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MODELLING DEMAND FORLOTTO USING A NEW WAY TO CORRECT FOR
ENDOGENEITY

Abstract: Modelling lottery sales as a function of the mestandard deviation and
skewness of the probability distribution of retupmdentially gives insights into how the
design of a game could be modified to maximise@eatnue. But use of OLS is
problematic because the level of sales itself &fealues of the moments (and
insufficient instruments are available for IV regg®mn). We draw on the concept of a
rational expectations equilibrium, developing a megression model which corrects for
endogeneity where the causal impact of the depémnvaeiable on the right-hand side
variables is deterministic. Results provide motabée guidance to lottery agencies
because accounting for endogeneity leads to sogmfiy different results from OLS and
these results have superior performance in ouawfpte forecasting of sales. More
generally, results prove consistent with the FriadiBavage explanation of why people

buy lottery tickets and with evidence from racekrdata that ‘bettors love skewness’.

Key words: lottery; risk preferences; rational expectatiomgjageneity; regression
JEL codes: C50, H27, L83

1. Introduction

A lotto game offer players the chance to win adgegkpot prize. The player pays an entry
fee and chooses numbers from a set of numbersdaegdo the format of the particular
game. For example, players may be asked to chegsgxanumbers from the set 1-49 (or
have the computer choose for them). After the drises, a proportion of revenue from
entry fees is paid into a jackpot pool. A randormvdof numbers then takes place, for
example six balls are drawn from a container wilimdmbered balls. These are the winning
numbers. Any player whose number selection exactliches the numbers drawn wins a
share of the jackpot pool (the sales revenue alsdsf smaller prizes for ‘near misses’, for
example for entries which match only four or fiviglze six balls). In the event that no one
wins a share in the jackpot, the money allocatelis‘over’ to the following draw, i.e. it is
added to the jackpot prize pool for that draw. Wik make the game better value next time
it is offered.



Economists have long been interested in modellergahd for such lotto games, for two
main reasons. First, they are typically state-dpérar state-sanctioned and generate
considerable revenues, which are often dedicatéehtiting ‘good causes’. Second,
economists have been intrigued by the popularitpttd games given the typically poor
returns-to-player on offer. Capturing consumer gnerfices informs choices on how game
design may be modified to maximise revenue for guagses. Potentially, studying demand
will also offer insight on why people buy lottetigkets in the first place and add to
understanding of how risk preferences can explerphenomenon of gambling.

Researchers modelling lotto demand (for a detailedey, see Pérez and Humphreys, 2013)
rely on the ‘rollover’ feature of the game for idiéication of the demand function. Whenever
the jackpot prize is not won, the jackpot moneyiedrforward to the following draw raises
the size of the jackpot even if some of the smaliezes remain the same. Often several
consecutive rollovers occur and the jackpot prigedmes many times greater than in the first
draw in the sequence. So draws observed over &ey geeriod may differ very considerably
from each other in terms of the set of prizes awdd to the purchaser of a ticket. It is this

variation from draw to draw which facilitates idiication.

Essentially the purchaser of a ticket is regardetthis research as buying a probability
distribution of winnings, which includes a high pability of winning nothing, a low
probability of winning a modest amount, and a Very probability of winning an extremely
high prize. Rollovers change the characteristidhisf probability distribution of winnings.

For example, they increase the mean (or expecledMaecause they add money from
preceding draws to the prize pool for the curregatw and they also change the shape of the
distribution, because all the additional fundsiearforward from the preceding draw are
allocated just to the top prize, raising skewnBsdating the sales in each draw to the
characteristics of the probability distributionpfzes generates a demand function defined in

terms of those characteristics.

The characteristics of the probability distributiminwinnings in a draw are conveniently
summarised in terms of mean, variance (or stand@vaition) and skewness (as in, for
example, Walker and Young, 2001). But the reseaneires into a problem in attempting to
estimate demand as a function of these momentsh&sgrs can indeed be expected to

respond to variations in mean, variance (or stahdaviation) and skewness. However, there



is also reverse causation. Fixed proportions assedvenue from the current draw are paid

into the jackpot and lower prize pools, which affefhie values of each of these moments.

This and other types of endogeneity in economicetimg) which lead to biased coefficient
estimates are classically resolved by resort tausigeof instrumental variables. Gulley and
Scott (1993) estimated lotto sales as a functioexpected value and proposed that expected
value could be instrumented by the amount rollegr dnom the preceding draw. Subsequent
authors (such as Farrell et al., 1999) followedrteample.

However, specifying sales as a function of justeeted value is an incomplete representation
of consumer preferences. Expected value is lessthgaprice of a ticket, so the decision to
buy appears likely to be driven by higher momenthe probability distribution of

winnings. Unfortunately, a more complete specifaatvould require additional instruments
(one for each of the additional variables) and nuenge been identified. Thus, Walker and
Young (2001) had to estimate UK Lotto sales ashatfan of mean, variance and skewness
by ordinary least squares (OLS) even though adlelvariables were measured ex post and
were therefore endogenous. How much this will Haeeed coefficient estimates has

remained unclear.

Our methodological contribution is to show that pleblem of endogeneity can in fact be
resolved when estimating lotto demand without the efany instruments. This is only
possible because reverse causation in this paticake is deterministic: the causal impact of
the dependent variable on the explanatory varidabldstermined by the operator’s fixed
formula for allocating a share of revenue from ¢ickales in a draw to prizes for that draw. In

this context, a demand curve purged of the biasesceated with endogeneity may then be
estimated by drawing on the concept of a ratiorpketations equilibrium. In the rational
expectations equilibrium, where the underlying agstion is that agents on average make
unbiased forecasts, predicted sales used to cortiputelues of the moments are required to
equal the sales predicted by the moments modeln@titodology extends the scope of
rational expectations theory to a new market sgtlimthe past, it has been used primarily in
macro-oriented contexts but also underpins muclysisan the area of asset prices (Sargent,

2008).



We apply our rational expectations approach tota skt of sales for the principal lotto game
offered in Spain. We demonstrate that estimatisnlte are materially different from OLS
results. Coefficient estimates are smaller thasehabtained from OLS because the model
has been purged of endogeneity. This is practigaportant because reliably estimating
consumer preferences over mean, variance and skswailews operators to predict
consumer response were the pattern of returns adtéred by changing the format of the

game.

Finally, by offering a reliable way of using lotsales models to reveal consumer preferences
over the characteristics of the probability disitibn of returns, we will be able to confirm
whether the pattern of signs on mean, standarchtieniand skewness is consistent with the
Friedman-Savage utility-of-wealth function (Friedmend Savage, 1948). Confirmation of
the relevance of Friedman-Savage from experimelatial has been hard to obtain because
experiments cannot realistically offer sufficientlyge gains which reveal preferences for
gambling for life-changing prospective gains. Butiik (1981) provided indirect evidence
from a National (US) survey where respondents’aistaction with current income

predicted participation in lotteries but not in @tlyambling activities where extreme wins are
not offered. And, over time, study of gambling meiskhas added slowly to evidence through
analysis of naturalistic data. Golec and TamarkBpg) found patterns of odds and returns
across horses that were consistent with racetrettkrs being risk-averse but skewness-
loving, which would be the case if they had FriedaSavage utility functions. Walker and
Young (2001) took a yet more direct approach byesgjng lottery draw sales on the mean,
variance and skewness of returns in the partiarav and found coefficient estimates to be
positive, negative and positive respectively (dlbst skewness was only marginally
significant). This was evidence consistent witreBman-Savage; but, as noted already, they
had to use OLS despite acknowledging the presdneedogeneity. By resolving the
endogeneity issue, we are able to consider sdfienass of the relevant coefficient estimates
and test whether, for lottery play at least, betvawin the field is consistent with the
Friedman-Savage assumptions and with their ratofwellottery play: purchasers of lottery
tickets are sufficiently compensated by high pesiskewness in returns that they buy tickets

which are poor value in terms of the mean return.

The remainder of the paper is structured as folldwSection 2, we provide context for the

Spanish data set we analyse. We go on to workawittodel where sales are a function of the



moments of the probability distribution of winning&ection 3 outlines issues on how these
moments may be measured. In Section 4, we buildnmgel, based on the idea of a rational
expectations equilibrium, and seek to justify daira to have resolved the roadblock in
modelling lotto demand caused by the lack of obsimstruments. Our strategy for
computing the parameter estimates and standarnd esrdescribed in an Appendix. The
estimates themselves are presented in Section &asnpared with OLS estimates. We show
that estimation from our modelling based on rati@x@ectations provides more accurate
out-of-sample sales forecasts than OLS and than#terial difference between coefficient
estimates is large enough to be relevant in practigplication by those evaluating
prospective changes in the structure of any |lattoe The final section of the paper reflects

on what has been learned.

2. Data and context

The game we study to illustrate our methodolodyli§&ordo de la Primitivaoffered by
the Spanish state lottery agency, Loterias y Amsed¢l Estado (LAE). It was launched
as a monthly game in 1993 but converted to weeldy pn October 12, 1997, and the
data to be employed in our analysis relate to dfasve then on (and up to September
28, 2008). This gave us 573 weekly observationsodghout these weeks, the cost of
purchasing a ticket (€1.50) and the proportionabés revenue earmarked for prizes
(55%) remained the same.

Initially the game was sold with the single matmén format used in many other
jurisdictions, withm=6 andn=49. So players had to choose six numbers frons¢hé to
49 and, if the selection made exactly matchedithmain numbers drawn (the
probability of such a match is approximately 1 #4m), the player shared in the jackpot
prize. There were also four lower prize tiers amelddditional possibility of a refund of
the entry fee, which was made to holders of 10%heftickets sold (chosen by a
separate random process). Detailed rules wereagegbr the proportion of ticket

revenue allocated to each prize level.

On February 6, 2005, at the 388raw in our data set, LAE introduced a major
modification to the design of the game by changmg two-matrix format, 5/54 + 1/10.
So now a player had to choose five numbers fronsétd to 54 plus an additional

number from a second matrix consisting of the temlmers from 0 to 9. Consequently



the chance of winning a share in the jackpot tell in nearly 32m. The entire prize
structure was changed, with eight instead of figestof prize (in addition to the refund,
for which the probability remained 0.1). Table &g#nts a summary of the basic rules of
the game before and after the changes in gamerdésgure 1 shows draw-by-draw

sales figures

It should be noted that, before each draw, LAE anges how much has been rolled
over from preceding draws but does not issue fateaz projected jackpot. Jackpot size
is known only after sales close because a propodi®ales revenue is added to any
rolled over funds already in the pool. Players’idiens on how many tickets to buy are
therefore made without complete information and tnhesbased oaxpectations
concerning the distribution of prizes on offer.

Figure 1. Numbersof tickets sold for El Gordo de la Primitiva
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Because the game was made harder to win by thgrdelsange in 2005, the jackpot
was won less often, despite an increase in saldsdiaw cycles were therefore typically
longer. This allowed jackpots to accumulate todamgmounts than had been observed
under the old format and the highest recorded imdata was €26.7m. Through the
sequence of draws before the jackpot was won, dtterps of expected value, standard
deviation and skewness were radically differentfimefore. High skewness was more



commonly a feature than under the previous arraege&snHow sales evolved is shown
in Figure 1 where the vertical line shows the painivhich the design change came into

effect.

Table 1. Rules and prize structure Bf Gordo de la Primitiva

Before February 6, 2005 After February 6, 2006

Format 6 from 49 5/54+1/10
Drawing
frequency Weekly Weekly
Ticket price
(€) 1.5 1.5
Take-out ratd 0.45 0.45
Prize
categories 5 8

Share of the prize pdblnumber of balls to be matched and probability afnig
Jackpot 0.55 6 7.151 x 16 0.22 5+1 3.162 x 18
2" category 0.05 5€1 4.291 x 10 0.33 5+0 2.846 x 10
3" category 0.16 5 1.845 x 10 0.06 4+1 7.747 x 10
4" category 0.24 4 9.69 x 10 0.07 4+0 6.972 x 10
5™ category 15.03 3 0.0177 0.08 3+1 3.72% 10
6™ category - . - 0.26 3+0 0.00335
7" category - - - 0.2 2+1 0.00583
8" category - 3 - 3 2+0 0.0524

Notes:®take-out rate is the proportion of entry fees regdiby the operator to cover operating costs and
profit. ® 55% of total income goes into the prize pool, bd¥lgoes to a fund for the refund of the ticket
price prize and the remaining 45% is then disteduamong prize ‘categories’Once the total amount
devoted to the fixed prize for th&' Bategory has been deducted from 45% of totalnmedhe remaining
amount is distributed among prize categories (iticly the jackpot)? 22% of total income goes directly
into the jackpot prize pool. The remaining 23%atht income — after deducting the total amount teyo

to the flat prize for the '8category — is distributed among lower categofies.seventh ball was drawn

before February 6, 2005. Matching 5 numbers ancBtvus Ball' won the second highest prize.

We note that the design change in question waa negponse to falling sales (see
Figure 1). Change therefore appears to have bgenwine experiment to confirm the

agency’s view on how players would be likely top@sd to return-risk-skewness



packages that were different from those that haxah lawailable through the draw cycle
in the past. It provides for our empirical analysisnething akin to a natural experiment
where change can be considered to be exogenotisréaently relatively few other
jurisdictions had altered the design of their Igtones and those that did so were

typically responding to falling sales).

3. Measurement of the moments

Given that we intend to model lotto sales as atfan®f expected value, standard
deviation and skewness, it should be noted beferbegin that there is some ambiguity
in how values for the three moments should be &aied. Previous papers calculate the
values for a ticket for which the combination ofmhers has been randomly selected
and on the assumption that all other entries talther are also based on random
selection. However, many players choose numberthémnselves rather than opt for a
computer generated entry. These choices are lialile correlated with each other and
any given level of sales will be associated witbveer proportion of the possible
number combinations being selected. This is thed®f ‘conscious selection’, raised
first by Cook and Clotfelter (1993). Conscious sgte lowers the probability that the
jackpot will be won at all and produces increasadability in the number of winners

who share the jackpot when it is won.

To take account of conscious selection when caiogidhe moments, we adapted
methodology developed in Baker and McHale (2009iy. Bain results will be from
modelling where the moments have been calculalémivimg the Baker-McHale
approach. However, we checked the sensitivity sifilie to the assumption of conscious
selection and the methodology for allowing forytrepeating our estimation but with
moments calculatedithoutallowance for conscious selection (i.e. every playas
assumed to pick his or her numbers randomly). Resere in fact very similar,
validating and extending the claim in Farrell et(4B99) that allowing for conscious
selection when modelling UK lotto sales as a fuorchf expected value, made no
material difference to results. It had not beemirte us whether the same would apply
when higher moments were added to the specificdtimnnin the event, we drew the
same conclusion. Therefore our final results woll be dependent on decisions made

about dealing with conscious selection.



4. A model for resolving endogeneity

4.1 Overview

As the moments used predict lottosales are themselves a function of sales, OLS
mustbe modified in some way becausesoidogeneit; but, as we have noted,
insufficient instruments are available for IV regg®n to be an optiotere we adopt
instead a method based on constructing a self-st@msiestimate of sales from the
regression equation. This self-consistent estinsatet a function of observed salgs,
hence removing the endogeneity problem.

This procedure has a simple economic interpretafibere are many econometric
models in which people'sxpectationgigure as predictive variables (Murphy and
Topel, 2002). Greene (2008,507) gives thalustrative example of a model in which
the expected number of children could be a predicdable in the decision to enrol in
job training. In our case, the difference is that expécales influences the values
of the moments of the prize probability distributievhich, in turn, influence the
prediction of sales from the regression equatidmns Teads to a self-consistency
condition that must be met in a rational expectaiequilibrium One canmagine
the potential purchaser of a ticket hypothesisitigedy sales figureevaluatingthe
resultingattractivenessf the lottery, and hence refining his or her eateof sales
until a self-consistenéstimate iseached.

As this methodology, which we term self-consistegression (SCR), is new,
computations were done lyiting fortran95 programs. These ud¢dmerical
Algorithms Group (NAG) routines for random numligemerationfunction
minimisation,numericaldifferentiation,and matrixinversion. Full description of our
computation strategy is provided in an Appendixthi@ remainder of the present
section, we first describe the model itself andhtbeplain why and how it allows
unbiased estimates to be derived despite endogassites and despite the lack of

appropriate instrumental variables.

4.2 Model description

The observed sales figure is modelled as
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Q=Y 8% @)+n (1)

where the subscriptsignifies the draw number. Tl are regression coefficients and
thex; are variables including expected ticket valuenddad deviation and skewness
(x1=1 to permitf; to serve as an intercept). The model is spec#tebihear as the

simplest choice where theory provides no guidaisde éunctional form.

Control variables include draw number (to accdantiny trend in sales), shift and
slope dummies to account for any effects (othem theough changes in the prize
probability distribution) from the introduction afnew game design, and two lagged
values of sales, to account for habit formatiorm8mf thex;, specifically expected
value, standard deviation and skewness, are furctbpredicted salés Finally,n is

an exogenous random error about which we shallfginker detail later.

Since by definitiorg = § +n, we have the self-consistency condition
p

G = Z/J’J X (Q) 2)
j=1

This means that the forecast of sales that we nestipe player makes is also our best
forecast from the trend and moments of the prig&itution. The only parameters in
the model aré,...,53, but the model is now nonlinear in thggdecause the predictor

q solves a nonlinear equation.

4.3 The role of rational expectations

Our SCR model is essentially based on the notianrational expectations
equilibrium, a concept applied generally to markeliere participants must forecast
the future or some other unknown: such a marksaid to be in equilibrium when
the expectations of market participants match actutcomes on average (the
wisdom of crowds). Here, the values of the momangsnot known at the time of
ticket purchase as they depend on finally realgadés. In the absence of published
forecasts on the final size of the jackpot, anaigg¢readily) available information
such as the size of rollover paid into the jackpmdl for the current draw, players are
assumed to make their own forecasts of sales ierdodassess the values of the

moments (they then decide how many tickets to pageh The assumption does not



11

imply that their forecasts are perfect but it dmeply that the forecasts are unbiased

and that any forecast errors are not serially ¢taed.

This of course is a strong assumption which maynegessarily hold. However, such
evidence as there is from the prior literaturelmrationality of lotto players
suggests that it may be regarded as a fair workgsgimption. Scott and Gulley
(1995) developed a method of testing for a rati@xglectations equilibrium in a
lotto market. They found that actual sales wereotnetated with the residuals from
the fitted expected value equation in a two stagegxlure, concluding that players,
on average, correctly forecast sales using availabbrmation and supporting the
idea of a rational expectations equilibrium. Foregsal (2000) replicated this finding
for the case of the market for UK Lotto and Matheaad Grote (2003) found, when
looking at American lotteries, that players actedfahey were able to adjust their
expected value forecasts in the face of new arraegés for paying out the jackpot
prize as an annuity that appeared almost to catestmisinformation. This again is
strong evidence of efficient use of data on the pbplayers and adds to the

plausibility of assuming a rational expectationsiklrium in a lotto market.

How does assuming a rational expectations equilbrenable an endogeneity issue

to be resolved without recourse to conventionaéfdmation?

First, one could state that the foread@astin be interpreted as akin to an instrumental
variable, because it correlates with the predietorables but not with the error term
n. We need only one such variable, despite havirgraépredictors, because they
are all functions of the one quantify The error; represents the influence of
variables external to the lottery, such as theesurweather or economic conditions,
because we aim to have used all the lottery-badgedmation such as rollover in our

regression model. Hendgecorrelates with the but not withz.

However, a deeper insight is that it is possiblestdove endogeneity because we
know sufficient information about the mechanisnotigh which it operates to

account for it in another way. A key point is tIi®ER deals only with one specific
type of endogeneity. By contrast, the IV method isery general tool that can be
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applied to all types of endogeneity, at the coshtwbducing fresh variables into the

analysis.

Here saleg| are a function of predictoss and vice versa. The functional dependence
of qonx is specified by the model, but here the reversetfanal dependencdq) is
known. The regression need only be corrected ferl#iiter dependence to make it
work. How easy this is can be seen by a first-ofdpproximate) solution; expand

x(§) Ox(q) + x(@)’ (G - g), where x’) is the (calculable) derivativix/dqg evaluated

at observed sales Then a regression

q=p4x0Q+n ©)
becomes
A 0BX(A)+HL-BX( 4k (@)

Here,x is now evaluated only at observed saleand the only departure from OLS
is that the random err@gr must be corrected by a function®fThis makes the
regression nonlinear, so that @ygproximatesolution could be found by nonlinear

least squares (NLLS).

5. Resultsand model validation
Summary statistics are shown in Table 2 and refuolts estimation are displayed
in Table 3.

The model is
p
G =D B.x(q)+n, (5)
i=1

wherethe sales figure for draw(in millions) is modelled as a linear regressiorpon
predictor variablesg, some of which (expected value, standard deviatmmhskewness)
are themselves functions of salgsand others, such as lagged and doubly-lagged sale
(included to capture habit formation) are not. Ws® anclude a trend term (draw
number) and an interaction term where we multipgpd and a dummy variable (set
equal to one for draws from Draw 383 on). This sldpmmy permits trend to be
different after the design changeEhGordo de la Primitiva



Table 2. Summary statistics

mean standard minimum maximum
deviation
sales 3.752 1.293 1.272 9.478
(millions)
expected 0.799 0.170 0.607 1.493
value
standard 1098.5 915.3 78.0 4384.7
deviation
skewness 4529.1 901.5 3409.4 5903.1
Table 3. Regression results
(1) (2) )

It] It] It]
estimator oLS SCR SCR
conscious selection yes yes no
lag 1 sales 0.2851 10.47 0.2640 10.64 0.2675 10.8(
lag 2 sales 0.0882 3.67 0.1013 4.04 0.1007 4.39
draw number 0.0014 6.63 0.0028 9.73 0.0028 9.4(0
draw number*new design -0.0023 4.23 -0.0026 291 -0.0027 3.02
expected value 10.1456 21.57 6.493 12.09 6.435 8.99
standard deviation -0.0015 14.41 -0.0007 5.34 -0.0007 4.50
skewness 0.0010 17.01 0.0004 7.81 0.0005 6.89
constant -9.0036 19.2§ -4.870 9.3§ -4.987 7.4Q
observations 573 573 573
R-sq 913 921 .922

Note: p-value to three decimal places was < .00 hllacoefficient estimates
OLS refers to ordinary least squares and SCR fecsekistent regression

The OLS results (where values of the moments wemgoated taking conscious
selection into account) appear in the leftmost mwis of Table 3. Here, the moments
were computed using the realised sales in each t@vare to be predicted; this
contradiction is the weakness of the OLS model.

13
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Although the problem of endogeneity with an OLScsjieation appears obvious, we
nevertheless carried out a Hausman specificatgirtaeconfirm that the OLS estimator
indeed suffered from endogeneity. The test wasethaut for a subset of variables, i.e.
the expected value, standard deviation and skevaueggcients, and gave the chi-
squared statistic & [3] = 200.73, showing that the OLS estimator is cansistent

given the endogeneity problem it incurs.

The second set of estimates in Table 3 reportsdhresponding result from the SCR
method. The third column is for the case whereavestimated the SCR model with no
allowance for conscious selection. The similarityh@ results between columns (2) and
(3) demonstrates that whether or not conscioustseteis allowed for when modelling

lotto sales is not in fact an important issue.

The principal feature of Table 3 is that there material difference between the OLS
and the SCR results. When estimation by OLS (colajris replaced by estimation with
SCR (column 2), the coefficient on expected vahlks to about 64% of its previous
value and the coefficient estimates on standardhtiem and skewness fall, respectively,
to 47% and 40% of their previous values. This ib@expected given that the equation
has effectively been purged of the effects of eedegy. All coefficient estimates,
however, remain very highly significant and of theected signs.

The self-consistent model appears to track sales axxurately than OLS. Holding
back the last 50 draws, the MAPE (mean absoluteepésige error) of the out-of-sample
forecast of sales from the SCR model (with conscerlection) for the last 50 draws
was 4.85%. When we estimated the OLS model holdawi the last fifty draws, and
“predicted” sales for those fifty using values foe moments calculated according to
realised sales, the MAPE was 9.80%, more than tagde@igh. The same story held if we
made comparisons using the SMAPE (symmetric mesolate percentage error)
(4.93% versus 10.47%) or the MAAPE (mean arctangbsoblute percentage error, see
Kim and Kim, 2016) (4.84% versus 9.76%). This iliages the potential gain from

adopting the self-consistent model for practicajppses.
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A footnote to our results is that the redesigrhef game appears, in fact, to have
been very successful in terms of total sales, whiete 44% higher in the twelve
months following than in the twelve months precegdime change of format. Given
that inclusion of the moments as regressors alraadgunts for restructuring of the
prizes on offer, the results on the trend variablegest that players collectively
found the game format itself less satisfactory thefore (perhaps, for example,
they found it irksome to select their numbers fitwo matrices rather than one).
Therefore it is likely that the strong positivepesse of sales to the reform was
indeed linked to their preferences regarding tlimegorobability distributions
available over the twelve months before and afterdesign change. That the game
became harder to win made draw cycles longer aave there therefore more weeks
with high skewness. Further, at any given poirthendraw cycle, skewness was
higher than it would have been under the old ru@sgen the preference for
skewness revealed by the regression results, @appeasonable to link increased

demand to increased skewness.

6. Concluding remarks

Previous work attempting to model lotto demand entered an endogeneity problem
which was not resolved because of a shortage abpppte instruments. We have
attempted a resolution by developing and emplogingw class of regression model
which corrects for endogeneity in the special cointéhere the causal impact of the left
hand side variable on the right hand side variaisleeterministic. Results were
markedly different from using OLS as the best altéve in the absence of instruments.
The coefficient estimates on expected value, standieviation and skewness all fell
substantially but in different proportions to eather, indicating that ignoring
endogeneity may generate estimates that are misteéud operators seeking guidance
on consumer preferences over aspects of game d&sgpite its computational
complexity, we therefore recommend use of our seiffsistent regression given that the
lotto industry is important in terms of both itsakzand the social importance of the

expenditures it funds.

Using results from modelling sales is of practiogportance to the lottery industry.
Game managers must decide on game formats (e.¢hevleegame should be choose-

six-numbers-from-49 or choose-7-from-51) and psizactures (e.g. how much of the
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prize pool should go to the jackpot?) In assesaitegnatives, a key input is formal
evaluation of how consumers respond to differeckpges of expected value, standard
deviation and skewness in returns. Our methodoédigys more reliable input into
decision-taking.

A more general contribution of our paper is thathaee identified a method which,
without requiring instrumental variables, enableg&ction for endogeneity associated
with reverse causation in the particular case whiezenfluence of the dependent on the
explanatory variables operates mechanistically.ethdr our innovation in methodology
can be applied to settings other than the lottexyeave open to future research. Precise
knowledge of how reverse causation operates méactrbe a rare situation but we
speculate that it may be present in the settingeofork goods where the utility of a
service depends on how many other people subsérivexample, suppose
subscriptions to an online poker room are modeledependent on the expected
waiting time for a playing partner to be found. elénere is reverse causation which is
likely to operate mechanistically, permitting thgphacation of SCR where there is no

instrument available for expected waiting time.

Our paper has also yielded findings which testtielity of the Friedman-Savage
(1948) utility-of-wealth function. The positive/ ga&tive/positive coefficient estimates on
expected value, standard deviation and skewndsstr@hgly significant) are consistent
with the shape of function they proposed and camseity with their explanation of why
people buy lottery tickets. Previous attempts &tlation of Friedman-Savage from
naturalistic data on lottery sales may have beealiable to the extent that endogeneity
biased the coefficient estimates. Our methodolegydmoving endogeneity allows

more confidence than before in the Friedman-Saveygesentation of risk preferences.

7. Appendix
This appendix provides details of the exerciseoimgutation that was required to

estimate our SCR model.

To compute parameter estimates and standard esrarstkable strategy is to evaluate
the skewness and other moments, at a number ofiegpaced values di, for each

draw. In this study, forty values from 0.25 millicm 10 million sales were used. The
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value ofx;(q) is then found at any value @fby interpolation. Quadratic inverse
interpolation was used to solve the equation

-3 Bx,(§)=0
6)

What happens computationally is that the log-ltketid function is maximised using a
function maximiser. At any stage en route to thénopm valuegs*;, the maximiser
requires the log-likelihood to be evaluated at galofg; of its choice. Then, for each
draw, equation (3) is solved to yielil the predicted sales for that draw, and this value
is used to compute the log-likelihood as shownwelthe values of;(q) that have been
tabulated are specific to the particular draw, heeahey are functions of the amount
rolled over and these values are used to compatlg-likelihood across all draws as

shown below.

Concerning the error structure, it is reasonabkufgpose that the error will likely be a
percentage or proportion of sales. For exampl@ sunny day, maybe 10% more
people play, or those who do increase their pueshhg 10%. This thought leads to a
lognormal distribution for sales, I} = In(@) +; , whereg~N[0, &]. In terms of the

errorn, we have) = {exp €) - 1}4.

We tested the lognormal assumption by using the ®ox transformation to replace
In(g) = In(q) +¢ by

T(g=9"1

(7)
The best fit gave the power &s= 0.056, very close to zero, showing that a ldgaric
transformation does give the best fitting mode# fibhresiduals are then approximately

normally distributed.

The log-likelihood function is then

1B) =~/ 2} (n@)- @) 10~ (1] 2)In@w? -3 In@) o

where the last term is the Jacobian. Since
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n

6% = (In@)-In(§)*/(n- p,
= (9)

we can substitute fas? in the log-likelihood to obtain the profile logkélihood
ly =(—n/2)|n(zn:(lnq - InQ)z)—(n— p/2-(n/2)In(27 /(N p))—zn: In( @)

L L (10)
where the last three terms are constant and cagnbeed. This was maximised with a
function-maximiser to estimate tife Because the likelihood surface was bumpy, the
simulated annealing version of the Nelder-Mead ) %mplex method given by Press
et al (2007) was used to maximise the likelihoaatction. The simplex method is
already a robust method of maximisation that da¢gat ‘stuck’ on the way to the
global maximum as for example a conjugate- gradiggthod might, and the simulated
annealing modification allows it to jump over bumfiss of course important to
continue computation until one is very sure thatglobal maximum has been reached.

To ensure this, iterations were restarted fromnsloan starting points.

Another technical problem is that for some choigkthe 3, the self-consistency
condition (2) cannot be satisfied. In this capejas taken as the value gthat
minimised the modulus of the difference betweenéfteand right hand sides of (2).

The solution converged such that (2) was alwaysfsad.

Throughout our empirical analysis, we used standaxdiation rather than variance to
capture risk. There is no knowledge as to whiclcfimmal form is more appropriate. In
general, when the functional form of the prediesonot known, it is appropriate to
explore transformations of the predictor variab\&e therefore fitted a model in which
the standard deviation was raised to a power (&g a Box-Cox transformation).

The fit improved from that obtained with the starttideviation; the increase in log-
likelihood for one extra parameter was 18, corresinag to a fall in chi-squared of 36.
The power of the standard deviation was 0.766 (stémdard error of 0.0123). This
clearly shows that, empirically, standard deviai®a better predictor than variance. For
simplicity, we have reported results using the déad deviation rather than the standard
deviation raised to the power 0.766.

The calculation of standard errors on fitted mquhmeters, was initially done



19

numerically by computing the Hessian of the loglikood using numerical
differentiation, and inverting the Hessian to gilie covariance matrix for the fitted
model parameters. The bumpiness of the likelihaothse makes this method
unreliable, so that the Hessian can have negaijenealues, and hence a bootstrap
method was used (Efron and Tibshirani, 1993). Heeedraws are resampled with
replication, and the standard deviation of parametémates computed as the standard
deviation of the distribution of resampled estinsafehe 250 bootstrap samples were

made by randomly selecting draws from the datassetpling with replacement.
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MODELLING DEMAND FORLOTTO USING A NEW WAY TO CORRECT FOR
ENDOGENEITY

Highlights:

e we model lotto demand, correcting for endogeneity without the use of instruments

e assuming rational expectations allows removal of biases caused by reverse causation
e our new method for estimating lotto demand provides improved forecasting of sales

e |otto players respond positively to expected value and skewness



