidelines validator, in combination 

with powerful correction tools, enable efficient production of highly accurate ground truth as well as 

standardised electronic renditions of digitised documents. 

In addition, special features such as a customisable virtual keyboard and the Aletheia Sans font with 

extensive coverage of special characters in Unicode have been developed to support working with the 

complexities of historical documents. 

 

http://www.primaresearch.org/tools/Aletheia 

9 Aletheia Dewarping 

Ground Truth 

Creation 

Dewarping is a grid-based method for geometric correction of document images. Aletheia allows  

creating and saving dewarping ground truth as well as load existing dewarping data from XML files. 

Several grids (non-overlapping) can be defined for one page. Aletheia also allows working on two  

independent sets of grids in parallel (e.g. for comparing ground truth against grid detection result).  

A dewarping grid is a matrix of points that are connected to each other horizontally and vertically,  

forming grid lines.  

In addition, reference lines can be defined. By default, the reference lines are position at the  

average location of all corresponding grid points. 

10 ALTO-Edit ALTO Editor for text and segmentation. Browser based post correction tool for Alto XML files. 

 

https://github.com/KBNLresearch/alto-editor 

11 Apache OpenNLP 

Named Entity 

Recognition 

The Apache OpenNLP library is a machine learning based toolkit for the processing of natural 

language text. 

It supports the most common NLP tasks, such as tokenization, sentence segmentation, part-of-speech 

tagging, named entity extraction, chunking, parsing, and coreference resolution. These tasks are 

usually required to build more advanced text processing services. OpenNLP also includes maximum 

entropy and perceptron based machine learning. 

The Name Finder can detect named entities and numbers in text. To be able to detect entities the Name 

Finder needs a model. The model is dependent on the language and entity type it was trained for. The 

OpenNLP projects offers a number of pre-trained name finder models which are trained on various 

freely available corpora. They can be downloaded at our model download page. To find names in raw 

text the text must be segmented into tokens and sentences. 

 

https://opennlp.apache.org/ 

12 Apache OpenNLP 

Sentence Detector 

The OpenNLP Sentence Detector can detect that a punctuation character marks the end of a sentence 

or not. In this sense a sentence is defined as the longest white space trimmed character sequence 

between two punctuation marks. The first and last sentence make an exception to this rule. The first 

non-whitespace character is assumed to be the begin of a sentence, and the last non whitespace 

character is assumed to be a sentence end. 

13 Apache OpenNLP 

Tokenizer 

The OpenNLP (Natural Language Processing) Tokenizers segment an input character sequence into 

tokens. Tokens are usually words, punctuation, numbers, etc. 

14 ASV Toolbox - 

JLanI 

The JLanI tool allows you to identify a language on the basis of a text input. This input can be given 

by a file, database connection or plain text. 

Per language, a list of words and their frequency is needed for training. This list can come from a 

database or a text file. 

This tool use a file called blacklist.txt which you find in resources/jlani. It should be an empty file if 

you download this tool. JlanI needs this file even if it is empty (so do not delete it) but you can fill the 

file with words which should be not used for language identification. It contains one word per line. 

For example, you should write name like George, Bush, Angelika, Merkel or USA, Deutschland and 

abbreviations like A. or G. or W.  in this file. This will improve the result in case you only enter words 

not specific to any language. 
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http://wortschatz.uni-leipzig.de/~cbiemann/software/toolbox/ 

15 AWE Layout Editor Aletheia Web Edition crowd sourcing post-processing tool for page layout and text content. Also 

known as AletheiaWeb. 

 

http://www.primaresearch.org/tools 

16 Berkeley Parser Parsing is the task of analyzing the grammatical structure of natural language. Given a sequence of 

words, a parser forms units like subject, verb, object and determines the relations between these units 

according to some grammar formalism. Our work has focused on learning probabilistic context-free 

grammars (PCFGs) which assign a sequence of words the most likely parse tree. The parser supports 

a variety of languages and achieves state-of-the-art performance on most of them. 

 

https://github.com/slavpetrov/berkeleyparser 

17 Brevity Businesses and other organizations often deal with hundreds or even hundreds of thousands of 

documents. Knowing the content of these documents can be difficult. While you can discern the 

content of a graphical image at a glance, with text documents you have to read through each to discern 

it's content. Reading through an entire document takes time - time you do not have to waste. The 

traditional solution to this problem has been to assign people to read the documents and write a brief 

abstract for each one. Unfortunately many organizations simply do not have the resources to assign 

people to summarize hundreds or even thousands of documents. 

Brevity provides you with a solution. Brevity easily generates document summaries for you. The 

summaries can be as long or as short as you wish. You can also use Brevity to highlight key sentences 

or words in your document. 

 

Key Benefits of Brevity: 

Accurately generate automated document summaries 

Allow users to quickly determine a document's contents at a glance 

Highlight significant words and sentences in a document 

Find the key parts of a document 

 

http://www.lextek.com/brevity/ 

18 CamScanner CamScanner helps you scan, store, sync and collaborate on various contents across smartphones, 

tablets and computers. 

Features: 

- Mobile Scanner: Use your phone camera to scan receipts, notes, invoices, whiteboard discussions, 

business cards, certificates, etc. 

- Optimize Scan Quality: Smart cropping and auto enhancing make the texts and graphics look 

clear and sharp 

- Quick Search: By entering any keyword, you’ll see a list of docs with the word in their titles, 

notes or images (Registrants only) 

- Extract Texts from Image: OCR (optical character recognition) extracts texts inside images for 

further editing or .txt sharing. (Paid app only) 

 

https://www.camscanner.com/ 

19 Clara OCR Clara OCR is an Optical Character Recognition program. It features both a powerful GUI for the X 

Window System, and a Web interface. The Web interface is able to collect revision efforts from the 

Internet, using a simple revision model. It is intended to be used in the cooperative optical recognition 

of old books. It tries to facilitate fine- tuning, so an optical recognition project is enabled to invest 

resources in tuning the OCR, in order to achieve better recognition results for one specific book, and 

reduce the overall revision cost. 

 

http://gnu.gds.tuwien.ac.at/directory/claraocr.html 

20 CLAWS Part-of-speech (POS) tagging, also called grammatical tagging, is the commonest form of corpus 

annotation, and was the first form of annotation to be developed by UCREL at Lancaster. Our POS 

tagging software for English text, CLAWS (the Constituent Likelihood Automatic Word-tagging 

System), has been continuously developed since the early 1980s. The latest version of the tagger, 

CLAWS4, was used to POS tag c.100 million words of the British National Corpus (BNC). 

 

http://ucrel.lancs.ac.uk/claws/ 

21 cue.language cue.language is a small library of Java code and resources that provides the following basic natural-

language processing capabilities: 
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- Tokenizing natural language text into individual words 

- Tokenizing natural language text into sentences 

- Tokenizing natural language text into n-grams (sequences of 2 or more words that appear next 

to each other in a sentence) 

- Counting strings 

- Detecting which script (alphabet, writing system) is required to represent a text 

- Guessing what language a text is in 

- Customizable "stop word" detection for a variety of languages 

 

https://github.com/vcl-xx/cue.language 

22 Document capturing 

by camera 

Photographing paper documents to acquire digital images.  

A generic activity for creating digital copies using a camera. 

23 Document scanning Scanning of paper documents to acquire digital images. 

A generic activity for creating digital copies using a scanner. 

24 File Analyzer The NARA File Analyzer Tool walks a directory tree and performs a "File Test" on each file that is 

encountered. The application framework allows new File Tests to be quickly developed and deployed 

into the application. The results of each File Test are compiled into a table that summarizes the results 

of the analysis. 

A File Test is a simple set of actions that are performed upon a single file such as filename validation, 

file size statistical analysis, checksum calculation, file type extraction. Depending on the action, the 

content of the file may or may not be read. Each File Test is configured with filters that determine 

which files will be processed by the File Test (i.e. only image files). 

Each File Test will generate a table of results. The number of columns and the definition of the columns 

will vary from test to test. For example, a file type analysis will report the file extension and the number 

of files discovered with that extension. The checksum file tests will report the name of a file and the 

checksum string associated with that file. 

The File Analyzer tool can be run as a GUI in which the results are displayed in a table. The File 

Analyzer can also be run in batch mode. In batch mode, the results will be written to a tab-separated 

file. The GUI version of the application allows the results of multiple executions to be merged. The 

merged information can be filtered to display matching values and mismatched values. 

 

https://github.com/usnationalarchives/File-Analyzer 

25 Document 

Deskewer 

Generic skew detection and correction (for the full range 0-360 degrees) for documents printed using 

Roman scripts. 

 

http://www.digitisation.eu/training/succeed-training-materials/image-processing/document-

deskewer/ 

26 Fraunhofer 

Newspaper 

Segmenter 

Award-winning (e.g. ICDAR'09,'11) page and article segmentation for scanned documents featuring 

complex layouts (e.g. (historical) newspapers, contemporary magazines, text books, etc.) 

 

http://www.iais.fraunhofer/ 

27 FromThePage FromThePage is an open-source tool that allows volunteers to collaborate to transcribe handwritten 

documents. 

 

Features: 

Wiki-style Editing: Users add or edit transcriptions using simple, wiki-style syntax on one side of the 

screen while viewing a scanned image of the manuscript page on the other side. 

Version Control: Changes to each page transcription are recorded and may be viewed to follow the 

edit history of a page. 

Wikilinks: Subjects mentioned within the document may are indexed via simple wikilinks within the 

transcription. Users can annotate subjects with full subject articles. 

Presentation: Readers can view transcriptions in a multi-page format or alongside page images. They 

can also read all the pages that mention a subject 

Automatic Markup: FromThePage can suggest wikilinks to editors by mining previously edited 

transcriptions. This helps insure editorial consistency and vastly reduces the amount of effort involved 

in markup. 

Internet Archive integration: FromThePage can be pointed at manuscripts hosted on Archive.org. It 

will import the page structure and any printed page titles into its native format for transcription, while 

serving page images from the Internet Archive. 

 

http://beta.fromthepage.com/ 
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28 Functional 

Extension Parser 

The Functional Extension Parser (FEP) is a Document Understanding Software tool capable of 

decoding layout elements of books. 

 

Based on the output of Optical Character Recognition, layout elements such as page numbers, running 

titles, headings, and footnotes are detected and annotated. The FEP has been trained and tested on 

several datasets comprising books from the 18th to the 20th century from several European libraries. 

The final release is a production tool ready to be used for the structural annotation of digitised 

documents. 

 

https://impactocr.wordpress.com/2010/05/07/the-functional-extension-parser-a-rule-based-system-

for-flexible-structural-analysis/ 

29 GEDI GEDI (Groundtruthing Environment for Document Images) is a highly configurable document image 

annotation tool. Its basic structure involves two types of files, an Image file, and a corresponding .XML 

Features 

- GEDI listener: the interface can be controlled by programs outside of java; it accepts specific 

HTTP commands. 

- Data overlay: visualization of multiple metadata file at the same time. 

- Commenting and tracking: users can annotate zones with questions and issues. 

- Scripting: to process the metadate on an image through a configurable script. 

- Connected components and RL encoding: it generates connected components and/or underlying 

run length encoding. 

- Able to work with color images; able to convert to Black and White 

 

https://sourceforge.net/projects/gedigroundtruth/ 

30 GIMP GIMP Image Processing Tool 

 

https://www.gimp.org/ 

31 Goggles Google Goggles is an image recognition mobile app developed by Google.[1] It is used for searches 

based on pictures taken by handheld devices. For example, taking a picture of a famous landmark 

searches for information about it, or taking a picture of a product's barcode searches for information 

on the product. 

Google Goggles works better with certain types of queries. It can recognize up to three items at a time. 

For best results, try taking pictures of the following: 

Books & DVDs, Landmarks, Barcodes & QR codes, Logos, Contact info, Artwork, Businesses, 

Products, Text 

 

https://en.wikipedia.org/wiki/Google_Goggles 

32 Graph-based 

Dependency Parser 

(mate-tools) 

The tools provide a pipeline of modules that carry out lemmatization, part-of-speech tagging, 

dependency parsing, and semantic role labeling of a sentence. The system’s two main components 

draw on improved versions of a state-of-the-art dependency parser (Bohnet, 2010) and semantic role 

labeler (Björkelund et al.,2009) developed independently by the authors. The tools are language 

independent, provide a very high accuracy and are fast. The dependency parser had the top score for 

German and English dependency parsing in the CoNLL shared task 2009. 

 

https://code.google.com/archive/p/mate-tools/ 

33 Ground Truth Maker An application based on the lexicon defined by historians NaviDoMass. This application allows you 

to create the ground truth associated with an image to test the different tools developed by computer 

scientists.  

The software is only available in Windows Installer Version, one with .NET Framework 3.5 and one 

without for those who already have 

 

http://navidomass.univ-lr.fr/gtm.html 

34 GTText OCR free software and Ground Truthing tool for Color Images with Text. 

In the research of algorithms that extract text from color images a set of files with the exact location 

of the text is needed to avoid inefficient and tedious visual checks of the results. 

This Ground Truth information saves enormous time and gives accuracy. For this the gttext project 

helps to create fast and quality Ground Truthed data-sets from color text images. 

It performs fast OCR text recognition and copies image text to clipboard. Loads from screen snapshots, 

image files and scans documents. 

The basic level of work is at a pixel detection, making possible to group regions to form the glyph or 

even use a direct editing to get the choice. 
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Extracting text from complex color images can be done immediately just by selecting the region of the 

open, scanned or pasted image document. 

 

https://code.google.com/p/gttext/ 

35 Hectography 

Foreground 

Extractor 

Hectography Foreground Extractor (The hectograph or gelatin duplicator or jellygraph is a printing 

process which involves transfer of an original, prepared with special inks, to a pan of gelatin or a 

gelatin pad pulled tight on a metal frame.) 

Foreground-background separation in solor (3-channel) scans of hectographic copies, allowing an 

order of magnitude improvement in OCR quality. 

 

http://www.iais.fraunhofer/ 

36 Hot Metal Font 

Enhancer 

Fraunhofer Hot Metal Font Enhancer (In printing and typography, hot metal typesetting refers to 

technologies for typesetting text in letterpress printing. This method injects molten type metal into a 

mold that has the shape of one or more glyphs. The resulting sorts and slugs are later used to press ink 

onto paper.) 

Font enhancement of prints produced hot metal typesetting allowing higher OCR accuracy. 

 

http://www.iais.fraunhofer/ 

37 HOCR Eval Evaluate the actual OCR with respect to the ground truth. This outputs the number of OCR errors due 

to incorrect segmentation and the number of OCR errors due to character recognition errors. 

It works by aligning segmentation components geometrically, and for each segmentation component 

that can be aligned, computing the string edit distance of the text the segmentation component contains. 

hOCR is a format for representing OCR output, including layout information, character confidences, 

bounding boxes, and style information. It embeds this information invisibly in standard HTML.  

 

https://github.com/tmbdev/hocr-tools 

38 ImageMagick ImageMagick is a software suite to create, edit, compose, or convert bitmap images. 

 

http://www.imagemagick.org/ 

39 IMPACT Spelling 

Variation Tool 

The IMPACT Spelling Variation Tool deals with historical spelling variation. It provides functionality 

to estimate a model of spelling variation from example data, and to match a historical word, or a list 

of historical words, to a list of 'modern' words (or historical words in normalized, modern-like 

spelling). 

40 Islandora A javascript based tei editor. BETA 

 

https://github.com/islandora-deprecated/islandora_tei_editor 

41 ISRI Evaluation 

Tool 

This tool evaluates the performance of an optical character recognition system on character and word 

level.  

Source code of OCR evaluation tools used in the UNLV/ISRI annual tests of OCR Accuracy. 

 

https://github.com/eddieantonio/isri-ocr-evaluation-tools 

42 jMet2Ont jMet2Ont is a mapping tool that transforms XML-based metadata to ontology-based formats. The 

source metadata format may be flat (e.g. Dublin Core) or hierarchical (e.g. MARC/XML). 

The mapping rules are described in an XML file. To use the mapper you do not need any programming 

knowledge. You can find full specification of the XML rule syntax in the Documentation section. 

 

http://www.carpet-project.net/en/catalogue/detail/jmet2ont/ 

43 Layout Analysis 

Performance 

Visualisation 

PRImA Layout Analysis Page analysis and recognition performance visualisation using PRImA 

Layout Evaluation Tool. 

 

http://www.primaresearch.org/tools/PerformanceEvaluation 

44 LayoutEval The PRImA Layout Evaluation Tool is part of a framework for evaluating the performance of layout 

analysis methods. It combines efficiency and accuracy by using a special interval based geometric 

representation of regions. A wide range of sophisticated evaluation measures provides the means for 

a deep insight into the analysed systems, which goes far beyond simple benchmarking. The support of 

user-defined profiles allows the tuning for practically any kind of evaluation scenario related to real 

world applications. 
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The framework has been successfully delivered as part of a major EU-funded project (IMPACT) to 

evaluate large-scale digitisation projects and has been validated applied within the past three ICDAR 

Page Segmentation Competitions. 

 

http://www.primaresearch.org/tools/PerformanceEvaluation 

45 Lios Lios (Linux-intelligent-ocr-solution) is a free and open source software for converting print into text 

using either scanner or a camera. It can also produce text out of scanned images from other sources 

such as pdfs, images or folders containing images. 

 

https://sourceforge.net/projects/lios/ 

46 MALLET 

Document 

Classification 

Classify text document according to trained model. 

MALLET provides a simple interface to a large collection of classification algorithms.  

 

http://mallet.cs.umass.edu/classifier-devel.php 

47 MapForce Altova MapForce® 2013 is an award-winning any-to-any graphical data mapping, conversion, and 

integration tool that maps data between any combination of XML, database, flat file, EDI, Excel, 

XBRL, and/or Web service, then transforms data instantly or autogenerates royalty-free data 

integration code for the execution of recurrent conversions. 

 

http://www.altova.com/mapforce.html 

48 Metadata Extraction 

Tool 

The Metadata Extraction Tool was developed by the National Library of New Zealand to 

programmatically extract preservation metadata from a range of file formats like PDF documents, 

image files, sound files Microsoft office documents, and many others. 

The Tool builds on the Library's work on digital preservation, and its logical preservation metadata 

schema. It is designed to: 

- automatically extracts preservation-related metadata from digital files 

- output that metadata in a standard format (XML) for use in preservation activities. 

The Tool was designed for preservation processes and activities, but can be used to for other tasks, 

such as the extraction of metadata for resource discovery. 

Supported File Formats 

Images: BMP, GIF, JPEG and TIFF. 

Office documents: MS Word (version 2, 6), Word Perfect, Open Office (version 1), MS Works, MS 

Excel, MS PowerPoint, and PDF. 

Audio and Video: WAV, MP3 (normal and with ID3Tags), BFW, FLAC. 

Markup languages: HTML and XML. 

Internet files: ARC 

 

http://meta-extractor.sourceforge.net/ 

49 MILE OCR 

Performance 

Evaluator 

A desktop application used for performance evaluation of Optical Character Recognizers (OCR). 

Implemented using Eclipse SWT and runs on Windows & Linux. 

 

http://www.findbestopensource.com/product/ocr-performance-evaluator 

50 MontyChunker     - chunks tagged text into verb, noun, and adjective 

      chunks (VX,NX, and AX respectively) 

    - incredible speed and accuracy improvement over 

      previous MontyChunker 

 

http://alumni.media.mit.edu/~hugo/montylingua/doc/MontyLingua.html 

51 MontyLemmasiser Strips inflectional morphology, i.e. changes verbs to infinitive form and nouns to singular form 

    - part-of-speech sensitive lemmatisation 

    - strips plurals (geese-->goose) and tense (were-->be, had-->have) 

    - includes regexps from Humphreys and Carroll's morph.lex, and UPENN's XTAG corpus 

 

http://alumni.media.mit.edu/~hugo/montylingua/doc/MontyLingua.html 

52 MontyTokenizer Tokenizes raw English text (sensitive to abbreviations), and resolve contractions, e.g. "you're" ==> 

"you are" 

 

http://alumni.media.mit.edu/~hugo/montylingua/doc/MontyLingua.html 

53 NCSR Binarisation Performs image binarisation using an algorithm developed at NCSR. 
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http://www.demokritos.gr/ 

54 NCSR Border 

Removal 

This tool detects and removes noisy black borders as well as noisy text regions. Moreover, it detects 

the optimal page frames of double page document images. 

 

http://www.demokritos.gr/ 

55 NCSR Character 

Segmentation 

The developed methodology takes as input isolated words and separates them into characters. 

 

http://www.demokritos.gr/ 

56 NCSR OCR 

Evaluation Tool 

Evaluation Tool for OCR by National Center for Scientific Research (NCSR) "Demokritos" 

 

http://www.demokritos.gr/ 

57 NCSR Page Curl 

Correction 

This tool rectifies document images which suffer from warping and perspective distortions that 

deteriorate the performance of current OCR approaches. 

 

http://www.demokritos.gr/ 

58 ocrad GNU Ocrad is an OCR (Optical Character Recognition) program based on a feature extraction 

method. It reads images in pbm (bitmap), pgm (greyscale) or ppm (color) formats and produces text 

in byte (8-bit) or UTF-8 formats. Also includes a layout analyser able to separate the columns or blocks 

of text normally found on printed pages. Ocrad can be used as a stand-alone console application, or as 

a backend to other programs. 

 

https://www.gnu.org/software/ocrad/ 

59 OCRopus OCR OCRopus™ is an OCR system written in Python, NumPy, and SciPy focusing on the use of large scale 

machine learning for addressing problems in document analysis. 

 

https://github.com/tmbdev/ocropy 

60 OneNote 

Handwriting 

Recognition 

Microsoft OneNote handwriting recognition feature 

 

https://support.office.com/en-us/article/Take-notes-in-your-own-handwriting-46FE3AB9-5747-

4820-B646-0C08935C5991 

61 Otsu Binarisation Otsu parameter free image binarisation using a global threshold (part of PRImA Image Tool) 

 

http://www.primaresearch.org/tools 

62 Pandoc If you need to convert files from one markup format into another. Pandoc can convert documents in 

markdown, reStructuredText, textile, HTML, DocBook, LaTeX, MediaWiki markup, OPML, Emacs 

Org-Mode, Txt2Tags, Microsoft Word docx, EPUB, or Haddock markup to 

HTML formats, Word processor formats, Ebooks, Documentation formats, Page layout formats, … 

Pandoc understands a number of useful markdown syntax extensions, including document metadata 

(title, author, date); footnotes; tables; definition lists; superscript and subscript; strikeout; enhanced 

ordered lists (start number and numbering style are significant); running example lists; delimited code 

blocks with syntax highlighting; smart quotes, dashes, and ellipses; markdown inside HTML blocks; 

and inline LaTeX.  

 

http://pandoc.org/ 

63 PDF-XChange 

Viewer 

The No.1 rated BEST PDF Reader 

 

http://www.tracker-software.com/product/pdf-xchange-viewer 

64 PRImA Crowd 

Prototype 

Crowd sourcing prototype for correcting OCRed text on text line level. 

 

www.primaresearch.org 

65 PRImA Dewarping 

Evaluation 

Grid-based evaluation of document image dewarping data. 

 

www.primaresearch.org 

66 PRImA Dewarping Correction of arbitrary warping effects in document images (e.g. due to humidity).  

There are two versions: a command line tool which can be used in automated workflows and a GUI 

tool allowing manual intervention, including showcase production as well as ground truth creation. 

 

www.primaresearch.org 

67 PRImA Glyph 

Extraction 

Extracts glyph image snippets from a document page scan using glyphs defined in PAGE XML 
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http://www.primaresearch.org/tools/ExtractorExporter 

68 PRImA 

JFeatureExtractor 

Extracts text features from page content (PAGE XML), for usage in quality estimation. 

 

www.primaresearch.org 

69 PRImA 

JPageViewer 

Simple viewer for PAGE XML files (layout + text content). 

 

http://www.primaresearch.org/tools/PAGEViewer 

70 PRImA Layout 

Aligner 

Page layout alignment via template matching 

 

www.primaresearch.org 

71 PRImA LayoutEval 

Profile Creation 

User interface to create evaluation profile for PRImA LayoutEval. 

 

http://www.primaresearch.org/tools/PerformanceEvaluation 

72 PRImA Page 

Feature Extractor 

Extracts features from page layout (PAGE XML) and document image, for usage in quality estimation. 

 

www.primaresearch.org 

73 PRImA Page 

Metadata Extractor 

Extracts metadata from PAGE XML file, including region count per type, text content statistics, ... 

 

http://www.primaresearch.org/tools/PAGEMetadataScanner 

74 PRImA Page Text 

Extraction 

Extracts the Unicode text content from a PAGE XML file 

 

http://www.primaresearch.org/tools/ExtractorExporter 

75 PRImA Text 

Normalisation 

Applies text replacement rules to the text content of page content files or text files. 

Converts ALTO XML, FR XML, or older versions of PAGE XML to the latest version of PAGE 

XML. 

 

http://www.primaresearch.org/tools/PAGEConverterValidator 

76 PRImA PAGE to 

SVG Converter 

Converts PAGE XML file with layout and text content to viewable SVG file. 

 

www.primaresearch.org 

77 PRImA Page 

Validation 

Validates PAGE XML with layout and text content against ground truthing rules and guide lines. 

 

http://www.primaresearch.org/tools/PAGEConverterValidator 

78 PRImA PAGE 

Visualisation 

Visualisation of page content 

 

http://www.primaresearch.org/tools/Aletheia 

79 PRImA Page 

Conversion 

Converts ALTO XML, FR XML, or older versions of PAGE XML to the latest version of PAGE 

XML. 

 

http://www.primaresearch.org/tools/PAGEConverterValidator 

80 PRImA Page Post-

Processor 

Post-processing of page layout objects (e.g. regions) using specific rules such as text replacement or 

re-OCRing. 

 

www.primaresearch.org 

81 PRImA Region 

Extraction 

Extracts region image snippets from a document page scan using regions defined in PAGE XML 

 

http://www.primaresearch.org/tools/ExtractorExporter 

82 PRImA Table 

Classifier 

Classifies/recognises the type of page content (e.g. a specific form or table) by comparing OCRed text 

with a range of known layouts (or rather the text content of the pages). 

 

www.primaresearch.org 

83 PRImA Table 

Exporter 

Exports tabular page content to CSV 

 

www.primaresearch.org 

84 PRImA Text Line 

Extraction 

Extracts text line image snippets from a document page scan using text lines defined in PAGE XML 

 

http://www.primaresearch.org/tools/ExtractorExporter 

85 PRImA Text Line 

Segmenter 

Segments text regions (blocks/zones) into text lines. 

 

www.primaresearch.org 
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86 PRImA Typewritten 

OCR 

OCR Prototype for recognising typewritten documents incorporating background knowledge about 

the specific features of this type of documents. 

 

www.primaresearch.org 

87 PRImA Word 

Extraction 

Extracts word image snippets from a document page scan using words defined in PAGE XML 

 

http://www.primaresearch.org/tools/ExtractorExporter 

88 PRImA Word 

Segmenter 

Segments text lines into words. 

 

www.primaresearch.org 

89 PRImA PAGE to 

PDF 

Converts PAGE XML (layout+text) to a PDF with hidden text layer and the corresponding document 

image. 

 

www.primaresearch.org 

90 PRImA OCR 

Evaluation Tool 

Evaluation Tool for OCR by Pattern Recognition and Image Analysis (PRImA) research lab 

 

http://www.primaresearch.org/tools/PerformanceEvaluation 

91 Sauvola Binarisation Sauvola dynamic binarisation using local thresholds (part of PRImA Image Tool) 

 

www.primaresearch.org 

92 Scan Tailor Scan Tailor is an interactive post-processing tool for scanned pages. It performs operations such as 

page splitting, deskewing, adding/removing borders, and others. 

 

http://scantailor.org/ 

93 ShapeCatcher Unicode character recognition! 

This is a tool to help you find Unicode characters. Finding a specific character whose name you do not 

know is cumbersome. On shapecatcher.com, all you need to know is the shape of the character! 

How do I use it? 

Draw your character as best you can in the "drawbox". You can do this by clicking and holding the 

left mouse button and moving around. Draw as many strokes as you need to, then click "Recognize" 

to start the recognition. If you want to clear the canvas and the results click on "Clear". 

 

http://shapecatcher.com/ 

94 SharpEye Musical 

Score Recognition 

Music OCR: You can use SharpEye to scan and convert printed sheet music into a music notation file 

or a MIDI file which can then be imported into a music notation program or MIDI sequencer 

 

http://www.visiv.co.uk/ 

95 Stanford Parser This package is a Java implementation of probabilistic natural language parsers, both highly optimized 

PCFG and lexicalized dependency parsers, and a lexicalized PCFG parser.  

 

http://nlp.stanford.edu/software/lex-parser.shtml 

96 Tesseract 3.03 Tesseract 3.03 with export to PRImA PAGE XML format. 

 

http://www.primaresearch.org/tools/TesseractOCRToPAGE 

97 Text and Error 

Profiler 

The Text and Error Profiler is software to analyse the OCR output from historical documents, using 

statistical modelling of document characteristics to improve OCR accuracy. It works by attuning itself 

to a particular document, rather than to common traits of printed documents from a certain era, 

resulting in a highly adaptive process. The tool uses its document-specific knowledge to allow the 

batch processing of erroneous words. 

During the IMPACT Project (2008-2011), a working group at the University of Munich developed 

software to analyse the OCR output from historical documents, using statistical modelling of document 

characteristics to improve OCR accuracy. 

 

http://www.digitisation.eu/tools-resources/tools-for-text-digitisation/text-and-error-profiler/ 

98 tifftool Tifftool is a high-performance tool to clean scanned documents in preparation for onscreen display or 

for OCR. Features include skew correction, orientation correction, despeckle, page alignment, split 

pages and batch processing. 

 

http://tifftool.sourceforge.net/ 

99 Transcript Transcript is a desktop-based manuscript transcription tool that supports word-processor style 
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formatting. 

 

http://www.jacobboerema.nl/en/Freeware.htm 

100 TypeWright TypeWright is a tool for correcting the text-version of a document made up of page images. 

 

http://www.18thconnect.org/typewright 

101 Unpaper Unpaper is a post-processing tool for scanned sheets of paper, especially for book pages that have 

been scanned from previously created photocopies. The main purpose is to make scanned book pages 

better readable on screen after conversion to PDF. Additionally, unpaper might be useful to enhance 

the quality of scanned pages before performing optical character recognition (OCR). 

 

https://sourceforge.net/projects/unpaper/ 

102 Wavelet image 

denoising 

The wavelet denoise GIMP plugin is a tool to reduce noise in each channel of an image separately. 

The default colour space to do denoising is YCbCr which has the advantage that chroma noise can be 

reduced without affecting image details. Denoising in CIELAB (L*a*b*) or RGB is available as an 

option. The user interface allows colour mode and preview channel selection. The denoising threshold 

can be set for each colour channel independently. 

 

http://registry.gimp.org/node/4235/ 

103 WordFreak WordFreak is a java-based linguistic annotation tool designed to support human, and automatic 

annotation of linguistic data as well as employ active-learning for human correction of automatically 

annotated data. Java based. 

 

http://wordfreak.sourceforge.net/ 

104 ZBar ZBar is an open source software suite for reading bar codes from various sources, such as video 

streams, image files and raw intensity sensors. It supports many popular symbologies (types of bar 

codes) including EAN-13/UPC-A, UPC-E, EAN-8, Code 128, Code 39, Interleaved 2 of 5 and QR 

Code. 

 

http://zbar.sourceforge.net/ 
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Appendix D – Publication 

Below is a copy of a peer-reviewed publication which was selected for oral presentation 

at the Document Analysis Systems workshop DAS2018 in Vienna, Austria. 
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