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ABSTRACT
Acoustic Event Detection (AED) is an important task of machine
listening which, in recent years, has been addressed using common
machine learning methods like Non-negative Matrix Factorization
(NMF) or deep learning. However, most of these approaches do not
take into consideration the way that human auditory system detects
salient sounds. In this work, we propose a method for AED using
weakly labeled data that combines a Non-negative Matrix Factoriza-
tion model with a salience model based on predictive coding in the
form of Kalman filters. We show that models of auditory perception,
particularly auditory salience, can be successfully incorporated into
existing AED methods and improve their performance on rare event
detection. We evaluate the method on the Task2 of DCASE2017
Challenge.

Index Terms— AED, NMF, auditory salience, Kalman filter

1. INTRODUCTION

Acoustic Event Detection (AED) is an important task of machine
listening, which aims to automatically recognise, label, and estimate
the position in time of sound events in a continuous audio signal.
In recent years it has seen a rise in interest in the research commu-
nity, due to the number of real-world applications for AED such as
home-care [1], surveillance [2], multimedia retrieval [3] or urban
traffic control [4], to name just a few. A successful series of De-
tection and Classification of Acoustic Scenes and Events (DCASE)
challenges [5, 6] have provided the community with datasets and
baselines for a number of tasks related to AED, accelerating re-
search in this field. Early approaches for AED were strongly in-
spired by speech recognition systems, using mel frequency cepstral
coefficients (MFCCs) with Gaussian Mixture Models (GMMs) com-
bined with Hidden Markov Models (HMM) [7, 8]. Later, methods
based on dictionary learning, mainly Non-negative Matrix Factoriza-
tion were most prominent solutions for the AED task [9, 10, 11]. In
recent years a number of deep learning methods have been proposed,
that achieve state of the art results [12, 13]. However, most of the
models used for AED nowadays have been primarily developed for
image or text processing, while, to our knowledge, the importance
of human sound perception in developing methods for AED has not
received enough attention. In fact, in many applications of AED it
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may be desirable to only detect events which human listeners would
detect. Therefore, in this paper, we want to pave the way towards
perceptually motivated AED, showing how AED models can benefit
from the combination with auditory attention and salience models.

Salience is a property of sound which makes it stand out in an
auditory scene, and grab listener’s attention in a bottom-up manner.
There have been a few different approaches to modelling auditory
salience, such as calculating salience features from spectrogram im-
ages [14], Bayesian surprise [15] and predictive coding [16] (for a
review of auditory attention models, see [17]). All of these methods
can be interpreted as novelty detection, which makes them natural
candidates for an AED task. In fact, [18] has shown that an audi-
tory salience model can be used for AED with promising results.
However, these methods have concentrated on detection of every
prominent sound, whereas a more realistic scenario might require
the detection of a a-priori specified event only, which is the case in-
vestigated in this paper.

In this work we propose to combine the best of two worlds and
show how they can compliment each other: a Non-negative Ma-
trix Factorization model with an auditory salience model based on
Kalman filters. What is more, we show that the resulting method is
applicable for AED on weakly labeled data, that is, data in which we
do not have exact information of when the interesting sound occurs,
but just a tag of which sounds are present in a given audio excerpt.

2. AUDITORY SALIENCE MODEL

The auditory salience model used here was developed by [16], and is
based on predictive coding, which has been proposed as the working
principle of the auditory cortex [19]. The model uses a Kalman filter
which: 1) predicts present input based on past input and an internal
model, 2) updates the model according to prediction error and 3)
weights the model versus data depending on variance of the input.
Because salience is related to surprise, understood here as violation
of expectation [20], a salient event is detected when the incoming
input varies significantly from the prediction.

Each feature extracted from the signal is tracked by one or mul-
tiple Kalman filters simultaneously. The state X of a filter is coded
as a vector containing a feature value zn and the difference between
the last two consecutive feature values:

Xn =

[
zn

zn − zn−1

]
. (1)

At each feature frame n, Kalman filter steps are:
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where X̂
-

and X̂ are the a priori and a posteriori predictions of X,
respectively.

Taken together with the system matrix A and the measurement
matrix B shown below, this means that at any point in time, the fea-
ture vector is expected to continue changing in the same manner it
has most recently changed:

A =

[
1 1
0 1

]
,Bn =

[
1 0

]
. (3)

The measurement and system noise covariance matrices are as
follows:

Q =

[
σ2
w 0
0 σ2

b

]
,R = σ2

v (4)

where σw, σb and σv are empirically chosen for each feature.
To determine the number of filters to be initialised at the begin-

ning of each file, Gaussian Mixture Model clustering is performed
on the first 500 ms of each feature stream and a Kalman filter is ini-
tialised for each of the clusters. The filters are initialised with the
same Xn−1 and Pn−1 values as in [16].

As long as a filter predicts feature values reasonably well, it up-
dates its future predictions based on the input. Feature values are
assumed to be predicted well by a filter as long as the following con-
dition is satisfied:

|zn − BX̂
-
n| ≤ 2

√
P[1] + σ2

v (5)

where P[1] is the first element of matrix P. When a new feature value
is not predicted by any of the currently running filters, a salience
spike is produced, with amplitude equal to the difference between
prediction and measured value (the system innovation). Addition-
ally, a new filter is initialised based on this new value. If a filter has
not correctly predicted any feature values for 1 s, it is closed.

This process produces vectors of salience spikes si (one from
each feature). The resulting salience score for frame n is obtained by
applying feature-specific and between-feature weights and summing
the resulting vectors, as follows:

s(n) =
∑

i∈[1,N ]

si(n)

wi +
∑

j∈[1,N ],j 6=i

wij max
k∈[−1,1]

sj(n+ k)

 .

(6)

3. ORTHOGONALITY-REGULARIZED NMF

For the AED model we use a model from our previous work, where
we adapted a standard NMF approach to learning on weakly labeled
data [21].

3.1. Non-negative Matrix Factorization

The goal of NMF is to approximate a non-negative data matrix, typi-
cally a time-frequency representation of a given sound, V ∈ R+

F×T

as a product of a dictionary W ∈ R+
F×K and its activation matrix

H ∈ R+
K×T , such that:

V ≈ V̂ = WH. (7)

W and H are estimated to minimize some divergence metric
D(V|WH). For any two matrices X and Y, we define D(X|Y) =∑

m,nD(xmn, ymn). In this work, we choose the generalized
Kullback-Leibler (KL) as the divergence metric, defined as

DKL(V|WH) =
∑
k,l

(
Vk,l log

Vk,l

(WH)k,l
− Vk,l + (WH)k,l

)
(8)

which is a common choice for audio applications.

3.2. NMF on weakly labeled data

Let us consider the task of detection of rare sound events. Let y ∈
{0, 1} be a weak label denoting absence or presence of the target
sound, V0 = V0

1, · · · ,V0
M0

is a set of M0 training examples with
absence of the target sound and V1 = V1

1, · · · ,V1
M1

is a set of M1

training examples with the presence of the target sound. As the data
is weakly labeled, examples containing the target sound most prob-
ably also contain noise and other sounds. Therefore, we assume that
to reconstruct well the target sound training examples (V1) we also
need elements from dictionaries extracted from background sounds
examples (V0). At the same time, we do not expect elements of the
dictionary atoms of target sounds to be used for reconstructing V0.
We impose this constraint in the training phase by applying a binary
mask to the activation matrix as follows:

V = [V0,V1] ≈ [W0,W1]

([
1 1
0 1

]
�
[

H00 H01

H10 H11

])
= [W0,W1]

[
H00 H01

0 H11

]
=[W0H00,W0H01 + W1H11]

(9)

where W0 ∈ R+
F×K0

, W1 ∈ R+
F×K1

are “sound” and “back-
ground” dictionaries respectively, K0 and K1 are their correspond-
ing ranks. 0 is a matrix of zeros with K1 rows and the number of
columns corresponding to the total size of M0 background training
data, while 1 denotes matrices of appropriate dimensions with all el-
ements equal to 1. H00, H01, H10 and H11 are parts of the activation
matrix of suitable dimensions. We then further improve the sepa-
ration of the dictionaries by adding an additional orthogonality reg-
ularizer, which minimizes the coherence between the dictionaries.
Combining the constraint on the activation matrix and the orthogo-
nality regularizer results in the following cost function to minimize:

min
W0,W1,H≥0

DKL(V|WH) + λ‖W1W0‖2

= DKL(V0|W0H00) +DKL(V1|(W0H01 + W1H11))

+ λ‖W1W0‖2.

(10)

As ‖W1W0‖2 is convex in W0 and W1, we can minimize the cost
function using the gradient descent. Then, following the derivations
of Lee and Sung [22], we obtain the corresponding multiplicative
update rules for W0 and W1:

W0 ←W0 �
V0H00
W0H00

+ V1H01
W0H01+W1H11

1 ·H00
+1 ·H01

+λW1W1W0

W1 ←W1 �
V1H11

W0H01+W1H11

1 ·H11
+λW0W0W1

.

(11)
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As the regularizer does not influence the activation matrix H, the
update rule for H remains the same as in the original NMF problem
formulation:

H← H�
WT V

WH

WT 1
. (12)

Final dictionaries W0 and W1 are then concatenated to form a dictio-
nary W used for audio event detection, whereas the activation matrix
H is discarded.

4. PROPOSED METHOD

For the final task of AED we combine the outputs of the two models.
In principle, the salience model will detect onsets of any interesting
events, regardless of whether they are the target in the task. There-
fore, its output is combined with the NMF output, which can dif-
ferentiate between target and non-target events. The full combined
model is shown in Figure 1.

Fig. 1. General architecture of the proposed method. Frames of
audio signal are analysed in parallel by two models. The salience
model calculates salience score from N different features, while the
NMF model uses mel spectrograms to produce an output matrix,
which is binarized before being combined with the salience score
to form the final output.

Firstly, we use the NMF method to extract dictionaries W0 and
W1. In the event detection phase, a test sample is decomposed using
the trained dictionaries as follows:

Vtest =
[
W0,W1] [H0

H1

]
. (13)

Finally, H1 is binarized using a threshold equal to 50% of the maxi-
mum value of the entire activation matrix (H0 and H1).

In parallel, salience score s(n) per frame is computed for each
test sample, forming a vector s, which is then normalised. In the final
stage the salience score vector s is multiplied element-wise with the

binary output of H1. The columns of the resulting matrix O that have
at least one entry greater than 0 indicate the presence of an event.

O = s�H1. (14)

We post-process the annotation matrices by discarding events shorter
than 100 ms and removing gaps shorter than 100 ms between the
events. The shortest event in the training dataset was 240 ms long.

5. EXPERIMENTAL SETUP

5.1. Dataset

The proposed method is evaluated on rare event detection using
only weakly labeled data from the audio recordings of the TUT
Rare Sound Events 2017, which were provided for Task 2 of the
DCASE2017 challenge [6]. Although the DCASE2018 Challenge
also provided a weakly labeled dataset for AED, we choose the
DCASE2017 dataset because it addresses a simple scenario - de-
tecting one sound at a time - which is suitable for the current
proof-of-concept study. The dataset consists of around 100 isolated
sound examples for three target classes: gunshot, baby crying and
glass breaking, together with background audio which is part of
the TUT Acoustic Scenes 2016 dataset [23]. For training the NMF
model we use weakly labeled 4 second mixtures. It is important to
reiterate, that we do not know the timestamp of the event in the mix,
just a binary label determining weather the mix contains the sound
of interest. For testing, we use 500 mixes of -6dB, 0dB and 6dB
SNR of the sounds and backgrounds not used in the training set.
The testing mixtures were provided for the DCASE2017 challenge.
Each testing mixture is 30 second long.

5.2. Parameters of the salience model

Six features are extracted using the pyAudioAnalysis library [24],
with a 64 ms window: energy, energy entropy, spectral centroid,
spectral rolloff, spectral entropy and zero-crossing rate. The weights
wii and wij used in Eq. 6 were trained with a constrained logistic
regression, where the binary output variable was presence of event
in a file, predictor values were the mean si for each feature, and the
weights were constrained to be positive. Recordings of 30 seconds
are used for training.

5.3. Parameters of the NMF model

To build the NMF model, we resample the data to 16000 Hz. We
extract mel-spectrograms with 40 components, using a window size
and hop size of 64 ms. In order to model temporal dynamics we
group 4 consecutive frames into 2D patches, a value that was cho-
sen empirically. We train the system on audio chunks of 4 seconds
and evaluate on recordings of 30 seconds. We set the number of
positive and negative atoms as K0 = 20, K1 = 10, values chosen
empirically.

5.4. Evaluation metrics

To evaluate the method we use event-based error rate (ER) and event-
based F-score. An event is considered correctly detected using onset-
only condition with a collar of 500 ms. The ER is calculated by
adding the number of insertions and deletions for each class before
dividing it by the total number of events. The F-score is based on
the total amount of false negatives, true positives and false positives
[25].
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6. RESULTS AND DISCUSSION

Table 1 presents the results of the evaluation on the test set. For
comparison, alongside the proposed method, we show the results for
each of the NMF and salience models separately. In the salience
model, an event was detected for every frame n in which s(n) >
0.5 ∗max(s).

Table 1. Evaluation results on gunshot, babycry and glassbreak de-
tection. Error Rate (ER) and F-score (F1) are reported for the pro-
posed method, NMF only and Salience model only. Lowest ER and
highest accuracy for each target sound are shown in bold.

Event type Proposed NMF Salience
ER F1 ER F1 ER F1

Gunshot 0.76 65% 0.80 64 % 1.45 36%
Glass breaking 1.07 46% 1.23 41% 1.12 54%
Baby crying 1.04 36% 1.07 37% 1.71 32%

Adding the auditory salience model to the NMF detector im-
proves its performance for gunshot and glass breaking events. For
the baby crying event, it decreases the error rate, but does not im-
prove the F-score, suggesting a low hit rate. The reason for this
difference in performance for different event classes may be that
the first two - gunshot and glass breaking - usually have sudden on-
sets, while the last one - baby crying - can start rather slowly. The
salience model is designed to detect sudden changes in features, but
will adapt to changes that are too slow. While this property makes it
useful in some types of backgrounds (see below), it also means that
it might not be suited for events which develop slowly, or might need
a larger frame window for them.

Fig. 2. Results for a gunshot event over a residential area back-
ground, with a loud car passing in the first half of the file. Top row:
H1 matrix from the NMF model. Bottom left: salience model out-
put s. Bottom right: final output of the model, from which an event
is detected for any value larger than 0. Red dashed line shows the
position of the target event. Even though it was correctly recognised
by the salience model, the combined models do not detect it.

There were a number of cases where the salience model was able
to detect an event when the NMF was not. This is also evident from

the fact that the salience model outperforms both the NMF and the
proposed method for the glass breaking event. One situation where
the salience model presents an advantage is when the background
noise significantly but slowly increases in level - e.g. a train passing
(see Figure 2). Because a Kalman filter-based model is not sensitive
to sudden feature changes, it is able to adapt to this background,
and only flag a detection when changes in feature values correspond
to new, ’surprising’ events. It also seems to perform well in loud
cafeteria-type backgrounds (see Figure 3).

Fig. 3. Results for a gunshot event over a cafe/restaurant back-
ground. Top row: H1 matrix from the NMF model, before and after
binarization. Bottom left: salience model output s, after normaliza-
tion. Bottom right: final output of the model, from which an event
is detected for any value larger than 0. Red dashed line shows the
position of the target event, which was correctly recognised by the
salience model, but not the NMF model.

For the combined model, however, binarization in the NMF out-
put, followed by multiplication of outputs, does not allow for detec-
tion of any events not detected by NMF. With the method used to
combine the two models, the main advantage of the salience model
was in removing false positives. A different method, not based on a
binary mask, might preserve more events detected by Kalman filters
and increase hit rate.

7. CONCLUSIONS

We proposed a novel approach for AED using weakly labeled data:
combining a traditional NMF based approach with a model inspired
by human auditory attention. We showed that auditory salience can
enhance traditional AED models. Specifically, a Kalman filter-based
salience model provides promising results, as it seems less sensitive
to changes in background sound level. However, due to the simplic-
ity of the method for combining the two outputs, some of the salient
sounds were removed from the final output by the NMF model.
Therefore, in future we will explore more sophisticated methods for
combining predictions from multiple models, for example a mixture
of experts or other ensemble method. Moreover, it would be inter-
esting to examine the combination of a salience model with a deep
learning model, such as a Convolutional Recurrent Neural Network.
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