
   

 

 

 

 

 
 

University of Salford-Manchester 

School of Computing, Science & 

Engineering 

 

 

 

 

 

  

Binaural Sound Source Localization 

Using Machine Learning with Spiking 

Neural Networks Features Extraction  

By 

Hanaa Mohsin Ali Al- Abboodi 

 

Supervised By 

 

                                     Dr Paul Kendrick          Dr Bruno Fazenda 

 
 

A thesis Submitted in partial fulfilment of the requirements for the degree of 

Doctor of Philosophy 

 

                                                   May 2019 



Table of Contents 

Page i of 252 

 

Table of Contents 
LIST OF TABLES .................................................................................................................... v 

LIST OF FIGURES ................................................................................................................ vii 

ACKNOWLEDGMENTS ..................................................................................................... xvi 

AUTHOR PUBLICATIONS ............................................................................................... xvii 

ABSTRACT………………………………………………………………………………..xviii 

LIST OF ABBREVIATIONS ............................................................................................... xix 

CHAPTER 1 INTRODUCTION ....................................................................................... 1 

1.1 Binaural source localisation ............................................................................................................................... 1 

1.2 Review of State of the Art .................................................................................................................................. 3 

1.3 Sound Localization Challenges .......................................................................................................................... 3 

1.4 Research Motivation ........................................................................................................................................... 5 

1.5 The Aims of the Research .................................................................................................................................. 5 

1.6 The Objectives of the Research .......................................................................................................................... 5 

1.7 Research Methodology ....................................................................................................................................... 7 

1.8 Contribution of the Study ................................................................................................................................... 7 

1.9 Thesis Outline ..................................................................................................................................................... 9 

CHAPTER 2 LITERATURE REVIEW ......................................................................... 11 

Chapter Overview ................................................................................................................................................... 11 

2.1 Human Sound Conduction Mechanisms .......................................................................................................... 12 

2.2 Review the Spatial hearing and localization cues ............................................................................................. 13 

2.3 Review of sound source localization methods .................................................................................................. 15 

2.4 Machine learning and neural networks ............................................................................................................. 17 

2.4.1. Spiking Neural Networks (SNNs) ............................................................................................................... 17 

2.4.2. Deep Neural Networks ................................................................................................................................ 23 

2.4.3. Learning Methods in Neural Networks. ...................................................................................................... 24 

2.5. Sound Source Localization and Machine Learning Methods ...................................................................... 26 

2.5.1. Sound source localization and deep neural networks .................................................................................. 28 



Table of Contents 

Page ii of 252 

 

2.5.2. Binaural hearing and Spiking neural networks ........................................................................................... 30 

2.6. State-of-Art Multisource Localization ........................................................................................................ 32 

2.7. Chapter Summary........................................................................................................................................ 34 

CHAPTER 3 BACKGROUND AND MATERIAL ....................................................... 37 

Chapter Overview ................................................................................................................................................... 37 

3.1 Binaural Source localisation ........................................................................................................................ 38 

3.1.1 Binaural hearing and sound source localisation .......................................................................................... 38 

3.1.2 Head related transfer function and inverse problems .................................................................................. 40 

3.2 Spiking Neural Networks (SNNs) ............................................................................................................... 44 

3.2.1 Neurons in spiking neural networks ............................................................................................................ 44 

3.2.2 Leaky integrated and fire spiking neural model .......................................................................................... 46 

3.3 The mathematical description of Deep Neural Networks DNNs ................................................................ 48 

3.4 Backpropagation learning Algorithm .......................................................................................................... 49 

3.5 Support Vector Machine SVM .................................................................................................................... 51 

3.6 Research Databases ..................................................................................................................................... 52 

3.6.1 KEMAR Dummy HRTF Dataset ................................................................................................................ 53 

3.6.2 IRCAM LISTEN HRTFs Dataset ............................................................................................................... 58 

3.6.3 Speech Databases ........................................................................................................................................ 63 

3.7 Chapter Summary........................................................................................................................................ 64 

CHAPTER 4 SINGLE-SOUND SOURCE LOCALIZATION MODEL (SSL) ......... 65 

Chapter Overview ................................................................................................................................................... 65 

4.1 Spiking Neural Networks ................................................................................................................................. 66 

4.1.1 Single-sound source localization model(SSL) ............................................................................................ 66 

4.2 Experiments and results .............................................................................................................................. 70 

4.3 The impact of environmental noises on the performance of SSL................................................................ 82 

4.4 Applying a support vector machine for binaural localization ..................................................................... 84 

4.5 Multisource sound localization based on SNN ........................................................................................... 86 

4.6 Sound source localization using hybrid model from SNN with machine learning methods ....................... 96 

4.6.1 Generate data from IRCAM and KIMAR with white noise input signal .................................................... 97 



Table of Contents 

Page iii of 252 

 

4.6.2 Results and discussion ............................................................................................................................... 100 

4.6.3 Generate data from IRCAM and KIMAR with different speech samples ................................................. 102 

4.7 Chapter Summary...................................................................................................................................... 107 

CHAPTER 5 MULTISOURCE LOCALIZATION MODEL BASED ON DNN 

UNDER CLEANAND NOISY CONDITIONS .................................................................. 109 

Chapter Overview ................................................................................................................................................. 109 

5.1 Multisource Localisation Model ............................................................................................................... 110 

5.2 Mixing process and Data generated ................................................................................................................ 111 

5.3 Detecting the number of sources .................................................................................................................... 113 

5.4 Decreasing the Data Dimensionality .............................................................................................................. 117 

5.5 Multisource localisation by DNN ................................................................................................................... 118 

5.5.1 Model description and parameters selection ............................................................................................. 119 

5.5.2 Learning paradigm ...................................................................................................................................... 49 

5.5.3 Experimental results and discussion.......................................................................................................... 123 

5.6 Test the Multisource sound localization performance in individual elevation angles using DNN and SVM. 142 

5.7 Comparison between machine learning methods and SNN for the      multisource localization. ................... 147 

5.8 Multisource source localization model with multi-conditions noise .............................................................. 150 

5.9 Chapter Conclusion and Discussion ............................................................................................................... 165 

CHAPTER 6 LOCALIZATION WITH NON-INDIVIDUALIZED HRTFS ........... 170 

6.1 The non-individual HRTFs ............................................................................................................................. 171 

6.2 The HRTFs dimensionality adjustment .......................................................................................................... 172 

6.3 Evaluate the single source models with mismatched HRTFs ......................................................................... 174 

6.4 Single sound source localisation based on different machine learning methods with mismatched HRTFs ... 183 

6.5 The multisource localisation models with non-individual HRTFs ................................................................. 186 

6.6 Chapter Discussion ......................................................................................................................................... 194 

CHAPTER 7 CONCLUSIONS AND FUTURE WORKS .......................................... 195 

7.1 Summary and conclusion .......................................................................................................................... 195 

7.2 Suggestions for Future Works ................................................................................................................... 200 

APPENDICES 202 



Table of Contents 

Page iv of 252 

 

Appendix I  Additional Plots from Chapter 4 .................................................................... 203 

Appendix II Additional results from chapter 4 and 5. ...................................................... 205 

REFERENCES…………………………………………………………………………..…216 

 

 

 



List of Tables 

Page v of 252 

 

LIST OF TABLES 

Table 3-1: KEMAR dummy HRTF number of measurements and azimuth increment at each 

elevation. .................................................................................................................................. 54 

Table 3-2: IRCAM LISTEN HRTF database number of measurements and azimuth increment 

at each elevation. ...................................................................................................................... 59 

Table 4-1: The experimental results from applying SNN localization model for different types 

of inputs signal with both KEMAR and IRCAM HRTF databases. ........................................ 75 

Table 4-2: Azimuth and elevation angles estimation accuracy under different lengths of input 

signals. ...................................................................................................................................... 80 

Table 4-3: Azimuth and elevation angles estimation accuracy under different Gamma-tone filter 

bank frequency channels. ......................................................................................................... 81 

Table 4-4: The localization accuracy for SNN model and SVM model for single sound source 

localization................................................................................................................................ 85 

Table 5-1: Estimates of number of sources in diverse types of signal. .................................. 116 

Table 5-2: The number of hidden layers in the deep neural network. .................................... 121 

Table 5-3: Different gamma-tone bands impact on the multisource localization performance.

 ................................................................................................................................................ 123 

Table 5-4: The azimuth estimation Accuracy in each individual elevation level from SVM and 

DNN with IRCAM HRTF data set. ........................................................................................ 143 

Table 5-5: Comparison between DNN and SNN for multisource localization with KEMAR and 

IRCAM HRTF data sets. ........................................................................................................ 148 

Table 5-6: The azimuth and elevation estimation accuracy from DNN and SNN for multisource 

localization with KEMAR and IRCAM HRTF data sets. ...................................................... 149 

Table 5-7: Azimuth and elevation angles estimation accuracy by three localization models 

(DNN, SVM and SNN). ......................................................................................................... 150 

Table 5-8: Training the multisource localization model with clean data and validating the model 

with noisy data over various SNRs separately. ...................................................................... 151 

Table 5-9: Training and validating the multisource localization model on the same noise level 

separately. ............................................................................................................................... 155 

Table 5-10: Training the multisource localization model with All SNRs and validating the 

model with noisy data over various SNRs separately. ........................................................... 156 



List of Tables 

Page vi of 252 

 

Table 5-11: Training the multisource localization model with directional noise of all SNRs and 

validating the model with noisy data over various SNRs separately. .................................... 161 

Table 6-1: The IRCAM and adjusted KEMAR HRTF datasets. ............................................ 173 

Table 6-2: The azimuth and elevation estimation accuracy by applying SNN, SVM and random 

forest with non-individual HRTFs. ......................................................................................... 185 

 

 



List of Figures 

Page vii of 252 

 

LIST OF FIGURES 

Figure 1.1: Research Methodology. ………………………….……………………………. …7 

Figure 2.1: Human ear’s overall structure explains the outer, middle, and inner ear (Maroonroge 

et al. 2000). ............................................................................................................................... 13 

Figure 2.2: Cues for sound localization (Grothe et al. 2010) ................................................... 15 

Figure 2.3: Comparison among the three generations of neural networks, type of input, output 

and the computation types of activation functions for each type. ............................................ 20 

Figure 2.4: Spiking neuron models .......................................................................................... 22 

Figure 2.5: Deep neural network structure ............................................................................... 24 

Figure 2.6: Flow chart of the proposed GCA (Sun et al. 2018) ............................................... 28 

Figure 2.7: Coincidence neurons of Jeffress Model ................................................................. 30 

Figure 2.8: Short heading of above images, ............................................................................. 32 

Figure 2.9: The multisource localization model presented by (Jia et al. 2017) ........................ 34 

Figure 3.1: Interaural time differences for the arrival of the signal at both ears. ..................... 39 

Figure 3.2: Pole and zero plot of transfer function and the z-plane representation. ................. 43 

Figure 3.3 The temporal coding principle for encoding and decoding real vectors in spike trains 

(Paugam-Moisy and Bohte 2012). ............................................................................................ 44 

Figure 3.4: Firing process ......................................................................................................... 45 

Figure 3.5: The integrate-and-fire neuron schematic design .................................................... 47 

Figure 3.6: Impulse responses for the left and right of KEMAR dummy ears in the time domain 

with azimuth=0˚ and elevation=0˚............................................................................................ 55 

Figure 3.7: Head-related transfer function for the left and right KEMAR dummy ears in the time 

domain. ..................................................................................................................................... 56 

Figure 3.8: KEMAR normalised impulse responses in the frequency domain. ....................... 57 

Figure 3.9: Impulse response of KEMAR database in the horizontal plane when elevation = 0 

degree........................................................................................................................................ 58 

Figure 3.10: Head related impulse responses for IRCAM subject (left and right ears) in the time 

domain. ..................................................................................................................................... 60 

Figure 3.11: Plots of the pair of impulse responses from particular directions of IRCAM selected 

subject. ...................................................................................................................................... 61 



List of Figures 

Page viii of 252 

 

Figure 3.12: Impulse responses in the time and frequency domains from left ear of IRCAM, 

azimuth = 270 degree and elevation = -45 degree. ................................................................... 62 

Figure 3.13: Impulse responses in the time and frequency domains from right ear of IRCAM, 

azimuth = 270 degree and elevation = -45 degree. ................................................................... 62 

Figure 3.14: Image illustrates the impulse response of IRCAM database in the horizontal plane 

when elevation = 0 degree. ....................................................................................................... 63 

Figure 4.1: Sound source localisation model (Goodman & Brette model) .............................. 67 

Figure 4.2: Gaussian and Uniform white noise input signal convolved with IRCAM HRTFs.73 

Figure 4.3: Sinewave modulated white noise signal input signal convolved with KEMAR 

HRTFs. ..................................................................................................................................... 73 

Figure 4.4: Sinewave modulated white noise input signal convolved with IRCAM HRTFs. . 74 

Figure 4.5: Comparison between GWN, UWN, SMN and speech types of input signal 

effectiveness on the Azimuth and elevation estimation accuracy. ........................................... 75 

Figure 4.6: Sine wave of 63 Hz embedded with KEMAR and IRCAM HRTF data sets. ....... 76 

Figure 4.7: Sinewave of octave frequency embedded with KEMAR and IRCAM HRTF data 

sets. ........................................................................................................................................... 77 

Figure 4.8: Azimuth and elevation angles estimation Accuracy with pure tones with single 

frequency for IRCAM HRTF data sets explains the model performance in different range of 

frequency. ................................................................................................................................. 78 

Figure 4.9: Azimuth and elevation angles estimation Accuracy with pure tones with single 

frequency for KEMAR HRTF data sets explains the model performance in different range of 

frequency. ................................................................................................................................. 78 

Figure 4.10: Azimuth and elevation angles estimation Accuracy with pure tones of octave 

frequency for IRCAM HRTF data sets..................................................................................... 79 

Figure 4.11: Azimuth and elevation angles estimation Accuracy with pure tones of octave 

frequency for KEMAR HRTF data sets. .................................................................................. 79 

Figure 4.12: The impact of input signal duration on localization model performance. ........... 81 

Figure 4.13: The impact of number of Gamma-tone filter bank frequency bands on localization 

model performance. .................................................................................................................. 82 

Figure 4.14: Sound Source Localization Performance for different SNRs values. .................. 83 

Figure 4.15: Comparison between SNN and SVM for binaural sound source localization. .... 86 



List of Figures 

Page ix of 252 

 

Figure 4.16: The mixing process for two different speech signals from two locations ........... 87 

Figure 4.17: The confusion matrix plot for the source one azimuth angles predicted by 

multisource localization based SNN model with IRCAM and validation speakers. ................ 88 

Figure 4.18: The confusion matrix plot for the source two azimuth angles predicted by 

multisource localization based SNN model with IRCAM and validation speakers. ................ 89 

Figure 4.19: The source one azimuth angle errors from applying multisource localization based 

SNN on IRCAM with validation speakers. .............................................................................. 90 

Figure 4.20: The source two azimuth angle errors from applying multisource localization based 

SNN on IRCAM with validation speakers. .............................................................................. 91 

Figure 4.21: The source one azimuth angle errors from applying multisource localization based 

SNN on KEMAR dummy head with validation speakers. ....................................................... 92 

Figure 4.22: The source two azimuth angle errors from applying multisource localization based 

SNN on KEMAR dummy head with validation speakers. ....................................................... 93 

Figure 4.23: Bell shape explains the angle error frequencies for source one and source two from 

SNN with IRCAM HRTF and validation speakers .................................................................. 94 

Figure 4.24: Bell shape explains the angle error frequencies for source one and source two 

predicted by SNN with KEMAR HRTF. ................................................................................. 95 

Figure 4.25: Single sound source localization by using integrated model from SNN as pre-

processing method and machine learning algorithms............................................................... 97 

Figure 4.26: Example of the outputs points that used to generate the new data set which represent 

firing rate of coincidence neurons in the spiking neural network that was given input with data 

from the IRCAM HRTF database. ........................................................................................... 98 

Figure 4.27: Example of the outputs points that used to generate the new data set which represent 

firing rate of coincidence neurons in the spiking neural network that was given input with data 

from the KEMAR HRTF database. .......................................................................................... 99 

Figure 4.28: The localization accuracy for machine learning methods trained using only 187 

output points that generated from trained the SNN with different instants of white noise 

convolved IRCAM HRTF. ..................................................................................................... 100 

Figure 4.29: The localization accuracy for machine learning methods trained using only 710 

output points that generated from trained the SNN with different instants of white noise 

convolved KEMAR HRTF. .................................................................................................... 101 



List of Figures 

Page x of 252 

 

Figure 4.30: The localization accuracy for machine learning methods trained using data 

generated from each location twenty times represent different instants of white noise convolved 

KEMAR HRTF. ..................................................................................................................... 102 

Figure 4.31: The localization accuracy for machine learning methods with big-generated-data 

with IRCAM HRTFs convolved with speech samples. .......................................................... 103 

Figure 4.32: The localization accuracy for machine learning methods with big-generated-data 

with KEMAR HRTFs convolved with speech samples ......................................................... 104 

Figure 4.33: Single source localization model based on SVM performance with IRCAM HRTF 

data set and one speaker. ........................................................................................................ 105 

Figure 4.34: Single source localization model based on SVM performance with KEMAR HRTF 

data set and one speaker. ........................................................................................................ 106 

Figure 4.35: Single source localization model based on SVM performance with KEMAR HRTF 

data set and 10 speakers.......................................................................................................... 107 

Figure 5.1: Stages of the multisource localization model, pre-processing step and prediction 

steps that include multi-classes multi-label classification using a DNN. ............................... 111 

Figure 5.2: The mixing process for two different speech signals from two locations with added 

white noise after the convolution process to mimic the noisy environment. ......................... 113 

Figure 5.3: Spiking neural networks output points with IRCAM HRTF data set. Example of two 

types of spiking neural network (SNN) output vector that contains the firing rate for each 

individual neuron in the coincidence detection layers............................................................ 114 

Figure 5.4: Spiking neural networks output points with KEMAR HRTF data set. Example of 

two types of spiking neural network (SNN) output vector that contains the firing rate for each 

individual neuron in the coincidence detection layers............................................................ 115 

Figure 5.5: The PCA model used to visualize the correlation between the one source and two 

sources principle components. ................................................................................................ 117 

Figure 5.6: Gammatone frequency bands reduction process. ................................................. 118 

Figure 5.7: The deep neural network structure of the multisource sound localization model.

 ................................................................................................................................................ 121 

Figure 5.8: Multisource sound localization model training and validation stage. .................. 122 

Figure 5.9: Angle error frequencies for source one and two with band=1. ............................ 124 

Figure 5.10: Angle error frequencies for source one and two with band=2. .......................... 125 



List of Figures 

Page xi of 252 

 

Figure 5.11: Angle error frequencies for source one and two with band=4. .......................... 126 

Figure 5.12: The confusion matrix plot for the source one azimuth angles predicted by 

multisource localisation model on IRCAM HRTFs and validation speakers. ....................... 127 

Figure 5.13: The confusion matrix plot for the source two azimuth angles predicted by 

multisource localisation model on IRCAM HRTFs and validation speakers. ....................... 128 

Figure 5.14: The sources one azimuth angle errors from applying multisource localisation model 

on IRCAM HRTFs with validation speakers. ........................................................................ 129 

Figure 5.15: The sources two azimuth angle errors from applying multisource localisation 

model on IRCAM HRTFs with validation speakers. ............................................................. 130 

Figure 5.16: The confusion matrix plot for the source one elevation angles predicted by 

multisource localisation model on IRCAM HRTFs and validation speakers. ....................... 131 

Figure 5.17: The confusion matrix plot for the source two elevation angles predicted by 

multisource localisation model on IRCAM HRTFs and validation speakers. ....................... 132 

Figure 5.18: Bell shape explains the angle error frequencies for source one and source 2 

predicted by DNN with IRCAM HRTF and validation speakers. .......................................... 133 

Figure 5.19: The confusion matrix plot for the source one azimuth angles predicted by 

multisource localisation model with KEMAR HRTFs and validation speakers. ................... 135 

Figure 5.20: The confusion matrix plot for the source two azimuth angles predicted by 

multisource localisation model with KEMAR HRTFs and validation speakers. ................... 136 

Figure 5.21: The source one azimuth angle errors from applying multisource localisation model 

on KEMAR dummy head with validation speakers. .............................................................. 137 

Figure 5.22: The source two azimuth angle errors from applying multisource localisation model 

on KEMAR dummy head with validation speakers. .............................................................. 138 

Figure 5.23: The confusion matrix plot for the source one elevation angles predicted by 

multisource localisation model with KEMAR HRTFs and validation speakers. ................... 139 

Figure 5.24: The confusion matrix plot for the source two elevation angles predicted by 

multisource localisation model with KEMAR HRTFs and validation speakers. ................... 140 

Figure 5.25: Bell shape explains the angle error frequencies for source on and source two 

predicted by DNN with KEMAR HRTF and validation speakers. ........................................ 141 

Figure 5.26: Bell shape showing the angle error frequencies for source one and source two 

predicted by SNN with KEMAR HRTF. ............................................................................... 144 



List of Figures 

Page xii of 252 

 

Figure 5.27: Bell shape showing the angle error frequencies for source one and source two 

predicted by SNN with KEMAR HRTF. ............................................................................... 145 

Figure 5.28: Bell shape showing the angle error frequencies for source one and source two 

predicted by SNN with KEMAR HRTF. ............................................................................... 146 

Figure 5.29: Bell shape showing the angle error frequencies for source one and source two 

predicted by SNN with KEMAR HRTF. ............................................................................... 147 

Figure 5.30: Angle error frequencies for source one and two predicted by DNN trained with 

clean data and validated in noisy condition with SNR = 10dB. ............................................. 153 

Figure 5.31: Angle error frequencies for source one and two predicted by DNN trained with 

clean data and validated in noisy condition with SNR = 0dB. ............................................... 154 

Figure 5.32: Angle error frequencies for source one and two predicted by DNN trained with 

clean data and validated in noisy condition with SNR = -10dB. ............................................ 154 

Figure 5.33: Angle error frequencies for source one and two predicted by DNN trained with 

noisy signal data and validated in noisy condition with SNR = 10dB. .................................. 157 

Figure 5.34: Angle error frequencies for source one and two predicted by DNN trained with 

noisy signal data and validated in noisy condition with SNR = 0dB. .................................... 158 

Figure 5.35: Angle error frequencies for source one and two predicted by DNN trained ..... 159 

Figure 5.36: Angle error frequencies for source one and two predicted by DNN trained with 

noisy signals (directional noise) and validated in noisy condition with SNR = 10dB. .......... 162 

Figure 5.37: Angle error frequencies for source one and two predicted by DNN trained with 

noisy signals (directional noise) and validated in noisy condition with SNR = 0dB. ............ 163 

Figure 5.38: Angle error frequencies for source one and two predicted by DNN trained with 

noisy signals (directional noise) and validated in noisy condition with SNR = -10dB. ......... 164 

Figure 6.1: SNN performance in estimating azimuth angles with mismatched HRTFs when 

IRCAM in training and testing with KEMAR. ...................................................................... 174 

Figure 6.2: Estimation angle error of azimuth angles by applying SNN with mismatched HRTFs 

when IRCAM in training and testing with KEMAR. ............................................................. 175 

Figure 6.3: SNN performance in estimating elevation angles with mismatched HRTFs when 

IRCAM in training and testing with KEMAR. ...................................................................... 176 

Figure 6.4: Estimation angle error of elevation angles by applying SNN with mismatched 

HRTFs when IRCAM in training and testing with KEMAR. ................................................ 176 



List of Figures 

Page xiii of 252 

 

Figure 6.5: SNN performance in estimating with azimuth angle from speech signal convolved 

with IRCAM in training and testing with KEMAR. .............................................................. 177 

Figure 0.6: Estimation angle error of azimuth by SNN trained with speech sample convolved 

with IRCAM and tested with different speech samples convolved with KEMAR. ............... 178 

Figure 6.7: SNN performance in estimating elevation angles with mismatched HRTFs when it 

trained with speech sample convolved with IRCAM and tested with KEMAR. ................... 179 

Figure 6.8: Estimation angle error of elevation by applying SNN with speech sample convolved 

with IRCAM in training and testing with KEMAR. .............................................................. 180 

Figure 6.9: SNN performance in predicting azimuth angle when speech samples and KEMAR 

in training and tested with IRCAM. ....................................................................................... 181 

Figure 6.10: Estimation angle error of azimuth resulted from SNN with mismatched HRTFs 

when KEMAR in training and tested with IRCAM. .............................................................. 181 

Figure 6.11: The SNN performance in predicting the elevation angles with speech samples and 

KEMAR in training and tested with IRCAM. ........................................................................ 182 

Figure 6.12: Estimation angle error of elevation angles by applying SNN with speech samples 

and KEMAR in training and tested with IRCAM. ................................................................. 183 

Figure 6.13: SVM performance in predicting azimuth angles when IRCAM in training and 

tested with KEMAR. .............................................................................................................. 184 

Figure 6.14: The angle error of elevation from SVM trained with IRCAM and tested with 

KEMAR. ................................................................................................................................. 185 

Figure 6.15: The confusion matrix plot for the source one azimuth angles predicted by 

multisource localisation model with mismatched HRTFs (IRCAM in training and KEMAR in 

testing). ................................................................................................................................... 187 

Figure 6.16: The confusion matrix plot for the source two azimuth angles predicted by 

multisource localisation model with mismatched HRTFs (IRCAM in training and KEMAR in 

testing). ................................................................................................................................... 188 

Figure 6.17: The sources one azimuth angle errors from applying multisource localisation model 

with mismatched HRTFs (IRCAM in training and KEMAR in testing). ............................... 189 

Figure 6.18: The sources two azimuth angle errors from applying multisource localisation 

model with mismatched HRTFs (IRCAM in training and KEMAR in testing). .................... 190 



List of Figures 

Page xiv of 252 

 

Figure 6.19: source one and source two angles errors frequency from applying multisource 

localisation model based with nonindividual HRTFs ............................................................ 191 

Figure 6.20: The ITD for KEMAR dummy head. .................................................................. 192 

Figure 6.21: The ITD for IRCAM subject. ............................................................................. 193 

Figure 6.22: Scaled ITD for IRCAM to match the ITD of KEMAR. .................................... 194 

Figure I.1: KNN machine learning number of neighbours and its effect on localization accuracy 

using 187 different instances of white noise (500 ms duration). ............................................ 203 

Figure I.2: KNN machine learning number of neighbours and its effect on localization accuracy 

using 187* 20 different instances of white noise (500ms duration). ...................................... 203 

Figure I.3: Random Forest ML number of estimators and its effect on localization accuracy 

using data generated from 187 different instances of white noise (500ms duration). ............ 204 

Figure I.4: Random Forest ML number of estimators and its effect on localization accuracy 

using 187* 20 different instances of white noise (500ms duration). ...................................... 204 

Figure II.1: The confusion matrix plot for the source one azimuth angles predicted by 

multisource localisation based DNN model with data generated at elevation 0˚ of IRCAM 

HRTFs with validation speakers............................................................................................. 205 

Figure II.2: The confusion matrix plot for the source two azimuth angles predicted by 

multisource localisation based DNN model with data generated at elevation 0˚ of IRCAM 

HRTFs with validation speakers............................................................................................. 206 

Figure II.3: The confusion matrix plot for the source one azimuth angles predicted by 

multisource localisation based DNN model with data generated at elevation -15˚ of IRCAM 

HRTFs with validation speakers............................................................................................. 207 

Figure II.4: The confusion matrix plot for the source two azimuth angles predicted by 

multisource localisation based DNN model with data generated at elevation -15˚ of IRCAM 

HRTFs with validation speakers............................................................................................. 208 

Figure II.5: The confusion matrix plot for the source one azimuth angles predicted by 

multisource localisation based DNN model with data generated at elevation -30˚ of IRCAM 

HRTFs with validation speakers............................................................................................. 209 

Figure II.6: The confusion matrix plot for the source two azimuth angles predicted by 

multisource localisation based DNN model with data generated at elevation -30˚ of IRCAM 

HRTFs with validation speakers............................................................................................. 210 



List of Figures 

Page xv of 252 

 

Figure II.7: The confusion matrix plot for the source one azimuth angles predicted by 

multisource localisation based DNN model with data generated at elevation -45˚ of IRCAM 

HRTFs with validation speakers............................................................................................. 211 

Figure II.8: The confusion matrix plot for the source two azimuth angles predicted by 

multisource localisation based DNN model with data generated at elevation -45˚ of IRCAM 

HRTFs with validation speakers............................................................................................. 212 

Figure II.9: Angle error frequencies for source one and two predicted by DNN trained and 

validate in noisy condition at SNR = 10dB. ........................................................................... 213 

Figure II.10: Angle error frequencies for source one and two predicted by DNN trained and 

validate in noisy condition at SNR = 0dB. ............................................................................. 214 

Figure II.11: Angle error frequencies for source one and two predicted by DNN trained and 

validate in noisy condition at SNR = -10dB. .......................................................................... 215 

 



Acknowledgments 

Page xvi of 252 

 

                    ACKNOWLEDGMENTS 

All Praise is due to Allah Lord of the Universe, the most merciful. 

Firstly, I would like to express my gratitude to the Government of the Republic of Iraq including 

the Ministry of Higher Education and Scientific Research and The Iraqi Cultural Attaché-

London for their help and support throughout my studies in the United Kingdom. 

Immeasurable gratitude goes toward my supervisors, Dr Paul Kendrick and Dr Bruno 

Fazenda, for their continuous support, unforgettable patience and motivation, which made this 

work possible. It was an honour to have them as my supervisors. 

Special thanks must also go to all my colleagues at the acoustics research centre. The last four 

years as a PhD student would certainly have been more difficult without you all. But special 

thanks should go to Will Bailey, Manish Varma and James Massaglia for their advice and 

guidance. I will never forget their help and support along the PhD trip. 

 I really should thank my dearest Dad and Mum for their big love and support, my beloved 

husband Alaa, my children Hussein and Zainalabdeen for all unlimited love and support. 

Finally, a special thank for my Brothers Ali and Hussain my three sisters Rajaa, Khamaal and 

Nidal, and my all the encouragement and supports through the time of this research. I dedicate 

this work to my late father, who has always wished for me to pursue a PhD, and I hope it makes 

him proud. Without their love, encouragement, and prayers I would certainly not be in the 

position I am today, and for that I am eternally grateful. 

 

 



Author Publications 

Page xvii of 252 

 

AUTHOR PUBLICATIONS 

- Al-Abboodi, H.M, Li, F.F., 2016 Deep belief spiking neural network for Sound 

sources localization with HRTFs. Salford Postgraduate Annual Research Conference 

(SPARC), University of Salford. 

 

- Al-Abboodi, H.M, Kendrick, P & Fazenda, B, 2018Automatic sound source 

localization in hearing aids. Salford Postgraduate Annual Research Conference 

(SPARC), University of Salford. 

 

 

 

 

  



Abstract 

Page xviii of 252 

 

ABSTRACT 

Human and animal binaural hearing systems are able take advantage of a variety of cues to 

localise sound-sources in a 3D space using only two sensors. This work presents a bionic system 

that utilises aspects of binaural hearing in an automated source localisation task. A head and 

torso emulator (KEMAR) are used to acquire binaural signals and a spiking neural network is 

used to compare signals from the two sensors.  

The firing rates of coincidence-neurons in the spiking neural network model provide 

information as to the location of a sound source. Previous methods have used a winner-takes-

all approach, where the location of the coincidence-neuron with the maximum firing rate is used 

to indicate the likely azimuth and elevation. This was shown to be accurate for single sources, 

but when multiple sources are present the accuracy significantly reduces.  

To improve the robustness of the methodology, an alternative approach is developed where the 

spiking neural network is used as a feature pre-processor. The firing rates of all coincidence-

neurons are then used as inputs to a Machine Learning model which is trained to predict source 

location for both single and multiple sources.  

A novel approach that applied spiking neural networks as a binaural feature extraction method 

was presented. These features were processed using deep neural networks to localize multi-

source sound signals that were emitted from different locations. Results show that the proposed 

bionic binaural emulator can accurately localise sources including multiple and complex 

sources to 99% correctly predicted angles from single-source localization model and 91% from 

multi-source localization model. 

The impact of background noise on localisation performance has also been investigated and 

shows significant degradation of performance. The multisource localization model was trained 

with multi-condition background noise at SNRs of 10dB, 0dB, and -10dB and tested at 

controlled SNRs. The findings demonstrate an enhancement in the model performance in 

compared with noise free training data. 
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CHAPTER 1  

INTRODUCTION 

1.1 Binaural source localisation 

Binaural source localisation has attracted increasing attention in recent years over a broad range 

of applications (Talagala et al. 2014, Andéol et al.  2013). The auditory systems of humans and 

many other animals are capable of localising sound sources to survive in environments relying 

on their sense organs, i.e. ears and the information processing power of the brain (Talagala et 

al. 2014, Jindong et al. 2008). Ears are highly sophisticated: through their complex directivity 

patterns, information about sources from various locations is encoded in the signals from the 

two ears. This feature enables 3D localisation from only two channels.  Three-dimensional 

source localisation has many critical applications. Arguably, advanced 3D spatial audio would 

need no more and no less information than the binaural signals in a listener’s position. This can 

be viewed as a sufficient and necessary condition for human perception of 3D sounds 

(Ziegelwanger et al. 2015a, So et al. 2006). For robotics and security systems, sound source 

localisation can assist in sensing of specific events, taking advantage of the fact that the sources 

do not require straight line of sight, and sensing is not restricted to operational camera angles. 

For example, a domestic robot might be able to hear what is happening in the next room by 

perceiving the sound transmitted through the wall, whereas cameras do not have such an ability 

(Murray et al. 2004, Valin et al. 2003).  

        Source localisation is also an important and sometimes integrated step for source 

separation and signal cleaning (Taddese 2006).  Many efforts to localise sources accurately are 

based on the use of large multi-channel arrays, e.g. (Wang and Kaveh 1985, Pavlidi et al. 2012). 

These Methods have many limitations. The sensitivity and accuracy are dependent on the size 

of the arrays and the number of microphones used. Logistical constraints can prohibit the use 

of large arrays in certain situations, e.g. if a home care robot is to adopt a 1-metre circle array, 

it would make it difficult for the robot to deliver its expected function. Calibration and channel 

matching for large arrays are particularly burdensome tasks. Multichannel signal processing is 

also not straightforward.  Inspired by the binaural hearing of humans and animals, the use of a 

dummy head or two microphones with fine-tuned directivities and advanced signal processing 
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techniques to achieve source localisation has been proposed by some authors, who have all 

achieved promising results (Woodruff and Wang 2012).  

Spiking neural networks, which deploy third-generation neurone models, behave similarly to 

real neurones in the brain and been used by neuroscientists to study and emulate lower level 

brain functions(Baladhandapani and Nachimuthu, 2015). These models have been particularly 

successful in the study of binaural source localisation of animal brains ( Goodman and Brette 

2011). Spiking neurone models have a built-in ability to handle time delays, which is a key 

feature of third generation models compared with previous generations (Yu et al. 2016, Diaz et 

al. 2016). This feature is essential in sound localisation prediction, as much of the information 

is encoded in the interaural time difference and interaural phase shifts of different frequency 

components from a given incidence angle. 

      This work attempts to explore the suitability of the spiking neural network model as signal 

processing engine to resolve source locations from binaural signals. The experiments result of 

this model appeared high performance for SNN model in analysing the binaural information 

and detecting the sound source with a variety range of sound signals (speech, noise and tones). 

However, the model showed a weak performance to localize two sound sources and separate 

between them. Deep neural network was applied to manipulate the SNN frequency-timing 

outputs features. This novel combination from two neural learning levels provide an important 

idea to solve multisource localization problem.   

     A training dataset is generated. The HRTF datasets, which have different azimuth and 

elevation angles, were convolved with different instances of speech sample (500 ms duration). 

The response of a spiking neural network (embedded with the same HRTF dataset) to each of 

these white speech bursts is analysed and the firing rate of each coincidence-neuron calculated. 

The generated data from different spiking output points was used an input feature to a deep 

neural network. This network was trained to localise multiple sources simultaneously. 

      Our robustness Localization model benefit from the powerful computation features of two 

advanced machine learning networks; spiking neural networks and deep neural networks. This 

integration presents as a multi-dimensional   processing unit start from processing the binaural 

inputs by employing the temporal features of spiking neural networks to generate millions of 
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output points that represent the firing rate of coincidence detection of spiking neurons. 

Therefore, spiking neurons firing rate that included all the spatial information of input sound 

will be the raw input for novel structure of deep neural networks. Then, the deep neural model 

will have trained for learning from recurrence occurrences to detect the patterns similarity in its 

raw inputs features to analyse the binaural information in it and separate and predict its 

compounds. The model is giving a broadly chance to investigate the correspondence between 

the spiking neural model as unsupervised method and the deep learning of deep neural network 

as supervised algorithm. The solidity of this intelligent combination summarizes by its 

effectiveness in solve all the challenges concern with multisource sound localization. 

1.2 Review of State of the Art 

Research studies in sound source localization have been carried out for more than five decades, 

with steady interest in a variety of methodologies (Knapp & Carter, 1976, Ward et al., 1998). 

The major motivation of such research was to investigate the human hearing mechanisms and 

to try to mimic the human ability to localize different sound sources by using only two sensors, 

the ears ( Goodman and Britte 2010, May et al. 2011, Roman & Wang 2008). A number of 

techniques achieve high localisation accuracy in the presence of environmental noise using only 

two sensors( May et al.2011, Roman & Wang 2008). The main development in binaural sound 

source localization is relatedwith the significant development of information technology and 

computing power and, in particular, machine learning systems applied to signal processing and 

localization. One of the most significant research studies in single sound source localization has 

combined binaural hearing and spiking neural networks to analyse a binaural signal and  identify 

its location (Goodman and Britte 2011). Furthermore, advent of machine learning methods 

(Chen and Ser 2009), neural networks (Sun et al. 2018) and deep neural networks (Yalta and 

Ogata 2017) have been applied to solve sound source localization challenges. 

1.3 Sound Localization Challenges 

Despite the increasing research into spatial hearing and sound source localization, there are 

many limitations and challenges in the understanding of the neural representation of the auditory 

processing of mammalian brains. In spatial hearing, developing a realistic model of the human 

auditory system’s source localisation is a significant achievement. One of its features is the 

ability to specify the dimensions and characteristics of any bounded space (e.g. room) by using 
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acoustical cues. Sound source localization can contribute to the understanding of the cocktail 

party effect, whereby a listener is able to distinguish between voices in a crowded listening 

space (Grothe et al. 2010). Generally, the more considerable challenges in sound localization 

fields can be classified into three main categories:  

1. Two sensors for hearing: Various methods have been applied to localize sound sources 

based on correlation analysis, beamforming, and signal subspace techniques, where sensor 

arrays are capable of source localisation in free space (Knapp and Carter 1976, Ward et al. 

1998, Valin et al. , 2003). The challenge, inspired by the binaural hearing of human and 

animals, is to build a more realistic model that emulates human sound source localization 

by using only two sensors (ears). Most of these methods achieved an important level of 

accurecy in predicting one sound source from binaural signal. A greater challenge is to 

carry out accurate multisource localization by using only binaural information. 

2. Non-indivituality (HRTFs Mismatch): this refers to the variation between HRTFs that are 

measured under different conditions and with different subjects. HRTFs play a considerable 

role in sound source localization tasks, and their characteristics are highly individual and 

related to the geometry of the head, pinna, and torso (Parseihian and Katz 2012). Non-

individuality can increase the localization error because when the actual HRTF do not 

matched the those used to train the system (Wenzel et al. 1993, MENDONÇA et al. 2014). 

Spatial sound applications have broadly depended on non-individual HRTFs. Therefore, 

the challenge here is to find generic model that can work with multiple HRTF data sets  

3. Noisy environments: One of basic challenges related to sound source localization is any 

undesirable change in signal-to-noise ratio due to environmental background noise. This 

kind of variation could have a significant effect on localization model performance and lead 

to a decrease in accuracy. Environmental noise is one of the main challenges in spatial 

hearing and sound source localization especially when dealing with complex sound signals 

(e.g. multiple talkers). Increased background noise is detrimental to signal detection and 

recognition (Recio-Spinoso and Cooper 2013). Furthermore, many questions have been 

raised to describe the relationship between the cochlea and noisy signals (Recio-Spinoso et 

al. 2009); cochlear processing depends on the response of the basilar membrane, which 

handles noisy signals in ways that are still not clear. The effect of background noise on 
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neuronal coding of the interaural level difference ILD and on the sound source localization 

performances is further discussed by (Mokri et al. 2015). 

1.4 Research Motivation 

Sound source localization using only two ears brings many challenges. One challenge is 

(cocktail party) which refer to complex situation when sound signals such as speech from 

different speakers in various positions at the same time (Macpherson and Middlebrooks 2002).  

From the human standpoint, we find it difficult when there are multiple sources to locate them 

(Drullman and Bronkhorst 2000). Moreover, the challenge of separation of sources with two 

sensors, that linear separation is limited by number of sensors and sources (Shoko et al. 2007). 

Another key issue is environmental noise. In this work a multisource sound localization model 

is developed using the signals captured from the two microphones on a head and torso simulator 

as inputs. The performance of the model is investigated with diverse types of sound signals and 

HRTFs, and in various background noise conditions. 

1.5 The Aims of the Research 

The main aim of this study is developing an automatic localization model for multisource 

localization.  In other words, the aim is to investigate the capabilities of the integrated Spiking 

neural networks SNN with Deep The main aim of this study is developing an automatic 

localization model for multisource localization.  In other words, the aim is to investigate the 

capabilities of the integrated Spiking neural networks SNN with Deep neural network DNN in 

solving the multisource localization challenges. “Can SNN be effectively used as a features 

extraction method and the DNN as multiclass classier to processing the binaural signals in order 

to estimate the directions of two sound signals that emitted from two different locations at the 

same time?” is the research question.  

1.6 The Objectives of the Research  

There are many limitations and challenges related to simulating abiological neural network and 

emulating its ability in executing a various of synchronous functions in an important level of 

accuracy. To address this challenge, a spiking neural network is developed with the following 

objectives: 
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• Perform reviewing for the related works and background study. 

• Generate and prepare the appropriate sets of data to carry out the experimental study 

of the proposed localization models in this thesis. 

• Explore models that emulate behaviour of both ears and brain to localisesound 

emitted from multiple sources with no prior knowledge of the scene. 

• Investigate the localisation accuracy of the model with a range of diverse types of 

sound signals (speech, white noise, tones, tone modulated white noise). 

• Test the impact of noise on localisation performance. 

• Examine the importance of different binaural cues (interaural time differences 

(ITD), interaural level differences (ILD) and spectral cues) on localization 

performance  

• Compare the suitable of spiking neural networks and traditional neural networks for 

binaural sound localisation.  

• Improve the localization model by applying a deep learning mechanism with spiking 

neural networks as a method for features extraction to construct a more realistic 

neural model, with the potential for addressing known issues in spatial hearing and 

sound perception for robotic sound localisation and engineering applications. 
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1.7 Research Methodology 

The main steps of the methodology are shown in Figure 1.1. 

 

Figure 1.1: Research Methodology. 

1.8 Contribution of the Study 

The main contribution of this study is a robust approach to multisource localisation from 

binaural data. Previous methodologies have performed accurate source localisation using 

binarual data for single sources, the main contibution of this work is the development of a 
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binarual multiple source localisation method. This has been done by implementing a 

combination embedding HRTF filters as binaural information filters in a spiking neural 

networks SNN. The spiking neural network works as an unsupervised algorithm to analyse the 

spatiotemporal information associated with binaural input signals. Deep neural networks are 

then taught with supervision to detect patterns in SNN firing rates. The model was investigated 

using two distinct HRTF data sets (KEMAR HRTFs, IRCAM Listen HRTFs), and in the 

presence of background noise of varying SNR. 

1.  Single sound source localization model from earlier work has been replicated and 

motivated to examine the localization model behaviour with HRTFs of KEMAR 

dummy head that simulated human head and torso. Then all the outcomes from applying 

HRTF of KEMAR were compared with the original HRTF data set (IRCAM) of the 

replicated model which represents a human subject. Each one of these data has special 

impact on the localization model performance due to the differences in the anatomical 

parameters (head size, ear shape and torso). Fundamentally, both HRTFs data sets have 

unique dimensionality characteristic that reinforce the localization model testing by 

providing a wide range of azimuth and elevation angles. 

2. The localization performance with real speech samples has been investigated with a 

variety of sound durations to investigate the sound signal time duration on localization 

performance. In contrast, the model is examined with other sound signals forms as likes 

Uniform white noise, Gaussian white noise and sine wave modulated white noise for 

evaluation and comparison purposes. 

3.  Single frequency and octave frequency are investigated accurately to evaluate the 

localisation reliability in different frequency ranges. 

4.  The model examines the sound with a various signal to noise ratios of active 

background noise. The experiments involved generate white noise signal in different 

SNR level and then add them to the binaural signal to simulate the real-time noise 

environments. 

5. A novel method that combines HRTF data with spiking neural networks and deep 

neural networks is presented to carry out multisource localization. this novel idea based 

on applying the spiking neural networks as a pre-processing for features extraction from 
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binaural data to generate different firing rate outputs. The firing rates were used to train, 

test and validate the deep neural networks. 

 

1.9 Thesis Outline 

The thesis is organised into ten chapters. A brief description of each chapter is given below:  

Chapter 2: Literature Review        

This chapter starts with a description of the process of human sound source localization. It then 

presents a review of the literature around binaural sound source localization. This includes a 

review of different methods in the fields of sound source localization and binaural hearing. A 

critical evaluation of current techniques and the state of the art of these approaches are 

presented. Furthermore, approaches that can enhance the performance of localization models to 

solve multisource sound signal localization are presented. This will include any work on 

multisource localisation carried out by extracting features from binaural cues (as seen in the 

next chapter). 

Chapter 3: Background and Theory  

This chapter describes the fundamental concepts of binaural hearing and Head-related transfer 

functions. Machine learning algorithms relevant to this research are explained in this chapter, 

including Spiking neural networks and deep neural networks.  Finally, the HRTF and speech 

databases used in this study are described. 

Chapter 4: Single Sound Source Localization model (SSL)   

This chapter is a presentation of the single sound source localisation model (SSL). The model 

structure, the shape of inputs and the pre-processing are explained. Gammatone filter banks and 

the neural transformations that form the spike train – the spiking neuron model input -output 

are explained. All experiments and test outcomes of the single sound source model are displayed 

in this chapter. Various types of input sound signals (Gaussian white noise, Uniform white 

noise, sine wave modulated white noise and real speech samples) are demonstrated in this 
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chapter. Single and octave frequency inputs are tested, followed by an experiment to examine 

the effect of different SNRs on the performance of the model.      

Chapter 5: Multisource Localization Model  

This chapter describes the required modifications to the model to carry out multisource sound 

signal localization. The binaural signal mixing process is explained, showing the data from 

different speech samples used to train and test the multisource localisation model. To decrease 

the computation complexity and memory cost, the frequency features of impute row data are 

reduces as explained in this chapter. The results of tests with clean and noisy speech samples 

are discussed. Furthermore, comparisons between different HRTFs databases are shown.  

Finally, the results of the new model are compared with the SNN method. The localization 

performance with background noise conditions and directional noise cases. 

Chapter 6: Non-individual HRTFs Localization.   

This chapter details the individuality characteristic associated with each HRTF database, 

followed by a display of the state-of-art in this this area. The proposed model is trained by using 

data that generated from one HRTFs (IRCAM Listen HRTFs data set) and tested with data that 

generated from another HRTF (KEMAR dummy head). The model localization behaviour for 

localizing one and two sound sources with these mismatch HRTFs for training and testing stage 

are explained.  Moreover, the potential approaches towards a generic model that would work 

with different HRTFs also demonstrate in this chapter. The outcomes are visualized and 

compared with the outcomes of SNN  

Chapter 7: Conclusions and Future Works 

This chapter presents the conclusions of this research and provides suggestions for future work. 

The experiments findings and its conclusion that raising from applying the localization model 

to solve the multisource problems are explained in this chapter. Number of improvements are 

suggested to overcome the localization drawbacks and enhanced the localization accuracy. 
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CHAPTER 2  

LITERATURE REVIEW 

Chapter Overview 

In this chapter, a background survey of the general framework of human hearing system is 

covered. In addition, a literature related to different approaches that have been applied in the 

fields of sound localization and binaural hearing. Furthermore, the most important techniques 

used to enhance the performance of sound signal localization in different environments are also 

detailed. The chapter starts by illustrating the mechanism of human hearing. Details about 

binaural hearing are given in section 2.2, and review of the most conventional methods for 

sound source localization is given in section 2.3. Section 2.4 reviews machine learning and 

neural networks. The discussion in Section 2.5 is concerned with sound source localization 

modelling and classification approaches that are applied to different machine learning models. 

Finally, the state-of-the-art multisource localization methods are reviewed in section 2.6. 
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2.1 Human Sound Conduction Mechanisms   

To clarify the mechanism of human hearing, we should first understand the anatomy of the 

human auditory system. Generally, hearing can be defined as the process that is performed by 

the peripheral auditory organs (outer ear, middle ear and inner ear) that converts sound waves 

into electrical pulses. These electrical pulses are processed by the auditory nervous system 

(Alberti 2001, Zemlin1968). 

The peripheral auditory organs consists of three main components as shown in figure 2.1: 

1. The outer ear: the outer ear consists of two main elements: The pinna and auditory canal. 

The pinna has an ovoid-shaped structure. Humans have two pinnae, each one has an 

individual structural shape. Pinnae act as a filter that works to collect the sound signals 

to the ear canal helping with sound source localization. The auditory canal is an auditory 

tube terminated by the tympanic membrane (eardrum). Its main function is to transmit 

sound waves to the eardrum and acts to increase the ear’s sensitivity, due to its 

resonance, between 3000 Hz to 4000 Hz. There are many factors which influence the 

sound intensity in the ear canal. One of these factors is the direction of the sound. 

Another is shoulder reflection and the acoustical shadow caused by listeners’ head and 

pinna filtering effects. Head, shoulder and pinna influences are increased when their size 

is close to the sound’s wavelength (Alberti 2001).  

2. The middle ear: the main part of the middle ear is the tympanic membrane. It has cone 

shape structure which vibrates in response to the received sound signal. The middle ear 

changes the pressure changes of sound waves from the auditory canal in to mechanical 

vibrations. The structure of the middle ear consists of three small bones in the middle 

ear cavity named; the malleus, incus, and stapes. These three bones compose a ossicular 

which is a chain connects the tympanic membrane with the oval window. The core 

function of the middle ear is to transmit these slight changes of the tympanic membrane 

movements that caused by the auditory pressure on its external side to the inner ear 

(Maroonroge et al. 2000). 

3. The inner ear or cochlear is so called as it has a snail shell shape and consists of two 

main parts, the scala tympani on the bottom and the scala vestibule on the top, separated 

by the basilar membrane. The cochlea converts the pressure fluctuations into nerve 
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impulses that are coded in such a way as to be processed by the brain. The volume of 

cochlea is around 0.2 ml filled with around 30,000 hearing cells which transform 

vibrations into neural impulses. Nerve fibres exchange the signals from the hearing cells 

to and from brain (Alberti 2001). Each auditory nerve fibre responds to a different band 

of frequencies and sound pressures. Usually, the rate of neuron impulses that are 

transmitted to the brain are dependent on the presented sound’s intensity and frequency 

(Maroonroge et al. 2000, Kirk and Gosselin 2009).  

 
 

Figure 2.1: Human ear’s overall structure explains the outer, middle, and inner ear 

(Maroonroge et al. 2000). 

         The main method of sound localization in binaural hearing is coincidence detection. 

Regardless of whether the input sound signal is plain sinusoidal wave or a more complex sound 

signal form such as a mixture of voices at cocktail party, the input to the ear are just vibrations 

at each eardrum. The brain analyses and compares the individual response of each eardrum and 

then extracts the related localization cues to estimate the location. The hearing cells of the 

basilar membrane are regularly organized by the frequency of a sound rather than sound spatial 

location or any other specific characteristics of sound source. For that reason, auditory space 

representation is done in the central auditory system by converging sound received by the two 

ears onto a single neuron inside the brain where the physical parameters of sound with its 

temporal features are analysed deeply and accurately (Grothe et al. 2010). 

2.2  Review the Spatial hearing and localization cues 

Humans have an extremely complex hearing system. It can identify and locate sounds with 

remarkable accuracy in azimuth, elevation, and even distance. This function can be performed 

even using single ear. Psychoacoustic studies demonstrated that the source localisation process 
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depended on four types of acoustic cues (Blauert 1997). Binaural cues caused by the 

differentiation of signals from both ears have a significant role in the sound localisation process; 

these cues include, Interaural Time Difference (ITD), Interaural Level Difference (ILD), 

spectral cues, and dynamic cues. ITD refers to the first type of localization cue which is brought 

on by the propagation delay between the ears. ITD is a primary localisation cue of low-

frequency signals; below 1.5kHz. ILD is brought on by the head shadowing. ILD is essential 

for the localising higher frequencies; above 3kHz (Agterberg et al. 2012). Interaural differences 

(ITD, ILD) are important to localize sound sources in horizontal plane and lateral dimensions 

(left-right discriminations) (Macpherson and Middlebrooks 2002). Sound scattering, and 

shadowing are altered by the listener’s head dimension. ITD and ILD are often defined by 

analysis of these changes (Algazi et al. 2001, Kuhn 1977, Ziegelwanger and Majdak 2014). ILD 

can contribute to localisation separately from ITD, particularly at higher frequencies where the 

wavelength is small compared to head diameter, producing ambiguous ITD information (May 

et al. 2011).   

        The third type are spectral cues, these are brought by reflections and interactions of sound 

waves from any obstacles including the pinna, the head and torso (Xie 2013). Spectral cues are 

useful at mid-frequencies (between the low and high-frequency ranges) (Nimityongskul and 

Kammer 2009). Spectral cues are relevant to the localization in vertical plane and sound source 

front-back differentiations. The spectral localization cues are primarily described by analysis of 

the listener’s pinnae geometry (Bronkhorst1995, Hebrank and Wright 2005). Dynamic cues are 

brought on by the relative motion of the ears and the source. Listeners can move their heads, 

and some animals even move their ears to seek confirmation or better resolution in source 

localisation (Zhong and Xie 2014). 

       The literature further discriminates between two classes of hearing cues; binaural cues and 

monaural cues. Individually, binaural cues are useful only in narrow bandwidths and emphasise 

sound localisation in the horizontal plane. Monaural cues represent the signal which received 

by one ear (Ahveninen et al. 2014). Spectral cues are often monaural, the filtering effect of the 

pinna and head are angle dependant and can be particularly helpful in assessing height (Grothe 

et al. 2010). Figure 2.2 shows the monaural and binaural hearing cues for sound localization. 
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Figure 2.2: Cues for sound localization (Grothe et al. 2010) 

        Using only two sensors (ears), human and animals succeed in localising diverse types of 

sound sources. Anatomical parameters such as head and ear shapes play significant role in 

processing the incoming sound and helping to locate the origin of the sound. The effect of the 

head on the sound at the ear is captured in the head-related transfer function (HRTF). HRTFs 

are direction-dependent filters that can characterize the received sound at the outer ear affected 

by sound scattering and reflections resulting from the head, pinna and torso (Møller et al. 1995, 

Wightman and Kistler 1989). HRTF contains a filter (impulse response/transfer function) for 

each angle. Head-related transfer functions (HRTF) pick up transformations of a sound wave 

propagating from the source to our ears. The transformations contain the diffraction and 

reflections of the head, pinnae, shoulders and torso. So, the HRTF or HRIR filters capable to 

create the illusion of spatially located sound (Groethe el at. 2010). HRTFs capture listener-

specific cues, including ITD, ILD and spectral cues. Due to the different individuals’ 

dimensions HRTFs are unique to each individual, as are the cues. 

2.3 Review of sound source localization methods 

Methods that use reduced sensor arrays (two sensors) offer several techniques to achieve high 

accuracy localisation. These methods use a head and torso simulator where the anatomical 

parameters, and thus the binaural cues, are known.  

These methods have joined azimuth-based models of ITD and ILD. The correlation of ITD and 

ILD with source azimuth location is a complicated pattern (May et al. 2011). However, because 

the frequency-based pattern of ITDs and ILDs can change across individuals, an azimuth-based 

model requires pre-processing or standardisation with the binaural signals and may reduce 

performance over various binaural setups. Furthermore, strategies differ in the method of 
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integration of interaural information over time and frequency. Statistical tracking 

methodologies can be used to integrate localisation estimates over time. However, binaural 

strategies have concentrated on cases with lower levels of background noise (Mayetal.2011, 

Roman and Wang2008). When the HRTF is known at each possible location, the localisation 

process attempts to apply the inverse matching of the observed localisation cues to a source 

situation (Roman and Wang 2008).  

       Various methods depend on correlation analysis, beamforming, and signal subspace 

techniques which apply microphone arrays to source localisation in free space (Knapp and 

Carter 1976, Ward et al. 1998). The localization accuracy depends on increasing the number of 

microphones in the sensor array (Salvati 2012). Recently, a method using a 10-element 

microphone array, consisting of two sub-arrays, was proposed for 3D sound signal localization. 

The method computes the time delay of arrival (TDOA); each node in the sensors array receives 

the sound signal and instantly returns an absolute timestamp prior to passing it to the processing 

unit (Song et al. 2017). 

       However, the experimental outcomes showed that an accurate estimation of elevation angle 

value is possible by using the all embedded components of HRTF. When the ITD and ILD 

localisation cues are integrated with the spectral cues for a better localization resolution. To 

achieve accurate binaural localisation in predicting both azimuth and elevation values, the 

HRTF needs to be employed with all embedded binaural cues (Rakerd et al. 1999, Best et 

al.2005). The effects of sound signal duration and level on the localization accuracy in the 

vertical plane (elevation) and horizontal plane (azimuth) are discussed by Ruhland Gai et al. 

(2013). This study offered an experiment on cats to examine the impact of sound signal level 

and duration on azimuth and elevation localization performance. It showed that any alteration 

in the sound spectrum can cause significant effect on the elevation localization performance. 

Therefore, an increasing sound duration caused notable enhancing in localization accuracy in 

elevation. In contrast, in horizontal plane (azimuth prediction), neither sound duration nor level 

had an observable influence on localization accuracy, excluding at near-threshold levels (Inoue 

2001, Macpherson and Middlebrooks 2000). 

        One notable limitation of the previously proposed methods is the computational overhead 

that resulted from using TDOA which increases with the size of microphone array, whereas the 
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reliability of TDOA estimation requires considerable number of microphones (Nesta and 

Omologo 2012, Heilmann et al. 2014, Song et al. 2017). A further limitation is source 

localization accuracy and confusion. For example, a sound source located at any region of the 

head that results in signals have the same interaural time differences (ITD), known as a “cone 

of confusion” which basically results from the spherical appearance of human head (Kapralos 

et al. 2008). The cone of confusion phenomenon could lead to poor localization performance in 

distinguishing sound sources in the vertical plane when the wavelength of incoming signal is 

equal to the head diameter (the distance between two ears) in this case both ITD and ILD have 

zero values in the median plane (Miller 2013).  

2.4 The Artificial Intelligence and Machine learning    

Artificial intelligence refers to the research that focuses on studying the human brain’s 

capabilities in thinking, learning, problem solving and making decisions to imitate human 

intelligent behaviour. Artificial intelligence characterizes a machine’s ability in mimicking and 

performing intelligent human capabilities. Artificial intelligence includes different types of 

approaches that perform different tasks in a variety of sectors, for example, methods based on 

statistics, artificial neural networks, computational intelligence and probability. 

2.4.1. Traditional neural networks 

The modern concept of neural networks started in the 1940s with the work of Warren 

McCulloch and Walter Pitts (McCulloch and Pitts 1943) which represent the first generation of 

neural networks. They proved that artificial neurones could calculate any arithmetic or logical 

task (Hagan et al. 1996). Donald Hebb Donald was followed MacCulloch and Pitt, they 

proposed the earlier technique for learning in artificial neurones (Hebb 1949). After few years 

of active research, Stephen Grossberg investigated the self-organizing neural networks 

(Grossberg 1976). Two new key notions related to the artificial neural networks and their 

application were presented in 1980. The first conception was the utilising of statistical 

mechanics to clarify the operations in the recurrent networks (Hopfield 1982). The second 

concept presented when the researchers discovered the backpropagation algorithm for training 

multilayer perceptron MLP networks. This algorithm was the solution to problem-solving 

limitations in the earlier neural perceptron algorithms. The most popular back-propagation 
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network represents the second generation of neural networks and the significant supervised 

model for many engineering applications. 

         The significant availability of powerful modern computers and new hardware 

development enables the processing capabilities to test the latest ideas related to advanced 

neural networks such as ingenious architectures and training rules. Neural networks, also called 

parallel distributed processing, have occupied a regular place as very essential and important 

scientific and engineering tools to be used in appropriate situations. However, there is still la 

lack of knowledge about biological systems, and all current artificial neural models represent 

an over simplification in representation the biological neurone models (Kröse et al., 1993).  

Artificial neural networks researched for many years in the prospect to realise a human-like 

performance to solving complex functions related to the human perception (Lippmann 1987). 

There are some attempts to investigate the efficiency of applying the integration between 

classical neural models and HRTFs to perform localisation tasks in animals (Shimoyama2012). 

Song et al. (2017) proposed a model to stratify traditional neural networks to extract the ITD 

and ILD from incoming signal to estimate its sound direction. They used a TDOA method with 

microphone array with 10 sensors. The findings demonstrated that the suggested method could 

learn to localise a sound source in the anechoic and reverberant conditions only when the 

incoming signal was white noise. Youssef et al. (2012) Presented an artificial neural model to 

predict the azimuth and elevation angle of a sound source. The experiment results showed that 

the model could estimate azimuth and elevation with limitation for complex signals such as a 

human speech signals in noisy environments.   

2.4.2. Spiking Neural Networks (SNNs) 

The term Spiking Neuron Networks (SNNs) simulates the behaviour of natural neurones, highly 

inspired from computations which are performed naturally in the brain based on recent 

developments in neurosciences. Spiking neural networks deploy third-generation neurone 

models and represent a relatively important level of similarity to real neurones in the brain. 

SNNs are well matched to approximating lower level perceptual functions (Baladhandapani and 

Nachimuthu 2015, Markowska and Koldowski 2015). SNNs can process and account for time 

delays in signals; a key feature of third generation models when compared with previous 

approaches traditional methods (Yu et al. 2016, Diaz et al. 2016). Second-generation methods 
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of neural networks are represented by threshold and sigmoidal techniques as computational 

units. The major challenge is to promote effective learning rules that might pick characteristics 

of the specific features of SNNs while preserving the good aspects of traditionally correlated 

models. Nevertheless, most of traditional neural networks have many difficulties when dealing 

with the enormous amounts of data and adjusting to fast changing environments. In addition, 

there are certain limitations related to refined learning algorithms or artificial neuron models 

compared to biological processing in natural nervous systems (Paugam-Moisy and Bohte 2012).  

The major challenge is to develop effective learning rules to overcome the peculiarities of SNNs 

while preserving the right features of traditionally correlated models. Nevertheless, 

conventional neural networks have many difficulties when dealing with the large values of data 

and adjusting to a rapidly changing environment. There are limitations related to refined 

learning algorithms or neurone model designed artificially compared with biological processing 

in the natural nervous system (Paugam-Moisy and Bohte 2012). These limitations can be 

summarized by the availability for a well labelled data to train the machine learning models. a 

sufficient training data should be available to provide suitable learning patterns for the learner. 

In addition, the huge data size required strong processing units as like high speed computer with 

graphical processing unit GPU and big storage capabilities. Networks of spiking neurones 

provided a more realistic representation of human cellular networks compared with traditional 

artificial neural networks. Spiking neural networks consist of the neurones that transmit 

shortened signs (impulses) which are called spikes. The computational units in spiking neurones 

are composed of three steps: summation of all neurone input stimuli, integration over time, and 

a spike fire when the membrane potential expands over the threshold which then returns to reset 

value (Davies 2013).  

        Inputs and outputs in first-generation neural networks were represented as binary signals 

[0, 1] and the processing unit inside the neuron represents a fixed threshold value. The 

computational unit in the 2nd generation artificial neural networks can be summarized as 

follow: sum all values of synaptic weights, compute the neuron's output signals when the 

summed amount exceeds the threshold value. The continuous activation function of 2nd 

generation neural networks makes it convenient in processing analogue input and output stimuli.  

It accepts any real numbers as an input for this type of neurones, and the output is limited to any 

number between 0 and 1 (Basheer and Hajmeer 2000). 2nd generation neural networks do not 
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use individual pulses; the output signals can be representing as normalised firing rates of the 

neuron through specific period which called rate coding (Gerstner and Kistler 2002, Vreeken 

2002). Figure 2.3 explains the essential comparison between SNN and the earlier two types of 

traditional neural networks.   

 

Figure 2.3: Comparison among the three generations of neural networks, type of input, output 

and the computation types of activation functions for each type. 

 

                            McCulloch-Pitts neuron. Digital input and output (0 or 1). 

 

Sigmoid computational unit analogue neuron. Analogueentry and exit [0: 1]. 
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      Spiking neural networks increase the realistic level of artificial neural networks by using 

individual spikes in processing the temporary input (time delays in signals). This feature in 

spiking neuron models permits integrating spatial-temporal data in connection and computation, 

like the action of real neurons (Ferster and Spruston 1995). Spiking neural networks utilise pulse 

coding rather than rate coding as in traditional neural networks. According to this technique, 

the neurons in spiking networks receive and send individual pulses which allows for the 

processing of multiple data at the same time. For example, in the case of sound processing, 

frequency or amplitude (Vreeken 2002). 

          Spiking neuron models can be divided into two broad categories based on their level of 

abstraction. The conductance models and the threshold models, as shown in Figure 2.4. The 

action potential in the conduction models rises from the continuous dynamics, therefore in 

simulation the time step has to be small. Whereas, the threshold models use explicit thresholding 

and resetting to generate action potential, which are algorithmic but efficient in simulation. This 

represents a key difference between conductance models and the threshold models. Hodgkin–

Huxley HH refers to the one of the most important conductance models. It can reproduce all 

classes of neurons with a good accuracy regard to the shape of spike or complex firing activities 

compared to threshold models. And, conduction models represent the biologically relevant 

mathematical neuron models present a more realistic artificial neuron model.  Its computation 

cost represents the mainly drawback for these types of spiking neurons. The major criteria to 

compare among spiking neuron models are biophysically meaningful and measurable 

parameters, and whether they can exhibit autonomous chaotic activity. One of the simplest 

threshold models of a SNN is the leaky integrator and fire (I&F). It can fire tonic spikes with a 

constant frequency. The resonate-and-fire model produced by (Izhikevich 2001) is a parallel of 

the I & F neuron and is more efficient. An alternative to the leaky I&F neuron is the quadratic 

I&F neuron, also known as the theta-neuron (Izhikevich 2004). 

      The Hodgkin–Huxley model is one of the most important models in computational 

neuroscience. Researchers denote all conductance-based models as being of the Hodgkin-

Huxley-type (HH). Such models are paramount not only because their parameters are 

biophysically meaningful and measurable, but also because they permit work on research 

problems linked to synaptic integration, dendritic cable filtering, influences of dendritic 
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morphology, the interaction between ionic currents, and other matters related to single cell 

dynamics (Izhikevich 2004). The model is quite computationally expensive. Thus, one can use 

the Hodgkin–Huxley formalism only to mimic a small number of neurons or when simulation 

time is not critical.  

        A modification of the Hodgkin–Huxley model is presented by Izhikevich (Izhikevich 

2003). The model gathers advantages of the biological plausibility of Hodgkin–Huxley-type 

dynamics and the computational qualification of integrate-and-fire neurons. The spike response 

model (SRM) was generated to decrease the four-dimensional Hodgkin‐Huxley model into one 

equation. It has been proven that the SRM model can predict 90% of the Hodgkin-Huxley spike 

train correctly (Davies 2013). There is significant different between the spike response model 

and the leaky integrate-and-fire. A differential equation describes the membrane potential in the 

case of LIF model and it is voltage dependent. In contrast, response kernels are used to describe 

the membrane potential for SRM. HH refers to the conductance models whereas Integrator–

and-Fire (I&F) with all its related models and SRM refer to the threshold models as shown in 

figure 2.4. 

 

Figure 2.4: Spiking neuron models 
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2.4.3. Deep Neural Networks 

Deep neural networks (DNNs) are an advanced type of artificial neural network (ANN). Deep 

neural networks have a structure which consists of input and output layers with many hidden 

layers arranged between them as shown in figure 2.5 (Schmidhuber 2015). The computational 

models that consist of multiple processing layers allow learning of representations of data by 

using deep learning. Deep learning applies the backpropagation algorithm on a massive dataset. 

It enables learning of local parameters and representations in each layer depending on received 

representations from prior one (LeCun et al. 2015). There are distinct types of deep neural 

networks architectures: Feedforward deep neural networks, recurrent deep neural networks, 

deep belief spiking neural networks and convolutional deep neural networks. The studies 

demonstrate that each type of deep neural structure has significant role to solve problem in 

specific application domain (Schmidhuber 2015).  

       Deep learning has a vital role in handling data analysis and learning problems where there 

is a large amount of input information. Existing artificial networks of spiking neurons still 

cannot compete with DNNs (Schmidhuber 2015). O'Connor (2012) explored a new model to 

realize the ability of the brain to build a correlated model of the world around it by executing a 

model of a recurrent network of spiking neurons with multi-modal integration. The network 

trains as a deep belief network (DBN) and the learned parameters are mapped onto a spiking 

neural network. The network trained on three types of stimulus; visual, audio and labels of ten 

digital groups. New methods rely on the Siegert approximation for integrate-and-fire neurons 

to apply an offline trained DBN onto an effective event-driven spiking neural network. This 

technique is proposed by O’Conner et al. (2015) and is appropriate for hardware 

implementations. The experiment outcomes demonstrate that the system could pick out a valid 

digit from other unclear inputs. Henderson et al. (2015) presented a new method integrated 

between SNN and deep learning. Neural network adapts according to the input training data. 

Neural network training using deep learning methods have been evolved successively to apply 

to several types of human applications; speech recognition, object detection and image 

classification (Deng and Platt 2014).  
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Figure 2.5: Deep neural network structure and network training process 

 

2.4.4. Learning Methods in Neural Networks. 

         In artificial neural networks, there are several types of learning methods which work to 

build analytical models automatically without being explicitly programmed. These methods are 

known as the “learning paradigm” and can be divided into four kinds: supervised, unsupervised, 

reinforcement and evolutionary. The most common learning mechanisms are supervised and 
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unsupervised learning (Jürgen 2015). The “learning rule” refers to the algorithm through which 

the neural network adapts to train the input data (Pietila and Lim 2012).  

In supervised learning, each input is labelled with a targeted value, which may be a numeric 

value (e.g. azimuth angle), or a classification (e.g. speech or music).  The training process is 

carried out by minimizing the error between the ANN output and the desired output (the target). 

Recently, existing effective applications focused on supervised learning often take the form of 

pattern recognition competitions (Jürgen 2015, Graves and Jaitly 2014, Graves et al. 2013).  

Kasinski and Ponulak (2006) reviewed and evaluated various supervised learning approaches 

to train spike timing of spiking neural networks. They analysed the major features of each 

method and its ability in learning spike timing accurately. Their work was based on the 

suggestion that functional brain computation fundamentally can rely on the precise timing of 

each spike. Many implementations of SNNs are imitating biological neural networks, as they 

provide a more accurate representation of realistic networks than traditional artificial neural 

networks. Also, many types of research have been done in applying SNN to temporal pattern 

recognition. Some ideas are investigating SNN applications in robotics, most of which are based 

on evolutionary algorithms to train the network (Bulanova et al. 2012). In 2004, a new 

supervised learning rule was inferred by Booij (2004) for Spiking Neural Networks (SNNs) 

involving the gradient descent technique, which can be implemented on networks with a multi-

layered design.  This algorithm is practically prepared to deal with neurons that fire multiple 

spikes. 

        A novel supervised learning algorithm is proposed by (Stromatias 2011) which relies on 

genetic algorithms. The proposed algorithm is eligible to train both synaptic weights and delay 

and permit each neuron to emanate many spikes, and so on, taking on the full characteristics of 

the spatial-temporal coding intensity of the spiking neurons. Also, limited synaptic precision is 

applied. Furthermore, the readily supervised training algorithms, for instance, SpikeProp and 

its modifications QuickProp and RProp permit their neurons to spike only once through the 

simulation time, thus not taking full advantage of the power of SNN. The supervised training 

algorithm is designed for limited precision feed-forward SNN (SNN/LP) is also proposed as a 

genetic algorithm and is applied using supervised training. One of the benefits of the GA is that 

they can adjust the patterns of the spike response model (SRM) (Stromatias and Marsland 2015).  
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      The literature presents many deep neural network approaches that use supervised learning 

in various applications including speech recognition and sound source localization (Yalta et al. 

2017, Takeda and Komatani 2016a). For more details, see section 2.5.1. 

      In unsupervised learning, the model parameters (weight and bias) are modifying by 

searching joint characteristics and pattern similarity among system training examples. The 

model parameters updated depend on internal knowledge that generated throughout the learning 

process (Baldi 2012). Jürgen (2015) reviewed in his paper most of important efforts that 

implement unsupervised learning and the various unsupervised methods, for example, auto-

encoder hierarchies (Ballard 1987) and restricted Boltzmann machines (RBMs) (Smolensky 

1986). Recently, many modern unsupervised deep learning applications have been presented. 

For example, Kingma and Welling in (2014) offered unsupervised learning framework called 

variationally autoencoder that was applied to train deep belief networks. Unsupervised learning 

also played a significant role in learning using deep neural networks. 

        Karhunen et al. (2015) reviewed most common unsupervised learning methods that have 

been applied to different machine learning frameworks and deep learning structures including 

multilayer perceptron networks and deep neural networks. Bengio et al (2014) suggested 

unsupervised learning for a deep learning structure referred to as a generative stochastic 

network. The suggested method was based on learning a Markov chain rather than learning the 

entire probability distribution (Bengio et al. 2014).  

        In the field of spiking neural networks, Dan and Poo (2004) generated the spike-timing 

dependent plasticity (STDP) algorithm as an example of using an unsupervised learning 

paradigm in spiking network training.  STDP has a significant role for implementing synaptic 

plasticity impact in the SNN which broadly mimics the biological brain (Daucé 2014). The 

reinforcement learning paradigm has also been applied to spiking neural networks using STDP 

as learning rule with a modulatory signal (Davies 2013). 

2.5.  Sound Source Localization and Machine Learning Methods 

In the last few years, there have been growing numbers of attempts to implement machine 

learning methods to solve the problem of sound localization (Sun et al. 2018). Berkly (1993) 

stated that supervised learning methods and backpropagation are the most suitable methods to 
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solve the source localization problems. Diverse types of machine learning methods with 

supervised learning have been proposed in the literature. (Chen and Ser 2009) applied least 

squares support vector machines (LS-SVMs) for acoustic source localization by using arrays of 

microphones using the time delay of arrival (TDOA) as a feature. The proposed algorithm 

requires the measuring of the microphone array and prediction of the TDOA. The accurate 

prediction of the TDOA is determined by the microphone position that related to the sound 

source. Li and Liu (2013) proposed a sound source localization method by using a Gaussian 

mixture model GMM.  This method was based on analyses of time delay features, and the 

localization was performed by applying a spatial grid matching (SGM) process. The Gaussian 

mixture model was structured as the form for each grid based on the feature of acoustic time 

difference. 

      Another DOA method using microphone arrays that used the GCC for feature extraction 

(Sun et al. 2018) was based on applying probabilistic neural network (PNN) as a classifier for 

DOA estimation. The SSL problem has been addressed as stationary single source localization 

inside enclosed room. The room was divided into the set of space clusters, each cluster refers to 

the unique three-dimension coordinate. The classifier is working to determine the cluster that 

the source belong to. PNN is constructed from four layers. The first layer has a number of 

neurons equal to the GCC feature dimensions, the second layer is called the pattern layer and 

has a number of neurons equal to the total number of training samples that are used to train the 

PNN, the third layer is summation layer and has number of neurons equal to the room space 

clusters, and the final output layer with only one neuron that is responsible for decision making 

and selecting the most likely class.  Figure 2.6 explains the cross-correlation classification 

algorithm (GCA) Sound source localization model.  
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Figure 2.6: Flow chart of the proposed GCA (Sun et al. 2018) 

         Supervised feedforward neural networks are used for binaural sound source localization 

by (Datum et al. 1996). Two neural networks work on the same input stimuli to estimate azimuth 

and elevation angles individually. Each neural network consists of three layers and are trained 

by applying the Multiple Extended Kalman Algorithm (MEKA). The time and intensity of the 

received signal are analysed by using a narrow-band filter bank. The input for feedforward 

neural networks is the intensity differences and time differences of binaural signal.  

2.5.1. Sound source localization using multilayer perceptron (MLP) 

        Xiao et la (2015) proposed a multilayer perceptron approach (MLP) as an advanced step 

for applying neural networks to solve localization problems in noisy and reverberant 

environments. This method relies on applying a learning-based method for estimating direction 

of arrival (DOA) by using microphone arrays. The MLP is trained to perform sound source 

localization using features extracted from the generalised cross-correlation (GCC). The 

experimental outcomes from this work appear to enhance the localization performance in noisy 

and reverberant conditions. It was demonstrated that the model performance was strongly 

correlated to the size of the training data set. These types of methods which learn by using an 

enormous size of training data depend on the availability of massive quantities of data. 
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2.5.2. Sound source localization using deep neural networks 

The literature presents many deep neural network methods that implement supervised learning 

to achieve sound source localization (SSL) in noisy and reverberant conditions (Yalta, Nakadai 

et al. 2017, Takeda and Komatani 2016a). The most advanced work that has employed deep 

neural networks was presented by (Takeda and Komatani 2016a, Yalta et al. 2017). The 

learning-based methods that used larger amount of training data demonstrated solutions to many 

aspects related to human perception (Xiao et al. 2015). (Takeda and Komatani 2016a) proposed 

a fully-connected recurrent deep neural network (RDNN) for sound source localization with 

using discriminative training. The model used the hierarchical integration of directional 

information at each sub-band of frequency. The Multiple Signal Classification (MUSIC)was 

used as a feature extractor. This work demonstrated that successful sound source localization 

method requires frequency domain and time-information. The experimental findings 

recommended that a well-structured deep neural network can overcome many limitations 

related to sound source localization such as multisource sound localization and detecting 

unknown direction (Takeda and Komatani 2016a). 

         Generally, deep neural networks have led to considerable contributions in signal 

processing fields. Deep learning has enabled considerable progress in computer vision 

(Krizhevsky et al. 2012) and speech recognition (Deng and Platt 2014). Yalta et al. (2017) 

adopted a novel deep convolution neural networks (DCNN) for sound source localization in 

noisy and reverberation environments. He et al. (2016) argued that applying deep learning rather 

than MUSIC for localizing sound source showed increased performance. The model was based 

on microphone arrays with CDNNs trained by applying residual learning. The model tests 

outcomes appeared to be effective when localizing a single sound source in an anechoic, low 

noise environment. Performance became degraded at higher reverberation times (e.g. >500 ms). 

Furthermore, the model is limited to localizing single source audio and not multisource. The 

authors mention many suggestions for improving the model localization abilities, such as 

determining hyperparameters for the suggested model and further investigation into the residual 

learning capabilities for SSL in challenging conditions.   
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2.5.3. Binaural hearing and Spiking neural networks 

Spiking neural networks are useful in the processing of binaural signals as they process signal 

in the time domain, highlighting relative time variations between signals. Due to the ITD, a time 

delay can occur between sound signals at both ears. In contrast, the SNN captures timing 

information as rate of spike input trains into its networks.   

        Many important research papers have contributed to developing a variety of spiking neural 

models inspired by the biological processes that happen inside the brain. Glackin et al. (2010) 

introduced a spiking neural network (SNN) based on the model of the medial superior olive 

(MSO). The model was tested on an HRTF data set taken from an adult domesticated cat, 

measured over a limited azimuth range (from −180 angle degree to 170 angle degree). The 

researchers investigated the impact of adjusting the ITD on the algorithm. ITD is important 

localisation cues at low frequencies in the range of (270 -1500 kHz) where the wavelength of 

the arriving signal at each ear is greater than the head diameter. The researchers used Jeffers's 

model (1948), to process interaural time differences inside the brain (figure 2.7). Two key 

features characterise the Jeffress model concept which is the axonal delay lines produce internal 

delays and coincidence detector neurones fire at the maximum rate if excited simultaneously 

from both sides (Calmes, 2009). 

 

Figure 2.7: Coincidence neurons of Jeffress Model 

           Kriener and Pfeil (2014) explored the impact of different synaptic parameters on 

localisation accuracy. The results suggested that if the input frequencies and the number of 

neurones are selected in a suitable way, it leads to successful localisation performance using 
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systems analogous to the Jeffress model. A huge stride forward in natural sound localisation 

modelling has been established by Wall et al. (2012) when they produced a biologically inspired 

SNN-based algorithm modelled on mammalian auditory pathways. Experimentally determined 

HRTF datasets for left and right ears were utilised as part of the training data of the model. 

Moreover, the ITD was extracted and used to detect the sound source position by using the 

azimuthal angle. This model used a supervised learning method to assess the capabilities of the 

SNN model and achieved a high accuracy for the localisation process. Sound localisation with 

cochlear implants (CIs) at different signal-to-noise ratios have been explored and compared to 

the actual hearing system (Kerber and Seeber2012). The outcomes confirm that CIs appeared 

less effective in noisy circumstances.  

       The function of cochlear implants and superior olivary complex (SOC) were investigated 

by Jindong et al. (2008). A spiking neural network has been applied to compute the two-

dimension ITD and ILD spike maps across frequency. Then, these maps have been scaled 

considering the progress of ITD in low frequency and ILD in high and middle frequencies. 

Then, ITD and ILD maps had integrated to perform sound source estimation. Pourmohammad 

and Ahadi (2013) Provided details regarding the of time delay estimation (TDE). TDE is usually 

applied in N-dimensional wideband sound source localisation in free field environments using, 

at minimum, N + 1 microphones. The main target of this research was to decrease the number 

of microphones used. Moreover, the researchers proposed and actualized TDE-ILD-HRTF-

based 3D whole space sound source localisation by applying three microphones. 

         Goodman and Brette (2011) presented the location estimation process depends on spike 

timing that transfers information about auditory stimuli precisely in the auditory system. They 

suggested two different ways to process the input binaural signals. The first method, which 

called the ideal model, is depended on representing the complete set of HRTFs (i.e., all possible 

locations in the selected HRTF data set). While the second method, which called the 

approximate model, is relied on representing only gains and delays that extracted from the input 

binaural signal. The location estimation process depends on spatial-temporal filtering and 

spiking nonlinearity. The auditory pathway (cochlea) are simulated using set of Gamma-tone 

filter banks applied on the resulting signals, followed by neural filtering. They employed the 

key feature of spiking neural networks in processing the temporal signal to solve the sound 
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source localization problem by using only two sensors. Figure 2.8 explains the sound source 

localisation (SSL) model that applied two methods (ideal model or approximate model) for 

handling the binaural transformations to localize sound sources.  

 

Figure 2.8: Short heading of above images, 

 (A) Description of model structure. (B) Model response to a sound emitted from at a 

certain location. Colours indicate to the firing rate of post synaptic neurons, vertically 

ordered by preferred frequency (the horizontal axis represents a dimension orthogonal to 

the tonotopically axis). The white circles refer to the neural assembly that encodes the 

given location. (C) like (B), but neurons are sorted by preferred interaural delay. (D) 

complete response of all neural assemblies to the same sound submitting, as a function of 

their appointed location which represent by most activated neurons assembly.  

2.6.  State-of-Art Multisource Localization 

There is lack of research that emphasises multisource localization (Takeda and Komatani 

2016b). In signal processing, multi-sound source localisation is a generic issue often described 

as the ‘cocktail party effect’ problems. The MUSIC algorithm is the earliest approach that uses 

DOA prediction for multisource localization. It works by searching the for spectral peak in the 
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spatial spectrum that results from applying orthogonality of the signals and then using it to 

localise sources by detecting DOAs (Schmidt 1986). Later, Bechler and Kroschel (2003) 

suggested an improvement of the Generalized Cross-Correlation (GCC) algorithm to consider 

the second peak as an index of the second source in multisource localization. The study 

suggested that both incoming sound sources have equal power leading to two peaks in 

comparable order of magnitude in the GCC function. The outcomes showed that the estimation 

accuracy of the second source by using the 2nd peak criteria was 47.83%. The computational 

cost of localization methods that use TDOA is increased as the size of microphone array 

increases. However, the reliability of TDOA estimation depends on large numbers of 

microphones (Nesta and Omologo 2012). Many studies have focused (Ishi et al. 2009, Shiiki 

and Suyama 2015) on enhancing the MUSIC algorithm, but still there are many limitations 

related to multisource localization tasks. The first limitation is the computational overhead, 

while the second is the requirement of prior awareness about the number of original sources 

(Ishi et al. 2009). 

         Source separation methods that are based on the statistical independence of the individual 

sources, such as independent component analysis (ICA) (Comon and Jutten 2010), have been 

broadly used for multisource localization (Loesch et al. 2009, Lombard et al. 2011). Nesta and 

Omologo (2012) assumed that the number of dominant sources exactly match the number of 

microphones in each time-frequency domain. Likewise, the localization methods that apply 

sparse component analysis (SCA) (Swartling et al. 2011, Pavlidi et al. 2012) are performed 

under the supposition that in each time-frequency region there is always one source that has 

energy which is much higher than the other sources.  

        Pavlidi et al. (2013) proposed a method for multiple sound source localization that relied 

on detecting time-frequency regions where there is only one source is active. The proposed 

method attempted to cope with the ambiguity introduced by the linear array by applying a 

circular array. This concept is improved by Jia et al. (2017). A soundfield microphone was used. 

The suggested method, shown in figure 2.9, explains how a relaxed sparsity constraint of the 

speech signal was applied to search the presence of “single-source” region among the sound 

field microphone's recorded signals. The method was based on detecting the single source 
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region and then predicting the DOAs of active sources using a peak searching method on the 

predicted TOA’s normalized histogram. 

 

Figure 2.9: The multisource localization model presented by (Jia et al. 2017) 

2.7. Chapter Summary 

This chapter has reviewed previous work on sound source localization particularly in noisy and 

reverberation environments. Firstly, a review of the structure and function of the human hearing 

system was presented. Then, spatial hearing and the basic features of localization cues were 

presented with comparison between two distinct types of localization; binaural and monaural 

localisation. The chapter covered the type of features and the most commonly used techniques 

like, correlation analysis, beamforming, and signal subspace methods. This chapter has also 

reviewed various machine learning approaches including deep neural networks and spiking 

neural network approaches to sound source localization, and the diverse types of learning 

algorithms that were applied with these techniques. Finally, the chapter covered some of the 

literature that deals with multisource localization and the features that should adopted to 

improve the localization accuracy in this field. 

From this chapter the following points can be summarised as follows:  
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• Most source localisation methods are designed for a single one source and use microphone 

arrays. These methods are based on estimating the TDOA of received signal at each 

microphone. There are many limitations related to using microphone arrays, for instance, the 

high localization performance requires increased the number of microphones. The 

computational cost of localization methods that use TDOA is increased as the size of 

microphone array increases. However, the reliability of TDOA estimation depends on large 

numbers of microphones. 

• Many single source localisation models have been improved to work in noisy and reverberant 

environments. However, more studies are needed to investigate the localization performance 

with long reverberation times (>500ms) and lower signal-to-noise ratios.  

• Machine learning approaches for SSL were reviewed. Most of these efforts used supervised 

learning for sound source localization. The researchers argued, the better localization 

performance required supervised learning. This is inspired from the human abilities in audio-

vision integration to determine the right sound signal direction. 

• To decrease the computational complexity, various approaches have used only individual 

localization cue (ITD or ILD) to get the binaural information for sound source localization. 

While, the literature studies demonstrate the accurate sound source localization required all 

localization cues ITD, ILD and spectral cues integrated together for better binaural sound 

representation and localization performance. 

• DNN and SNN are advanced machine learning networks that show promise for solving sound 

source localization from binaural signals. Many research papers have contributed to promote a 

variety of SSL models that used spiking neural models inspired by the biological processes that 

happen inside the brain. The methods that used Jeffers's model concept to translate the binaural 

time delays and neuronal firing rate coincidence detectors are the most successful method for 

binaural localization.  

•For multiple sound source localization, in the last few years, methods were developed that 

detecting time-frequency zones where there is only one source is active. One of the significant 

limitations that captured in the reviewed methods for multisource localization is, all these 
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methods are based on one concept which is 'there is only one sound signal has energy over the 

other sources in each time instant'. 
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CHAPTER 3  

BACKGROUND AND DATA SETS  

Chapter Overview 

The previouschapter presented are view of previous work that focuses on general methods of 

sound source localization and machine learning algorithms employed in the field of sound 

source localization. This chapter covers the background, methods and materials that have been 

used in this research. In addition, speech and HRTFs databases that are used in this research 

will be described in this chapter. Section 3.1 explains binaural source localisation and head-

related transfer functions. Section 3.2 demonstrates the basic components and principles of 

spiking neural networks (SNNs). Deep neural networks (DNNs) and their main functions and 

constructors are described in section 3.3. Section 3.4 explains the mathematical concepts of 

backpropagation learning algorithms as a general-purpose learning method. Support vector 

machines (SVM) for multi-class classification is introduced in section 3.5. Finally, a description 

of the two HRTF databases and the speech database adopted in this thesis are detailed in section 

3.6. 
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3.1 Binaural Source localisation  

3.1.1 Binaural hearing and sound source localisation 

Binaural hearing refers to a feature of the human auditory system which utilises several cues, 

extracted from the signals from both ears, to provide spatial information about sound sources. 

Binaural cues, caused by differentiation of the signals between the ears, have a significant role 

in the localisation process.  

The left and right HRTFs (HL and HR) for both ears are defined by the following equations  

𝐻𝐿(𝑟, 𝜃, ∅, 𝑓, 𝑎) =
𝑃𝐿(𝑟,𝜃,∅,𝑓,𝑎)

𝑃0(𝑟,𝑓)
, 𝐻𝑅(𝑟, 𝜃, ∅, 𝑓, 𝑎) =

𝑃𝑅(𝑟,𝜃,∅,𝑓,𝑎)

𝑃0(𝑟,𝑓)
                                 3.1 

      Sound source location is described using a spherical coordinate system (r, θ, ϕ), PL and PR 

refer to sound pressures for left and right ears in the frequency domain; P0 is the free-field sound 

pressure in the absence of a head, r is the distance between the sound position and head centre, 

θ is the azimuth (0° to 360°), and ϕ denotes elevation r (-90 to 90). Depending on r, the HRTF 

is classified as far-field HRTF when r has a value greater than 1.2m and near-field for values 

below this (Duda and Martens 1998, Sheaffer 2013). The parameter ‘a’ in the above equation 

indicates the set of factors determining the dimensions of the pertinent anatomic shape of each 

human. For far field source localisation, the three-dimensional location of the sound source in 

a free field space can be defined by two angles; a horizontal angle (azimuth) θ and a vertical 

angle (elevation) ϕ. This representation is illustrated in Figure 3.1.  
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Figure 3.1: Interaural time differences for the arrival of the signal at both ears. 

         HRTFs have many physical characteristics related to frequency and time domain 

properties while various localisation cues can be evaluated from measured HRTFs (Zotkin et 

al. 2003). The impact of these localization cues on the proposed localisation model will be 

assessed separately by changing the scope of frequencies for the recieved sound signals. HRTFs 

or HRIRs consist of the localization cues ITD and ILD which are described as: 

𝐼𝑇𝐷𝑃(𝜃, 𝜙, 𝑓) =
∆𝜓

2𝜋𝑓
= −

𝜓𝐿−𝜓𝑅

2𝜋𝑓
                                                           3.2 

Where: 

𝜓𝐿 refers to distributed phase of the left ear.𝜓𝑅 refers to the distributed phase of right ear. 

𝐼𝐿𝐷(𝑟, 𝜃, ∅, 𝑓) = 20 log10
𝐻𝑅 (𝑟,𝜃,𝜙,𝑓)

𝐻𝐿(𝑟,𝜃,𝜙,𝑓)
 (𝑑𝐵)                                                 3.3 
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        While the HRTF are defined in spherical coordinates, perception relies on only ITD and 

ILD cues (Xie 2013, Ahveninen et al 2014).  However, sound sources can be located at various 

positions that produce the same ITDs; these sources lie within what is known as the “cone of 

confusion” (Kapralos et al 2008). The cone of confusion phenomenon can lead to poor 

localization performance in distinguishing sound sources in vertical planes especially when the 

wavelength of a continuous signal approaches the head diameter in this case both ITD and ILD 

have zero values in the median plane (Wallach1940, Miller 2013). 

        HRTFs are never directly accessible to the auditory system because they are always 

embedded with the source signal. To model the HRTF, a finite impulse response filter (FIR) or 

infinite impulse response filter (IIR) is captured that captures the source-to-receiver transfer 

functions for a range of positions. IIRs tend to be implemented in the time domain and FIRs can 

be either time or frequency domain(Hao et al. 2007). High quality HRTF datasets are vital to 

modelling binaural hearing model accurately (Zhang et al. 2014). Generally, HRTF 

measurements process can be time consuming with a high degree of complexity due to the 

requirement for a high degree of thoroughness. To minimise these difficulties while achieving 

good control of the measurement environment, dummy head HRTF data setis suggested for 

most research purposes (Carty 2010).  

        A comprehensive HRTF dataset is selected to test our model for sound source localisation 

in a free field environment. Gardner and Martin presented a vast collection of head related 

transfer function measurements (Gardner and Martin 1995). More details about these data are 

discussed in section 3.6.  

3.1.2 Head related transfer function and inverse problems 

Some numerical techniques have been improved on the using the sophisticated geometry of a 

dummy or human head. Boundary elements method (BEM) is one tool used to solve the 

scattering problem of the acoustic wave. This method works in two steps; firstly, the acoustic 

wave is mutated into a boundary surface integration. Secondly, The boundary surface is 

descritised into a mesh of elements, leading to a set of linear algebra equations (Xie 2013). 

There is a body of research using this method, and these attempts investigate the relationship 

between the computational complexity of BEM as a function of frequency and showing that 

there is a directly proportional relationship between them (Ziegelwanger et al. 2015). 
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         A transfer function captures the gain and phase transformation of a linear-time-invariant 

system. HRTFs can be captured in anechoic environments as the Fourier transform (FT) of the 

head related impulse response (HRIR) that constitutes the binaural impulse response from a 

given source position in the time domain. The HRTF and HRIR are linked by Fourier transform 

as explained in the following expressions (Xie 2013):  

ℎ𝐿(𝑟, 𝜃, ∅, 𝑡, 𝑎) = ∫ 𝐻𝐿

+∞

−∞

(𝑟, 𝜃, ∅, 𝑓, 𝑎)𝑒𝑗2𝜋𝑓𝑡𝑑𝑓, 

                                   ℎ𝑅(𝑟, 𝜃, ∅, 𝑡, 𝑎) = ∫ 𝐻𝑅
+∞

−∞
(𝑟, 𝜃, ∅, 𝑓, 𝑎)𝑒𝑗2𝜋𝑓𝑡𝑑𝑓;                  3.4 

𝐻𝐿(𝑟, 𝜃, ∅, 𝑓, 𝑎) = ∫ ℎ𝐿

+∞

−∞

(𝑟, 𝜃, ∅, 𝑡, 𝑎)𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡,  

𝐻𝑅(𝑟, 𝜃, ∅, 𝑓, 𝑎) = ∫ ℎ𝑅

+∞

−∞

(𝑟, 𝜃, ∅, 𝑡, 𝑎)𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡. 

        To simulate the binaural signal that would be present at the ears for a source at a particular 

location, a waveform (S) is convolved with the HRIR filters (FL and FR) that have the closest 

azimuth and elevation to that of the source: 

                                                                       FL * S, FR * S 

The process (*)represents a convolution process between HRIR and incoming sound signal. In 

the frequency domain (HRTF) the convolution becomes a multiplication process.  

There are three ways to obtain HRTFs; measurements, computation and customization. the most 

accurate and common method is using measurements, particularly for human individuals. This 

method is performed in an anechoic chamber. The measuring signal generated by a computer is 

passed through a digital/analogue (D/A) converter and a power amplifier and then delivered to 

a loudspeaker. A pair of microphones simulate the human ears are used to record the resultant 

signals and then delivered to the computer after pass through amplifier and analogue/digital 

(A/D) converter. After do some necessary signal processing steps, the final HRIRs or HRTFs 
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are acquired. The second method used the mathematical and physical concepts to obtain HRTFs 

computationally. Some simplified human anatomical geometry can solve the analytical solution 

of HRTFs. One of the simplest models for HRTF calculation called spherical-head model where 

the head is simply indicated as a static circle shape with radius, and the ears are indicated as two 

opposites points on the circle. The main advantage to use this method is to overcome the 

scattering issue that results from human geometry (head and torso). The third method used the 

customization to approximately obtain the individualized HRTFs. This depends on the fact of 

existing a strong correlation between the individual HRTF and its individual anatomical 

parameters because the HRTFs characterize the interaction between received sound signals and 

human anatomical shapes (Zhong and Xie 2014). 

           It is not possible to invert the binaural signals effectively (at least in real-time). This is 

because the HRTF is non-minimumphase system and unlike a minimum phase system, the 

inverse is non-causal(Nam et al., 2008). Minimum-phase refers to a specific feature of a system 

where both the system and its inverse are causative and stable(Callister and 

Rethwisch2007).Zeros and poles refer to the roots of the numerators and denominators, 

respectively, of the polynomial transfer function of a system. Commonly, the poles and zeros 

of the transfer function are complex, and their positions can be plotted on the S-plane in order 

to graphically represent the system. The S-plane is also called a zero-pole plot. The Z-plane is 

a discrete time approximation of the S-plane. The Z-plane is a bilinear transformed 

representation of the s-plane which, using complex conjugation, expresses the periodicity of a 

frequency response once it has been discretised, normalised against 2𝜋*F_s (Oppenheim and 

Schafer 2014). Figure 3.1 shows the pole-zero plot of a transfer function and the Z-plane 

representation. The unit circle is the equivalent of the y axis on the s-plane folded round and 

reflected between 0*F_s and 𝜋*F_s, betweenπ*F_s and 2π*F_s there are conjugates. This 

represents the ‘aliased’ response outside the temporally representable portion of the system 

response. The position of the poles and zeros on the S-plane supply specific view into the 

response features of a transfer function.  
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Figure 3.2: Pole and zero plot of transfer function and the z-plane representation. 

         As time increases in a stable system all its elements of the homogeneous response have to 

reduce to zero. The system is unstable, if any pole and its complex conjugate lies outside the 

unit circle. while the zeroes will not influence on the system stability if they lie outside the unit 

circle, however, this points out to the system that is not invertible (Oppenheim and Schafer 

2014). In case of an unstable system, the pole, lying in the outside the unit circle of the Z-plane, 

produces an element in the system homogeneous response that rises without limit from any 

restricted initial conditions. HRTFs are non-minimum phrase systems and as a result are non-

invertible functions. Ziegelwanger et al. (2015) presented work that has been carried out on the 

numerical calculation of HRTFs. Conversely, the approximation of minimum phase HRTFs 

examined by  (Kulkarni et al. 1995) and the outcomes suggest a description of HRTF phase as 

a position-dependent ITD that is frequency independent. Approximation of minimum phase 

HRTFs may computed mathematically, but logically, it is inapplicable because it will lead to 

the unstable and non-causal system. 
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3.2  Spiking Neural Networks (SNNs) 

Networks of spiking neurons provide a more realistic representation of biological networks 

compared with traditional artificial neural networks (Bulanova et al.2012). The key feature of 

spiking neural networks is a temporal coding principle (Figure 3.3) where individual pulses 

(spikes) are emitted at particular moments in time. Spiking neurons can process multiple 

information sources into a single flow of signals, such as the amplitude and frequency of sound 

signals in the aural system (Gerstner et al. 1998).  

 

Figure 3.3 The temporal coding principle for encoding and decoding real vectors in spike 

trains (Paugam-Moisy and Bohte 2012). 

3.2.1 Neurons in spiking neural networks 

Spiking neural networks consist of the neurons that connect through shortened signs known as 

spikes. The computational units in spiking neurons include three steps: summation of all neuron 

input stimuli, integration over time, and finally a spike fires when the membrane potential 

expands over the threshold and returns to a reset value (Davies, 2013).  

         A spiking neuron model considers the impact of firing action potentials (spikes) on the 

internal state of targeted neuron as well as the relation between this neural internal state and the 

spikes the neuron fires (Paugam-Moisy and Bohte 2012). The membrane potential of each 

spiking neuron has positive charge it. The inner surface of membrane is filled by negative charge 

and the outer surface occupied by a positive charge. Those charges generate the membrane 

potential. In a resting state, the membrane potential does not receive any input cues and are at 

resting potential. An action potential (spike)occurs when the membrane potential reaches the 

threshold value and fires the signals. Absolute refractory time refers to the minimum period 
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between two fired spikes. Hyperpolarization is when the membrane potential is more negative 

at a certain point on the neuron’s membrane, while depolarization is when the membrane 

potential turns out to be more less negative (more positive). Figure 3.4 explains spiking neural 

network firing (spikes) and excitatory and inhibitory postsynaptic potentials over time 

processes. It describes the biological process that will be modelled (Gerstner and Kistler, 2002). 

The membrane potential represents the internal state of active neuron. Each neuron model 

describes a different membrane potential which causes firing action potentials when neuron 

received an enough energy. 

 

Figure 3.4: Firing process  

The part (a)refers to the spike neural network firing process (spikes): The part (b) refers to the 

excitatory and inhibitory postsynaptic potentials over time general shape (Gerstner and 

Kistler2002). 

        The firing process results from the movement of negative and positive ions across voltage-

gated ways. The spikes have the same form and are not affected by signal movement between 

presynaptic and postsynaptic neurons. Spiking neurons communicate through the spikes, and 

the synapses are responsible fortransferring an electrical or chemical signal between neurons. 

Figure 3.4 explains the firing process within neurons: each neuron emits spike-trains, which 

change significantly in frequency across a small period of time.  Neurons employ spatial and 
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temporal information of input spike samples for encoding their data and send it to other neurons 

(Davies, 2013). 

3.2.2 Leaky integrated and fire neuron model 

The Leaky integrate and fire spiking neural model (LIF) represents a very simple spiking neuron 

model.  Its analysis and simulation process are relatively easy, and it is widely used. The neuron 

in a LIF model, in its simplest form, is modelled as a “leaky integrator” of its input current I(t). 

Figure 3.5 illustrates how the pulse is transferred through the integrate-and-fire neuron. It 

explains the firing process within neurons; each neuron emits spike-trains, which change 

significantly in frequency across a small period of time. Neurons must employ spatial and 

temporal information of input spike samples for encoding their data and send it to other neurons 

(Davies 2013). The spike-train can be described using the form: 

                                                Fi = {ti
1, ti

2, ti
3, ti

4 ………, ti
f}                                           3.5 

The i indicates the neuron and f refers to the number of the spike, ti
f refers to the firing time.  

                                              Fi = {t | Vi (t) =ϑ ∧ Vi′(t) > 0}                                           3.6 

The variable Vi refers to the membrane potential which explains the internal state of neuron. 

A spike comes through the input (the axon) and, using a low-pass filter, converts the spikes 

from short pulse into an elongated pulse which takes the form 𝐼(𝑡 − 𝑡𝑗
(𝑓)
). Where j refers to the 

neuron and (f) refers to the number of the spike, 𝑡𝑗
(𝑓)

 refers to the firing time. This is used as 

input to charge the integrate-and-fire circuit which increases a value representing a postsynaptic 

potential 𝜀(𝑡 − 𝑡𝑗
(𝑓)
).A spike (1ms) is generated when the membrane potential of neuron rises 

over threshold value ϑ.  
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Figure 3.5: The integrate-and-fire neuron schematic design 

The integrate-and-fire neuron schematic design. In part ‘A’ the spike transforms a 

current pulse I(t) using a low-pass filter and then charges the capacitor. On the right, the 

schematic shape of the soma, a spike generates when voltage V along the capacitor rises 

above the threshold (Gerstner and Kistler 2002). 

        Integrate-and-fire neurons are rely on electronics concepts. Once the voltage rises over the 

capacitor threshold value ϑ, the neuron fires a pulse itself. The integrate and firing neural model 

can be described mathematically as: 

                            𝜏𝑚
𝜕𝑢

𝜕𝑚
= −𝑉(𝑡) + 𝑅𝐼(𝑡)                                                                            3.7 

τm refers to the membrane time constant where voltage leaks away so that this model is 

occasionally called the leaky integrate and firing model. R represents the membrane resistance, 

and equation 3.8 characterises a straightforward resistor-capacitor (RC)circuit where the 

leakage term results from the resistor and the integration of I(t)due to the capacitor being placed 

in parallel to the resistor (Gerstner and Kistler2002).  The spike generates a short pulse(δ) when 

the neuron fires as soon as V passes threshold ϑ. In a refractory period, which is the state that 

happens after neuron firing directly V set to a baseline. 
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       The spiking events in the LIF model start when the membrane potential V(t) reaches a 

certain spiking threshold, it is immediately reset to a reset potential and the leaky integration 

operation characterised by Equation 3.8starts again with the reset potential initial value 

(Vreeken 2002). 

3.3 The mathematical description of Deep Neural Networks DNNs 

A DNN is a sequential neural network that has many successive nonlinear hidden layers. An 

input feature vector𝑥𝑡 is transformed among these hidden layers by applying a nonlinear 

mapping. A DNN can be describe by the following expressions.  

                𝑧0 = 𝑥𝑡                                                                                           3.8                                        

                 𝑦𝑖
(𝑙+1)

= ∑ 𝑤𝑖𝑗
(𝑙)𝑁(𝑙)

𝑗=1 𝑧𝑗
(𝑙)
+ 𝑏𝑖

(𝑙)
                                                        3.9 

                   𝑧𝑖
(𝑙+1)

= 𝜎(𝑦𝑖
(𝑙+1))                                                                              3.10 

Where 𝑁(𝑙) refers to the number of units in the 𝑙𝑡ℎ layer, 𝑊(𝑙) is a weight matrix and  𝑏(𝑙) 

denotes to the bias vector in this detected layer. 𝜎(𝑥) refers to the activation function which 

is nonlinear. There are many types of activation functions for different tasks, the most 

common ones are the sigmoid activation function (equation 3.11), hyperbolic tangent 

function (equation 3.12), rectified linear unit (ReLU) activation function (equation 3.13) 

and soft-plus activation function which is an analytic function defined as a smooth 

approximation of rectification (equation 3. 14) (Goodfellow et al. 2016). 

                    𝜎(𝑥) =
1

1+𝑒𝑥𝑝(−𝑥)
                                                                              3.11 

                    𝜎(𝑥) =
1−𝑒𝑥𝑝(−2𝑥)

1+𝑒𝑥𝑝(−2𝑥)
                                                                             3.12 

                   𝜎(𝑥) = max (0, 𝑥)                                                                            3.13 

                   𝜎(𝑥) = log(1 + 𝑒𝑥)                                                                          3.14 

 

        Deep learning is appropriate when enormous amounts of training data are available. It 

demonstrates state-of-the-art performance for solving problem in various fields involving text, 
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sound, or image. Furthermore, deep learning has been used in many advances in computer 

vision and speech recognition. One of the most significant characteristics of deep learning is 

working with feature representation or abstract representation of training data (Schmidhuber 

2015).  

        For multiclass classification deep neural networks, the goal of training is to determine the 

boundaries between the different classes in the features-space. Recently, Softmax activation 

functions have played significant role in solving multiclass classification problems. Softmax is 

used in the output layer to represent the probability of a particular classes from input vector as 

explained in the following (Chung et al. 2016): 

                        𝑝(𝑠/𝑥𝑡) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑥𝑡) =
exp (𝑤𝑠𝑦

𝐿)

∑ exp (𝑤𝑛𝑦𝐿)
𝑁𝐿
𝑛=1

                                3.15 

        Deep neural networks are trained by updating the weight matrix and bias vector applying 

a gradient descent algorithm which minimises a cost function across a dataset. The process of 

learning the weights and biases, is described in equation 3.16 And 3.17, where ϵrefers to the 

learning rate and αis the momentum, respectively. The cross-entropy C is computed between 

the output of Softmax p(x) and the target probability p(x) as shown in the following equation 

(Bengio 2012): 

                          ∆𝑤𝑖𝑗(𝑡) = 𝛼∆𝑤𝑖𝑗(𝑡 − 1) − 𝜖
𝜕𝐶

𝜕𝑤𝑖𝑗(𝑡)
                                          3.16 

                          ∆𝑏𝑖(𝑡) = 𝛼∆𝑏𝑖(𝑡 − 1) − 𝜖
𝜕𝐶

𝜕𝑏𝑖(𝑡)
                                                3.17 

                            𝐶 = −∑ 𝑝(𝑥) log 𝑝(𝑥)𝑥                                                           3.18 

3.4 Learning paradigm 

Currently, there are two forms of multi-label classification methods: batch learning and online 

learning, batch learning was applied.  Classes are defined as binary vectors, where each index 

corresponds to a pair of angles. In the training phase, the categorical cross-entropy was used to 

determine the error between the neural network outputs and the desired class for each batch. 

Backpropagation was used to update the learning parameters using the value of the cost function 

(weights and biases). The partial derivatives of the cost function with respect to the weights and 

biases (and ∂C/∂b) can be computed by using equation 3.19 (Nielsen 2017): 
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𝜕𝐶

𝜕𝑤𝑖𝑘
𝑙 = 𝑎𝑘

𝑙−1𝛿𝑖
𝑙 and 

𝜕𝐶

𝜕𝑏𝑖
𝑙 = 𝛿𝑖

𝑙                                                       3.19    

Where δˡi, denotes to the error in the iᵗʰ neuron in the lᵗʰ layer and wˡik refers to the weight value 

that connect between kᵗʰ neuron in the layer to the iᵗʰ neuron in the next layer. bˡi is the bias of 

the iᵗʰ neuron in the lᵗʰ layer. aˡi refer to the activation function of the iᵗʰ neuron in the lᵗʰ layer.  

          Figure 5.8 explains the training and validation process steps that were applied to train and 

validate the DNN for multisource localization. The DNN has been trained using the full size of 

training data that was generated using various speech samples belonging to 17 speakers to 

predict 4032 angle pairs (classes) in case of using IRCAM and 4800 angle pairs for KEMAR.  

         To validate the multisource localization model performance, a new data set that was 

generated from completely new speech samples belonging to 3 speakers (two males, one 

female) was used in the model validation stage. Generally, all the results that shown in this 

chapter resulted from applying all suggested models with validation speakers. So that 

completely fresh samples have been introduced to the previously trained localization model to 

investigate its ability in predicting the sources from unknown sound signals.  

3.5 Backpropagation learning Algorithm 

The original backpropagation algorithm consisted of two complementary steps. The first is the 

forward step, where the network outputs are computed from its inputs and initial weights. In the 

second step, a cost-function (cross-entropy) is computed by comparing the true classes with the 

predicted classes of the training data. This is then propagated back to update the networks 

parameters (weight and bias) which gives the algorithm its name ‘backpropagation’ 

(Nikoskinen 2015). The backpropagation algorithm is the fastest algorithm used for computing 

the gradient of the cost function (Buscema 1998). The Gradient-based concept is the principle 

of most optimization algorithms that are used to optimize the loss function with respect to the 

neural network parameters (Bengio2012). 

        In the case of multi-class classification, the backpropagation algorithm with cross entropy 

for multiple hidden layer networks can be described by the following steps: 
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                                 𝐹(𝑥) =  

(

 
 

𝑃(𝑌 =
1

𝑥
..
.

𝑃(𝑌 =
𝐾

𝑋)

 
 

                                                                 3.20 

Where K refers to the class classification problem and F(x) is the output layers when the output 

activation function is considered as Softmax (see equation 3.15) 

                         𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝑥1, …… , 𝑥𝐾) =
1

∑ 𝑒𝑥𝑖𝐾
𝑖=1

(𝑒𝑥1 , …… . , 𝑒𝑥𝐾)                         3.21 

to compute the gradient, the following computations are described: 

                     
𝜕𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑥)𝑖

𝜕𝑥𝑗
[
= 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑥)𝑖 (1 − 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑥)𝑖 )  𝑖𝑓  𝑖 = 𝑗

= −𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑥)𝑖 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑥)𝑗           𝑖𝑓  𝑖 ≠ 𝑗
             3.22 

Then equation 3.23 is introduced, where 𝑓(𝑥)𝑘 refers to the 𝑘𝑡ℎ components of                 

𝑓(𝑥): (𝑓(𝑥))𝑘 = 𝑃(𝑌 =
𝑘

𝑥
). 

                                   (𝑓(𝑥)𝑦) = ∑ 1𝑦=𝑘(𝑓(𝑥)𝑘)
𝐾
𝑘=1                                                    3.23 

Then  

                             −𝑙𝑜𝑔(𝑓(𝑥)𝑦) = ∑ 1𝑦=𝑘log (𝑓(𝑥)𝑘)
𝐾
𝑘=1 = 𝛿(𝑓(𝑥), 𝑦)               3.24 

The symbol  𝛿refers to the loss function correlates to cross-entropy (Buscema 1998, Sadowski 

2016) 

3.6 Support Vector Machine SVM 

The support vector machine (SVM) is one of the discriminative binary classifiers proposed by 

Vapnik as a set of related supervised learning techniques (Vapnik 1995). Initially, SVMs were 

developed to perform classification functions (Burges 1998) and then expanded for regression 

tasks (Smola and Schölkopf 2004). In binary SVM classifiers, each data point belonging to only 

one of two classes is represented by an n-dimensional vector. A linear classifier is trained to 

separate these two classes of data using a hyperplane. SVMs can use a kernel function to learn 

non-linear boundary regions between training samples by mapping the input samples into higher 

dimensional space (Pillay and Govender 2017). A classification score for a data point is 
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acquired by evaluating the distance of the predicted sample to the hyperplane (Evgeniou and 

Pontil 1999). The mathematical expression for the training data set can be described as: 

                           𝐷 = {(𝑥1, 𝑦1) (𝑥2, 𝑦2)…… (𝑥𝑚, 𝑦𝑚)}                                   3.25 

     D refers to the input data point that used as training set for SVM classification function.𝑥𝑖 

refers to m-dimensional vector. 𝑦𝑖indicates the class of the sample 𝑥𝑖 ,  taking either 1 or -1. 

The SVM classifier F(x) can be described by using equation 3.26. 

         𝐹(𝑥) = 𝑤. 𝑥 − 𝑏                                                                             3.26 

w and b indicate to the weight and bias vectors, which are updated throughout the training 

process by the SVM. For multiclass classification implementations, binary classifiers can have 

combined by using pairwise coupling (Hastie and Tibshirani 1998). Other methods used to 

implement SVM for Multi-class classification include, one-against-one (OAO) and one-against-

all (OAA) classifiers. In the OAA, M binary SVM classifiers are constructed for M-class 

problems. In the training phase, the samples in the one class are labelled as positive samples 

while all the rest samples are labelled as negative. In the prediction stage, the classification is 

acquired from all M-SVM classifiers. The test sample is labelled by using the maximum output 

among the M classifiers (Vapnik 1998, Hsu and Lin 2002). In One-Against-All method, the 

expectation of the likelihood of involving errors on the test examples are computed by applying 

the following equation: 

       𝐸[𝑃(𝑒𝑟𝑟𝑜𝑟)] =
𝐸[ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑝𝑜𝑖𝑛𝑡𝑠 𝑡ℎ𝑎𝑡 𝑎𝑟𝑒 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑣𝑒𝑐𝑡𝑜𝑟𝑠]

(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑣𝑒𝑐𝑡𝑜𝑟𝑠)−1
                  3.27 

       This equation calculates the proportion of the expectation of the number of support vectors 

which are training points to the number of training set examples (Vapnik 1995). Generally, the 

studies demonstrate that the OAA using a polynomial kernel performs better in solving multi-

class classification problems compared with other types of multi-class SVM approaches 

(Chamasemani and Singh 2011).  

3.7 Research Databases 

In this section, the HRTF and the speech databases used in this research will be briefly 

explained. The KEMAR HRTF data set and IRCAM HRTF data set are used to investigate 

sound source localization models in different experimental conditions. Two HRTF data sets 

were used to train and validate the model for single and multisource localization. These datasets 
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have different anatomical parameters (head size, ear shape and torso), this improves the model 

generalisation over previous work which was limited to a single torso simulator.  Furthermore, 

anechoic speech samples were convolved with binaural responses were used to test and validate 

different sound localization models in this research. 

3.7.1 KEMAR Dummy HRTF Dataset 

The KEMAR Dummy head HRTF dataset was captured from sound sources in a free field 

environment. Gardner and Martin presented an enormous collection of head related transfer 

function measurements which was published as ‘HRTF KEMAR’ dummy head data sets 

(Gardner and Martin 1995). The measurements were carried out in an anechoic room. The 

KEMAR mannequin was raised vertically on a portable turntable that allowed an accurate 

controlled rotation in any azimuth.  The speaker was raised on a microphone stand which 

provided a precise elevation about the mannequin. The measurements are presented one 

elevation at a time. Elevations in the range of -40 to 90 degrees with 10° regular step increments. 

While the azimuth within the range 0 to 360 degrees with asymmetrical increment degrees to 

cover a variety of spherical coordinates around KEMAR head (Gardner and Martin, 1995). 

Table 3-1 explains the dimensionality of KEMAR dummy head HRTF database including the 

number azimuth measurements for each elevation. It has 710 locations along vertical and 

horizontal planes and the sample frequency is 44.1 KHz. 
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Table 3-1: KEMAR dummy HRTF number of measurements and azimuth increment at each 

elevation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The following figures show samples of impulse responses for the left and right ears from 

KEMAR dummy dataset in particular directions.  

 

Elevation 

 

Points Per 

elevation 

 

Azimuth Increment Per 

elevation (degree) 

-40 56 6.43 

-30 60 6.00 

-20 72 5.00 

-10 72 5.00 

0 72 5.00 

10 72 5.00 

20 72 5.00 

30 60 6.00 

40 56 6.43 

50 45 8.00 

60 36 10.00 

70 24 15.00 

80 12 30.00 

90 1 x.xx 
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Figure 3.6: Impulse responses for the left and right of KEMAR dummy ears in the time 

domain with azimuth=0˚ and elevation=0˚. 
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Figure 3.7: Head-related transfer function for the left and right KEMAR dummy ears in the 

time domain. 
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       Frequency domain response, viafast Fourier transform (FFT) on a windowed frame, using 

a Hanning window with size 512, of impulse responses data samples  are shown in the following 

figures: 

 

Figure 3.8: KEMAR normalised impulse responses in the frequency domain. 

 



 Chapter 3: Background and Data sets  

Page 58 of 252 

 

 

Figure 3.9: Impulse response of KEMAR database in the horizontal plane when elevation = 0 

degree. The colours refer to different response along different azimuth angles(locations) 

3.7.2 IRCAM LISTEN HRTFs Dataset 

The second HRTF data set is known as the IRCAM-Listen HRTF database (Goodman and 

Brette 2011). This data set consists of a general purpose HRIRs measurements for 51 different 

subjects. Subject 1002, a male human subject, is selected for all experiments in this research. 

This data has 187 locations which are referred to different HRTF containing different elevation 

and azimuth measurements. Loudspeaker is moved by a U-shaped structure called crane which 

is made from metal that completely enveloped with melamine panels. The crane has been 

elevated by a couple of step-by-step motors controlled by the computer. A measurement 

software was used to choose the elevation angle and an angular sensor is used to send a 

feedback. The elevation values in the range of -45 to 90 degrees and azimuth within the range 

0 to 360with 15° regular step increments. Table 3-2 shows the dimensionality of IRCAM- Listen 

HRTF data set involving the number azimuth measurements for each elevation and the sample 

frequency is 44.1 KHz (Blauert 1997). 
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Table 3-2: IRCAM LISTEN HRTF database number of measurements and azimuth increment 

at each elevation. 

 

Elevation 

 

Points Per 

elevation 

 

Azimuth Increment 

Per elevation (degree) 

-45 24 15.00 

-30 24 15.00 

-15 24 15.00 

0 24 15.00 

15 24 15.00 

30 24 15.00 

45 24 15.00 

60 12 30.00 

75 6 60.00 

90 1 360.00 

 

The following figures show samples of impulse responses from the left and right from IRCAM 

Listen database in particular directions which are presented for data visualization purposes.  
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Figure 3.10: Head related impulse responses for IRCAM subject (left and right ears) in the 

time domain. 

 

 



 Chapter 3: Background and Data sets  

Page 61 of 252 

 

 

Figure 3.11: Plots of the pair of impulse responses from particular directions of IRCAM 

selected subject. 

 

 



 Chapter 3: Background and Data sets  

Page 62 of 252 

 

 

Figure 3.12: Impulse responses in the time domains from left ear of IRCAM, azimuth = 0 

degree and elevation = 60 degree. 

 

Figure 3.13: Impulse responses in the time domains from right ear of IRCAM, azimuth = 0 

degree and elevation = 60 degree. 
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Figure 3.14: Image illustrates the impulse response of IRCAM database in the horizontal 

plane when elevation = 0 degree. 

3.7.3 Speech Databases  

The speech database SALU-AC (Al-Noori 2017, Al-Noori et al. 2015) recorded at the 

University of Salford was used. The data includes variety of speech samples of English spoken 

by native and non-native speakers in addition to speech samples in different languages. These 

speech samples were recorded in an anechoic enviroment. The objective in using this data is the 

efficient testing of sound source localization models due to the variety of speech samples 

belongs different languages. The main features of this database can have summarized as 

following; It contains very clean speech samples because it was recorded in an anechoic 

chamber, it contains English speech samples were recorded from 55 males and 55 females, it 

included a variety of speech sample recorded from English native and non-native speakers, the 

time duration for each speech sample is 5 seconds with sample rate 16 kHz. This provides 

flexible sound samples and durations for different sound source localization experiments. The 

SALU-AC has 110 different speakers, 55 of males and 55 of females recorded at 16 kHz sample 

rate.     



 Chapter 3: Background and Data sets  

Page 64 of 252 

 

3.7 Chapter Summary  

1. This chapter has focused mainly on giving the background to binaural hearing and 

sound source localization. The mathematical description of HRTFs as acoustical 

filters and their basic components have been demonstrated.  

2.  Also focused on explaining the principles of SNN and demonstrated the principle 

of encoding and decoding spike trains. 

3.  Furthermore, this chapter has given a description of the machine learning 

methods that are used in this research for single and multisource sound 

localization. These methods include DNN and SVM. 

4.  The chapter covered briefly some computational concepts behind these two 

machine learning approaches as well as the most commonly used learning 

algorithm (backpropagation).  

5. Finally, this chapter has given a description of the speech database and the HRTF 

databases that contributed to testing different sound source localization methods 

in this research. In addition to the basic characteristics of KEMAR dummy head 

HRTFs, IRCAM Listen HRTFs and speech data set that is used in this research.  

 

 



Chapter 4: Single-Sound Source Localization Proposed Model 

Page 65 of 252 

 

CHAPTER 4  

SINGLE-SOUND SOURCE LOCALIZATION PROPOSED 

MODEL  

Chapter Overview 

This chapter focuses mainly on explaining the structure of the sound source localization model 

that is suggested by Goodman and Brette (2011). Single sound source localization modelled 

using a spiking neural network is replicated by using KEMAR dummy head-related transfer 

functions. The model component description is shown in section 4.1. The experiments and the 

outcomes of investigating the performance of the localization model using various kinds of input 

sound signals including two types of white noise signals and various speech samples are 

examined in section 4.2. This work is different from Goodman and Brette by investigate the 

model performance to localize the sound sources under different conditions; researching the 

localization performance at single and octave frequency. Also, section 4.3 shows the impact of 

varying levels of environmental noise with different signal-to-noise ratios (SNRs) on the 

robustness of the single sound source localization model. Comparison between spiking neural 

networks (SNN) and other machine learning methods (support vector machine (SVM)) for single 

source localization is shown in section 4.4. Multisource localization by using SNN based 

localization model is presented in section 4.5.  A motivated localization model based on 

applying the spiking neural networks as pre-processing method integrated with different 

machine learning methods is presented in section 4.6.  
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4.1 Spiking Neural Networks localization model 

SNNs can process and account for time delays in signals; a key feature of third generation 

models when compared with previous approaches (Yu et al. 2016, Diaz et al. 2016).  This 

feature is essential in spatial signal processing, as much of the information is encoded in the 

interaural time difference and interaural phase shifts of different frequency components. 

Therefore, the current work attempts to explore the suitability of the spiking neural network 

model as a signal feature extraction tool to provide information on sound source localisation 

from binaural signals. Previous methods performed well when one source was present, but 

performance was poor when multiple simultaneous sources were present as will explaining in 

the current chapter. Therefore, like the way in which our brains have learnt to interpret the 

neuron firings from the auditory nerve, a supervised learning algorithm is trained to process the 

firing rate from the SNN and learn to perform multi-source localisation as a novel idea to solve 

multisource separation and detection problems. This will clearly show in chapter 5. 

4.1.1 Single-sound source localization model (SSL) 

Work conducted by Goodman on single sound source localization was replicated and tested to 

investigate its ability to localize single and multi-sound sources (Goodman and Brette 2011). A 

simple spiking neural model was designed to predict the location (azimuth and elevation) of a 

single sound source in spherical coordinates. The location estimation process relies on spatial-

temporal filtering and spiking nonlinearity. Figure 4.1 explains the sequential steps of Goodman 

model that was applied on an input signal to analyse the binaural information. The measured 

HRTFs simulate the acoustical filtering of the source signal that received by the two ears. The 

first application of the HRTF is generating a simulation of a signal capture by a dummy head. 

Then there is another application of the HRTF, this time for all possible angles. The localization 

model in the simulation stage simulates all possible HRTF pairs from data sets. The left and 

right channels of HRTF are reversed to decrease ITD and ILD impact on the received signal 

and make a left and right signal close to identical at (0, 0) which is the receiving end of the 

incoming sound signal. The left and right channels’ reversal supports the training stage which 

does not take account of the gain and delay in teaching the spiking model to localise the sound 

source. 
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        A set of gammatone filters, that simulate the auditory pathway (cochlea), are applied on 

the resulting signals, followed by neural filtering. The two monaural signals were transferred to 

the cochlear for analysing into multiple frequency bands. The filtered signals are transferred 

into spike trains by the monaural neurons which form the spiking neuron model (in this work a 

leaky integrate and firing model is used). These spike trains are the input to the neurons in the 

second layer (binaural neurons) which are coincidence detector neurons. The binaural neurons 

fire when receiving coincident inputs. When two neurons are firing concurrently they are linked 

together, and then the weight of their connection will influence the action potential to cross the 

neuron threshold value and firing spike. A sound source location is detected by analysing the 

output of the coincident neurons for each location. The coincidence detection neuron outputs 

refer to the synchrony fields of their inputs that contain that location. Location-specific 

synchrony samples are thus matched to the activation of neural assemblies which equivalent the 

sound directions (azimuth, elevation). 

 

Figure 4.1: Sound source localisation model (Goodman & Brette model) 

The sound signal S(t) emanates from sound source at a given azimuth (θ) and elevation (∅). The 

signals present (SL(t) and right SR(t)) at each ear can be simulated by the embedding of S(t) with 

two linear filters: 

𝑺𝑳 = 𝑯𝑹𝑰𝑹𝑳(𝜽, ∅) ∗ 𝑺, 𝑺𝑹 = 𝑯𝑹𝑰𝑹𝑹(𝜽, ∅) ∗ 𝑺                                        (𝟒. 𝟏) 
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       The Goodman model embeds the HRTF with the left and right filters swapped for each 

angle. This has the effect of removing the ITD for the filter pair representing the true source 

angle.       

𝑺𝑵,𝑳(𝜽𝒋, ∅𝐤) = 𝑯𝑹𝑰𝑹𝑹((𝜽, ∅)) ∗ 𝑺𝑳,  𝑺𝑵,𝑹((𝜽, ∅)) = 𝑯𝑹𝑰𝑹𝑳((𝜽, ∅)) ∗ 𝑺𝑹            (𝟒. 𝟐) 

            The 𝑆𝑁,𝐿((𝜽, ∅)) and 𝑆𝑁,𝑅((𝜽, ∅))are then used as inputs to individual spiking neurons. 

The spectro-temporal receptive field of the neuron (STRF) define as a filter works to save the 

incoming sound signal frequency and time representations in to the matrix and then filter them 

into spike trains. Equation 4.3 describes the left and the right sound signals that are filtered 

through the neuron’s spectro-temporal receptive field (STRF) to transform into the signals into 

spike trains. STRF can reasonably estimate the responses of auditory nerve neurons from new 

a stimulus (Zhao and Zhaoping 2011). Spectro-temporal receptive fields (STRFs) can be 

defined as linear approximations of the signal transform from sound waves to neural responses 

along the auditory pathway. STRFs depend on the ensemble of incoming stimuli and this has 

been investigated mechanically and computationally as a potential composite nonlinear process 

(Kim and Young 1994). 

      𝑺𝑵,𝑳(𝛉,𝛟) =NA  ∗ 𝑯𝑹𝑰𝑹𝑳(𝛉,𝛟) ∗ 𝑺, 𝑺𝑵,𝑹(𝜽,𝝓) =NB  ∗ 𝑯𝑹𝑰𝑹𝑹(𝜽,𝝓)𝑺             (𝟒. 𝟑) 

N is the spectro-temporal receptive field for a given input signal. Generally, the received signals 

at the two ears are filtered transformations of the source signal. In the acoustic environment, the 

filters are specified by the head and source relative positions. When the sound is filtered through 

the spectro-temporal receptive field of neuron N, it is converted in to a spike train. The spike 

trains are generated by the leaky-integrate-and-fire(LIF) algorithm. 

        In the integrate-and-fire model structure, each presynaptic spike produces a postsynaptic 

current pulse. More accurately, if j represents the presynaptic neuron released a spike at time 

tj
(f) and a postsynaptic neuron i received a current with time cycle (t - tj

(f)). The input current at 

neuron i is computed by the summation the total current pulses as explained by equation 

4.5(Paugam-Moisy and Bohte 2012):    

                               𝑰𝒊(𝒕) = 𝒘𝒊𝒋 (𝒕 − 𝒕𝒋
(𝒇)
)                                                                        (𝟒. 𝟓) 
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The operator wij represents a measurement of the synaptic effectiveness between neuron j and 

neuron i. The above formula considers a synaptic interaction model.   

        The spiking neural network is constructed from two fully connected layers. The monaural 

input neurons are connected to a second layer of neurons referred to as coincident detection 

neurons. Each coincident detection neuron has two inputs from two of the input neurons. There 

are as many coincident neurons as there are angles in the embedded HTRF. The model is based 

on the principle that neurons synchronize when their inputs are similar. When the firing of the 

two inputs are similar, the firing rate of the coincident neuron will be high. This indicates a 

strong correlation between the signals at both ears and thus a high likelihood that the sound 

originated at the angle represented by that input pair. 

       A bank of Gammatone filters (GFs) is implemented in our work to simulate the frequency 

resolution of human hearing cochlea. Gamma-tone filters take the form of cascades of four 2nd-

order IIR filters corresponding to a 4th-order gamma-tone filter (Slaney 1993).  A gamma-tone 

filter (GF) can be statistically described by equation 4.6 as a shape of impulses responses in the 

time range 

         𝒈(𝒕) = 𝒂𝒕𝒏−𝟏𝒆−𝟐𝝅𝒃𝒕 𝐜𝐨𝐬(𝟐𝝅𝒇𝒄 + 𝜽)                                                  (4.6) 

 When t > 0, the symbol ‘a’ indicates a constant which is responsible for regulating the gain, 

with θ representing phase which is normally set to 0. The filter bank is patterned as group of 

equivalent bandpass filters, each band limited to an independent frequency (Slaney 1993). The 

fundamental parameters of the gamma-tone filters are b and n. The b depends on the value 

specified for the duration of the impulse response; n refers to the order of the filter. This is 

generally accepted as analogous to the magnitude response of the human auditory filter. The 

human data summarized on the equivalent rectangular bandwidth (ERB) of the auditory filter 

by applied the following function: 

                   𝑬𝑹𝑩 = 𝟐𝟒. 𝟕 + 𝟎. 𝟏𝟎𝟖 ∗ 𝒇𝒄                                                          (𝟒. 𝟕) 

         fc represents the centre frequencies of the bands that make up the filter bank. Gamma tone 

filter banks can be used to acquire signal features at different frequency levels. (Ma, et al, 2015). 

However, the literature suggests that the equivalent rectangular bandwidth (ERB) provides more 

accurate estimation of the auditory filter bandwidth (Singh et al., 2012). 
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The number of neurons is increased, such that for each frequency and angle there is an input 

neuron pair and a coincident neuron. The maximum firing rate for the active neurons assembly 

are computed to indicate the source location. Goodman used a winner-takes-all approach, where 

the azimuth and elevation of the neuron with the maximum firing rate is taken as the optimal 

prediction. 

4.2 Experiments and results 

As mentioned in the previous section, a single source localization model by Goodman and 

Brette (2011) is replicated to investigate the model performance in different conditions. Two 

HRTF data sets were used to test the model for single source localization in different conditions. 

These datasets have different anatomical parameters (head size, ear shape and torso), this 

improves the model generalisation over previous work, which was limited to a single torso 

simulator. In the following, the performance of the spiking neural model as a single sound 

source localization model with IRCAM and KEMAR HRTF datasets was examined. The single 

sound source localisation framework trained by using 710different azimuth and elevation 

combinations existing in the KEMAR HRTF data set. In addition, it was trained using 187 

various locations in IRCAM HRTF data set. The model localization performance was 

investigated under various condition; different types of sound signals, different frequency 

levels, a variety of input signal durations (100ms - 500ms), and noisy signals with different 

SNRs. In all experiments, the signed angle error is computed. The angle error between the actual 

and predicted angles is computed by finding the difference between the true angle and the 

predicted angle for azimuth and elevation. The localization accuracy for azimuth angles is also 

calculated by finding the average of angles that were predicted correctly with 0˚or 15˚angle 

error over the total number of points that participated in the model validation stage according 

the equations 4.8 and 4.10. while, the elevation angle localization accuracy is calculated by 

finding the average of angles that were predicted correctly with 0˚ or 10˚angle error over the 

total number of points that participated in the model validation stage according the equations 

4.9and 4.11. 

     𝑨𝒛𝒊𝒎 𝑳. 𝑨𝒄𝒄𝑰𝑹𝑪𝑨𝑴 =
𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒂𝒛𝒊𝒎𝒖𝒕𝒉 𝒂𝒏𝒈𝒍𝒆𝒔 𝒕𝒉𝒂𝒕 𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒆𝒅 𝒄𝒐𝒓𝒓𝒆𝒄𝒕𝒍𝒚 ±𝟏𝟓˚

𝟏𝟖𝟕
.                 (4.8)                            

   𝑬𝒍𝒆𝒗 𝑳. 𝑨𝒄𝒄𝑰𝑹𝑪𝑨𝑴 =
𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒆𝒍𝒆𝒗𝒂𝒕𝒊𝒐𝒏 𝒂𝒏𝒈𝒍𝒆𝒔 𝒕𝒉𝒂𝒕 𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒆𝒅 𝒄𝒐𝒓𝒓𝒆𝒄𝒕𝒍𝒚 ±𝟏𝟓˚

𝟏𝟖𝟕
.                   (4.9) 
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    𝑨𝒛𝒊𝒎 𝑳. 𝑨𝒄𝒄𝑲𝑬𝑴𝑨𝑹 =
𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒂𝒏𝒈𝒍𝒆𝒔 𝒕𝒉𝒂𝒕 𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒆𝒅 𝒄𝒐𝒓𝒓𝒆𝒄𝒕𝒍𝒚 ±𝟏𝟓˚

𝟕𝟏𝟎
.                        (4.10) 

   𝑬𝒍𝒆𝒗 𝑳. 𝑨𝒄𝒄𝑲𝑬𝑴𝑨𝑹 =
𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒆𝒍𝒆𝒗𝒂𝒕𝒊𝒐𝒏 𝒂𝒏𝒈𝒍𝒆𝒔 𝒕𝒉𝒂𝒕 𝒑𝒓𝒆𝒅𝒊𝒄𝒚𝒆𝒅 𝒄𝒐𝒓𝒓𝒆𝒄𝒕𝒍𝒚±𝟏𝟎˚

𝟕𝟏𝟎
.             (4.11) 

in above equations, the 15˚ refers to the minimum increments step in the azimuth measurements 

of IRCAM dataset while the minimum increment step for elevation measurements is 10˚. For 

KEMAR database, the azimuth increment steps are irregular with minimum step 5˚. So that, 

the𝑨𝒛𝒊𝒎 𝑳. 𝑨𝒄𝒄𝑲𝑬𝑴𝑨𝑹 consists of all angle errors in range 5˚ to 15˚. While the elevation 

measurement has regular increments step with 10˚. In the following, various experiments are 

carried out to investigate localization performance under different conditions.     

4.2.1 Testing distinct types of input sound signals 

The single sound source localization performance is investigated with different types of sound 

signals. This experiment included examining a variety of generated sound signals which are 

embedded in various locations from KEMAR and IRCAM HRTFs data sets. Firstly, the model 

is tested with diverse types of white noise input signals including gaussian white noise (GWN) 

and uniform white noise (UWN). GWN returns samples from the "standard normal distribution” 

while UWN represents to the random samples from a uniform distribution. Figure 4.2. shows 

samples of Gaussian and uniform white noise input signal embedded with IRCAM HRTFs. The 

model is tested with different samples of Gaussian and uniform white noise with 300 ms 

samples duration.  

        Secondly, sinewave modulated white noise (SMW) sound signals are used to test the 

localization method. The process of modulation denotes regularly employing the information 

signal to modify some parameter of the carrier signal. The carrier signal is usually only a simple, 

single-frequency sinusoid (modified in time such a sinewaves). This type of modulation method 

is called amplitude modulation (AM) that is used in electronic communication to convey 

information through a radio carrier wave. The signal strength of the carrier wave is varied in 

proportion to that of the message signal being transmitted (Peterson, Smith et al. 1996). To 

simplify the modulation process, 100% modulation has been used in this experiment as shown 

in figure 3.4. It refers to the maximum possible amount of modulation when the level of 
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modulation can be increased to a level where the envelope falls to zero and then rises to twice 

the un-modulated level. 

       The importance of this experiments can be summarized by the advantaged of using 

modulation in the communication system. One of the advantages of modulation is the 

multiplexing that refer to the ability to transmit two or more signals over the same 

communication channel at the same time. Hence, the modulation helps to Avoids mixing of 

signals. If the baseband sound signals are transmitted without using the modulation by more 

than one transmitter, then all the signals will be in the same frequency range i.e. 0 to 20 kHz. 

Therefore, all the signals get mixed together and a receiver cannot separate them from each 

other. Hence, if each baseband sound signal is used to modulate a different carrier then they 

will use different channels. Thus, modulation avoids mixing of signals. 

       In this experiment, sinewave is used as an envelope signal at 5Hz and 0.3s duration and the 

white noise of 0.3s duration is the carrier signal to examine its influence on localization 

performance. The 5Hz refers to the lowest modulation frequency of baseband signal. The low 

frequency signals unable to travel long distance when they are transmitted. They get heavily 

attenuated. The attenuation reduces with increase in frequency of the transmitted signal, and 

they travel longer distance. The modulation process increases the frequency of the signal to be 

transmitted. Therefore, it increases the range of communication. The modulation enhances the 

communication signals by overcome on all transmission limitations. This experiment helps to 

investigate the localization performance with amplitude modulation signal that required 

limited bandwidth and low frequency carrier. 
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Figure 4.2: Gaussian and Uniform white noise input signal convolved with IRCAM HRTFs. 

        Figures 4.3 and 4.4 show the form of amplitude modulated signal convolved with KEMAR 

and IRCAM HRTFs that used to test the single source localization model.  

 

Figure 4.3: Sinewave modulated white noise signal input signal convolved with KEMAR 

HRTFs. 
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Figure 4.4: Sinewave modulated white noise input signal convolved with IRCAM HRTFs. 

         Thirdly, clean speech samples were convolved with binaural responses were used to test 

the Spiking neural network localization model for sound source localization. In this experiment. 

Different speech samples in different languages were used to investigate the localization model 

performance with realistic sound samples and prepare it for real-time application. The 

localization model was investigated with different speech samples with 0.3s duration including 

different utterances of 10 speakers (5 male and 5 female). 

         The experimental outcomes of applying these diverse types of artificial sound signal and 

real speech samples are explained in figure 4.5. It's noticeable that these different sound inputs 

have different level of impacts on the localization model performance. Quantitatively, for the 

localization model of 40 Gamma-tone frequency channels, the average estimation error for 

speech signal was the less compared with the other types of input signal. Table 4-1 explains that 

the azimuth angle estimation accuracy ±15˚ for IRCAM and KEMAR. Whilst, the elevation 

angle estimation accuracy is ±15˚ for IRCAM and it is ±10˚ for KEMAR. The results show that 

with the IRCAM model for speech 93% of predictions are within 15˚(azimuth) and 91% for 

elevation. And, it shows that with the KEMAR model for speech 89% of predictions are within 

15˚ (azimuth) and 87% for elevation. UWN has higher localization Accuracy compared to GWN 

and SMW, this is because uniform white noise (UWN) represents random samples from a 

uniform distribution while gaussian white noise (GWN) represents samples from the standard 

normal distribution. In case of SMW, amplitude modulation has low efficiency in term of its 

use of power and spectrum. whereas, the average estimation error is slightly increased for 
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azimuth and elevation angles from KEMAR HRTFs. One of the assumptions it is because it 

was trained with a database that offered a finer resolution. And, the other assumption, it is the 

dimensionality of KEMAR data set that contains large variety of measurements for azimuth and 

elevation that represents different locations along the horizontal and vertical planes. 

 

Figure 4.5: Comparison between GWN, UWN, SMN and speech types of input signal 

effectiveness on the Azimuth and elevation estimation accuracy. 

Table 4-1: The experimental results from applying SNN localization model for different types 

of inputs signal with both KEMAR and IRCAM HRTF databases. 
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Type of input signal

Differents input signals

Type of input 

signal 

Azimuth Angle 

Estimation 

Accuracy (+/-

15˚) IRCAM 

Elevation Angle 

Estimation 

Accuracy (+/-

15˚) IRCAM 

Azimuth Angle 

Estimation 

Accuracy (+/-

15˚) KEMAR 

Elevation Angle 

Estimation 

Accuracy (+/-10˚) 

KEMAR 

Gaussian 

white-noise 

0.775 0.717 0.724 0.713 

Uniform 

white-noise 

0.903 0.898 0.897 0.865 

Sine wave 

modulated 

white-noise 

0.845 0.818 0.815 0.793 

Speech 0.986 0.982 0.956 0.948 
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4.2.2 Testing different frequency ranges  

The sound source localization model was investigated over different frequency ranges by 

applying it with different single frequencies and octave frequency. The single frequency takes 

the frequency in the range (63 Hz, 125 Hz, 250 Hz, 500 Hz, 1000 Hz, 2000 Hz, 4000 Hz, and 

8000 Hz). An octave refers to the interval between one frequency and its double or its half. For 

example, there is one octave band between frequencies 1 000 Hz and 2 000 Hz. There is another 

one octave band between 1 000 Hz and 500 Hz. An octave frequency is applied to increase the 

resolution of the received signal at two ears as shown in figure 4.7. The localization model 

with40 Gamma-tone frequency channels is tested with tone signals of 0.3s duration over these 

various frequency ranges of single and octave frequency. Figures 4.6 and 4.7 visualize the shape 

of the tone input signal with single frequency 63 Hz and octave frequency that embedded with 

the binaural signal from KEMAR and IRCAM HRTF databases.  

 

Figure 4.6: Sinewave of single 63 Hz embedded with KEMAR and IRCAM HRTF data sets. 
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The sampling frequency is 44.1 KHz, the sound signals with the duration of 0.3 seconds will 

have 13230 samples. The sample rate refers to the number of samples per second in a sound 

signal.  

 

Figure 4.7: Sinewave of octave frequency embedded with KEMAR and IRCAM HRTF data 

sets. 

          The localization model was tested with these various levels of single frequencies and 

octave frequency to investigate the localization cues impact on localization performance. The 

signed angle error between the actual and estimated angles for both azimuth and elevation is 



Chapter 4: Single-Sound Source Localization Proposed Model 

Page 78 of 252 

 

computed. The estimation accuracy is figured from finding the ratio of correctly predicted 

angles (the angles that have 0˚ and 15˚ angle error) to the total numbers of locations in the HRTF 

data set. Figures 4.8 and 4.9 show the estimation accuracy of azimuth and elevation angles for 

both HRTF data set with pure tones of single frequency. 

 

Figure 4.8: Azimuth and elevation angles estimation Accuracy with pure tones with single 

frequency for IRCAM HRTF data sets explains the model performance in different range of 

frequency. 

 

 

Figure 4.9: Azimuth and elevation angles estimation Accuracy with pure tones with single 

frequency for KEMAR HRTF data sets explains the model performance in different range of 

frequency. 
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          Figure 4.10 and 4.11 demonstrates the estimation accuracy of azimuth and elevation 

angles for both HRTF data set with pure tones with octave frequency. There is a clear 

improvement in the localization performance compared with of single frequency.  

 

Figure 4.10: Azimuth and elevation angles estimation Accuracy with pure tones of octave 

frequency for IRCAM HRTF data sets. 

 

 

Figure 4.11: Azimuth and elevation angles estimation Accuracy with pure tones of octave 

frequency for KEMAR HRTF data sets. 

         As known, each localisation cues type plays a significant role to localise sound in certain 

frequency range. And to investigate the impact of each individual localization cues type on the 

63Hz 125Hz 250Hz 500Hz 1000Hz 2000Hz 4000Hz 8000Hz

Azimuth +/- 15 (degree) 0.762 0.781 0.763 0.755 0.722 0.782 0.796 0.792

Elevation +/- 15 (degree) 0.686 0.661 0.663 0.659 0.622 0.661 0.696 0.696

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

L
o
ca

li
za

ti
o
n
 A

cc
u
ra

cy
 

Octave frequency 

IRCAM HRTF Data set

63Hz 125Hz 250Hz 500Hz 1000Hz 2000Hz 4000Hz 8000Hz

Azimuth +/- 15 (degree) 0.712 0.721 0.723 0.725 0.712 0.718 0.746 0.748

Elevation +/- 10 (degree) 0.626 0.631 0.643 0.649 0.612 0.611 0.636 0.646

0

0.2

0.4

0.6

0.8

1

L
o
ca

li
za

ti
o
n
 A

cc
u
ra

cy

Octave Frequency 

KEMAR HRTF data set



Chapter 4: Single-Sound Source Localization Proposed Model 

Page 80 of 252 

 

localization model performance, different hearing frequency were tested in this experiment. 

And as shown in the previous figures, the average estimation error was higher for pure tones, 

especially for elevation angles. That occurred because the ITD cues are ambiguous due to 

periodicity in the high frequency domain, and ILD cues are powerless in the low frequency 

domain, presenting just one dimension in the binaural cues. This experiment was as an evidence 

of the importance of using the full HRTF cues for sound signal localization rather than use only 

ITD or ILD to localize the sound signals.   

4.2.3 Testing the signal duration and number of Gamma-tone frequency 

bands 

From the experimental results above, two training parameters appear to highly influence of the 

localization model performance; the signal duration and gamma-tone filter bank number of 

channels. Firstly, the effectiveness of incoming sound signal duration on the model performance 

is examined by testing different sound lengths varied from (100ms to 500ms). Table 4-2 explains 

the impact of the incoming signal duration on the azimuth and elevation angles estimation 

accuracy. The speech sound samples were used in this experiment to consider the required 

signal duration for a better localization performance. The selected sound signal duration will 

then use as a fixed value in the upcoming tests. The experimental findings demonstrate that the 

localization model needs no less 500ms signal duration for a better performance over different 

conditions as shown in figure 4.12. 

Table 4-2: Azimuth and elevation angles estimation accuracy under different lengths of input 

signals. 

 

Signal 

duration in 

second 

Azimuth Angle 

Estimation 

Accuracy (+/-

15˚) IRCAM 

Elevation Angle 

Estimation 

Accuracy (+/-

15˚) IRCAM 

Azimuth Angle 

Estimation 

Accuracy (+/-

15˚) KEMAR 

Elevation Angle 

Estimation 

Accuracy (+/-

10˚) KEMAR 

0.1 0.807 0.791 0.815 0.778 

0.2 0.871 0.85 0.871 0.832 

0.3 0.954 0.949 0.924 0.911 

0.5 0.996 0.992 0.965 0.954 
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Figure 4.12: The impact of input signal duration on localization model performance. 

        To study the gamma-tone futures selection, the number of channels of gamma-tone filter 

bank was also investigated to test its impact on the localization performance. Table 4-3 

demonstrates a notable improvement of the model localization performance with 80 gamma-

tone frequency bands. However, increasing the gamma-tone frequency channels cause a clear 

impact on the localization model execution time, particularly, for KEMAR binaural signal.  

Figure 4.13 shows the azimuth and elevation estimation accuracy ±15˚ for IRCAM and 

azimuth±15˚ and elevation ±10˚ estimation accuracy for KEMAR binaural signals. 

 

Table 4-3: Azimuth and elevation angles estimation accuracy under different Gamma-tone 

filter bank frequency channels. 

Number 

of 

Frequency 

channel 

Azimuth Angle 

Estimation 

Accuracy (+/-

15˚) IRCAM 

Elevation Angle 

Estimation 

Accuracy (+/-

15˚) IRCAM 

Azimuth Angle 

Estimation 

Accuracy (+/- 

15˚) KEMAR 

Elevation Angle 

Estimation 

Accuracy (+/-

10˚) KEMAR 

40 0.958 0.952 0.942 0.936 

80 0.996 0.992 0.991 0.988 
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Figure 4.13: The impact of number of Gamma-tone filter bank frequency bands on 

localization model performance. 

4.3 The impact of environmental noises on the performance of SSL        

 In the last section, a detailed description of the single sound source localization model based 

SNN was given as well as clarification of the model testing experiments in different conditions.  

In this section, the single source localization model performance is investigated in noisy 

environment when the 500ms of white noise as a background noise was added to the 500ms of 

speech signal to mimic the noisy signal. These noisy speech samples are generated by adding 

various levels of white noise to the incoming binaural signals. The impact of the background 

noise with various signal-to-noise-ratios (SNRs) on the sound source localization performance 

is investigated. SNR is the power ratio between the signal and noise. SNR is normally measured 

in decibels (dB), for example, SNR= 0dB when the ratio of the speech signal is equal to the 

ratio of additive noise. The logarithmic decibel scale is used to measure SNR for any noisy 

signal as showing in following equation:   

𝑺𝑵𝑹𝒅𝒃 = 𝟏𝟎 𝐥𝐨𝐠𝟏𝟎 (
𝑷𝒔𝒊𝒈𝒏𝒂𝒍

𝑷𝒏𝒐𝒊𝒔𝒆
)                                                     (𝟒. 𝟗) 

         Where Psignal represents the average power of speech signal and Pnoise   refers to the average 

power of additive noise. The aim of this test is to demonstrate the effectiveness of noisy speech 

samples contaminated with different SNRs on the localization model accuracy. The experiments 

were conducted on the speech samples from 100 speakers (50 Male and 50 Female) from the 

SALU-AC speech database. This experiment includes testing different speech samples 
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contaminated with different signal to noise ratios. Figure 4.14 illustrates  the degradation 

axis-accuracy based on computing the absolute angle error for azimuth and elevation. The x 

refers to the SNRs value (in dB) between clean signals (which is usually greater than 30 dB) 

and 0 dB (where the level of speech and noise are equal) and each bar in the figure refers to a 

different level of noisy speech. While the y-axis represents the localization accuracy for 

Azimuth and elevation angles that computed from equations 4.8 and 4.9. The experimental 

outcomes show background noise (white noise) of different SNRs degrade the performance of 

estimation azimuth and elevation angles with both HRTF databases (KEMAR AND ICRAM). 

 

Figure 4.14: Sound Source Localization Performance for different SNRs values. 
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30dB) (i.e. when SNR are reduced). The localization has a better performance in the moderate 

level of background noise. Whereas, there is a clear difference on localization performance over 

various levels of SNRs. The experimental findings demonstrate that the localisation model will 
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do well in low levels of background noise at 40dB of SNR or above. This experiment is 

important to prepare the localization model to employ in the real time circumstances as like the 

room environment.     

         In the previous experiments, a sound source localization model based on spiking neural 

network has been presented. The model has been tested under various conditions. The model 

appeared to have reliable performance in localizing different signal types including real 

recorded speech sounds. It demonstrated ability to localize different speech samples convolved 

with different binaural signals that measured under different conditions. The localization 

performance demonstrates that using HRTFs and spiking neural networks are convenient for 

solving binaural localization problems. 

4.4 Applying a support vector machine for binaural localization 

One of the most unsolved challenges in the spiking neural networks fields is, there is no clear 

comparison between spiking neural networks as advanced machine learning method with other 

low-level machine learning algorithms. In a current section, a support vector machine (SVM) 

as an alternative machine learning method to the SNN is applied for single sound source 

localization. The main reason for this is to investigate the SVM strength in processing the 

binaural responses and to compare with the performance of the SNNs. 

        A support vector machine (SVM) is applied with a linear kernel approach as a multiclass 

classifier to predict all possible locations in a certain HRTF data set. Linear SVM has more 

plasticity in selecting penalties and loss functions, and it is better when handling lots of samples. 

In this test, a support vector classifier as a supervised machine learning method is applied on 

the filtered binaural signals by 40 frequency bands of a gamma-tone filter bank. The output of 

the cochlear filter is reshaped to construct the input features of linear-SVM. The input features 

array was shaped as:  

 

                                 Input array= sample rate*number of indices, 2 * 40                   4.10 

 

In this case, the sample rate is 44.1kHz and number of locations is 187 for IRCAM and 710 for 

KEMAR. In supervised learning, the support machine classifier used the labelled training data 

to find an optimal hyperplane as the output to the learning phase which categorizes new 
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examples. 

            Figure 4.15 explains the estimation accuracy of azimuth and elevation angles from 

applying the localization model based on SVM and compared the results with SNN based 

localization model. Table 4-4 demonstrates the azimuth and elevation estimation accuracy of 

these two algorithms that applied with KEMAR and IRCAM HRTF data sets. The experimental 

outcomes show a weak performance of the SVM in handling the binaural information to predict 

the single sound location compared with SNN. The key feature of SNN is ability to process the 

spectro-temporal characteristic of the complex data. Traditional machine learning, including 

SVM, struggled to deal with the complexities of Spatio-and spectro – temporal data (SSTD). 

SSTD is a term that relates to processing the data depending on finding the correlation between 

time and place (Scott 2015). Also, a lot of the strength of SVM comes from the non-linear 

kernel, and because the dimensionality of the data is so high it is completely unsurprising that 

is didn’t work very well. Furthermore, it is a multiclass problem with a big number of classes 

need to classify and yet SVM is not useful to solve multi- class classification problem despite 

of its effectiveness as binary classifier. 

          However, to apply SVM successfully in binaural localization field, it is required more 

pre-processing for the binaural sound information to analyse the correlation between the two 

ear signals. For example, applying cross-correlation (CC) to estimate the time-delay between 

the two ears signals. 

 

 

 

 

Table 4-4: The localization accuracy for SNN model and SVM model for single sound source 

localization. 

 

Machine 

learning 

model 

Azimuth Angle 

Estimation 

Accuracy (+/-

15˚) IRCAM 

Elevation Angle 

Estimation 

Accuracy (+/-

15˚) IRCAM 

Azimuth Angle 

Estimation 

Accuracy (+/-

15˚) KEMAR 

Elevation Angle 

Estimation 

Accuracy (+/-

10˚) KEMAR 

SNN 0.986 0.982 0.957 0.946 

SVM 0.642 0.532 0.527 0.419 
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Figure 4.15: Comparison between SNN and SVM for binaural sound source localization. 

 

4.5 Multisource sound localization based on SNN 

The multisource localization is known to be one of the greatest challenges in hearing perception 

fields since it’s significantly compromised the system reliability due to ambiguity in HRTFs 

channels. In the previous sections, a sound source localization model based on SNN is presented 

and examined with two HRTF data sets. It investigated the effect of different types of input 

signals and different SNRs on the robustness of a single sound source localization model. In 

this section, the SNN based localization model was investigated for multisource localization. 

To simulate the signal at the ears when two different sounds are emitted from two separated 

locations, a mixing process is carried out as explained in figure 4.16. 
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Figure 4.16: The mixing process for two different speech signals from two locations 

 

        The multi multisource localization model was implemented based the simple heuristic 

of choosing on the two most active coincident neurons. This is followed by the same rule for 

localizing a single sound source, a ‘two-winners-takes-all’ concept was implemented to detect 

the two locations. In this case, the method expects there are two winners that representing 

two sound locations and the experimental results, and two pairs of coincident neurons with 

the highest and 2nd highest firing rates are identified. Figures 4.17 to 4.31 illustrate the 

performance of this methodology.  
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Figure 4.17: The confusion matrix plot for the source one azimuth angles predicted by 

multisource localization based SNN model with IRCAM and validation speakers. 
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Figure 4.18: The confusion matrix plot for the source two azimuth angles predicted by 

multisource localization based SNN model with IRCAM and validation speakers. 

 

Figures 4.19 and 5.20 show the absolute angle error between the original and predicted 

locations for location one and location two that predicted by SNN with IRCAM HRTFs. 
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Figure 4.19: The source one azimuth angle errors from applying multisource localization 

based SNN on IRCAM with validation speakers. 
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Figure 4.20: The source two azimuth angle errors from applying multisource localization 

based SNN on IRCAM with validation speakers. 

 

Figures 4.21 and 4.22 illustrate the absolute angle error between the original and predicted 

locations for location one and location two that are predicted by SNN with KEMAR dummy 

head data set. 
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 Figure 4.21: The source one azimuth angle errors from applying multisource localization 

based SNN on KEMAR dummy head with validation speakers. 
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Figure 4.22: The source two azimuth angle errors from applying multisource localization 

based SNN on KEMAR dummy head with validation speakers. 

 

         Figure 4.23 and 4.24 show the distribution of angle errors of the two sources that results 

from applying the multisource localization model with IRCAM and KEMAR HRTFs. The 

plots are visualized as 11955 output points (angles) that result from applying the localization 

model based on SNN with validation data samples. The figures demonstrate that the errors 

have been increased in predicting source one and two from both HRTF data sets. 
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Figure 4.23: Bell shape explains the angle error frequencies for source one and source two 

from SNN with IRCAM HRTF and validation speakers 
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Figure 4.24: Bell shape explains the angle error frequencies for source one and source two 

predicted by SNN with KEMAR HRTF. 

 

          The localization outcomes demonstrated that the source two estimation angle error was 

high compared with source one estimation angle error. There were only 2284 angles predicted 

correctly out of 11955 angles applied from IRCAM dataset as shown in figure 4.23. While, 

figure 4.24 showed only 1229 outputs points (angles) that estimated correctly by applying the 

SNN based localization model with the KEMAR set. 
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However, it is obvious that the SNN based localization model was unable to process the 

spiking neural firing rate to accurately locate the two sources due to the ambiguity in the input 

signal results from mixing two sound signals. Although the method has an acceptance 

performance in detecting one source, it completely fails to locate the second source as proved 

in the figures 4.17 to 4.24. The SNN based localization model was extended to enhance it 

localization performance for multisource localization. The spiking neural based localization 

model output firing rates was processed using various machine learning methods including 

DNN and SVM. This novel idea has been tested and the results with different machine 

learning algorithms have been tested for single source localization as displayed in the 

following sections. 

 

4.6 Sound source localization using hybrid model from SNN with machine 

learning methods 

 A novel idea was suggested to solve the multisource localization challenge when two different 

sound signals are emitted from two different locations at the same time. In previous sections, a 

SNN as a single sound source localization model has been investigated and tested with different 

input signals and under different conditions. The firing rates of the coincidence-neurons in the 

spiking neural network model provide information as the location of a sound source. Goodman 

used a winner-takes-all approach, where the azimuth and elevation of the neuron with the 

maximum firing rate is taken as the optimal prediction. This was shown to be accurate for single 

sound source localization, but the accuracy reduces for localization of multi sound signals that 

are emitted from two locations at the same time. 

           To improve the robustness of the prediction, the firing rates of all coincidence-detection-

neurons is used to predict source locations. In the section, source localization consists of two 

complementary stages as explained in figure 4.25. Firstly, pre-processing which includes 

binaural feature extraction by using the firing rates from the SNN. Secondly, the localization 

problem is formulated as a classification problem where each class refers to an only source 

location. For evaluation process, the classification is carried out using distinct types of machine 

learning approaches included support vector machine (SVM), random forest, K-nearest-

neighbour algorithm (KNN) and deep neural network (DNN).  
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         Varied sizes of data sets have been generated to investigate the data size impact on the 

machine learning localization performance. These data were created using two types of input 

sound signals; white noise and speech samples. In the following sub-sections, the localization 

performance for different machine learning approaches with different size and types of 

generated data is examined. The training and validation data sets were generated using both 

KEMAR and IRCAM HRTF data sets to investigate the localization activity with different 

anatomical parameters. 

 

 

Figure 4.25: Single sound source localization by using integrated model from SNN as pre-

processing method and machine learning algorithms. 

4.6.1 Generate data from IRCAM and KIMAR with white noise input signal  

The current stage of work can be summarized in the following steps: Firstly, a training dataset 

was generated. The IRCAM HRTF dataset, which has 187 azimuth and elevation angles, was 

convolved with 187 different instances of white noise (500ms duration). Likewise, The 
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KEMAR HRTF dataset, which has 710 azimuth and elevation angles, was convolved with 710 

different instances of white noise (500ms duration). The response of a spiking neural network 

(embedded with the same IRCAM and KEMAR HRTF databases) to each of these white noise 

bursts is analysed and the firing rate of each coincidence-neuron calculated. Figures 4.26 and 

4.27 show firing rates for each coincident neuron for a single source-location with IRCAM and 

KEMAR respectively. This results in 187 data points with 7480 dimensions for IRCAM and 

710 data points with 28400 dimensions for KEMAR; the dimensionality is determined by the 

number of gamma-tone frequency bands times the number of locations in the HRTF data set. 

The firing rates in figures 4.26 and 4.27 are effectively the input feature set for a particular 

source location. 

 

Figure 4.26: Example of the outputs points that used to generate the new data set which 

represent firing rate of coincidence neurons in the spiking neural network that was given input 

with data from the IRCAM HRTF database. 

       As the data represents angle and frequency, plots in figures 4.26 and 4.27 trying to show 

the differences in the firing rate levels for the IRCAM and KEMAR HRTF databases. 
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Figure 4.27: Example of the outputs points that used to generate the new data set which 

represent firing rate of coincidence neurons in the spiking neural network that was given input 

with data from the KEMAR HRTF database. 

 

         A second dataset is generated to validate the performance of the localisation algorithm; 

this dataset was identical but used different instances of white noise. The data are used to train 

and test selected machine learning techniques; support vector machine (SVM), K-nearest 

neighbour (KNN), and random forest (RF). These machine learning algorithms are selected to 

investigate their abilities in localizing different sound signal sources (azimuth and elevations 

angles). SVM has flexibility in terms penalties and loss functions; it is known to perform well 

as do many other machine learning algorithms when there are enough data for training phase 

(Demidova et al. 2016). SVM, with a linear kernel, a penalty parameter C=1, is implemented as 

a classifier technique to predict azimuth and elevation. For the supervised k-nearest neighbour 

algorithm, the performance is analysed with the number of neighbours (k), ranging from one to 

five. For the random forest classifier, the algorithm has been tested with different numbers of 

estimators to investigate the most suitable based on localization performance. The member of 

estimators has been varied in the range from 10 to 10000 (see appendix I). Also, a localization 

model based on deep neural networks (DNN) was tested for sound source localization. A DNN 
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with three hidden layers was applied for localizing single sound sources (chapter 5 has detailed 

description about the DNN structure and parameters).   

        The effect of training data size was investigated by generating a result from each location 

twenty times, using a new instance of noise for each data point. This results in 3740 data points 

from IRCAM and 14200 data points from KEMAR. The performance of each classifier is 

assessed by computing the signed angle error for azimuth and elevation. Classification 

performance is computed using 5-fold cross-validation accuracy. 

4.6.2 Results and discussion  

Figure 4.28 and 4.29 shows the localization accuracy of each of azimuth and elevation angle 

resulting IRCAM and KEMAR respectively (the elevation accuracy in the KEMAR data set is 

10 degrees due to the resolution). The experimental results show that SVM performs the best 

with 78% accuracy followed by k-NN with 69% and the random forest with 49%.  

 

Figure 4.28: The localization accuracy for machine learning methods trained using only 187 

output points that generated from trained the SNN with different instants of white noise 

convolved IRCAM HRTF. 
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Figure 4.29: The localization accuracy for machine learning methods trained using only 710 

output points that generated from trained the SNN with different instants of white noise 

convolved KEMAR HRTF. 

        By increasing the size of the training data set the performance of each classifier is improved 

and leads to enhancement of localization accuracy in both horizontal and vertical planes as 

shown in the figure 4.30 and 4.31. The localization problem has been processed by machine 

learning models as a multi-class classification task. And, most of machine learning methods 

present a less effectiveness when dealing with a big number of classes and required increasing 

in the computation cost to get better classification accuracy. So that, the machine learning 

methods presented an uneven classification performance as demonstrated in the experimental 

results. 

 

Figure 4.30: The localization accuracy for machine learning methods trained using only 710 

output points that generated from trained the SNN with different instants of white noise 

convolved KEMAR HRTF. 
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Figure 4.31: The localization accuracy for machine learning methods trained using data 

generated from each location twenty times represent different instants of white noise 

convolved KEMAR HRTF. 

          The outcomes discriminate between two types of performance for machine learning 

methods rely on the size of training data. At first, the machine learning models were trained by 

data generating from each location results in 187 data points for IRCAM and 710 data points 

for KEMAR. The effect of training data size was investigated by generating a result from each 

location twenty times, using a new instance of noise for each data point. This results in 3740 

data points for IRCAM and 14200 data points for KEMAR. 

4.6.3 Generate data from IRCAM and KIMAR with different speech 

samples  

Another data set was generated from speech signals by using various speech samples. Anechoic 

speech samples from SALU-AC were convolved with binaural responses were applied to test 

and validate different machine learning algorithms for single source localization. The 

experiments were conducted on the speech samples from 100 speakers (50 Male and 50 Female) 

from the SALU-AC speech database (Al-Noori 2017). This experiment includes test different 

speech samples of different speakers (male and female) and various languages (native English, 

Arabic,). Each speech sample represents a full sentence with 10 second duration and belonged 

certain speaker. These sentences have been divided in to 20 chunks, each 0.5 second, to fit with 

model requirements which work with input signals with a duration of 0.5 seconds.  
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         As previously mentioned, the output point of a SNN of each speech instance results in 

data with 7480 dimensions for IRCAM and 28400 dimensions for KEMAR; the dimensionality 

is specified by the number of gamma-tone frequency bands which is fixed in these experiments 

to 40 times the number of locations in the HRTF data set. The training and validation data were 

generated and results from each location twenty times, using a new instance of speech for each 

data point. This results in 3740 data points from IRCAM and 14200 data points from KEMAR 

for each speaker (100 speakers). At first, the data was divided to into two groups: a training 

speaker group (30 males and 30 females) and validation speaker group (15 males and 15 

females). These generated data sets were used to train and validate the machine learning 

methods.  

        The performance of each classifier is assessed by computing the signed angle error for 

azimuth and elevation from IRCAM and KEMAR data set. Figure 4.32 and 4.33 explain the 

azimuth and elevation angle estimation accuracy by each machine learning approaches and their 

localization compared with SNN.    

 

Figure 4.32: The localization accuracy for machine learning methods with big-generated-data 

with IRCAM HRTFs convolved with speech samples. 
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Figure 4.33: The localization accuracy for machine learning methods with big-generated-data 

with KEMAR HRTFs convolved with speech samples 

         The results demonstrate a high localization performance for SVM and DNN which is 

equivalent to the SNN performance. The localization problem here has been processed as a 

multi-class classification task. So that, increasing the number of classes that need to be classified 

resulted an increasing in the computation complexity that impact on the localization accuracy 

with KEMAR dataset. The machine learning performance for single source localization is an 

evidence of suitability of this novel idea in solving the multisource localization challenge. 

        The methods were trained with data that was generated from only one speaker (20 different 

speech instances for each location) and validated with different data generated from different 

speakers. With IRCAM, the machine learning methods appear to have an equivalent 

performance in estimating azimuth and elevation angles to the case using the data generating 

from the full range of speakers (100) or from only one speaker. Then, the number of different 

talkers had no impact in training. With KEMAR, the minimum number of speakers required to 

get an equivalent localization performance with full range of training speakers is 10 speakers. 

The differences in the localization performance with IRCAM and KEMAR is explained in 

figures 4.34, 4.35 and 4.36. 
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Figure 4.34: Single source localization model based on SVM performance with IRCAM 

HRTF data set and one speaker. 

          Figure 4.34 shows the SVM performance in estimation azimuth and elevation angles from 

IRCAM data set. The SVM was trained by using training data that was generated from 20 

different speech instances from only one speaker. The x-axis in the left-side plot represents the 

actual azimuth angles which take range from 0˚ to 350˚ with 15˚ increment steps. The y-axis 

refers to the predicted azimuth angles. In the right-hand plot, the x-axis represents the actual 

elevation angles in the range of -45˚ to 90˚ with 15˚ increment steps. The y-axis refers to the 

error in predicted elevation angles.  

Figure 4.35 shows the SVM performance in estimation of azimuth and elevation angles from 

KEMAR data set. Also, the SVM training data was generated using only one speaker. The x-

axis in the left-side plot represents the actual azimuth angles which take range from 0˚ to 350˚ 

with 5˚ increment steps. The y-axis refers to the predicted azimuth angles. In the right-hand 

plot, the x-axis represents the actual elevation angles which range from -40˚ to 90˚ with 10˚ 

increment steps. The y-axis refers to the error in predicted elevation angles.     
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Figure 4.35: Single source localization model based on SVM performance with KEMAR 

HRTF data set and one speaker. 

          It is a notable that the angle error for estimating azimuth and elevation angles by SVM 

and KEMAR is high compared with IRCAM despite using the same size of training data. The 

localization performance for SVM with KEMAR data set is improved by increasing the size of 

training data set as shown in figure 4.36. The SVM was trained with data generated from 10 

speakers and validated with data generated from one speaker (fresh data). There are two 

potential reasons for this relative difference in IRCAM and KEMAR performance. The first one 

is the differences in angles measurements between them where KEMAR measurements cover a 

wide range of locations in the vertical and the horizontal plane. These the diversity of locations 

required increasing in the learning examples for better localization performance of machine 

learning method. The second reason, the localization problem here has been processed as a 

multi-class classification task. So that, increasing the number of classes that need to be classified 

resulted an increasing in the computation complexity that impact on the localization accuracy 

with KEMAR dataset.        
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Figure 4.36: Single source localization model based on SVM performance with KEMAR 

HRTF data set and 10 speakers. 

4.7  Chapter Summary  

In this chapter, the localization model based on a spiking neural network presented by Goodman 

is reviewed and replicated with two HRTF data sets, KEMAR dummy head the IRCAM data 

set. The localization model has been tested with diverse types of input signals including 

Gaussian white noise, uniform white noise, pure tone modulated white noise and different 

speech samples that were collected in an anechoic environment. In addition, the localization 

model performance was investigated with single and octave frequency to demonstrate the 

effectiveness of localization cues on the localization model performance. Two localization 

related performance factors are examined, the input signal duration and number of gamma-tone 

frequency channels and their impact on localization model robustness are explained. The results 

explain the enhancement of the localization performance by increasing the input signal duration 

as well as the number of gamma-tone frequency bands. Furthermore, signal to noise ratio is 

shown to play a significant role in the robustness of the localization model. The model has been 

examined with different SNRs to identify the effect on performance in various levels of 

background noise. The outcomes show the variation of the effect of different SNRs on the 

performance of single sound source localization.  
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         The support vector classifier as a multi-class classification function has been tested in 

processing the binaural signal that filtered through 40 gamma-tone channels to predict the 

incoming sound signal locations. Its performance has been compared with SNN based 

localization model. The spiking neural localization model has been tested to localize two sound 

signals that emitted from two different locations. The experimental results demonstrated that 

the SNN based localization model was unable to process the spiking neural firing rate to 

accurately locate the two sources due to the ambiguity in the input signal results from mixing 

two sound signals. A new idea has been suggested to improve the SNN based localization model 

to solve more complicated binaural hearing problems like multisource localization task. This 

idea is based on using SNN as a pre-processing method which includes binaural feature 

extraction, in the form of firing rates from the SNN. Finally, an implementation of various 

machine learning algorithms has been explained. Varied sizes of labelled data have been 

generated to train and validate the machine learning models. The localisation problem is 

formulated as a classification problem where each class represents a single source location. 

Classification is carried out using diverse types of machine learning methods. The results show 

differences in the performance of the various machine learning approaches in localizing single 

sound source. Also, they demonstrate some differences between IRCAM and KEMAR impact 

on the localization performance. These differences were handled by increasing the size of 

training data. 
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CHAPTER 5  

MULTISOURCE LOCALIZATION MODEL BASED ON DNN 

UNDER CLEANAND NOISY CONDITIONS 

Chapter Overview 

This chapter explains the multisource localization model based on using DNN to process the 

SNN firing rates. The process includes the validation of the model using data generated from 

speech samples not used in training. Section 5.1 is a description of multisource localization 

structures and components. The process of generating a mixed signal and mixed data with 

background noise are explained in section 5.2. Section 5.3 shows the process of detecting 

number of sources. The decreasing of the data dimensionality mechanism is explained in section 

5.4. The detailed description of DNN that is applied for multiclass classification to solve the 

multisource localization problem is demonstrated in section 5.5. Section. The experiments to 

investigate the localization model performance with another machine learning method (SVM) 

are presented in section 5.6. Comparison between multisource localization model performance 

with localization model based SNN was showed in section 5.8.  Section 5.9 examined the effect 

of multi-condition training using clean and noisy speech. The validation testing was carried out 

in emulated noisy conditions with controlled signal to noise ratios.  
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5.1 Multisource Localisation Model  

In the previous chapter source localization was shown to be accurate for single sound source, 

but the accuracy diminished for sound signals that emitted from two locations simultaneously. 

This chapter attempts to address this limitation. HRTFs with a wide range of azimuth and 

elevations were used to generate labelled data for training and validation. The SNN method is 

used as a feature extraction pre-processor which are then used as inputs to a learning algorithm 

trained to perform multisource localisation as a classification task. The advantage of this 

methodology is that by matching the HRTF integrated within the algorithm to the capture device 

(e.g. a dummy head), the impressive localisation ability demonstrated by the human auditory 

system may be captured. Accurate source location information as provided by this algorithm 

will enable many applications such as, virtual reality systems, augmented reality systems, 

human machine interaction and robotic applications along with security and monitoring. This 

technology could be used to enhance the performance of Hearing Aids. Within the hearing aid 

fitting process, the HRTF could be captured and embedded in the source localisation algorithm 

(Harder et al. 2015). Source location information could then be provided to the user via haptic 

or visual displays which would enhance the quality of life for people with hearing loss in one 

or both ears who may have difficulty in localising sounds. Multisource sound localization could 

also be used to enhance the tactical communication and protective systems in the military 

applications for example soldiers hearing protection devices (Joubaud et al. 2017). 

        The firing rates of the coincidence-neurons in the spiking neural network model provide 

information as to the location of a sound source. Goodman used a winner-takes-all approach, 

where the azimuth and elevation of the neuron with the maximum firing rate is taken as the 

optimal prediction. This was shown to be accurate for single sound source localization, but the 

accuracy reduces for localization of multiple sound signals that emitted from two locations at 

the same time. To improve the robustness of the prediction, the firing rates of all coincidence-

detection-neurons which is known as the Spectro-temporal receptive fields are used to predict 

source locations.  

       In this work, the number of simultaneous sources is restricted to two. This limitation comes 

from the computational requirements when training the system to locate more than two sources. 

Training data is required with all possible combinations between pairs of locations in the HRTF 
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data set. Also, the data is created by finding all possible combinations between selected speakers 

(see section 5). However, increasing the number of locations, for example from 2 to 3, requires 

finding all possible combinations of three locations in the HRTF data set. This process will 

compound the size of training data, which increases the computational complexity and memory 

requirements. The multisource localisation model consists of two complementary stages: firstly, 

pre-processing which includes binaural feature extraction encoded as the firing rates from the 

SNN. Secondly, the localisation problem is formulated as a classification problem where each 

class represents a pair of source locations. Classification is carried out using a deep neural 

network. These two stages can be described in figure 5.1. 

 

Figure 5.1: Stages of the multisource localization model, pre-processing step and prediction 

steps that include multi-classes multi-label classification using a DNN. 

5.2 Mixing process and Data generated  

A database of various speech samples, both male and female, from diversity of languages were 

used to generate the dataset (Al-Noori 2017). 17 speakers where chosen at random. Eight males 

and nine females were chosen to generate the training data. The validation data is created from 
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completely different speakers (two male and one female). Anechoic speech samples were 

convolved with binaural responses and used to train and validate the multisource localization 

model based on DNN. Each speech sample represents a full sentence with duration of 10 

seconds. After removed the silence, these sentences were split into 20 chunks of 0.5 seconds 

each to achieve the model requirements.  

        All possible pairs of 17 speakers were simulated at all possible pairs of angles as defined 

by the IRCAM angular resolution. This produced one hundred and thirty-six combinations of 

seventeen speakers at 4032 angle pairs with each pair representing one class. Likewise, the 

generated data from KEMAR constituted 4800 angle pairs. Figure 3 shows the mixing process; 

each signal is convolved with the HTRF pair for the chosen angle and then are added together. 

Furthermore, to simulate the signal at the ears when two different sounds are emitted from two 

separated locations in noisy environment, a process is carried out as explained in figure 5.2. The 

training and validation noisy data were generated by using various speech samples of 500ms 

with different locations in elevation range (-15˚, 0˚, 15˚) by adding white noise of 500ms to the 

mixed two locations signal embedded in two speech signals that of 500ms. The noisy data that 

was generated by adding different levels of white noise of SNRs 10dB, 0db, and -10dB to the 

ear signals. This simulates diffuse noise due to both ears have different noise. The noisy training 

data was generated from different speech samples of 17 speakers (training speakers) with all 

possible combinations between locations from IRCAM data. The validation data was generated 

from different speech samples of 3 speakers. 
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Figure 5.2: The mixing process for two different speech signals from two locations with added 

white noise after the convolution process to mimic the noisy environment.  

5.3 Detecting the number of sources  

Prior to localisation, the number of sources must be estimated. Once the number of sources is 

known, the appropriate localization model (single or multisource) can be selected in order detect 

the direction of the source or sources. Figure 5.3 shows the firing rates from all coincident 

neurons for one source and two sources resulted from applying SNN with 500ms speech signal. 
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This results in 7480 dimensions; the dimensionality is determined by the number of gammatone 

frequency bands (40) times the number of locations in the HRTF data set (187 in the IRCAM 

data set). Figure 5.4 shows the firing rates for the KEMAR set which has 710 locations, resulting 

28400 dimensions.  

 

 

Figure 5.3: Spiking neural networks output points with IRCAM HRTF data set. Example of 

two types of spiking neural network (SNN) output vector that contains the firing rate for each 

individual neuron in the coincidence detection layers. 
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Figure 5.4: Spiking neural networks output points with KEMAR HRTF data set. Example of 

two types of spiking neural network (SNN) output vector that contains the firing rate for each 

individual neuron in the coincidence detection layers. 

          The firing rate is significantly higher for two source signals. Logistic regression method 

was applied to analyse the firing rates over the assemblage predict number of sources in the 

signal. It was used to estimate the number of sources in the signal based on observed firing rate 

characteristic. This method works to create a best fit logistic curve to separate between the two 

sources and one source signals.  
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         The logistic regression was used to evaluate different types of signal and with two HRTF 

data sets. Moreover, the logistic regression prediction efficacy has been investigated in noisy 

environments and with noisy data at different level of background noise. Table 5-1 demonstrates 

the accuracy of predicting the number of talkers with two HRTF data sets (IRCAM and 

KEMAR). In addition, the results show the impact of background noise on the accuracy of 

predicting the number of sources. The noisy samples are generated from adding white noise of 

500 ms added to speech samples convolved with binaural responses.  

Table 5-1: Estimates of number of sources in diverse types of signal. 

 

 

 

 

 

 

 

 

 

 

        The table of results demonstrate that the number of sources in the input sound signal was 

predicted correctly with 99% for all different type of speech signals (female and male sound 

signal) for both HRTF databases. Whereas, the prediction accuracy for the number of sound 

signal sources has been reduced to 93% when the input signals were with background noise. 

        To analyse the input data pattern and vitalize the correlation between the single source and 

two sources firing rates, a principle components analysis PCA was applied and presented in 

figure 5.5. The model analyses the variance over the firing rate assemblages. The PCA is 

restricted to two components for visualisation.  In this figure, the red points refer to the single 

Type of inputs Accuracy of predicted 

number of sources  

Single source IRCAM (speech sample (female)) 99% 

Single source IRCAM (speech signal (male)) 99% 

Single source KEMAR (speech signal (female)) 99% 

Single source KEMAR (speech sample (male)) 99% 

Single source IRCAM with background noise 93% 

Single source KEMAR with background noise 93% 

Two sources data generated with IRCAM 99% 

Two sources data generated with KEMAR 99% 

Two sources with IRCAM with background 

noise (multi-condition noise) 

92% 
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source signals and the green points refer to the two sources signals. It can be seen that the two 

are separable by a non-linear classifier. 

 

Figure 5.5: The PCA model used to visualize the correlation between the one source and two 

sources principle components. 

5.4 Decreasing the Data Dimensionality 

To reduce the memory requirements, the number of frequency bands was reduced. Figure 5.6 

explains the procedure for feature dimensionality reduction. The firing rates over multiple bands 

are combined by averaging groups of frequency bands. Comparisons in performance were made 

when the average firing rates are evenly split into, four, two and one frequency band(s). 

According to the experimental outcomes, four gamma-tone bands were selected as this provides 

a good balance between reducing the memory requirements and supporting the localization 

performance when compared with the other tested bands, as discussed in the results section). 
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Figure 5.6: Gammatone frequency bands reduction process. 

5.5 Multisource localisation by DNN 

A supervised learning algorithm was used to solve the multi-sound source localization. A deep 

neural network was used to predict the source location of pairs of sources from the firing rate 

of the SNN. The classes were defined as every possible pair of source location for a given 

HRTF, in this respect a single classification operation yields the location of two sources. In the 

training phase, the deep neural network is trained to predict 4032 classes for the IRCAM data 

set and 4800 classes for the KEMAR data set. Each individual class contains two mixed sound 

instances (500ms) from two different speakers which are emitted from two various sources. 

These classes represent all possible sources mixed from the HRTF data sets. Each class has two 

labels, the labelling range starts from 0 to n, where n refers to the total number of locations in 

the HRTFs data set, so that the class headers take this sequence [((0, 1), (0, 2), …., (0, n)), ((1,0), 

(1,2), …, (1, n)), …… ((m, n))]. For example, first sequence represents all possible 

combinations between location 0 and other locations in the same HRTF data set. Similarity, this 

process is repeated for all locations (m, n). To decrease the memory requirement, the data is 

generated within the range of 7 elevation values (-45, -30, -15, 0, 15, 30, 45) for all azimuth 

ranges from the IRCAM set. Three elevation angles at -10˚, 0˚, 10˚ for azimuth ranging from 0° 

to 195° contribute to the data from the KEMAR set.  

         Initially, the size of the training data is checked for whether the training dataset provides 

a suitable amount of audio samples such that the classifier can learn notable features for each 
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class (pairs of locations). Training data are created from forty-six possible combinations for 10 

speakers. The results were significantly bad and the localization accuracy for the both sources 

did not exceed the 30%. For better localization performance, the number of speakers is increased 

to 17. This produced a sufficient data size for classification task and the accuracy enhanced to 

reach 83%. The model was trained and tested by using the training data that was formed from 

136 possible combinations for 17 speakers in the model's training phase for all possible 

location’s combinations in the HRTF data set. The total size of the training data is 548352 rows 

(representing all possible location combinations for all possible speaker combinations), 7480 

columns (representing the firing rate features resulted from applying spiking neural network on 

each location combinations). This becomes 548352 rows, 748 columns after applying 

dimensionality reduction of features by applying 4 bands of gamma-tone filtering rather than 

40 bands. After setting the data size, the one-hot-encoder algorithm was applied to encode the 

classes and transform it from categorical form to binary form to match the machine learning 

supervised mapping requirements. 

        For critically analysing evaluation for the sources classification results, two accuracies 

were computed from the classification outputs. The accuracies were computed after rearranged 

the resulted locations to match the real time hearing process. The two sources are completely 

unknown then it is impossible to know which one the first source and which one is the second. 

So that, the initial locations predicted by the classifier have been processed by searching about 

the matched locations to bring them together. For example, the classifier predicts the two 

locations as (2,4) and the original locations were (4,3), the rearrangement locations process 

relies on reordered the predicted location to be (4,3) because the sources are predicted correctly 

but in wrong order.  

5.5.1 Model description and parameters selection 

In the previous section, the labelled training data preparation steps were described. In this 

section, the deep neural network topology and its parameters selection are illustrated. The deep 

learning neural network consists of five layers (an input and an output layer with three hidden 

layers) of nonlinearly-activating functions constructed as a deep neural network as     shown in 

figure 5.7. The network is fully connected, each node in one-layer links with a specific weight 

wij to all neurons in the next layer. In this model, the input layer has 512 nodes and the 
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intermediate layers have 256 nodes in the first hidden layer and 64 nodes in the second one 

while the last hidden layer has 32 nodes. This structure arrived at after testing network 

parameters through the model selection process. All neurons in the input and hidden layers have 

a soft-plus activation function which is an analytic function defined as a smooth approximation 

to a rectifier. The soft-plus function produces output between 0 to infinity and it is 

mathematically described as follow: 

   𝑠𝑜𝑓𝑡𝑝𝑙𝑢𝑠(𝒙) = log(1 + 𝑒𝑥)                                                                  (5.1) 

        The soft-max activation function, which is popular form multiclass classification methods, 

is applied to the output layer. The soft-max function outputs represent the probability 

distribution over all possible output classes. The number of neurons in this layer equals the 

number of classes. Here the number of classes relies on the angular resolution of the HRTF. 

The soft-max function formula is explained in equation 5.2 where an n-dimensional vector x of 

qualitative real values to an n-dimensional σ (xj) vector of real values in the domain of (0, 1) 

that sum up to 1 (Chung et al. 2016). 

 

                        𝜎(𝑥𝑗) = 𝑒𝑖
𝑥(∑ 𝑒𝑥𝑖𝑛

𝑖=0 ) (𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 =  1 𝑡𝑜 𝑛)                                   (5.2)     
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Figure 5.7: The deep neural network structure of the multisource sound localization model. 

               Various hyper-parameters were investigated to reach the final deep neural model 

structure. The number of hidden layers, number of nodes in each layer and the type of activation 

function was investigated to find the best performing model. The model selection process has 

been done experimentally to test number of model parameters for example, the number of 

hidden layers and the type of activation functions for each layer. The key parameter in setting 

the deep neural networks is the number of hidden layers. Table 5-2 shows the result of multiple 

trials that applied a various number of hidden layers. The findings demonstrate that preferable 

localization performance was achieved from the DNN with 3 hidden layers, the higher number 

of hidden layers were not able to enhance the localization accuracy, therefore; a DNN with 3 

hidden layers is used in the in all experiments. Furthermore, the localization model with less or 

more hidden layers severed from unstable localization performance. The resulting model 

structure is shown in figure 5.6. The bottle neck shape of the suggested deep neural network 

overcomes an overtraining problem and the nonstable performance. 

Table 5-2: The number of hidden layers in the deep neural network. 

Number of hidden 

layers 

Source one estimation 

accuracy ±15˚ 

Source two estimation 

accuracy ±15˚ 

1 0.765 0.756 

2 0.813 0.783 

3 0.836 0.796 

4 0.825 0.773 

5 

 

0.791 0.772 

6 

 

0.754 0.731 
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Figure 5.8: Multisource sound localization model training and validation stage. 
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5.5.2 Experimental results and discussion 

In the previous subsections, the multisource localization model based on a DNN was described. 

In the following, the performance of the multisource localization model with IRCAM and 

KEMAR HRTF datasets are examined as shown in following experimental results. The 

confusion matrix is used to study the model performance in estimating the source directions. 

Also, the absolute angle error and signed angle error are figured to compute the localization 

accuracy for estimating each source. 

Experiment 1: Comparing different gamma-tone frequency bands. 

As previously mentioned, the number of frequency bands of gamma-tone filter bank is reduced 

for memory necessities. To investigate the optimal bandwidth to carry out the multisource 

localisation model, gamma-tone frequency bands were combined and the impact on reducing 

resolution on localization performance is reported in Table 5.3. The best localization accuracy 

is achieved when the 40 bands gamma-tone filter bank is reduced to four. The resultant feature 

dimensionality at this band is 748 and this will be fixed for all experiments in this chapter.   

Table 5-3: Different gamma-tone bands impact on the multisource localization performance. 

Gammatone 

Frequency 

Bands  

Number of 

input features 

Source one 

estimation 

accuracy ±15˚ 

Source two 

estimation 

accuracy ±15˚ 

1 band 187 0.609 0.403 

2 bands 374 0.786 0.641 

4 bands 748 0.908 0.895 

 

        The figures 5.9, 5.10 and 5.11 demonstrates the accuracy of localisation that results from 

predicting source one and source two using multisource localization model based DNN. This 

experiment was performed using training and validation data generated from IRCAM that used 

to train and validate the multisource localization model based on DNN. The signed angle error 

was computed for quantitative evaluation of the multisource prediction results. Figures 5.9, 5.10 

and 5.11 demonstrate the frequency distribution of angle errors of the two sources that results 

from applying multisource localization model with IRCAM HRTF date set at each gamma-tone 

frequency bands.  
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Figure 5.9: Angle error frequencies for source one and two with band=1. 
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Figure 5.10: Angle error frequencies for source one and two with band=2. 
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Figure 5.11: Angle error frequencies for source one and two with band=4. 

        In previous figures, the x-axis refers to the angle errors range from -165˚ to 180˚ with 15˚ 

increments. While, the y-axis represents the frequencies of each angle error from the total 

number of samples that used in this plot. Number of validation samples that used to plots is 

5440. When the original angle is predicted correctly the angle error will be 0˚, meaning there is 

no difference between the original and predicted angle. For example, figure 5.11 demonstrates 

that the most locations are predicted correctly at 0˚ angle error 3765 times for source one and 

3506 times for source two out of the total number of outputs samples. Also, it is notable that 

most of the error is frequent at ±15˚ from the actual angle. And, this represent the best 



Chapter 5: Multisource Localization Model Based on DNN Under Clean and Noisy Conditions 

Page 127 of 252 

 

localization accuracy have been achieved when the 40-band gamma-tone filter bank is reduced 

to four compared with the other bands that showed in the figures 5.9 and 5.10.  

Experiment 2: the multisource model trained and validated with IRCAM HRTF 

The multisource localization model tested with data that generated using IRCAM dataset. 

Figures 5.12 and 5.13 show the confusion matrix plots of predicted azimuth of source one and 

two; both figures are resulted from the IRCAM data set with validation speakers.  

 

Figure 5.12: The confusion matrix plot for the source one azimuth angles predicted by 

multisource localisation model on IRCAM HRTFs and validation speakers. 
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Figure 5.13: The confusion matrix plot for the source two azimuth angles predicted by 

multisource localisation model on IRCAM HRTFs and validation speakers. 

         In these confusion matrix plots, the x-axis refers to the predicted azimuth angles in degrees 

and y-axis refers to the actual azimuth angles. Azimuth angles have the range from 0˚ to 345˚ 

in 15° increments. The diagonal line refers to the number of angles that predicted correctly from 

the entire number of validation samples 11955 fresh samples that are used to validate the 

multisource localization model in total. The front-back confusion appears clearly in the source1 

and source2 confusion metrics. The error points that represents the front-back confusion in the 

above figures have been marked. The error points bounded between 180˚ and 0˚ on the y axis 

that represent the locations in the front side. While, the error points between 195˚and 345˚ 

represent the locations in the back side. It’s clear that the error points that represent the front-

back confusion are symmetrical along the front and back sides. Furthermore, the absolute angle 
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error between the original and predicted locations are computed to evaluate the model 

performance in detecting the two sound sources in the input signal. Figure 5.14 and 5.15 

illustrate the confusion matrix plots of estimation angle errors for source one and source two.  

Figure 5.14: The sources one azimuth angle errors from applying multisource localisation 

model on IRCAM HRTFs with validation speakers. 
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Figure 5.15: The sources two azimuth angle errors from applying multisource localisation 

model on IRCAM HRTFs with validation speakers. 

          In these figures, the x-axis refers to the predicted azimuth angle error in degrees while 

the y-axis refers to the actual azimuth angles. Obviously, the confusion matrix plots of angle 

error plainly show that the maximum error angle is 0˚ and most of error at 15˚ away from the 

actual angle. The front-back confusion is also demonstrated in the confusion matrix of azimuth 

angle error and it is clearly represented in increasing the error in angle 180˚ particularly in the 

angle error plot of source two. The angle error plots demonstrate the symmetrical angle errors 

along the front and back sides that take the shape of the sigma symbol (Σ) which refers to the 
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front back confusion. Figure 5.16 and 5.17 demonstrate the confusion matrix plots of elevation 

angles prediction performance for both sources. The elevation angles have range from -45° to 

45° in 15° increments. In these confusion matrix plots, the x-axis refers to the actual elevation 

angles while the y-axis refers to the predicted elevation. Generally, the model appears to have 

a good effectiveness at estimating elevation angles, as clearly shown in the diagonal lines for 

the source1 and source2 confusion matrix plots. These plots included all azimuths from IRCAM 

data set at range 0˚ to 345˚. 

 

Figure 5.16: The confusion matrix plot for the source one elevation angles predicted by 

multisource localisation model on IRCAM HRTFs and validation speakers. 
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Figure 5.17: The confusion matrix plot for the source two elevation angles predicted by 

multisource localisation model on IRCAM HRTFs and validation speakers. 

        The signed angle error was computed for quantitative evaluation of the multisource 

prediction results. Figure 5.18 explains the frequency distribution of angle errors of the two 

sources that results from applying multisource localization model with IRCAM HRTF date set. 

The x-axis refers to the angle errors range from -165˚ to 180˚ with 15˚ increments. While, the 

y-axis represents the frequencies of each angle error from the total number of samples that used 

in this plot. Number of validation samples that used to plots is 11955. When the original angle 

is predicted correctly the angle error will be 0˚, meaning there is no difference between the 

original and predicted angle. The figure demonstrates that the most locations are predicted 

correctly at 0˚ angle error 9122 times for source one and 8633 times for source two out of the 
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total number of outputs samples. Also, it is notable that most of the error is frequent at ±15˚ 

from the actual angle.  

 

Figure 5.18: Bell shape explains the angle error frequencies for source one and source 2 

predicted by DNN with IRCAM HRTF and validation speakers. 
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Experiment 3: the multisource model trained and validated with KEMAR HRTF data 

set 

In previous experiment, the multisource localization model performance with IRCAM HRTF 

was investigated. This section looks at applying the multisource localization model with the 

KEMAR dataset. The main advantage for this test is to investigate the localization model with 

different HRTFs anatomical parameters and different measured environment. Furthermore, 

KEMAR has a relatively large number of measured angles which provide variety of locations 

for generalize and extend the testing process. As mentioned in chapter 3, KEMAR HRTF refers 

to the dummy head while IRCAM HRTF refers to the human male subject. Both datasets 

contained distinct sets of azimuth and elevation measurements. The KEMAR dummy head 

dataset has 710 locations with unequal increments between azimuth angles along vertical plane. 

The minimum distance between locations in KEMAR HRTF data is 5˚ along azimuth angles 

and 10 ˚ along elevations angle (horizontal plane). In contrast, the IRCAM HRTF data set has 

187 locations with regular increments by 15˚ in both vertical and horizontal planes. Figures 

5.19, 5.20 show the confusion matrix plots of predicted the azimuth of source one and source; 

both figures are from the KEMAR data set with validation speakers.  
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Figure 5.19: The confusion matrix plot for the source one azimuth angles predicted by 

multisource localisation model with KEMAR HRTFs and validation speakers. 
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Figure 5.20: The confusion matrix plot for the source two azimuth angles predicted by 

multisource localisation model with KEMAR HRTFs and validation speakers. 

        In these confusion matrix plots, the x-axis refers to the predicted azimuth angles and y-

axis refers to the actual azimuth angles. Azimuth angles range from 0˚ to 180˚ at 5° increment 

steps. The total number of samples that were used in this test is 11955 output points resulted 

from model validation stage. The figures 5.19 and 5.20 show only the azimuth angles between 

0˚ to 180˚ from. These angles were used to train and validate the DNN with KEMAR HRTF 
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database. The front-back confusion illustrated in the source1 and source2 confusion metrics in 

the error points have been marked between 0˚ and 180˚. 

Figures 5.21 and 5.22 explain the absolute angle error between the original and predicted 

locations. 

 

Figure 5.21: The source one azimuth angle errors from applying multisource localisation 

model on KEMAR dummy head with validation speakers. 
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Figure 5.22: The source two azimuth angle errors from applying multisource localisation 

model on KEMAR dummy head with validation speakers. 

        In these plots, the x-axis refers to the predicted azimuth angle error in degrees while the y-

axis refers to the actual azimuth angles. The confusion matrix plots of angle error demonstrate 

that the most angles have been predicted correctly with 0˚ angle error. Then, the angular errors 

increased at 5˚ away from the actual positions. For example, in the figure 5.21, sources from 
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angle 180˚ have been predicted correctly 150 times with 0˚ angle error when the source was the 

location one. For location two, the sources with angle 180˚ have been correctly predicted only 

132 times with 0˚ angle error as established in figure 5.22. Also, the angle error plots 

demonstrate the symmetrical angle errors between 0˚ and 180˚ that take the shape of the symbol 

(<) which refers to the front back confusion. 

          Figure 5.23 and 5.24 demonstrate the confusion matrix plots of three elevation angles (-

10°, 0°, 10°) for source one and source two that predicted from applying the multisource 

localization model with KEMAR HRTFs. In these confusion matrix plots, the x-axis refers to 

the predicted elevation angles while the y-axis refers to the actual elevations.  

 

Figure 5.23: The confusion matrix plot for the source one elevation angles predicted by 

multisource localisation model with KEMAR HRTFs and validation speakers. 
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Figure 5.24: The confusion matrix plot for the source two elevation angles predicted by 

multisource localisation model with KEMAR HRTFs and validation speakers. 

       The signed angle errors between the actual and predicted angles for source one and source 

two have been computed. Figure 5.25 explains the frequency distribution of angle errors of the 

two sources that results from applying multisource localization model with KEMAR HRTFs. 

The x-axis refers to the angle errors range from -165˚ to 180˚ with 5˚ increment step. While, the 

y-axis represents the frequencies of each angle error from the total number of samples that used 

in this plot. Number of validation samples that used to plots is 11955. The figure demonstrates 

that the most locations are predicted correctly with higher peak at 0˚ with 6965 output points 

for source one and 6405 output points for source two out of the total number of outputs samples. 

Furthermore, the source one plot shows that the most angle error is at -5˚ with 1086 output 

points and at +5 with 1006 output points. Then, at -10˚ with 250 output points and +10 with 214 

output points. Besides, the number of angles that predicted with angle error -15˚ is 127 output 
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points and with +15 is 118 output points. For source two, the angle error was relatively high 

with most error at the angles ±5˚, ±10, ±15, and +180. The growing in the error angle at +180˚ 

refers to the front-back confusion phenomenon.   

 

Figure 5.25: Bell shape explains the angle error frequencies for source on and source two 

predicted by DNN with KEMAR HRTF and validation speakers. 



Chapter 5: Multisource Localization Model Based on DNN Under Clean and Noisy Conditions 

Page 142 of 252 

 

      Consequently, after running the multisource localization model on the data that was 

generated using various angles from the IRCAM and KEMAR data sets, the model exhibited a 

reliable ability to detect the sources in an incoming signal and separate between them 

independently.    

5.6  Test the Multisource sound localization performance in individual 

elevation angles using DNN and SVM. 

In the previous chapter, the support vector machine has been investigated in localizing the single 

sound source two times; first by processing the gamma-tone filter bank features to predict the 

sound source. And secondly, a support vector classifier used to process the SNN firing rate 

features to predict the incoming signal location. In the second method, two different sizes of 

data have been generated and the results demonstrated that the support vector classifier was able 

to solve the single source localization problem when enough training data was available. In the 

following section, the support vector machine (SVM) as multiclass classifier function was 

examined to examine its effectiveness to sort out a multisource localization problem. The 

multisource localization model based SVM with linear kernel is applied to test its ability in 

detecting and separating the two sources in the incoming signals.  

           In this experiment, training data has been generated from all possible pairs of 17 speakers 

(9 males and 8 females) which are simulated at all possible pairs of angles each elevation 

separately. The data is created individually for each single elevation angle along 24 angles in 

the horizontal plane resulting in 576 classes for each elevation value. Similarly, the validation 

data was generated from all possible pairs of 3 speakers (2 males and 1 females). The SVM 

classifier was trained and validated to predict the 576 classes that represents different source 

combinations. Table 5-4 shows the estimation results of azimuth angles in each elevation level 

from applying the SVM and DNN with IRCAM dataset. The results demonstrate an acceptable 

localization performance from the SVM with a limited number of classes (two source 

combinations). DNN performed well in localizing the both sources. It is clearly noticed in the 

elevation -45˚ localization, the SVM appeared a good localization performance in estimating 

only one source, but it is degraded in recognising the second source. The SVM has a similar 

performance in estimating both sources for the rest of the elevation angles. However, this is a 

reasonable matter due to the ITD ambiguity of signals that are emitted from the downward 



Chapter 5: Multisource Localization Model Based on DNN Under Clean and Noisy Conditions 

Page 143 of 252 

 

directions affected by the acoustic shadow of body, torso and shoulder. Otherwise, using DNN 

solves this issue as shown the table 5-4 where DNN has good performance at all elevation levels. 

Table 5-4: The azimuth estimation Accuracy in each individual elevation level from SVM and 

DNN with IRCAM HRTF data set. 

Elevation 

Angle 

 

Source one 

estimation 

accuracy ±15˚ 

(SVM) 

Source two 

estimation 

accuracy ±15˚ 

(SVM) 

Source one 

estimation 

accuracy ±15˚ 

(DNN) 

Source two 

estimation 

accuracy ±15˚ 

(DNN) 

-45 0.776 0.539 0.926 0.917 

-30 0.590 0.581 0.924 0.919 

-15 0.589 0.591 0.917 0.913 

0 0.596 0.573 0.921 0.918 

15 0.590 0.592 0.919 0.915 

30 0.593 0.591 0.927 0.912 

45 0.582 0.570 0.925 0.913 

 

           The figures 5.26, 5.27, 5.28 and 5.29 illustrates the SVM performance at levels 0˚, -15˚, 

-30˚ and -45˚. These figures show the frequency distribution of angle error that results from 

predicting source one and source two using SVM with IRCAM HRTF date set. The range of 

angle errors is from -165˚ to 180˚ with 15˚ increments. These results are from applying SVM 

model to predict 576 classes at each elevation using validation speakers. The total size of 

validation data is visualized in the following figures is 5440 samples. In each plot, the x-axis 

represents the angle error degrees that resulted from compute the signed differences between 

the actual angles and predicted ones. The y- axis refers to the frequency angle error for each 

angle. Generally, the SVM kernel was linear so it makes sense performance was poor as the 

task is a non-linear problem. The confusion matrix plots for source one and source two 

prediction performance resulted from applying DNN with data generated at individual elevation 

are shown in appendix II.   
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Figure 5.26: Bell shape showing the angle error frequencies for source one and source two 

predicted by SNN with KEMAR HRTF. 
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Figure 5.27: Bell shape showing the angle error frequencies for source one and source two 

predicted by SNN with KEMAR HRTF. 
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Figure 5.28: Bell shape showing the angle error frequencies for source one and source two 

predicted by SNN with KEMAR HRTF. 
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Figure 5.29: Bell shape showing the angle error frequencies for source one and source two 

predicted by SNN with KEMAR HRTF. 

5.7  Comparison between machine learning methods and SNN for the      

multisource localization.  

In this section, the estimation accuracy of localization models by applying SNN and DNN with 

each type of HRTF data is demonstrated in table 5-5. The final localization judgment accuracies 

are analysed and computed with angle error ±15˚ also when the back-front (FB) confusion error 
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is discarded during data analysis. The front back confusion can be resolved by tilting the head 

through the hearing process. Furthermore, the localization accuracy with ±5˚ and with ±10˚, 

which is special case when applying KEMAR dummy head data set, are described in the 

following table for both localization methods. The results in tables 5-5 and 5-6 represent the 

full data that generated using full locations in elevation range from -45˚ to 45˚ in IRCAM data 

set while represent the KEMAR data set in elevations -10˚, 0˚, 10˚.  

Table 5-5: Comparison between DNN and SNN for multisource localization with KEMAR 

and IRCAM HRTF data sets. 

 

        Table 5-6 shows separates the data into azimuth estimation accuracy ±15˚ and elevation 

estimation accuracy ±15˚ for IRCAM and ±10˚ for KEMAR. The accuracies in the table 5-5 

represent the general localization accuracy (average of azimuth and elevation prediction 

accuracy to represent the locations estimation accuracy). While the table 5-6 demonstrate the 

actual prediction accuracy of individual azimuth and individual elevation separately to show the 

localization model performance at each plane (horizontal plane and vertical plane). 

Sound Sources 

Localization 

Method 

Localization 

Accuracy (+/-

15˚) 

Localization 

Accuracy (+/-15˚) 

(without FB 

Confusion error) 

Localization 

Accuracy 

(+/-5˚) 

Localization 

Accuracy (+/-

10˚) 

DNN with 

IRCAM source1 

0.885 0.956 ___ ___ 

DNN with 

IRCAM source2 

0.864 0.962 ___ ___ 

DNN with 

KEMAR source1 

0.891 0.972 0.857 0.894 

DNN with 

KEMAR source2 

0.8515 0.870 0.763 0.800 

SNN with 

IRCAM source1 

0.441 0.516 ___ ___ 

SNN with 

IRCAM source2 

0.356 0.449 __ ___ 

SNN with 

KEMAR source1 

0.472 0.596 0.401 0.442 

SNN with 

KEMAR source2 

0.32 0.408 0.221 0.285 
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Table 5-6: The azimuth and elevation estimation accuracy from DNN and SNN for 

multisource localization with KEMAR and IRCAM HRTF data sets. 

Sound Sources 

Localization Method 

Azimuth 

estimation 

accuracy (+/-

15˚)-IRCAM 

Elevation Angle 

estimation 

accuracy (+/-

15˚)-IRCAM 

Azimuth 

estimation 

accuracy (+/-

15˚)-KEMAR 

Elevation angle 

estimation 

accuracy (+/-

10˚)-KEMAR 

Source 1 with DNN 0.838 0.932 0.817 0.986 

Source 2 with DNN 0.796 0.932 0.719 0.984 

Source 1 with SNN 0.441 0.516 0.479 0.492 

Source 2 with SNN 0.356 0.449 0.325 0.381  

 

          To compare the SVM performance with multisource localization model based on DNN 

and SNN, SVM is extended to predict the sources from data that was generated from three 

elevation levels (-15˚, 0˚,15˚). There was an attempt to train the SVM using the full range of 

data that have been used to train and validate the DNN, but the SVM fails in processing this 

massive size of training data due to the memory requirements. However, in this experiment, the 

SVM classifier was trained to predict 1728 classes generated from all possible location 

combinations at three elevation levels for hundred and thirty-six possible combinations of 17 

speakers. Table 5-7 demonstrates the localization performance of multisource localization by 

using three different machine learning algorithms (DNN, SVM, and SNN). The results are from 

validation stage when a fresh data presented for these models. Validation data consists of all 

possible locations’ combinations of in the elevation angles (-15˚, 0˚, 15˚) of IRCAM with three 

possible combinations of three speakers. 
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Table 5-7: Azimuth and elevation angles estimation accuracy by three localization models 

(DNN, SVM and SNN).   

Sound Sources Localization 

Methods 

Azimuth Angle 

estimation accuracy (+/-

15˚)-IRCAM 

Elevation Angle 

estimation accuracy (+/-

15˚)-IRCAM 

Source 1 with DNN 0.918 0.932 

Source 2 with DNN 0.892 0.932 

Source 1 with SVM 0.594 0.873 

Source 2 with SVM 0.567 0.818 

Source 1 with SNN 0.441 0.516 

Source 2 with SNN 0.356 0.449 

        However, the spiking neural based localization model output firing rates was processed 

using various machine learning methods including DNN and SVM. This novel idea has been 

tested and the results with different machine learning algorithms have been tested foe single 

source localization as displayed in the following sections. The experimental findings established 

that the machine learning concepts able to solve the multisource localization problem when 

there is an appropriate data. Obviously, the best localization performance is for DNN compared 

with other machine learning approaches (SVM, SNN). As shown in the table of results. The 

DNN can learn important patterns in the data to enable successful localisation performance. In 

addition, the non-linearly separable data, needs non-linear learner. So that the SVM with linear 

kernel shows a poor localization performance.  

5.8  Multisource source localization model with multi-conditions noise 

In previous sections, different localization methods were examined to determine the sound 

sources emitted from different locations and different speakers simultaneously. All prior 

experiments were done using clean data that simulate ideal environments. In this section, the 

multisource localization model performance is investigated in noisy conditions. One of the most 

challenging in the field of sound source localization in general and, more specifically, in 

binaural hearing, is the noisy environment. This part of our work considers the problem of 

multisource localization in real-world like conditions when the input speech signals are 

corrupted by unknown noise levels. Three series of tests with various amounts of background 

noise were applied to examine how the multisource localization model performs in a number of 
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noisy situations. The background in these three experiments consisted of no added noise, added 

background white noise and added directional noise. 

 Experiment 1: No added noise (clean environment) 

In this experiment, the multisource localization model has been trained by using the full range 

of training data set that generated from IRCAM and 17 speakers with no added noise. This data 

has been generated using clean speech samples that were collected in anechoic environment. In 

the testing stage, the multisource localization model was tested by adding noise with signal-to 

noise-ratios varying between 10dB, 0dB, -10dB. The testing data was generated by using 

various speech samples of 500ms belonging to three speakers with different locations in 

elevation range (-15˚, 0˚, 15˚) adding white noise of 500ms to the mixed two locations signal 

embedded in two speech signals that of 500ms. The model was trained with clean data and 

validated with controlled SNRs to investigate the impact of noisy environments on localization 

model performance. Table 5-8 shows the localization accuracy for estimating source one and 

source two in each SNR. The results demonstrate a high reduction in localization performance 

of multisource localization model due to the model has no previous knowledge about these 

levels of noise through training stage. 

Table 5-8: Training the multisource localization model with clean data and validating the 

model with noisy data over various SNRs separately. 

SNR dB Source one estimation 

accuracy ±15˚ 

Source two estimation 

accuracy ±15˚ 

10 0.39 0.30 

0 0.23 0.20 

-10 0.20 0.17 

 

        Figures 5.30, 5.31 and 5.32 show the resolution accuracy hat results from predicting source 

one and source two using multisource localization model based DNN. This experiment was 

done using data generated from mixing locations of three elevation levels (-15˚, 0˚, 15˚) of 

IRCAM date set with validation speakers. In each plot, the x-axis represents the angle error 

degrees that resulted from compute the signed differences between the actual angles and 
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predicted ones. The y- axis refers to the frequency angle error for each angle. These plots 

represent 5441 output points resulted from model validation stage. 
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Figure 5.30: Angle error frequencies for source one and two predicted by DNN trained with 

clean data and validated in noisy condition with SNR = 10dB. 
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Figure 5.31: Angle error frequencies for source one and two predicted by DNN trained with 

clean data and validated in noisy condition with SNR = 0dB. 

 

Figure 5.32: Angle error frequencies for source one and two predicted by DNN trained with 

clean data and validated in noisy condition with SNR = -10dB. 
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        The experimental findings showed the localization performance when the model was 

trained with clean data and tested with noisy data at different SNRs.  It demonstrates the high 

impact of noisy environments on localization model performance due to there was no previous 

knowledge about them which caused a highly reducing in the localization performance 

compared with using a pure testing data. However, figures 5.30, 5.31 and 32 showed the 

frequency of angle error points of the localization model at each SNR. The localization 

performance reduced at a low SNR to reach a very poor performance at -10dB of SNR as shown 

in figure 5.32. 

Experiment 2: Added background white noise  

To enhance the model localization effectiveness, the model was being trained with noisy data 

that was generated by adding different levels of white noise of SNRs 10dB, 0db, and -10dB to 

the ear signals. This simulates diffuse noise due to both ears have different noise. The noisy 

training data was generated from different speech samples of 17 speakers (training speakers) 

with all possible combinations between locations from IRCAM data. Firstly, testing the model 

under single noise condition when SNRs were used individually to train and validate the 

multisource localization model and the results are reported in table 5-9 (see appendix II). 

Table 5-9: Training and validating the multisource localization model on the same noise level 

separately. 

SNR dB Source one estimation 

accuracy ±15˚ 

Source two estimation 

accuracy ±15˚ 

10 0.75 0.67 

0 0.60 0.54 

-10 0.45 0.39 

 

        Secondly, testing the model under multiple background noise conditions where the model 

has been trained with noisy data with various level of background noise and validated with 

controlled SNRs. The source one and source two estimation accuracy at each noise level are 

demonstrated in table 5-10.   
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Table 5-10: Training the multisource localization model with All SNRs and validating the 

model with noisy data over various SNRs separately. 

 

 

 

 

 

          Figures 5.33, 5.34 and 3.35 show the multisource localization performance to predict 

source one and source two under different level of background noise at three different SNRs. In 

each plot, the x-axis represents the angle error degrees that result from computing the signed 

differences between the actual angle and predicted ones. The y- axis refers to the frequency 

angle error for each angle. This result is from IRCAM of angles in three elevation range (-15˚, 

0˚, 15˚) with validation speakers which resulted 5441 output points. 

 

 

SNR dB Source one estimation 

accuracy ±15˚ 

Source two 

estimation accuracy 

±15˚ 

10 0.71 0.65 

0 0.59 0.53 

-10 0.44 0.34 
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Figure 5.33: Angle error frequencies for source one and two predicted by DNN trained with 

noisy signal data and validated in noisy condition with SNR = 10dB. 



Chapter 5: Multisource Localization Model Based on DNN Under Clean and Noisy Conditions 

Page 158 of 252 

 

 

Figure 5.34: Angle error frequencies for source one and two predicted by DNN trained with 

noisy signal data and validated in noisy condition with SNR = 0dB. 
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Figure 5.35: Angle error frequencies for source one and two predicted by DNN trained 

          In this experiment, the model was trained and tested with noisy data at different SNRs. 

The results explain how the localization performance has been enhanced due to there was a 
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previous knowledge about these ratios which caused a better localization performance 

compared with previous experiment when the model has no prior knowledge about noisy data 

patterns. Figures 5.33, 5.34 and 35 showed the frequency of angle error points of the localization 

model at each SNR. And, the better localization performance was at 10dB as shown in figure 

5.33. This proved that the localization performance to predict the both sources has been 

improved with a higher SNR.  

Experiment 3: Added directional noise 

In this test, the white noise signals were added to each channel of HRTFs (left and right) 

independently before the HRTF convolving stage. In this case, the sound and noise are emitted 

in the same direction because they are coming from the same sound sources. Directional noise 

is simulated the electronic and electrical noise that resulted from sound waves transmission 

devices and equipment. This type of noise is common in the electronics and communication 

systems, its defined as unwanted disturbance in an electrical signal or an error affects an 

important information of the communication signals. 

         The experimental findings demonstrate some good results; sometimes better than the 

model performance in under the clean conditions. The more reasonable explanation for this state 

is, with the directional noise, the resolution of signals that are emitted from the same locations 

is increased which impact positively on the localization model performance In spite of the 

directional noise is being simulated as coming from the same location as the sound source so it 

is not a realistic condition, but could it be interesting to consider as it actually improves 

performance of the localization model. 

         Table 5-11 explains the experimental results of applying the multisource localization 

model based on DNN with data that generated from adding a directional noise. Where white 

noise of 500ms added to the binaural signal of each sound from different sources to generate 

training and validating data. The model is trained with training data of three noise levels at 

SNRs of 10dB, 0db, and -10dB and validated with controlled SNRs.  
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Table 5-11: Training the multisource localization model with directional noise of all SNRs 

and validating the model with noisy data over various SNRs separately. 

SNR dB Source one 

estimation accuracy 

±15˚ 

Source two 

estimation accuracy 

±15˚ 

10 0.88 0.85 

0 0.88 0.86 

-10 0.92 0.91 

 

         Figures 5.36, 5.37 and 5.38 show the multisource localization performance to predict 

different level of noise at three different SNRs. In each plot, the x-axis represents the angle error 

degrees that resulted from computing the signed differences between the actual angle and 

predicted ones. The y- axis refers to the frequency angle error for each angle. This result is from 

IRCAM of angles in three elevation ranges (-15˚, 0˚, 15˚) with validation speakers which 

resulted 5441 output points.  
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Figure 5.36: Angle error frequencies for source one and two predicted by DNN trained with 

noisy signals (directional noise) and validated in noisy condition with SNR = 10dB. 
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Figure 5.37: Angle error frequencies for source one and two predicted by DNN trained with 

noisy signals (directional noise) and validated in noisy condition with SNR = 0dB. 
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Figure 5.38: Angle error frequencies for source one and two predicted by DNN trained with 

noisy signals (directional noise) and validated in noisy condition with SNR = -10dB. 
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5.9  Discussion 

In this chapter, a novel idea for multisource sound localization by using only two ears has been 

presented. The method is inspired by the way humans estimate the location by using the binaural 

features such as interaural time difference ITD and interaural level difference ILD. HRTFs have 

been employed to acquire the binaural information. The SNN presents more realistic 

representation of human hearing by mimicking the binaural time delays in its simulations. The 

frequency features of input responses were analysed by using set of gamma-tone filter bank. 

The spiking neural networks (SNN) works as a binaural feature extraction algorithm to extract 

the timing information from the binaural responses. A DNN is then trained to process the firing 

rates from numerous coincident spiking neurons to predict the locations of multiple 

simultaneous sources.  

       The localization process has two steps: The first step is to predict the number of sources in 

the incoming signal by analysing the SNN firing rates. Once the number of sources is known 

the appropriate localization model (single or multisource localisation) can be selected in order 

detect the source directions. Logistic regression was applied to create a best fit logistic curve to 

separate between the two sources and one source signals. The model showed a better 

performance in predicting the number of sources from different speech signals and even under 

noisy conditions compared to the localization model based SNN. 

        In a second step the SNN firing rate features were used to train a DNN to perform a 

classification task. In this case, the DNN learned from examples, where each example is 

associated with two predefined labels (the location of source one and source two).  

       The localization model is first tested in a task to localise single sound sources emitted from 

a unique location. Different speech samples belonging 100 speakers contributed to train and test 

the single sound source localization model. The localization model was then extended to two 

simultaneous sources generated from all possible combination for 20 speakers (17 speakers for 

training and 3 speakers for validation).  

        Two types of machine learning methods were applied to process the spiking neural 

networks firing rate features for multisource sound localization. Firstly, the deep neural network 

was examined for multisource localization which returned a high accuracy of 91% and 89% for 
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source one and two. Moreover, the angle errors between the actual and predicted locations have 

been analysed. Two types of angle errors have been determined; front-back confusion and left-

right angle error. These forms of angle errors have relative impact on the source one and source 

two localization judgments, comparatively modest error on the range from ±5˚ to ±15˚ and the 

characteristic form of errors recognised as back-front confusions. There are no significant left-

right error probabilities observed in the multisource localization model experiments. Whereas 

the source prediction accuracy of the multisource localization model was frequently affected by 

a front-back confusion error type. In this case it is important to mention and take in an account 

that these experiments used a static head which brings more complexity to deal with sound 

signals that are issued from the back. 

          The experiment results demonstrate that the localization accuracy enhancement highly 

depended on increasing the number of training samples that were used to train the deep neural 

network. The experimental outcomes demonstrate that the localization performance of 

multisource localization model have been improved by increasing the number of speakers that 

contribute in generating the deep neural network training data sets. And, this is reasonable due 

to the increase teaching examples of the machine learning models. To test this practically, first 

the model was trained with data that was generated by using only 10 speakers where only 45 

possible combinations between these speakers participated in constructing the training data. The 

position estimation accuracy for both locations with ±15 angle degree did not exceed 55%. To 

improve the multisource sound localization performance, the number of speakers is raised to be 

17, producing 136 possible combinations between participated speakers. Thus, the multisource 

estimation has been boosted by achieving localization accuracy in ±15˚ reach to 90% and 89% 

for source one and source two respectively as shown in table 5.7.  When the number of speakers 

is raised to be 17 which caused an increasing in the teaching examples for each location 

combination resulted a significant enhancing in the multisource localization performance. 

         For evaluation and comparison purposes, the DNN localization performance was 

compared with other machine learning methods. Multisource localization models based on 

SVM and SNN were investigated to study their performance in localizing multi sound sources. 

The results from these two methods were analysed and compared with the DNN localization 

performance. SNN with a ‘two-winner-takes-all’ concept was implemented to detect the two 
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locations. SNN based multisource localization model showed poor performance in estimating 

source one with slightly better performance in predicting source two. SVM classifier performed 

better than SNN but still its performance limited and less than DNN in predicting both sources.  

          The spiking neural based localization model output firing rates was processed using 

various machine learning methods including DNN and SVM. This novel idea has been tested 

and the outcomes with different machine learning algorithms have been demonstrated. The 

DNN showed a better localization performance compared with SVM and SNN. The DNN can 

learn important patterns in the data to enable successful localisation. Also, the non-linearly 

separable data, needs non-linear learner for the best performance. So that, the SVM with linear 

kernel showed a poor localization performance. 

         Moreover, the multi-condition noisy environments impact on the multisource localization 

model performance have been examined in three experiments. Firstly, the impact of background 

noise has been investigated when the localization model was trained with clean data and tested 

with noisy data at different SNRs. Secondly, the multisource localization model was trained 

with multi-condition background noise at SNRs of 10dB, 0dB, and -10dB and tested at 

controlled SNR. The findings demonstrate an enhancement in the model performance in 

predicting source one and source two when the model trained using noisy data. The final 

experiment examined the impact of the directional noise on the multisource localization model 

performance. 

        It is necessary to calculate the signal-to-noise-ratio (SNR) in order to define the strength 

of a signal. It is easy to extract the useful information or detect a true signal from the raw signal 

at the higher SNRs due to the power of a signal is higher than the power of the background 

noise. Experimentally, the localization model has been tested with poor sound signals at low 

SNRs at 10dB, 0dB and -10dB. While, the better human hearing is 30 dB and above. However, 

the findings have been demonstrating an enhancing in the localization performance by 

increasing the signal to noise ratio. The knowledge of this ratio has many important applications 

that related with enhance the hearing experience. For example, people who use the hearing aids.   

       Finally, most of the chapter experiments have been done using two types of HRTF 

databases; IRCAM and KEMAR dummy head. Each one of these data has special impact on 

the multi-source localization model performance due to the differences in the anatomical 
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parameters (head size, ear shape and torso). Also, using two different HRTFs to test the 

multisource advocates the model generalisation. 

5.10 Summary 

1. The spiking neural based localization model output firing rates was processed using 

various machine learning methods including DNN and SVM. This novel idea has been 

tested and the outcomes with different machine learning algorithms have been 

demonstrated. The DNN showed a better localization performance compared with SVM 

and SNN. The DNN can learn important patterns in the data to enable successful 

localisation. Also, the non-linearly separable data, needs non-linear learner for the best 

performance. So that, the SVM with linear kernel showed a poor localization 

performance. 

2. Moreover, the multi-condition noisy environments impact on the multisource 

localization model performance have been examined in three experiments. Firstly, the 

impact of background noise has been investigated when the localization model was 

trained with clean data and tested with noisy data at different SNRs. Secondly, the 

multisource localization model was trained with multi-condition background noise at 

SNRs of 10dB, 0dB, and -10dB and tested at controlled SNR. The findings demonstrate 

an enhancement in the model performance in predicting source one and source two when 

the model trained using noisy data. The final experiment examined the impact of the 

directional noise on the multisource localization model performance. 

3. It is necessary to calculate the signal-to-noise-ratio (SNR) in order to define the strength 

of a signal. It is easy to extract the useful information or detect a true signal from the 

raw signal at the higher SNRs due to the power of a signal is higher than the power of 

the background noise. Experimentally, the localization model has been tested with poor 

sound signals at low SNRs at 10dB, 0dB and -10dB. While, the better human hearing is 

30 dB and above. However, the findings have been demonstrating an enhancing in the 

localization performance by increasing the signal to noise ratio. The knowledge of this 

ratio has many important applications that related with enhance the hearing experience. 

For example, people who use the hearing aids.   
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4.   Finally, most of the chapter experiments have been done using two types of HRTF 

databases; IRCAM and KEMAR dummy head. Each one of these data has special impact 

on the multi-source localization model performance due to the differences in the 

anatomical parameters (head size, ear shape and torso). Also, using two different HRTFs 

to test the multisource advocates the model generalisation. 
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CHAPTER 6  

LOCALIZATION WITH NON-INDIVIDUALIZED HRTFS 

 

Chapter Overview 

All the previous experiments were done by using matched HRTFs to train and test the machine 

learning models. In this chapter, the localisation models for single andmulti-sources were tested 

using mismatched HRTFs to investigate the localisation model performance with the non-

individual HRTF. In this chapter, the problem of non-individual HRTFs is reviewed in section 

6.1. The performance of the single sound source based SNN with mismatched HRTF is shown 

in section 6.2. Followed by the performance of different machine learning techniques for single 

sound source localisation model with mismatched HRTFs. The multisource localisation models 

with non-individualised HRTFs are produced in section 6.3. Furthermore, some suggested 

solution for generic localisation model is shown in section 6.4.
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6.1 The non-individual HRTFs 

Recently, there is growing in the importance of the usage of head-related transfer functions 

(HRTFs) to expect the direction of any sound signal. Moreover, it’s become more interested by 

improving and transferring information to the listeners by estimation the accurate sound signal 

direction (Cunningham and Streeter 2001). Binaural sound localisation is referred to human’s 

capability to use binaural cues to predict the direction of sound (Cheng' and Wakefield 1999). 

HRTFs show an outstanding localisation performance if individualised HRTF are used 

(Mendonca et al. 2014). Individuality refers to the properties of a HRTF which are functions of 

the unique anatomical parameters of a person (Panna, torso and head). It is no possible to 

measure evey individual’s HRTF because it is a costly and time-consuming process. The non-

individual Head-Related Transfer Functions is necessary for the most of binaural applications 

when it represents an admitted substitution for the individual HRTF to be a generic HRTF for 

these applications. There is a notable dispute related with non-individualized HRTF ability to 

make possible results in the Auralization implementations compared to the individual HRTF 

(Mendonca et al. 2014, Andreopoulou and Katz 2015). 

        The problem of mismatched HRTFs can be summarised as follows: When listening 

through HRTFs measured from one’s own ears a listener reports auditory events that appear 

‘externalised’, i.e. that seem to arise from sources outside of the listener’s head. When listening 

through HRTFs measured from another subject, i.e., ‘non-individualised’ HRTFs the listener 

often complains that auditory events are spatially diffuse, and listeners often make incorrect 

judgements of the source locations (Wenzel et al. 1993, Moller et al. 1995). 

        Non-individuality is one of the most significant issues in binaural audio. It isessential to 

find a generic model able to work with various types of HRTFs which represent different 

subjects and solve the non-individual HRTF problem. 

       In this chapter, mismatched HRTFs were used to test single source and multisource 

localisation. Two HRTF datasets have been used to train different localisation models. Data 

capture using different, mismatched, HRTFs were applied to test the localisation models. The 

primary goal of this chapter was to explore problem of mismatched HRTF and to quantify the 

degradation in localisation performance so that a generic model for use by any listener may be 

possible.  
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6.2 The HRTFs dimensionality adjustment 

The IRCAM and KEMAR HRTFs data sets have different sizes. Also, they have unequal angles 

measurements. So it is necessary to modify one of them to match the other from where of the 

database size and its locations measurements to make the resolutions are comparable  .IRCAM 

has 187 measurements while KEMAR has 710 measurements, the size adjustment process 

included decimating the KEMAR database so that is has a resolution with only 187 locations. 

In some cases, exact matches were not possible, so measurements position closest in angle were 

selected. Table 6-1 shows the IRCAM and KEMAR HRTF data set after the size adjustment 

process. On the left hand, the table explains the elevation angles for IRCAM and KEMAR. On 

the right hand, it shows the azimuth angles for IRCAM with adjusted azimuth angles from 

KEMAR for selected elevation (-40 for KEMAR and -45 for IRCAM). As mentioned in chapter 

3, KEMAR has irregular increments at all elevation levels so that each elevation level has almost 

different azimuth measurements. The process of KEMAR size adjustment has been done 

manually by keeping the equal or nearest angles in the same index of IRCAM HRTF data set 

and remove the other unwanted azimuth angles. 

 

 

 

 

 

 

 

 

 

 

 



Chapter 6: Localization with non-individualised HRTFs 

Page 173 of 252 

 

Table 6-1: The IRCAM and adjusted KEMAR HRTF datasets. 
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6.3  Evaluate the single source models with mismatched HRTFs 

The process starts by updating the spiking neural model for single sound source localisation to 

work with mismatched HRTFs. In the following experiments, the SNN has been trained with 

one HRTF and tested with locations measured using another HRTF. The experiments involved 

two aspects; firstly, the IRCAM HRTF data set was used to train the SNN and KEMAR was 

used for testing it. In the second aspect, the SNN was trained with a KEMAR dummy head and 

tested with IRCAM HRTF set. The work involved testing the both HRTFs to investigate which 

one has a better localisation performance as a generic HRTF. 

Experiment 1: SNN was trained with white noise signal convolved with IRCAM and tested 

with KEMAR 

At first, the SNN has been trained using different instances of 500 ms white noise signal 

convolved with different locations from IRCAM data sets. Then, the model is tested with 

different instants of white noise that convolved with the KEMAR data set. Figure 6.1 shows the 

single sound source localisation using the winner takes all SNN firing rate approach 

performance in estimating azimuth angles from the KEMAR data set when the model trained 

by IRCAM data. 

 

Figure 6.1: SNN performance in estimating azimuth angles with mismatched HRTFs when 

IRCAM in training and testing with KEMAR. 
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      The x-axis refers to the actual azimuth angles while the y-axis represents the predicted 

azimuth angles. Figure 6.2 explains the azimuth angle error for the SNN with mismatched 

HRTFs. The x-axis indicates the actual azimuth angles, and the y-axis indicates the azimuth 

predicted angle error. 

 

Figure 6.2: Estimation angle error of azimuth angles by applying SNN with mismatched 

HRTFs when IRCAM in training and testing with KEMAR. 

        The figures 6.1 and 6.2 are demonstrated the perceptual distortions in predicting the 

azimuth angles when using non-individual HRTFs. The results showedvery high front/back 

confusion where the model prediction was flipped entirely between angles 0˚and 180˚. 

        Figure 6.3 shows the SNN performance in predicting the elevation angles. The x-axis 

indicates the actual elevation angles, and the y-axis refers to the predicted elevation angle that 

resulted from applying SNN with mismatched HRTFs. Figure 6.4 demonstrated the elevation 

angle errors when SNN trained with IRCAM and tested with KEMAR. In this figure, the x-axis 

refers to actual elevation, and the y-axis indicates to elevation angle errors. 
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Figure 6.3: SNN performance in estimating elevation angles with mismatched HRTFs when 

IRCAM in training and testing with KEMAR. 

 

Figure 6.4: Estimation angle error of elevation angles by applying SNN with mismatched 

HRTFs when IRCAM in training and testing with KEMAR. 
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         The figures demonstrate the angular distortions in the vertical plane when applying SNN 

with non-individual HRTF. As the experimental results demonstrate, there is an extremely high 

in the angular error related to estimate both azimuth and elevation angles due to the mismatching 

between the ITD cues belong both HRTF databases that was used to train and test the SNN. 

This mismatching caused an increasing in the front-back and up-down ambiguities that led to 

low localization performance compared with the individual HRTFs which can significantly 

enhance the sound localization performance. The outcomes present that an unmatched listener’s 

head size is one of the fundamental rises of side image direction distortion in virtual sound 

reproduction. 

Experiment 2: SNN was trained with speech samples convolved with IRCAM and tested 

with KEMAR. 

The single source localisation model was trained by using a variety of the speechsamples to 

investigate the localisation performance with mismatched HRTFs and speech samples(Al-Noori 

2017). The model was tested with speech signals convolved with KEMAR HRTF to test its 

performance with mismatched HRTFs. Figure 6.5 demonstrates the SNN performance in 

predicting azimuth angles using non-individual HRTF with speech signal.  

 

 Figure 6.5: SNN performance in estimating with azimuth angle from speech signal 

convolved with IRCAM in training and testing with KEMAR. 
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       In figure 6.5, the x-axis refers to the actual azimuth angles while the y-axis represents the 

estimated azimuth angle. Figure 6.6 shows the estimation angle error of azimuth from training   

SNN with speech sample convolved with IRCAM and tested with different speech samples 

convolved with KEMAR. The x-axis represents the actual azimuth angles, and the y-axis refers 

to the angle error of azimuth angle resulted from computing the absolute difference between the 

actual angle and predicted angle.  

 

Figure 6.6: Estimation angle error of azimuth by SNN trained with speech sample convolved 

with IRCAM and tested with different speech samples convolved with KEMAR.  

       Again, both figure 6.5 and 6.6 demonstrate that sound source localisation based SNN with 

non-individual HRTFs encounter difficulty in recognising the locations due to the front back 

ambiguity in the vertical plane. 

      Figure 6.7 explains the SNN performance in estimating elevation angles with mismatched 

HRTFs when the localisation model trained using speech sample convolved with IRCAM and 

tested with KEMAR. The x-axis refers to the actual elevation angles while the y-axis refers to 

the predicted elevation angles 
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Figure 6.7: SNN performance in estimating elevation angles with mismatched HRTFs when it 

trained with speech sample convolved with IRCAM and tested with KEMAR. 

       The elevation prediction angle error is shown in figure 6.8 when the single sound source 

localisation model has been trained with different speech samples convolved with IRCAM 

HRTF ant tested with a new speech sample convolved with KEMAR HRTF. The x-axis refers 

to the actual elevation angles, and the y-axis refers to the elevation angle errors. 
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Figure 6.8: Estimation angle error of elevation by applying SNN with speech sample 

convolved with IRCAM in training and testing with KEMAR. 

 

Experiment 3: SNN was trained with speech samples convolved with KEMAR and tested 

with IRCAM 

To test the SNN localisation performance with mismatched HRTF when KEMAR is the training 

head, and the testing sound signals come through IRCAM HRTF, SNN has been trained with 

speech samples convolved with KEMAR and tested with IRCAM. The azimuth angle prediction 

performance is shown in figures 6.9 and 6.10. Similarly, to the previous experiment, the results 

demonstrated that the SNN based localisation model exhibits a high level in front back 

confusion and the prediction is wholly flipped between three angles 0˚, 180˚ and 360˚ 
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Figure 6.9: SNN performance in predicting azimuth angle when speech samples and KEMAR 

in training and tested with IRCAM. 

 

Figure 6.10: Estimation angle error of azimuth resulted from SNN with mismatched HRTFs 

when KEMAR in training and tested with IRCAM.  



Chapter 6: Localization with non-individualised HRTFs 

Page 182 of 252 

 

      Figure 6.11 shows to the actual and predicted elevation angles from applying SNN 

localisation model with KEMAR in training and IRCAM in testing. The elevation angle errors 

that resulted from the computed the absolute angle error between the original and predicted 

elevation angles are shown in figure 6.12. 

 

Figure 6.11: The SNN performance in predicting the elevation angles with speech samples 

and KEMAR in training and tested with IRCAM. 
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Figure 6.12: Estimation angle error of elevation angles by applying SNN with speech samples 

and KEMAR in training and tested with IRCAM. 

6.4  Single sound source localisation based on different machine learning 

methods with mismatched HRTFs  

In this section, the SNN applied as a pre-processing method to extract the binaural features from 

input signals. The resulted features (firing rates from the SNN) were used to train and test the 

SVM with linear kernel. The localisation problem is formulated as a classification problem 

where each class refers to a single source location. Here, the same models were tested to study 

their localisation performance with non-individual HRTFs.  

        These experiments included generated two datasets; the first consisted of different speech 

samples generated using two speakers (Male and Female) from the SALU-AC speech database 

convolved with the KEMAR HRTF. These samples were used to train a SVM. The machine 

learning method was tested by using data generated from convolved speech samples with the 

IRCAM HRTF. Figure 6.13 shows the SVM performance in predicting azimuth angle when 

speech samples and IRCAM in training and tested with KEMAR. 



Chapter 6: Localization with non-individualised HRTFs 

Page 184 of 252 

 

 

Figure 6.13: SVM performance in predicting azimuth angles when IRCAM in training and 

tested with KEMAR. 

        In figure 6.13, the x-axis represents the actual azimuth angles, and the y-axis refers to the 

estimation angle error that computed from finding the differences between the actual and 

predicted azimuth angles. Figure 6.14 shows the SVM performance in estimating elevation 

angles. The x-axis refers to the actual elevations while the y-axis refers to the elevation angle 

error resulted from computing the absolute difference between the actual and predicted 

elevation angles.                                    
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Figure 6.14: The angle error of elevation from SVM trained with IRCAM and tested with 

KEMAR. 

Table 6-2: The azimuth and elevation estimation accuracy by applying SNN, SVM and 

random forest with non-individual HRTFs. 

 

The localisation model with 

non-individual HRTFs 

 

Azimuth estimation 

accuracy ± 15˚ 

 

Elevation estimation 

accuracy ± 15˚ 

SNN 0.16 0.28 

SVM 0.52 0.44 

Random forest  0.48 0.41 

 

       Table 6.2 shows the azimuth and elevation estimation accuracy by applying three machine 

learning models (SNN, SVM and random forest). The accuracy has been computed from the 

signed angle error for both azimuth and elevation.  

      The accuracy increases when SVMs or random forests were used to compensate for the 

HRTF mismatch. However, the front-back confusions remain the main source of error. A 
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systematic or bias error is visible figure 6.14. This type of error clarifies the divergences are not 

due to chance alone. The proposed localisation model is unable to compensate for the non-

individual HRTF problem because of the main issue is due to the difference in size between 

IRCAM and KEMAR. The size differences between the KEMAR dummy head and IRCAM 

subject affects the time of arrival at both ears that caused an ambiguity in the ITD.  This 

ambiguity caused an increase in the front-back confusion error

6.5 The multisource localisation models with non-individual HRTFs 

In this section, the multisource localisation model from chapter 5 based DNN is tested with 

mismatched HRTFs. The multisource localisation model was being trained with IRCAM 

HRTFs and tested with speech samples convolved with KEMAR HRTFs. The experimental 

outcomes of multisource localisation model with non-individual HRTFs are shown in the 

following figures. 

     Figure 6.15 shows the confusion matrix plot for source one predicted by multisource 

localisation model with mismatched HRTFs when the model has been trained with IRCAM and 

tested with KEMAR. The training set included all the azimuth angle range of 0 to 345 at 0 

elevation level of IRCAM. In contrast, the testing data contains the azimuth angle range from 0 

to 345 at 0 elevation level of KEMAR.  

      In the first experiments that showed the localization performance for the single source model 

based on SNN, the model has been trained with data from IRCAM i.e. generate training data 

from IRCAM, then test the model with data from KEMAR. Generated data from IRCAM with 

IRCAM embedded in SNN and the test data generated from KEMAR HRTF but with IRCAM 

embedded SNN. And, this simulated the mismatched HRTF and the experimental outcome 

demonstrated high angle error due to the front-back and up-down confusions. The multisource 

localization model that based on processing the SNN output firing rates using DNN was used 

to test the mismatched HRTFs. The following experimental results also show high angle error 

and front-back confusion in spite of the model has been trained with data from IRCAM with 

SNN embedded IRCAM and tested with data generated from KEMAR with SNN embedded 

with KEMAR.   
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Figure 6.15: The confusion matrix plot for the source one azimuth angles predicted by 

multisource localisation model with mismatched HRTFs (IRCAM in training and KEMAR in 

testing). 

    Figure 6.16 shows the confusion matrix plot for the source two predicted by multisource 

localisation model with mismatched HRTFs when the model has been trained with IRCAM and 

tested with KEMAR. In the figures 6.17 and 6.18, the x-axis refers to the predicted azimuth 

while the y-axis refers to actual azimuth value. 
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Figure 6.16: The confusion matrix plot for the source two azimuth angles predicted by 

multisource localisation model with mismatched HRTFs (IRCAM in training and KEMAR in 

testing). 

        Figure 6.17 and 6.18 explain the confusion matrix plots of estimation angle errors for 

source one and source two. The x-axis refers to the predicted azimuth angle error, and the y-

axis refers to the actual azimuth values. 



Chapter 6: Localization with non-individualised HRTFs 

Page 189 of 252 

 

 

Figure 6.17: The sources one azimuth angle errors from applying multisource localisation 

model with mismatched HRTFs (IRCAM in training and KEMAR in testing).    
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Figure 6.18: The sources two azimuth angle errors from applying multisource localisation 

model with mismatched HRTFs (IRCAM in training and KEMAR in testing).   

       Figure 6.19 represents the frequency of angle errors for source one, and source two 

predicted DNN based multisource localisation model. The total size of testing data that shown 

in this figure is 24129 output points. The figure demonstrates the higher levels of front-back 

confusion to predict source one and much higher for source two. 
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Figure 6.19: source one and source two angles errors frequency from applying multisource 

localisation model based with nonindividual HRTFs 
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        The model localisation accuracy has been calculated from computing from signed angle 

error for source one and source two. The DNN based multisource localisation model achieved 

44% accuracy for source one and 34% for source two. It is notable that the machine learning 

alone was unable to solve the non-individual HRTF problem. That because it is needing to 

generate a huge labelled data by using many HRTF databases that represent different head and 

panna structures to train the machine learner. Current research has suggested method to 

compensate for nonindividual HRTFs, for example; scaling the HRTF to the individual using 

morphological criteria tuning of spectral cues; using numerical computations and subjective 

selection; and adjusting ITDs to the individual (Lindau 2010). The ITD cues for each angle of 

these two HRTF datasets have been computed to clarify the difference between the two HRTFs, 

as shown in figures 6.20 and 6.21. The ITD computed from estimating the interaural time delay 

∆t by looking for peaks in the cross correlation between the left and right channels. 

 

Figure 6.20: The ITD for KEMAR dummy head. 
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 Figure 6.21: The ITD for IRCAM subject. 

        Figure 6.20 shows the time differences for KEMAR dummy head for each angle at 

elevation 0. Figure 6.21 shows the time differences for IRCAM at elevation 0. The mismatched 

HRTFs caused by the difference in the ITD of these two HRTFs. The ITD of IRCAM is less 

than the ITD of KEMAR dummy head.  

       As future work, the ITD may be adjusted to an individual as a reasonable solution for 

mismatched HRTFs. The time differences cue of IRCAM has been adjusted to match the 

KEMAR time differences. Figure 6.22 shows the IRCAM time differences cues after an 

adjustment to match the KEMAR time differences cues. This however requires new data to test 

the machine learning models for single source and multisource localisation. 
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Figure 6.22: Scaled ITD for IRCAM to match the ITD of KEMAR. 

6.6  Chapter Discussion  

In this chapter, the localisation models have been tested with mismatched HRTFs. Two types 

of models have been presented, the first one where the SNN coincident neuron with the adopted 

the SNN as a binaural feature pre-processor and different machine learning methods were 

applied to predict the incoming sound signal angles. These two localisation frameworks were 

also implemented for single and multi-sources with mismatched HRTFs. Significantlocalisation 

angle errors have beenindicated through the experiments due to the front-back confusion for 

both single source and multisource localisation models. Also, the chapter reviewed some 

suggested solutions to tackle the HRTFs mismatched problem. One of these solutions is 

adjustment the time differences cues to the individual. The interaural time differences for 

KEMAR and IRCAM have been computed. The ITD of IRCAM subject was adjusted to match 

the ITD of KEMAR dummy head. The adjusted HRTF could contribute in a future experiment 

by generatingnew data and applying them to the localisation models with non-individual 

HRTFs. 
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CHAPTER 7  

CONCLUSIONS AND FUTURE WORKS 

The main goal of this research study is concerned with using the maximum firing rate over an 

assemblage of spiking neurons to locate sound sources in three dimensions using only two 

sensors. The spiking neural network utilised as a feature extractor where output firing rates were 

processed and various machine learning methods including DNN and SVM trained to predict 

the locations of multiple simultaneous sources. This novel idea has been tested with different 

machine learning algorithms and has shown excellent performance for single and multisource 

localization. The DNN learns important patterns over the assemblage of firing rates to enable 

successful localisation; non-linearly separable data needs non-linear learner. 

        This research has developed a new model to solve the multisource localization problem 

which is robust localization model and applicable for real time applications. Different machine 

learning approaches have been compared and their effectiveness sound source localization in 

the presence of environmental noise examined. The speech data used in the project was from a 

database (SALU-AC) which contains audio speech samples recorded in different languages in 

addition to English. These samples were recorded without being limited to particular text 

messages. The algorithm was tested data, held-out from training, from a number of talkers to 

ensure generalisability. 

       Furthermore, two types of noise were investigated; diffuse and directional noise. The 

research summary and conclusions, in addition to some of future work suggestions, are giving 

in the following sections. 

7.1  Summary and conclusion  

1. The localization model based on a spiking neural network presented by Goodman is 

reviewed and replicated with two HRTF data sets, KEMAR dummy head the 

IRCAM data set. The method is inspired by the way humans estimate the location 

by using the binaural features such as interaural time difference ITD and interaural 

level difference ILD. HRTFs have been employed to acquire the binaural 

information. The SNN presents more realistic representation of human hearing by 
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mimicking the binaural time delays in its simulations. The frequency features of 

input responses were analysed by using set of gammatone filter bank. The 

localization model has been tested with diverse types of input signals including 

gaussian white noise, uniform white noise, pure tone modulated white noise and 

different speech samples that were collected in an anechoic environment. In 

addition, the localization model performance was investigated with single frequency 

and octave frequency to demonstrate the effectiveness of localization cues on the 

localization model performance. Two localization related performance factors were 

examined; the input signal duration and the number of gamma-tone frequency 

channels and their impact on localization model robustness are explained. The 

results explain the enhancement of the localization performance by increasing the 

input signal duration as well as the number of gamma-tone frequency bands. 

Furthermore, signal to noise ratio is shown to play a significant role in the robustness 

of the localization model. The model has been examined with different SNRs to 

identify the effect on performance in various levels of background noise. The 

outcomes show the variation of the effect of different SNRs on the performance of 

single sound source localization. 

2.  The spiking neural localization model was expanded and tested to localize two 

simultaneous sound signals emitted from two separated locations. The experimental 

results demonstrated that the SNN based localization model was unable to process 

the spiking neural firing rate to accurately locate the two sources due to the 

ambiguity in the input signal results from mixing two sound signals. The spiking 

neural based localization model output firing rates was processed using various 

machine learning methods including DNN and SVM. A novel idea for sound 

localization by using only two ears has been presented. The spiking neural networks 

(SNN) model is utilised as a binaural feature extraction algorithm to extract the 

timing information from the binaural responses. Various machine learning 

algorithms were then trained and compared predict source locations from the firing 

rates. Its performance has been compared with SNN based localization model for a 

single source. Varied sizes of labelled data have been generated to train and validate 

the machine learning models. The localisation problem is formulated as a 
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classification problem where each class represents a single source location. The 

results show differences in the performance of the various machine learning 

approaches in localizing single sound source. Also, they demonstrate some 

differences between IRCAM and KEMAR impact on the localization performance. 

These differences were handled by increasing the size of training data. For 

evaluation and comparison purposes, the DNN localization performance was 

compared with other machine learning methods. Multisource localization models 

based on SVM and SNN were investigated to study their performance in localizing 

multi sound sources. The results from these two methods were analysed and 

compared with the DNN localization performance. SNN with a ‘two-winner-takes-

all’ concept was implemented to detect the two locations. SNN based multisource 

localization model showed poor performance in estimating source one with slightly 

better performance in predicting source two. SVM classifier performed better than 

SNN but still its performance limited and less than DNN in predicting both sources. 

3. The SNN firing rate features were used to train a DNN to perform a classification 

task. In this case, the DNN learned from examples, where each example is associated 

with two predefined labels (the location of source one and source two). This novel 

idea has been tested and the outcomes with different machine learning algorithms 

have been demonstrated. The DNN showed a better localization performance 

compared with SVM and SNN. The DNN can learn important patterns in the data to 

enable successful localisation. Also, the non-linearly separable data, needs non-

linear learner for the best performance. So that, the SVM with linear kernel showed 

a poor localization performance.  

4. A novel idea for improving the method for multi-source sound localization by using 

only two ears has been presented. The localization process has two steps: The first 

step is to predict the number of sources in the incoming signal by analysing the SNN 

firing rates. Once the number of sources is known the appropriate localization model 

(single or multisource localisation) can be selected in order detect the source 

directions. Logistic regression was applied to create a best fit logistic curve to 

sperate between the two sources and one source signals. The model showed a better 
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performance in predicting the number of sources from different speech signals and 

even under noisy conditions.  

5. The localization model was first tested in a task to localise single sound sources 

emitted from a unique location. Different speech samples belonging 100 speakers 

contributed to train and test the single sound source localization model. The 

localization model was then extended to two simultaneous sources generated from 

all possible combination of 17 speakers and different 3 speakers for validation.  

6. Two types of machine learning methods, SVM and DNN, were applied to process 

the spiking neural networks firing rate features for multisource sound localization. 

Firstly, the deep neural network was examined for multisource localization which 

returned a high accuracy of 91%for the one of input sources and 89% for another 

source. Moreover, the angle errors between the actual and predicted locations have 

been analysed.  Two types of angle errors have been determined; front-back 

confusion and left-right angle error, comparatively modest error on the range from 

±5˚ to ±15˚ and the characteristic form of errors recognised as back-front confusions. 

There are no significant left-right error probabilities observed in the multisource 

localization model experiments. Whereas the source prediction accuracy of the 

multisource localization model was frequently affected by a front-back confusion 

error type. In this case it is important to mention and take in an account that these 

experiments used a static head which brings more complexity to deal with sound 

signals that are issued from the back.  

7. The experiment results demonstrate that the localization accuracy enhancement 

highly depended on the number of training samples that were used to train the deep 

neural network. The experimental outcomes demonstrate that the localization 

performance of multisource localization model is improved by increasing the 

number of speakers tin the training data sets. And from the machine learning 

perspective, this is reasonable due to the increase teaching examples of the machine 

learning models. The machine learning model depend on find the function to map 

the input data to the output data. This mapping function required enough data to 

capture the relationships between the input features from a side and between input 

features and output features from another side. To test this practically, first the model 
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was trained with data that was generated by using only 10 speakers where only 45 

possible combinations between these speakers participated in constructing the 

training data. The position estimation accuracy for both locations with ±15 angle 

degree did not exceed 55%. To improve the multisource sound localization 

performance, the number of speakers is raised to be 17, producing 136 possible 

combinations between speakers. Thus, the multisource estimation has been boosted 

by achieving localization accuracy to within 90% and 89% within ±15˚ for source 

one and source two respectively as shown in table 5.7.   

8. The impact of background noise on the on the multisource localization model 

performance have been examined in three experiments. Firstly, the localization 

model was trained with clean data and tested with noisy data at different SNRs. 

Secondly, the multisource localization model was trained with multi-condition 

background noise at SNRs of 10dB, 0dB, and -10dB and tested at controlled SNR. 

The findings demonstrate an enhancement in the model performance in predicting 

source one and source two when the model trained using noisy data. The final 

experiment examined the impact of the directional noise on the multisource 

localization model performance. It is easy to extract the useful information or detect 

a true signal from the raw signal at the higher SNRs due to the power of a signal is 

higher than the power of the background noise. Experimentally, the localization 

model has been tested with poor sound signals at low SNRs at 10dB, 0dB and -10dB. 

While, the better human hearing is at SNR 30 dB and above.  The findings have 

been demonstrating an enhancing in the localization performance by increasing the 

signal to noise ratio while the minimum signal to noise ratio for this system was -

10dB. Knowledge of this ratio has many important applications that related with 

enhance the hearing experience. For example, people who use the hearing aids.   

9. The experiments have been done using two types of HRTF databases; IRCAM and 

KEMAR dummy head. Each one of these data has special impact on the multi-source 

localization model performance due to the differences in the anatomical parameters 

(head size, ear shape and torso). Also, using two different HRTFs to test the 

multisource advocates the model generalisation.  
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10. The localisation models have been tested with mismatched HRTFs. Single-source 

and multisource localization frameworks were implemented with mismatched 

HRTFs. Significant localisation angle errors have been indicated through the 

experiments due to the front-back confusion for both single source and multisource 

localisation models. Also, the chapter reviewed some suggested solutions to tackle 

the HRTFs mismatched problem. One of these solutions is adjustment the time 

differences cues to the individual. The interaural time differences for KEMAR and 

IRCAM have been computed. The ITD of IRCAM subject was adjusted to match 

the ITD of KEMAR dummy head. The adjusted HRTF could contribute in a future 

experiment by generating new data and applying them to the localisation models 

with non-individual HRTFs. 

7.2  contribution to knowledge 

In this work, one of the main contributions to knowledge is the proposal of a smart localization 

model to solve the multi-source localization challenge. The model has been tested with various 

sound signals and under different noise conditions. The contribution is summarized by deep 

examination of two levels of neural networks (SNN and DNN) and linking between them to 

present an ideal solution for binaural hearing issues and sound signal processing. Different 

hearing-related transfer function data sets have been checked to explore the influence on 

localization performance. Several machine learning models have been examined to test their 

strength in performing single source and multi-source localization by using only binaural 

signals. The non-individual HRTF problem was examined and the experimental results showed 

that applying machine learning to solve the mismatch HRTFs was subject to availability of 

enough training data. This data refers to different subjects (different anatomical structures). 

Also, this work reviews some suggested solutions to tackle the non-individual HRTF issue that 

rely on adjustment of the time differences cues received at the two ears of the individual. 

7.3 Suggestions for Future Works  

This section briefly gives some suggestions for future work that may be adopted to expand the 

work given in this research:  
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1. Examine the performance of multisource localization model for more than two sources, 

three or four sources are mixed together. The process needs generating a new data has 

combination between the three input sources or four input sources to train and test the 

machine learning model. It solves the multi-source localisation when number of sensors 

(two sensors) is less than sources. 

2. Examine the performance of multisource localization model under reverberation 

condition. To investigate the localization performance in enclosed environments (e.g. 

room) when the sound produced in a space is reflected off surfaces, like walls, the floor 

or the ceiling. The reflected sound will lead to generate many sound images for the 

original sound that may have bad impact on the localization performance. 

3. Investigate the localization performance with others deep learning models as like 

convolusion neural networks CNN to examine it performance to solve the multisource 

localization challenges under different conditions; more than two sources, background 

noise and reverberation environments. 

4. This research is focused mainly on solving the multisource localization challenge by 

successfully localizing two simultaneous sound sources. Future work may focus on using 

the model to improve speaker recognition task, knowledge of the location of a source can 

improve the performance of source separation algorithms.  

5. Applying the Long Short-Term Memory (LSTM) network as a special type of recurrent 

neural network (RNN) to process the time and frequency representations in the firing rate 

input features. The RNN is well suited for the analysis of time series data and may be 

more successful than applying static neural networks to time averaged data. 

6. Explore the spiking neural models for localizing multisource sound signals. And, 

compared their performance with the current spiking neural model (leaky integrated and 

firing model). Additionally, including learning into the spiking neural network will 

significantly improve performance and negate the need for the DNN. 
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Appendix I  

Additional Plots from Chapter 4 

 

 

Figure I.1: KNN machine learning number of neighbours and its effect on localization accuracy using 

187 different instances of white noise (500 ms duration). 

 

 

Figure I.2: KNN machine learning number of neighbours and its effect on localization accuracy using 

187* 20 different instances of white noise (500ms duration). 
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Figure I.2: 

 

Figure I.3: Random Forest ML number of estimators and its effect on localization accuracy using data 

generated from 187 different instances of white noise (500ms duration). 

 

 

Figure I.4: Random Forest ML number of estimators and its effect on localization accuracy using 187* 

20 different instances of white noise (500ms duration). 
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Appendix II 

Additional results from chapter 4 and 5. 

 

 

Figure II.1: The confusion matrix plot for the source one azimuth angles predicted by 

multisource localisation based DNN model with data generated at elevation 0˚ of IRCAM 

HRTFs with validation speakers. 
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Figure II.2: The confusion matrix plot for the source two azimuth angles predicted by 

multisource localisation based DNN model with data generated at elevation 0˚ of IRCAM 

HRTFs with validation speakers. 
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Figure II.3: The confusion matrix plot for the source one azimuth angles predicted by 

multisource localisation based DNN model with data generated at elevation -15˚ of IRCAM 

HRTFs with validation speakers. 
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Figure II.4: The confusion matrix plot for the source two azimuth angles predicted by 

multisource localisation based DNN model with data generated at elevation -15˚ of IRCAM 

HRTFs with validation speakers. 
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Figure II.5: The confusion matrix plot for the source one azimuth angles predicted by 

multisource localisation based DNN model with data generated at elevation -30˚ of IRCAM 

HRTFs with validation speakers. 
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Figure II.6: The confusion matrix plot for the source two azimuth angles predicted by 

multisource localisation based DNN model with data generated at elevation -30˚ of IRCAM 

HRTFs with validation speakers. 
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Figure II.7: The confusion matrix plot for the source one azimuth angles predicted by 

multisource localisation based DNN model with data generated at elevation -45˚ of IRCAM 

HRTFs with validation speakers.  
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Figure II.8: The confusion matrix plot for the source two azimuth angles predicted by 

multisource localisation based DNN model with data generated at elevation -45˚ of IRCAM 

HRTFs with validation speakers. 
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Figure II.9: Angle error frequencies for source one and two predicted by DNN trained and 

validate in noisy condition at SNR = 10dB. 
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Figure II.10: Angle error frequencies for source one and two predicted by DNN trained and 

validate in noisy condition at SNR = 0dB. 
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Figure II.11: Angle error frequencies for source one and two predicted by DNN trained and 

validate in noisy condition at SNR = -10dB. 
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