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ABSTRACT: 

 The present paper describes a mathematical model for free-convective laminar 

incompressible boundary layer flow of a third-grade fluid of the Reiner-Rivlin differential type, 

external to a uniformly heated semi-infinite vertical cylinder embedded in a two-dimensional 

porous medium. Assuming a homogenous-isotropic porous medium, simulation of bulk drag 

effects at low Reynolds number is conducted with the Darcy model. The resulting partial 

differential equation boundary value problem is normalized using suitable transformation 

variables. The highly non-linear time-dependent coupled conservation equations along with 

boundary conditions are solved computationally with an optimized Crank-Nicolson finite 

difference code. Validation with previous studies is included. The heat transport and skin friction 

coefficients are computed for different values of emerging non-dimensional parameters. 

Furthermore, steady-state and transient fluid-flow variables are shown graphically. An enhanced 

fluid velocity is observed for increased Darcy number and the reverse trend is computed for higher 

values of third-grade viscoelastic parameter. Also, the rate of heat transfer is observed to increase 

with greater Darcy number and a reduction in third-grade viscoelastic parameter. A key 

observation which is drawn from the present study is that for third-grade fluid the flow variables 

deviate significantly from a hot cylindrical wall as compared to a Newtonian fluid. The study is 

relevant to thermal polymer coating applications in aerospace materials processing. 

 

KEYWORDS: Boussinesq’s approximation; Third-grade Reiner-Rivlin fluid; Vertical cylinder; Finite difference 

method; Third-grade fluid parameter; Porous medium; Darcy number; Thermal polymer coating processing. 

Nomenclature 

g′          acceleration due to gravity (m/s2) 

k           thermal conductivity (W/m K) 
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Gr         Grashof number 

𝐶𝑝          specific heat at constant pressure (J/kg K) 

P           fluid pressure (MPa) 

I            identity tensor 

𝑇∗∗         matrix transposition  

Da         Darcy number 

𝑘1          permeability of porous medium 

Pr         Prandtl number 

𝑑

𝑑𝑡
          material time derivative 

tr          trace  

𝑆1
∗, 𝑆2

∗, 𝑆3
∗  Rivlin-Ericksen tensors  

𝐶𝑓          average momentum transport coefficient 

𝑁𝑢        average heat transport coefficient  

𝑟𝑜          radius of the cylinder (m) 

𝑡′           time (s) 

t            dimensionless time 

𝑇′           temperature (K) 

θ            dimensionless temperature 

𝑥̅            axial coordinate (m) 

 𝑟 ̅          radial coordinate (m) 
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X           dimensionless axial coordinate 

 R          dimensionless radial coordinate 

𝑢̅, 𝑣 ̅       dimensional velocity coordinates (m/s) in 𝑥̅ and 𝑟̅ directions, respectively 

U, V      non-dimensional velocity components in 𝑥̅ and 𝑟̅ directions, respectively  

Greek letters 

α1
∗, α2

∗, β
1

∗, β
2

∗, β
3

∗     rheological material moduli 

α1, α2    second-grade fluid parameters 

β   third-grade fluid parameter 

α           thermal diffusivity (m2/s)  

𝛽𝑇         volumetric coefficient of thermal expansion (1/K)   

𝜗           kinematic viscosity (m2/s) 

𝜇           fluid viscosity (kgm/s) 

𝜌           density (kg/m3) 

𝜏∗          Cauchy stress tensor 

Subscripts 

w          wall conditions 

∞          ambient conditions 

f, g       grid levels in (X, R) coordinate system 

Superscript 

h           time level 
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1. INTRODUCTION 

In recent years, the free-convective heat transfer exterior to numerous geometrical bodies has 

become a rich area of interest in computational thermo-fluid dynamics, owing to the fact that these 

geometrical bodies feature widely used in process engineering systems, industrial manufacturing, 

geological energy extraction, nuclear waste disposal, etc. Geometrical models may include 

spheres, curved walls, wavy plates, cylinders, toruses, ellipses, cones etc.  A comprehensive study 

has been done on natural convection flows which is characterized by strong thermal buoyancy 

force. Cylindrical geometries have gained unprecedented attention in thermal engineering and 

have encouraged an exceptional interest in scrutinizing the transient free-convective boundary 

layer flows from cylinders (pipes, tubes, ducts etc). Sparrow and Gregg [1] studied the natural 

convective fluid flow past an isothermal vertical cylinder. Later the non-isothermal thin vertical 

cylinder is done by Lee et al. [2]. Some more studies on vertical cylinder can be listed [3-4]. 

However, these studies did not consider the non-linear effects of stress and strain. Recently, non-

Newtonian fluid theories are playing a dominant role because of its emerging applications in bio-

medicine technology, mining engineering, heat storage and chemical industry. This area presents 

a rich spectrum of nonlinear boundary value problems mainly due to the incredibly diverse range 

of rheological models available for simulating complex flow behavior [5-8]. Viscoelastic fluids 

are a particular sub-set of non-Newtonian fluids which have motivated considerable interest in the 

engineering and applied mathematics research communities. The categorization of these fluids is 

conducted by Rivlin and Ericksen [9]. Truesdell and Noll [10] have set the stress-tensor relative 

equations. Considering the rheological properties of these fluids, several subclasses of viscoelastic 

fluid are recommended. Out of differential type fluid models (i.e., the model which predicts the 

implicit relation between the history of stress and deformation of a gradient), the most 

straightforward subclass is a second-grade fluid model and is capable of predicting the normal 

stress differences. However, it fails to adequately explain the shear thickening and shear thinning 

phenomena. This failure has been overcome by third-grade fluid model, which describe the shear 

thickening /shear thinning phenomenon satisfactorily along with property explained by the second-

grade fluid model. Polyethylene oxides in water, manufacturing oils, slurries, molten plastics are 

some of the listed examples of a third-grade fluid model. The impact of inclined magnetic-field 

and heat transfer effects for third-grade fluid flow by considering exponentially stretching surface 

geometry have been revealed [11]. Further, Hayat et al. [12] explored the outcomes of third-grade 
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and second-grade fluid parameters on the flow-field. Baoku et al. [13] showed the influence of 

thermophysical parameters and partial slip for mass and heat transfer of non-Newtonian third-

grade fluid past a vertical plate under steady condition. Also, they found that the momentum 

boundary layer thickness diminishes and the thermal boundary layer thickness increases as fluid 

shows more shear thickening phenomenon. Anwar Bég et al. [14] presented a numerical result for 

dissipative free convective heat transfer of third-grade fluid from an infinite porous plate in a 

porous medium. Sajid et al. [15] worked on third-grade fluid using shooting method and homotopy 

analysis with results changing from no-slip case to full-slip case. Hayat et al. [16] studied on Soret 

and Dufour effects for third-grade fluid under transient condition. Ogunsola and Peter [17] 

investigated the impact of Arrhenius reaction and variable viscosity on third-grade fluid past a 

radiative surface in a porous medium. Sahoo and Poncet [18] showed the effects of a third-grade 

parameter and partial slip on the velocity, the temperature boundary layer, and skin-friction 

coefficient. Saadatmandi et al. [19] used computational numerical methods for analyzing third-

grade fluid flow under steady condition. 

   Also, thermal transport in porous media has stimulated substantial interest in engineering 

sciences due to increasing applications in geophysics, biophysics, hydrology, computational 

biology, engineering (construction, petroleum and bio-remediation), drug delivery, viscous 

fingering in geological transport (gas and oil flows in reservoirs), chemical engineering packed 

beds, advanced medical imaging, gel manufacture, tribological bearings tissue replacement 

production and material science etc. Here, some of the research contributions on bio-medical 

application especially for the fluid flow through porous medium are listed such as bio-medical 

engineering [20], biological tissues [21], biological system and biotechnology [22], bio-heat 

transformation [23], biological marine modelling [24], combustion technology [25], and blood 

flow in biological tissues [26] etc. To know about these phenomena, it is necessary to study the 

behavior of flow profiles in a porous medium. A detailed study of convective flow in porous media 

has been done by Nield and Bejan [27], Ingham and Pop [28]. Also, many studies have been 

conducted including many physical phenomena to study free-convective fluid flow from a vertical 

cylinder through a porous medium. Minkowycz and Cheng [29] showed the possibility of having 

similarity solution for a linear relationship of cylinder’s temperature with 𝑥 (𝑥 - distance along the 

wall of the cylinder) and also given the results for other case temperature deviations using both 

local non-similarity method and local similarity method. The work of Minkowycz and Cheng was 
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extended by Merkin [30] and demonstrated the approximate method. At constant wall temperature, 

Yu¨cel [31] studied free convective flow past a vertical cylinder embedded in the porous medium 

using a finite difference numerical method. Bassom and Rees [32] and Yih [33] both investigated 

free convection problem past a uniformly heated vertical cylinder in a porous medium. Chamkha 

et al. [34] also considered the same flow-geometry and explored the thermophoresis effects. The 

numerical investigation is carried out by Loganathan and Eswari [35] and found that boundary 

layers (velocity and thermal) increase with increased permeability parameter. For non-Darcy 

porous medium, free-convective heat and mass transfer analysis from an isothermal vertical 

cylinder was studied by Chamkha et al. [36]. Reddy studied the radiation effects over a cylinder 

for variable concentration and surface temperature [37]. 

Considering the research contributions reviewed through literature survey, an attempt has been 

made to study the flow analysis for the third-grade fluid past a vertical cylinder through a porous 

medium under unsteady conditions. Thus, it motivates to explore the third-grade fluid flow effects 

from a vertical cylinder within boundary layer region. The surrounding fluid temperature is taken 

to be lesser than the wall temperature. The numerical scheme called implicit finite difference 

method is used to demonstrate the transient flow effects of third-grade fluid in a porous medium.  

The content of a present article is as follows: Section 2 describes the flow model with geometrical 

representation. Also, it gives non-dimensional formulation for third-grade fluid past an isothermal 

vertical cylinder in a porous medium. Next section deals with finite difference scheme and 

generation of a grid system. Then, the computational work along with graphical results for flow 

variables (both in transient and steady conditions), average skin friction and heat transfer rate can 

be found in section 4. It also includes comparative results between a third-grade fluid and 

Newtonian fluid in the porous medium. Finally, at section 5, summary and key findings of the 

present article are given.  

 

2. PROBLEM DESCRIPTION 

Unsteady flow analysis for a viscoelastic fluid of third-grade fluid model from a semi-infinite 

vertical cylinder of radius 𝑟0 embedded in a porous medium under natural convection is 

considered. Figure 1 illustrates the flow regime with associated specific variables. A rectangular 
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coordinate system, (𝑥̅, 𝑟̅) is selected to define the geometry, where 𝑥̅-axis is the coordinate along 

the axis of the cylinder (vertically increasing direction) & 𝑟̅-axis is the coordinate normal to 

vertical cylinder. “ ‘𝑇∞
′ ’ is the ambient temperature of fluid” (which is constant and equivalent to 

the surrounding temperature). At 𝑡′ = 0, both the third-grade fluid and the cylinder are maintained 

at the same temperature i.e.,  𝑇∞
′  . Then for 𝑡′ > 0, the cylinder surface temperature increased to 

𝑇𝑤
′  (> 𝑇∞

′  ) and it is maintained after all the time. Viscous dissipation effects are not considered in 

the thermal equation.  

The constitutive equation: 

The Cauchy stress tensor (𝜏∗) constituting the third-grade fluid model with thermodynamic 

compatibility (given by Fosdick and Rajagopal [38]) is considered which is defined as:  

𝜏∗ = −𝑃𝐼 + 𝜇𝑆1
∗ + α1

∗ 𝑆2
∗ + α2

∗𝑆1
∗2 + β

1
∗𝑆3

∗ + β
2
∗(𝑆1

∗𝑆2
∗ + 𝑆2

∗𝑆1
∗) + β

3
∗(𝑡𝑟𝑆1

∗2)𝑆1
∗                  (1) 

where  −𝑃𝐼 is stress’s spherical part (related to incompressibility constraint), β𝑖
∗(𝑖 = 1,2,3) and 

α𝑖
∗(𝑖 = 1,2) are the material moduli (usually, these are functions depending on temperature). 

𝑆𝑖
∗(𝑖 = 1,2,3)  are Rilvin-Ericksen tensors, mentioned as follows: 

𝑆1
∗ = (∇V)𝑇∗∗

+ ∇V            

𝑆𝑖
∗ =

𝑑𝑆𝑖−1
∗

𝑑𝑡
+ (∇V)𝑇∗∗

𝑆𝑖−1
∗ + 𝑆𝑖−1

∗ (∇V),   𝑖 = 2,3 ….             (2)  

where 𝑇∗∗- matrix transposition, V- velocity field, ∇- gradient operator and  

𝑑

𝑑𝑡
  - material derivative is formulated as 

𝑑

𝑑𝑡
(∙) = (

𝜕

𝜕𝑡
+ V∇) (∙). Also, it is assumed that all fluid 

motions are at Clausius-Duhem inequality and have the least value of Helmholtz free energy at 

equilibrium. Constraints for a third-grade fluid model are given as  𝜇0;       α1
∗0;       |α1

∗ + α2
∗| ≤

√24𝜇β
3
∗  ;  β1

∗ = 0 ;    β2
∗ = 0 ;     β3

∗ 0 . Following substitution in Eq. (1), leads to: 

𝜏∗ = −𝑃𝐼 + 𝜇𝑆1
∗ + α1

∗ 𝑆2
∗ + α2

∗𝑆1
∗2 + β

3
∗(𝑡𝑟𝑆1

∗2)𝑆1
∗            (3) 
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Under these assumptions and definitions, the natural convective boundary layer flow equations for 

a third-grade fluid with the implementation of Boussinesq’s approximation in a Darcian porous 

medium are given by: 

Mass conservative equation: 

∂(𝑟𝑢̅̅̅̅ )

∂𝑥̅
+

∂(𝑟𝑣̅̅ ̅)

∂𝑟̅
= 0                       (4.1) 

Momentum conservative equation: 

𝜌
𝐷𝑣̅

𝐷𝑡′ = −
∂𝑃

∂𝑟̅
+

∂𝜏𝑟𝑥̅̅ ̅
∗

∂𝑥̅
+

∂𝜏𝑟𝑟̅̅ ̅
∗

∂𝑟̅
+

𝜏𝑟𝑟̅̅ ̅
∗

𝑟̅
          (4.2) 

𝜌
𝐷𝑢̅

𝐷𝑡′ = −
∂𝑃

∂𝑥̅
+

∂𝜏𝑥𝑥̅̅̅̅
∗

∂𝑥̅
+

∂𝜏𝑥𝑟̅̅ ̅
∗

∂𝑟̅
+

𝜏𝑥𝑟̅̅ ̅
∗

𝑟̅
          (4.3) 

in which 

𝜏𝑥̅𝑟̅
∗ = 𝜏𝑟̅𝑥̅

∗   = 𝜇 (
𝜕𝑢

𝜕𝑟̅
+

𝜕𝑣̅

𝜕𝑥̅
) + α1

∗ [
𝜕2𝑢

𝜕𝑟̅𝜕𝑡′ +
𝜕2𝑣̅

𝜕𝑥̅𝜕𝑡′ + 𝑣̅
𝜕2𝑢̅

𝜕𝑟̅2 + 𝑣̅
𝜕2𝑣̅

𝜕𝑟̅𝜕𝑥̅
+ 𝑢̅

𝜕2𝑣̅

𝜕𝑥̅2 + 𝑢̅
𝜕2𝑢̅

𝜕𝑥̅𝜕𝑟̅
+ 3

𝜕𝑢

𝜕𝑥̅

𝜕𝑢

𝜕𝑟̅
+

                           
𝜕𝑢

𝜕𝑟̅

𝜕𝑣̅

𝜕𝑟̅
+

𝜕𝑢

𝜕𝑥̅

𝜕𝑣̅

𝜕𝑥̅
+ (

𝜕𝑤̅

𝜕𝑥̅
+

1

𝑟̅

𝜕𝑢

𝜕𝜑̅
)

𝜕𝑤̅

𝜕𝑟̅
+ (

1

𝑟̅

𝜕𝑣̅

𝜕𝜑̅
−

𝑤̅

𝑟̅
+

𝜕𝑤̅

𝜕𝑟̅
)

𝜕𝑤̅

𝜕𝑥̅
 +  3

𝜕𝑣̅

𝜕𝑥̅

𝜕𝑣̅

𝜕𝑟̅
 ] + α2

∗ [2
𝜕𝑢

𝜕𝑟̅

𝜕𝑣̅

𝜕𝑟̅
+

                           2
𝜕𝑣̅

𝜕𝑟̅

𝜕𝑣̅

𝜕𝑥̅
+ 2

𝜕𝑣̅

𝜕𝑥̅

𝜕𝑢

𝜕𝑥̅
+ 2

𝜕𝑢

𝜕𝑥̅

𝜕𝑢

𝜕𝑟̅
+ (

1

𝑟̅

𝜕𝑢

𝜕𝜑̅
+

𝜕𝑤̅

𝜕𝑥̅
) (

𝜕𝑤̅

𝜕𝑟̅
+

1

𝑟̅

𝜕𝑣̅

𝜕𝜑̅
−

𝑤̅

𝑟̅
)] + 4β

3
∗ [(

𝜕𝑣̅

𝜕𝑟̅
)

2

+

                           (
𝜕𝑢

𝜕𝑥̅
)

2

+  
1

2
(

𝜕𝑢

𝜕𝑟̅
+

𝜕𝑣̅

𝜕𝑥̅
)

2

] (
𝜕𝑢

𝜕𝑟̅
+

𝜕𝑣̅

𝜕𝑥̅
)  

         (4.4) 

 𝜏𝑟̅𝑟̅
∗ = 2𝜇 (

𝜕𝑣̅

𝜕𝑟̅
) + α1

∗ {2
𝜕2𝑣̅

𝜕𝑟̅𝜕𝑡′ + 2𝑣̅
𝜕2𝑣̅

𝜕𝑟̅2 + 2𝑢̅
𝜕2𝑣̅

𝜕𝑥̅𝜕𝑟̅
+ 2 [2 (

𝜕𝑣̅

𝜕𝑟̅
)

2

+
𝜕𝑢

𝜕𝑟̅

𝜕𝑣̅

𝜕𝑥̅
+ (

𝜕𝑢

𝜕𝑟̅
)

2

+ (
1

𝑟̅

𝜕𝑣̅

𝜕𝜑̅
−

𝑤̅

𝑟̅
+

                           
𝜕𝑤̅

𝜕𝑟̅
)

𝜕𝑤̅

𝜕𝑟̅
]} + α2

∗ {4 (
𝜕𝑣̅

𝜕𝑟̅
)

2

+ (
𝜕𝑣̅

𝜕𝑥̅
+

𝜕𝑢

𝜕𝑟̅
)

2

+ (
1

𝑟̅

𝜕𝑣̅

𝜕𝜑̅
+

𝜕𝑤

𝜕𝑟̅
−

𝑤̅

𝑟̅
)

2

} + β
3
∗ {2

𝜕𝑣̅

𝜕𝑥̅
[4 (

𝜕𝑣̅

𝜕𝑟̅
)

2

+

                           2 (
𝜕𝑣̅

𝜕𝑥̅
+

𝜕𝑢

𝜕𝑟̅
)

2

+ 4 (
𝜕𝑢

𝜕𝑥̅
)

2

]}           (4.5) 

𝜏𝑥̅𝑥̅
∗ = 2𝜇 (

𝜕𝑢

𝜕𝑥̅
) +α1

∗ {2
𝜕2𝑢

𝜕𝑥̅𝜕𝑡′ + 2𝑢̅
𝜕2𝑢

𝜕𝑥̅2 + 2𝑣̅
𝜕2𝑢

𝜕𝑥̅𝜕𝑟̅
+ 2 [2 (

𝜕𝑢

𝜕𝑥̅
)

2

+
𝜕𝑢

𝜕𝑟̅

𝜕𝑣̅

𝜕𝑥̅
+ (

𝜕𝑣̅

𝜕𝑥̅
)

2

+ (
1

𝑟̅

𝜕𝑢

𝜕𝜑̅
+

                           
𝜕𝑤̅

𝜕𝑥̅
)

𝜕𝑤̅

𝜕𝑥̅
]} + α2

∗ {4 (
𝜕𝑢

𝜕𝑥̅
)

2

+ (
𝜕𝑣̅

𝜕𝑥̅
+

𝜕𝑢

𝜕𝑟̅
)

2

+ (
1

𝑟̅

𝜕𝑢

𝜕𝜑̅
+

𝜕𝑤̅

𝜕𝑥̅
)

2

} + β
3
∗ {2

𝜕𝑢

𝜕𝑥̅
[4 (

𝜕𝑣̅

𝜕𝑟̅
)

2

+

                           4 (
𝜕𝑢

𝜕𝑥̅
)

2

+ 2 (
𝜕𝑢

𝜕𝑟̅
+

𝜕𝑣̅

𝜕𝑥̅
)

2

]}         (4.6) 
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where (𝑢̅, 𝑣̅) is the velocity coordinate at (𝑥̅, 𝑟̅). 𝜏𝑟̅𝑟̅
∗ , 𝜏𝑟̅𝑥̅

∗ , 𝜏𝑥̅𝑟̅
∗ , 𝜏𝑥̅𝑥̅

∗  are the extra stress-tensor 

components. The fluid-flow is assumed along vertical direction only, driven by thermal buoyancy. 

The conservative equations for momentum and thermal energy are given by [39-41]: 

𝜕𝑢

𝜕𝑡′
+ 𝑢̅

𝜕𝑢

𝜕𝑥̅
+ 𝑣̅

𝜕𝑢

𝜕𝑟̅
+ 𝑢̅

ϑ

𝑘1
= g′𝛽𝑇(𝑇′ − 𝑇∞

′ ) + ϑ
𝜕2𝑢

𝜕𝑟̅2
+

ϑ

𝑟̅

∂𝑢

∂𝑟̅
   +

α1
∗

𝜌
[

𝜕3𝑢̅

𝜕𝑟̅2𝜕𝑡′
+

1

𝑟̅

𝜕2𝑢̅

𝜕𝑟̅𝜕𝑡′
+ 𝑣̅

𝜕3𝑢

𝜕𝑟̅3
 

                                                    +2
𝜕𝑣̅

𝜕𝑟̅

𝜕2𝑢

𝜕𝑟̅2 + 3
𝜕2𝑢

𝜕𝑟̅2

𝜕𝑢

𝜕𝑥̅
+

𝜕𝑢

𝜕𝑟̅

𝜕2𝑣̅

𝜕𝑟̅2 + 4
𝜕𝑢

𝜕𝑟̅

𝜕2𝑢

𝜕𝑥̅𝜕𝑟̅
+

𝑣̅

𝑟̅

𝜕2𝑢̅

𝜕𝑟̅2 +
𝑢

𝑟̅

𝜕2𝑢

𝜕𝑥̅𝜕𝑟̅
+  

                                                     
3

𝑟̅

𝜕𝑢

𝜕𝑟̅

𝜕𝑢

𝜕𝑥̅
+ 𝑢̅

𝜕3𝑢

𝜕𝑥̅𝜕𝑟̅2 +
1

𝑟̅

𝜕𝑣̅

𝜕𝑟̅

𝜕𝑢

𝜕𝑟̅
] +

α2
∗

𝜌
[

2

𝑟̅

𝜕𝑣̅

𝜕𝑟̅

𝜕𝑢

𝜕𝑟̅
+

2

𝑟̅

𝜕𝑢

𝜕𝑟̅

𝜕𝑢

𝜕𝑥̅
+ 2

𝜕2𝑢̅

𝜕𝑟̅2

𝜕𝑢

𝜕𝑥̅
+ 

                                                      +2
𝜕2𝑣̅

𝜕𝑟̅2

𝜕𝑢

𝜕𝑟̅
+ 4

𝜕𝑢

𝜕𝑟̅

𝜕2𝑢

𝜕𝑥̅𝜕𝑟̅
+ 2

𝜕𝑣̅

𝜕𝑟̅

𝜕2𝑢̅

𝜕𝑟̅2] +  
β3

∗

𝜌
[

2

𝑟̅
(

∂𝑢

∂𝑟̅
)

3

+ 6 (
∂𝑢

∂𝑟̅
)

2 ∂2𝑢

∂𝑟̅2 +

                                                   4 (
∂𝑢

∂𝑟̅
)

2 ∂2𝑢

∂𝑥̅2 + 2
𝜕𝑢

𝜕𝑥̅

𝜕𝑢

𝜕𝑟̅

𝜕2𝑢̅

𝜕𝑥̅𝜕𝑟̅
]        (5) 

The fourth term on the left-hand side of Eq. (5) represents the “Darcian drag force” in the axial 

direction which is a linear body force. 

Energy conservative equation: 

𝑢̅
∂𝑇′

∂𝑥̅
+ 𝑣̅

∂𝑇′

∂𝑟̅
+

∂𝑇′

∂𝑡′
= α

𝜕2𝑇′

𝜕𝑟̅2
+

α

𝑟̅

∂𝑇′

∂𝑟̅
                 (6) 

The applied initial and boundary conditions: 

𝑡′ ≤  0:     𝑇′ = 𝑇∞
′  ,    𝑣̅ = 0,   𝑢̅ = 0                             for all 𝑥̅ and 𝑟̅ 

𝑡′ > 0:      𝑇′ = 𝑇𝑤
′ ,     𝑣̅ = 0,   𝑢̅ = 0                               at 𝑟̅ = 𝑟0                          

                   𝑇′ = 𝑇∞
′ ,    𝑣̅ = 0,   𝑢̅ = 0                                  at  𝑥̅ = 0                                  

                  𝑇′ → 𝑇∞
′ ,    𝑣̅ → 0,   𝑢̅ → 0,

𝜕𝑢

𝜕𝑟̅
→ 0                  at 𝑟̅ → ∞                 (7) 

It is expedient to introduce the following dimensionless quantities in Eqns. (4) - (6), and also in 

Eqn. (7): 

𝑋 = 𝑥̅
𝑟0𝐺𝑟⁄   ;     𝑅 = 𝑟̅

𝑟0
⁄   ;    𝑈 =

𝑢̅𝑟0
ϑ𝐺𝑟⁄   ;   𝑉 =

𝑣̅𝑟0
ϑ⁄   

𝑡 = ϑ𝑡′

𝑟0
2⁄   ;    𝐺𝑟 =

g′β𝑇𝑟0
3(𝑇𝑤

′ − 𝑇∞
′ )

ϑ2⁄  ;    θ =
𝑇′ − 𝑇∞

′

𝑇𝑤
′ − 𝑇∞

′⁄  ;    𝑃𝑟 = ϑ
𝛼⁄     
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 𝐷𝑎 =
𝑘1

𝑟0
2⁄ ;    α1 =

α1
∗

𝜌𝑟0
2⁄   ;    α2 =

α2
∗

𝜌𝑟0
2⁄   ;    β =

β3
∗𝜗

𝜌𝑟0
4⁄                    (8) 

(where 𝑘1 is permeability of porous medium which is isotropic (i.e. same in both axial and radial 

directions), further all the notations can be referred at nomenclature part). Effectively the 

governing equations contract to the following non-dimensional form: 

 

𝜕𝑈

𝜕𝑋
+

𝜕𝑉

𝜕𝑅
+

𝑉

𝑅
= 0             (9) 

𝜕𝑈

𝜕𝑡
+ 𝑈

𝜕𝑈

𝜕𝑋
+ 𝑉

𝜕𝑈

𝜕𝑅
+ 𝑈

1

𝐷𝑎
= θ +

𝜕2𝑈

𝜕𝑅2
+

1

𝑅

𝜕𝑈

𝜕𝑅
 +α1 [

𝜕3𝑈

𝜕𝑅2𝜕𝑡
+

1

𝑅
(

𝜕2𝑈

𝜕𝑅𝜕𝑡
+ 𝑉

𝜕2𝑈

𝜕𝑅2
+ 𝑈

𝜕2𝑈

𝜕𝑋𝜕𝑅
+ 3

𝜕𝑈

𝜕𝑋

𝜕𝑈

𝜕𝑅
+

                                                 
𝜕𝑈

𝜕𝑅

𝜕𝑉

𝜕𝑅
) +  𝑉

𝜕3𝑈

𝜕𝑅3 + 2
𝜕𝑉

𝜕𝑅

𝜕2𝑈

𝜕𝑅2 + 3
𝜕2𝑈

𝜕𝑅2

𝜕𝑈

𝜕𝑋
+

𝜕𝑈

𝜕𝑅

𝜕2𝑉

𝜕𝑅2 + 4
𝜕𝑈

𝜕𝑅

𝜕2𝑈

𝜕𝑋𝜕𝑅
+ 𝑈

𝜕3𝑈

𝜕𝑋𝜕𝑅2] 

                                               +α2 [
2

𝑅
(

𝜕𝑈

𝜕𝑅

𝜕𝑉

𝜕𝑅
+

𝜕𝑈

𝜕𝑋

𝜕𝑈

𝜕𝑅
) + 4

𝜕𝑈

𝜕𝑅

𝜕2𝑈

𝜕𝑋𝜕𝑅
+ 2 (

𝜕2𝑈

𝜕𝑅2

𝜕𝑈

𝜕𝑋
+

𝜕2𝑉

𝜕𝑅2

𝜕𝑈

𝜕𝑅
+

𝜕𝑉

𝜕𝑅

𝜕2𝑈

𝜕𝑅2)]  

                                 +β [(𝐺𝑟)2 (
2

𝑅
(

𝜕𝑈

𝜕𝑅
)

3
+ 6 (

𝜕𝑈

𝜕𝑅
)

2 𝜕2𝑈

𝜕𝑅2) + 2
𝜕𝑈

𝜕𝑋

𝜕𝑈

𝜕𝑅

𝜕2𝑈

𝜕𝑋𝜕𝑅
+ 4 (

∂𝑈

∂𝑅
)

2 ∂2𝑈

∂𝑋2]       (10) 

𝜕θ

𝜕𝑡
+ 𝑈

𝜕θ

𝜕𝑋
+ 𝑉

𝜕θ

𝜕𝑅
=

1

𝑃𝑟
(

1

𝑅

𝜕

𝜕𝑅
(𝑅

𝜕θ

𝜕𝑅
))                  (11) 

𝑡 =  0:   θ = 0 ,    𝑉 = 0,   𝑈 = 0                           for all 𝑋 and 𝑅 

𝑡 >  0:  θ = 1,      𝑉 = 0,   𝑈 = 0                           at  𝑅 = 1           

             θ = 0 ,    𝑉 = 0,    𝑈 = 0                            at  𝑋 = 0                  

             θ → 0 ,    𝑉 → 0,    𝑈 → 0,   
𝜕𝑈

𝜕𝑅
→ 0          as  𝑅 → ∞                         (12) 

 

3. FINITE DIFFERENCE SOLUTION PROCEDURE 

It is difficult to derive analytical solutions due to the strong nonlinearity of the normalized partial 

differential equations. A computational numerical approach is therefore chosen to solve the time-

dependent Eqns. (9) - (11) using the boundary conditions (12). The selected finite-difference 

iterative scheme which is “unconditionally stable” is known as a “Crank-Nicolson type” scheme. 
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Let  𝐽𝑅 =
1

1+(𝑔−1)∆𝑅
 . The finite difference discretized equations for Eqs. (9), (10) and (11) are as 

follows: 

𝑈𝑓,𝑔
ℎ+1+𝑈𝑓,𝑔

ℎ −𝑈𝑓−1,𝑔
ℎ+1 −𝑈𝑓−1,𝑔

ℎ

2∆𝑋
+

𝑉𝑓,𝑔
ℎ+1+𝑉𝑓,𝑔

ℎ −𝑉𝑓,𝑔−1
ℎ+1 −𝑉𝑓,𝑔−1

ℎ

2∆𝑅
+ 𝑉𝑓,𝑔

ℎ+1(𝐽𝑅) = 0      (13) 

𝑈𝑓,𝑔
ℎ+1−𝑈𝑓,𝑔

ℎ

∆𝑡
+

𝑈𝑓,𝑔
ℎ

2∆𝑋
(𝑈𝑓,𝑔

ℎ+1 + 𝑈𝑓,𝑔
ℎ − 𝑈𝑓−1,𝑔

ℎ+1 − 𝑈𝑓−1,𝑔
ℎ

) +
𝑉𝑓,𝑔

ℎ

4∆𝑅
(𝑈𝑓,𝑔+1

ℎ+1 + 𝑈𝑓,𝑔+1
ℎ − 𝑈𝑓,𝑔−1

ℎ+1 − 𝑈𝑓,𝑔−1
ℎ

)  

  =
θ𝑓,𝑔

ℎ +θ𝑓,𝑔
ℎ+1

2
+

𝐽𝑅

4∆𝑅
(𝑈𝑓,𝑔+1

ℎ+1 + 𝑈𝑓,𝑔+1
ℎ − 𝑈𝑓,𝑔−1

ℎ+1 − 𝑈𝑓,𝑔−1
ℎ

) 

  +
1

2(∆𝑅)2 (𝑈𝑓,𝑔−1
ℎ+1 + 𝑈𝑓,𝑔−1

ℎ − 2𝑈𝑓,𝑔
ℎ+1 − 2𝑈𝑓,𝑔

ℎ + 𝑈𝑓,𝑔+1
ℎ+1 + 𝑈𝑓,𝑔+1

ℎ )  

  +α1 [
1

4(∆𝑅)2(∆𝑡)
(𝑈𝑓,𝑔−2

ℎ+1 − 𝑈𝑓,𝑔−2
ℎ − 2𝑈𝑓,𝑔

ℎ+1 + 2𝑈𝑓,𝑔
ℎ + 𝑈𝑓,𝑔+2

ℎ+1 − 𝑈𝑓,𝑔+2
ℎ )  

  +
𝐽𝑅

2(∆𝑅)(∆𝑡)
(𝑈𝑓,𝑔+1

ℎ+1 − 𝑈𝑓,𝑔+1
ℎ − 𝑈𝑓,𝑔−1

ℎ+1 + 𝑈𝑓,𝑔−1
ℎ

)  

  +
𝑉𝑓,𝑔

ℎ

4(∆𝑅)3 (𝑈𝑓,𝑔+2
ℎ+1 + 𝑈𝑓,𝑔+2

ℎ − 2𝑈𝑓,𝑔+1
ℎ+1 − 2𝑈𝑓,𝑔+1

ℎ + 2𝑈𝑓,𝑔−1
ℎ+1 + 2𝑈𝑓,𝑔−1

ℎ − 𝑈𝑓,𝑔−2
ℎ+1 −𝑈𝑓,𝑔−2

ℎ )  

                 +
1

2(∆𝑅)3 (𝑉𝑓,𝑔+1
ℎ − 𝑉𝑓,𝑔−1

ℎ
) (𝑈𝑓,𝑔−1

ℎ+1 + 𝑈𝑓,𝑔+1
ℎ+1 − 2𝑈𝑓,𝑔

ℎ+1 − 2𝑈𝑓,𝑔
ℎ + 𝑈𝑓,𝑔−1

ℎ + 𝑈𝑓,𝑔+1
ℎ

)                      

                 +
3

2(∆𝑋)(∆𝑅)2 (𝑈𝑓,𝑔
ℎ − 𝑈𝑓−1,𝑔

ℎ ) (𝑈𝑓,𝑔−1
ℎ+1 + 𝑈𝑓,𝑔−1

ℎ − 2𝑈𝑓,𝑔
ℎ+1 − 2𝑈𝑓,𝑔

ℎ + 𝑈𝑓,𝑔+1
ℎ+1 + 𝑈𝑓,𝑔+1

ℎ ) 

  +
1

4(∆𝑅)3 (𝑈𝑓,𝑔+1
ℎ+1 + 𝑈𝑓,𝑔+1

ℎ − 𝑈𝑓,𝑔−1
ℎ+1 − 𝑈𝑓,𝑔−1

ℎ ) (𝑉𝑓,𝑔−1
ℎ + 𝑉𝑓,𝑔+1

ℎ − 2𝑉𝑓,𝑔
ℎ )  

  +
1

2(∆𝑋)(∆𝑅)2 (𝑈𝑓,𝑔+1
ℎ − 𝑈𝑓,𝑔−1

ℎ )(𝑈𝑓,𝑔+1
ℎ+1 + 𝑈𝑓,𝑔+1

ℎ − 𝑈𝑓−1,𝑔+1
ℎ+1 − 𝑈𝑓−1,𝑔+1

ℎ − 𝑈𝑓,𝑔−1
ℎ+1 −

                𝑈𝑓,𝑔−1
ℎ + 𝑈𝑓−1,𝑔−1

ℎ+1 + 𝑈𝑓−1,𝑔−1
ℎ ) +

𝑉𝑓,𝑔
ℎ 𝐽𝑅

2(∆𝑅)2 (𝑈𝑓,𝑔−1
ℎ+1 + 𝑈𝑓,𝑔−1

ℎ − 2𝑈𝑓,𝑔
ℎ+1 − 2𝑈𝑓,𝑔

ℎ + 𝑈𝑓,𝑔+1
ℎ+1 +

             𝑈𝑓,𝑔+1
ℎ ) +

𝑈𝑓,𝑔
ℎ 𝐽𝑅

4(∆𝑅)(∆𝑋)
(𝑈𝑓,𝑔+1

ℎ+1 + 𝑈𝑓,𝑔+1
ℎ − 𝑈𝑓−1,𝑔+1

ℎ+1 − 𝑈𝑓−1,𝑔+1
ℎ − 𝑈𝑓,𝑔−1

ℎ+1 − 𝑈𝑓,𝑔−1
ℎ +

               𝑈𝑓−1,𝑔−1
ℎ+1 + 𝑈𝑓−1,𝑔−1

ℎ ) +
3𝐽𝑅

4(∆𝑅)(∆𝑋)
(𝑈𝑓,𝑔

ℎ − 𝑈𝑓−1,𝑔
ℎ ) (𝑈𝑓,𝑔+1

ℎ+1 + 𝑈𝑓,𝑔+1
ℎ − 𝑈𝑓,𝑔−1

ℎ+1 − 𝑈𝑓,𝑔−1
ℎ ) 
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        +
𝑈𝑓,𝑔

ℎ

2(∆𝑅)2∆𝑋
[𝑈𝑓,𝑔+1

ℎ+1 + 𝑈𝑓,𝑔+1
ℎ − 𝑈𝑓−1,𝑔+1

ℎ+1 − 𝑈𝑓−1,𝑔+1
ℎ − 2𝑈𝑓,𝑔

ℎ+1−2𝑈𝑓,𝑔
ℎ + 2𝑈𝑓−1,𝑔

ℎ+1 + 2𝑈𝑓−1,𝑔
ℎ

+ 𝑈𝑓,𝑔−1
ℎ+1 + 𝑈𝑓,𝑔−1

ℎ − 𝑈𝑓−1,𝑔−1
ℎ+1 −𝑈𝑓−1,𝑔−1

ℎ ] 

+
𝐽𝑅

8(∆𝑅)2
(𝑉𝑓,𝑔+1

ℎ − 𝑉𝑓,𝑔−1
ℎ )(𝑈𝑓,𝑔+1

ℎ+1 + 𝑈𝑓,𝑔+1
ℎ − 𝑈𝑓,𝑔−1

ℎ+1 − 𝑈𝑓,𝑔−1
ℎ )] 

          +α2 [
𝐽𝑅

4(∆𝑅)2 (𝑉𝑓,𝑔+1
ℎ − 𝑉𝑓,𝑔−1

ℎ
) (𝑈𝑓,𝑔+1

ℎ+1 + 𝑈𝑓,𝑔+1
ℎ − 𝑈𝑓,𝑔−1

ℎ+1 − 𝑈𝑓,𝑔−1
ℎ

)  

          +
𝐽𝑅

2(∆𝑅)(∆𝑋)
(𝑈𝑓,𝑔

ℎ − 𝑈𝑓−1,𝑔
ℎ )(𝑈𝑓,𝑔+1

ℎ+1 + 𝑈𝑓,𝑔+1
ℎ − 𝑈𝑓,𝑔−1

ℎ+1 − 𝑈𝑓,𝑔−1
ℎ )  

          +
1

(∆𝑋)(∆𝑅)2 (𝑈𝑓,𝑔
ℎ − 𝑈𝑓−1,𝑔

ℎ )(𝑈𝑓,𝑔−1
ℎ+1 + 𝑈𝑓,𝑔−1

ℎ − 2𝑈𝑓,𝑔
ℎ+1 − 2𝑈𝑓,𝑔

ℎ + 𝑈𝑓,𝑔+1
ℎ+1 + 𝑈𝑓,𝑔+1

ℎ )    

           +
1

2(∆𝑅)3 (𝑉𝑓,𝑔−1
ℎ + 𝑉𝑓,𝑔+1

ℎ − 2𝑉𝑓,𝑔
ℎ ) (𝑈𝑓,𝑔+1

ℎ+1 + 𝑈𝑓,𝑔+1
ℎ − 𝑈𝑓,𝑔−1

ℎ+1 − 𝑈𝑓,𝑔−1
ℎ )    

          +
1

2(∆𝑋)(∆𝑅)2 (𝑈𝑓,𝑔+1
ℎ − 𝑈𝑓,𝑔−1

ℎ )(𝑈𝑓,𝑔+1
ℎ+1 + 𝑈𝑓,𝑔+1

ℎ − 𝑈𝑓−1,𝑔+1
ℎ+1 − 𝑈𝑓−1,𝑔+1

ℎ − 𝑈𝑓,𝑔−1
ℎ+1 −

            𝑈𝑓,𝑔−1
ℎ + 𝑈𝑓−1,𝑔−1

ℎ+1 + 𝑈𝑓−1,𝑔−1
ℎ ) 

           +
1

2(∆𝑅)3 (𝑉𝑓,𝑔+1
ℎ − 𝑉𝑓,𝑔−1

ℎ ) (𝑈𝑓,𝑔−1
ℎ+1 + 𝑈𝑓,𝑔−1

ℎ − 2𝑈𝑓,𝑔
ℎ+1 − 2𝑈𝑓,𝑔

ℎ + 𝑈𝑓,𝑔+1
ℎ+1 + 𝑈𝑓,𝑔+1

ℎ )] + β  

          {
(𝐺𝑟)2(𝑈𝑓,𝑔+1

ℎ −𝑈𝑓,𝑔−1
ℎ )

2

4(∆𝑅)3 [𝐽𝑅 (𝑈𝑓,𝑔+1
ℎ − 𝑈𝑓,𝑔−1

ℎ
) +

3

(∆𝑅)
(𝑈𝑓,𝑔−1

ℎ+1 − 2𝑈𝑓,𝑔
ℎ+1 +   𝑈𝑓,𝑔+1

ℎ+1 +  𝑈𝑓,𝑔−1
ℎ −

           2𝑈𝑓,𝑔
ℎ + 𝑈𝑓,𝑔+1

ℎ )]} + {
(𝑈𝑓,𝑔+1

ℎ −𝑈𝑓,𝑔−1
ℎ )

(∆𝑋)2(∆𝑅)2 [(𝑈𝑓−1,𝑔
ℎ − 2𝑈𝑓,𝑔

ℎ + 𝑈𝑓+1,𝑔
ℎ ) (𝑈𝑓,𝑔+1

ℎ − 𝑈𝑓,𝑔−1
ℎ ) +

             
1

8
(𝑈𝑓,𝑔

ℎ − 𝑈𝑓−1,𝑔
ℎ ) (𝑈𝑓,𝑔+1

ℎ+1 − 𝑈𝑓−1,𝑔+1
ℎ+1 − 𝑈𝑓,𝑔−1

ℎ+1 + 𝑈𝑓−1,𝑔−1
ℎ+1    +𝑈𝑓,𝑔+1

ℎ − 𝑈𝑓−1,𝑔+1
ℎ −

           𝑈𝑓,𝑔−1
ℎ +  𝑈𝑓−1,𝑔−1

ℎ )]} −
1

Da

𝑈𝑓,𝑔
ℎ+1+𝑈𝑓,𝑔

ℎ

2
        (14)   

                 

θ𝑓,𝑔
ℎ+1

−θ𝑓,𝑔
ℎ

∆𝑡
+

𝑈𝑓,𝑔
ℎ

2∆𝑋
(θ𝑓,𝑔

ℎ+1 − θ𝑓−1,𝑔
ℎ+1 + θ𝑓,𝑔

ℎ − θ𝑓−1,𝑔
ℎ

) +
𝑉𝑓,𝑔

ℎ

4∆𝑅
(θ𝑓,𝑔+1

ℎ+1 − θ𝑓,𝑔−1
ℎ+1 + θ𝑓,𝑔+1

ℎ − θ𝑓,𝑔−1
ℎ

)  
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                =
1

2𝑃𝑟(∆𝑅)2 (θ𝑓,𝑔−1
ℎ+1 − 2θ𝑓,𝑔

ℎ+1 + θ𝑓,𝑔+1
ℎ+1 + θ𝑓,𝑔−1

ℎ − 2θ𝑓,𝑔
ℎ + θ𝑓,𝑔+1

ℎ
)  

                   +
𝐽𝑅

4𝑃𝑟∆𝑅
(θ𝑓,𝑔+1

ℎ+1 − θ𝑓,𝑔−1
ℎ+1 + θ𝑓,𝑔+1

ℎ − θ𝑓,𝑔−1
ℎ

)      (15)   

                      

A rectangular grid system with 𝑋𝑚𝑖𝑛 = 0,  𝑋𝑚𝑎𝑥 = 1, 𝑅𝑚𝑖𝑛 = 1 and 𝑅𝑚𝑎𝑥 = 20 (where 𝑅𝑚𝑎𝑥 

implies to 𝑅 = ∞) is selected.  

The finite difference technique commences with the computation of the thermal conservative Eq. 

(11), resulting the temperature field. Then, the procedure follows to solve the momentum transport 

and mass conservative equations (10) and (9), yielding the velocity field. At the (h+1)th  stage Eqns. 

(15) and (14) are stated below in tridiagonal and penta-diagonal forms:   

𝐴1ω𝑓,𝑔−1
ℎ+1 + 𝐵1ω𝑓,𝑔

ℎ+1 + 𝐶1ω𝑓,𝑔+1
ℎ+1 = 𝐷1 

𝐴2φ𝑓,𝑔−2
ℎ+1 + 𝐵2φ𝑓,𝑔−1

ℎ+1 + 𝐶2φ𝑓,𝑔
ℎ+1 + 𝐷2φ𝑓,𝑔+1

ℎ+1 + 𝐸2φ𝑓,𝑔+2
ℎ+1 = 𝐹2 

where ω and 𝜑 indicate θ and U, respectively. Thus, Eqns. (14) - (15) at each interior mesh point 

on a specific f-level involve a system of penta-diagonal and tridiagonal equations. A 

comprehensive study of the finite difference method can be found in the literature [42-43].  

 

Validation of the numerical scheme: 

A consistent and economic grid system is selected using grid-independent test for different sizes 

of a grid. The values of the Nusselt number ( 𝑁𝑢) and average skin-friction coefficient (𝐶𝑓) on the 

boundary R = 1 are presented in Table 1. It is observed from Table 1 that grid size of 100 X 500 

gives an adequate accuracy to study the present problem. Likewise, a time-independence test has 

been conducted for different sizes of a time step, as shown in Table 2. The effective particular time 

step size Δ𝑡 (𝑡 = ℎΔ𝑡, ℎ = 0, 1, 2, … ) is fixed as 0.01.  Further, the scheme is “unconditionally 

stable where the local truncation error is 𝑂(∆𝑡2 + ∆𝑌2 + ∆𝑋) and it tends to zero as  ∆𝑡, ∆𝑌 and 

∆𝑋 tends to zero”.  
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4. RESULTS AND DISCUSSION  

The transient behavior of U and 𝜃 are studied, and their values are explained at different locations. 

The steady-state U and θ profiles are discussed along the direction of 𝑅. The results for the case 

of Newtonian fluids in the absence of a porous medium (α1 = α2 = β = 0) are in comparison with 

those of Lee et al. [2] (refer Fig. 2a). Also, one more comparative result for Newtonian fluid flow 

(i.e., α1 = α2 = β = 0) is conducted by neglecting the effect of the third grade viscoelastic 

parameter in the current model and comparing with the results of Rani and Kim [44] for 𝛾 = 𝜆 = 0 

(refer Fig. 2b). Generally, a close correlation is achieved which endorses the accuracy of the 

present numerical code. The simulated results are represented to describe the variation of the 

dimensionless flow variables along with heat transport coefficients and average skin-friction for 

different thermophysical control parameters and are discussed in the following subsections. 

The range of third-grade fluid parameters α1, α2, α3 is taken from the inequality given by 

Clasusius-Duhelm with least value of Helmholtz free energy at equilibrium and the conditions of 

Eq. (8) are as follows. The stability and thermodynamic criteria of third-grade fluid is considered 

and it is determined that boundedness and stability nature of third-grade fluid can be deliberated 

as case of second-grade fluid (scrutinized by Dunn and Fosdick [45], for β3
∗ = 0 gives the 

constitutive equation for a second-grade Reiner-Rivlin fluid). Also, Fosdick and Straughan [46] 

revealed that the restriction α1
∗ < 0 provides non-physical results (i.e., “quite arbitrary flows with 

instability and unboundedness”) and asymptotic stability for  α1
∗ 0.  

The considered value of 𝐺𝑟 (Grashof number) is 10. For higher 𝐺𝑟 value the viscous force is 

comparably negligible from the ‘thermal buoyancy’ forces. When buoyancy forces massively 
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exceed the viscous forces, fluid flow will eventually morph to a turbulent one with transitional 

disturbances growing quickly. However, the lower values of 𝐺𝑟 encourages the flow that moves 

upward direction causing smooth turns around the heated vertical cylinder. Buoyancy therefore 

when judiciously controlled can be used to strategically modify flow patterns which is beneficial 

to thermal coating applications and achieves more homogenous coating thicknesses. The Prandtl 

number is fixed as 𝑃𝑟 = 0.63 (particularly represents the oxygen). Also, the maximum value of 

Darcy number is 5 which indicates the greater effect of permeability of the medium and hence 

significant reduction in the bulk matrix drag of the porous medium fibers.  

 4.1 Flow Variables 

Velocity:                                              

   The simulated transient non-dimensional velocity (U) versus time (t) at different locations (1, 1.83) 

and (1, 5.82) by varying the third-grade fluid parameter (β) and the Darcy number (Da) are 

depicted in Fig. 3 and Fig. 4, respectively. The U profiles, in Figs. 3 and 4 are chosen in the 

neighbourhood and far distance from the heated cylindrical surface, respectively. Fig. 3a displays 

the transient velocity profile for variation in β value with Da = 5, α1 = α2 = 0.2. Similarly, Fig. 

3b shows the graphical results for variation in Da value with β = 0.1, α1 = α2 = 0.2. At all 

localities, it is noticed that velocity curve is enhanced with time, achieves temporal maxima and 

then lastly reaches the time-independent state. For fixed values of α1 = α2 = 0.2, β = 0.5 and Da 

= 5, it is evident that the velocity increases monotonically with time, attains temporal maxima and 

at last reaches the asymptotic steady-state (refer Fig. 3a). Also, when t << 1, it can be observed 

that the heat transfer conduction takes dominating rule over the convection. Consequently, there 

befalls a time phase where the heat transfer rate is swayed by the increase of natural convection 

hence accelerating the flow of third-grade fluid with respect to time. For all values of Da with 

fixed β = 0.1, Fig. 3b shows that it has the similar unsteady behaviour as the observations made in 

Fig. 3a pertaining to β. It is noticed in Fig. 3a that initially (t < 1) unsteady U profile coincides 

with each other and then deviates for a later time (t ≥ 1). Also, the magnitude of the velocity 

attained increases as Da is enhanced. Since, the permeability of the porous medium (i.e., measure 
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of ease with which the fluid can move inside the porous medium) and the Darcy number (Da), 

both are in direct relation i.e., bigger Darcy number implies to greater permeability of the porous 

medium and an associated depletion in bulk matrix drag of the porous medium fibers. Hence, as 

Darcy number increases, the flow gets accelerated. Also, from Fig. 3a, with increasing 𝛽 value 

time to attain the temporal maxima decreases, but for increasing Da, time to needed for attaining 

the temporal maxima increases shown in Fig. 3b. For augmenting value of the β with fixed Da = 

5, α1 = α2 = 0.2, the magnitude of velocity is decreasing close to hot surface (refer Fig. 3a) and 

it is increasing at a distance far away from the hot surface (refer Fig. 4a). The decrement in the 

velocity of the fluid at the hot wall of the cylinder is due to increasing β i.e., it pronounces the 

viscoelastic effect (i.e. the relative influential action of elastic and viscous forces). It dominates 

the effect of viscosity and recedes the fluid elastic nature hence a deceleration in the fluid velocity 

is observed (Fig. 3a). Whereas the variation of Da value has similar effects at all the locations 

(refer Figs. 3b and 4b).  

 

Also, from Fig. 5, these U profiles relating to β and Da are examined next. The steady-state 

non-dimensional velocity (U) versus non-dimensional radial coordinate (R) is plotted in Fig. 5 for 

various values of β and Da. Under steady conditions with fixed α1 = α2 = 0.2, Fig. 5a displays 

the velocity profile for variation of β value with Da = 5 and Fig. 5b shows velocity variations for 

the influence of Da number with β = 0.1. Clearly, the velocity profiles begin with zero value 

adjacent to cylindrical wall, attain the maximum and subsequently fall to zero in the R direction. 

It is also observed that close to cylindrical surface, the magnitude of U rises quickly as the R value 

increase from Rmin  along the axis of the cylinder. From the Fig. 5a, it is perceived that for increasing 

β, the velocity decreases in a neighbourhood of the cylindrical wall and the trend is reversed after 

for some R, i.e., at distance far away from the wall. It is witnessed from Fig. 5b that, near to the 

hot wall, the velocity increases as Da increases. Since the increased Da value promotes the growth 

of the permeability of the medium, this manifests in a depletion in the bulk impedance of the solid 

fibers (it is observed that the pure fluid state can be obtained by taking infinite permeability, i.e., 

vanishing Darcian drag force in the momentum equation).   
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Temperature: 

Figure 6 shows the transient non-dimensional temperature (θ) against time (t) at (1, 1.15). 

The influence of variation of β with fixed Da = 5, α1 = α2 = 0.2  is shown in Fig. 6a. Similarly 

effect of Da with fixed β = 0.1, α1 = α2 = 0.2  is shown in Fig. 6b. At initial period, these profiles 

show increasing nature against time and then reach time-independent state. At all the positions, 

this unsteady behavior of temperature is observed. From Fig. 6a, it is noticed that the temporal 

maximum increase as the third-grade fluid parameter increases indicating that greater viscoelastic 

effect aids to heat up the regime due to enhanced particle collision and to increase thermal 

boundary layer thickness. Converse response for thermal energy distributions in transient 

condition can be found in Fig. 6b for all values of Da with β = 0.1, α1 = α2 = 0.2, i.e., as Da 

increases the temperature decreases. The thermal conduction diminishes for a higher value of 

permeability (i.e., increased Da value) of porous medium as a result of decreased temperature. 

Hence it cools the regime and results in shrinkage of a thermal boundary layer. 

 The steady-state temperature (θ) against the R for different values of β and Da are 

presented in Fig. 7. From Fig. 7a and 7b, θ profiles start with a temperature of the hot surface and 

then continuously decay to zero value along R. Figure 7a displays the influence of third-grade fluid 

parameter (β) with Da = 5, α1 = α2 = 0.2. It also shows the viscoelastic effect of third-grade fluid, 

i.e., as β increases temperature profile increases. Greater viscoelasticity (higher β) values slow 

down the fluid motion and this encourages thermal diffusion. Also, greater β values cause to 

increase the steady-state time. From Fig.7b, it is revealed that the steady-state time decreases as 

Da increases.      

 

4.2 Friction and Heat Transport Coefficients 

For known flow-field profiles under steady and unsteady conditions, transport coefficients for the 

third-grade fluid are essential parameters to study free-convective heat transfer problems. The non-

dimensional average skin friction and heat transport coefficients are given by 

 𝐶𝑓
̅̅ ̅ = ∫ (

𝜕𝑈

𝜕𝑅
)

𝑅=1
𝑑𝑋

1

0
  and  𝑁𝑢̅̅ ̅̅ = − ∫ (

𝜕θ

𝜕𝑅
)

𝑅=1
𝑑𝑋

1

0
 respectively.  



18 
 

Figure 8 reveals the results for  𝐶𝑓 for various values of β and Da. At an initial phase of 

time, these figures indicate that skin friction (𝐶𝑓) increases monotonically against the time (t) 

finally achieving the time-independent state. Also, it is evident that velocity has lesser value as 

shown in Fig. 3, which is reflected in Fig. 8 for average skin friction coefficient. It is seen that for 

increasing value of β, the 𝐶𝑓 decreases shown in Fig. 8a and reverse tendency can be observed for 

escalating Da which is shown in Fig. 8b. The observations made in Fig. 8a are obvious since 

augmenting β (third-grade parameter) value increases the fluid viscosity hence hinders the fluid 

flow causing a decrease in velocity within the boundary layer. Increased Da (i.e., higher value of 

permeability) value causes to decrease the drag force of porous medium and hence increasing 

velocity of fluid intern increasing the 𝐶𝑓 value.    

The graphical results for 𝑁𝑢 against time for different values of β and Da are revealed in 

Fig. 9. At early time phase for all β and Da values, the 𝑁𝑢 curve decreases drastically, later reaches 

the steady-state. The 𝑁𝑢 values augment with decreasing β or increasing Da and results are 

reflected graphically in Fig. 9a and Fig. 9b, respectively. The results from Fig. 9a are true since 

rising β values cause to increase the flow-field temperature near to the hot cylindrical surface and 

decelerating the fluid flow, hence there is negatively increase in heat transfer rate to the wall, i.e., 

𝑁𝑢. The temperature gradient effects the variation in 𝑁𝑢. From Fig. 9a, 𝑁𝑢 is hardly affected by 

variation of β value, i.e., decrease in the fluid viscosity does not noticeably modify heat transfer 

rates. Similarly, in Fig. 9b, the effect of permeability of porous medium on heat transfer by 

increasing Da value is reflected. Since greater the permeability effect of porous medium cools the 

flow regime, this in turn enhances the heat transfer near the hot surface.       

Comparison results  

The contours (U and θ) for Newtonian and third-grade fluid flows for constant values of Pr = 0.63, 

and Da = 5 in a two-dimensional porous medium are presented in Fig. 10. At any locations 

excluding the points at boundary (R = 1, R = 20 & X = 0), the velocity flow profile for third-grade 

fluid is observed to be smaller than that of a Newtonian fluid. However, a reverse trend is observed 

for temperature profiles. For steady-state state velocity and temperature contours, the thickness of 
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thermal and hydrodynamic boundary layers for non-Newtonian third-grade fluid varies slightly 

compared to Newtonian fluid flow.  

5. CONCLUDING REMARKS 

Transient flow analysis has been conducted for the flow of time-dependent incompressible free- 

convective third-grade fluid from isothermal vertical cylinder embedded in the porous medium. 

The normalized conservative equations for thermal and momentum conservation are solved by 

performing Crank-Nicolson scheme. The simulations are run by varying non-dimensional 

quantities such as third-grade parameter and Darcy number to show transient effects of third- grade 

viscoelastic fluid dynamics in a porous medium. 

➢ In the transient graphs, the velocity exhibits an inverse relationship with third-grade 

viscoelastic parameter and a direct relationship with Darcy parameter. The reverse trends 

are computed for temperature, i.e., the temperature increases with increasing third-grade 

viscoelastic and decreasing Darcy number; however, the modifications are significantly 

less dramatic than for the velocity distribution. 

➢ In the steady-state graphs, the time which elapses to attain the time-independent state 

increases with elevation in values of the third-grade viscoelastic parameter whereas it is 

reduced with an increase in Darcy number. 

➢ The average skin friction (momentum transport) coefficient is augmented with larger value 

of Darcy number whereas it is decreased with greater value of third-grade viscoelastic 

parameter. Similarly, the averaged heat transport coefficient is decreased with increasing 

values of third-grade viscoelastic parameter and it is increased with higher values of the 

Darcy number.   

➢ The Crank-Nicolson scheme is an excellent numerical methodology for simulating 

unsteady non-Newtonian external convection flows and holds significant promise for 

future simulations including alternate viscoelastic models, electro-conductive polymer 

flows, viscoplastic enrobing fluids, micro-structural rheological coating liquids etc. 

Efforts in this direction are currently underway and will be communicated imminently. 

 

 



20 
 

ACKNOWLEDGEMENTS 

The authors are extremely grateful to the reviewers for their insightful comments 

which have aided in improving the clarity of the work. 

 

REFERENCES 

1. Sparrow, E. M. and Gregg, J. L. “Laminar free convection heat transfer from the 

outer surface of a vertical circular cylinder”, ASME Journal of Heat Transfer 78(8), pp. 

1823-1829 (1956).  

2. Lee, H. R., Chen, T. S. and Armaly, B. F. “Natural convection along slender vertical 

cylinders with variable surface temperature”, ASME Journal of Heat Transfer 110, pp. 103-

108(1988).  

3. M. M. Gnaneswara Reddy and N. Bhaskar Reddy, “Thermal radiation and mass transfer 

effects on MHD free convection flow past a vertical cylinder with variable surface 

temperature and concentration”, Journal of Naval Architecture and Marine Engineering, 

6, pp. 1-15, 2009. 

4. Gnaneswara Reddy Machireddy, “Chemically reactive species and radiation effects on 

MHD convective flow past a moving vertical cylinder”, Ain Shams Engineering Journal 

(2013) 4, 879–888. 

5. M. Gnaneswara Reddy, O.D. Makinde, “Magnetohydrodynamic peristaltic transport of 

Jeffrey nanofluid in an asymmetric channel”, Journal of Molecular Liquids 223 (2016) 

1242–1248. 

6. Machireddy Gnaneswara Reddy, J. Manjula and P. Padma, “Mass transfer flow of MHD 

radiative tangent hyperbolic fluid over a cylinder: a numerical study”, Int. J. Appl. Comput. 

Math (2017) Volume 3 (1), pp. 447–4723. 

7. O. D. Makinde,  M. Gnaneswara Reddy and K. Venugopal Reddy, “Effects of thermal 

radiation on MHD peristaltic motion of Walters-B fluid with heat source and slip 

conditions”, Journal of Applied Fluid Mechanics, Vol. 10, No. 4, pp. 1105-1112, 2017. 



21 
 

8. Reddy, M. Gnaneswara, Kumari, P. Vijaya, Padma, P. “Effect of thermal radiation on 

MHD casson nano fluid over a cylinder”, Journal of Nanofluids, Volume 7, Number 3, 

June 2018, pp. 428-438(11).  

9. Rivlin, R.S. and Ericksen, J.L.  “Stress deformation relations for isotropic materials", J. 

Rational Mech. Anal, 4, pp. 323 (1955). 

10. Truesdell, C. and Noll, W. “The non-linear field theories of mechanics", in: Handbuch. 

Phys, Vol. III/3, Springer, New York, (1965). 

11. Hayat, T., Shafiq, A., Alsaedi, A. and Asghar, S. “Effect of inclined magnetic field in flow 

of third grade fluid with variable thermal conductivity”, AIP Advances, 5, pp. 087108-

15(2015). 

12. Hayat, T., Shafiq, A. and Alsaedi, A. “MHD axisymmetric flow of third-grade fluid by a 

stretching cylinder”, Alexandria Engineering Journal, 54, pp. 205 - 212 (2015). 

13. Baoku, I.G., Olajuwon, B.I. and Mustapha, A.O. “Heat and mass transfer on a MHD third 

grade fluid with partial slip flow past an infinite vertical insulated porous plate in a porous 

medium”, International Journal of Heat and Fluid Flow, 40, pp. 81–88(2013). 

14. Anwar Bég, O., Takhar, H.S., Bhargava, R., Rawat, S. and Prasad, V.R. “Numerical study 

of heat transfer of a third-grade viscoelastic fluid in non-Darcy porous media with 

thermophysical effects”, IOP Publishing, Physica Scripta, 77, pp. 065402-11 (2008). 

15. Sajid, M., Ahmad, M., Ahmad, I., Taj, M.  and Abbasi, A. “Axisymmetric stagnation-point 

flow of a third-grade fluid over a lubricated surface”, Advances in Mechanical 

Engineering, 7,  pp. 1–8 (2015). 

16. Hayat, T., Awais, M., Asghar, S. and Obaidat, S. “Unsteady flow of third grade fluid with 

Soret and Dufour effects”, ASME Journal of Heat Transfer, 134, pp. 062001 - 7 (2012). 

17. Ogunsola, A.W. and Peter, B.A. “Effect of Variable Viscosity on Third Grade Fluid Flow 

over a Radiative Surface with Arrhenius Reaction”, International Journal of Pure and 

Applied Sciences and Technology, 22, pp. 1-8(2014). 

18. Sahoo, B. and Poncet, S. “Flow and heat transfer of a third-grade fluid past an exponentially 

stretching sheet with partial slip boundary condition”, International Journal of Heat and 

Mass Transfer, 54, pp. 5010-5019(2011). 



22 
 

19. Saadatmandi, A., Sanatkar, Z. and Toufighi, S. P. “Computational methods for solving the 

steady flow of a third-grade fluid in a porous half space”, Applied Mathematics and 

Computation, 298, pp. 133–140(2017). 

20. Khanafer, K. and Vafai, K. “The role of porous media in biomedical engineering as related 

to magnetic resonance imaging and drug delivery”, Heat Mass Transfer, 42, pp. 939-

953(2006). 

21. Khanafer, K., AlAmiri, A., Pop, I. and Bull, J.L. “Flow and Heat Transfer in Biological 

Tissues: Application of Porous Media Theory”, Emerging Topics in Heat and Mass 

Transfer in Porous Media, 22, pp. 237-259(2008). 

22. Vafai, K. “Porous Media Applications in Biological Systems and Biotechnology”, CRC 

Press. Taylor & Francis Croup. New York, (2010). 

23. Khaled, A.R.A. and Vafai, K. “The role of porous media in modeling flow and heat transfer 

in biological tissues”, International Journal of Heat and Mass Transfer, 46, pp. 4989–

5003(2003). 

24. Khalili1, A., Liu, B., Javadi, K., Morad, M.R., Matyka, M., Kindler, K., Stocker, R., and 

Koza, Z. “Application of porous media theories in marine biological modeling”, In book: 

Porous Media, pp. 365-398(2010). 

25. Mujeebu, M.A., Abdullah, M.Z., Abu Bakar, M.Z., Mohamad, A.A. and Abdullah, M.K. 

“Applications of porous media combustion technology – A review”, Applied Energy, 86, 

pp. 1365–1375(2009). 

26. Nakayama, A. and Kuwahara, F. “A general bioheat transfer model based on the theory of 

porous media”, International Journal of Heat and Mass Transfer, 51, pp. 3190–

3199(2008). 

27. Nield, D. A.  and Bejan, A.  “Convection in Porous Media”, Springer, New York, (2013). 

28. Ingham, D. B. and Pop, I. “Transport Phenomena in Porous Media”, Elsevier Science, 

Oxford, (1998).  

29. Minkowycz, W.J. and Cheng, P. “Free convection about a vertical cylinder embedded in a 

porous medium”, Int. J. Heat Mass Transfer, 19, pp. 805-13(1976). 

30. Merkin, J.H. “Free convection from a Vertical Cylinder Embedded in a Saturated Porous 

Medium”, Acta Mechanica, 62, pp. 19-28(1986).  



23 
 

31. Yu ¨cel, A. “The influence of injection or withdrawal of fluid on free convection about 

vertical cylinder in a porous medium”, Numer. Heat Transfer, 20, pp. 483-93(1984). 

32. Bassom, A.P. and Rees, D.A.S. “Free convection from a heated vertical cylinder in a 

fluid-saturated porous medium”, Acta Mechanica, 116, pp. 139(1996). 

33. Yih, K.A. “Radiation effect on natural convection over a vertical cylinder embedded in 

porous media”, Int. Comm. Heat Mass Transfer, 26, pp. 259-67(1999). 

34. Chamkha, A.J., Jaradat, M. and Pop, I. “Thermophoresis free convection from a vertical 

cylinder embedded in a porous medium”, Int. J. Appl. Mech. Eng., 9, pp. 471-81(2004). 

35. Loganathan, P. and Eswari, B. “Natural Convective Flow over moving Vertical Cylinder 

with Temperature Oscillations in the Presence of Porous Medium”, Global Journal of Pure 

and Applied Mathematics, 13, pp. 839-855 (2017). 

36. Chamkha, A.J, EL-Kabeir, S.M.M. and Rashad, A.M. “Heat and mass transfer by non-

Darcy free convection embedded in porous media with a temperature-dependent viscosity”, 

International Journal of Numerical Methods for Heat & Fluid Flow, 21, pp. 847-

863(2011).  

37. Machireddy Gnaneswara Reddy, “Radiation effects on MHD natural convection flow 

along a vertical cylinder embedded in a porous medium with variable surface temperature 

and concentration”, Frontiers in Heat and Mass Transfer (FHMT), 5, 4 (2014). 

38. Fosdick, R. L. and Rajagopal, K. R. “Thermodynamics and stability of 

fluids of third grade”, Proceedings of the Royal Society of London. Series A, 369, pp. 351 

- 377 (1980). 

39. Hayat, T., Nazar, H., Imtiaz, M., Alsaedi, A. and Ayub, M. “Axisymmetric squeezing flow 

of third grade fluid in presence of convective conditions”, Chinese Journal of Physics, 55, 

pp. 738–754 (2017).   

40. Hayat, T., Mustafa, M. and Asghar, S. “Unsteady flow with heat and mass transfer of a 

third-grade fluid over a stretching surface in the presence of chemical reaction”, Nonlinear 

Analysis: Real World Applications, 11, pp. 3186–3197 (2010). 

41. Sajid, M., Hayat, T. and Asghar, S. “Non-similar solution for the axisymmetric flow of a 

third-grade fluid over a radially stretching sheet”, Acta Mechanica, 189, pp. 193–205 

(2007).  



24 
 

42. Rani, H. P., Reddy, G. J. and Kim, C. N. “Transient analysis of diffusive chemical reactive 

species for couple stress fluid flow over vertical cylinder”, Applied Mathematics and 

Mechanics, 34, pp. 985 - 1000 (2013). 

43. Reddy, G. J., Hiremath, A. and Kumar, M. “Computational modeling of unsteady third-

grade fluid flow over a vertical cylinder: a study of heat transfer visualization”, Results in 

Physics 8 pp. 671-682 (2018). 

44. H. P. Rani and C. N. Kim, Transient convection on a vertical cylinder with vaiable viscosity 

and thermal conductivity, AIAA J. Thermophysics Heat Transfer, 22, 254-261 (2008).   

45. Dunn, J. E. and Rajagopal, K. R. “Fluids of differential type: critical review and 

thermodynamic analysis”, International Journal of Engineering Science, 33, pp. 689 - 729 

(1995). 

46. R. L. Fosdick and B. Straughan, Catastrophic instabilities and related results in a fluid of 

third grade. Int. J. Non-Linear Mech. 16, 191(1981).   

 

 

 

 

 

 

 

 

 

 

 

 

 



25 
 

 

Table1. Grid independent test: 

Grid size 𝐶𝑓 values 

for Pr = 0.63,  = 0.1 and Da = 5.0. 

𝑁𝑢 values 

for   Pr = 0.63,  = 0.1 and Da = 5.0. 

 

25 X 125 

 

0.0918315 

 

0.4612852 

 

50 X 250 

 

0.0905507 

 

0.4524799 

 

100 X 500 

 

0.0911236 

 

0.4481122 

 

200 X 1000 

 

0.0883496 

 

0.4454812 

 

 

Table2. Time independent test: 

Time step 

size (∆𝑡 ) 

 𝐶𝑓 values 

 for  Pr = 0.63,  = 0.1 and Da = 5.0. 

𝑁𝑢 values 

for   Pr = 0.63,  = 0.1 and Da = 5.0. 

 

0.1 

 

0.15866445 

 

0.6614244 

 

0.08 

 

0.15302148 

 

0.6434421 

 

0.05 

 

0.13995002 

 

0.6004548 

 

0.02 

 

0.11203902 

 

0.5090560 

 

0.01 

 

0.09112364 

 

0.4481122 
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Fig. 1. Graphical representation of present problem. 
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(a) 

 

(b) 

 

Fig. 2. Comparison of the velocity and temperature profiles. 
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(3a) 

 

(3b) 

Fig. 3. Time-dependent velocity profile (U) versus time (t) at the point (1, 1.83) for the effect of 

(a) ; & (b) Da. 
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(4a) 

 

(4b) 

Fig. 4. Time-dependent velocity profile (U) versus time (t) at the point (1, 5.82) for the effect of 

(a) ; & (b) Da. 
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(5a) 

 

(5b) 

Fig. 5. Simulated time-independent state velocity profile (U) versus R at X = 1.0 for the effect of 

(a) ; & (b) Da. 
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(6a) 

 

(6b) 

Fig. 6. Simulated time-dependent temperature profile (θ) versus time (t) at the point (1, 1.15) for 

the effect of (a) ; & (b) Da. 
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(7a) 

 

(7b) 

Fig. 7. Time-independent state temperature profile (θ) versus R at X = 1.0 for the effect of (a) ; 

& (b) Da. 
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(8a) 

 

(8b) 

Fig. 8. Average momentum transport coefficient (𝐶𝑓
̅̅ ̅) profile against t for the effect of (a) ; & 

(b) Da. 
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(9a) 

 

(9b) 

Fig. 9. Average heat transport coefficient (𝑁𝑢 ) profile against t for the effect of (a) ; & (b) Da. 
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Fig. 10. Time-independent state contours of velocity (U) and temperature (θ) in 2D coordinate 

system (X, R) with fixed values of Pr = 0.63 and Da = 5 for (a) Third-grade fluid (α1 = α2 = 0.2,
β = 2.5); & (b) Newtonian fluid (α1 = α2 = β = 0 ). 

 


