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ABSTRACT: 

The dynamics of a micro-organism swimming through a channel with undulating walls subject to 

constant transverse applied magnetic field is investigated. The micro-organism is modeled as self-

propelling undulating sheet which is out of phase with the channel waves while the electrically-

conducting biofluid (through which micro-swimmers propel) is characterized by the non-

Newtonian shear-rate dependent Carreau fluid model. Creeping flow is mobilized in the channel 

due to the self-propulsion of the micro-organism and the undulatory motion of narrow gapped 

walls. Under these conditions the conservation equations are formulated under the long 

wavelength and low Reynolds number assumptions. The speed of the self-propelling sheet and the 

rate of work done at higher values of rheological parameters are obtained by using a hybrid 

numerical technique (MATLAB routine bvp-4c combined with a modified Newton-Raphson 

method). The results are validated through an alternative hybrid numerical scheme (implicit finite 

difference method (FDM) in conjunction with a modified Newton-Raphson method). The assisting 

role of magnetic field and rheological effects of the surrounding biofluid on the swimming mode 

are shown graphically and interpreted at length. The global behavior of biofluid is also expounded 

via visualization of the streamlines in both regions (above and below the swimming sheet) for 

realistic micro-organism speeds. The computations reveal that optimal swimming conditions for 

the micro-organism (i.e., greater speed with lower energy losses) are achievable in 

magnetohydrodynamic (MHD) environments including magnetic field-assisted cervical 

treatments.  
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1. INTRODUCTION 

Mathematical models describing the dynamics of swimming microorganisms such as spermatozoa 

have attracted the attention of researchers for many decades. In this context, Taylor [1] 

communicated the original analysis concerning the hydrodynamics of spermatozoa by 

approximating the micro-organism surface as an infinite sinusoidal sheet in an unbounded 

Newtonian liquid. He deployed the lubrication approximation and a perturbation approach to 

compute the swimming speed and power dissipation. Following the same methodology Taylor [2] 

extended his previous work by replacing the infinite oscillating sheet with an infinite oscillating 

cylindrical filament. Inspired by the pioneering work of Taylor [2], Hancock [3] calculated the 

propelling speed of undulating cylindrical filament by employing the Stokeslet distribution 

technique. In another article, the speed of sea urchin spermatozoa was computed successfully by 

Gray and Hancock [4]. Taylor’s problem was further extended by Drummond [5] for larger 

wave amplitudes. Reynolds [6] and Tuck [7] included inertial effects in Taylor’s model by 

introducing Reynolds number in the analysis. The above articles addressed analytically the 

swimming problem in an unbounded domain. However actual micro-organisms in internal 

physiology (e.g. spermatozoa) swim through narrow passages to reach their destination. This 

important characteristic was first appraised theoretically by Reynolds [6] to analyse swimming of 

a wavy sheet near to a rigid plane wall, identifying that in the vicinity of the solid boundaries 

swimming motion tends to create a distinct shear pattern which leads the spermatozoa away from 

the wall. Later, Shack and Lardner [8] and Katz [9] utilized lubrication theory to examine the 

wavy sheet hydrodynamics swimming between two rigid walls. Shukla et al. [10] explored the 

swimming propulsion of sperm bounded within rigid channel with peripheral layer viscosity and 

dynamical interactions. Sperm intrinsic movements do not appear to be the only force directing 

them toward the oviducts. In fact, such motions are superimposed with the peristaltic motion of 

the walls of the uterus and cervix. Thus, the muscular contractions of the cervical canal can also 

play an important role in influencing the sperm motility. Keeping this fact in mind, Smelser et al. 

[11] established a biofluid mechanical model for the sperm transport in a peristaltic cervical 

channel. Shukla et al. [12] theoretically analysed the motion of micro-swimmers through 

oscillating walls using the long wavelength approximation. The significant effects of variable 

viscosity on the swimming mechanism (via simulation of a self-propelling sheet in a channel with 
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and without peristalsis) was later quantified by Radhakrishnamacharya and Sharma [13]. 

Further, a recent study by Walait et al. [14] constitutes a significant contribution to the existing 

literature in this regard. The theoretical analysis described in [14] deals with the hydrodynamics 

of a swimming sheet with heat transfer through non-isothermal Newtonian cervical liquid in a 

deformable channel comprising two oscillating walls inclined at a certain angle.  

Sperm motility also refers to how well the sperm in a given semen sample/cervical mucus are 

moving. It is therefore essential to analyze sperm-fluid interaction with assisting rheological 

conditions by treating cervical fluid as non-Newtonian since actual cervical fluid exhibits 

significant rheological characteristics which deviate from the classical Newtonian model. Several 

robust efforts have been made in this regard and may be viewed as extensions of Taylor’s 

swimming sheet problem in an unbounded liquid and the problems attempted by Reynolds [6] and 

Semelsar et al. [11]. The first formal attempt to extend the Taylor’s swimming sheet problem in 

an unbounded liquid characterized by a viscoelastic second order (differential Reiner-Rivlin) fluid 

was made by Chaudhry [15]. Sturges [16] further extended Chaudhry’s work with a more 

complex integral constitutive equation representing the fluid around the organism. Extending 

Taylor’s model for MHD second order fluid Sajid et al. [17] clarified and corrected an erroneous 

computation in Chaudhry’s work. The role of a variety of non-Newtonian models in improving 

the swimming efficiency i.e. faster propulsion with less energy losses in an unbounded domain, 

was elaborated in excellent detail by Lauga [18]. Sajid et al. [19] incorporated the feature of 

porous medium drag in the Lauga model. Ali et al. [20] considered couple stress effects in an 

unbounded fluid as the propulsion medium for the swimmer. An even more sophisticated 

microstructural rheological approach, utilizing the celebrated Eringen micropolar model, was 

expounded by Sinha et al. [21] and Phillip and Chandra [22] to investigate hydrodynamic 

propulsion in microstructural rheological media. The rigid boundary was examined by Balmforth 

et al [23] for swimming in simple viscoplastic (Bingham) fluids. Ives and Morozov [24] 

attempted a parallel problem for the more elegant viscoelastic Oldroyd-B fluid wherein an 

important parametric study of organism speed and flow fields generated by the swimmer were 

calculated with a spectral numerical method. In the present article, we present a detailed analysis 

to explore the dynamics of infinite wavy sheet in an active/passive channel filled with magnetic 

(electrically-conducting) non-Newtonian Carreau biofluid. The model problem corresponds to the 
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movement of spermatozoa through the cervical canal under an externally imposed magnetic field 

and aims to simulate specific cervical magnetic therapy techniques. Magnetic therapy involves the 

deployment of a specific magnet with a sticky substance close to the human body. It has been 

identified via clinical investigations that this methodology increases circulation, so it can be used 

as an external treatment for any sort of injury to the tissues. Since human health is immensely 

dependent on the efficient movement of biofluids (especially blood) via for example the 

cardiovascular, embryological and other physiological systems, it is crucial to mitigate the 

stagnation of physiological fluids very quickly. Via magnetic therapy (increasing circulation) 

clinical engineers can robustly increase the tissue nutrition and can also remove waste products 

and maintain efficient, unobstructed flows. Ensuring sustained and successful continuous transport 

of biofluids in the human body therefore greatly assists and benefits health. Magnetic neck support, 

magnetic bracelets, magnetic shoes and magnetic beds constitute some different mechanisms of 

bio-magnetic assistance to the human body via extra-corporeal magnetic fields. A further 

advantage of magnetic therapy is that it does not have side-effects and is non-intrusive and 

therefore an excellent alternative to conventional surgical methods which may be traumatic. 

The non-Newtonian Carreau model involves four rheological parameters: power law index, 

relaxation time, and both low and high shear rates viscosity constants and is found to be superior 

to other generalized Newtonian fluid models in predicting the rheology of many actual 

physiological (embryological) fluids [25]. More recently this model has been utilized by Cordero 

and Lauga [26] to generalize Taylor’s swimming sheet problem to the non-Newtonian case. 

However, this model has not been utilized to explore the dynamics of a swimming micro-organism 

(infinite wavy sheet) in an active/passive channel with magnetohydrodynamics. This topic is 

greatly relevant to bio-magnetic therapy and magnetic-assisted embryological clinical methods 

which are becoming increasingly popular. Some applications of Carreau and other rheological 

models including peristaltic flow (fluid flow intercalated between two wavy walls), bacterial 

gliding (swimming near a solid wall) and stagnation point flow problems in the presence and 

absence of magnetic field are documented in refs. [27-37].  

The relevance of magnetohydrodynamic simulation in bio-rheological swimming micro-dynamics 

(under the imposition of static applied magnetic field) is also motivated by numerous emerging 

applications including steering of the swimming of micro-magneto-bots (deployed in non-invasive 

gastro-intestinal examinations) [38], magnetofluid dynamic treatment of diseased eyes via targeted 
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drug delivery [39] and sensing/monitoring of the performance of prosthetic smart magneto-

rheological kneecaps [40]. Further, the green magneto-tactic microbial fuel cells for energy 

generation also utilize magnetic swimming [41, 42]. The works of Ansari et al. [43, 44] on the 

swimming of micro-organisms in a hydromagnetic fluid, Gadelha [45] on swimming under the 

effects of oscillating magnetic field, Belovs and Cebers [46] on ferromagnetic micro-swimmers, 

Goa et al. [47] on fuel-free magnetic swimming for targeted drug delivery and Gauger et al. [48] 

on artificial magnetic cilia motion at low Reynolds number also provide a strong motivation for 

including magnetohydrodynamic effects in swimming sheet spermatozoa propulsion simulations. 

A recent study by Asghar et al. [53] dealing with the improvement of swimming efficiency by 

using Johnson-Segalman rheological fluids is also worthwhile to mention. 

The present work which describes the first analytical and numerical investigation of magnetic 

micro-swimmer cervical hydrodynamic propulsion in electrically-conducting Carreau 

embryological biofluids, is prepared as follows: The schematic diagram and constitutive equations 

of a Carreau model are presented in section 2. Formulation of the problem under low Reynolds 

number and long wavelength approximation is described in section 3. In section 4, the solution 

procedure is elaborated in detail along with the exact expressions of propulsive speed and flow 

rate for the Newtonian case. The numerical method to validate the results obtained is section 4 is 

described at length in section 5. In section 6, the effects of important parameters on swimming 

speed, energy consumption and streamline plots are shown graphically and discussed in detail. The 

paper is concluded in section 7 with recommendations also provided for future pathways including 

electro-fluid rheological micro-organism swimming dynamics. 

 

2. GEOMETRICAL INTERPRETATION AND CERVICAL FLUID EQUATIONS 

The geometry of the model describing the two-dimensional swimming of a micro-organism with 

speed 
sV  through a cervical channel with wavy walls is illustrated in Fig. 1 and represents sperm 

swimming in cervical magnetic therapy.  
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Fig.1. Propulsive motion of a micro-organism in a channel filled with magnetic Carreau fluid. 

 

The fluid inside channel is characterized by an electrically-conducting Carreau fluid model while 

the micro-swimmer is simulated as an infinite Taylor wavy sheet, propelling in the negative X-

direction with travelling wave of speed c and wavelength λ  on its surface. The undulating channel 

walls and self-propulsion of the spermatozoa generate flow in the positive X-direction. A constant 

magnetic field 
0[0, ,0]B= −

0
B of strength 

0B  is imposed in opposition of transverse to the 

swimming direction i.e. in the negative Y-direction. The wave profiles
1h  and 

2h  propagating along 

the cervical channel walls and 
sh  in the organism’s tail in the fixed frame are given as [11-14, 22]: 

( )( )1 0 w s

2π
h = h +b sin X ,- c -V t

λ

 
 
 

                       (Upper wall)     (1)                                                

( )( )s s s

2π
h = b sin X - c -V t

λ
,

 
+ 

 
      (Surface of the organism)   (2) 

                                          ( )( )2 0 w s

2π
h = h +b sin X - c -V t

λ
,−

 
 
 

                      (Lower wall)    (3) 

where 0h  denotes the mean distance of the micro-organism swimmer to either of the cervical wall 

(upper or lower),   is the phase difference with range 0    , sb  and wb are the amplitude of 

the wave on the micro-organism swimmer surface and cervical walls, respectively. In Fig. 1 0 =  

corresponds to the synchronized swimmer (shown by blue dashed line) while 0   corresponds 
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to the non-synchronized swimmer (shown by red solid line). Since synchrony will not persist 

practically, therefore it is advisable to consider occasions when the swimmer is out of phase with 

the walls. The organism is fixed with respect to the wave frame which has relative velocity of 

sc V− . 

The appropriate boundary conditions in the fixed frame are given as [12-15, 23, 53]: 

                         
1

2

0
,

and0

at Y hU

Y hV





==


== 
   (Upper and lower channel walls)      (4) 

.
s

ssdh

d

U

t

V

at Y h
V





= −


=
= − 



     (Micro-organism swimmer surface)    (5)                                                            

Here U , V
 

 are the horizontal and vertical components of velocity field in the laboratory frame. 

The lower ( )2 sh Y h   and upper ( )1sh Y h   halves of the channel are denoted respectively 

by the superscripts (+) and (-). The steady locomotion of the massless wavy organism necessitates 

that the total force on swimmer surface must be zero [8-14, 21, 22, 53], which mathematically 

takes the form: 

                                                  ( ) 0,ds+ −+ = T T                                                        (6) 

Here 


T  is the force due to the cervical liquid acting on the swimming organism from both sides. 

The equations that govern incompressible viscous flow of a magnetohydrodynamic (MHD) 

Carreau fluid (cervical liquid contains ions and other suspensions which respond to an externally 

applied magnetic field) due to propagating waves on the spermatozoa surface and channel walls, 

in the low magnetic Reynolds number limit (permitting the omission of induced magnetic field 

effects) may be written as: 

                . 0, =V               (Continuity equation)             (7)  

. ,
0

2

m

d
pU

d
B

t
  


− = − +

V
i     (Momentum equation)      (8) 
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where  is the density of electrically-conducting (magnetic) Carreau cervical fluid, /d dt  is the 

material time derivative, 


V is the velocity profile, 
m  is the electrical conductivity of the 

magnetic Carreau cervical fluid, i is the unit vector in the x-direction, p  is the pressure and 
  

is the extra stress tensor. The extra stress tensor for the Carreau model is [27-29, 33, 36, 37]: 

                                     ( ) ( )( )
1

2 22

02 1 .

n

  

−

  

 

 
 = + − +  
 
 

D                                  (9) 

Here   is the infinite shear-rate viscosity, 0  is the zero shear-rate viscosity,  is the time 

constant and n is the rheological power law index ( 1n  for shear-thinning fluid, 1n = for 

Newtonian fluid and 1n   for shear-thickening fluid). Further, the first Rivlin-Ericksen tensor 


D  and its magnitude 

  is defined as: 

( ) ( )
( ) ( )( )2

, 2 2 .
2

T

trace

 

   = 


= =
+ 

D D D D
V V

:                  (10) 

The fixed and moving (laboratory) frames are related as follows: 

                                                  
( ) , ,

( ), ,

s

s

x X c V t y Y

u U c V v V P p ,     

= − − =

= − − = =
                                     (11) 

3. MAGNETOHYDRODYNAMIC NON-NEWTONIAN PROPULSION MODEL 

The active cervical walls and propelling microorganism generate a two-dimensional flow with 

velocity profile , ,0u v    V = . Eqns. (7) and (8) can be shown to take the following form: 

0,
u v

x y

  
+ =

 
                                                               (12) 

,
0

xyxx2

m

p
u v u u

x y
B

y x x





 
   

    
+ − = − + + 

     
                               (13) 

                   ,
xy yyp

u v v
x y y x y


  

  
    

+ = − + + 
     

                                     (14) 
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                                       ( ) ( )( )
1

2 22

02 ,1x

n

x

u

x
  

−










 
 

 
=  


+ − +  

 
  

                               (15) 

( ) ( )( )
1

2 22

0 ,1xy

n

u v

y x
  

−


 



 

 
 + − +  
 


  
= + 

  

                            (16) 

                                     ( ) ( )( )
1

2 22

02 ,1y

n

y

v

y
  

−










 
 

 
=  


+ − +  

 
  

                                 (17) 

where 

                                      ( )
2 2

2
2

1
.

2

u v u v

x y y x

  


         
 = + + +               

                                  (18) 

 

Introducing the following dimensionless variables and numbers: 

 

( ) ( ) ( ) ( )

( ) ( )

2
* * * *

* * 0 0

0 0 0

*
* * * *0 0

2

0 0

20 0

0

2

0 0

2

2

0 0

22
, , , , ,

2
, , , ,

2
, ,

,

,, ,
0

2

ij ij

i s
i s

m

h hy u v
x x y u v p p ,

h c c c c

h b

Re B

V hQ
b V Q W W

c h c c c

h ch c
We H

h h



  





 


 





  


 





 
    







= = = = = =

= = = = =

= = = =

 


=

    (19) 

Next, we define the stream function by the Cauchy-Riemann relations: 

                                               ( ) ( )
* *

* *
, ,u v

y x

  
  

= = −
 

                                                 (20) 

It emerges that Eqn. (12) is identically satisfied and Eqns. (13) - (18) can be written as: 

                    2 ,xx xy

p
Re H

y x x y y y x x y

   
   

    
 

           
− − + = +   

           

          (21) 

               3 2 ,xy yy

p
Re

y x x y x y x y

  
   

   
 

          
− − + = +   

          

               (22) 



10 

 

 

 

                                 ( ) ( )( )
1

2
22

2

2 1 1 ,

n

xx We
x y


  

−





  
 = + − +       

                                 (23) 

                                 ( ) ( )( )
1

2 2
22 2

2 2

2

1 1 ,

n

xy We
y x

 
  

−
 

 
   
 = + − + −      

                      (24) 

                                     ( ) ( )( )
1

2
22

2

2 1 1 .

n

yy We
x y


  

−





  
 = + − +       

                              (25) 

The dimensionless form of 
  is given by: 

                                             ( )
2 2

2 2 2
2

2

2

2

1
2 .

2x y y x

  
 

  
      

= + −   
     




                             (26) 

In the above equations, the superscript * is omitted for brevity. The parameters 

, ,H We Re and  denote respectively the Hartmann (magnetic body force) number, 

Weissenberg number, Reynolds number (based on channel semi-depth) and dimensionless wave 

number. Now employing the long wavelength and low Reynolds number assumptions, expressions 

(23)-(26) gives 0,xx  =  ( ) ( )( ) 2

2
1

2
221 1 ,

n

xy We
y


 

−



  
 = + − +    


 

 0yy  = and 

( )
2

2

2
2

1

2 y


 

=  
 

 . The above assumptions are already popular in mathematical models of 

micro-organism swimming problems [1-10, 12-22, 53], peristaltic flow problems [27-32] and 

bacterial gliding problems [33-35]. These results when combined with the reduced Eqn. (21) lead 

to: 

                               ( )

1
2 22 2

2 2

2 2
1 1 .

n

p
We H

x y y y y

  
 

−

   
  

          
 = + − + +                

  

          (27) 

Eliminating the axial pressure gradient from the reduced Eqn. (22) and Eq. (27), we arrive at: 
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  
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−
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           
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           (28) 

Eqn. (28) is subject to following non-dimensional boundary conditions: 

1

2

0,
1 sin

1 sin ,
0

s
w

w

V 1
at y h b xy

and y h b x

x












= = −  = = − + 


= = + 

=
 

                 (29) 

( )
, 1

sin .

cos

s s

s

Q
y

at y h b x

b x
x













= = − 

 
= = +

 
= −

 

                  (30) 

The volumetric flow rate Q across the channel is computed via integration as: 

                                      

sin 1 sin

1 sin sin

.

s w

w s

y b x y b x

y b x y b x

Q dy d
y

y
y

 
= = +− +

=− + =

 

 
= =                                      (31) 

The fluid velocities on either side of the swimmer depend upon , , , ,s wb b We n  and two unknowns 

i.e. the propulsive velocity of the sheet 
sV  and flow rate of the fluid Q . Using the appropriate stress-

strain relation with the long wavelength assumption (see [8-14, 21, 22, 53]), the force equilibrium 

condition (7) gives: 
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dx
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dx dx

  =
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









 

−

+ −
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+ −

−

=
−

− − −

   
    
   

   
   

   





    (32)  

In Eqn. (32) the notation [ f ] indicates the difference in quantity f  evaluated above and below the 

wavy sheet.  

In the free channel case: 
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( ) ( ) 0.
dp

dx p p
dx

P





  

−



 = = − − =                                       (33) 

The rate of work done (i.e. mechanical energy dissipated) by the micro-organism is given as:     

                                 𝑊 = ∫ 𝑛𝑗[𝜏𝑗𝑖]𝑢±
𝑖

𝜋

−𝜋
𝑑𝑠  = ∫ 𝑛𝑗(𝜏𝑗𝑖

+ − 𝜏𝑗𝑖
−)

𝜕𝜓±
𝑖

𝜕𝑦

𝜋

−𝜋
𝑑𝑠,                             (34) 

where jn  and 
iu±  designate respectively the unit vector normal to the swimming sheet and 

velocities of the fluid particle above/below the micro-swimmer in the fixed frame. Also jit ±  

denotes the stress acting on the upper and lower surface of the swimmer. For the long wavelength 

case, Eqn. (34) takes the following form: 

( ) ( ) ( )( ), cos ; .,p s p sV Q b x p V QW x dx dxb cos x p p

 

 

+ −

− −

 = = −
                    (35) 

4.  SOLUTION METHODOLOGY  

For the Newtonian case ( )0 1We or n= =  without MHD effects i.e. electrically non-conducting 

biofluid case ( )0H = , one can find the closed form expressions of ,,
dp

P
dx




   as follows: 

( ) ( )

( )

( )( ) ( )( )
( )

2

3

2

1 1 3 2

1

1 1 2
,

1

w w s
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 
 + −  + − +
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=

−
   (36) 

( )( )( )
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3

6 2 1 2
,

1

w s s
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Similarly, the equilibrium condition (32) gives: 
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          (39) 

From Eqns. (38) and (39), we obtain two linear equations in two unknowns 
sV  and .Q  These 

equations are easily solvable to give: 

( )( )

( )( )

( )

( )( )

2
3 1

1 2 1
, .

2

s w s w s w

s w s w s

s

w s w

b b b b b b

b b b b b b
V Q

b b

− + − + −

+
=

+ + − +
=

−
                        (40) 

Taking 0wb =  and 
sb b= , one can retrieve the result presented by Shack and Lardner [9] and 

Asghar et al. [53] for a channel with rigid walls i.e. 

2 2

2 2

3 1
, .

1 2 1 2
s

b b
V Q

b b

− +
= =

+ +
                                                 (41) 

From Eqn. (40) it is clear that, swimming speed of the micro-organism in the simplest case of the 

Newtonian fluid is a function of undulation amplitude in the micro-organism surface and channel 

walls. The only way to externally control the speed of the swimmer is to alter these amplitudes, 

which is not a reasonable solution. In contrast, for non-Newtonian fluid a strong dependence of 

propulsive speed is anticipated on different rheological parameters, for instance , n and We  

which feature in the Carreau model. Thus, in the case of non-Newtonian cervical fluid the 

swimming speed can be controlled by the mechanical properties of the fluid, namely its viscosity 

and relaxation time. These additional features of non-Newtonian fluids provide an alternative and 

feasible mechanism for regulating the microorganism swimmer speed without actually changing 

the parameter of swimming gait, namely, the undulation amplitude. The Carreau model suggests 

that enhanced swimming speed can be achieved by tuning the shear-thinning and viscoelastic 

properties of the cervical mucus. This fact is supported by upcoming figures given in the discussion 

section. 
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Proceeding with the analysis, it is necessary to make recourse to a numerical technique to calculate 

sV  and Q  since for the non-Newtonian case the afore-mentioned procedure for determining the 

analytic expression of 
sV  and Q  is not executable due to the highly nonlinear nature of 

corresponding differential equation for the Carreau model. Fundamentally, we have two 

unknowns 
sV  and Q  which are to be computed from Eqns. (32), (33) after computing the stream 

function    for both regions from Eqn. (28) subject to boundary conditions (29) and (30) for a 

given set of parameters , , , ands wb b We n . Starting with some initial values of  
sV  and Q , the 

boundary value problem corresponding to each region  ((28), (29) and (30)) is solved for fixed 

values of the involved parameters in the domain 
2 1, ,s sh y h h y h x     −    and the 

resulting computed solution is used to check whether Eqns. (32) and (33) are satisfied. If this is 

attained, the process is terminated, otherwise any root finding algorithm can be employed to refine 

the values of 
sV  and Q . For the present computations, we have used the symbolic commercial 

software MATLAB routine bvp4c for an efficient numerical solution of the boundary value 

problem ((28), (29) and (30)) and the modified Newton-Raphson method for refining the values 

of 
sV  and Q . The process is performed until the absolute error between two consecutive iterative 

steps is less than -1010 .  

5. VALIDATION WITH IMPLICIT FINITE DIFFERENCE METHOD (FDM) 

A numerical solution of the boundary value problem consisting of Eqn. (28) and boundary 

conditions (29) and (30) provides validation of the bvp4c solutions for large values of the 

rheological parameters. The numerical solution is obtained by employing an implicit iterative finite 

difference method (FDM). We propose the iterative procedure to convert the original nonlinear 

problem into a linear one at the (k+1)th iterative step as follows:  

                         
( )

( )
( )

( )
( )

( )1 1 1
4 3 2( ) 2 ( )

( ) 2

4 3 2 2
0,

k k k
k k

k f f
f H

y y y y y

  
+ + +

      
+ + + = 

     
             (42) 
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



+


+


+



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where 

                                             ( ) ( )
( )

( )

1
2 2

2

( ) 2

2
1 1 .

n

k

kf y We
y


 

−

    = + − +     

                         (45) 

Here the superscript (k) indicates the iterative step. It is now clear that the above boundary value 

problem is linear in ( )
( )1k


+


. Inserting finite-difference approximations of ( )

( )1k


+


 and its 

derivative, the boundary value problem comprising Eqns. (28), (29) and (30) can be converted 

into a system of linear algebraic equations and solved for each iterative (k+1)th step. This yields 

numerical values of ( )
( )1k


+


 at each cross-section. The iterative procedure described above is 

initiated by specifying some suitable initial numerical values of ( )
( )1k


+


 at each cross-section. 

The unknowns 
sV  and Q  are also treated here as missing variables and assigned some starting 

values. Unfortunately, by increasing the number of iterations a convergent solution is not always 

possible, especially when initial numerical values of    are not prescribed carefully. In such 

circumstances the method of successive under-relaxation (SUR) is used. In this method the 

estimated value of    at (k+1) iterative step i.e. ( )
( )1k


+


 is refined to achieve the convergent 

value of    at the same step. This can achieved by the following formula: 
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( )

( )
( )

( )
( )

( )
( )

( ) 1 1

.
k k k k

    
+ +

   = + −
                                  (46) 

Here (0,1   is an over-relaxation parameter. It is also pertinent to select  as sufficiently small 

such that convergent iteration is readily attained. The iterations in this problem are carried out to 

calculate the value of   convergent to 
-1010 .  The convergent solution thus obtained is used to 

verify that Eqns. (32) and (33) are satisfied. If the answer is affirmative, this ensures that the 

correct values of unknowns 
sV  and Q are achieved. Otherwise, any root-finding method can be 

used to obtained convergent values of 
sV  and Q . For the present computations the popular and 

efficient Newton-Raphson method is used. The code for the numerical procedure is developed in 

MATLAB. It is important to mention that this method has earlier been successfully implemented 

by Ali et al. [33] and Asghar et al. [38] in the context of gliding motility of bacteria and swimming 

spermatozoa showing excellent accuracy and stability. The results obtained via this hybrid 

numerical method are depicted via superimposed blue filled dots in Figs. 2-5. Clearly, there is an 

excellent correlation between the results predicted by both methods. This testifies to the validity 

of the hybrid numerical technique-based results presented in subsequent section and confidence in 

the current simulations is therefore justifiably high.  

 

6. RESULTS AND DISCUSSION 

In this section the computational results are shown graphically in Figs. 2-10 and discussed in detail.  

6.1 SPEED OF MICROSWIMMER AND FLOW RATE OF CARREAU FLUID 

For specific values of one of the key rheological parameters, namely Weissenberg number (We), 

the pairs sV  and Q  can be readily obtained from the aforementioned numerical procedure. These 

pairs when substituted in Eqn. (35) furnish the corresponding values for the rate of work done by 

the spermatozoa.  

In Fig. 2, the swimming speed of the micro-organism in both shear-thinning ( )0.65n =  and shear-

thickening ( )1.35n= fluid as a function of Weissenberg number ( )We  is shown for six different 

values of Hartmann number ( )H . Propelling speed in case of passive channel ( )0wb =  is 
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displayed in Fig. 2(a) for two different undulation amplitude ( )sb . On the other hand, organism 

speed for two different active channel case i.e. w sb b  and w sb b  with two different phase 

difference ( )  and viscosity ratio ( )  is expounded in Fig. 2(b) and (c), respectively.  
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Fig.2. Speed of micro-swimmer in passive and active channel against Weissenberg number with different  

magnetic field strengths, mucus rheology, phase difference and udulation amplitude.  

 

In Fig. 2(a), for shear-thickening case, it can be observed that the speed slightly decreases, attains 

a minimum and thereafter exhibits an increasing trend with increasing Weissenberg number. 

However, this increase is not significant for larger Weissenberg number. In fact, it is very slow 

and as a result the profiles assume a plateau-type topology. For relatively greater magnetic field 

strength ( )1H =  the micro-swimmer pushes itself with greater speed. The above observations 

clearly highlight the assisting nature of magnetic field in the swimming hydrodynamics of 

spermatozoa when the surrounding liquid is of shear-thickening nature. However a converse trend 

is witnessed for a micro-swimmer propelling through shear-thinning mucus. One can also witness 

a reduction in swimming speed with small amplitude ( )sb .  

Fig. 2(b) is plotted for an active cervical canal with wall undulation less than organism undulation 

i.e. ( 0.2) ( 0.3)w sb b=  = . In comparison to Fig. 2(a), which is plotted for straight channel, the 

spermatozoa slow down due to the wavy cervical walls. This resistance to the swimming speed is 

due to the narrow passage of the active cervical canal, while in case of passive walls the channel 
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is comparatively wider. This fact can be observe in the upcoming figures (Fig. 9(a)-(f)). It can also 

be perceived from Fig. 2(b) that the speed of the organism exhibit a uniform (monotonic) 

increasing behavior for shear-thinning case and a converse trend is observed for shear-thickening 

liquid. Moreover, (by comparing corresponding curves for 0.1H = ) the organism possessing 

synchronized wave ( )0= with the cervical channel wave, can swim faster as compared to the 

non-synchronized organism ( )/ 2=  .  

Fig. 2(c) illustrates the swimmer’s propelling speed for an active cervical canal with wall’s wave 

amplitude greater than swimmer’s wave amplitude i.e. ( 0.4) ( 0.3)w sb b=  = . With reference to 

Fig. 2(b), a relatively greater magnitude of swimming speed is witnessed in Fig. 2(c) but in the 

opposite direction (positive x-axis). This means that the travelling cervical waves with higher 

undulating amplitude then swimmer’s undulation, causes the organism to propel along with them 

(in their direction of propagation). The shear-thinning rheology of the surrounding fluid and higher 

magnetic field reduce this reverse propulsion and encourages the micro-swimmer to swim faster 

in the negative x-direction. While increasing viscosity ratio ( )1 ⎯⎯→  leads to the Newtonian 

case. Further, interpretation of these profiles indicates that increasing amplitude of wave in the 

channel walls and increasing phase difference between organism and channel waves play a 

resistive role to swimming speed. This is clearly discouraging for swimming microorganisms. 

Thus, for passive channel, a magnetic shear-thinning medium with small Weissenberg number 

( )0 1We   and magnetic shear-thickening medium with large Weissenberg number ( )1We 

are the most scenario suitable for swimming micro-organism. For active channel, greater magnetic 

field strength, undulation amplitude in swimmer surface, shear-thinning with large Weissenberg 

number ( )5or10We  and low phase difference leads to faster propulsion of swimming 

spermatozoa.  

In Fig. 3, a comparison of flow rate of cervical mucus against Weissenberg number for both active 

and passive cervical channel is presented. Figs. 3(a)-(c) are exactly plotted for same set of 

, , , ,w sb b H and n   as used in Figs. 2(a)-(c), respectively. 
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Fig.3. Flow rate of cervical fluid in passive and active channel against Weissenberg number with different  

magnetic field strengths, mucus rheology, phase difference and udulation amplitude. 

 

 

For both active and passive wall vicinity the magnitude of the flow rate increases with increasing 

Hartman number for shear-thinning mucus ( )1n  . Small undulation in the swimming sheet and 

synchronization between the (organism/canal) waves also assist the flow rate for the said case. 

However, the opposite trend is computed for shear-thickening cervical liquid. In comparison to 

Fig. 3(a), wavy channel case as shown in Fig. 3(b) and (c) reduces the flow rate of the cervical 

fluid. It is deliberately shown that flow rate is a decreasing function of Weissenberg number for 

shear-thickning fluid, however in case of shear-thinnning fluid, flow rate initially increases (in 

magnitude) with Weissenberg number and after reaching a critical point ( )1We =  there is a 

marginal reduction in flow rate. It is also anticipated that for greater values of Weissenberg number 

i.e. 10We   both the swimming speed and flow rate exhibit an asymptotic behavior.   
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6.2 RATE OF WORK DONE AT DIFFERENT SWIMMING SPEED  

For both active and passive channel the rate of work done corresponding to different propulsive 

speeds and flow rates (shown in Figs. 2 and 3) as a function of Weissenberg number ( )We for six 

different values of Hartmann number ( )H and two different undulation amplitude ( )sb , phase 

difference ( )  and viscosity ratio ( )   is depicted in Fig. 4. For brevity, here we show the shear-

thinning case ( )1n  only and we anticipate that the shear-thickening case leads to a converse trend 

in the energy losses.  

 

 

  

Fig.4. Rate of workdone against Weissenberg number in passive and active channel with different  

magnetic field strengths, mucus rheology, phase difference and udulation amplitude 
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It is observed from Fig. 4(a) and (b) that the rate of work done exhibits a qualitatively increasing 

trend with increasing Weissenberg number and Hartmann number for shear-thinning fluid. Fig. 

4(c), (corresponding to Fig. 2(c) which is plotted for w sb b  showing a reverse propulsion of the 

organism) reveals that there is a greater loss of energy as compared to other two cases. This energy 

loss reduces with increasing Weissenberg number and Hartmann number. This figure also 

authenticates that a synchronized swimmer expanded less energy as compared to a non- 

synchronized swimmer and same fact is true for large amplitude swimmers. 

 

6.3 COMPARISON OF ENERGY EXPENDED AT SAME SWIMMING SPEED  

In the above figures (Figs. 4), the rate of work done is computed corresponding to different 

propulsive speeds. If the spermatozoa is somehow able to maintain the same swimming speed in 

two different scenarios, then it will be more appropriate to compare its power dissipation in both 

cases. The same swimming speed in two different circumstances can be obtained by altering wave 

amplitude in the micro-swimmer surface. One scenario could be the spermatozoa swimming in an 

active channel with specified speed in the presence of magnetic field while another scenario may 

entail the same micro-organism swimming with the same specified speed through an active channel 

in the absence of magnetic field. The comparison can also be made on the basis of activeness or 

passiveness of the channel and rheology of the surrounding fluid. All these cases are shown here 

in Figs. 5-7 in the form of histograms.  

 
 

Fig. 5.  Comparison of energy expanded by the organism swimming through Carreau liquid with and 

without MHD effects with same propulsive speed. With , / 2 0.5wn 0.75 b 0.2, = and  = = =  
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Fig. 5 corresponds to the first case. It is observed that application of magnetic field reduces the 

energy expanded by the micro-organism i.e. less amount of work is required by the micro-

organism to maintain the same speed in a magnetohydrodynamic environment. 

 
 

Fig.6.  Comparison of energy expanded by the organism swimming through active and passive 

channels with same propulsive speed. With , / 2 0.4n 1.35 H 0.4, = and  = = = . 

 
 

Fig. 7.  Comparison of energy expanded by the organism swimming through shear-thickening and 

shear-thinning liquid with same propulsive speed. With , / 2 0.5wb 0.3 H 0.6, = and  = = =  
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Fig. 6 reveals that activeness of the channel increase the energy losses substantially. In other words, 

energy expended by the micro-organism moving with the specified speed in a passive channel is 

substantially less than the corresponding energy expanded by the micro-organism moving with the 

same speed in an active channel. 

Fig. 7 highlights that the energy losses can also be controlled by adjusting the rheology of the 

surrounding liquid. In this regard it is observed that the shear-thinning characteristic is quite 

favorable to achieve the required goal.   

 

6.4 STREAM LINES OF THE MAGNETIC CERVICAL LIQUID FLOW 

From the above discussion, it is clear that there are four different ways to control the speed of 

swimming sheet. These are: (1) by disturbing synchronization between the waves present in 

swimming sheet and channel walls, (2) by varying the applied magnetic field, (3) by altering wave 

amplitude of the organism surface or channel walls, (4) by tuning the mucus rheology present 

between the spermatozoa and cervical canal.  

A comparison of streamline patterns of cervical mucus for different phase difference, magnetic 

field strengths, occlusions in spermatozoa surface, fluid rheology, rigid and active cervical 

channels is shown through Figs. 8-10. In Fig. 8, the parameters , , , ,
s w

b b H We n and  are kept 

constant throughout for the active channel and plots (a)-(d) are produced by varying the phase 

difference between the micro-swimmer and channel waves.  
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Fig. 8. Streamline of flow in an active channel with different pairs of swimming speed ,sV flow rate Q and  

phase difference   with 0.45, 0.35, 0.5, 7, 0.5 0.55.s wb b H We n and = = = = = =  

 

The red-yellow colored undulating curve in the middle of the channel specifies the swimming 

micro-swimmer trajectory. The corresponding streamlines near the cervical walls and swimmer 

surface resemble this trajectory in geometric shape, which is of the form of a sinusoidal wave. For 

the non-synchronized wave scenario (with phase difference 3 / 4 = ) the numerical computations 

yield  0.1980 0.3230sV and Q= = − as shown in plot 8(a). The recirculating zones appear in the 

channel both below and above the micro-organism swimmer surface, which are anticipated to be 

reduced as the organism swims faster while approaching the synchrony. This fact can be observed 

in plot 8(b) in which the speed becomes 0.2678sV = with comparatively smaller phase difference 

i.e. / 2 = . There are also a few minor void regions without any trapped bolus. With further 

smaller phase difference physically the case when the swimmer is in phase with the channel is 

approached. In such a case (plots 8 (c) and (d)) the corresponding streamlines are closely packed 

sinusoidal shape curves spanning the entire channel. In both plots 8 (c) and (d) there is no evidence 

of recirculating zones nor any kind of void regions in any part of the channel.  

The assessment of level curves representing the cervical liquid (Carreau fluid) around the 

spermatozoa for both rigid and active cervical channels with different magnetic field strengths (as 

simulated via the Hartmann number, Ha) are depicted in Figs. 9(a)-(f). By keeping fluid rheology 

and organism amplitude ( )0.4sb =  fixed, plots (a) and (b) are displayed for the passive channel 

( )0wb = , while plots (b)-(f) are displayed for the active channel ( )0.3 and 0.5w wb b= =  for two 

different Hartman numbers. Referring to plots (a) and (b), the level curves near the rigid walls are 
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straight lines and they adopt the shape of the swimmer in close vicinity of the swimming sheet. 

Comparison of plots (a) and (b), reveals a decrease in the number of streamlines with increasing 

Hartman number or swimming speed. The wavy channel (canal) significantly reduces the 

propelling velocity and increases the intensities of fluid streamlines near the undulating organism 

and channel walls (as shown in plots (c) and (d)). This situation creates a circulating zone in the 

corresponding cross sections for both the upper and lower part of the channel (as shown in plot (c) 

with no magnetic field). However, inspection of plot (d) indicates that with magnetic effects these 

circulating zones disappear and the result is a void region. 
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Fig. 9. Streamline of flow in passive and active channels with different pairs of swimming speed ,sV flow rate Q  

and Hartman number H  with 0.4, 5, 0.7, 0.65 3 / 4.sb We n and  = = = = =  

 Finally, plots (e) and (f) expounded the case in which there is a large amplitude of waves in the 

channel walls as compared to the micro-swimmer organism, which leads to reverse propulsion 

(“back-swimming”) of the organism. The speed of spermatozoa is significantly higher (in 

magnitude) in comparison with the case of small amplitude wavy walls. It can be clearly witnessed 

that the number of circulating zones is significantly increased i.e. there is substantial intensification 

in the recirculation and vortex structures. Furthermore, a comparison of plots (e) and (f) reveals 

that the presence of magnetic field encourages faster swimming whereas it reduces the number of 

circulating zones. 
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Fig.10. Streamline patterns of the fluid in wavy channel with different pairs of rheological parameters and  

swimming gait 0.3, 0.7, 0.6 7 /12wb H and  = = = = . 

 

Figs. 10(a)-(d) are plotted by tuning the fluid rheology i.e. by adjusting , andWe n   and micro-

swimmer organism undulation i.e. by varying sb . Of course, the amplitude of wave in spermatozoa 

surface cannot be controlled externally. Nevertheless, the present computations are not limited to 

living micro-organisms only but equally valid for artificially designed magnetic micro-swimmers. 

From Figs. 10 it is clearly observed that the strength of streamlines decreases in corresponding 

middle regions of both halves of the channel as the swimming speed increases.  

 

7.  CONCLUSIONS 

The two-dimensional hydrodynamic propulsion of a micro-organism (spermatozoa) swimming 

through an active channel filled with hydromagnetic Carreau fluid under static transverse magnetic 

field, as a simulation of cervical magnetic field therapy in embryological medicine, is explored. 

Taylor’s wavy sheet model with phase shift is deployed for the micro-organism and sinusoidal 

waves are imposed at the channel walls. The differential equation describing the problem is 

developed by invoking the low Reynolds number and long wavelength approximations. A 

numerical scheme based on the symbolic software MATLAB routine bvp-4c is used to compute 

the micro-organism velocity and flow rate for large values of rheological parameters. The results 

obtained via bvp-4c are validated with an alternative implicit finite difference numerical scheme 

(FDM). The dependence of the rate of work done by the swimming micro-organism on different 
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rheological parameters is also elucidated. The key findings emerging from the current theoretical 

analysis may be summarized as follows: 

• The application of constant applied magnetic field proves to be an assistive factor in 

swimming propulsion and aids the micro-swimmer (organism) locomotion, while 

activeness of the channel inhibits the propulsion of micro-swimmers.  

• The swimming speed achieve maximum/minimum magnitudes at a certain value of 

Weissenberg number for thinning/thickening fluid under the action of magnetic field 

(Hartmann number) for the passive channel, while the speed increases/decreases uniformly 

with increasing Weissenberg number for thinning/thickening fluid in the case of an active 

channel.  

• Larger amplitude in the micro-swimmer (e.g. representing sperm flagella) enhances the 

swimming speed of the micro-organism and less energy is utilized in this case.  

• If the micro-organism is made to swim through both passive and active channels with the 

same speed, then the energy consumed is lower in the former case. Similarly, if the 

organism is made to swim through both hydromagnetic (Hartmann number > 0) and 

hydrodynamic (Hartmann number = 0) biofluid environments with the same speed, then 

the energy consumed is also lower in the former case Thus, swimming is energy-efficient 

in a passive channel with a magnetohydrodynamic biofluid environment. 

• The strength of recirculating zones and streamlines appearing in the corresponding central 

regions of upper and lower halves decreases with faster propulsion. 

The current study has considered micro-organism propulsion via wavy sheet swimming in 

biorheological magnetohydrodynamic fluids. Future works will consider propulsion in electro-

rheological fluids under the action of axial electrical fields [49-50] and additionally may also be 

generalized to consider simultaneous electrical and magnetic fields [51] and more complex 

rheological constitutive models e.g. electro-viscoelastic fluids [52] which are also of relevance to 

electro/magnetic cervical and other medical treatments. The hybrid numerical procedure 

developed in the current article offers considerable potential in these new exciting areas.  
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