
 1 

CHINESE JOURNAL OF PHYSICS 

ISSN: 0577-9073; Impact factor = 1.051; Publisher = Elsevier  

Accepted May 8th 2019 

 

Numerical study of magneto-convective heat and mass transfer from 

inclined surface with Soret diffusion and heat generation effects: A model 

for ocean magnetohydrodynamics energy generator fluid dynamics 
 

O. Anwar Bég1, T. A. Bég2, I. Karim3, M. S. Khan3, M. M. Alam3, M. Ferdows4  and MD. Shamshuddin5* 

1Mechanical and Aeronautical Engineering, University of Salford, Manchester, M54WT, UK. 
2Computational Mechanics and Renewable Energy Research, Dickenson Rd., Manchester, M13, UK.  

3Mathematics Discipline, Science, Engineering and Technology, Khulna University, Khulna-9208, Bangladesh. 
4College of Engineering and Science, Louisiana Tech University, Ruston, 71270, USA.   

5*Department of Mathematics, Vaagdevi College of Engineering, Warangal, Telangana, India. 

 
*Corresponding author: shammaths@gmail.com;shamshuddin_md@vaagdevi.edu.in 

Research Highlights 

1. A mathematical model is presented for MHD ocean generator inclined wall 

boundary layer flow with salinity, thermo-solutal buoyancy and heat generation. 

2. Maple numerical quadrature solutions are validated with Nakamura and HAM 

methods.  

3. Important thermophysical characteristics are studied of relevance to real 

systems. 

 

ABSTRACT 

A mathematical model is developed for steady state magnetohydrodynamic (MHD) heat and 

mass transfer flow along an inclined surface in an ocean MHD energy generator device with 

heat generation and thermo-diffusive (Soret) effects. The governing equations are 

transformed into nonlinear ordinary differential equations with appropriate similarity 

variables. The emerging two-point boundary value problem is shown to depend on six 

dimensionless thermophysical parameters -  magnetic parameter, Grashof number, Prandtl 

number, modified Prandtl number, heat source parameter and Soret number in addition to 

plate inclination. Numerical solutions are obtained for the nonlinear coupled ordinary 

differential equations for momentum, energy and salinity (species) conservation, numerically, 

using the Nachtsheim-Swigert shooting iteration technique in conjunction with the Runge-

Kutta sixth order iteration scheme. Validation is achieved with Nakamura’s implicit finite 

difference method. Further verification is obtained via the semi-numerical Homotopy 

analysis method (HAM). With an increase in magnetic parameter, skin friction is depressed 
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whereas it generally increases with heat source parameter. Salinity magnitudes are 

significantly reduced with increasing heat source parameter. Temperature gradient is 

decreased with Prandtl number and salinity gradient (mass transfer rate) is also reduced with 

modified Prandtl number. Furthermore, the flow is decelerated with increasing plate 

inclinations and temperature also depressed with increasing thermal Grashof number.  

 

KEYWORDS: Salinity, Soret number; MHD energy; Nakamura difference scheme; HAM. 

 

 

NOMENCLATURE 

X,Y Cartesian coordinates (m)  pC         Specific heat at constant pressure (J/kgK)  

r
G  Grashof number     Kinematic viscosity(m2/s)  

U,V Velocity components (m/s)    Heat source parameter  

sP  Modified Prandtl number    Dimensionless time (s) 

rP  Prandtl number   ( )f   Dimensionless velocity component 

rS  Soret number   ( )   Dimensionless temperature 

g
 

Gravitational acceleration  (m/s2)   ( )   Dimensionless salinity (concentration)  

sF           Molecular diffusivity  
 

Similarity variable 

M  Magnetic Parameter  
 

Thermal expansion coefficient (/K) 

U  
Uniform velocity (m/s)  *

 
Thermal expansion coefficient due to salinity (/K) 

 

1. INTRODUCTION 

With the current state of energy resources in the world, the demand for sustainable 

renewable energy systems is ever-increasing. Many such systems have been developed 

and improved including photovoltaic solar collectors [1], re-charged geothermal 

reservoirs [2], wind turbines [3] and biomass [4]. The interest in marine energy systems 

has also been considerable (particularly in Asia) and among the many robust 

methodologies which have been developed are OTEC (ocean thermal energy conversion) 

[5], tidal power stations [6] and wave energy conversion devices [7]. Although many 

different marine renewable designs have been propounded, a particularly exciting and 

feasible initiative has been the MHD (magnetohydrodynamic) seawater generator [8]. 

This device transforms kinetic energy of the ocean/tidal current into electrical  energy via 

the MHD principle [9]. In MHD ocean generators, as with conventional land-based MHD 

power generators, the applied magnetic field is a key factor in optimizing efficiency and 

performance. Many different systems have been studied including rotating channels [10], 

Hall current generators [11], helicoid generators exploiting superconducting magnets 
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[12] and rotating disk MHD generators [13]. The need to further understand the intricate 

characteristics of momentum, heat and mass (salinity) transport in these systems, as a 

means of further enhancing operational efficiency, has motivated substantial interest in 

mathematical and computational modeling. Temperature, pressure, and salinity are three 

important properties of sea water, and they determine the physical properties associated with 

sea wave motion. The presence of small suspended particles in sea water also exerts an 

important influence on sea water power generation [14]. 

  

Inclined magnetofluid dynamic flows with and without heat and mass transfer have 

received significant attention in recent years. These studied have considered numerous multi-

physical effects of relevance to energy generator systems. Srikanth et al. [15] studied 

radiative flux effects on magnetized nanofluid convection flow from a porous inclined plate. 

Ramesh et al. [16] investigated Chandrasekhar (magnetic) number and heat 

generation/absorption effects on hydromagnetic convection in a fluid-particle suspension 

boundary layer flow from a stretching plate. Kabir and Al Mahbub [17] examined 

thermophoresis effects on transient double-diffusive magneto-convection from an inclined 

plane. Palani and Kim [18] used a finite difference technique to obtain solutions for 

hydromagnetic dissipative natural convection flow from a tilted non-isothermal plate with 

Ohmic heating effects. Chamkha et al. [19] used the Blottner difference method to study 

buoyancy-driven magneto-convection along a plate in porous media with thermal (solar) 

radiative flux. Masthanrao et al. [20] examined chemical reaction effects on steady two-

dimensional hydromagnetic free convection along an inclined plate adjacent to a permeable 

regime with wall transpiration. Hossain et al. [21] used local similarity and finite difference 

procedures to study weak magnetic field effects on inclined plate convection. Ramadan and 

Chamkha [22] studied computationally the two-phase natural convection magnetized 

boundary layer flow from inclined surfaces with variable properties. Wang and Chen [23] 

used a cubic spline alternating-direction implicit method to simulate mixed convection 

magnetohydrodynamic flow from an inclined wavy plate, showing that heat transfer rate and 

the skin-friction coefficient are depressed with increasing plate inclination. Furthermore, they 

observed that increasing magnetic body force accelerates the flow near the leading edge of 

the wavy surface whereas it decelerates the flow far downstream of the leading edge. Chen 

[24] investigated momentum, heat and mass transfer characteristics of non-isothermal, non-

iso solutal hydromagnetic natural convection from a porous inclined surface with Joule and 

viscous dissipation. 
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  The above studies have generally ignored simultaneous species diffusion (mass 

transfer). However as noted earlier, salinity in ocean MHD generators [9] is a critical issue 

and it is important to investigate the coupled effects of heat and mass transfer in transport in 

such devices. Mass diffusion follows the Fickian law [25] and introduces some complex 

characteristics in mixed convection flows. Recent studies include Ferdows et al. [26] who 

reported on wall slip effects in double-diffusive convection and Rashidi et al. [27] who 

employed group methods to study reactive boundary layer convective transport phenomena.  

Interesting studies include Zueco et al. [28] who used network simulation to analyze variable 

thermophysical effects in thermophoretic magneto-convection. [29]. These studies however 

omitted thermal –diffusion (Soret) or diffuso-thermal (Dufour) effects. The former is a 

phenomenon which has been known to physicists for over a century and has significant 

applications in chromatography, binary-fluid systems, energy generators and many other 

industrial processes. Abreu et al. [30] obtained Adomian polynomial-based solutions for 

laminar boundary layer flows in forced and natural convection with cross diffusion effects. 

Bég et al. [31] showed that the Soret effect dominates the Dufour effect in mixed convection 

from inclined plates using a local non-similarity method and boundary layer theory. Bég and 

Tripathi [32] demonstrated the important influence of Soret thermo-diffusion on peristaltic 

propulsion in deformable channels using Mathematica. They further described the subtle 

relationship between buoyancy forces, wave amplitude and both Soret and Dufour effects. 

Many other studies have been communicated evaluating the influence of cross-diffusion on 

double-diffusive boundary layer flows. These include Coelho and Telles [33] who considered 

the Graetz problem and Bég et al. [34] who studied the magnetohydrodynamic Sakiadis flow 

in a porous medium. Bég et al. [35] further investigated the micromorphic transport in a 

porous medium with cross-diffusion using a variational finite element method. Vasu et al. 

[36] investigated Soret and Dufour effects on hydromagnetic transport from a spherical body 

in porous media. Very recently Vasu et al. [37] also presented robust finite difference 

solutions for transpiration (lateral mass flux) effects on Soret-Dufour cross diffusion in 

laminar gas dynamic flows. These studies all confirmed that Soret/Dufour effects are 

significant when density differences exist in the flow regime. In addition, these studies have 

emphasized that when heat mass transfer occur simultaneously in a moving fluid, an energy 

flux is produced not only due to temperature gradients but also via concentration gradients 

(“composition gradients”). The energy flux induced by the concentration gradient is termed 

the Dufour or diffusion-thermo effect.  The mass flux generated via temperature gradients is 

the Soret or thermo-diffusion effect.  
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The afore-mentioned studies have not considered inclined-plate MHD flows with Soret 

and heat generation effects. Therefore, in the present study we examine the transport 

phenomena from an inclined surface in an MHD ocean generator with heat generation and 

also thermo-diffusion effects. The Soret effect is included as it is known to be prominent in 

saltwater solution transport phenomena. We develop a laminar steady-state boundary layer 

model for magnetohydrodynamic double-diffusive convection in seawater flow along an 

inclined non-conducting plate with heat generation present. The governing equations are 

transformed into a system of coupled, nonlinear ordinary differential equations which are 

shown to be controlled by several thermophysical parameters, namely a magnetic body force 

parameter ( ) ,M Grashof number ( ),rG Prandtl number ( ) ,rP modified Prandtl number ( ) ,sP a 

heat source parameter ( ) and the Soret  number ( )rS in addition to the plate inclination. Heat 

generation has been shown to be an important consideration in energy systems and has been 

studied in recent papers by Bég et al. [38] and Uddin et al. [39]. Here we utilize the 

Nactsheim-Swigert shooting iteration technique together with Runge-Kutta six order iteration 

schemes available in Maple to solve the nonlinear boundary value problem. Furthermore, we 

validate the computations with a separate implicit finite difference code based on Nakamura’s 

method [40] with the MAG-NAK code. Further validation is attained via series solutions 

using the powerful semi-numerical homotopy analysis method (HAM). The velocity, 

temperature and salinity (species concentration) distributions are computed for a wide 

spectrum of the control parameters. Additionally, skin-friction coefficient, surface heat 

transfer and salinity (mass transfer) rates are also computed. The study is relevant to MHD 

seawater energy generators.  

 

2. MATHEMATICAL TRANSPORT MODEL  

MHD ocean generators offer a feasible potential for humanity. Many pioneering 

investigations into this form of renewable energy have been conducted by Russian, French, 

American and Japanese engineers. The fundamental principle of MHD ocean energy 

generation in which seawater is the working fluid and the applications may include floating 

installations or propulsion systems, are summarized with a possible design for a floating 

MHD ocean energy installation in Japan and additionally the physical model for the current 

flow to be studied with the coordinate system in Fig. 1. A two-dimensional simplified model 

is considered of the near-wall flow in such a system. The X-axis is directed along the 
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generator channel wall and the boundary layer flow is upward; the Y-axis is inclined to it. 

Here  is the angle of inclination. Initially it is assumed that the plate as well as the fluid is 

at the same temperature, T, and the salinity level S  everywhere in the fluid is same. 

 

 

Fig 1: MHD ocean energy generation principle with conceptual floating MHD energy 

generator and simplified 2-dimensional physical model for inclined duct wall system. 

 

Also, it is assumed that the fluid and the generator channel wall (plate) is at rest; 

subsequently the wall moves with a constant velocity along the X-direction. The 

temperature of the wall and species salinity are raised to ( )wT T  and ( )wS S  respectively, 

and these are sustained thereafter, where wT , wS  are temperature and species salinity at the 

wall and T , S  are the temperature and salinity of the species far away from the wall, 

respectively. Weak magnetic field is considered and therefore Hall currents are neglected as is 

Joule (Ohmic) heating and viscous dissipation. A magnetic field, Bo, is applied in the Y-

direction. The magnetic field is always perpendicular to the wall. The magnetic field applied 

is always orientated at 90 degrees to the wall. Therefore, while the wall can change in 

orientation, the magnetic field does not. The Lorentz force is as such always in the same 

direction relative to wall (plate). Under the boundary layer approximation with the 

Boussinesq assumption, the governing equations for mass, momentum, species (salinity) and 
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energy conservation, incorporating heat generation and Soret effects, may be shown to take 

the form: 

 

 

 

Continuity equation (Mass Conservation): 
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Species (Salinity) Conservation:  
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Energy (Heat) Conservation: 
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The prescribed boundary conditions are: 




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,,0,0:
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     (5) 

 

Here   is the kinematic viscosity, B  is the magnetic field strength, /S SK K C=  is the 

thermal diffusivity due to salinity (salt species), /T pK K C= is the thermal diffusivity due to 

temperature, sF  is the molecular diffusivity, pC  is the specific heat at constant pressure, U is 

the uniform velocity,   is the electrical conductivity of the fluid, g is the acceleration due to 

earth gravity,   is the volumetric thermal expansion coefficient, * is the mass expansion 

coefficient, *( )TQ T T Q= − is the heat generation and   is the density of the fluid. The 

penultimate term in eqn. (3) is the Soret thermo-diffusion term (mass diffusion generated via 
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temperature gradients). It is important to note that the thermal and solutal boundary 

conditions enforced in Eqn. (5) do reflect the inclusion of plate orientation on the temperature 

and solutal (species concentration) fields, and follow the methodology of Gebhart et al. [41]. 

They are however not non-isothermal or non-isosolutal since there is no variation with 

streamwise coordinate. This may provide future refinement in the model but is neglected in 

the current study. Thermal and species effects at the wall can never be completely controlled 

especially in MHD ocean generator environments. However, it is not possible to mimick the 

full spatial or time variation of such phenomena with the current fluid dynamics 

methodology. To develop a robust boundary value problem, engineers must make some 

logical and validated assumptions, and these have been founded on boundary-layer theory 

following Gebhart et al. [41]. This provides a reasonable approximation for near-wall 

transport phenomena. The boundary value problem defined by the eqns. (1)-(4) under 

boundary conditions (5) cannot be solved analytically. In primitive variables, numerical 

solutions are the only feasible option. However even numerical solutions of the primitive 

boundary value problem (e.g. with finite element or finite difference techniques) do not yield 

solutions in terms of important dimensionless variables. In order to achieve this, we introduce 

similarity transformations next to render the problem dimensionless and thereby also convert 

the system from a partial differential equation one to an ordinary differential equation one. 

This greatly simplifies the numerical solution and simultaneously retains many important 

physical aspects of the transport phenomena under investigation. 

 

3. TRANSFORMATION OF MODEL  

Proceeding with the analysis, we define the following dimensionless variables: 
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All parameters are defined in the notation section. Introducing these into eqns. (1)-(4) 

yields the following system of non-dimensional, non-linear coupled, ordinary differential 

equations: 

0sin ////// =−++ MfGrfff                            (7) 

0PrPr /// =++  f                            (8) 
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0///// =++  rss SPfP                               (9) 

The boundary conditions reduce to: 
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is thermal Grashof number, 
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(thermo-diffusion) number. The engineering design functions of interest in energy systems 

are the surface shear stress (skin-friction coefficient), the Nusselt number (heat transfer rate) 

and Sherwood number (salinity transfer rate) which are computed respectively by the 

following expressions: 
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where Re is the local Reynolds number.   

4.  NUMERICAL SOLUTIONS  

Here we describe the numerical methods employed to solve the derived nonlinear 

boundary value problem. These are Maple quadrature, Nakamura’s tridiagonal finite 

difference scheme (NTS) and the homotopy analysis method (HAM). Each method is 

described in due course.  

4.1 Maple Quadrature 

The two-point BVP defined by the non-linear, coupled ordinary differential equations (7) to 

(9) with boundary conditions (10) are solved numerically using the Nactsheim-Swigert 

shooting iteration technique [42] with a Runge-Kutta six order iteration scheme available in 

MAPLE. Initially velocity, temperature and salinity are determined as functions of the 

transverse dimensionless coordinate,  . Extension of the iteration shell to above equation 
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system of differential equations (10) is straightforward-there are three asymptotic boundary 

condition and hence three unknown surface conditions, f//(0), /(0) and /(0). Very fast and 

efficient computations are achieved on a Laptop. It is important to note that in the numerical 

simulations, as far as possible, precise data has been used based on actual working MHD 

systems described in Rosa [43] and Li et al. [44]. Thermal data and all other parameters 

(Soret number, Grashof number, heat generation parameter, Prandtl number) have been based 

on the extensive information available in Gebhart et al. [41]. The parameter ranges selected 

therefore apply to seawater scenarios under a static magnetic field with incompressible, 

viscous approximations, consistent with the boundary-layer approach. Furthermore, the 

correct scaling of the magnetic parameter (M) has been achieved in consistency with viable 

seawater electrical conductivity, magnetic field strengths and viscosity properties for high 

efficiency systems.  

 

4.2 Validation with Nakamura Finite Difference Method 

To verify the Maple solutions, the well-posed nonlinear two-point boundary value 

problem has also been solved with the efficient implicit Nakamura Tridiagonal finite 

difference Scheme (NTS), introduced in a seminal article by Nakamura [41]. A recent review 

of numerous applications of Nakamura’s technique in nonlinear magnetohydrodynamic 

transport phenomena has been presented by Bég [45]. The MAG-NAK code has been 

developed to implement the Nakamura method for magnetofluid dynamics problems. As with 

other difference schemes, a reduction in the higher order differential equations, is also 

fundamental to this method. It is also particularly effective at simulating highly nonlinear 

flows as characterized by coupled heat and mass transfer problems. Interesting applications 

utilizing the Nakamura scheme include micromorphic flows [46], magneto-micropolar 

rheological heat transfer [47], magnetic combustion [48] and nanofluid bioconvection 

transport in biomimetic fuel cells [49]. NTS works well for both one-dimensional (ordinary 

differential) and two-dimensional (partial differential) non-similar flows. NTM entails a 

combination of the following aspects.  

 

• The flow domain for the regime is discretized using an equi-spaced finite difference mesh 

in the  direction. 

• The partial derivatives for f, , , with respect to  are evaluated by central difference 
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approximations. 

• A single iteration loop based on the method of successive substitution is utilized due to 

the high nonlinearity of the momentum, energy and salinity (species) conservation 

equations. 

• The finite difference discretized equations are solved as a linear second order boundary 

value problem of the ordinary differential equation type on the  domain.  

 

For the energy conservation and salinity eqns. (8, 9) which are second order equations, only a 

direct substitution is needed. However, a reduction is required for the momentum eqn. (7) 

which is third order. Setting: 

 

P = f /                    (12a) 

Q =                     (12b) 

R =                     (12c) 

The eqns. (7)-(9) then assume the form: 

 

Nakamura momentum equation: 

A1P//+ B1P/+C1P = S1                                                     (13) 

 

Nakamura energy equation: 

A2Q//+ B2Q/+C2Q = S2                                                    (14) 

 

Nakamura salinity (species) equation: 

A3R//+ B3R/+C3R = S3                                                     (15) 

 

where Ai=1…3, Bi=1..3, Ci=1..3 are the Nakamura matrix coefficients, Si=1…3 are the Nakamura 

source terms containing a mixture of variables and derivatives associated with the lead 

variable. The Nakamura eqns. (13)-(15) are transformed to finite difference equations and 

these are formulated as a “tridiagonal” system which is solved iteratively. Tables 1-3  also 

compare the Nakamura solution with the Maple solutions for the salinity (species 

concentration), skin friction and temperature gradient functions at selected values of the heat 

source parameter. In all cases, excellent agreement is observed. Confidence in the present 

Maple computations, which are used for all graphical depictions, is therefore very high. 
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Approximately 300 domain points along the -direction were required to achieve the 

necessary accuracy. Lesser domain points do not converge correctly or sufficiently and 

experiments with 100, 150, 200, 250 grid points were found to be unsatisfactory.   

 

4.3 Further Validation with Homotopy Analysis Method (HAM) 

The 7th order coupled nonlinear ordinary differential boundary value problem defined by 

equations (7)–(10) has also been solved by the homotopy analysis method (HAM). Liao [50] 

developed HAM via homotopy in topology to generate a general analytical-numerical method 

for nonlinear problems. The validity of HAM is independent of whether or not there exist 

small parameters in the considered equation(s). Therefore HAM can overcome the foregoing 

restrictions of perturbation methods. In recent years, HAM has been successfully employed to 

solve many non-linear problems in engineering sciences including smart biological 

lubrication [51] and nanofluid energy systems [52]. Denoting f=F, =G, =H, in HAM we 

write the initial guesses and linear operators as: 

 

0 1( ,) eF  −= − +    
0( ) ,G e  −=      0 ( ) ,H e  −=                     (16a) 
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with the following properties: 
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where ( )1 9iC i = −  are arbitrary constants. Let  0, 1q  represent an embedding parameter 

and , , ,F G H N  denote the nonzero auxiliary linear operators and construct the following 

zeroth order deformation equations: 

 

( )1 q− fL ( ) ( )0
ˆ ;F q F  −

 = Fq *

FN ( )ˆ ;F q 
  ,                                                             (18) 

( )1 q−
GL ( ) ( )0

ˆ ;G q G  −
 

 = Gq *

GN ( ) ( )ˆ ˆ; , ;G q F q  
 

,                                           (19) 

( )1 q− HL ( ) ( )0
ˆ ;H q H  −

   = Hq
*

HN  ( ) ( )ˆ ˆ; , ;H q F q  
  ,                                       (20) 
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( )1 q− NL ( ) ( )0
ˆ ;N q N  −

   = Nq
*

NN  ( ) ( )ˆ ˆ; , ;N q F q  
  ,                                         (21) 

 

The transformed boundary conditions are non-linear operators may then be defined. Taylor 

expansions of the approximations are then conducted, and auxiliary parameters are properly 

selected to achieve fast convergence of these series. The resulting problems at the mth order 

deformation are then formulated with associated boundary conditions and eventually a 

general solution of the Eqns. (7)-(9) is achieved in which ( )*

mF  , ( )*

mG  , ( )*

mH   are the 

particular solutions and the constants are to be determined by the boundary conditions. HAM 

achieves an analytical solution of the problem in series form. An important consideration is 

convergence of the series solution given by HAM which depends strongly upon auxiliary 

parameters , ,F G H . These parameters provide a convenient mechanism for adjusting and 

controlling the convergence region and convergence rate of the series solution. Therefore, in 

order to select appropriate values for these auxiliary parameters, the so called , ,F G H  

curves are computed at 20th order approximations, to guarantee exceptional accuracy, and are 

therefore adopted in all HAM numerical computations. The comparison of solutions via 

Maple shooting quadrature and HAM is also provided in Tables 1-3. Again, excellent 

correlation is achieved with both Maple and NTS. Confidence in the Maple solutions is 

therefore very high.  

 

Table 1: Maple, NTS and HAM solutions for salinity function (species concentration) with 

 = 0.5, M = 1.0, Gr = 4.0, Pr = 0.5, Ps = 1.0, Sr = 1.0 and  = 90o (vertical plate). 

  [Maple]  [NTS]  [HAM] 

0.0 1.0000 1.0000 1.0000 

0.25 0.8821 0.8823 0.8821 

0.50 0.6473 0.6474 0.6473 

0.75 0.2397 0.2393 0.2395 

1.0 0.0000 0.0000 0.0000 

 

Table 2: Maple, NTS and HAM solutions for skin friction with M = 2.0, Gr = 1.0, Pr = 

0.125, Ps = 10.0, Sr = 1.0 and  = 45o (inclined plate). 

  -f // (0) [Maple] -f // (0) [NTS] -f // (0) [HAM] 

0.1 1.0000 1.0000 1.0000 
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0.2 0.8821 0.8823 0.8824 

0.3 0.6473 0.6474 0.6475 

0.4 0.2397 0.2393 0.2394 

0.5 0.0000 0.0000 0.0000 

  

 

 Table 3: Maple, NTS and HAM solutions for heat transfer rate (Nusselt number function) 

with M = 1.0, Gr = 4.0, Pr = 1.0,  Ps = 1.0, Sr = 1.0 and  = 45o (inclined plate). 

  - / (0) [Maple] - / (0) [NTS] - / (0) [HAM] 

0.1 0.0503 0.0502 0.0501 

0.2 0.1604 0.1605 0.1604 

0.3 0.2254 0.2256 0.2257 

0.4 0.3212 0.3213 0.3214 

0.5 0.3813 0.3815 0.3816 

 

With regard to the relative performance of the three numerical techniques employed for the 

nonlinear ordinary differential boundary value problem, the best solution convergence was 

achieved with the 20th-order HAM approximation. We have compared the compilation times 

for the three methods and also percentage errors in Tables 4, 5 and 6 for the salinity function 

(species concentration), skin friction and Nusselt number function, respectively 

(corresponding to the computations for   = 0.5 in Tables 1, 2 and 3 respectively). This 

provides a good insight into relative performance. Maple was found to be the fastest solver, 

however the error % was marginally higher compared with NTS whereas the best accuracy 

unquestionably is achieved with HAM. However, HAM requires considerably more algebraic 

analysis in determining the correct mth order deformation equation and is much more rigorous 

and time-consuming to set up. Overall the other two methods (Maple and NTS) are faster to 

program and do achieve sufficiently high accuracy and impressive compilation times. NTS is 

in fact easier to program and has second order accuracy. All computations were executed on a 

Lenovo Y510p laptop machine with 8 GB of RAM and an Intel® Core i7-4700MQ CPU @ 

2.4 GHz processor running on a Windows 10 platform. 

Table 4: Maple, NTS and HAM relative numerical performance for salinity function (species 

concentration) with  = 0.5, M = 1.0, Gr = 4.0, Pr = 0.5, Ps = 1.0, Sr = 1.0 and  = 90o 

(vertical plate). 
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NUMERICAL 

METHOD 

MAPLE NTS HAM 

Compilation time 

(s) 

150 160 310 

% Error 2.1% 3.2% 0.5% 

 

Table 5: Maple, NTS and HAM relative numerical performance for skin friction with  = 

0.5, M = 2.0, Gr = 1.0, Pr = 0.125, Ps = 10.0, Sr = 1.0 and  = 45o (inclined plate). 

 

NUMERICAL 

METHOD 

MAPLE NTS HAM 

Compilation time 

(s) 

170 190 340 

% Error 2.5% 2.7% 1.3 % 

 

Table 6: Maple, NTS and HAM relative numerical performance for heat transfer rate 

(Nusselt number function) with  = 0.5, M = 1.0, Gr = 4.0, Pr = 1.0,  Ps = 1.0, Sr = 1.0 and  

= 45o (inclined plate). 

 

NUMERICAL 

METHOD 

MAPLE NTS HAM 

Compilation time 

(s) 

135 147 305s 

% Error 1.8% 1.9% 0.8% 

 

5 RESULTS AND DISCUSSION 

Following extensive verification of the accuracy of the Maple numerical quadrature 

approach, Maple has been selected as the method used to compute velocity (f /), temperature 

()
 
and salinity () variations for the effects of magnetohydrodynamic body force parameter 

(M), Grashof number (Gr), Prandtl number (Pr), modified Prandtl number (Ps), heat 

generation parameter ( ) and Soret number (Sr) at different plate inclinations (). These are 
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illustrated in figs. 2-8. A significant depression in velocity (Figs. 2 and 3) accompanies a rise 

in Grashof number for some distance from the plate surface into the boundary layer. 

22 ( ) /r w oG g T T X U = −  and this parameter simulates the relative effect of buoyancy force 

(free convection) to viscous force in the regime. For Gr > 1, buoyancy force dominates the 

viscous force. Increasing buoyancy therefore decelerate the flow closer to the plate surface. 

With greater inclination angle ( = 120o in fig.3 compared with  = 90o in fig. 2) there is a 

decrease in velocity magnitudes. Referring to Fig. 1 this implies that a vertical plate ( = 90o) 

achieves better flow acceleration under thermal buoyancy than an inclined plate ( =120o). 

This follows logically from inspection of the dimensionless momentum Eqn. (7) wherein the 

buoyancy force, viz,  sinGr+  is clearly directly proportional to the linear product of Gr, 

sin and . Clearly as sin 90 (=1) > sin 120 (=0.8660) then the buoyancy force will be lower 

for the same Grashof number. The inclined plate buoyancy force will be exceeded by the 

vertical plate buoyancy force and this will result in deceleration in the former. Plate 

orientation is therefore a critical geometric parameter which can be exploited to manipulate 

transport characteristics in the MHD ocean generator system. 

Fig. 4 illustrates the influence of the heat source parameter ( ) on salinity 

(concentration) distributions with transverse coordinate. Increasing heat generation clearly 

depresses concentration values. The removal of thermal energy in the regime decreases the 

intensity of thermal convection and this in turn suppresses species diffusion in the boundary 

layer. This has also been observed in other magnetohydrodynamic flows [38] and even in 

non-Newtonian nanofluid flows [39]. Salinity boundary layer thickness is therefore also 

reduced with larger values of the heat source parameter. This simple mechanism, as further 

elucidated by Haajizadeh et al. [53] exerts a dramatic influence on the transport of heat in 

boundary layer flows and thereby significantly also effects the diffusion of salinity. In 

practical MHD ocean energy generators, heat generation can be introduced by spot pulse 

heating [8, 9] and may be used to regulate salinity levels in seawater flows being conveyed to 

the conversion mechanism. Although not computed, it is anticipated that heat absorption (  

<0) will induce the reverse effect.  

Fig. 5 illustrates the influence of thermal Grashof number (Gr) on temperature evolution.  

with transverse coordinate, . Increasing buoyancy effect as represented via an increase in 

Grashof number, significantly depresses the temperature magnitudes at the plate and in close 

vicinity to it- in fact negative temperatures are induced. However, with further distance from 

the plate surface into the free stream, there is a slight elevation in the temperature indicating 
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that thermal boundary layer thickness is enhanced with stronger buoyancy effect there. 

Thermal buoyancy therefore is an important feature of realistic MHD generator flows and 

properly characterizes natural convection effects which arise in such systems. Neglection of 

this phenomenon (forced convection”) leads to erroneous predictions of temperature fields 

and ultimately inaccurate efficiency predictions for working systems.  

 

Fig. 6 illustrates the influence of magnetohydrodynamic body force parameter (M) on 

skin friction (surface shear stress function) distributions, with heat source parameter ( ) for 

the vertical plate case ( = 90o). Increasing M clearly generates a strong depression in skin 

friction, since larger M is associated with greater Lorentzian magnetohydrodynamic drag 

force. This drag acts transverse to the applied magnetic field and significantly impedes the 

boundary layer flow and results in an increase in momentum boundary layer thickness. 

Magnetic field therefore achieves a damping effect. The trend is consistent with many other 

studies of hydromagnetic boundary layers including Doss and Roy [12] and Palani et al. [18]. 

The case of M = 0.0 corresponds to vanishing hydromagnetic effect (electrically non-

conducting fluid) and M = 1 implies an equivalence of magnetic drag force and inertial body 

force in the boundary layer regime. The skin friction in fig. 6 is conversely observed to be 

boosted with increasing heat generation effect i.e. the flow is accelerated with increasing 

parameter   values, at all values of the magnetic parameter.  

Fig. 7 shows the effect of modified Prandtl number (Ps) on salinity (mass transfer) rates 

(i.e. Sherwood number function) also plotted against heat source parameter ( ) for the 

obtuse plate case ( = 120o). A substantial decrease in /−  magnitudes accompanies an 

increase in (Ps); however, this is only at large values of heat generation parameter. For lower 

values of heat generation, there is only a slight reduction in the salinity gradient profiles with 

a very large increase in modified Prandtl number. Effectively therefore when heat source is 

strong, the salinity (concentration) boundary layer thickness will be depleted. The inclusion 

of salinity in the model therefore has a non-trivial contribution. Many MHD generator studies 

neglect mass (salinity) diffusion and the current study confirms that this is an important 

phenomenon which should be included to properly predict actual fluid dynamic 

characteristics of real MHD ocean energy generators since they operate in a seawater 

environment, as further corroborated by Rosa [43]  

Fig. 8 finally presents the temperature gradient shows the effect of ordinary Prandtl 

number (Pr) on Nusselt number function profiles (heat transfer gradients), once again versus 
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heat source parameter ( ), also for the obtuse plate case ( = 120o). Nusselt number 

magnitudes are evidently lowered with increasing Prandtl number, especially at higher heat 

source values. Pr represents the ratio of momentum diffusivity to thermal diffusivity in the 

boundary layer regime. Pr <1 physically corresponds to cases where heat diffuses faster than 

momentum and vice versa for Pr > 1.  Pr = 0.7 is an accurate value for water-based solvents 

and Pr>>1, e.g., 7, is associated with seawater.  Greater Pr will also reduce thermal 

boundary layer thickness. Smaller Pr fluids possess higher thermal conductivities so that heat 

can diffuse away from the cone surface (wall) faster than for higher Pr fluids (thicker 

boundary layers). Our computations show that a rise in Pr depresses the temperature function 

and therefore also the Nusselt number (less heat is transferred from the plate to the fluid). 

This concurs with many other simulations of hydromagnetic convection including 

Masthanrao [20], Hossain et al. [21] etc.  Relative rates of thermal and momentum diffusion 

are controlled by the Prandtl number. This parameter is therefore a critical consideration in 

robust MHD ocean generator design and an automatic control system may be utlized to 

control plate orientation. 

 

 

 

Fig.2. Effect of Grashof number on velocity distributions for plate inclination angle (=90o) 

(vertical plate). 
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Fig. 3. Effect of Grashof number on velocity distributions for plate inclination angle 

(=120o). 

 

Fig.4. Effect of heat source parameter ( ) on salinity profiles. 

 

 

Fig.5. Effect of Grashof number ( rG )on temperature profiles. 
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Fig.6. Effect of magnetohydrodynamic parameter (M) on skin friction coefficient for the 

vertical plate case ( = 90o). 

 

 

Fig. 7. Effect of modified Prandtl number (Ps) on salinity transfer rates for the obtuse plate 

case ( = 120o). 
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Fig.8. Effect of Prandtl number (Pr) on heat transfer rates for the obtuse plate case ( = 120o). 

 

 

6. CONCLUSIONS 

A laminar, steady-state model has been developed for hydromagnetic heat and mass 

transfer in salt water boundary layer flow from an inclined generator wall (plate) component 

of an MHD ocean energy generator system. Maple numerical quadrature solutions have been 

obtained for the normalized two-point boundary value problems. Excellent corroboration of 

computations has been achieved with the Nakamura implicit finite difference scheme. Further 

validation has been demonstrated via the Chinese-developed homotopy analysis method 

(HAM) of Liao. The main findings of the present study may be summarized thus: 

• The momentum boundary layer thickness decreases as the Grashof number increase. 

Also, the skin-friction coefficient decreases as magnetic parameter increases. 

• The salinity boundary layer thickness decreases with increasing heat generation parameter 

increases. 

• The thermal boundary layer thickness decreases with increasing Grashof number. 

• Salinity transfer rate (Sherwood number function) reduces with increasing modified 

Prandtl number. 

• Surface heat transfer rate (Nusselt number function) decrease as the Prandtl number 

increases. 

• Inclination of the generator wall (plate) exerts a significant effect on all flow 

characteristics. 

 

The key findings of our study are therefore, that Soret, inclination, mass diffusion (salinity) 

and heat generation effects should not be excluded in MHD ocean generator modelling 

studies. The computations clearly show that these effects modify the transport phenomena as 

does inclination of the generator wall (plate). For practical applications, CFD models (e.g. 

ANSYS FLUENT) while they are geometrically more complex and can simulate 3-

dimensional flows, frequently neglect important physical phenomena such as Soret thermo-

diffusion and heat generation. MHD simulations we have shown should include both thermal 

transport and mass (seawater salinity) transport effects. These aspects have been shown to be 

important and the neglection of mass transfer (salinity), heat generation, thermo-diffusion 
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would clearly lead to under or over prediction of actual heat and mass transfer characteristics 

in real MHD ocean generators. Also, the modification in plate orientation which is easily 

achieved in practical designs (via automatic control) can provide ocean engineers with a 

useful parameter for modifying the performance of real MHD generators and therefore for 

controlling the operational efficiency as per the requirements. This may achieve better cost-

effectiveness and prove easier in the field relative to other design modifications such as 

helical MHD generators which are problematic in terms of maintenance and repair. Of 

course, the analysis has been restricted to two-dimensional flow. Nevertheless, it does 

provide a good insight into how simpler geometric but more elegant thermophysical 

formulations can identify important thermofluid characteristics which are neglected in CFD 

commercial code simulations. The present investigation has however neglected Hall current 

effects [54-55] and also Joule dissipation effects [56-57]. These are also of relevance in MHD 

ocean generator systems and are being explored by the authors. Furthermore, the current 

analysis has been confined to Newtonian flows. The presence of suspensions in seawater may 

also generate non-Newtonian effects [58-59]. Additionally, nanofluids [60,61] may prove of 

use in enhancing thermal performance of the working fluids in MHD ocean generator 

systems. Another possible consideration is the deployment of porous media in the MHD duct 

[62] and deformable (compliant boundary) duct walls [63]. These aspects are also currently 

under consideration.   
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