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Abstract. The examination of plantar fascia (PF) ultrasound (US) images is sub-

jective and based on the visual perceptions and manual biometric measurements 

carried out by medical experts. US images feature extraction, characterization 

and classification have been widely introduced for improving the accuracy of 

medical assessment, reducing its subjective nature and the time required by med-

ical experts for PF pathology diagnosis. In this paper, we develop an automated 

supervised classification approach using the Support Vector Machine (Linear and 

Kernel) to distinguishes between symptomatic and asymptomatic PF cases. Such 

an approach will facilitate the characterization and the classification of the PF 

area for the identification of patients with inferior heel pain at risk of plantar 

fasciitis. Six feature sets were extracted from the segmented PF region. Addition-

ally, features normalization, features ranking and selection analysis using an un-

supervised infinity selection method were introduced for the characterization and 

the classification of symptomatic and asymptomatic PF subjects.  

The performance of the classifiers was assessed using confusion matrix attributes 

and some derived performance measures including recall, specificity, balanced 

accuracy, precision, F-score and Matthew's correlation coefficient. Using the best 

selected features sets, Linear SVM and Kernel SVM achieved an F-Score of 

97.06 and 98.05 respectively.  

Keywords: Plantar fascia ultrasound images, Features selection and characteri-

zation, SVM, k-folded cross validation, Matthew's correlation coefficient. 

1 Introduction 

Ultrasound (US) imaging offers a significant potential in the diagnosis of plantar 

fascia (PF) injuries and monitoring treatments. It offers a real-time effective imaging 

technique that can reliably confirm structural changes, such as thickening, rupture and 

identify changes in the internal echo structure associated with diseased or damaged tis-

sues. PF US images are usually examined and analysed by health specialists based on 

visual perceptions and some manual biometric measurements, such as the thickness 
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estimation of the PF region, to identify the presence of any kind of lesions and abnor-

malities such as plantar faschiitis (inflammation of the plantar fascia).   

As reported in the literature, thickening, bi-convexity, rough surface, heterogeneous 

texture, decreased echogenicity, loss edge sharpness and hypoechoic deformities of the 

PF are considered as part of the diagnostic criteria and characteristic features of symp-

tomatic PF; whereas, surface smoothness, texture homogeneity and uniform hyperecho-

genicity are characteristics of asymptomatic PF subjects [8,15,19,24] and this is shown 

in Fig 1.   

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig.1. Asymptomatic and Symptomatic PF region comparison: (a) Asymptomatic PF region 

(green contours), (b-d) Symptomatic PF region: (b) and (c) a thickened PF sections (red arrows) 

compared to a normal PF in (a) due to planar fasciitis disorder, (d) a huge partial tear of the PF 

region: the outer red contour clearly shows a surrounding inflammation (plantar fasciitis), while 

the inner contour (bold red) shows  the irregular outline and disrupted PF region fibres. 

 

Despite the advantages of US imaging, the acquired images interpretation and anal-

ysis are time consuming. This is mainly due to the large number of patients, the large 

medical data history accumulated in the DICOM systems and the large number of phy-

sicians required for the analysis and interpretation. The exploration of such massive 

medical data requires highly efficient and sophisticated techniques capable of finding 

the class separation between asymptomatic and symptomatic ultrasound images of the 

plantar fascia. These techniques are highly required to classify different PF US images 

into normal and abnormal subjects and to prune the huge accumulated data and take 

into consideration only the symptomatic data with the possibility of plantar fasciitis or 

other disorders. Therefore, it is a requirement to devise an automated system to charac-

terize and classify PF US images that allows better abnormalities detection and easier 

interpretation during medical image analysis. 

This paper proposes an automated supervised classification approach using linear-

SVM and Kernel-SVM to facilitate the detection and the characterization of the plantar 

fascia region for the classification of PF US images dataset into symptomatic PF sub-

jects and asymptomatic subjects; and the possibility of the identification of patients 

with normal plantar fascia but at risk of plantar fasciitis disorder.  
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2 The Methodology and proposed approach 

The proposed PF classification model consists of the following modules as shown 

in Fig 2. (i) preprocessing phase employing speckle noise reduction filtering and image 

enhancement operations to reduce the effects of undesirable speckle noise phenomenon 

and improve the contrast of the PF US images using dual tree complex wavelet trans-

form with soft thresholding (DT-CWT_S) and contrast-limited adaptive histogram 

equalization filter (CLAHE), respectively; (ii) artificial neural networks supervised 

segmentation phase applying different features measures, a features ranking module 

and trained radial basic function neural network (RBF-NN) classifier as discussed in 

[3], to automatically segment the PF region and calculate its thickness; (iii) texture fea-

tures extraction and analysis introducing 6 sets of feature extraction measures (for ex-

tracting a total of 40 features), features ranking and selection operation using an unsu-

pervised infinity feature selection method [17] to select and analyse the most discrimi-

nating and suitable features for the classification process; (iv) the classifier module us-

ing Linear-SVM and Kernel-SVM to distinguish between asymptomatic and sympto-

matic plantar fascia subjects; and (v) classification performance analysis using different 

performance measures such as recall, specificity, balanced accuracy, precision, F-score 

and MCC. 

 

2.1 Materials and PF data collection 

Following ethical approval from the University of Salford Research's Ethics Panel 

(ST1617-48), written informed consent was collected from all patients’ participants. 

Various PF US images, acquired from a patient's footprint area in the prone position 

were used in the classification approach; more specifically, a total of 284 (252 normal 

and 32 abnormal taken from diabetic patients with plantar fasciitis) PF US images, were 

acquired from a patient's footprint area in the prone position were used. The images 

were obtained from 45 patients for different PF anatomical structures including rear-

foot, mid-foot and fore-foot sections with 256 gray levels, a size dimension of 512x512 

pixels and a resolution of 28.35 pixels/centimetre. These images were obtained from 

the Health Sciences Department, University of Salford, acquired by two expert clini-

cians according to a precise protocol using a Venue 40 musculoskeletal US system (GE 

Healthcare, UK) with a 5-13 MHz wideband linear array probe 12.7 mm X 47.1 mm. 

All the methods used in the proposed approach were implemented using Matlab 

R2017b (The MathWorks Inc., Natwick, USA). 

 

2.2 Preprocessing 

The preprocessing phase aims to prepare the PF US images for further processing in-

cluding segmentation and classification and improve their accuracy, efficiency, and 

scalability. This is achieved by (i) minimizing the effects of the multiplicative speckle 

noise without losing any valuable information (such as tiny lines, edges) using a se-

lected dual tree complex wavelet-based despeckling filter (DT-CWT_S) [13,16]. DT-

CWT_S filter integrates homomorphic transformation (using log compression and ex-

ponent decompression to transform the multiplicative noise to an additive one) and 
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multi-scale DT-CWT decomposition and composition employing the BayesShrink sub-

band thresholding using soft thresholding to reduce or suppress the speckle noise (noisy 

coefficients) in PF US images. DT-CWT_S has demonstrated a superior edge preserv-

ing behaviour and a good visual appearance [4]; (ii) enhancing the PF region contrast 

and visually improving the global appearance of the PF US images using CLAHE 

method after the despeckling operation to adjust the intensity of the PF region and to 

avoid noise amplification in PF US images using different implemented steps as re-

ported in [26]. 

 

Fig 2. Flowchart illustrating the plantar fascia classification system based on a texture fea-

tures analysis and different classifiers modules 

2.3 Segmentation 

Automated segmentation is one of the most important tasks in medical image pro-

cessing and analysis, including, pattern recognition, supervised or unsupervised sub-

jects classification and novelty detection; it is mainly used to locate the desired region 

of interest objects in the input images dataset. As reported in [3], an automated ANNs 

supervised segmentation approach was introduced in this study to segment different PF 

regions. The proposed segmentation approach uses the radial basic function neural net-

work (RBF-NN) classifier [9] to automatically segment the PF region and estimate its 

thickness. Two different quantitative evaluation metrics namely: the region-based 
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metrics and distance based metrics were used to evaluate the segmentation method. For 

the region-based metrics, the highest precision obtained was 97.70±1.20, whereas for 

the distance-based metrics it was 0.10 ± 0.07.  The full description of the segmentation 

process and steps and analysis are reported in detail in [3].  

 

2.4  Feature extraction 

In most classification tasks, feature extraction is an important step to extract the rel-

evant information (reduced input dataset representation) from the input dataset in order 

to perform the remaining tasks. Thus, the main goal of feature extraction in this classi-

fication study is to extract a set of textual features from the PF segments (using different 

measures) that discriminate between one input pattern and another, and then feed this 

into different classifiers for a classification task. 

In this stage six different sets of features (40 features in total) were extracted from 

the segmented PF region including: (i) Haralick spatial gray level dependence matrices 

(SGLDM) [10] where a total of 12 SGLDM features were computed and averaged for 

a selected distance d=1 (3x3 matrices) and four different orientation angles 00, 450, 900, 

and 1350; (ii) Region based features; (iii) Neighbourhood gray tone difference matrix 

(NGTDM) for a kernel window of 3x3 [2]; (iv) Histogram based features or first-order 

statistics (FOS) [5,21]; (v) Statistical feature matrix (SFM) [5,25]; (vi) Laws' texture 

energy measures [5,11,25].  

All the features extracted may have some redundancy, thus we introduced a feature 

selection and analysis stage to reduce this redundancy and to select the most discrimi-

nating feature sets. 

  

2.5 Feature normalization 

All features in this study were normalized using the mean variance normalization 

(MVN) approach which helps in reducing any non-linear distortion and scaling all fea-

tures so they fall within a specified range (e.g. [0  1] or [-1  1]) to prevent high meas-

urement values (especially region based measurements) from outweighing other feature 

values with smaller values (e.g. SGLDM features) [7]. The normalized features NXj,n 

are computed by calculating the difference between the features and their mean values, 

and then dividing them by their standard deviation values as given by equation 1 [7].  

𝑁𝑋𝑖,𝑛 =  
𝑋𝑗,𝑛−𝜇𝑗.𝑛

𝜎𝑗,𝑛
                              (1) 

where  𝜇𝑗.𝑛 is the mean value of the feature vector 𝑥𝑖 and 𝜎𝑗,𝑛 its standard deviation. 

 

2.6 Feature ranking and selection 

A common deficiency in most pattern recognition and classification tasks is the high 

dimension of the extracted feature space compared to the number of the input samples 

(40 features x 284 observations). This will lead to some common problems such as: 

over-fitting, poor generalization and high computation cost. In order to minimize the 

aforementioned problems, a combination feature ranking and feature selection unsu-

pervised infinity techniques [17,18] were introduced to reduce the correlated 
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measurements and to select the most discriminating features. Different selected feature 

sets were analysed to choose the best discriminating features for SVM classification 

modules based on high F-score values. 

 

2.7 Classification 

Following feature ranking and selection analysis, the feature classification approach 

was implemented using Linear-SVM and Kernel-SVM. To obtain a good classification 

result, three main conditions were taken into consideration during the classification 

process: (1) careful selection of features; (2) a good classifier; and (3) suitable training 

samples [22]. All the analysed feature sets described in the previous sections, were 

treated as input vectors to the selected classifier modules and their results were evalu-

ated using different classification measures. To overcome the over-fitting problem and 

to validate the robustness of the classifiers, a cross-validation task was also introduced 

using the k-folded (k=10 folds) approach to randomly select the training and testing 

instance classes.   

3 Support vector machines 

Support vector machines (SVM) [23] are widely used in bioinformatics and medical 

studies for pattern recognition related problems [12]. The main concept of SVM is that, 

firstly, it differentiates between two class samples according to the optimal maximum 

margin (distance between each set) hyperplane (or decision boundary) search result 

[21]; secondly, if the hyperplane fails to split the previous linear class samples, the 

SVM makes use of different kernel functions such as polynomial kernel, Gaussian-RBF 

and sigmoids-NN instead of linear SVM [6,14,23]. This aims to achieve high dimen-

sional feature space when translating original data samples [20]. In this study, both 

Linear-SVM and Kernel-SVM classifiers were tested and the Gaussian-RBF kernel 

function is used in the Kernel-SVM main function. For the PF US 2D training dataset 

TS with NL labelled instances (Xj, Yj), where Xj denotes the feature instances and Yj is 

the class label with 1 for normal and -1 for abnormal PF class, and N is the total number 

of samples (252 normal and 32 abnormal samples with 40 extracted features).  

4 Experimental results and discussion 

For the classification experimental results, a total of 284 (252 symptomatic and 32 

asymptomatic) US images of the PF regions (rear-foot, mid-foot and fore-foot sites) 

were analysed. Six different sets of features representing a total of 40 features were 

computed both from symptomatic and asymptomatic US images of the PF segments.  

For all extracted features, feature selection approach was introduced, and their means, 

weights and ranking orders were computed and analysed for normal and abnormal PF 

US images.  
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4.1 Feature extraction and selection analysis 

The main reason for feature selection analysis is to eliminate similar or highly co-

dependent features and to find the best discriminatory features that predict the best clas-

sification results. Feature selection analysis results of the top ranked features calculated 

from the 284 US images of the segmented PF region are represented in Fig. 3. For each 

feature, the weight predictor was calculated and its rank order was assigned accord-

ingly. The best features (with the highest weight and ranked predictor) were found to 

be LS, Contrast, Variance, LE, Energy, SumSquare, AngSecMoment, LL, EE, DiffVar-

iance, Strength, ES, Complexity, Correlation, DiffEntropy, SS, SumAverage, 

MajAxLength, Periodicity, Business, Mean, Skewness, Kurtosis, Orientation, Rough-

ness, ConvexArea, Extent, EquivDiameter and Area.  

 

 

Fig. 2. Graph representation of 34 ranked predictors (features importance) based on their im-

portance weights 

Furthermore, to determine the best features for each classifier, the F-score measures 

were computed for the Linear-SVM and Kernel-SVM classifiers using different se-

lected feature sets (from 1 to 40, starting with the highest ranked features). Six selected 

feature sets were defined using the highest F-score measure. The F-score result obtained 

by Kernel-SVM and Linear SVM were 98.05% and 97.06% respectively when using 

34-features. It is also clearly evident from this analysis, that there are differences in 

feature weights values between asymptomatic and symptomatic PF subjects.  From this 

interpretation, symptomatic PF texture tends to be darker with high contrast, high var-

iance, high shape measures (high thickness) (due to the accumulation of the inflamma-

tion fluid), more extent, high convex area (due to irregularity of the PF surface and 

outline disruption), high complexity (more heterogeneous), low strength, less periodic-

ity, more roughness and low grey intensity. While on the other side, asymptomatic PF 

texture are brighter with low contrast, low variance, less shape measures, less extent, 

less convex area, low complexity (more homogeneous), high strength, more periodic-

ity, more smoothness and high grey intensity. 
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4.2 Classification analysis 

For the classification task, Linear-SVM and Kernel-SVM classifies were trained and 

tested using the same training and testing datasets.  To overcome the over-fitting prob-

lem during the training stage and to assess the performance of various classification 

modules, 10-fold cross-validation was introduced. The main concept of the cross-vali-

dation approach is that each sample is added in both training and testing samples. For 

10-fold cross validation approach, datasets (252 asymptomatic PF subjects and 32 

symptomatic subjects) were randomly partitioned into 10 different equal splits (folds) 

(i.e. 10-1=9 folds were used for training task and the remaining fold is used for testing, 

with an iteration of 10 times dropping one-fold out for testing each time). Six different 

classification performance measures were computed and analysed for the two classifi-

ers. For each classification the mean value of the 10-cross validations was computed. 

The results of the classifications using the best selected features are summarized in 

Table 1.  

Table 1. Linear-SVM and Kernel-SVM classification performance measures                          

using the best selected feature sets 

Classifier Recall Specificity B-Accuracy Precision F-Score MCC1 

Linear-SVM 95.75 84 89.88 98.41 97.06 71.46 

Kernel-SVM 96.18 100 98.09 100 98.05 81.32 

 

In all the six classification performances, Kernel-SVM performed better than Linear 

SVM. For specificity and Precision, Kernel-SVN achieved 100%.  

5 Conclusions 

In this study we developed a new automatic supervised classification system for dis-

criminating different ultrasound plantar fascia images using Linear-SVM and Kernel-

SVM classifiers. This will help medical experts to improve the efficiency of the PF 

pathology diagnosis and minimize the time required for the diagnosis. Six different 

feature set measures were used to extract and analyse the texture features. Additionally, 

the infinity selection method was successfully adopted to rank and characterize asymp-

tomatic and symptomatic features, based on their weights importance. The results of 

the feature selection stage revealed that the top selected features can represent the char-

acteristics of asymptomatic and symptomatic PF subjects ultrasound images well. The 

Inf selection method to select the best features is quite effective. In order to define and 

compare the best features, the F-score measure was independently computed for both 

classifiers (Linear-SVM and Kernel-SVM) using different selected feature sets (1-40). 

The best selected feature set for every classifier were fed to the related classifier as the 

input vector for the classification task. In the experiments, different performance eval-

uation measures were used to assess the classification capability of the two classifiers 

using their best selected features. The results have shown that Kernel-SVM 

                                                           
1 The Matthew's correlation coefficient 
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outperformed Linear-SVM in all the performance evaluation measures.  For specificity 

and precision, Kernel-SVM achieved 100%. 

The classification results are very high for this first experiment. However, we experi-

mented with a further two classifiers to have an idea on the performance of the Linear 

and Kernel SVM algorithms. The radial basic function neural network (RBF-NN) 

classifier and the linear discriminant analysis (LDA) were used with the best selected 

features set. The results are summarised in Table 2. 

Table 2. RBF-NN and LDA Classification performance measures                                            

using the best selected feature sets 

Classifier Recall Specificity B-Accuracy Precision F-Score MCC2 

RBF-NN 98.82 96.67 97.74 99.60 99.21 92.82 

LDA 97.62 81.25 89.43 97.62 97.63 78.87 

 

The results show that for precision, specificity and B-Accuracy, Kernel-SVM still 

outperforms all other classifiers. RBF-NN obtained better results in Recall, F-Score 

and MCC. LDA in general performed worst then Kernel-SVM and RBF-NN. We are 

aiming in the next phase of the development of the system to use more classifiers. 
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