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Abstract 

The generalized plasticity theory has been subject of much research in geomechanics. The 

Pastor-Zienkiewicz model and its modified versions are among these. For large foundations resting on 

multilayered soils the actual loading are often non-linear. In this study we developed a new mathematical 

model which can apply non-linear loading using the subfield of planar mesh method. A sensitivity study 

was first performed to evaluate the contribution of deformation from various model parameters. It is found 

that the plastic modulus parameters only have marginal contributions. An engineering case study was used 

to valid the proposed model and it is evident from measured stresses that the loading of the foundation is 

non-linear. The deformations calculated by the proposal model agreed well with the monitored 

deformations. It is also found that the maximum deformation point is not necessarily in the centre of 

foundation and it does not coincide with the maximum loading point either. The distance between the 

maximum deformation point and the maximum loading point can be as far as 15.59m for the bottom layer 

soil from this case. This research proves the necessity of using non-linear loading to calculate the 

foundation deformations for large foundations with multilayered saturated soils.   

Key words： large building foundation, Pastor-Zienkiewicz model, sensitivity analysis, foundation 

deformation, multilayered soils 

 1. Introduction 

Early 1980s a generalized plasticity theory was proposed by (Zienkiewicz OC and Mroz Z, 1984; Mroz Z 

and Zienkiewicz OC, 1984 ) for modelling the non-linear behavior of real materials such as soil. In this 

generalized plasticity theory direction vectors were used and the yield and plastic potential surface do not 

need to be explicitly defined. This generalized plasticity theory does provide a relatively simple framework 

for predicting the behavior of geomaterials under different loading conditions (Ling HI and Liu H, 2003). 

The generalized plasticity theory was later extended by Zienkiewicz OC et al. (1985) and Pastor M et al. 
(1985; 1986) and Pastor M and Zienkiewicz OC (1990) which led to the Pastor-Zienkiewicz model ( “P-Z 

model” hereafter). The P-Z model is a constitutive model primarily applied to geomaterials such as clay 

and sand (Li et al., 2011). The P-Z model is able to simulate the deformation behavior of sand under 

monotonic and cyclic loading conditions (Pastor M, 1986). There were also several other modifications to 

the generalized plasticity theory. Pastor M et al. (1990) proposed a modified non-linear 

Pastor-Zienkiewicz-Chen model without changing the number of model parameters, which performed 

better in predicting the dynamic liquefaction of saturated sand under undrained conditions (Amin Iraji et al., 

2014). Based on the critical state and the generalized plasticity theory, Ling HI and Yang S (2006) modified 

the plastic modulus, loading vectors and plastic flow direction vectors to propose a unified generalized 

plasticity model for modelling the deformation behavior of sand under various loading conditions. The 

static part of the P-Z model was also modified by Li et al. (2016) by introducing some state parameters into 

the dilatancy formula, plastic potential direction vector, loading (unloading) direction vectors and plastic 

modulus equation of the original P-Z model. Liu and Ling (2002), Liu and Song (2005) extended the 

generalized plasticity model to capture the dilatancy and strength properties of sand under a wide range of 

stress levels. Tonni L et al. (2006) introduced a state-dependent dilatancy and adjusted plastic modulus that 

based on the basic generalized plasticity theory to simulate the softening of dense sands. These models 

were all rooted from the generalized plasticity theory. It has been a common practice to modify the original  

plasticity theory by adjusting specific model parameters in order to solve specific engineering applications.  
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For engineering practices such as foundation deformation calculation, the generalized plasticity theory was 

also used in association of the layer-wise summation method. In order to understand the deformation 

characteristics of layered soils, i.e., for the multi-layer elastic isotropic subsoil under strip foundation, 

Gazetas (1980) established a numerical calculation method to calculate the static and dynamic displacement 

of foundations. This numerical method can only be applied to the rigid and rough strip foundation. Onopa 

IA et al. (1983) monitored the settlement of the four-layer compacted and saturated silty soil under a single 

footing. The monitored results showed that different thickness of compressible soil layer in the foundation 

had different influence on the settlement. Bezvolev S.G. (2002) proposed a linear variable half-space model 

that was used to calculate the deformation at any point in the limited depth of the compressible soil. This is 

an improved layer-wise summation method. Denis et al. (2011) analyzed the potential influences on the 

security of foundation from the soil property – when the soil property was changed in longitudinal direction 

under the continuous spread footing. In foundation practices, this aspect was rarely considered in the past. 

Díaz E and Tomás R (2016) proposed a simple method to predict elastic settlements in foundation resting 

on two soils of differing deformability. By adjusting the reduction factor, the resulted maximum error was 

less than 1.57% between the actual measurements and calculated results.  

The existing models discussed earlier are believed insufficient in calculating the deformation of 

multilayered soils under the large scale building foundations, in particular for the layered soils foundation 

with larger differences in soil properties. The above models tend to assume linear loading and uniform 

deformation across the foundation layers which may not be the case for large and complex foundations. 

Due to the large size of foundations and the complexity of building structures, the actual loading on the 

surface of such foundations can often be non-linear. The non-linear loading in this work refers to the fact 

that the overall distribution of the effective additional stress on the foundation surface under large-scale 

foundation is irregular (ref: Fig. 10c). Consequently the maximum loading point maybe not necessarily the 

point where the maximum deformation happens. The general P-Z model was widely used to simulate the 

deformation under dynamic conditions such as earthquake and waves (Pastor M et al., 1985), but fewer 

applications on the analysis of soil deformation under lager scale building foundations under static loads. In 

static loading practices, the soil deformation is caused only by vertical loading, and once the load is on it 

will be there continuously (i.e. for large multi-storey or high rise buildings once constructed). Under this 

particular scenario, the loading that produced by the construction can be regarded as monotonic and 

continuous. Therefore a simplified P-Z model with less number of parameters can then be adopted to 

calculate the foundation deformations discussed in this research.  

In this paper, a new mathematical model to determine the deformation of large foundation is proposed. A 

sensitivity analysis of parameters was done based on their individual contribution to the deformation of 

foundations. The concerned model parameters are: two parameters related to the elastic state: elastic 

modulus (E0) and Poisson's ratio (μ); two parameters for the critical state: internal friction angle (φ) and 

relative density (Dr); and four parameters associated with plastic modulus: accumulated plastic deviatoric 

strain (ξ), plastic modulus number (H0) and material parameters (β0 and β1). The proposed mathematical 

model is constitutive, and deemed to be robust when performing deformation calculation for large 

foundations. By assessing the sensitivity of each parameter in the deformation calculation of foundations, 

the new mathematical model also provides important basis for the selection of parameters which can be 

used to guide experimental process. The paper is set out as follows: section 2 discusses the simplification of 

the P-Z model under static loading; section 3 describes the derivation of the new mathematical model using 

the subfield of planar mesh method; section 4 reports the sensitivity analysis of model parameters; model 

validation is carried out in section 5 using an engineering case study; followed by conclusion discussions in 

section 6.  

2. The simplication of the P-Z model under static loading 

The P-Z model was originally defined with p-q-θ coordinates. It was subsequently extended to the 

three-dimensional Cartesian coordinate system that is more convenient for model implementation and 

numerical simulations (Pastor M et al., 1990; Akhaveissy, 2011). In the process of simulating the 

deformation of sand, the non-associative flow rule (f≠g) is used in this model. Akhaveissy et al. (2009) 

proposed the reformulated relations as general unit vectors to yield (f) and the potential (g) surfaces. These 

surfaces are schematically shown in Fig. 1. 
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Fig. 1. Schematic yield and potential surfaces (Akhaveissy et al., 2009) 

 

The equations of yield surface (f) and potential surface (g) are defined as follows: 
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Where f is the yield surface, g is the plastic potential surface, q is the deviatoric stress, Mf
 
is the model 

parameter controlling the loading direction, p
 
is the mean effective stress, α is the material constant, pe and 

pg are initial standard stress, and Mg is the slope of the critical state line (CSL) that determined by the 

internal friction angle (φ) at the critical state and Lode’s angle (θ): 
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Where Dr is the relative density of soil, J2 is the second invariant of the deviatoric stress, and J3 is the third 

invariant of deviatoric stress. 

The unit direction vectors of yield surface (f) and potential surface (g) can be expressed as: 
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                                        (4) 

Where n and ngL are the unit direction vector. 

The relation between the increments of stress and strain for a material can be defined as: 

                                                                    (5) 

Where dσ and dƐ are the increments of stress and strain, Dep is the elastic-plastic tensor. 

The elastic-plastic matrix ([ ]) in generalized plasticity can be expressed as: 
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Where De is the elastic tensor, and HL is the plastic modulus. 

For cases where only the virgin loading is present and there is no unloading and reloading , the plastic 

modulus (HL) can be simplified as: 
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Where Hf and Hv are the functions for the stress ratio of plastic modulus, Hs is the hardening function of 

deviatoric strain, η and ηf are the Stress ratio parameters, H0 and β0 and β1 are the Non-dimensional model 

parameters, ξ is the accumulated plastic deviatoric strain. And H0 is calculated using the expression from Li 

et al. (2016) as below:  
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Where e0 is the initial void ratio, κ is the slope of unloading-reloading line, and λ is the sope of virgin 

loading line. 

In the original P-Z model, plastic modulus is divided into two parts that are loading plastic modulus (HL) 

and unloading plastic modulus (Hu). It should be noted that there is a multiplier (HDM) named as discrete 

memory factor for cyclic loading or unloading-reloading in original formula (7). As observed in drained 

cyclic triaxial experiments by Pradhan T.B.S. et al. (1989), the dense sand shows lower stiffness at 

reloading rather than at virgin loading. The observation led to a modified (HDM) to simulate the dynamic 

capability of the dense sand at reloading by Amin Iraji et al. (2014). But, in the engineering practices 

considered in this research, the soil deformation under large scale building foundation is deformed only by 

vertical loading, and there is no unloading after construction. The loading is then considered as monotonic 

and continuous. Based on this, for the first time loading, multiplier (HDM) can be treated as a unit vector in 

the original model which led to the current simplified version of formula (7). 

To implement the P-Z model using numerical methods, the formula (4) will be transformed from p-q-θ 

coordinates to the Cartesian coordinate system. It is worth noting that the transformation of the unit vector 

ngL is the same as n, while the equation g and parameter Mg are replaced with f and Mf respectively. The 

unit vector n (same expression for ngL) can be expressed in terms of I1, J2 and θ, as below: 
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Component descriptions of the unit vector n are: 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

file:///E:/æ��é��è¯�å�¸/Dict/6.3.69.8341/resultui/frame/javascript:void(0);
file:///E:/æ��é��è¯�å�¸/Dict/6.3.69.8341/resultui/frame/javascript:void(0);
file:///E:/æ��é��è¯�å�¸/Dict/6.3.69.8341/resultui/frame/javascript:void(0);


2

1

1 1

2

2 2

3 3/ 2

2 2

3
(1 )( )

3

tan 3 3
( ) 3 sin 3

2

3 1 3

2cos3 4

f

f

f

M Jf
B

I I

f f
B M

J J

Mf
B

J J








 

  
     

 
       

       
     

  
    

 

                                             (11) 

 

 

1
1

2

2 11 22 33 12 13 23

2

22 33 23 2

2

33 11 31 2

2
3 11 22 12 2

3

13 12 11 23

12 23 22 13

12 23 22 13

1,1,1,0,0,0

, , , 2 , 2 , 2

/ 3

/ 3

/ 3

2( )

2( )

2( )

T

T

I
n

J
n s s s s s s

s s s J

s s s J

J s s s J
n

s s s s

s s s s

s s s s








  




 



    

   
      

      
  
 
  

                                                    (12) 

where
ij ij ijs p   is deviator stress, while

ij is Kronecker delta. I1 is the first invariant of the stress tensor, 

σij is the total stress between particles of rank i and j.  

The formula (5) can then be expanded as: 
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Assuming that the deformation of soil is only reflected by the z direction (vertical), the compressive 

modulus (Es) of soil can be simplified as below (expressed as the increment of the vertical stress and 

strain): 

                              (14) 

Formula (14) comes directly from elastic mechanics but was modified based on the assumptions of 

0x yd d   . The elastic-plastic matrix[ ]epD  in formula (13) is from the generalized plasticity theory 

which can be calculated by the P-Z model. Therefore, 𝐸𝑠 is able to calculate the plastic deformation of soil 

with vertical static loading. Once the elastic-plastic matrix [ ]epD of the corresponding constitutive model is 

obtained, the modified compressive modulus (
sE ) can be determined. 

3. Derivation of the Mathematical Model 

The effective additional stress 𝜎0 under the large scale foundations includes the increments of effective 

stress and additional stress. The effective stress is resulted by the change of the unit weight (γ) and pore 

water pressure (u) of the soil. In this paper, a mathematical model will be established to calculate the 

deformation of saturated soils under a large scale building foundation. For this foundation model, the 

loading condition will remain unchanged after construction (once a building is built the structure load to 

its foundation will be static), the total stress increment (  ) and the pore water pressure increment ( u ) 

can then be assumed to be zero. Consequently, the effective stress increment will also be zero. In other 

words, the loading applied to the foundation by the building structure only changes during construction. 

Once the construction is finished, the effective additional stress is numerically equal to the maximum 
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additional stress increment (𝜎′0 as shown in Fig. 2). Fig. 2 illustrates the saturated soil under a large 

foundation. The proposed mathematical model is developed based on this kind of raft type large scale 

foundation as shown below.  

 

Fig. 2. Sketch map for saturation soils under the large scale foundation 

In Fig. 2, the soil layer under the large scale foundation is assumed to be homogeneously saturated. It is 

worth noting that the down arrows shown in Fig. 2 only illustrate the direction of stress, the actually 

stresses (loading forces) at various locations of the foundation surfaces can be different for large 

foundations, i.e., the non-linear or irregular distributions of the effective additional stresses discussed in this 

work (ref: Fig 10c). M1, M2 and M3 represent the soil elements at the natural ground level, the stable water 

level and the depth of h2 below the stable water level respectively. The section of M1M2 is unsaturated soil, 

its natural unit weight is . The section of M2M3 is saturated soil, its unit weight is sat . The volume-weight 

of water is w . Therefore the effective stresses at the levels of M1, M2 and M3 are 0, 1h and

1 2 2sat wh h h     respectively. And due to the unit weight of soil and the degree of saturation are 

unchanged under homogeneous condition, the increment of the effective stress will be 0. The effective 

additional stress (𝜎′0) is the maximum effective additional stress increment. Therefore the effective 

additional stresses at M1, M2 and M3 levels are 0, 2

0max
M and 3

0max
M , respectively. Where the 2
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and
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at the point of M2 and M3. 

Based on the stresses ( , , , , ,x y z xy yz zx      ) at any point M(x,y,z) under a point loading force normal to 

the surface of an elastic half-space proposed by the French mathmetician Boussinesq.J (1878), the vertical 

stress of the foundation soil ( z ) can be expressed as: 
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(15)

 

Where P is the point force, Z is the depth under the bottom of foundation, and R is the distance between 

the point force and any point M. 

Under static loading condition, the effective additional stress is continuous and downward transmission 

down to the bottom of the foundation. On the bottom plane of foundation, it is assumed that the length of 

foundation is L, and the width is B. The foundation is divided into m n sub-domains (shown in Fig. 3). 

The effective additional stress acting on each sub-domain is evenly distributed and can be regarded as an 

equivalent point load
ijP (i=1,2,…m and j=1,2,…n) at the center of each sub-domain. It is assumed that the 

center point ijA (i=1,2,…m and j=1,2,…n) of the planar grid system coincides with the point load ( ijP ). 

ijA is the vertical corresponding point that under the point ijA at depth z where the deformation will be 

calculated. Also, the point ( ijA ) coincides with corresponding point load ( ijP ). The sum of the all the 

point loads ( ijP ) is m n , and the corresponding point load ( ijP ) at the point ( ijA ) is a result that the 

accumulation of all the components of the equivalent point forces ( ijP ) loading at the planar grid 

separately. By repeating the above process, we can obtain the equivalent point forces of corresponding 

points on the new calculating surface at depth z. This process can be continued until the effective depth of 

the layered soils is all taken into account. This computational process can be termed as the method of 

subfield of planar mesh. The distribution of equivalent point forces ( ijP ) on the sub-domains are shown in 
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Fig. 3. 

 

Fig. 3. Distribution of equivalent concentrated forces 

The corresponding effective additional stress ( 0 z  ) below the depth of z under any point ( ijA ) in Fig. 3 is 

the sum of all the additional stresses (
0

ij
z  ). It can be represented as: 
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(16) 

If the depth of the effective compression is divided into l layers, the final deformation(S) of 

corresponding point ( , , )ijk i j kM x y z on the k-th (k=1,2,…l) layer can be expressed as: 
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Where a and b are the dimension parameters for each sub-domain. The subscript k and k-1 represent the 

location in depth where the specific layer of soil is located. Other symbols carry the same meaning as the 

previous descriptions.   

Combining the simplified P-Z model discussed in section 2 (to calculate the compression modulus Es) and 

the specific foundation deformation calculation methods developed in section 3, a complete foundation 

deformation calculation model for large building foundation was established. This newly proposed model 

(the full equation set from sections 2 & 3) was programmed and solved using MATLAB platform.      

4. The sensitivity analysis of model parameters 

When using the proposed mathematical model, a large number of model parameters need to be considered. 

In particular, when multilayered soils underneath foundations need to be treated separately, i.e. every layer 

of soil with different properties will have a set of model parameters. More model parameters used in the 

model are prone accumulated errors in the calculation of the final deformation. It is therefore necessary to 
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conduct a sensitivity analysis to examine the roles of these parameters (associated with the elastic state, 

critical state and plastic modulus) in contributing the deformation of foundation.    

A typical case example was used for the sensitivity analysis. The case was from the former technical 

Code for Design of Building Foundation (Li, 2009), as shown in Fig. 4. The rectangular raft type 

foundation size is 17.6×110.2 (m2) and the total effective depth of the sandy soil is 4.6m (the deformation 

sensitivity analysis is done at the depth of 0.5m). The deformation modulus E0 is 28.8Mpa. and the average 

additional stress is
0 189.4kPaP  . 

 

Fig. 4. The sketch of selected case example  

When using the subfield of planar mesh method (discussed in section 3) to calculate the transfer of 

effective stress and deformation of subsoil, the reference values of model parameters of the above case 

example are needed. These reference values are shown in Table 1. These values were associated with the 

given case in the technical code to reflect the particular type of soil considered. The first eight key 

parameters are divided into three categories: elastic state, critical state and plastic modulus and their 

sensitivity to the calculation of foundation deformation will be discussed individually. The principles 

adopted during this calculation process include: varying one parameter at a time; the variation in value for 

any particular parameter will be up to ±40% of the reference value in Table 1 (this ±40% calculated range 

covers various types of soil condition in foundation practices); the deformation of soil layer at the depth of 

0.5m were calculated for the sensitivity analysis. In Table 1, α is a material constant, a value of 0.45 was 

often used (Kumari Sunita and V.A. Sawant, 2013); Ψs is a correction coefficient which can be found in the 

Code for Design of Building Foundation (GB 50007-2011). 

Table 1 Reference values of parameters. 

Type Parameter Sign Value 

Elastic state 
Deformation modulus/Mpa E0 28.8 

Poisson's ratio μ 0.3 

Critical state 
 Relative density/% Dr 42.9 

Internal friction angle/° φ 36.5 

Plastic modulus 

Accumulated deviatoric strain ξ 0.7 

Material parameters 

β0 2 

β1 0.2 

H0
 

800 

α 0.45 

Other Correction coefficient Ψs 0.21 

 

4.1  The elastic state parameters 

The elastic modulus (E0) is an index that represents the material resistance for elastic deformation. 

Materials with larger value of elastic modulus E0 have stronger ability to resist elastic deformation. Fig. 5(a) 

shows the corresponding vertical deformations when the elastic modulus (E0) is varied. It is obvious that 
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with the increase of E0, the vertical deformation is decreased. And larger vertical deformation is evident 

when the E0 is decreased. Within the ±40% variation range to its reference value 28.8kPa, the absolute 

variation of vertical deformation |ΔS| is 1.9514mm.  

 

Fig. 5. The relationships between elastic parameters (E0 and μ) and vertical deformation S. 

Poisson's ratio (μ) is a parameter that reflects the ratio of lateral and vertical deformation. From Fig. 5(b), it 

can be seen that the vertical deformation of the soil is decreasing with the increase of μ, and it is almost a 

linear relationship. Within the ±40% variation range the absolute variation of vertical deformation (|ΔS|) is 

0.1619mm. Relatively the vertical deformation is less sensitive with the Poisson's ratio(μ) compared with 

the elastic modulus (E0). As shown in formulas (6 and 13~14), the above two elastic parameters are part of 

the elastic matrix [ eD ] which has direct influence on the elastic-plastic matrix [ epD ], and the compressive 

modulus (Es) can then be calculated using the simplified P-Z model. 

4.2  The critical state parameters 

The two parameters that define the critical state are the relative density (Dr) and internal friction angle (φ). 

For the original P-Z sandy model, Mg is a model parameter for the corresponding critical state. From 

formula (2), Mg is a function of the internal friction angle (φ) and Lode angle (θ), parameter Mf can be 

estimated by the relative density (Dr) and parameter Mg. 

The relative density (Dr) is an index that reflects the degree of looseness of soil, the smaller value with Dr, 

the looser of the soil. As shown in Fig. 6, both parameters (the Dr and φ) show a near linear relationship 

with the vertical deformation. Within calculated variation of both parameters, the absolute change of 

vertical deformation (|ΔS|) is 0.0921mm for relative densigy Dr and 0.3558mm for φ which indicates a 

relative stronger sensitivity for the internal friction angle.  

 

Fig. 6 Relationships between CSL parameters (Dr and φ)and deformation S 

4.3 The plastic modulus parameters 

The plastic modulus parameters include ξ, H0, β0 and β1 (as in Table 1). They reflect the plastic modulus of 

soil under isotropic compression. Fig.7 shows the vertical deformations with the changes of the 4 plastic 

modulus parameters. Broadly speaking, with the ±40% variation range of each parameter, the overall 

vertical deformations for all 4 parameters are small compared with the other model parameters from the 

categories discussed in sections 4.1, & 4.2: the absolute deformations |ΔS|=0.0037mm, 0.0093mm, 
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0.0008mm & 0.0027mm for ξ, H0, β0 and β1 respectively.  

 

Fig. 7. Relationships between plastic modulus parameters (ξ, H0, β0, and β1) and deformation S 

 

The overall trend of vertical deformation with ξ, H0, and β1 are similar – increasing these parameters will 

decrease |ΔS|. However, β0 is on the contrary, the increase of β0 will increase |ΔS| when 1.5<β0≤5.0. And it 

is evident from Fig. 7 that the vertical deformation does not change when β0≤1.5. This observation is 

consistent with Orang Farzaneh and Amin Iraji (2016). And this work also examined parameter β1 but with 

a smaller range: β1 is between 0.1 and 0.2. The formulas (7), (8) & (9) show the relationship between these 

4 parameters ξ, H0, β0, and β1. The results shown here indicates that the impact of the plastic modulus (HL) 

on the elastic-plastic matrix[ epD ] in formula (6) is insignificant. 

4.4 The relative sensitivity of all examined parameters 

Fig. 8 shows the relative variations of vertical deformation at depth of 0.5m when the examined parameters 

were changed ±40% against their reference values given in Table 1. It is obvious the elastic modulus E0 is 

the most influential parameter to cause vertical deformation. The relative changes of deformation are 

between 66.05% to -28.46% when is varied from -40% to 40% against its reference value 28.8Mpa. The 

corresponding variations for the internal friction angle(φ) is about ±10% and for the Poisson's ratio(μ), the 

range is about ±4%. The relative vertical deformation variations are below ±3% for the relative density Dr , 

and the 4 parameters from the plastic modulus category (ξ, H0, β0, and β1), the relative vertical deformation 

variations are less than ±1% (Fig 8b on the right and side shows the down scaled graph so the small 

variations can be examined). It is therefore reasonable to use one set of commonly recommended values 

under the plastic modulus category from the original P-Z model in order to simplify the subsequent 

numerical calculation and avoiding the potential accumulated errors from these parameters. In this work, 

when calculating the vertical deformation of foundation, the data recommended in Table 1 for the 4 plastic 

modulus parameters are used (As shown in Table 2). For parameters from the other two categories (elastic 

state and critical state), there chosen values were estimated based on the site conditions, i.e. the specific soil 

properties.     
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Fig. 8. The relative deformations (%) with the relative variations (±40%) of the examined 8 

parameters. 

5. Model validation using an engineering example 

Liaoning North International Media Center is a large office building with 22 floors, reinforced-concrete 

frame-core wall structure, waffle-slab raft foundation. The depth of drilling includes four natural layers 

from top to bottom, which are round gravel, pebble, gravel sand and round gravel②. And the bearing layer 

of building is round gravel (refer Fig. 9). The depth of foundation is -11.30m. The composition of 

foundation soil is also illustrated in the Fig. 9. During the construction process, the effective additional 

stress (𝜎′0, equivalent with the maximum increment of additional stress) at the foundation base and vertical 

deformation S were monitored to ensure the safety of the structure. The key mechanical parameters of the 

foundation soil are given in Table 2. In this work, the recommended values in Table 1 for the plastic 

modulus parameters were used due to their relative small influences on the deformation of foundation 

(discussed in section 4), other parameters were estimated to reflect the specific foundation soils of this 

particular project.  

 

Fig. 9. The composition of foundation soil 

 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Table 2 The key mechanical parameters of foundation soil used for the simplified mathematical model 

Soil layers E0/Mpa μ
 

Dr /%
 

β0
 

β1
 

H0
 

ξ
 

φ /° 

Round gravel① 36.9 0.2 42.9 

2 0.2 800 0.7 

39.0 

Pebble 47.3 0.2 34.1 39.5 

Gravel sand 36.7 0.3 63.7 38.0 

Round gravel② 36.9 0.2 42.9 39.0 

 

Seven testing points were selected to monitor the effective additional stresses of foundation. The 

measurement equipment is the single film pressure cell that named GYH-2 (its size is ɸ110×25mm). The 

nominal rating of precision and relative error of this pressure cell are less than 0.2% and 1.0%. The 

measurement range is 0~300kPa. The distribution of the single film pressure cells and the cross-section of 

the foundation with sensor cells are shown in Fig. 10(a). The monitoring results are shown in Fig. 10(b). 

The measured data for the 7# pressure cell show irregular data which indicates an obvious failure of the 

pressure cell, therefore its corresponding measured data were ignored. Using the final measured values of 

the effective additional stresses (the end date) from the 6 pressure cells, the spatial distribution of the 

effective additional stresses were produced using the Lagrangian polynomial interpolation by subtracting 

the self-weight stress of the overlaying soil, as shown in Fig. 10(c). 

 

(a) The location map of stress sensor 
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(b) The results of testing points 

 

(c) Spatial surface of the additional stresses  

Fig. 10. The testing values and distribution of effective additional stress under the large foundation 

It is obvious from Fig. 10(c) that the loading distribution from these measured stresses is far from 

linear (for linear assumption, the loading distribution would be uniform). The maximum effective 

additional stress is 152.532kPa with the corresponding coordinates of x=34.800m, y=21.750m (point Lm in 

the figure). And the effective additional stress at the center of foundation (x=17.400m, y=13.050m as the 

point Lc in Fig. 10(c)) is 45.260kPa. The difference of the effective additional stresses between the two 

points is 107.272kPa. This is obviously a significant difference in both relative and absolute terms which 

may result strong implications on the actual quantity of the maximum deformation and its location. For 

some simple and small foundation types when the requirements are less strict, the complicated non-linear 

loading (i.e. the types represented by fig. 10(c)) may be simplified as a flat plane with uniform stresses. 

However, for large foundations the locations of the maximum additional stress and the maximum 

deformation often do not coincide each other, this more complexed non-linear loading method should be 

used, which is the case for the engineering example discussed in this research. 

When the proposed mathematical model was used to calculate the deformation of layered soils under a 

large building foundation, it is assumed that the layers underneath soils is the horizontal stratification of 

equal thickness along the depth direction (the profiles of underneath soils are varied in vertical direction). 

Fig. 11 and Table 3 show the vertical deformations calculated by the newly proposed mathematical model 

using the subfield of planar mesh method (refer Fig. 3). In Fig. 11(a); (b); (c) and (d), the distributions of 

the calculated additional stresses and vertical deformations at various depths are shown: the base of 

foundation, beneath the base of 2.3m, 4.7m and 7.7m, respectively (please note: the h values shown in the 

Fig. 11 are the thickness of the concerned soil layer. For example, the vertical deformation at the base of 

foundation is calculated using the first layer of soil with 2.3m in thickness; the deformation at the depth of 

2.3m beneath the foundation base is calculated using the second layer of soil with 2.4m in thickness, and so 

on). Table 3 shows a summary of the maximum deformations and their locations, and the maximum loading 

(additional stress) locations for different layers of soil. It is clear from Table 3 that the maximum loading 

point can be different for different soil layers, and the maximum deformation point does not always 
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coincide with the maximum loading point. For example, in the round gravel② (also shown in fig. 11(d)), 

the maximum loading point coordinate is (x=30.88m, y=20.01m), While the maximum deformation point is 

(x=17.40m, y=12.18m). There is a distance of 15.59m between the two locations. 

Table 3 The maximum deformation and corresponding coordinates in every natural layer 

Natural layers 
Round gravel① 

h=2.30m 

Pebble 

h=2.40m 

Gravel sand 

h=3.00m 

Round gravel② 

h=12.10m 

The maximum deformation 

(mm) 
6.7028 3.8875 3.4219 11.4477 

The point of maximum deformation 

(x,y) 
(30.88,18.27) (31.32,19.14) (31.32,20.01) (17.40,12.18) 

The point of maximum loading 

(x,y) 
(34.80,21.75) (31.32,19.14) (31.32,19.57) (30.88,20.01) 

 

The shifting between the maximum deformation and the maximum loading points is primarily due to the highly 

non-linear effective additional stresses acting on the foundation bottom. This type of non-linear loading is 

continuously transmitted and superimposed in the depth direction during the calculation process, which causes 

the maximum loading and the maximum deformation points continuously moving. This is the reason why the 

numerical solutions of the deformation by using proposed model can have such significant variations as 

illustrated using the two dimensional x-y plane (Fig 11). As the depth increases, the maximum deformation and 

stress points of each sub-layer continuously move toward the center point of the foundation plane. 

Consequently, the largest deviations appeared to be between the maximum deformation point and the maximum 

loading point.   

 

(a) The distribution of additional stress and accumulative deformation in round gravel① 
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(b) The distribution of subsidiary stress and accumulative deformation in pebble 

 

 

(c) The distribution of subsidiary stress and accumulative deformation in gravel sand 

 

(d) The distribution of subsidiary stress and accumulative deformation in round gravel② 

Fig. 11. The distribution of additional stresses and vertical accumulative deformations for different soil 

layers 

There were six monitoring points (C1 to C6) selected to measure the vertical deformations of foundation  

for this engineering example (their coordinates were shown in Fig. 12(b)). The observing equipment is 

WILD N3 precise level (Swisstek Inc.). The key parameters of this equipment include: Average m.s.e. 

(standard deviation) is ±0.2mm/km;  the telescope magnification is 46x, the shortest focussing distance 
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is 5 m; sensitivity of level bubble per 2mm is 10”, the reading accuracy is 0.01mm. These measuring points 

were paired on the opposite walls with x coordinates at 6.960m, 17.400m & 29.145m, y coordinates are at 

0.0m and 26.1m respectively (Fig. 12(b)). The observation locations on the walls are 0.2m above the 

ground. These locations were marked by steel bars buried into the wall structure with their tips visible on 

the wall. The observations network consists of the observation point (C1 to C6, observed individually), the 

work point (where the equipment is located) and the stationary reference point (the reading will be read 

against).   

Fig. 12(a) shows the measurements of accumulative deformations from the six monitoring locations during 

the construction phase. The end date (the 297th day) here is the date of the construction completion, which 

is the same end date for the final additional stresses measurements – the 364th day in Fig. 10(b). The 

difference in the number of days between the two measurements are due to the different starting time – the 

WILD N3 precise level equipments used to monitor the vertical deformation were installed 67 days after 

the stresses sensor installation (the single film pressure cells).    

The final calculated vertical accumulative distribution of deformations for the whole depth (22.8m beneath 

foundation base) is shown in Fig. 12(b). The maximum vertical accumulative deformation is 24.750mm 

with the corresponding coordinates of x=30.88m, y=18.70m (point S in the figure). The distance between 

point S and the center point 14.62m. This is therefore evident that assuming the foundation central point is 

the maximum loading and deformation location is inappropriate for the large foundation case considered in 

this research. Fig. 12(b) also marked the calculated deformations at the same x, y coordinates where the 

measurements were taken (points C1 to C6 on the figure). It is worth noting that the points C1 to C3 are on 

the perimeter of the construction (the edge of foundation in Fig. 10(a)), the extra ‘data’ plot on Fig. 12(b)  

when y>26.100m, which are due to the nature of the square matrix used for the calculation, can be ignored. 

 

 

(a) 

(b) 
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Fig. 12. The total deformation of foundation soils: (a) monitoring accumulative deformation over time and 

(b) the calculated distribution of final cumulative deformation 

 The calculated vertical deformations on the projected lines of C1 to C3 and C4 to C6 were plotted in Fig. 

13 against the measured deformations from the six observation points. Generally speaking, good agreement 

was achieved. The absolute and relative differences between measured and calculated vertical deformations 

are summarized Table 4. Larger discrepancies happen at point C5 & C6 while the discrepancies for point 

C1 to C4 are relatively small. This is thought to be due to the Lagrangian polynomial interpolation for the 

spatial distribution of the effective additional stresses. There are only 6 measurements for the whole cross 

section of the foundation (Fig. 10(a)). There is a tendency that large errors may occur for the interpolated 

values further away from the measured value, for this particular case it is the left hand side bottom corner. 

The vertical deformation measurement locations of C1 to C4 are close to where the additional stresses 

sensors were located. This would mean the interpolated loadings (additional stresses) for these points were 

relatively accurate then the points C5 and C6 where there are no additional stresses sensors nearby. And 

there may be some other factors causing the discrepancies, such as: when the loading of the saturated sandy 

foundation is on, most of total vertical deformation would be realized instantaneously, but the time taken 

for completing the residual deformation can be quite long. The complex distribution of layered soil 

structure under the foundation is simplified, and the optimization of the calculation parameters also cause 

corresponding calculation errors. 
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Fig. 13. The comparison of measured and calculated values 

 

Table 4 The comparison of measured and calculated values 

Monitoring 

points 

Measured 
values 

mm 

Calculated 
values 

mm 

Difference 

mm 

Relative 
Error 

% 

C1 10.33 10.4298 0.0998 0.97 

C2 14.22 14.4733 0.2533 1.78 

C3 15.04 15.5209 0.4809 3.20 

C4 10.15 10.8591 0.7091 6.99 

C5 14.84 16.0381 1.1981 8.07 

C6 7.82 6.6496 -1.1704 14.97 
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The interpolated additional stress at the center of foundation (x=17.400m, y=13.050m as in Fig. 10(c) is 

45.26kPa. Using the newly development mathematical model the calculated corresponding vertical 

deformation is =17.19mmcenterS . A quick verification exercise was carried using the layered-wise 

summation method adopted by the Code for Design of Building Foundation (GB 50007-2011), the 

calculated vertical deformation at the center is ' =17.56mmcenterS . The results are quite similar for this specific 

case (2.11% difference relatively), however, the calculation method in the code is similar with the existing 

models discussed in section 1 where linear loading condition is often assumed. It is clear from this the 

engineering example that the loading is non-linear and the existing models could not accurately predict the 

maximum deformation and its location under such loading conditions. The newly proposed mathematical 

model in this research has the advantages of calculating large and complex foundation deformations with 

non-linear loading. 

6. Conclusions 

This paper proposed a new mathematical model to calculate the deformation of large scale building 

foundations. The simplied P-Z model under static loading along with the newly developed foundation 

deformation calculations using the subfield of planar mesh method forms the proposed mathematical model. 

Using the proposed model, a sensitivity study was performed to identify the influences of various 

parameters on the deformation of foundations. Out of the 8 parameters examined, the elastic modulus E0 

shows the strongest influence followed by the internal friction angle φ and the Poisson's ratio μ. The 4 

parameters from the plastic modulus category: ξ, H0, β0, and β1 showed the least influences. This exercise 

provides the confidence of using some recommended values for these plastic modulus parameters rather 

than estimating them individually for different layer of soils.  

An engineering case with large scale building foundation was used to validate the proposed model. In this 

real case scenario seven single film pressure cells were used to measure the additional stresses at the 

foundation base during the construction process. In the meanwhile WILD N3 precise levels were used to 

monitor the actual deformations of foundation at 6 perimeter locations. The measured maximum additional 

stresses at the construction completion date were used to generate the spatial non-linear loading using 

Lagrangian polynomial interpolation by subtracting the self-weight stress of the overlaying soil. Using this 

non-linear loading derived from measurements, the calculated foundation deformations using the proposed 

model agreed well with the monitored actual foundation deformations. Relatively larger discrepancies up to 

14.97% do exist at the foundation deformation monitoring points where the additional stresses 

measurements were not close by. When the additional stresses measurements are nearby the foundation 

deformation monitoring points, very good agreement between calculated and monitored deformations was 

achieved. It is also clear from the calculation that the maximum deformation point does not always coincide 

with the maximum loading point – the largest distance of 15.59m between the two points was recorded for 

the bottom layer of soil from the case study. The maximum deformation point is also nowhere near near the 

centre of the foundation either – a distance of 14.62m is observed from this engineering case.   

The proposed new model is able to consider the likely non-linear loading for large scale foundations which 

can be regarded as the key advantage of this model over other existing foundation deformation calculation 

models. It also has the advantages of calculating mutilayered soils with different properties at various 

depths using the subfield of planar mesh method. The proposed model is robust in nature and provides a 

valid method to inform large scale building foundation design through its deformation calculations.  
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