

Coupling Ontology with Reference

Architectures to Facilitate the

Instantiation Process of Software System

Architectures

Zaid Jafer Fadil Al-Bayati

School of Computing, Science and Engineering

College of Science and Technology

University of Salford, Salford, UK

Submitted in Partial Fulfilment of the Requirements of the Degree

of Doctor of Philosophy

2019

II

TABLE OF CONTENTS

TABLE OF CONTENTS ... II

LIST OF FIGURES .. VIII

LIST OF TABLES ... X

LIST OF ABBREVIATIONS ... XII

ACKNOWLEDGEMENTS .. XIII

PUBLICATIONS .. XIV

DECLARATION ... XV

ABSTRACT ... XVI

CHAPTER ONE: INTRODUCTION ... 1

1.1 Overview ... 1

1.2 Research Problem .. 4

1.3 Research Aim and Objectives ... 5

1.4 Research Contributions ... 5

1.5 Research Process ... 6

1.6 Outlines of the Thesis .. 9

CHAPTER TWO: BACKGROUND AND LITERATURE REVIEW 11

2.1 Overview ... 11

2.2 Software Architecture.. 11

2.3 Reference Architecture .. 12

III

2.3.1 Review of Reference Architecture Development Approaches 14

2.3.2 Reference Architecture Artefacts .. 19

2.3.3 Benefits of Reference Architectures .. 20

2.4 Differences between Reference Architecture and Software Architecture 21

2.5 State-of-the-Art of the Instantiation Process of a Software System Architecture

from a Reference Architecture .. 22

2.6 Ontology Principle .. 25

2.6.1 Ontology Definition ... 25

2.6.2 Ontology Components ... 26

2.6.3 Ontology Representation Languages ... 27

2.6.4 Ontology Development Tools ... 28

2.6.5 Review of Ontology Development Methodologies 30

2.6.6 Ontology Reasoning Techniques ... 32

2.7 The Role of Ontology in Representing Architectural Knowledge 33

2.8 Summary ... 35

CHAPTER THREE: RESEARCH METHODOLOGY 37

3.1 Overview ... 37

3.2 Research Type ... 37

3.3 Research Model ... 41

3.3.1 Research Philosophy ... 43

3.3.2 Research Approach .. 45

3.3.3 Deductive and Inductive Approaches .. 47

IV

3.3.4 Research Strategies .. 49

3.3.5 Data Collection Methods ... 49

3.3.6 Data Analysis ... 51

3.4 Ethical Consideration .. 51

3.5 Research Design .. 52

3.6 Summary ... 54

CHAPTER FOUR: DEVELOPMENT OF GENERAL ONTOLOGICAL

MODEL .. 56

4.1 Overview ... 56

4.2 Methodology for Constructing an Ontological Model .. 56

4.2.1 Define Initial General Vocabulary .. 57

4.2.2 Generate More General Vocabulary from Multiple Case Studies 59

4.2.3 Validation Process of General Vocabulary ... 70

4.2.4 Construct Ontological Model .. 72

4.3 Justifications for Adopting These Case Studies .. 75

4.4 Summary ... 75

CHAPTER FIVE: USING ONTOLOGY FOR PRESENTING THE

ARTEFACTS OF REFERENCE ARCHITECTURE 76

5.1 Overview ... 76

5.2 Development Process of ArchiOntology ... 77

5.3 Using Process of ArchiOntology ... 79

5.4 Examples ... 83

V

5.4.1 Example 1: The Reference Architecture of the Web Browsers 83

5.4.2 Example 2: The Reference Architecture of the Web Servers 96

5.5 Summary ... 102

CHAPTER SIX: EXPERIMENTAL EVALUATION OF PROPOSED

METHODOLOGY .. 103

6.1 Overview ... 103

6.2 Plan of the Evaluation ... 103

6.3 User Study Experiment ... 105

6.3.1 Goal/Question/Metric .. 105

6.3.2 Metrics Benchmarking and Question Rating Scales 110

6.3.3 Tasks of the Experiment .. 112

6.3.4 Participants of the Experiment .. 113

6.3.5 Materials, Tools and Equipment of the Experiment 115

6.3.6 Protocol of the Experiment .. 116

6.3.7 Results and Discussion of the Experiment .. 117

6.4 Summary ... 124

CHAPTER SEVEN: CONCLUSION AND FUTURE WORK 126

7.1 Overview ... 126

7.2 Significant Contribution .. 126

7.3 Review of the Research Objectives ... 127

7.3.1 Objective 1 ... 127

VI

7.3.2 Objective 2 ... 127

7.3.3 Objective 3 ... 128

7.3.4 Objective 4 ... 128

7.3.5 Objective 5 ... 128

7.3.6 Objective 6 ... 129

7.3.7 Objective 7 ... 129

7.4 Future Work .. 130

REFERENCES .. 131

APPENDICES ... 147

Appendix A: List of Included Studies .. 147

Appendix B: Vocabulary of the Case Studies .. 149

B.1: Vocabulary of the First Case Study ... 149

B.2: Vocabulary of the Second Case Study ... 151

B.3: Vocabulary of the Third Case Study .. 152

B.4: Vocabulary of the Forth Case Study .. 153

B.5: Vocabulary of the Fifth Case Study ... 154

B.6: Vocabulary of the Sixth Case Study .. 155

B.7: Vocabulary of the Reference Architecture of the Web Browsers 156

B.8: Vocabulary of the Reference Architecture of the Robot Teleoperation 158

Appendix C: General Vocabulary .. 159

C.1: General Vocabulary that Describes Entities .. 159

VII

C.2: General Vocabulary that Describes the Relationships 159

Appendix D: User Study Experiment ... 161

D.1: Ethical Approval Letter ... 161

D.2: Research Participant’s Consent Form .. 162

D.3: Pre-experiment Questions .. 163

D.4: Post-experiment Questions .. 164

VIII

LIST OF FIGURES

Figure 1-1: Research Process .. 8

Figure 2-1: Role of Stakeholders and Contexts for RAs and Concrete Architectures 13

Figure 2-2: Reference Architecture of a Web Browser ... 16

Figure 2-3: Reference Architecture of a Software Engineering Environments................... 17

Figure 3-1: Classification of Research Types.. 38

Figure 3-2: The Classification of the Present Research .. 41

Figure 3-3: The Research Model ... 42

Figure 3-4: The Adopted Research Model .. 43

Figure 3-5: Deduction Process .. 48

Figure 3-6: Induction Process .. 48

Figure 3-7: The Research Design .. 53

Figure 4-1: Methodology for Defining and Extracting General Ontological Vocabulary .. 57

Figure 4-2: General Ontological Model .. 74

Figure 5-1: Development Process of ArchiOntology .. 77

Figure 5-2: Process of Using ArchiOntology .. 82

Figure 5-3: Subsystems of the Web Browser Reference Architecture 84

Figure 5-4: Features of the User Interface Subsystem .. 85

Figure 5-5: ArchiOntology of the Web Browser in Protégé ... 89

Figure 5-6: Main Concepts and Subconcepts of the ArchiOntology of Web Browser 90

Figure 5-7: Individuals of the ArchiOntology of the Web Browser in Protégé 91

Figure 5-8: Object Properties of the ArchiOntology of the Web Browser in Protégé 92

Figure 5-9: Subsystem of the ArchiOntology ... 93

Figure 5-10: Features of the Subsystem of the Web Browser in Protégé............................ 93

Figure 5-11: Components of the ArchiOntology of the Web Browser in Protégé 94

IX

Figure 5-12: Hierarchy of the ArchiOntology of the Web Browser.................................... 95

Figure 5-13: ArchiOntology of the Web Servers .. 98

Figure 5-14: Main Concepts and Subconcepts of the ArchiOntology of Web Servers 99

Figure 5-15: Individuals of the ArchiOntology of the Web Servers 99

Figure 5-16: Classes, Subclasses and individual of the ArchiOntology 100

Figure 5-17: Individuals of the Browser, Program and Service subclasses 100

Figure 5-18: Hierarchy of the ArchiOntology of the Web Servers 101

Figure 6-1: Plan of the Evaluation ... 104

Figure 6-2: GQM Mapping for the User Study ... 109

Figure 6-3: Participants’ Study Background ... 114

Figure 6-4: Group A and B with Materials, Tools, Equipment, and Questions 115

Figure 6-5: Reliability Statistics .. 117

X

LIST OF TABLES

Table 2-1: Reference Architecture Development Approaches .. 18

Table 2-2: Differences between SA and RA ... 22

Table 3-1: Features of the Positivistic and phenomenological Paradigms 45

Table 4-1: Initial General Vocabulary ... 58

Table 4-2: Matching between General Vocabulary and Vocabulary of the 1st Case Study 61

Table 4-3: New General Vocabulary from the First Case Study ... 61

Table 4-4: General Vocabulary after Update .. 62

Table 4-5: Matching between General Vocabulary and Vocabulary of the 2nd Case Study63

Table 4-6: New General Vocabularies from the Second Case Study 63

Table 4-7: General Vocabulary after Update .. 64

Table 4-8: Matching between General Vocabulary and Vocabulary of 3rd Case Study...... 65

Table 4-9: New Vocabularies from the Third Case Study .. 65

Table 4-10: General Vocabulary after Update .. 65

Table 4-11: Matching between General Vocabulary and Vocabulary of 4th Case Study 66

Table 4-12: New General Vocabulary from the Fourth Case Study 67

Table 4-13: General Vocabulary after Update .. 67

Table 4-14: Matching between General Vocabulary and Vocabulary of 5th Case Study 68

Table 4-15: Matching between General Vocabulary and Vocabulary of 6th Case Study 69

Table 4-16: New General Vocabulary from the Sixth Case Study...................................... 69

Table 4-17: Final General Vocabulary .. 70

Table 4-18: General Vocabulary of the First Case Study .. 71

Table 4-19: General Vocabulary of the Second Case Study ... 72

Table 5-1: Vocabularies Describe the Objects of the Web Browser 87

Table 5-2: Vocabularies Describe the Relationships ... 88

XI

Table 5-3: Vocabulary of the Reference Architecture... 96

Table 5-4: Relationships between the Vocabularies of the Reference Architecture 97

Table 6-1: Plan of the Evaluation .. 105

Table 6-2: GQM Mapping for User Study Experiment ... 109

Table 6-3: Samples 5-scale Statements with Assigned Value ... 111

Table 6-4: Metrics Measurement Methods and Possible Values 112

Table 6-5: Given Time for Each Task ... 113

Table 6-6: Participants’ Knowledge of Architectural Development 114

Table 6-7: Time Table of Experiment ... 116

Table 6-8: First Introductory Statement Results ... 118

Table 6-9: Second Introductory Statement Results ... 118

Table 6-10: A Response from Group A to the Statements 3, 4, and 5 119

Table 6-11: A Response from Group B to the Statements 3, 4 and 5 119

Table 6-12: A Response from Group A to the Statement 6... 120

Table 6-13: A Response from Group B to the Statement 6 ... 120

Table 6-14: A Response from Group A to the Statements 7 and 8 121

Table 6-15: A Response from Group B to the Statements 7 and 8 121

Table 6-16: A Response from Group A to the Statements 9 and 10 122

Table 6-17: A Response from Group B to the Statements 9 and 10 122

Table 6-18: Ontological Model and Ad hoc Manner Task Completion Times 123

Table 6-19: User Study Experiment Metrics Results .. 124

XII

LIST OF ABBREVIATIONS

5SUF 5-Scale User Feedback

DL Description Logic

FaCT++ Fast Classification of Terminologies

GQM Goal/Question/Metric

IEEE Institute of Electrical and Electronics Engineers

ISO/IEC International Organization for Standardization/International

Electrotechnical Commission

No Number

OWL Web Ontology Language

PTDR Participant’s Tasks Development Results

PuLSE-DSSA Product Line Software Engineering – Domain Specific Software

Architecture

RA Reference Architecture

RACER Renamed ABox and Concept Expression Reasoner

SA Software Architecture

SPSS Statistical Package for the Social Sciences

T Task

TOVE TOronto Virtual Enterprise

UML Unified Modelling Language

UPON Unified Process for Ontology

XML Extensible Markup Language

W3C World Wide Web Consortium

XIII

ACKNOWLEDGEMENTS

First and foremost, I would like to thank ALLAH ALMIGHTY for giving me the

patience and strength to conduct and complete this thesis. I would like to express my special

appreciation and thanks to my supervisors Dr Adil Al-Yasiri and Prof. Farid Meziane, for

their support, encouragement, and guidance throughout this PhD research journey, without

their help, I could not have finished my thesis successfully.

I pass all my success to my father’s soul. My deepest gratitude and appreciation to my

mother, wife and children, brother and my sisters for their help and support in difficult times.

Without their constant support, this PhD research would have been much difficult to

complete.

I gratefully acknowledge the help provided by the Iraqi government represented by

the Ministry of Higher Education and Scientific Research in funding this research. I owe a

debt of gratitude to the University of Mosul in Iraq for the scholarship which allowed me to

achieve the PhD. Thanks are also due to the Iraqi Cultural Attaché in London, for their

continuing help and support whilst undertaking this research. I would like to thank the

University of Salford and their staff for all the help and the support provided during my PhD

studies, as well as, all my colleagues in the College of Science and Technology at Salford

University.

Finally, I would like to say thanks to everyone who helped me achieve success in this

research.

Zaid Jafer Fadil Al-Bayati

XIV

PUBLICATIONS

The following are the list of publications during the studying years:

1- Zaid J. Fadil Al-Bayati, Adil Al-Yasiri. Coupling Ontology with Reference

Architectures to Facilitate the Instantiation of Software System Architectures,

University of Salford, College Dean’s Annual Research Showcase Event, May-

2015.

2- Zaid J. Fadil Al-Bayati, Adil Al-Yasiri. Coupling Ontology with Reference

Architectures to Facilitate the Instantiation of Software System Architectures,

University of Salford, Postgraduate Annual Research Conference, June-2016.

3- Zaid J. Fadil Al-Bayati, Adil Al-Yasiri. Ontology-based Approach to Represent

the Artefacts of Reference Architecture. University of Salford, Annual PGR

Symposium, March-2017.

XV

DECLARATION

No portion of the work referred to in this thesis has been submitted in support of an

application for another degree or qualification of this or any other university or other institute

of learning.

Signature: Date: / / .

Zaid Jafer Fadil Al-Bayati

XVI

ABSTRACT

A reference architecture can be defined as a generic architecture for a set of

information systems that is used as a basis to a software system architecture. It provides the

foundation for the design of concrete architectures in terms of architectural design guidelines

and architectural elements. In addition, it can be used by many software developers and

architects to design software system architectures’ instances that best fit their customers’

requirements.

Software system architectures play an essential role in defining the achievement of

software systems. Therefore, it can be derived efficiently from a well-structured reference

architecture. There is a lack of a well-defined methodology that instantiates the knowledge

of the reference architecture to a clear and customised software system architecture.

Consequently, the instantiation process of the software system architecture from the

reference architecture is a difficult task because the reference architecture includes a huge

amount of knowledge. This knowledge is not organised and not structured. In addition to

that, there is no standard terminology used to describe the knowledge of the reference

architecture.

To tackle this issue, a mixed method research approach has been adopted in this

research. In order to achieve the aim and objectives of the research, a qualitative approach,

utilising multiple case studies, has been adopted to collect the qualitative data, and a

quantitative approach, utilising survey questionnaires, has been adopted to collect the

quantitative data.

XVII

This thesis aims at facilitating the instantiation process of the software system

architecture from the reference architecture by using an ontology. The ontology has been

used as a tool to present the artefacts of a reference architecture in an organised and

structured way.

General vocabularies have been defined based on understanding the domain and the

literature and by using multiple case studies from the literature. These vocabularies have

been utilised as a basis to construct an ontological model. The ontological model will be

utilised to organise and structure the artefacts of the reference architecture. It aims at

providing vocabularies to software architects and developers to reduce the misunderstanding

between them. Furthermore, to enable clear communication between software architects and

developers and to achieve the unique representation of concepts by avoiding redundancies.

User study has been adopted to evaluate the usability of the proposed methodology in

term of the simplicity of the instantiation process of the software system architecture from

the reference architecture. The results achieved in the evaluation study offered an evidence

that the ontological model can positively affect the development of software system

architectures. In addition to that, it can reduce the development time. Based on the final

evaluation results, it can be concluded that our research has been successful in introducing

the proposed methodology as a new idea to reduce complexity in the development process.

1

1. CHAPTER ONE: INTRODUCTION

1.1 Overview

The fact that each system can be shown to be composed of components and

relationships between them mandates that there is an architecture for every system [1]. A

software architecture is considered as the backbone for any successful software system [2],

[3]. It performs an important function in determining the system quality [4],[5] and it plays

a significant role in determining the success of the software system.

Software architecture (SA) is a significant step in the software development process.

It represents “the structure(s) of the system, which includes software elements, the externally

visible properties of these elements and the relationships among them” [6]. The software

architecture is a set of explicit architectural design decisions made about the software system

over time [7].

Nowadays, the complexity and size of information systems demand new software

engineering methods to develop software system architectures [8]. There are different

approaches to design software system architectures. They can be designed from scratch;

however, this will take a long time while it is possible to invest this time in another part of

the development process. Using a reference architecture (RA) is considered as another

method of the design process, it allows knowledge and components to be systematically

reused when developing a software system architecture [9], [10]. The reference architecture

can be defined as a generic architecture for a set of information systems in the domain that

is used as a basis to develop software system architectures.

2

There are many benefits when using the reference architecture to design the software

system architecture; it increases the productivity of application builders, saves the costs of

maintenance of the applications and decreases the development time. Furthermore, faster

delivery of applications is another advantage of the reference architecture [11]. In this

context, the reference architecture is defined as “a general architecture for a set of

information systems that are used as a basis for the design of software architectures” [12]. It

can guide the development, standardisation and evolution of systems’ architectures in a

particular domain [13], [14].

The instantiation process of software system architectures from the reference

architecture is not an easy task [12], [14], [15]. Furthermore, the inclusion of reference

architectures in the current software processes of an organisation is also not a trivial task

[14]. The reason behind that is that it encompasses a huge amount of knowledge. However

and most of the times, this knowledge is almost non-structured and non-organised too [16],

in addition to that, there is no standard terminology to describe the artefacts of reference

architectures.

To tackle this issue, the researcher adopted a mixed method (Qualitative and

Quantitative Approaches) to achieve the aim and objectives of the study. This study includes

two phases: design and evaluation. In the design phase, a qualitative research approach has

been conducted. A qualitative data was collected from multiple case studies and analysed

by the researcher by reviewing it. In the evaluation phase, a quantitative research approach

has been conducted. A quantitative data was collected by conducting a survey questionnaire

and analysed by using SPSS software and Microsoft Excel. Hence, this research proposes a

methodology to facilitate the instantiation process of the software system architecture from

a reference architecture by using an ontology. The ontology was used as a tool to present the

3

artefacts of the reference architecture. The reason behind that is the definition of the

ontology itself.

According to Gruber [17], an ontology is defined as “a formal and explicit

specification of a shared conceptualisation”; this definition shows that an ontology can play

essential roles in solving many software engineering development problems. The structure

of an ontology includes a set of classes in addition to the associated relationships between

these classes.

General vocabularies were defined based on the literature and understanding the

domain and by using multiple case studies from the literature. The vocabularies were used

to construct a general ontological model. The ontological model was developed based on

the general vocabularies to provide vocabularies of a reference architecture for software

developers and architects to facilitate the instantiation process by tracking the relationships

between the components to find another component.

The proposed methodology has been evaluated by using a user study experiment. The

user study experiment was adopted to measure the usability of the proposed methodology in

term of the simplicity of the instantiation process and the development time. The experiment

was conducted at Salford University – School of Computing, Science, and Engineering. Two

groups of developers were employed in the evaluation process.

The evaluation results found that the ontological model facilitated the instantiation

process of a software system architecture from a reference architecture. All participants that

used the ontology found out that it helps to design the software system architecture with

reduced development time.

4

1.2 Research Problem

Software architecture plays an important role in the software development process and

in determining the system quality [4], [5], [18]. Despite the impact of the architectures on

the software development process and the system quality, there is not yet an agreement about

a description method of these architectures [4].

The software system architecture design is very complex [19] because of the

involvement of non-functional requirements in the development process [20], [21]. The

current design methods lack specificity and preciseness. Consequently, it is extremely

difficult to develop a comprehensive and proper software system architecture [21]–[23].

The reference architecture can be adopted as a way to reuse architectural knowledge

when designing a new architecture for a software system. It contains the essence of the

architecture of a set of similar systems [10]. Presently, most software system architectures

are developed in a particular method without a well-organised approach to creating,

preventing the creation and maintenance of the applications [24], [25].

According to [14], [15], [26], [27] the instantiation process of the software system

architecture from the reference architecture is not an easy task and there is no straightforward

method of the instantiation process; therefore, methods and techniques that systematise such

task are important. Moreover, the inclusion of the reference architectures in the current

software development processes of an organisation is not trivial. Thus, it is extremely

difficult to develop a comprehensive and appropriate software system architecture even

though it is recognised as primary artefacts [21].

Reference architectures have been developed for various domains. They encompass a

huge amount of knowledge. However, and most of the times, this knowledge is almost non-

5

structured and non-organised too [28], besides; it is presented as informal and semi-formal

too [29]. In addition, since there is no standard terminology to describe the artefacts of

reference architectures [5], that led software architects and engineers to use their

vocabularies to describe the artefacts. This issue makes it not clear and not understandable

by a variety of stakeholders [16].

1.3 Research Aim and Objectives

This study aims to propose a methodology to facilitate the instantiation process of a

software system architecture from a reference architecture by using an ontology as a tool, to

present the knowledge, relationships and attributes of the reference architecture differently.

Eventually, the proposed methodology tries to decrease the complexity of the architectural

development process. In addition to the aim of this research, some objectives have been

highlighted.

1- Review the development approaches of a reference architecture to highlight the tools

that are used to present the artefacts of a reference architecture.

2- Review the existing instantiation process of a software system architecture from a

reference architecture to highlight the shortage of the current instantiation process.

3- Review an ontology principle.

4- Define general vocabularies to be used for constructing an ontological model.

5- Develop an ontological model for presenting knowledge about the reference

architecture.

6- Develop a process in order to describe the artefacts of a reference architecture.

7- Evaluate the proposed methodology by conducting a user study experiment.

1.4 Research Contributions

During this research, the literature review has addressed the role of ontology in

software engineering. However, it did not report its role in presenting the artefacts of

6

reference architectures. Thus, we conduct a study to identify the major problems related to

the reference architecture design, as a consequence of this study, we have identified that

currently there are no existing methodologies that can help software architects to describe a

reference architecture formally and we identified they do not have a standard vocabulary.

Therefore, ontology has been utilised as a tool to present the artefacts of reference

architectures. The reason behind that is the definition of ontology, which refers to a formal

way of knowledge representation, and it encompasses concepts and relationships.

General vocabularies were defined based on understanding the domain and the

literature and multiple case studies. These vocabularies present the general aspect of

reference architectures. They were utilised to construct an ontological model. The

ontological model includes general vocabularies with relationships between them. It has

been used to organise and structure the artefacts of reference architectures.

The ontological model aims to provide vocabularies to software developers so as to

facilitate the instantiation process of a software system architecture from a reference

architecture. Furthermore, it has been used to guide the developer in the development

process by tracing components in the domain then by determining the relationships among

these components. As a result, the ontological model simplifies the instantiation process of

the software system architecture and saves delivery time.

1.5 Research Process

As mentioned previously, the aim of this research is to propose a methodology to

facilitate the instantiation process of a software system architecture by using an ontology as

a tool to present the artefacts of a reference architecture.

7

To achieve the aim and objectives of this research, a mixed method approach was

adopted to collect the data. Multiple case studies have been used to collect qualitative data

and survey questionnaires were used to collect quantitative data. The researcher begins by

selecting the research area. Next to that, many studies have been reviewed on software

architecture, reference architecture, reference architecture development approaches,

software architecture instantiation process, and ontology to gain a full understanding and to

know the state of the art of the instantiation process, and also, to highlight the shortcomings

of these processes. This was followed by formalising the research problem. After that, the

researcher proposed a solution for the identified problem. The proposed solution was

evaluated by conducting a user study experiment. Then, the proposed methodology was

improved and modified according to the result of the evaluation process. The final step of

the present research is the conclusions and recommendation. The main stages of the research

process are illustrated in Figure 1-1.

8

Select the Research Area

Review the Previous Literature

Formalise the Research Problem

Propose the Solution for the Research Problem

Apply the Proposed Methodology

Evaluate the Proposed Methodology

Produce a Final PhD Thesis

Modify

Figure 1-1: Research Process

9

1.6 Outlines of the Thesis

In order to achieve the aim and objectives of this research as described in Section 1.3,

this thesis has been divided into seven chapters. Each chapter describes a major component

of the research.

CHAPTER ONE: INTRODUCTION

The first chapter describes the problem and the aim and objectives of the research as

well as the contributions of this study. Finally, it illustrates the research process followed to

achieve the aim of the research.

CHAPTER TWO: BACKGROUND AND LITERATURE REVIEW

This chapter provides a background and literature review that supports the topics

investigated in this thesis. Initially, the definition of the software architecture is illustrated,

then the description of the reference architecture is discussed, followed by clarifying the

difference between the software architecture and reference architecture. After that, the

instantiation process of software system architectures from a reference architecture is

explained. The chapter also describes the ontology principle, which covers definition,

components, representation languages, development tools, and design methodologies of

ontology. Finally, it shows the role of ontology in software engineering.

CHAPTER THREE: RESEARCH METHODOLOGY

This chapter exhibits the research methodology which was adopted to achieve the aim

and objectives of the research. It describes the type and model of the research followed by

the ethical consideration.

10

CHAPTER FOUR: DEVELOPMENT OF GENERAL ONTOLOGICAL

MODEL

This chapter demonstrates the overview of the development process of the ontological

model. It explains the steps of the development process. Furthermore, it shows the case

studies which are used to define the general vocabularies followed by the validation process

of the defined general vocabularies. Finally, the defined general vocabularies have been used

as a basis to construct the general ontological model.

CHAPTER FIVE: USING ONTOLOGY FOR PRESENTING THE

ARTEFACTS OF REFERENCE ARCHITECTURE

This chapter describes the process of using the ontological model to develop an

ArchiOntology. The ArchiOntology presents the artefacts of a reference architecture

formally followed by the process of using the ArchiOntology. Next to that, the process has

been illustrated within two examples.

CHAPTER SIX: EXPERIMENTAL EVALUATION OF PROPOSED

METHODOLOGY

This chapter explains the evaluation process of the ontological model and the

discussion. A user study experiment has been used to evaluate the ontological model. It also

shows the criteria and metrics that are used in the evaluation process.

CHAPTER SEVEN: CONCLUSION AND FUTURE WORK

This chapter demonstrates the achieved conclusions of the study. It also discusses the

research outcome and finally outlines the possible future work.

APPENDICES

The appendices are used to include extra data and detail which it is not possible to

include in the body of the thesis.

11

2. CHAPTER TWO: BACKGROUND AND

LITERATURE REVIEW

2.1 Overview

This chapter presents an overview of the topics that underlie the research developed

in this thesis. The organisation of the chapter is as follows. Section 2.2 shows the main

concept of software architecture. Section 2.3 describes the term reference architecture in

details. Section 2.4 presents the difference between software architecture and reference

architecture. Particularly, Section 2.5 characterises the state-of-the-art of the instantiation

process of a software system architecture. Section 2.6 shows the ontology principle. Section

2.7 demonstrates the role of ontology in representing the architectural knowledge.

2.2 Software Architecture

Software architecture is an essential step in the development process of software. It is

the outcome of the architectural decisions made during the development process of

architecture [30]. It is one of the many valuable artefacts in software development, no

definition of software architecture is commonly accepted upon [20], [31]. However, it is

accepted that the software architecture is concerned with elements of the system and their

interactions and properties [30]. Most people agree that the primary concern of the software

architecture is, the high-level structure [32].

According to the literature, there are various definitions of the software architecture

(SA). A brief definition is given by Garlan and Shaw [33] that SA is an organisational

structure of a system that includes components, connections, constraints and rationale. Bass

12

et al. [30] described the SA as “the structure or structures of the system, including software

components, the properties of the components that are externally visible and the relationship

among them”. It helps to understand, reuse, construction, evaluation, analysis, and

management of the systems [34], [35].

The Institute of Electrical and Electronics Engineers (IEEE) defines the SA in the

“IEEE Std 1471-2000” standard, as follows: "software architecture is the essential

organisation of a system represented in its components, their relationships, the environment

and the principles guiding its design and evolution" [36]. Additionally, Jansen and Bosch

[7] defined software architecture as “a collection of explicit architectural design decisions

made over time”.

2.3 Reference Architecture

Reference architecture has developed as an important area of research in software

architecture. It is considered a blueprint of software development since it guides the design

of software system architectures for a given application domain [5], [37], [38]. RAs can

directly impact on the quality and design of a range of concrete architectures and software

systems developed from them [39]. Therefore, they must consider the best practices of

software design, architectural styles, business rules, and software components that support

the development of systems of the application domain. Furthermore, RAs must be supported

by an unambiguous, unified, and widely understood domain terminology [40].

Different institutions in both industry and academia have already developed and used

RAs in various application domains. There are examples of RAs developed for Situated

Multiagent Systems [41], Mobile Learning Environments [42], Cloud Computing [43], Web

Servers [44], Sensor Networks Integration and Management [45], Ubiquitous Computing

13

[46], Web Browsers [47], Robot Teleoperation [48], and so forth. However, software

architects and engineers use their terminology to describe the artefacts of RAs because there

is no standard vocabulary to describe the artefacts of reference architectures.

According to Muller [38], an RA can be used to facilitate the development of SAs or

as a standardisation asset that supports interoperability between systems or elements of

systems. Figure 2-1 shows the same RA can result in different concrete architectures,

depending on the context and involved stakeholders.

Figure 2-1: Role of Stakeholders and Contexts for RAs and Concrete Architectures [37]

Due to the variety of application domains and interests, RAs can be classified

according to three dimensions as described below [12], [39].

 Context dimension: RAs can be developed in the context of a single organisation

or multiple organisations that share a common characteristic, such as geographical

location and market domain. Various types of organisations (e.g., software

14

organisations, user organisations, research centres, and standardisation

organisations) are usually included in the establishment of these architectures.

Besides, such architectures can be developed before any existing systems or after

accumulating the experience from the development of several systems.

 Goal dimension: RAs can be developed with two main goals: standardisation and

facilitation. Reference architectures for standardisation aim at improving

interoperability among systems by promoting a unified understanding of the domain

at the architectural level. On the other hand, facilitation RAs aim at providing

guidelines for the design of concrete architectures.

 Design dimension: RAs are represented by several types of elements, including

software components, interfaces, protocols, algorithms, policies, and guidelines.

2.3.1 Review of Reference Architecture Development Approaches

In this section, we will review a number of approaches to developing reference

architectures. There are different works describing the development process of reference

architectures as shown in Table 2-1. The RAs involve software organisations, user

organisations, standardisation organisations, and research centres [12], [38]. They can be the

basis for several software systems, studies have concentrated on the development of this

type of architectures.

DeBaud et al., [49] proposed a Product Line Software Engineering – Domain Specific

Software Architecture (PuLSE-DSSA). PuLSE-DSSA constructs a reference architecture

by: generate scenarios from requirements; categorise the scenarios based on variability,

structure, and priority; develop initial architectures for the structure-based scenarios; rank

the architectures based on coverage of scenarios; build architecture prototype; select best

architecture; and evaluate the architecture.

15

Avgeriou [15] described an approach to document, apply, and evaluate a RA that is

based on a combination of the IEEE 1471 standard for “Recommended Practice for

Architectural Description of Software-Intensive Systems” [36], the Rational Unified Process

[50], and the Unified Modelling Language (UML) [51], [52].

Dobrica and Niemela [53] presented a procedure for designing RAs. The approach

encompasses two phases. These phases are design description and architectural

development.

Galster and Avgeriou [10] suggested an approach to develop and evaluate RAs which

includes six-step for designing RA, including the decision on what type of RA to develop,

the selection of a development strategy, the empirical acquisition of data, the development

of the RA, enriching the RA with variability, and the evaluation process.

Muller [38] illustrated a set of recommendations in order to design and maintain

reference architectures; shortly, RA must be acceptable and understandable for a vast set of

stakeholders, up-to-date, accessible and actually read by majority of the organisation,

address the main issues of the specific domain, satisfactory quality, add value to the

business, and maintainable.

Angelov et al. [12] proposed a framework for creating and analysing reference

architectures. They suggested that a reference architecture documentation include

information about the context, aims and development decisions. The context dimension

covers the purpose, the organisation(s) that is (are) designing an RA and its maturity stage.

Nakagawa et al. [54] proposed a process called PROSA-RA to design, representation,

and evaluation of RAs which includes four steps: investigate the information source, analyse

the architecture, synthesis the architectural, and evaluate the architecture.

16

The consensus for presenting the reference architecture is through the use of

standardised diagrams such as UML and other architecture description languages and

describing the architecture through different viewpoints to cover the concerns of

stakeholders in the system [6]. UML [51] diagrams for RAs abstract the implementation

details of a system and show the relationships between the elements of a system [52].

All these studies have described valuable guidelines for the design of RAs. However,

reference architectures for different domains represented by informal notation and semi-

formal languages. For example, the reference architecture of the web browser [47] described

by informal technique and only the main components and connections between them. Figure

2-2 shows the subsystems of the web browser with their connections, which are presented

informally. Also, Arch-int et al. [55] used an informal notation to describe a reference

architecture for interoperating existing e-Learning systems.

Figure 2-2: Reference Architecture of a Web Browser [47]

Nakagawa et al. [56] developed the reference architecture of the software engineering

environments. They described the artefacts of the RA semi-formally by using UML to

present the artefacts as shown in Figure 2-3.

17

Figure 2-3: Reference Architecture of a Software Engineering Environments [56]

18

Table 2-1: Reference Architecture Development Approaches

Author(s) Year Title
Description

tool

DeBaud,

Oliver &

Knauber

1998
PuLSE-DSSA—A Method for the Development of

Software Reference Architectures

Informal

description

(shapes and

arrows)

Avgeriou 2003
Describing, instantiating and evaluating a

reference architecture: A case study

Semi-formal

description

(UML)

Dobrica &

Niemela
2008

An Approach to Reference Architecture Design

for Different Domains of Embedded Systems

Informal

description

(textual)

Galster &

Avgeriou
2011

Empirically-grounded Reference Architectures: A

Proposal

Informal and

Semi-formal

description

(UML +

textual)

Muller 2012 A reference architecture primer

Informal

description

(textual)

Angelov,

Grefen &

Greefhorst

2012
A Framework for Analysis and Design of

Software Reference Architectures

Semi-formal

description

(UML)

Nakagawa,

Guessi,

Maldonado,

Feitosa, &

Oquendo

2014

Consolidating a Process for the Design,

Representation, and Evaluation of Reference

Architectures

Semi-formal

description

(UML)

19

2.3.2 Reference Architecture Artefacts

Reference architecture illustrates the infrastructures of the end systems. It is then

refined to design an SA for a particular system [57]. The infrastructures of the RA have

received little attention [12]. However, several works in the reference architecture literature

illustrate the artefacts that could be used to create software systems based on the RA; these

artefacts are also identified as an infrastructure [5].

Different authors stated significantly various views about the artefacts of the RA. They

also explored artefacts of the reference architectures, to study when they are also presented

in the RAs. Cloutier et al. [9] claimed that architectural information is the main part of the

RAs. They mentioned as common components of the RAs: standards, implementing,

business purpose, and guidance for a roadmap. Galster and Avgeriou [10] referred to that

the basic structure of the RA consists of its common building blocks (model kinds, common

stakeholders, views) according to ISO/IEC 42010 [58]. Angelov et al. [12] differentiated

protocols, algorithms, components and connectors, interfaces, and policies and guidelines.

Nakagawa et al. [5] mentioned that the RA infrastructure provides: software components

that are used to design software systems, the general structure typically described by

architectural styles, hardware components that host software systems based on the RA and

guidelines, which show how to implement best practices. Herold et al. [59] recognised the

following artefacts in the RA: reusable elements of software, operation platform,

methodology, tools, and blue-line prints. Martinez-Fernández et al. [13] observed that the

artefacts that constitute the reference architecture include software elements, guidelines, and

documentation.

20

2.3.3 Benefits of Reference Architectures

According to Martinez-Fernández et al. [60] and Affonso et al. [61], the principal

inducement behind Reference Architecture is, to facilitate reuse, reduce development cycle

times, cost and risk. Furthermore, increase quality, as well as to assist in the development of

a collection of systems that are designed from the same RA and to ensure standardisation

and interoperability. Moreover, it provides guidance when designing systems for a particular

application [62]. Furthermore, Angelov et al. [63] claimed that using the RA can assist

organisations and researchers to:

A. Provide best practices.

B. Speed up design task.

C. Establish a standard architecture approach in the organisations.

D. Ensure reusability.

E. Ensure interoperability with another system.

F. Comply with standards.

G. Improve communication between different stakeholders.

H. Decrease development costs of new projects and provide an inspirational tool to

designers.

I. Structure the task of architects.

J. Help developers to understand the systems.

Moreover, reference architectures provide a plan for building a system and reduce the

cost of maintenance. It presents an overview description of the system. As well as, it allows

software developers to view the main subsystems in the software system and the relations

between them [44].

21

2.4 Differences between Reference Architecture and Software

Architecture

There are some differences between reference architectures and software architectures

as shown in Table 2-2. The RAs are developed to address the functionalities and qualities

desired by all stakeholders in their particular contexts. There is not a distinct group of

stakeholders for the RA. On the other hand, stakeholders of the SA are specific [15], [37].

The RAs are defined on a high level of abstraction due to their generic nature, while

the SA has to address less architectural qualities than the RA. These additional architectural

qualities are due to the generic nature of the RAs and their wider audience [37]. While the

RAs cover all components of a domain, the SA includes only components for a particular

application [10].

The requirements of the RAs and SAs are different. The requirements of the RAs must

be obtained considering more diverse information sources. Furthermore, there is an inherent

difficulty in capturing requirements that competently represent the entire domain.

Consequently, methods and ways to capture requirements of the RA are also different, if

matched with those used to extract requirements of the SA [64].

The RA is defined as the architecture for a set of application systems, whereas an

application architecture is defined as the architecture for a single system [65]. The RA, on

the other hand, describes a blueprint architecture that can be used to design software

architectures in a particular domain. As a result, the RA cannot be evaluated in the same

way as a software architecture [66].

22

Table 2-2: Differences between SA and RA

Reference Architecture Software Architecture

Stakeholders of Reference Architectures

are of generic nature.

Stakeholders of Software Architectures are

specific.

Reference Architectures address wider

architectural qualities due to their generic

nature and wider audience.

Software Architectures have to address

less architectural qualities than the

reference architecture

Reference Architectures cover all

components of a domain.

Software architectures include only

components for a particular application.

Reference Architectures should have more

diverse information sources; there is an

inherent difficulty in capturing

requirements that competently represent

the whole domain and the methods and

ways to capture requirements of a

reference architecture are also different.

The requirements of Software

Architectures are more specific, and it is

easy to capture it.

Reference Architecture is defined as the

architecture for a family of application

systems.

Software architecture is defined as the

architecture for a single system

There are no specific evaluation methods

to evaluate Reference Architectures.

There are many evaluation methods to

evaluate Software Architectures.

2.5 State-of-the-Art of the Instantiation Process of a Software

System Architecture from a Reference Architecture

The instantiation process of a software system architecture from a reference

architecture can be defined as an application engineering [65]. The application engineering

is “a process of designing a particular application making use of the domain knowledge

obtained during domain engineering” [67]. In this section, the researcher tried to show the

23

processes that are used by other researchers to instantiate a software system architecture

from a reference architecture.

In a different method, Avgeriou [15] claimed that the instantiating of a reference

architecture was possible by using an integration of the IEEE 1471-2000 Recommended

Practice for Architectural Description of Software-Intensive Systems [36], and the widely

adopted Rational Unified Process [50]. The instantiation process includes seven steps.

Firstly, define the stakeholders of a system and any concerns that they may have in terms of

any possible aspect of the system. Secondly, define the viewpoints that will explain the

stakeholders’ concerns and describe the methodology used. Thirdly, define the views that

are used to represent the components of the system. Fourthly, define the architectural

patterns that describe components of the architecture. Fifthly, describe the quality attributes

that are needed for the system. Sixthly, describe the implementation constraints. Finally,

describe other issues that are necessary for the particular system being designed.

Weyns and Holvoet [68] used the Attribute-Driven Design [69] with the reference

architecture to instantiate/refine a software architecture. The RA is used as a guideline in the

decomposition process. The design process included several steps: identify the requirements

of the system, order the requirements, design the software architecture, evaluate the software

architecture, implement the application, and test to verify the fundamental system

requirements.

Suganthy and Chithralekha [67] utilised a Domain Specific Software Architecture-

based application engineering process for building an application. The process includes

three steps. The first step is identifying application requirements. The second step is

designing the application. The final step is implementing the application.

24

Pérez-Sorrosal et al. [26] described the instantiation process in three phases. Phase 1:

Confront pattern assumptions with initial architecture. Phase 2: Pattern selection through

trade-off analysis and Phase 3: Evaluation of quantitative requirements fulfilment.

According to Sala [70], the instantiation process can be done in four phases. Phase 1:

Identifying specific users for the target software architecture. Phase 2: Identifying particular

interconnection and interaction among the users in the target concrete architecture. Phase 3:

Identifying the component model of the reference architecture by using this component

model. Finally, the software architecture is implemented.

Nakagawa et al. [14] mentioned steps to instantiate a software system architecture

from a reference architecture. Briefly, six stages need to be done to instantiate the software

system architecture. Firstly, reading and understanding the reference architecture

documents. Secondly, developing a software system by selecting either the entire

architecture or those parts that are interesting and already present in the software system.

Thirdly, instantiating the architecture or their parts, using the characteristics of a software

system, including requirements, constraints, and the context of applications. Fourthly,

documenting the architecture. Fifthly, evaluating the architecture. Finally, implementing the

architecture.

Oliveira et al. [25] designed a software architecture for the Service Oriented Robotic

System. They split the design method into five phases, which can be applied iteratively.

Phase 1: Identifying the requirements and characterising the application. Phase 2:

Recognising the skills that the system should present. Phase 3: Designing the architecture.

Phase 4: Describing the functions. Phase 5: Evaluating the architecture.

All the processes mentioned above are considered general processes and software

developers need to be very experienced in designing software architectures. These processes

25

do not provide a concrete tool to show the artefacts of reference architectures. The

instantiation process of software architecture is not a straightforward process [15] and not a

trivial task [26], [14]. The effective instantiations are scarce [71].

2.6 Ontology Principle

2.6.1 Ontology Definition

Based on the literature, ontology can be defined as a formal means of knowledge

representation. There are various definitions for the term ontology. Neches et al. [72] defined

it as a set of basic relations and terms constituting the vocabulary of a topic field in addition

to certain rules that combine those relations and terms to define extensions to the vocabulary.

Gruber [17] provided one of the most cited definitions of an ontology as “ An Ontology is

an explicit specification of a conceptualisation”; this definition illustrates the role that

ontologies can play to solve most software engineering problems. Such conceptualisation

offers access to an abstract model pertaining to some phenomenon that could identify the

pertinent notions of that very phenomenon.

Other definitions had also been proposed based on the definition of Gruber. For

instance, Borst included two more requirements to the definition pertaining to ontology and

those are: 1) Formal; which means that a machine is to process the ontology, as well as 2)

Sharable; that means having a consensus on the knowledge acquired by the community of

experts. According to Borst, ontology is defined as “a formal specification of a shared

conceptualisation” (Borst 1997 cited in [73]).

A general definition (Uschold and Jasper 1999 cited in [73]) declares that an ontology

may take a variety of forms but will necessarily include a vocabulary of terms and some

26

specification of their meanings. This contains definitions and indications of how concepts

are connected which collectively impose a structure on the domain and constrain the possible

interpretations of terms.

As far as computer science is concerned, an ontology denotes resources pertaining to

computer-science and ones which signify domain semantics that are agreed-upon. An

ontology is comprised of relatively generic knowledge which an alternate task or type of

application can further reuse [74].

From the definition and literature, ontology is a formal means of knowledge

representation; it can also contribute to enhancing software development processes and

modelling. It extremely affects all phases of software development such as analysing,

designing and implementing. In this study, the researcher aims to use the ontology as a tool

to present the artefacts of a reference architecture formally to facilitate the software

development process.

2.6.2 Ontology Components

A number of knowledge representation languages exist for ontology implementation.

Each of them gives various components that can be used in developing the ontology.

However, the following minimal set of components is shared between ontology

representation languages [75]. According to Calero, et al. [75], the main elements of an

ontology are:

Classes: These describe concepts which are taken in a broad sense. Classes in

ontology are usually organised in hierarchal taxonomies through which inheritance

mechanism can be applied. Classes can include individuals, other classes (sub-classes) or a

combination of both. Ontologies vary in whether they include a universal class (a class that

27

contains everything) or not. In Web Ontology Language (OWL), the concept is represented

as a class.

Relations: These represent a type of link between concepts of the domain. An

ontology usually contains ordered binary relations where the domain of relations is

represented by the first argument while the range is represented by the second argument. For

example, the binary relation ‘drives’ has the concept ‘Person’ as a domain and the concept

‘Car’ as the range.

Sometimes “Binary Relations” are utilised so as to refer to concept attributes; the latter

usually have their own range as a datatype such as string, number, and so on. In OWL,

relations are named Object Properties while attributes are named Datatype Properties. It is

in order to describe the ontology’s individuals or elements that “Instances” are used.

Instances (or individuals) are the basic components “ground level” of the ontology. For

example, ‘Tom’ is an instance of the class ‘Person’.

Formal Axioms: These are model sentences that are always true. Formal axioms are

used to infer new knowledge and to verify the conciseness of the ontology [17]. An axiom

in the travelling domain could be that it is not possible to travel from North America to

Europe by train.

2.6.3 Ontology Representation Languages

There are many languages available for ontology representation. In the 1990s,

ontologies were constructed using mainly Artificial Intelligence modelling techniques. Such

languages were based on:

 First order logic such as Knowledge Interchange Format [76].

28

 Frames combined with first-order logic such as Cyc ontology [77] and Ontolingua

(Farquhar et al., 1997 cited in [73]).

 Description logic such as LOOM [78].

Well ahead, an ontology language was introduced due to the Internet and its

revolutionary advancement. This language could take advantages of the features of Web-

Based ontology or ontology markup language that is also termed as Web-based ontology

languages [75]. The most important examples of these markup languages are: Resource

Description Framework (RDF) [79], DAML+OIL [80] and OWL [81]. Out of all of them,

RDF and OWL are the ones that are being actively supported now. Even though RDF is

developed long before the Web, the serialised version of RDF(s) in Extensible Markup

Language (XML) makes its way to the Web since the Web is based on XML. A detailed

classification and review of ontology representation languages can be found in [73].

The current research opted to choose the OWL out of all known ontology

representation languages. As much as W3C is concerned, this language is recently the

primarily-recommended ontology language. The OWL knowledge representation can allow

properties as either ObjectProperty (relation) or DatatypeProperty (attribute). It can also

define objects as classes, and individuals (instances) of different classes. Additionally, it

provides the chances to reason about individuals and classes. The OWL provides three sub-

languages: OWL fully-ordered with increased expressiveness, OWL DL and OWL Lite.

2.6.4 Ontology Development Tools

Implementing ontologies directly in an ontology language, without a supporting tool,

makes the ontology development process complex and time-consuming. To ease the task

and help developers with some ontology development activities, the first ontology

29

development environment was created in the 1990s. The number of ontology tools after that

date increased greatly. According to Gómez-Pérez et al. [73], the following ontology tools

have been of great importance: ontology evaluation tools, development tools, ontology

learning tools, ontology merge and alignment tools, ontology querying, ontology-based

annotation tools and inference engines. Analysis and overview of ontology techniques and

learning tools are to be found in [75],[82].

The first ontology editing tool was the Ontolingua Server (Farquhar et al., 1997 cited

in [73]) available as a World Wide Web service. This ontology editing tool had been

developed by Knowledge Systems Laboratories in Stanford so as to ease the development

of the ontologies pertaining to the Ontolingua. The Ontolingua supports collaborative and

distributed editing of ontologies. Ontologies can be created from scratch or by extending

existing ones.

The year 1997 witnessed the release of WebOnto (Domingue 1998 cited in [73]). Its

considerable support for collaborative ontology edition represented its principal advantage

indeed which facilitated both asynchronous and synchronous discussions regarding the

ontologies which had been built by multiple users.

Another extensible tool is the WebODE (Arpirez et a1., 2001 cited in [73]). WebODE

is actually based on HTML forms as well as Java applets. WebODE’s ontology access

service represents its own core indeed. This is used by all applications and services that are

plugged into the server.

Protégé tool [83] is a standalone application that is both an open and free source

having an extensible architecture too. Its core is its own ontology editor. This editor may be

further extended with the provision of plugins which can introduce more functions to the

environment.

30

Based on a plugin architecture, the free, flexible and extensible environment OntoEdit

(Sure et a1. 2002 cited in [73]) was created. OntoEdit provides a graphical interface that is

both user-friendly and supportive of ontology maintenance and development. The ontology

editor pertaining to OntoEdit is a stand-alone application which imports and exports

ontologies in different formats {DAML+OIL XML, FLogic and RDF(S)}. OntoEdit has two

editions with each version having its own group of functions: OntoEdit Professional and

OntoEdit Free (with limited capabilities). Protégé was adopted in this research. It was

selected due to the following reasons:

 Protégé is a free open source ontology-editing tool with a variety of widgets and

plugins to support the system’s capability and functionality.

 It has a user-friendly graphical interface with easy to use menu-command tool.

 It is supported with a clear user guide and supports the import and export of ontology

to/from different ontology representation languages (such as OWL and RDF).

 Protégé has the ability to verify the ontology and to check consistency for

conformance with the language rules.

 Moreover, the "Protégé-discussion" mailing list provides technical support for the

users, which save time and efforts.

2.6.5 Review of Ontology Development Methodologies

In this section, we will review the most known ontology development methodologies.

The research’s literature states that many methodologies have been followed for developing

ontologies. Somehow, no standard methodology for creating the ontology is available [84]–

[86].

31

Uschold and King [84] defined the first methodology for developing an ontology. This

ontology was further extended into Uschold and Gruninger [84]. There are four phases

included within the latter: Identify the purpose of the ontology, construct the ontology

(capture the knowledge, code it, and integrate existing ontology), evaluate the ontology and

finally; document it.

In contrast with Uschold and King [84], Gruninger and Fox [87] relied on their

experience in building the TOronto Virtual Enterprise (TOVE) project ontology and using

first-order logic that they presented a more formal methodology for constructing ontology.

The TOVE is a set of formal ontologies for various aspects of the business enterprise such

as Time ontology, the Resource Ontology and so on. The methodology proposed the first

use of the competency questions (a set of natural language questions used to determine the

scope of the ontology) in building ontology. The following steps are included: identifying

motivation scenarios, elaborating informal competency questions, specifying the

terminology using first-order logic, formalising the competency questions, specifying

axioms using first-order logic and specifying completeness conditions.

A step by step approach was proposed by Noy and McGuinness [83] intended for users

to design ontology. The steps are as follows: determine the scope and domain of the

ontology, consider reusing of the existing ontologies, enumerate the important terms in the

ontology, define the class hierarchy and the classes themselves, define the properties of

classes-slots, define the facets of the slots and finally create instances.

Nicola et al. [88] described a methodology for designing ontology. The methodology

is called UPON (Unified Process for ONtology building). The development methodology

closely follows the unified process. The following phases are included within the

methodology: First is “Inception” phase including requirement capturing and modelling the

32

use cases. Second is “Elaboration” phase including analysis of requirements and both

identifying and capturing of fundamental concepts. Third is “Construction” phase, where a

skeleton for the ontology may be designed based on the loosely identified concepts. Fourth

is “Transition” phase where the ontology is subjected to rigorous testing, documentation and

finally released for public use. Successive iterations of the first three phases will lead to

refinement, and a more stable version of the ontology ultimately reached.

Fernandez et al. [89] developed a methodology called METHONTOLOGY in the

Artificial Intelligence Laboratory at the Polytechnic University of Madrid. This

methodology had been there for constructing ontology through re-engineering or reusing of

existing ontology, starting from scratch or reusing existing ontology. METHONTOLOGY

framework facilitates the construction of ontologies at the conceptual level and has its roots

in software engineering and knowledge engineering methodologies. It consists of: (a) an

ontology development process with the identification of the main activities, such as,

conceptualisation, configuration, management, evaluation, integration implementation; (b)

a life cycle based on evolving prototypes; and (c) a methodology, specifying the steps for

performing the activities, the techniques used, the outcomes and their evaluation. A few of

these methodologies are concerned with designing ontology from scratch while others reuse

and integrate existing ontologies to design new ones [90].

2.6.6 Ontology Reasoning Techniques

Ontologies provide a formal meaning of concepts in a domain of knowledge leading

to a shared and common understanding that improves communication between people and

software agents. Using ontologies to represent domain knowledge allows not only the

definition of concepts and their interrelationships but also inferring implicit relationships

using reasoning techniques.

33

Reasoning is important to ensure the quality of an ontology, for example, to check

concepts consistency and derive implied relations [91]. Ontology reasoning approaches

support inference through various kinds of logic: description logic, first order logic, temporal

logic to name a few [92]. There are various reasoners such as: FaCT++ (Fast Classification

of Terminologies) [93], PELLET [94], and RACER (Renamed ABox and Concept

Expression Reasoner) [95]. FaCT++ and RACER are the two most widely accepted OWL

reasoners. They support automated class subsumption and consistency reasoning and some

queries on OWL ontologies.

2.7 The Role of Ontology in Representing Architectural

Knowledge

The ontology has a considerable role in representing architectural knowledge. Several

works utilise ontology as a tool to represent the architectural knowledge such as Kruchten

et al. [96] who presented an ontology to describe the Architectural Decisions. Akerman and

Tyree [97] described an ontology-based approach that focused on architectural design

decisions and included part of the ontology called “architecture assets”. Babu et al. [98]

designed ArchVoc which is an ontology meant for representing the architectural

terminology which is organised into three major types: architectural requirements,

architectural design and architectural description. An ontology that focused on components

and connectors as a general approach to describing architectural styles had been represented

by Pahl et al. [99]. Nakagawa et al. [28] proposed to use an ontology to provide a mechanism

to support the organisation, sharing, reuse and acquisition knowledge of the testing domain.

The technical standard of Service-oriented Architecture Ontology from [100]

describes core concepts, terminology and semantics of a service-oriented architecture to

34

improve the alignment between the business and Information Technology communities.

Ameller and Franch [101] developed Arteon, an ontology for representing the architectural

knowledge. It explains relationships existing between architectural styles and their variants

too, frameworks, views, frameworks, architecture styles and their implementation in the

context of a web-based application. Sun et al. [23] proposed to use an ontology to define

ontological models that are specific to the design of software architectures. Through the

OWL, the structures and restrictions in the relationships between the elements of the

architecture are represented. Kruchten et al. [102] developed an ontology to describe

architectural decisions and relationships between them, including aspects of reasoning.

While pursuing exploitation of the knowledge of ontology, Kruchten et al. also proposed a

tool that can preserve the graphs pertaining to design decisions as well as all

interdependencies of theirs so as to support the systems’ maintenance and evolution too.

López and Colab [103] presented an approach driven by ontology to recover architectural

reasoning from documents in plain text and to synthesise it in a repository of centralised

knowledge. The proposed approach, called Toeska Rationale Extraction (TREx), also has

two ontologies: one ontology to represent the software architecture of the system and another

to describe the reasoning of the project.

Figueiredo et al. [104] illustrated a framework to enable the search for information on

software architectures in documentation artefacts generated in virtual community

environments such as emails, meeting minutes and Wikis. The approach consists of defining

an ontology of software architectures altogether with ontologies of the application domain

that model knowledge of the development domain of the system. Duran-Limon et al. [105]

proposed an ontology-based product architecture derivation (OntoAD) model to automate

the derivation of product-specific architectures from a software product line architecture.

35

Roldán et al. [106] presented an ontology-based approach to retrieve, integrate and share of

knowledge from different sources of architecture knowledge.

There are other works that apply the use of ontologies to the representation of

knowledge of the domain of software architectures such as [107], [108] which focused on

the retrieval of knowledge in textual documents as well as searching (file-based

documentation). These ontologies are used to index the artefacts as well as to visualise the

results of the searches so as to help the users to explore, discover and analyse information

through a mechanism of semantic search.

2.8 Summary

The background for the contributions described in the following chapters had been

presented here in this chapter. Firstly, the concept of software architecture was discussed.

Then, the fundamental concept of reference architecture was explained. Followed by the

differences between the reference architecture and software architecture. Next, an overview

of ontology was provided. Finally, the role of ontology in representing architectural

knowledge was explained. Within the literature review of this chapter, development

approaches of a reference architecture and the state-of-the-art of the instantiation process

had been characterised too. This review allowed the researcher to recognise the limitations

of the development processes. Despite the existence of various development approaches for

reference architectures reported in the literature, these approaches have been used to design

reference architectures for various domains. In particular, informal and semi-formal tools

have been used to describe and present the artefacts of reference architectures in these

approaches. This leads to making the instantiation process of a software architecture from a

reference architecture very difficult task.

36

In this chapter, the most relevant definitions of the term ontology have also been

illustrated; other definitions can be found in Artificial Intelligence and Information

Technologies literature. However, it can be noted that with all these definitions there is

almost always a consensus of the usage of the term ontology among ontology developers

and users. It can be concluded that ontology is used to capture knowledge of a domain that

can be shared and reused by a group of people of software agents.

The contributions we present in the next chapters aim to present the artefacts of

reference architectures in a formal way by using ontology as a tool. The reason behind that

is the definition of ontology, which refers to a formal way of knowledge representation, and

it encompasses concepts and relationships. The next chapter will present the research

methodology and the design of this study. In Chapter 4, we propose a methodology to define

a general ontological model which will be used to present the artefacts of reference

architecture in an organised and structural way. Chapter 5 describes a process of using the

general ontological model.

37

3. CHAPTER THREE: RESEARCH METHODOLOGY

3.1 Overview

The methods and techniques that a research follows in order to systematically tackle

the research’s problems are termed as “Research Methodology” [109], [110]. Additionally

and according to Collis and Hussey [111]; who have stated that selection of research

methodology should reflect the assumptions of the research paradigm. Therefore, that means

the methodology of research depends on the problem of research and the aim and objectives,

which the researcher seeks to achieve in the study. Section 3.2 and Section 3.3 discuss the

research type and model. The research model includes the philosophy of the study, research

approaches, deductive and inductive approaches, qualitative and quantitative research

approaches, research strategies, data collection methods and data analysis. Finally, Section

3.4 shows the ethical consideration.

3.2 Research Type

According to the literature, there are various classifications for various types of

research. They can be classified into their purpose, process, logic and outcomes [111], [112]

as shown in Figure 3-1. The following is a presentation of each type.

 The purpose of research: The answer(s) to the question of (why does the researcher

conduct the research?) draws the features of the research purpose. The researcher is

the one who can best investigate why in the first place he/she opted to wage through

that very subject of research.

38

 The process of research: It is about the systematic and scientific way of collecting

data and analysing them.

 The logic of the research: A research is either “Inductive” or “Deductive” based on

whether it starts from specific observations moving on to the general ones or the

other way round, respectively.

 The outcomes of the research: Whether the yield of the research is to serve as a

contribution to the chain of scientific advances and knowledge or simply to offer a

solution for an existing problem, the outcome of a research should conform to the

anticipated yield in conjunction with the researcher’s early vision and targets.

Research

Classification

Logic

Deductive

Inductive

Mixed MethodProcess

Quantitative

Qualitative

Outcome

Basic

Applied

Purpose

Descriptive

Exploratory

Predictive

Analytical

Figure 3-1: Classification of Research Types [111], [112]

39

According to Collis and Hussey [111], the research methods include one or more of

the followings:

 Exploratory research: This type of researching is resorted to when the amount of

information available from earlier studies for the intended research are not enough.

Since there is no already available hypothesis that is prone to verification,

confirmation or testing, an exploratory work targets hypothesizing, ideas and/or

patterns, rather than any other of what is mentioned above.

 Descriptive research : When there is an already existing problem or phenomena, the

approach is to follow “Descriptive “ mode of researching. This mode explains what

is lying there for the researcher to deal with. For a relevant problem or phenomena,

this type of researching seeks information pertaining to the relevant characteristics

as well as identification too. Most of the times, the collectable data is more of a

quantitative nature. Additionally, the researcher uses statistical techniques so as to

integrate and summarise the collected information. In contrast to descriptive

researching; the descriptive mode of researching extends further more than what an

exploratory study does as per examining the relevant problem because it both

explains and ascertains the characteristics of the researched problem.

 Analytical research comes next to descriptive studies. Rather than just describing

those characteristics; it follows explanation and analysis regarding how and why it

happens. Therefore, the aim of analytical research is measuring and probing the

causal connections correlating them to each other.

 Predictive research goes further than the explanatory study. While an explanatory

study cares for establishing an illustration of what occurs in a phenomenal or

problematic context, a “ Predictive “ study prophecizes the chances of a situation

occurring somewhere else. Predictive studies aim at a generalised perspective in

40

contrast with the analysis through prediction of definite phenomena from expansive

and hypothesised relationships.

Additionally, there are also other steps that define the purpose of any research as stated by

Cavana et al. [113], and Uma and Roger [114]. According to their recommendations, there

should be an emphasis on the specific purpose of the study while picking the suitable design

and framework of the research. The followings are the four steps pertaining to Cavana et al.

[113] , and Uma and Roger[114]:

 Whenever the intended subject to be researched misses sufficient amount of

information (or when the work itself is almost a pioneering one as to that very

specialy) the research would be an “Explanation Study” one. Such researches help

provide preliminary or introductory information regarding the phenomena itself and

the situation too.

 This approach is sought to highlight the characteristics of the parameters pertaining

to an already available case offering additional information and details.

 In case there is a group of variables with some relationships correlating them to each

other, a “Hypothesis-Testing” study can elaborate more on such relationships as well

as clarifying more on their nature.

 As the title implies, an elaborative work of data-collection is conducted as per a

specific issue or phenomena that is underemphasis.

On the other hand, Ghauri and Gronhaug [115] considered that explanatory and

descriptive researches are the most common ones while it is the nature of the problem that

decides which type of research to follow.

41

In the present research, the aim is to propose a methodology to facilitate the

instantiation process of a software’s system architecture from a reference architecture by

using ontology as a tool so as to present the artefacts of a reference architecture. This way,

the current research is considered as an exploratory research because there is a lack of studies

that address the problems of the software system architecture instantiation process [116].

Figure 3-2 illustrates the classification of the present research according to purpose, process,

logic and outcomes.

Research Purpose

Research Process

Research Logic

Research Outcome

Exploratory Research

Mixed Method Research

(Qualitative and Quantitative)

Inductive and Deductive Research

Applied Research

The present research: Coupling Ontology with Reference

Architectures to Facilitate the Instantiation Process of Software

System Architectures

Figure 3-2: The Classification of the Present Research [111]

3.3 Research Model

The researcher should describe and apply the research model to achieve the aim and

objectives of the research. Saunders et al. [110] proposed a research model that explains the

process that the researcher should adopt in his research. Figure 3-3 shows the parts of the

research model. The research model includes philosophies, approaches, strategies, time

42

horizons, and data collection methods. This proposed model has been followed to achieve

the aim and objectives of the research.

Figure 3-3: The Research Model [110]

The researcher followed a research model adapted from Saunders et al. [110] as shown

in Figure 3-4. This model is comprised of research paradigm, approach, strategies, a method

adopted to conduct research, data collection and data analysis. Figure 3-4 presents the

research design applied to the current research. The research includes two phases. In the first

phase, a qualitative data set has been collected with the help of documents (Multiple Case

Studies). In the second phase, a quantitative data set has been collected from the participants

in the user study by conducting survey questionnaires. The qualitative data has been

analysed to design the ontological model and the quantitative data has been analysed to

evaluate the proposed process. The research strategy is an exploratory strategy because there

is a lack of studies addressing the problems of the instantiation process. “Mixed Method” is

the research choice of this research study. The approach of the research focuses on both

43

inductive and deductive methods. Finally, research philosophy has been decided upon based

on the final development of the research which is interpretivism and positivism.

Figure 3-4: The Adopted Research Model [110]

3.3.1 Research Philosophy

The philosophical framework which dictates how to implement the research according

to assumptions and philosophical conception regarding the nature of that knowledge is

termed as “ Research Paradigm” [116].

44

According to Oates [117] and Saunders et al. [118], researches can have one of three

philosophical paradigms. These are Critical paradigms, Positivism and Interpretivism. IT

artefacts are the main focus of Critical paradigms [117] . Weber [119] clarified that the

research object with a positivist paradigm acquires inherent qualities which exist in an

independent mode and irrespective of the researcher. Positivism is mainly after proving a

concept and hypothesis through establishing a statistical or causal correlation. As for

Interpretivism, this kind of paradigm is after identifying and exploring factors within a social

setting or an organisation for the sake of comprehending the phenomena. Here, the meaning

structure of the actual experience of the researcher interprets the object of research.

According to Collis and Hussey [111], there are two main types of paradigms:

qualitative and quantitative , the first is phenomenological while the other is positivism.

During the early stages of researching, the researcher has to adopt one of these paradigms.

Phenomenological paradigm is about comprehending the human behaviour through the own

frame reference of the participants while positivism paradigm pursues the roots of social

phenomena with little consideration for the subjective state of the individual. The positivism

paradigm pursues focusing on measurements while the phenomenological paradigm pursues

focusing on the meaning. In addition to that and according to Saunders et al. [118], the

intellectual traditions form the source of Interpretivism: phenomenology and symbolic

interactions. Additionally and according to Collis and Hussey [111], and Saunders et al.

[118], positivistic research is conducted in an artificial setting or a laboratory environment

so as to control the variables of the researched case. Somehow, a research within a

phenomenological paradigm is performed in real life inside a natural location that is the field

of study. Here, the researcher has no control as per any of the phenomena’s aspects. The

main features of the positivism and phenomenological paradigms (Interpretivism) are shown

in Table 3-1.

45

In this study, a mixed method approach has been adopted to achieve the aim and

objectives of the research. Thus, the researcher decided to adopt interpretivism and

positivism philosophy, because the qualitative research approach is an interpretivism

philosophy and the quantitative research approach is a positivism philosophy [118].

Table 3-1: Features of the Positivistic and phenomenological Paradigms [111]

Positivistic Paradigm Phenomenological Paradigm

It produce quantitative data It produce qualitative data

Reliability is high Reliability is low

Validity is low Validity is high

Concerned with hypothesis testing Concerned with generating theories

Data is highly specific and precise Data is rich and subjective

Has an artificial location Has a natural location

Generalise from sample to population Generalise from one setting to another

3.3.2 Research Approach

There are three main research approaches, namely quantitative, qualitative, and mixed

method [120]–[122]. Quantitative research is mostly relevant to sample sizes of numerical

data that can be generalised. Qualitative research, in contrast, is based on in-depth

information [112], [122]. According to Cavana et al. [113], the methods of research are

generally classified as qualitative and quantitative. In the qualitative method, the data that is

based on words is usually collected via observations, documents, interviews and focus

groups. Alternatively, the data in quantitative researches is rather based on numbers; it is

collected through laboratory experimentations and questionnaires. Critical research and

46

Interpretivism are usually based on qualitative research methods while Positivist researches

concentrate on quantitative research.

In addition to that and according to Collis and Hussey [111] and for the sake of

gathering phenomena’s data in depth, the main data collected in the phenomenological

paradigm is qualitative. Alternately, the data collected is mainly quantitative in case of

adopting the positivism paradigm within the research. This is due to the requirement for the

data to be highly specific.

According to Silverman [123], in the case of qualitative data methods, the researcher

collects data about the relevant phenomenon in depth. It is what the researcher is after

achieving in the study that mandates whether to go qualitative or quantitative. The

quantitative approach is the right choice in case the researcher is after making numerical

comparisons between some phenomenons whereas the qualitative method suits a researcher

seeking to comprehend the phenomena thoroughly.

On the other hand, “Mixed Method” research approach is a combination of qualitative

and quantitative data collection and analysis such as documents, surveys, interviews, and

action research used in the “Mixed Method” research [111], [124]. It involves logical

conventions, and using the quantitative and qualitative approaches, and mixing both the

approaches in a research study [124]. Saunders et al. [110] defined “ Mixed Methods” as an

approach to research in which both quantitative and qualitative data collection techniques

and analysis procedures are used in research design, either at the same time (parallel) or one

after the other (sequential).

In this research, a “Mixed Method” research approach has been adopted to study the

problem and phenomenon in depth. Furthermore, the data has been collected from different

documents by investigating multiple case studies and by conducting survey questionnaires

47

to evaluate the proposed methodology. As a result, it has been concluded that the “Mixed

Method” approach is more appropriate for this type of research.

3.3.3 Deductive and Inductive Approaches

It is a vital thing that researchers make up their minds as to which reasoning method

they should follow. The available options are either inductive or deductive [110]. The main

difference between the two reasoning methods is that “Deduction” includes subjecting an

existing theory to a test via the designed research strategy. In contrast, “Induction” means

establishing a theory via data sets that had been collected and analysed too, this eventually

yields what is called as a “Theory” [110].

Deductive approach employs inferential reasoning to approach evaluating of the

research aspects. In general, this is defined as a top-down approach since it primarily views

the overall main image prior to narrowing the scope down to the more pinpointed details.

Thus, in practice, there is already a general theory within the literature of the research. The

researcher practices scrutiny on this theory to form a specific hypothesis. Observation and

confirmation are the following steps of a deductive research. Furthermore, this process

conducts testing of the hypothesis. Alternatively, “Inductive” reasoning views the subject

from bottom to top starting from specific observation outwards to generalisations and further

to theories. The researcher compiles all observation data so as to develop results in the form

of findings or perhaps a theory [118], [125].

According to Bryman and Bell [121], a deductive approach “represents a view of the

nature of the relationships between theory and research”. The process of a deductive

approach is depicted in Figure 3-5. Alternatively, specific observations mark the beginning

48

of inductive research while a theory defines its end. Eventually, theoretical generalisations

form the results of inductive research. The process of induction is depicted in Figure 3-6.

Figure 3-5: Deduction Process [121]

Figure 3-6: Induction Process [121]

Referring to Cavana et al. [113], a researcher who opts to adopt a deductive

researching mode usually begins with a theoretical proposition, then he/she progresses into

collecting data and analysing it either to accept or to reject the hypothesized vision. In

Inductive researching, in contrast, the processes begin with specific phenomena and

eventually land on a theory.

Alternatively and according to Saunders et al. [118], there are three main approaches

for conducting a research: abductive, inductive and deductive. Saunders et al. [118] also

49

argued that the research approach is defined by the beginning of the research. As for the case

with abductive approaches, the first step to do is collecting data to explore the depths of a

phenomena and then to identify themes that can modify or generate an existing theory; a

theory that the researcher would then be testing while collecting more relevant data. The

research should follow inductive approach in case it begins with collecting data to explore

the problem (or phenomena) and it proceeds afterwards to shape a theory. Conversely, a

deductive approach is recommended for the researcher in case the research starts with a

theory developed from the literature and then moves on to put the theory to the test.

Consequently, inductive and deductive approaches have been adopted in this research

because the inductive approach is associated with a qualitative approach and the deductive

approach is associated with the quantitative approach.

3.3.4 Research Strategies

There are various research strategies found in the literature. According to Saunders et

al. [126], research strategies include six types: surveys, case studies, experiments, grounded

theory, ethnography, and action research.

In this research, multiple case studies have been used to find and define general

vocabularies, which are used to design an ontological model. In the evaluation process,

survey questionnaires have been conducted to collect quantitative data from the participants.

3.3.5 Data Collection Methods

Clarifying the research problem and background is the key element in deciding what

the most appropriate research methods for data collection are. Several methods for data

collection can be used separately or all together to gain data and information.

50

Yin [127] suggests six sources of data used in collecting data: interviews,

documentation, archival records, direct observation, participant observation and physical

artefacts. Oates [117] and Patton [128] described four of these data generating methods as

used in information system research: interviews, observation, questionnaires (Survey) and

documents. It is important to choose the right data collection method(s) as this will allow

collecting of data that will meet the objectives of the research.

Accordingly, the present research used two sources to collect data from. Firstly,

documents have been used as a primary source of data. The data were derived from an in-

depth review of the related literature to gain the necessary understanding of the topic under

investigation. The data were then used for exploring the development process. Secondly, a

survey has been used to collect data from a user study experiment to evaluate the proposed

methodology.

 Documents provide basic information as a background for the subject under

investigation or in making decisions and assisting the researcher in creating

additional ideas to follow through more direct observation, interviewing or

questionnaires. Documents are collected from publications, journals, books, program

records, reports, personal diaries and internet websites [128].

 Survey is not only an instrument for collecting information; it is also a

comprehensive research method for gathering data to describe, to compare and to

explain knowledge, attitudes and behaviour [129]. The quantified survey is to

produce statistics that are numerical explanations of some characteristics of the

research studies [130]. The survey method of data collection is very efficient and

effective in terms of time and cost [131].

51

3.3.6 Data Analysis

As stated earlier, the researcher used a qualitative and quantitative data generating

method to collect data. The qualitative data has been analysed by the researcher through

reviewing it to extract and define general vocabularies, while the quantitative data has been

analysed by using SPSS software and Microsoft excel.

3.3.6.1 Justification of Using SPSS Software

The software termed as SPSS is a software package that had been designed for

assisting in quantitative data analysis. Actually, it offers many tools that can aid the

researcher to deal in extreme ease with the data that had been gathered from quantitative

data sources.

The followings are the reasons why the researcher used SPSS software:

 In order to acquire free access to the SPSS program since the University of Salford

provides a full licence of this software for such students.

 The researcher has already attended multiple training sessions regarding SPSS right

at Salford University classes.

3.4 Ethical Consideration

According to Gray [122] and Sekaran and Bougie [132], it is important to

acknowledge the participants of the purpose of the study as well as assuring them that data

will be confidential, i.e. assuring them that no other party has the right or an access to

preview or use the data. This is important since it can enhance the feelings of trust and

52

comfort among the participants. The followings are some issues which the participants

should have prior knowledge of:

 It is a voluntary participation for them to decide upon.

 No third party will ever be allowed to share the data gathered from respondents.

 It is the responsibility of the researcher to protect the data and privacy of respondents

in case an organisation expresses its will to contribute to the study.

 Confidentiality and privacy are well- recognised and maintained for all participants.

As clarified in Appendix D.1 an ethical approval from Salford University had been

obtained by the researcher as part of the commitment to achieving the ethical considerations

in the present research.

3.5 Research Design

Creswell [124] considered a research design as an overarching composition that guides

the researcher in all perspectives of research, from the philosophical theory behind the

inquiry to the detailed data collection and analysis methods. The purpose of design is not

only to lead the researcher but also to enable the audience to understand and evaluate the

research and its results. Creswell [124] identified three factors that affect the choice of one

research methodology over another, including the research problem, the personal

experiences of the researcher, and the audience(s) to whom the report will be directed.

However, in the Information Technology/Information System field, the choice of a research

methodology is affected by several factors. For instance, Trauth [133] determined five

factors influencing the selection of a research methodology in the Information

Technology/Information System field. These factors are problem of the research,

philosophical assumptions, the degree of uncertainty surrounding the phenomenon, the

53

researchers’ skills, and academic politics. Figure 3-7 shows the methodology phases which

was adopted to achieve the research aim and objectives.

Qualitative Research Approach

Data Collection

(Documents – Multiple Case Studies)

Data Analysis

(Document Review)

Phase 1: Designing Process

Phase 2: Evaluation Process

Data Collection

(Survey Questionnaires)

Data Analysis

(SPSS and Microsoft Excel)

Quantitative Research Approach

Figure 3-7: The Research Design

54

In this research, a mixed method research methodology has been used to achieve the

aim and objectives of the research. This research includes two phases: design and evaluation.

In the design phase, a qualitative research design utilising a multi-case study approach has

been adopted to extracting and defining general vocabularies which will be used to develop

a general ontological model. A multi-case study approach also allowed to gather data from

different documents (Yin 2003).

In the design phase, the process of developing a general ontological model has been

represented. The researcher started doing a search by using the library to collect data such

as google, google scholar, IEEE Xplore, ACM Library, Science Direct and Springer link.

From these libraries, many documents related to the study have been collected. After that,

all document that are collected to build a background about the topic have been reviewed.

The knowledge that the researcher are acquired helped him to define general vocabularies.

Furthermore, multiple case studies have been used to find and define more general

vocabularies.

In the evaluation phase, a quantitative research approach has been adopted.

Quantitative data are collected by conducting a survey questionnaires. Then, the collected

data are analysed by using SPSS and Mocrosoft excel. Yin (2009) discusses the importance

of using computer software packages in the analysis of data. SPSS and Mocrosoft excel are

used because the University of Salford provides a full licence of these software for the

postgraduate students, and this helps to access the program without any constraints.

3.6 Summary

The research methodology that was followed to attain both the aim and objectives

targeted by the researcher is explained in this chapter. Additionally, chapter 3 deals with the

55

rationale for adopting the positivism and interpretivism paradigms in addition to the

approaches followed in the study. The sources of data included in the data collection are

mentioned in this chapter as well as discussing data analysis too.

In the next chapter, the development process of the ontological model will be

explained in details.

56

4. CHAPTER FOUR: DEVELOPMENT OF GENERAL

ONTOLOGICAL MODEL

“There is no one correct way to model a domain. There are always viable

alternatives…. Ontology development is an iterative process” [83].

4.1 Overview

According to the literature, there are many methodologies for building an ontology.

However, there is no standard methodology for developing an ontology [90]–[92].

In this chapter, a proposed methodology for developing a general ontological model

will be defined and explained in details in Section 4.24.2. The general vocabularies are

defined and extracted based on understanding the domain and the literature and multiple

case studies from the literature. The essential characteristic of these vocabularies presents

the general aspect of reference architectures in an organised and structural way. The general

vocabularies are validated as shown in Section 4.2.3. Next to that, these vocabularies are

used as a basis to construct the general ontological model as described in Section 4.2.4.

4.2 Methodology for Constructing an Ontological Model

This section explains a proposed methodology for constructing a general ontological

model as shown in Figure 4-1. The methodology includes the following:

57

Construct the Ontological Model

Define Initial General Vocabulary

New Case Study

Generate more Vocabulary

Is there new vocabulary?
Yes

Update General

Vocabulary

No

Ontology

(OWL)

General Ontological Model

General Vocabulary

Validation process

Process DecisionArtefactLegend

Figure 4-1: Methodology for Defining and Extracting General Ontological Vocabulary

4.2.1 Define Initial General Vocabulary

The initial general vocabularies are defined based on understanding of the domain and

the literature. Appendix A shows all the studies are used to define the initial general

vocabularies. The general vocabularies include two types: entities and relationships. An

58

entity is used to describe a component and a relation is used to describe the connection

between the components. Table 4-1 shows the initial general vocabularies with their

descriptions.

Table 4-1: Initial General Vocabulary

Vocabulary Description

Stakeholder

A stakeholder is a person who has some interest in the development

of a new system and includes roles such as user, analyst, software

architect, software developer, software tester, software engineer,

team, software maintainer, agent, student, learner, teacher, lecturer,

customer, manager and so forth.

System
A system is a set of components that work together to provide a

function.

Subsystem
It aims to define a part of the whole system, which is working to

provide a function.

Component A component is an organisational unit of a reference architecture.

Interface
It aims to define a connection point between two subjects,

components, systems, subsystems and so forth.

Architectural

Style

It aims at defining a topology of architectural elements and their

relationships which includes different types such as Pipe-Filter

Architectural Style, Client-Server Architectural Style, Layered

Architectural Style, Event-Based Architectural Style, Service-

Oriented Architectural Style, Communicating Process Architectural

Style, Peer to Peer Architectural Style, Blackboard Architectural

Style and so forth.

Attribute
It defines a piece of information which determines the properties of

a component of the architecture.

Concern
It defines a stakeholder’s need; each stakeholder has a different

concern.

Function It aims at defining the role of a component or stakeholder.

Task It defines a piece of work to be done by a stakeholder.

Security

It defines a security requirement which is responsible for

representing the security rules such as authentication and access

restrictions.

59

View

It defines a whole architecture from the perspective of a related set

of concerns such as logical view, module view, process view,

physical view, deployment view, development view, component and

connector view, conceptual view and so forth.

Service
It defines a logical representation of a repeatable activity which has

a specified outcome.

Tool
It defines a set of software or hardware that will be used by system,

subsystem, component, or stakeholder.

Protocol It defines a series of steps in order to execute a function.

Process
It defines a series of steps taken in order to execute a task or

activity.

Resource
It defines elements of hardware, software and human that support

activity, task, process and so forth.

Relationship

Include Has a Consist of Is a

Describe Apply to Composed of Produce

Execute Require Used by Is part of

Consume Define Use a

4.2.2 Generate More General Vocabulary from Multiple Case Studies

After defining the initial general vocabulary, the generation process started by

applying the first case study. General vocabularies of this case study are extracted and

compared with the initial general vocabularies. If there were new vocabularies, it would be

added to the initial one. It is, however, important to mention that the synonyms will not be

added in this process, the most generic concept is chosen to represent these synonyms.

Again, this process is repeated with a new case study. After applying the fifth case study, no

more general vocabularies were found. However, we applied one more case study to ensure

the comprehensibility of our general vocabulary. At this stage, the process was finalised.

60

In this research, the researcher extracts the vocabularies from a reference architecture

by reviewing it. The extracted vocabulary from the case studies was classified into two

types: entity and relationship. The object and subject were considered as an entity, and the

verb between them was considered as a relationship. For example, view describes a system.

Therefore, ‘view’ and ‘system’ vocabularies are entities, and the verb ‘describes’ is

considered as a relationship

4.2.2.1 First Case Study - The Reference Architecture of the Situated Multi-Agent

System

After defining initial general vocabularies, the process started with the first case study.

The first case study is the Reference Architecture of the Situated Multi-Agent System [41].

In this case study, the authors used 72 vocabularies to describe the artefacts of the reference

architecture (See Appendix B.1). Some of these vocabularies can be considered as general

vocabularies and are compared with the general vocabulary as shown in Table 4-2. Table

4-3 illustrates the general vocabularies which are found in this case study.

The authors of this case study used different vocabularies to describe the artefacts of

the reference architecture. Some of these vocabularies are not similar to the defined general

vocabularies, but they give the same meaning such as (subsystem and module), (element,

unit, and component) and (user and stakeholder). In this research, subsystem, component

and stakeholder vocabularies are considered as general vocabulary. Table 4-4 shows the

general vocabulary after update.

61

Table 4-2: Matching between the General Vocabulary and the Vocabulary of the First Case

Study

No. Vocabulary Def. No. Vocabulary Def. No. Vocabulary Def.

1. System 2. Subsystem 3. Module

4. Element 5. Unit 6. Component

7. View 8. Stakeholder 9. User

10. Activity 11. Mechanism 12. Function

13. Data 14. Repository 15. Knowledge

16. Process 17. Resource 18. Service

19. Interface 20. Responsibility 21. Has a

22. Is part of 23. Enable 24. Access to

25. Is a 26. Describe 27.
Decomposed

into

28. Use 29. Consist of 30. Execute

31. Include 32. Define 33. Provide

Legend:

 Refers to (the vocabulary has been defined).

 Refers to (the vocabulary has not been defined).

Table 4-3: New General Vocabulary from the First Case Study

No. Vocabulary No. Vocabulary No. Vocabulary No. Vocabulary

1. Module 2. Element 3. Unit 4. User

5. Activity 6. Mechanism 7. Data 8. Repository

9. Knowledge 10. Responsibility 11. Access to 12. Provide

13. Enable 14.
Decomposed

into

62

Table 4-4: General Vocabulary after Update

Vocabulary

Stakeholder System Subsystem Component
Architectura

l Style
View

Function Task Process Tool Resource Protocol

Interface Attribute Security Data Concern Service

Repository Knowledge
Responsibili

ty
Activity Mechanism Require

Enable Apply to Include Is a Consist of Use a

Describe Produce
Composed

of
Define Execute Consume

Has a Used by Is part of
Decomposed

into
Access to Provide

4.2.2.2 Second Case Study - The Reference Architecture of the Mobile Learning

Environments

The second case study is the Reference Architecture of the Mobile Learning

Environments [42]. The authors of this paper used 56 vocabularies to describe the artefacts

of the reference architecture (See Appendix B.2). However, only 36 vocabularies can be

considered as general terminologies. Table 4-5 shows the matching between the general

vocabularies of the second case study and the general vocabulary.

In the second case study, 18 new vocabularies are found as shown in Table 4-6.

However, the authors used different words to describe the artefacts of the reference

architecture such as a database, element, user, and module. These vocabularies give same

meaning of repository, component, stakeholder, and subsystem, respectively. Table 4-7

represents the general terminology after update.

63

Table 4-5: Matching between the General Vocabulary and the Vocabulary of the Second

Case Study

No. Vocabulary Def. No. Vocabulary Def. No. Vocabulary Def.

1. View 2. Element 3. User

4. Information 5. Function 6. Role

7. Module 8. Mechanism 9. Feature

10. Service 11. Knowledge 12. Security

13. Activity 14. Database 15. Data

16. Request 17. Analyse 18. Perform

19. Change 20. Define 21. Located

22. Task 23. Use 24. Describe

25. Store 26. Retrieve 27. Return

28. Enable 29. Receive 30. Consume

31. Exchange 32. Produce 33. Control

34. Provide 35. Access to 36. Consist of

Table 4-6: New General Vocabularies from the Second Case Study

No. Vocabulary No. Vocabulary No. Vocabulary No. Vocabulary

1. Element 2. User 3. Role 4. Information

5. Database 6. Feature 7. Module 8. Analyse

9. Perform 10. Request 11. Store 12. Located

13. Change 14. Retrieve 15. Return 16. Exchange

17. Receive 18. Control

64

Table 4-7: General Vocabulary after Update

Vocabulary

View System Subsystem Component
Architectural

Style

Stakeholder

Function Task Process Tool Resource Protocol

Interface Attribute Security Data Concern Service

Repository Knowledge
Responsibili

ty
Activity Mechanism Role

Feature Information Require Enable Store Change

Apply to Include Is a Consist of Use a Describe

Produce
Composed

of
Define Execute Consume Has a

Used by Is part of
Decomposed

into
Access to Provide Analyse

Request Exchange Perform Retrieve Return Located

Receive Control

4.2.2.3 Third Case Study - The Reference Architecture of the Cloud Computing

The third case study is the Reference Architecture of the Cloud Computing [43].

Accordingly, 44 vocabularies have been used to present the artefacts of the reference

architecture (See Appendix B.3). Only 29 vocabularies can be considered as general

terminologies as explained in Table 4-8.

Consequently, four new general vocabularies are found in this case study as

demonstrated in Table 4-9. However, the author of the case study used ‘actor’ and ‘person’

terms, which give the same meaning to the term stakeholder that is defined in the general

vocabularies. Table 4-10 represents the general vocabulary after adding the new terms.

65

Table 4-8: Matching between the General Vocabulary and the Vocabulary of the Third

Case Study

No. Vocabulary Def. No. Vocabulary Def. No. Vocabulary Def.

1. Define 2. Describe 3. View

4. Actor 5. Activity 6. Function

7. Used by 8. Person 9. Resource

10. Tool 11. Security 12. Service

13. Process 14. Access to 15. Role

16. Instance of 17. Use 18. Attribute

19. Include 20. Consume 21. Manage

22. Is 23. Has 24. Produce

25. Execute 26. Require 27. Consist of

28. Apply to 29.

Table 4-9: New Vocabularies from the Third Case Study

Table 4-10: General Vocabulary after Update

Vocabulary

View System Subsystem Component
Architectura

l Style
Stakeholder

Function Task Process Tool Resource Protocol

Interface Attribute Security Data Concern Service

Repository Knowledge
Responsibili

ty
Activity Mechanism Role

Feature Information Require Enable Store Change

No. Vocabulary No. Vocabulary No. Vocabulary No. Vocabulary

1. Actor 2. Person 3. Manage 4. Instance of

66

Vocabulary

Apply to Include Is a Consist of Use a Describe

Produce
Composed

of
Define Execute Consume Has a

Used by Is part of
Decomposed

into
Access to Provide Analyse

Request Exchange Perform Retrieve Return Located

Receive Control Manage Instance of

4.2.2.4 Fourth Case Study - The Reference Architecture of the Web Servers

The fourth case study is the Reference Architecture of the Web Servers [44]. From

this case study, 47 vocabularies have been extracted (See Appendix B.4). Only 21 terms

were considered as general as shown in Table 4-11. After matching them with the word list,

only two vocabularies are new as shown in Table 4-12. The general vocabularies were

updated as described in Table 4-13.

Table 4-11: Matching between the General Vocabulary and the Vocabulary of the Fourth

Case Study

No. Vocabulary Def. No. Vocabulary Def. No. Vocabulary Def.

1. Component 2. Subsystem 3. Encompasses

4. System 5. Security 6. User

7. Resource 8. Define 9.
Architectural

Style

10. Service 11. Control 12. Protocol

13. Instance of 14. Include 15. Is a

16. Use 17. Is part of 18. Require

19. Consist of 20. Apply to 21. Describe

67

Table 4-12: New General Vocabulary from the Fourth Case Study

The authors of this paper used user vocabulary that gives the same meaning of the

stakeholder term, which is already defined in the general vocabulary.

Table 4-13: General Vocabulary after Update

Vocabulary

View System Subsystem Component
Architectural

Style
Stakeholder

Function Task Process Tool Resource Protocol

Interface Attribute Security Data Concern Service

Repository Knowledge
Responsibili

ty
Activity Mechanism Role

Feature Information Require Enable Store Change

Apply to Include Is a Consist of Use a Describe

Produce
Composed

of
Define Execute Consume Has a

Used by Is part of
Decomposed

into
Access to Provide Analyse

Request Exchange Perform Retrieve Return Located

Receive Control Manage Instance of Encompasses

No. Vocabulary No. Vocabulary

1. Encompasses 2. User

68

4.2.2.5 Fifth Case Study - The Reference Architecture of the Sensor Networks

Integration and Management System

The fifth case study is the Reference Architecture of the Sensor Networks Integration

and Management System [45]. In this case study, 43 vocabularies (See Appendix B.5) have

been found which include 17 general vocabularies as explained in Table 4-14.

Table 4-14: Matching between the General Vocabulary and the Vocabulary of the Fifth

Case Study

No. Vocabulary Def. No. Vocabulary Def. No. Vocabulary Def.

1. System 2. Component 3. Module

4.
Architecture

Style
 5. Describe 6. Include

7.
Responsibili

ty
 8. Protocol 9. Interface

10. Repository 11. Provide 12. Information

13. Use a 14. Access to 15. Used by

16. Has a 17. Is a 18.

After matching them with the general vocabulary list, there is only one new vocabulary

found which gives the same meaning of the subsystem vocabulary. The new term is already

defined in the general vocabulary.

4.2.2.6 Sixth Case Study - The reference architecture of the Ubiquitous Computing

The reference architecture of the Ubiquitous Computing has been taken as a sixth case

study [46]. In this case study, the authors of the paper used 43 vocabularies to describe the

artefacts of the reference architecture (See Appendix B.6). Some of these vocabularies can

be considered as general vocabulary as explained in Table 4-15. However, three new

vocabularies are found as shown in Table 4-16.

69

The new vocabularies are element, user, and module which are already defined in the

general vocabularies list as a component, stakeholder, and subsystem, respectively.

Therefore, no need to take a new case study. Table 4-17 illustrates the final general

vocabulary.

Table 4-15: Matching between the General Vocabulary and the Vocabulary of the Sixth

Case Study

No. Vocabulary Def. No. Vocabulary Def. No. Vocabulary Def.

1. Element 2. Component 3. System

4. Task 5. Interface 6. User

7. Use 8. Activity 9. Process

10. Information 11. Data 12. View

13. Security 14. Module 15. Service

16. Is a 17.
Responsibilit

y
 18. Has

19. Encompasses 20. Function 21. Include

22. Feature 23. Provide 24. Repository

25. Access to 26. Describe

Table 4-16: New General Vocabulary from the Sixth Case Study

No. Vocabulary No. Vocabulary No. Vocabulary

1. Element 2. Module 3. User

70

Table 4-17: Final General Vocabulary

Vocabulary

View System Subsystem Component
Architectural

Style

Stakeholder Function Task Process Tool

Resource Protocol Interface Attribute Security

Data Concern Service Repository Knowledge

Responsibility Activity Mechanism Role Feature

Information Require Enable Store Change

Apply to Include Is a Consist of Use a

Describe Produce Composed of Define Execute

Consume Has a Used by Is part of
Decomposed

into

Access to Provide Analyse Request Exchange

Perform Retrieve Return Located Receive

Control Manage Instance of Encompasses

4.2.3 Validation Process of General Vocabulary

In this section, the general vocabulary will be validated. Two case studies were chosen

to validate the general vocabulary. These case studies are the reference architecture of the

web browser [47] and the reference architecture of the robots teleoperation system [48].

4.2.3.1 First Case Study - The Reference Architecture of the Web Browsers

A reference architecture of the web browser [47] has been taken as a case study to

validate the general vocabulary. In this case study, 80 vocabularies are used by the authors

of the paper to describe the artefacts of the reference architecture (See Appendix B.7).

71

However, only 23 terms can be considered as general vocabulary. Table 4-18 illustrates

vocabularies that are used to describe the general aspect of the reference architecture. After

comparing them with the general vocabulary, 22 vocabularies are matched and only one

vocabulary (user vocabulary) is mismatched. In the general vocabulary, the stakeholder

concept is defined as a general vocabulary instead of the user concept.

Table 4-18: General Vocabulary of the First Case Study

No. Vocabulary No. Vocabulary No. Vocabulary No. Vocabulary

1. System 2. Subsystem 3. Component 4.
Security

5. User 6. Service 7. Information 8. Protocol

9. Function 10.
Architectural

Style
11. Resource 12. Data

13. Feature 14. Interface 15. Describe 16.
Include

17. Is a 18. Use 19. Store 20. Has

21. Receive 22. Send 23. Execute

4.2.3.2 Second Case Study - The Reference Architecture of the Robot Teleoperation

The reference architecture of the Robot Teleoperation [48] has been taken as a second

case study to validate the general vocabulary. In this case study, 49 vocabularies were used

to describe the artefacts of the reference architecture (See Appendix B.8). However, only 32

terms can be considered as general vocabulary, as shown in Table 4-19.

72

Table 4-19: General Vocabulary of the Second Case Study

No. Vocabulary No. Vocabulary No. Vocabulary No. Vocabulary

1. System 2. Subsystem 3. Module 4. Component

5. Element 6.
Architectural

Style
7. Function 8. Activity

9. User 10. Describe 11. Property 12. Service

13. Protocol 14. Tool 15. Mechanism 16.
Data

17. Information 18. Resource 19. Send 20. Include

21. Develop 22. Provide 23. Require 24. Consist of

25. Exchange 26. Request 27. Has a 28. Use a

29. Receive 30. Update 31. Is a 32. Execute

Some of these vocabularies are already defined in the general vocabularies. After

comparing them with the general vocabulary, only four vocabularies are mismatched. These

terms are module, element, develop and update. The (module and element) terms are already

defined as subsystem and component vocabularies, and (develop and update) terms are used

to define relationships between entities. In ontology, there is no limitation to describe

various relationships among entities.

4.2.4 Construct Ontological Model

A complete ontological model has been created based on the defined general

vocabularies (as explained in Figure 4-2). The general vocabulary includes two types: 1)

vocabularies that describe the entity, and 2) vocabularies that describe the relationships

between the entities. In general, there is no limitation to define relationships among entities

in the ontology. The relationships could be infinite as per the situation. Various relationships

73

are used to connect the general vocabulary to create the ontological model. Figure 4-2 shows

the main concepts of the ontological model as OWL classes where the arrows represent

relationships (OWL object properties) between domain classes (the head of the arrow) and

range classes (the tail of the arrow) where the name on the line depicts the name of the

relationship. The individuals will be modelled as 'objects' in the rectangular boxes. The ‘is-

a’ property relates concepts to its instances (OWL individuals). In the model, Artefact is a

concept (class) while Security, Feature, Architectural Style, View, Task, Service, Role,

Responsibility, Knowledge, Information, and Data are all subclasses of the class Artefact.

The subclasses of the artefact class were excluded from the model to make it simple and

understandable by stakeholders.

74

Concept

Resource

has-a

has-a
use-a

execute-a

use-a

use-a

use-an

include-a

include-a

Concept

Interface

use-a

Concept

System

Concept

Subsystem

has-an

is-part-of

Concept

Process

Concept

Mechanism

has-an

has-an

use-a

use-a

use-a

use-an

use-an

Concept

Artefact

Concept

Repository

Concept

Function
has-a

has-a

Concept

Component

Concept

Stakeholder

is-a

Concept

Tool
use-a

use-a

Concept

Activity

include-an

Concept

Protocol

use-a

Figure 4-2: General Ontological Model

75

4.3 Justifications for Adopting These Case Studies

We have chosen these reference architectures for the following reasons:

1. These reference architectures are already published in different conferences and

journals.

2. These reference architectures have many citations.

3. These reference architectures are already used to derive different architectures.

4. Nevertheless, the information about the domain in the papers is concise.

4.4 Summary

After a review of existing ontology development methodologies, we found there is no

standard methodology to build the ontology [84]–[86]. A methodology to build the

ontological model was presented in this chapter. The methodology started by defining an

initial general vocabulary. These vocabularies are defined based on understanding the

domain, and the literature. After that, more general vocabularies were defined based on

multiple case studies for different domains. The general vocabulary is validated by using

two case studies for different domains, Next to that, the general vocabularies are used as the

basis to design the ontological model.

In the next chapter, the process of using the ontological model to present the artefacts

of the reference architecture will be introduced and explained in details.

76

5. CHAPTER FIVE: USING ONTOLOGY FOR

PRESENTING THE ARTEFACTS OF REFERENCE

ARCHITECTURE

5.1 Overview

A domain ontology is an ontology that captures concepts, relationships and properties

about a domain. The defined ontological model will be used to present the artefacts of a

reference architecture. The output of coupling the ontological model with the artefacts of

the reference architecture called ArchiOntology. The ArchiOntology will provide

vocabularies to software developers and architects to facilitate the instantiation process of a

software system architecture from a reference architecture. These vocabularies describe the

components of the reference architecture. They help the software developers and architects

to find the components of the reference architecture by tracking the relationships between

them.

This chapter explains in details the development process of the ArchiOntology which

has been described in Section 5.2, followed by the process of using the ArchiOntology which

is outlined in Section 5.3. Then, two examples are described in Section 5.4 to show the

development process of the ArchiOntology and how the ArchiOntology provides

vocabularies. Finally, a summary of the chapter is illustrated in Section 5.5.

77

5.2 Development Process of ArchiOntology

A development process of ArchiOntology model will be explained in details. In

chapter 4, the general vocabularies were defined and the ontological model is constructed

based on those general vocabularies. The ArchiOntology will be constructed based on the

general ontological model, the knowledge and experience of a domain engineer and the

vocabularies of a reference architecture. The ArchiOntology represents the components,

relationships, and the constraints of a reference architecture for a specific domain. It

represents a conceptual model of the reference architecture in an organised and structural

way. It will help the software architects and developers to track the relationships between

the components. Figure 5-1 shows the steps of the development process of the

ArchiOntology.

Identify the Concepts & Relationships

Construct ArchiOntology

Ontological Model Concepts & Relationships

ArchiOntology

Identify the Vocabularies of a RA

Domain Engineer

Process

Decision

Artefact

Legend

Figure 5-1: Development Process of ArchiOntology

78

The development process of the ArchiOntology model includes the following steps:

1- Identify the vocabularies of a reference architecture. The first step in the

development process of the ArchiOntology for a specific domain is identifying

vocabularies (Concepts) of a reference architecture. There are different methods that

are used to extract knowledge from sources. These methods are classified into three

types [134]: manual such as [135], semiautomatic such as [136], [137], and

automatic such as [138], [139]. In this work, the concepts of a reference architecture

are extracted manually by the researcher. The output of this step is a set of the

vocabularies which are used to describe the artefacts of the reference architecture.

2- Identify the concepts which are used to describe the components of a reference

architecture from the extracted vocabularies.

3- Identify the instances of the extracted concepts.

4- Identify the relationships between the concepts.

5- Identify the attributes of the concepts.

6- Identify the constraints that describe the conditions and rationales.

7- Construct ArchiOntology.

In this step, a construction process of the ArchiOntology is explained in details. The

ArchiOntology resulted from coupling the general ontological model and the vocabularies

of the reference architecture which are used to describe the artefacts of the reference

architecture.

A domain engineer who designs the reference architecture plays a considerable role

in identifying the artefacts of the reference architecture. The domain engineer has knowledge

and experience that are used in the development process of the reference architecture.

79

However, these knowledge and experience are not documented in the reference architecture

but are embedded in her/his mind.

Several tools can be used to present an ontology, such as Ontolingua Server

(Farquhar et al., 1997 cited in [73]), WebOnto (Domingue 1998 cited in [73]), WebODE

(Arpirez et a1., 2001 cited in [73]), OntoEdit (Sure et a1. 2002 cited in [73]) and Protégé

tool [83]. The current research opted to choose the Protégé tool out of all known ontology

tool. The following guidelines describe the construction process of the ArchiOntology:

1- Present the extracted concepts as subclasses from the classes of the ontological

model. In Protégé will be presented as OWL subclasses [83].

2- Present the identified instances as OWL individuals [83].

3- Present the extracted relationships as OWL object properties [83].

4- Present the extracted attributes of the concepts and their instances as OWL data

properties [83].

5- Present the constraints as OWL data and object properties [83] such as ‘exclude’ and

‘cannot be with’. The object property determines the dependencies between the

concepts.

The output of this step will be the ArchiOntology for a specific domain. The

ArchiOntology presents the artefacts of the reference architecture in an organised and

structural way.

5.3 Using Process of ArchiOntology

ArchiOntology presents the vocabularies which are used to describe the components,

relationships and the constraints of a reference architecture in an organised and structured

way. It provides vocabularies to software architects and developers. These vocabularies help

80

the software architects and developers to find the concepts by tracking the relationships

between them.

The ArchiOntology aims at facilitating the instantiation process of a software system

architecture from a reference architecture. Figure 5-2 demonstrates the steps of the process

of using the ArchiOntology.

The following steps describe the process of using the ArchiOntology.

Step 1: Identify the user of a system. It is the first step to determine the requirements of the

desired system.

Step 2: Identify the requirements of the system from the user of the system.

Step 3: Identify possible concepts and relationships between them from the requirements of

the system.

Step 4: Compare the extracted concepts with the concepts of the ArchiOntology.

A. If the concepts of the ArchiOntology fits the extracted concepts, then identify

other concepts by tracing the relationships of the identified concepts. Ontology

reasoning technique [92] is used to check the consistency between concepts.

FaCT++ reasoner [140] is adopted in this research. Furthermore, DL Query plugin

in Protégé tool [83] is used to find the concepts and individuals.

B. If the concepts of the ArchiOntology does not fit the extracted concept, then:

a. Define a new concept.

b. Define instances of the new concept, if required, which will be represented

as individuals in the ontology.

81

c. Identify the attributes of the new concepts. The attributes will be

represented as Data Properties in the ontology.

d. Define constraints for the new concepts.

e. Update the ArchiOntology by adding the new concepts to the

ArchiOntology with its attributes, instances, relationships and constraints.

Ontology developer will update the ArchiOntology by adding new

concepts and defining relationships between them.

Step 5: Repeat Step 4 until completing all concepts.

82

Step 5

More Concepts

Update

Concepts & Relationships

Step 1

Identify the User of a System

System Requirements

Step 3

Identify Concepts & Relationships

Concepts

Comparison

ArchiOntology Model

Yes

No

Step 2

Identify the System Requirements

Step 4

Stop

No

Yes

Figure 5-2: Process of Using ArchiOntology

83

5.4 Examples

In this section, we are going to apply the proposed methodology in two examples to

show the workflow of the development process of ArchiOntology and how the

ArchiOntology provides vocabularies to software developers and software architects. These

examples have been selected for the following reasons:

5. These examples are already published in IEEE conference.

6. The first example has 135 citations and the second one has 74 citations.

7. These examples are already used to derive different architectures.

8. Nevertheless, the information about the domain in the papers is concise.

5.4.1 Example 1: The Reference Architecture of the Web Browsers

This example illustrates the workflow of the development process of ArchiOntology

for a web browser and how the ArchiOntology provides vocabularies to the developers based

on a paper written by Grosskurth and Godfrey [47].

A proposed process for designing ArchiOntology model was applied to design the

ArchiOntology model for the web browser. The researcher analysed the reference

architecture, by reviewing it, to extract the artefacts of the reference architecture. The

artefacts of the reference architecture are explained as below:

 The reference architecture includes eight main subsystems with each of them having

different functions. These subsystems are User Interface, Browser Engine,

Rendering Engine, Data Persistence, Networking, JavaScript Interpreter, XML

Parser and Display Backend. Figure 5-3 illustrates the subsystem of the web browser.

 The subsystems use different resources.

84

 The users execute web browsers on different hardware such as computers and cell

phones.

 The web browsers use a hypertext transfer protocol to access to information in web

servers.

 A layered architectural style is used to represent the architecture of the system.

 The web pages are written using the HyperText Markup Language and Cascading

Style Sheets.

 The connection between subsystems are:

A. The User Interface subsystem connects to the Data Persistent, Display Backend,

and the Browser Engine subsystem.

B. The Browser Engine subsystem connects to the Data Persistent, and Rendering

Engine subsystem.

C. The Rendering Engine subsystem connects to the Networking, JavaScript

Interpreter, XML Parser and Display Backend subsystem.

Subsystem

is a

Display

Backend

XML

Parser

User

Interface

Browser

Engine

Rendering

Engine

Data

Persistence
Networking

JavaScript

Interpreter

Reference Architecture of Web Browser

includes

Figure 5-3: Subsystems of the Web Browser Reference Architecture [47]

 The functions of subsystems:

A. The functions of the user interface subsystem (see Figure 5-4) are:

1- Connect a user of the web browser to the browser engine subsystem.

2- Provide features such as toolbars, visual page-load progress, smart

download handling, preferences and printing.

85

Feature(s)

is a

Toolbar
Visual Page-load

Progress

Smart Download

Handling
PreferencePrinting

User Interface Subsystem

provides

Figure 5-4: Features of the User Interface Subsystem [47]

B. The functions of the Browser Engine subsystem are:

1- Provide a high-level interface to the rendering engine subsystem.

2- Load a given URI.

3- Support primitive browsing actions.

4- Provide hooks for viewing the browsing session.

5- Allow the querying and manipulation of the rendering engine settings.

C. The functions of the Rendering Engine subsystem are:

1- Produce a visual representation for a given URI.

2- Display HTML and XML documents.

3- Calculate the exact web page layout.

4- Include the HTML parser.

D. The functions of the Networking subsystem are:

1- Implement file transfer protocols such as HTTP and FTP.

2- Resolve the MIME file.

3- Implement a cache of recently retrieved resources.

E. The function of the JavaScript Interpreter subsystem is:

o Evaluate JavaScript code.

F. The function of the XML Parser subsystem is:

86

o Parse XML documents into a Document Object Model (DOM) tree.

G. The functions of the Display Backend subsystem are:

1- Provide drawing and windowing primitives.

2- Provide a set of interfaces.

3- Provide a set of fonts.

H. The function of the Data Persistence subsystem is:

o Store various data associated with the browsing session on disk.

 The subsystems of the web browser system include different components:

A. The user interface subsystem includes two components; user interface and UI

Toolkit (XPEE). The user interface component provides features to the UI

Toolkit (XPEE).

B. The networking subsystem includes three components; Necko, Wwwlib and

Security.

C. The data persistence subsystem includes four components; User, Secure,

Browser, and Persist. These components connect to each other and exchange

features between them.

D. The JavaScript interpreter subsystem includes Spider−Monkey component.

E. The display backend subsystem includes three components; GTK+ Adapter,

Curses and GTK+ / X11 Libraries.

F. The XML Parser Subsystem includes Expat component.

The constraint of the Lynx’s architecture is that it does not include the JavaScript

Interpreter and XML Parser subsystems. To represent this constraint, we defined an exclude

relationship that describes this situation. The exclude relationship will be represented as an

ObjectProperty in the ontology. The domain will be Lynx web browser, and the range will

be JavaScript Interpreter and XML Parser subsystems.

87

The authors of the paper used various vocabularies to describe the artefacts of the

reference architecture. These vocabularies describe the objects and the relationships between

them as explained in Table 5-1 and Table 5-2.

Table 5-1: Vocabularies Describe the Objects of the Web Browser

Vocabulary

System
Web Browser

System
Subsystem

Networking

Subsystem

Function
Rendering Engine

Subsystem

Browser Engine

Subsystem

User Interface

Subsystem

Resource

JavaScript

Interpreter

Subsystem

Data Persistence

Subsystem

Display Backend

Subsystem

Resource Hardware Feature Computer
XML Parser

Subsystem

Web Server Cell phones HTML HTTP

Toolbars Feature Web Page
Smart Download

Handling Feature

Preferences

Feature

Printing Feature
Visual Page-load

Progress Feature

Set of User Interface

Widgets

Layered

Architectural

Style

CSS

Drawing and

Windowing

Primitives

User Hooks

Necko Component Component wwwlib Component

UI Toolkit

(XPEE)

Component

Querying and

Manipulation of the

Rendering Engine

User interface

Component
Browser Component

Security

(Libgnutls)

Component

Spider−Monkey

Component

Security (NSS/PSM)

Component

GTK+ / X11

Libraries Component

Persist

Component

Fonts Secure component
HTML Parser

Component
Expat Component

Curses Component
GTK+ Adapter

Component
Disk Cookies Data

Bookmarks Data XML HTTP FTP

JavaScript Code Data
Visual

Representation

88

Table 5-2: Vocabularies Describe the Relationships

Vocabulary

Access to Allow a Apply to Calculate a

Connect to Display a Evaluate a Execute on

Has a Implement a Include a Load a

Parse a Produce a Provide a Provide feature to

Represented as Store in Support a Used by

Written by Connect a Execute a Use a

Stored in

The ArchiOntology for a web browser is constructed based on the general ontological

model, general vocabulary, domain engineer and the extracted artefacts from the reference

architecture. Protégé tool [83] is used to translate the artefacts of the reference architecture

into a machine-processable ontology represented in OWL.

The extracted vocabularies are used to construct the ArchiOntology for the web

browser as illustrated in Figure 5-5. Figure 5-6 shows the main concepts (classes) and

subconcepts (subclasses) of the ArchiOntology of the web browser and Figure 5-7 illustrates

the individuals of the ArchiOntology of the web browser. The object properties of the

ArchiOntology are described in Figure 5-8.

89

Figure 5-5: ArchiOntology of the Web Browser in Protégé

90

Figure 5-6: Main Concepts and Subconcepts of the ArchiOntology of the Web Browser

91

Figure 5-7: Individuals of the ArchiOntology of the Web Browser in Protégé

92

Figure 5-8: Object Properties of the ArchiOntology of the Web Browser in Protégé

FaCT++ reasoner is used to check the consistency of the classes and DL Query plugin

is used to execute enquiry such as enquiry about the subsystem as demonstrated in Figure

5-9. Figure 5-10 and Figure 5-11 show the features and the components of the

ArchiOntology of the web browser, respectively.

93

Figure 5-9: Subsystem of the ArchiOntology

Figure 5-10: Features of the Subsystem of the Web Browser in Protégé

94

Figure 5-11: Components of the ArchiOntology of the Web Browser in Protégé

Figure 5-12 illustrates the hierarchy of the ArchiOntology for the web browser

represented using OWLViz plugin in Protégé tool [83].

95

Figure 5-12: Hierarchy of the ArchiOntology of the Web Browser

96

5.4.2 Example 2: The Reference Architecture of the Web Servers

This example illustrates the workflow of the development process of ArchiOntology

for web servers and how the ArchiOntology provides vocabularies to the developers based

on a paper written by Hassan and Holt [44]. A proposed process was applied to develop the

ArchiOntology model for the web servers. The researcher analysed the reference

architecture, by reviewing it, to extract the artefacts of the reference architecture (the

artefacts are represented in [44]). In this example, authors of the paper are used 47

vocabularies to describe the artefacts of the reference architecture. Table 5-3 and Table 5-4

show the vocabularies of the reference architecture of web servers and the relationships

between them, respectively.

Table 5-3: Vocabulary of the Reference Architecture

No. Vocabulary No. Vocabulary No. Vocabulary

1. System 2. Subsystem 3. Component

4. Developer 5. Security 6. User

7. Resource 8. HTML 9. Text File

10. Service 11.
Daily News

Service
12. Email Service

13. Architectural Style 14. Pipe-Filter Style 15.
Layered

Architectural Style

16. Program 17.
Java Servlet

Program
18.

Common Gateway

Interface Program

19. Protocol 20.
Hyper Text

Transfer Protocol
21. Operating System

22. Network 23. Computer 24. Browser

25.
Netscape

Navigator

Browser

26. Lynx Browser 27. Utility Subsystem

28.
Internet Explorer

Browser
29.

Transaction Log

Subsystem
30.

Request Analyser

Subsystem

31.
OS Abstraction

Layer Subsystem
32.

Resource Handler

Subsystem
33.

Reception

Subsystem

34.
Access Control

Subsystem
35. 36.

97

Table 5-4: Relationships between the Vocabularies of the Reference Architecture

The ArchiOntology for web servers is constructed which represents the artefacts of

the reference architecture of the web servers. Protégé tool is used to present these artefacts.

Figure 5-13 shows the ArchiOntology for the web servers. Figure 5-14 shows the main

concepts (classes) and subconcepts (subclasses) of the ArchiOntology of the web servers

and Figure 5-15 illustrates the individuals of the ArchiOntology of the web servers. Figure

5-16 shows the Classes, Subclasses and individual of the ArchiOntology of the web servers

which are represented in OntoGraf plugin [83]. Figure 5-17 illustrates individuals of the

Browser, Program and Service subclasses. Figure 5-18 illustrates the hierarchy concepts of

the ArchiOntology of the web Servers which are represented in OWLViz plugin [83].

No. Vocabulary No. Vocabulary No. Vocabulary

1. Encompasses 2. Use a 3. Consist of

4. Describe a 5. Instance of 6. Define a

7. Is part of 8. Is a 9. Apply to

10. Include a 11. Control a 12. Require a

98

Figure 5-13: ArchiOntology of the Web Servers

99

Figure 5-14: Main Concepts and Subconcepts of the ArchiOntology of the Web Servers

Figure 5-15: Individuals of the ArchiOntology of the Web Servers

100

Figure 5-16: Classes, Subclasses and individual of the ArchiOntology

Figure 5-17: Individuals of the Browser, Program and Service subclasses

101

Figure 5-18: Hierarchy of the ArchiOntology of the Web Servers

102

5.5 Summary

This chapter presented a detailed description of the development process of an

ArchiOntology. The ArchiOntology is the output of using the ontological model as a basis

to present the artefacts of a reference architecture. This was followed by process of using

the ArchiOntology. Next to that, two examples are used to illustrate the processes of

developing and using the ArchiOntology.

The next chapter will present the experimental evaluation of the proposed methodology.

103

6. CHAPTER SIX: EXPERIMENTAL EVALUATION OF

PROPOSED METHODOLOGY

6.1 Overview

In this chapter, the evaluation process pertaining to the proposed methodology is to be

dealt with thoroughly. Such evaluation aids with comprehending all limitations that exist

within the proposed methodology and accordingly assists in developing a better solution.

First, an evaluation plan is outlined using user study experiment [141] and the

Goal/Question/Metric (GQM) approach [142], [143]. In this approach, a group of questions

is identified depending on the metrics that are used for evaluating the goal of usability of the

proposed methodology according to the research objectives. The evaluation phase is

supposed to offer answers for these questions. Section 6.3.1.3 presents the metrics as well

as the derived questions that have been used for evaluating the research goal. Finally, the

summary in Section 6.4 shapes the eventual results that led to the final answers demanded

by the proposed questions.

6.2 Plan of the Evaluation

Every architectural development methodology has its strengths and weaknesses. Basili

et al. [143] described and classified several methods for software evaluation. Such

evaluation includes a thesis and test process. Since no general evaluation method can be

applied for any purpose, software, project and so forth, one has to choose which method best

fits the purpose of and resources for evaluation. Based on what is mentioned above, we have

104

tried to evaluate the proposed methodology in term of support for software engineering that

focuses on the developer’s perception. Therefore, an evaluation plan has been prepared for

that purpose. The evaluation plan that was utilised to assess the proposed methodology is

illustrated in Figure 6-1 and Table 6-1.

In this research, a user study experiment is applied to evaluate the proposed

methodology. A Goal-Question-Metric (GQM) approach [142], [143] is used to ensure the

integrity and validity of the results. The goal of the evaluation process is to evaluate the

proposed methodology in term of usability in the following aspect:

Can the ontological model facilitate the instantiation process of a software system

architecture and minimise the development time?

Controlled Experiment User Study

Evaluation Process

Usability Evaluation GQM

Figure 6-1: Plan of the Evaluation

105

Table 6-1: Plan of the Evaluation

Evaluation

Goal
Evaluation Question

Evaluation

Method
Criteria

Usability

Can the ontological model facilitate

the instantiation process of a

software system architecture and

minimise the development time?

Controlled

Experiment

User Study

 Complexity

 Traceability

 Understandability

 Clarity

 Time

6.3 User Study Experiment

For the sake of evaluation of the proposed methodology, a controlled experiment was

implemented employing students from the School of Computing, Science and Engineering,

Salford University.

This experimental study aimed at checking whether the methodology could simplify

the instantiation process of a software system architecture from a reference architecture.

Some tasks controlled experiments were performed to assess the proposed methodology

regarding the usability. Guidelines for the user study experiment described by Jedlitschka et

al. [141] and Goal, Question, Metric (GQM) approach offered by Basili [143] were followed

so as to ensure the integrity and correctness of the results of the experiment. Ethical approval

has been obtained for this study (See Appendix D.1).

6.3.1 Goal/Question/Metric

This section explains how the goal, question and metrics are identified for this

research as per the GQM approach. The guidelines of Jedlitschka et al. [141] were taken into

consideration.

106

6.3.1.1 Goal

The experiment goal was defined with the help of a pre-defined format that Jedlitschka

et al. [141] did provide and according to the aim of the research. In view of that, the

experiment’s goal can be defined as follows:

To analyse the aspects of usability when using the proposed methodology for the

purpose of the software system architectures development process.

The usability of the proposed methodology is evaluated according to the following

metrics: Complexity [9], [144], [145], Traceability [145], [146], Understandability [29], and

Clarity [144], [7], [147]. Also, the development time will be evaluated implicitly at the end

of the development process by using Equation 6-1 and Equation 6-2.

6.3.1.2 Question

A number of questions have been formulated according to the GQM approach [148].

The questions of the experiment are divided into two parts:

1. Pre-experiment questions: this group includes seven questions that are meant to

generate a participant’s profile such as developing skill and study background, yet

no personal information is included therein.

2. Post-experiment questions: this group includes eleven questions focusing on the

description and presentation of the artefacts of a specific reference architecture.

These questions can be further divided into three subgroups as follows:

A. The first group includes introductory questions, Q1 and Q2 that focus on the

presentation. These questions were given to the participants in order to assess the

clarity of the presentation.

107

B. The second group includes questions Q3-Q10. These questions are both related

to the goal of the experiment and the target to measure the usability of the

proposed methodology which implicitly measures Complexity, Traceability,

Understandability, and Clarity.

C. The third group includes a single question (Q11). This is an open question

offering an opportunity for participants to add their own comments in case they

need to do so.

Appendix D.3 and D.4 offer a complete list of both pre-experiment and post-

experiment questions.

6.3.1.3 Metric

The metrics identified for this user-study experiment are directly measured from

participants’ feedback based on specific questions. Furthermore, time is measured

throughout the experiment, such as how much time the two groups needed to complete the

tasks. Table 6-2 and Figure 6-2 both illustrate the relationships between the

Goal/Question/Metric for the user-study experiment. The following is a summary for the

metrics identified for the user-study experiment:

 M1. This metric has been defined for evaluating the Complexity of the development

process, finding the components and the relationships between the elements [9], [144],

[145]. The purpose of M1 is to measure whether or not the ontological model reduces the

complexity. Questions 3, 4, & 5 are identified for measuring this very metric.

 M2. This metric is defined to evaluate the Traceability between the components of the

reference architecture [145], [146]. The purpose of M2 is to measure whether or not the

108

ontological model helps participants to trace the components. Question 6 is identified for

measuring of this very metric.

 M3. This metric has been defined for evaluating the Understandability of the description

of the components and relationships between them [29]. The purpose of M3 is to measure

whether or not the ontological model helps the developers to understand the description

of the artefacts of a reference architecture. Questions 7 & 8 are identified for the

measuring of this very metric.

 M4. This metric has been defined for evaluating the Clarity of the structure and

organisation of the components and relationships between the components [144], [146],

[147]. The purpose of M4 is to measure whether or not the ontological model presents

the artefacts of a reference architecture in an organised and well-structured way.

Questions 9 & 10 are identified for measuring this metric.

 M5. This metric has been defined for evaluating the development Time which includes:

 M51. Time-Saving for Task Accomplishment. This metric calculates the percentage

of time saved through using the ontological model to accomplish a task as compared

to ad hoc manner. Equation 6-1 is used here and this measurement is calculated per

group for each task.

𝐴𝑑 ℎ𝑜𝑐 𝑚𝑎𝑛𝑛𝑒𝑟 𝑇𝑖𝑚𝑒 − 𝑂𝑛𝑡𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑀𝑜𝑑𝑒𝑙 𝑇𝑖𝑚𝑒

𝐴𝑑 ℎ𝑜𝑐 𝑚𝑎𝑛𝑛𝑒𝑟 𝑇𝑖𝑚𝑒
∗ 100

Equation 6-1: Percentage of Ontological Model Time Saving for Each Task

 M52. Total Time Saved for Tasks Accomplishment: This metric calculates the

percentage of total time saved via using the ontological model to accomplish all tasks

as compared with ad hoc manner. Equation 6-2 is employed here and this measurement

is calculated per group for the set of tasks.

109

𝐴𝑑 ℎ𝑜𝑐 𝑚𝑎𝑛𝑛𝑒𝑟 𝑇𝑜𝑡𝑎𝑙 𝑇𝑖𝑚𝑒 − 𝑂𝑛𝑡𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑀𝑜𝑑𝑒𝑙 𝑇𝑜𝑡𝑎𝑙 𝑇𝑖𝑚𝑒

𝐴𝑑 ℎ𝑜𝑐 𝑚𝑎𝑛𝑛𝑒𝑟 𝑇𝑜𝑡𝑎𝑙 𝑇𝑖𝑚𝑒
∗ 100

Equation 6-2: Percentage of Ontological Model Time Saving for All Tasks

Table 6-2 and Figure 6-2 show the GQM mapping for user study experiment.

Table 6-2: GQM Mapping for User Study Experiment

Goal Questions Metrics

------ Q1-Q2 Introductory Questions (IQ)

Usability

Q3-Q5 M1 Complexity

Q6 M2 Traceability

Q7-Q8 M3 Understandability

Q9-Q10 M4 Clarity

M51 Time-Saving for Task

Accomplishment
M5 Time

M52 Total Time Saved for

Tasks Accomplishment

Goal

Questions

Metrics

Complexity Traceability Understandability Clarity

Q6Q3-Q5 Q7-Q8 Q9-Q10

Usability

Figure 6-2: GQM Mapping for the User Study

110

6.3.2 Metrics Benchmarking and Question Rating Scales

Based on the literature review with the purpose of devising questions rating, user-

study experience can be utilised with many scaling rates such as (3, 4, 5 and 7). Adopting

an even or an odd number of values is another issue of debate and controversy by many

researchers. The following guidelines proposed by Tullis & Albert [146] are of considerable

attraction here regarding rating scale:

1. Far more reliable data from the user can be ensured through using multiple scales.

2. In order to enable the user to be neutral, use an odd number of values. This is

considered a natural behaviour in real-world situations.

3. As for total number of points: there are some researchers who approve of always

using more points. Somehow, and according to [149], using more than nine points

will seldom provide any additional information that are of any use. In addition to

that, five and seven points are the highest number of scaling values used in real-

world user experience questionnaires. Also, Finstad [150] established an

interesting study which compared five and seven versions of the same set of rating

scales. According to that study and in contrast with seven-points five-point scales

are more likely.

Having considered the above-mentioned guidelines, the rating for the questions

feedback had been designed according to the nature of the questions and the purpose behind

them. In this study, the Likert scale has been adopted [151]. Five-scale Likert feedback has

been used for questions to measure the satisfaction of the participants. The Likert scale

ranged from (Strongly Agree) to (Strongly Disagree) and from (Very Easy) to (Very

Difficult). Samples 5-scale statements and the value assigned to each scale are shown in

Table 6-3 .

111

Table 6-3: Samples 5-scale Statements with Assigned Value

Question/Statement Likert Scale Value

How do you find the development

of software system architecture?

☐ Very Easy 5

☐ Easy 4

☐ Neutral 3

☐ Difficult 2

☐ Very Difficult 1

The relationships of a reference

architecture are presented clearly.

☐ Strongly Agree 5

☐ Agree 4

☐ Neutral 3

☐ Disagree 2

☐ Strongly Disagree 1

All metrics have been measured based on the feedback from the participants after

understanding the presentations and executing the required tasks . This does not include M51

(Time-Saving for Task Accomplishment) and M52 (Total Time Saved for Tasks

Accomplishment) which are measured implicitly based on the task time of the participant.

Table 6-4 shows the available metrics and their measurement methods, the metrics

required and the results range and the minimum required results. As for the measurement

methods, two methods to measure a metric are available indeed. The first method is called

5-Scale User Feedback (5SUF) and includes calculation of the mean value of the

participants’ feedback using 5-scale rating feedback. The second method is called

Participant’s Tasks Development Results (PTDR) and is used to measure the participant's

tasks development statistically using both Equation 6-1 and Equation 6-2.

112

Table 6-4: Metrics Measurement Methods and Possible Values

Goal Metrics
Measurement

Method
Range

Baseline

Value

Usability

M1 Complexity 5SUF 1-5 3

M2 Traceability 5SUF 1-5 3

M3 Understandability 5SUF 1-5 3

M4 Clarity 5SUF 1-5 3

M5 Time

M51 Time-Saving

for Task

Accomplishment

PTDR 0% - 100% 50%

M52 Total Time

Saved for Tasks

Accomplishment

PTDR 0% - 100% 50%

6.3.3 Tasks of the Experiment

Studies related to web browser have been implemented previously in [47] and [152]

who both designed a software architecture for Mozilla, Konqueror, Epiphany, Lynx, and

Safari web browser systems. Three tasks have been selected for that purpose and have been

used in our experiment user study. The following description refers to tasks (T1, T2, and

T3) that had been offered to the participants:

T1. Identify and name the subsystem of the web browser system.

T2. For each subsystem in the web browser system, identify and name the relationships

between them.

T3. For each subsystem in the web browser system, identify the components for each

subsystem; then identify the features of each component.

113

The participants were given different times for each task as shown in Table 6-5. The

participants in each group used these tasks to measure the metrics by answering the

questions.

Table 6-5: Given Time for Each Task

Task Time

T1 15 minutes

T2 20 minutes

T3 30 minutes

6.3.4 Participants of the Experiment

The experimental work of the study employed a user study which included inviting

twelve participants who were already on the course of a PhD program at the University of

Salford. All of the participants in this study were volunteers and no compensation in any

form was offered or paid. The respondents were also acknowledged that they had the option

of leaving any statement blank in case they did not wish to answer it (See Appendix D.2).

The participants were divided into two syndicates (Group A and Group B), each group

included six participants. The number of participants being twelve can be regarded rational

considering the fact that earlier user studies implemented by [153]–[157] opted to use 4, 6,

10, 12, and 26 participants, respectively. The answers provided by the participants for the

questions that initiated the experiment led to the construction of the participants’

comprehensive profile:

 Study Background of the Participants

The academic background of the invited participants varied as to the following

fields: Computer Science, Computer Engineering, Software Engineering and

114

Information System. Four participants have Computer Science background, five

participants have Software Engineering background, one participant has Information

System background, and two participants have Computer Engineering background, as

illustrated in Figure 6-3. Some also had an experience in software development process

because they worked in a private company.

Figure 6-3: Participants’ Study Background

 Knowledge of Architectural Development

As shown in Table 6-6, using participants with variant levels of knowledge in

development background led to a suitable way of assessing the proposed methodology

since the employed participants had various knowledge levels of software development.

The percentages in Table 6-6 have been calculated based on the pre-experiment

questions which are answered by the participants.

Table 6-6: Participants’ Knowledge of Architectural Development

Scale Knowledge of Architectural Development

No Information 0%

Beginner 65%

Intermediate 25%

Expert 10%

4
5

1
2

0

1

2

3

4

5

6

Computer

Science

Software

Engineering

Information

Systems

Computer

Engineering

P
ar

ti
ci

p
an

ts

115

 Software Development Experience

A versatile level of experience in software development was available within all

participants.

6.3.5 Materials, Tools and Equipment of the Experiment

Participants had been divided into two groups: group A and group B. Each group

included six participants. All participants were provided with a short presentation about the

tasks. The presentation included explaining the tasks. Group A received the descriptions of

tasks with a reference architecture of the web browser. On the other hand, group B received

the ArchiOntology model for the web browser and they attended a presentation about it, in

addition to the same tasks with a reference architecture of the web browser. Also, they

received a PC, which includes Protégé software. The Protégé software is an ontology

development tool (see Section 2.1.4). Figure 6-4 shows the two groups with materials, tools

and equipment. In addition, the two groups received questions about the design process for

which the participants had to answer. The experiment questions were constructed from the

literature.

Reference Architecture

without Ontological Model

Developers

Group A

Tasks

Group B

Reference Architecture with

Ontological Model

Developers

Tasks PC

Questions Questions

Figure 6-4: Group A and B with Materials, Tools, Equipment, and Questions

116

6.3.6 Protocol of the Experiment

Table 6-7 explains the general experiment agenda. It took a total time of approximately

02:00 hours for the user study controlled experiment to be implemented. The duration was

separated into three sessions, the first of which was about a welcoming speech for

identifying the purpose behind this user study as well as filling in the pre-experiment survey

which took 10 minutes. A presentation part of 20 minutes followed for elaboration on

reference architecture and software architecture. The first session was ended with 5 minutes

of discussion period which was about explaining any rising issues that needed clarifications

for the participants.

Table 6-7: Time Table of Experiment

Session Sub-session Activities Time
Total Session

Time

1.

Welcoming and participants complete a pre-

experiment survey.
10 min

30 min
Presentation about the reference architecture

and software architecture for both groups.
20 min

2.

Explain the required tasks to the participants

and provide the needed materials.
15 min

80 min

Tasks Execution (T1, T2 and T3). 65 min

3. Participants fill the post-experiment questions 10 min 10 min

As for the next session, the required tasks to be done by the participants consumed the

first 15 minutes, participants executing the assigned tasks consumed the next (65 min) with

time duration pertaining to each individual task being recorded too. The participants

implemented those tasks in sequence (T1, T2, and T3). In conclusion, the participants were

instructed to fill in the final post-experiment questions in the third session which took (10

117

min). The participants in Group B received an extra session (20 min) to give them an

opportunity to familiarise themselves with the ontological model.

6.3.7 Results and Discussion of the Experiment

Microsoft Excel and SPSS software were used in this section for processing the results

of the tasks as well as the feedback of recipients too. This section discusses the results

begotten through the user study experiment by observing the time durations required by

participants in order to for accomplish the tasks allotted for them and also by evaluating the

participants’ feedback and observing the time needed to accomplish the set of tasks given to

them.

To check the reliability of the results as well as validating the results’ integrity,

Cronbach’s alpha index [158] was used for examining their internal consistency. This

measurement is already widely-used to analyse and verify the reliability of Likert-type

question results. The preferred alpha index value is > 0.7 [124], [159]. Figure 6-5 shows that

the results of this very research had calculated Cronbach’s alpha index as 0.816 which can

be considered acceptable and reflect highly inter-correlated results.

Figure 6-5: Reliability Statistics

Both Table 6-8 and Table 6-9 illustrate the feedback of the participants as per the

clarity of the provided and presented materials as well as the task descriptions too. Most

participants (83%) found the tutorials and presentations easy to understand and all

118

participants (100%) found the tasks description clear and informative. A mean value for the

introductory questions was 4.58.

Table 6-8: First Introductory Statement Results

Statements

Likert Scale

Very

Easy
Easy Neutral Difficult

Very

Difficult

The given tutorials and presentation

were easy to understand.
58% 25% 17% 0% 0%

Average 58% 25% 17% 0% 0%

Table 6-9: Second Introductory Statement Results

Statements

Likert Scale

Strongly

Agree
Agree Neutral Disagree

Strongly

disagree

The descriptions of the tasks

were clear.
75% 25% 0% 0 % 0%

Average 75% 25% 0% 0% 0%

6.3.7.1 Results of the Metrics

The results pertaining to the metrics already identified are discussed here.

 M1 (Complexity), three statements were used to measure this metric. Results in Table

6-10 show that 39% and 50% of the participants in Group A found that the

development process pertaining to an architecture of a software system, and the

finding process of the components and the relationships between them were difficult

and very difficult, respectively. On the other hand, Table 6-11 shows 22% and 78% of

the participants who used the ontological model and found the development process

pertaining to a software system architecture, and the finding process of the components

119

and the relationships between them easy and very easy, respectively, with a mean

value = 4.77.

Table 6-10: A Response from Group A to the Statements 3, 4, and 5

Statements

Likert Scale

Very

Easy
Easy Neutral Difficult

Very

Difficult

How do you find the development of

software system architecture?
0% 0% 0% 50% 50%

How do you evaluate the difficulty in

finding the components of the reference

architecture?

0% 0% 33% 50% 17%

How do you evaluate the difficulty in

finding the relationships between the

components of the reference

architecture?

0% 0% 0% 17% 83%

Average 0% 0% 11% 39% 50%

Table 6-11: A Response from Group B to the Statements 3, 4 and 5

Statements

Likert Scale

Very

Easy
Easy Neutral Difficult

Very

Difficult

How do you find the development of

software system architecture?
50% 50% 0% 0% 0%

How do you evaluate the difficulty in

finding the components of the reference

architecture?

100% 0% 0% 0% 0%

How do you evaluate the difficulty in

finding the relationships between the

components of the reference

architecture?

83% 17% 0% 0% 0%

Average 78% 22% 0% 0% 0%

120

 M2 (Traceability), one statement was used to measure this metric. Table 6-12 shows

that 67% and 33% of the participants in Group A are (strongly disagreed) and

(disagreed), respectively. On the other hand, Table 6-13 displays that 83% of the

participants in Group B are (strongly agreed) with statement 6, and 17% of the

participants have agreed that the traceability between the components was easy, with

the mean value = 4.83.

Table 6-12: A Response from Group A to the Statement 6

Statements

Likert Scale

Strongly

Agree
Agree Neutral Disagree

Strongly

Disagree

The components of a reference

architecture are easily traceable

by developers.

0% 0% 0% 33% 67%

Average 0% 0% 0% 33% 67%

Table 6-13: A Response from Group B to the Statement 6

Statements

Likert Scale

Strongly

Agree
Agree Neutral Disagree

Strongly

Disagree

The components of a reference

architecture are easily traceable

by developers.

83% 17% 0% 0% 0%

Average 83% 17% 0% 0% 0%

 M3 (Understandability). Two statements were used to measure this metric. Table 6-14

explains that 33% of the participants in Group A said the description of the

components and relationships between them was very difficult to understand and 58%

of the participants said the description was difficult to understand. However, 41.5%

121

and 58.5% of the participants in Group B said that the description of the components

and the relationships between them was very easy and easy to understand,

respectively, as shown in Table 6-15, with a mean value = 4.42.

Table 6-14: A Response from Group A to the Statements 7 and 8

Statements

Likert Scale

Very

Easy
Easy Neutral Difficult

Very

Difficult

The description of components is

easy to understand by developers.
0% 0% 17% 50% 33%

The description of relationships

between the components is easy to

understand by developers.

0% 0% 0% 67% 33%

Average 0% 0% 8.5% 58.5% 33%

Table 6-15: A Response from Group B to the Statements 7 and 8

Statements

Likert Scale

Very

Easy
Easy Neutral Difficult

Very

Difficult

The description of components is

easy to understand by developers.
33% 67% 0% 0% 0%

The description of relationships

between the components is easy

to understand by developers.

50% 50% 0% 0% 0%

Average 41.5% 58.5 0% 0% 0%

 M4 (Clarity), statements 9 and 10 are used to measure this metric. All participants

(100%) in Group A strongly disagreed about these two statements as shown in Table

6-16. On the contrary, all participants (100%) in Group B strongly agreed that the

122

components of the reference architecture with their relationships are represented in an

organised and structured way as illustrated in Table 6-17, with a mean value = 4.91.

Table 6-16: A Response from Group A to the Statements 9 and 10

Statements

Likert Scale

Strongly

Agree
Agree Neutral Disagree

Strongly

Disagree

The components of a reference

architecture presented in an

organised and structural way.

0% 0% 0% 0% 100%

The relationships of a reference

architecture are presented clearly.
0% 0% 0% 0% 100%

Average 0% 0% 0% 0% 100%

Table 6-17: A Response from Group B to the Statements 9 and 10

Statements

Likert Scale

Strongly

Agree
Agree Neutral Disagree

Strongly

Disagree

The components of a reference

architecture presented in an

organised and structural way.

100% 0% 0% 0% 0%

The relationships of a reference

architecture are presented clearly.
83% 17% 0% 0% 0%

Average 91.5% 8.5% 0% 0% 0%

 M5 (Time).

 M51 (Time Saving for Task Accomplishment). The detailed time needed for every

task using an ad hoc manner and ontological model too are displayed in Table 6-18.

123

The average times required to complete T1, T2 and T3 using the ad hoc manner were

00:13:00, 00:17:00 and 00:25:00 minutes, respectively, whereas the participants in

Group B implemented these tasks using the ontological model in 00:05:0, 00:08:00

and 00:11:00 minutes, respectively. Using Equation 6-1 for calculating the Time-

Saving for Task Accomplishment shows that the average percentages of time saved

for T1, T2 and T3 using the ontological model were 62%, 53% and 56%.

 M52 (Total Time Saving for Tasks Accomplishment) can be calculated using

Equation 6-2. Ontological model saved 57% of the time needed to complete the set

of tasks as compared with ad hoc manner. This illustrates the potential power of the

ontological model in matters of saving development effort and time.

Table 6-18: Ontological Model and Ad hoc Manner Task Completion Times

Group A Group B Time-Saving

for Task

Accomplishm

ent
Total Time

Saving for Tasks

Accomplishment

Ad hoc Manner Ontological Model

T1 T2 T3 T1 T2 T3 T1 T2 T3

00:13:00 00:17:00 00:25:00 00:05:00 00:08:00 00:11:00 62% 53% 56% 57%

In view of the main metrics for the user study experiment and their relevant baseline

values that are laid out in Table 6-4, Table 6-19 illustrates the final results of the experiment

which shows higher values for all metrics compared to baseline values. It is evident from

such results that the ontological model enables the instantiation process of a software system

architecture from a reference architecture.

124

Table 6-19: User Study Experiment Metrics Results

Goal Metrics
Measurement

Method
Range Baseline Value

U
sa

b
il

it
y

M1 Complexity 5SUF 1-5 3 4.76

M2 Traceability 5SUF 1-5 3 4.83

M3 Understandability 5SUF 1-5 3 4.42

M4 Clarity 5SUF 1-5 3 4.91

M5

Time

M51 Time-Saving

for Task

Accomplishment

PTDR 0% - 100% 50%
62%

53%

56%

M52 Total Time

Saved for Tasks

Accomplishment

PTDR 0% - 100% 50% 57%

6.3.7.2 Final Experiment Results

As for usability and in terms of M1, M2, M3, and M4, the final conclusion is that all

participants in group B found that the ontological model was usable and that it facilitated

the instantiation process of a software system architecture from a reference architecture by

tracking the relationships between the components and also reduced the development time.

Furthermore, the ontological model saves 57% of the time that is required to implement a

set of tasks in contrast with an ad hoc manner.

6.4 Summary

The ontological model could facilitate the instantiation process pertaining to a

software system architecture from a reference architecture. This has been demonstrated in

this chapter. Next to that, the chapter discussed the method followed to assess and evaluate

125

the proposed methodology. The study adopted this method in pursuit of an answer for the

question that was proposed at the beginning of this chapter and which was:

Can the ontological model facilitate the instantiation process of a software system

architecture and minimise the development time?

Regarding the above-mentioned question as to whether (or not) the ontological model

can facilitate the instantiation process, the answer has been made answered through

conducting a controlled experiment that was conducted through utilising twelve participants

to assess the proposed methodology. The results of the experiment indicated that the

proposed methodology facilitated the development process of the software system

architecture from a reference architecture.

The conclusion, contributions of this research and future work are summarised and

presented in the next chapter.

126

7. CHAPTER SEVEN: CONCLUSION AND FUTURE

WORK

7.1 Overview

This final chapter closes the thesis by presenting a summary of the work and

describing the main contributions. It also illustrates the possible areas for future work. This

thesis contributed in this sense of facilitating the instantiation process of a software system

architecture from a reference architecture.

Achievements of this work include the definition and validation of general

vocabularies which are used to describe the artefacts of reference architectures, creation of

the general ontological model and the proposal of a process for presenting the artefacts of

the reference architecture (constructing ArchiOntology).

In this chapter, the objectives of the thesis will be revised and the means of realising

them will be illustrated in Section 7.2. Section 7.4 will present the ideas and suggestions for

the future development.

7.2 Significant Contribution

This thesis provides a number of contributions that are described in the following.

1- Define general vocabularies to describe the general aspect of reference

architectures as explained in Chapter 4.

127

2- One of the main contributions of this thesis is to construct a general ontological

model which can be used as a foundation for presenting the artefacts of a reference

architecture as a conceptual model concepts as described in chapter 4.

3- Another contribution is using an ontology as a tool to describe the knowledge

about reference architecture formally.

7.3 Review of the Research Objectives

This section introduces the research objectives and also reviews the means of

achieving them.

7.3.1 Objective 1

 Review the development approaches of a reference architecture.

In order to achieve this objective, the development approaches of reference

architecture have been reviewed in Section 2.2.1 of Chapter 02 to show what type of tools

have been used in these approaches so as to present and describe the artefacts of a reference

architecture. The review has demonstrated that there are no standard vocabularies that are

used in the development process, and all of these approaches used informal and semi-formal

tools to present and describe the artefacts of reference architectures.

7.3.2 Objective 2

 Review the existing instantiation process of a software system architecture from a

reference architecture.

128

This objective aims at highlighting the shortcoming of the instantiation process of a

software system architecture from a reference architecture. This objective has been achieved

in Section 2.5 of Chapter 2. The review showed that all the processes provide general

guidelines for the instantiation process and there is no concrete tool that has been used in

the instantiation process.

7.3.3 Objective 3

 Review an ontology principle.

This objective aims at reviewing an ontology definition, components, representation

language and development tools. This objective has been achieved in Section 2.6 of Chapter

2. The review has demonstrated the characteristics of the ontology. These characteristics

have been utilised in presenting the artefacts of a reference architecture.

7.3.4 Objective 4

 Definition general vocabularies to be used for constructing an ontological model.

To achieve this objective, we defined general vocabularies based on understanding the

domain and the literature and also from multiple case studies. Initial general vocabularies

are defined. Next to that, more general vocabularies were extracted and defined from six

case studies for various domains from the literature. This is all explained in details in Chapter

4.

7.3.5 Objective 5

 Development of an ontological model for presenting knowledge about the

reference architecture.

129

To achieve this objective, we developed a general ontological model to present the

artefacts of reference architectures. The ontological model is constructed based on the

defined general vocabulary. The ontological model aims at providing vocabularies to

software architects and developers. This helps the software architects and developers to find

the components of a reference architecture by tracking the relation between them. The

development process of the ontological model is explained in details in Section 4.2.4 of

Chapter 4.

7.3.6 Objective 6

 Develop a process to describe the artefacts of a reference architecture.

To achieve this objective, we proposed two processes. The first process shows how

the ontological model will be coupled with a reference architecture to produce an

ArchiOntology. The second process shows how the ArchiOntology will be used to provide

vocabularies. The processes are explained in details in Chapter 5.

7.3.7 Objective 7

 Evaluate the proposed methodology by conducting a user study experiment.

To achieve this objective, we evaluated the proposed methodology in an experimental

study which was illustrated in Chapter 6. The user study experiment compared the current

ad hoc approach used to instantiate software architectures and the development using

ontology. Results gave evidence that the ontology can facilitate the instantiation process of

software system architectures from a reference architecture.

130

7.4 Future Work

Many opportunities of research emerged during the development of this thesis. They

represent perspectives of future research that can contribute to the areas of a reference

architecture. In the future, we plan to:

1. Develop a tool that aims at extracting the artefacts of reference architecture. The tool

should help software engineers and architects to extract the concepts of architecture

architectures automatically.

2. Develop visual tool support that aims at assisting the design and verification of

architecture models based on the proposed ontological model. The tool should allow

the developers to design their architecture models graphically.

3. Conduct the proposed methodology to design a reference architecture for a specific

domain based on the proposed ontological model.

4. Conduct a real case study within an industrial context in order to provide additional

evidence that increases the confidence towards the adoption of this methodology.

131

REFERENCES

[1] N. Rozanski and E. Woods, Software Systems Architecture: Working With

Stakeholders Using Viewpoints and Perspectives. Addison-Wesley Professional,

2005.

[2] P. Kruchten, H. Obbink, and J. Stafford, “The Past, Present, and Future for Software

Architecture,” IEEE Softw., vol. 23, no. 2, pp. 22–30, Mar. 2006.

[3] M. Shaw and P. Clements, “The Golden Age of Software Architecture,” IEEE Softw.,

vol. 23, no. 2, pp. 31–39, Mar. 2006.

[4] M. Guessi, L. B. R. Oliveira, and E. Y. Nakagawa, “Representation of Reference

Architectures: A Systematic Review,” 23rd Int. Conf. Softw. Eng. Knowl. Eng., 2011.

[5] E. Y. Nakagawa, F. Oquendo, and M. Becker, “RAModel: A Reference Model for

Reference Architectures,” in 2012 Joint Working IEEE/IFIP Conference on Software

Architecture and European, 2012, pp. 297–301.

[6] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice, Second Edi.

USA: Addison-Wesley, 2003.

[7] a. J. a. Jansen and J. B. J. Bosch, “Software Architecture as a Set of Architectural

Design Decisions,” 5th Work. IEEE/IFIP Conf. Softw. Archit., 2005.

[8] E. Y. Nakagawa, P. Oliveira Antonino, and M. Becker, “Reference Architecture and

Product Line Architecture: A Subtle But Critical Difference,” in Lecture Notes in

Computer Science (including subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics), vol. 6903 LNCS, I. Crnkovic, V. Gruhn, and M.

Book, Eds. Essen, German: Springer Berlin Heidelberg, 2011, pp. 207–211.

[9] R. Cloutier, G. Muller, D. Verma, R. Nilchiani, E. Hole, and M. Bone, “The Concept

of Reference Architectures,” Syst. Eng., vol. 14, no. 3, 2009.

[10] M. Galster and P. Avgeriou, “Empirically-grounded Reference Architectures: A

Proposal,” in Proceedings of the joint ACM SIGSOFT conference, 2011, p. 153.

132

[11] S. Martínez-Fernández, C. P. Ayala, X. Franch, H. Marques, and D. Ameller,

“Towards Guidelines for Building a Business Case and Gathering Evidence of

Software Reference Architectures in Industry,” J. Softw. Eng. Res. Dev., vol. 2, no.

1, p. 7, 2014.

[12] S. Angelov, P. Grefen, and D. Greefhorst, “A Framework for Analysis and Design of

Software Reference Architectures,” Inf. Softw. Technol., vol. 54, no. 4, pp. 417–431,

Apr. 2012.

[13] S. Martínez-Fernández, C. Ayala, X. Franch, and H. M. Marques, “Artifacts of

Software Reference Architectures: A Case Study,” in Proceedings of the 18th

International Conference on Evaluation and Assessment in Software Engineering -

EASE ’14, 2014, pp. 1–10.

[14] E. Y. Nakagawa, F. Oquendo, and J. C. Maldonado, “Reference Architectures,” in

Software Architecture 1, M. Oussalah, Ed. London: Wiley, 2014, pp. 55–82.

[15] P. Avgeriou, “Describing, Instantiating and Evaluating a Reference Architecture: A

Case Study,” Can. Med. Assoc. J., 2003.

[16] G. Muller and P. van de Laar, “Researching Reference Architectures and Their

Relationship with Frameworks, Methods, Techniques, and Tools,” INSIGHT, vol. 13,

no. 2, pp. 24–30, 2010.

[17] T. R. Gruber, “A Translation Approach to Portable Ontology Specifications,” Knowl.

Acquis., vol. 5, no. 2, pp. 199–220, Jun. 1993.

[18] E. Y. Nakagawa, M. Gonçalves, M. Guessi, L. B. R. Oliveira, and F. Oquendo, “The

State of the Art and Future Perspectives in Systems of Systems Software

Architectures,” in Proceedings of the First International Workshop on Software

Engineering for Systems-of-Systems - SESoS ’13, 2013, pp. 13–20.

[19] J. Gonzalez-Huerta, E. Insfran, and S. Abrah, “Model-Driven Engineering and

Software Development,” vol. 580, pp. 12–31, 2015.

[20] L. Liao, “From Requirements to Architecture: The State of the Art in Software

Architecture Design,” Citeseer, pp. 1–13, 2002.

133

[21] D. Perovich, M. C. Bastarrica, and C. Rojas, “Model-Driven Approach to Software

Architecture Design,” in 2009 ICSE Workshop on Sharing and Reusing Architectural

Knowledge, 2009, pp. 1–8.

[22] T. Srikanth, D. R. Kumar, and M. N. Kumar, “Model Driven Design Method for

Software Architecture,” vol. 2, no. 6, pp. 2816–2821, 2011.

[23] J. Sun, H. H. Wang, and T. Hu, “Design Software Architecture Models using

Ontology,” SEKE 2011 - Proc. 23rd Int. Conf. Softw. Eng. Knowl. Eng., pp. 191–196,

2011.

[24] L. B. R. Oliveira, E. Leroux, K. R. Felizardo, F. Oquendo, and E. Y. Nakagawa,

“Towards a Process to Design Architectures of Service-Oriented Robotic Systems,”

in Software Architecture, Ecsa 2014, vol. 8627, P. Avgeriou and Z. Uwe, Eds.

Vienna, Austria: Springer, 2014, pp. 218–225.

[25] L. B. R. Oliveira, E. Leroux, K. R. Felizardo, F. Oquendo, and E. Y. Nakagawa,

“ArchSORS: A Software Process for Designing Software Architectures of Service-

Oriented Robotic Systems,” Comput. J., vol. 60, no. 9, pp. 1363–1381, Sep. 2017.

[26] F. Pérez-Sorrosal, R. Jiménez-Péris, and M. Patiño-Martínez, “Methodology to Write

Instantiation Guidelines for the NEXOF Reference Architecture,” 2010.

[27] L. R. D. B. Oliveira, “Architectural Design of Service-oriented Robotic Systems,”

Université de Bretagne Sud, 2015.

[28] E. Y. Nakagawa, E. F. Barbosa, and J. C. Maldonado, “Exploring ontologies to

support the establishment of reference architectures: An example on software

testing,” in 2009 Joint Working IEEE/IFIP Conference on Software Architecture and

European Conference on Software Architecture, WICSA/ECSA 2009, 2009, pp. 249–

252.

[29] M. Guessi, S. Carlos, L. B. R. Oliveira, S. Carlos, and S. Carlos, “Towards a Formal

Description of Reference Architectures for Embedded Systems,” in Exploring

Component-based Techniques for Constructing Reference Architectures (CobRA),

2015 1st International Workshop on, 2015, pp. 1–4.

134

[30] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice, Second.

USA: Addison-Wesley, 2003.

[31] R. Kazman, M. Klein, and P. Clements, “ATAM : Method for Architecture

Evaluation,” 2000.

[32] C. Hofmeister, N. Robert, and S. Dilip, Applied Software Architecture. Addison-

Wesley, 2000.

[33] D. GARLAN and M. SHAW, “An Introduction to Software Architecture,” in In

Advances in software engineering and knowledge engineering, vol. 1, no. January,

WORLD SCIENTIFIC, 1993, pp. 1–39.

[34] D. Garlan, “Software Architecture: a Roadmap,” in Proceedings of the conference on

The future of Software engineering - ICSE ’00, 2000, pp. 91–101.

[35] M. H. Valipour, B. Amirzafari, K. N. Maleki, and N. Daneshpour, “A Brief Survey

of Software Architecture Concepts and Service Oriented Architecture,” 2009 2nd

IEEE Int. Conf. Comput. Sci. Inf. Technol., pp. 34–38, 2009.

[36] S. Committee, “IEEE Recommended Practice for Architectural Description of

Software-Intensive Systems,” vol. 1471–2000, no. 42010, p. i-23, 2000.

[37] S. Angelov, J. J. M. Trienekens, and P. Grefen, “Towards a Method for the Evaluation

of Reference Architectures: Experiences from a Case,” in Software Architecture, vol.

5292 LNCS, R. Morrison, D. Balasubramaniam, and K. Falkner, Eds. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2008, pp. 225–240.

[38] G. Muller, “A Reference Architecture Primer,” Eindhoven Univ. Techn., Eindhoven,

White Pap., pp. 0–20, 2012.

[39] S. Angelov, P. Grefen, and D. Greefhorst, “A Classification of Software Reference

Architectures: Analyzing their Success and Effectiveness,” in 2009 Joint Working

IEEE/IFIP Conference on Software Architecture & European Conference on

Software Architecture, 2009, pp. 141–150.

[40] E. Y. Nakagawa, P. Oliveira Antonino, and M. Becker, “Reference Architecture and

Product Line Architecture: A Subtle But Critical Difference,” in Software

135

Architecture: 5th European Conference, ECSA 2011., I. Crnkovic, V. Gruhn, and M.

Book, Eds. Springer, 2011, pp. 207–211.

[41] D. Weyns and T. Holvoet, “A Reference Architecture for Situated Multi-Agent

Systems,” in Environments for Multi-Agent Systems III, vol. 4389, Berlin,

Heidelberg: Springer Berlin Heidelberg, 2007, pp. 1–40.

[42] N. F. D. Filho and E. F. Barbosa, “A Contribution to the Establishment of Reference

Architectures for Mobile Learning Environments,” IEEE Rev. Iberoam. Tecnol. del

Aprendiz., vol. 10, no. 4, pp. 234–241, Nov. 2015.

[43] W. Bumpus, “NIST Cloud Computing Standards Roadmap,” Gaithersburg, MD, Jul.

2013.

[44] A. E. Hassan and R. C. Holt, “A Reference Architecture for Web Servers,” in

Proceedings Seventh Working Conference on Reverse Engineering, 2000, pp. 150–

159.

[45] V. Casola, A. Gaglione, and A. Mazzeo, “A Reference Architecture for Sensor

Networks Integration and Management,” in Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), vol. 5659 LNCS, 2009, pp. 158–168.

[46] C. A. Machado, E. Silva, T. Batista, J. Leite, and E. Nakagawa, “RA-Ubi: A

Reference Architecture for Ubiquitous Computing,” pp. 98–105, 2014.

[47] A. Grosskurth and M. W. Godfrey, “A Reference Architecture for Web Browsers,”

in 21st IEEE International Conference on Software Maintenance (ICSM’05), 2005,

pp. 661–664.

[48] B. Álvarez, A. Iborra, A. Alonso, and J. A. de la Puente, “Reference Architecture for

Robot Teleoperation,” Control Eng. Pract., vol. 9, no. 4, pp. 395–402, Apr. 2001.

[49] J.-M. DeBaud, O. Flege, and P. Knauber, “PuLSE-DSSA — A Method for the

Development of Software Reference Architectures,” Work. Softw. Archit., pp. 25–28,

1998.

[50] P. Kruchten, The Rational Unified Process: An Introduction, Second. Addison-

136

Wesley, 2000.

[51] M. Fowler, UML Distilled: A Brief Guide to the Standard Object Modeling Language,

2nd ed. Addison-Wesley, 2004.

[52] Y. Zhou, Y. Chen, and H. Lu, “UML-based Systems Integration Modeling Technique

for the Design and Development of Intelligent Transportation Management System,”

2004 IEEE Int. Conf. Syst. Man Cybern. (IEEE Cat. No.04CH37583), vol. 7, pp.

6061–6066, 2004.

[53] L. Dobrica and E. Niemelä, “An Approach to Reference Architecture Design for

Different Domains of Embedded Systems,” Proc. 2008 Int. Conf. Softw. Eng. Res.

Pract. SERP 2008, pp. 287–293, 2008.

[54] E. Y. Nakagawa, M. Guessi, J. C. Maldonado, D. Feitosa, and F. Oquendo,

“Consolidating a Process for the Design, Representation, and Evaluation of Reference

Architectures,” Proc. - Work. IEEE/IFIP Conf. Softw. Archit. 2014, WICSA 2014, pp.

143–152, 2014.

[55] N. Arch-int, C. Lursinsup, and P. Sophatsathit, “A Reference Architecture for

Interoperating Existing e-Learning Systems using Metadata and Web Services

Model,” in International Conference on Computational Intelligence for Modelling,

Control and Automation and International Conference on Intelligent Agents, Web

Technologies and Internet Commerce (CIMCA-IAWTIC’06), 2005, vol. 2, pp. 891–

896.

[56] E. Y. Nakagawa, F. C. Ferrari, M. M. F. Sasaki, and J. C. Maldonado, “An Aspect-

oriented Reference Architecture for Software Engineering Environments,” J. Syst.

Softw., vol. 84, no. 10, pp. 1670–1684, 2011.

[57] B. P. Gallagher, “Using the Architecture Tradeoff Analysis Method to Evaluate a

Reference Architecture: A Case Study,” 2000.

[58] ISO/IEC/ IEEE 42010, “Systems and Software Engineering — Architecture

Description,” 2011.

[59] S. Herold, M. Mair, A. Rausch, and I. Schindler, “Checking Conformance with

137

Reference Architectures: A Case Study,” in 2013 17th IEEE International Enterprise

Distributed Object Computing Conference, 2013, pp. 71–80.

[60] S. . MartÃnez-FernÃ¡ndez, C. Ayala, X. . X. Franch, H. M. H. M. . Marques, D. D.

. Ameller, and S. Martinez-Fernandez, “A framework for software reference

architecture analysis and review,” CIbSE 2013 16th Ibero-American Conf. Softw.

Eng. - Memorias del 10th Work. Latinoam. Ing. Softw. Exp. ESELAW 2013, pp. 89–

102, 2013.

[61] F. J. Affonso, K. R. F. Scannavino, L. B. R. Oliveira, and E. Y. Nakagawa,

“Reference Architectures for Self-Managed Software Systems: A Systematic

Literature Review,” in 2014 Eighth Brazilian Symposium on Software Components,

Architectures and Reuse, 2014, pp. 21–31.

[62] M. Galster, “Software Reference Architectures,” in Proceedings of the 1st

International Workshop on Exploring Component-based Techniques for

Constructing Reference Architectures - CobRA ’15, 2015, pp. 5–8.

[63] S. Angelov, J. Trienekens, and R. Kusters, “Software Reference Architectures -

Exploring Their Usage and Design in Practice,” in Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), 2013, 7th Europe., vol. 7957 LNCS, no. July, pp. 17–24.

[64] E. Y. Nakagawa and L. B. R. Oliveira, “Using Systematic Review to Elicit

Requirements of Reference Architectures.,” 2011.

[65] M. Akşit, Software Architectures and Component Technology. Boston, MA: Springer

US, 2002.

[66] D. Weyns, “An Architecture-Centric Approach for Software Engineering with

Situated Multiagent Systems,” Katholieke Universiteit Leuven, 2006.

[67] A. Suganthy and T. Chithralekha, “Domain-Specific Architecture for Software

Agents,” The Journal of Object Technology, vol. 7, no. 6. p. 77, 2008.

[68] D. Weyns and T. Holvoet, “Architecture-Centric Software Development of Situated

Multiagent Systems,” in Engineering Societies in the Agents World VII, vol. 4457

138

LNAI, Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 62–85.

[69] F. Bachmann and L. Bass, “Introduction to the Attribute Driven Design Method,”

Proc. 23rd Int. Conf., pp. 745–746, 2001.

[70] P. Sala, “Part III: The universAAL Reference Architecture for Ambient Assisted

Living,” 2013.

[71] G. Muller, “How Reference Architectures Support the Evolution of Product

Families,” Econ. Aff., 2008.

[72] R. Neches et al., “Enabling Technology for Knowledge Sharing,” Ai Mag., vol. 12,

no. 3, pp. 36–57, 1991.

[73] A. Gómez-Pérez, M. Fernández-López, and O. Corcho, Ontological Engineering:

with examples from the areas of Knowledge Management, e-Commerce and the

Semantic Web. London: Springer-Verlag, 2004.

[74] P. Spyns, R. Meersman, and M. Jarrar, “Data Modelling versus Ontology

Engineering,” ACM SIGMOD Rec., vol. 31, no. 4, p. 12, Dec. 2002.

[75] A. A. Storey et al., “Ontologies for Software Engineering and Software Technology,”

Proc. Natl. Acad. Sci., vol. 104, no. 25, Jun. 2007.

[76] M. R. Genesereth and R. E. Fikes, “Knowledge Interchange Format,” California,

1992.

[77] D. B. Lenat and R. V Guha, Building Large Knowledge-based Systems. Addison-

Wesley Longman Publishing Co., Inc., 1990.

[78] R. M. MacGregor, “Inside the LOOM Description Classifier,” ACM SIGART Bull.,

vol. 2, no. 3, pp. 88–92, Jun. 1991.

[79] O. Lassila and R. R. Swick, “Resource Description Framework(RDF) Model and

Syntax Specification.,” Miscellaneous, no. October, 1999.

[80] F. van Harmelen, P. F. Patel-Schneider, and I. Horrocks, “Reference Description of

the DAML+ OIL Ontology Markup Language,” Contrib. T. Berners-Lee, D. Brickley,

D. Connolly, M. Dean, S. Decker, P. Hayes, J. Heflin, J. Hendler, O. Lassila, D.

139

McGuinness, LA Stein, 2001.

[81] G. K. Saha, “Web Ontology Language: OWL,” Ubiquity, vol. 2007, no. September,

pp. 1–1, Sep. 2007.

[82] F. López, “Overview Of Methodologies For Building Ontologies,” Proc. IJCAI99

Work. Ontol. Probl. Methods Lessons Learn. Futur. Trends CEUR Publ., vol. 1999,

no. 2, pp. 1–13, 1999.

[83] N. F. Noy and D. L. McGuinness, “Ontology Development 101: A Guide to Creating

Your First Ontology,” Artif. Intell. Med., Sep. 2001.

[84] M. Uschold and M. Gruninger, “Ontologies: Principles, Methods and Applications,”

Knowl. Eng. Rev., vol. 11, no. 02, p. 93, 1996.

[85] M. C. Suárez-Figueroa, A. Gómez-Pérez, and M. Fernández-López, “The NeOn

Methodology Framework: A Scenario-based Methodology for Ontology

Development,” Appl. Ontol., vol. 10, no. 2, pp. 107–145, 2015.

[86] D. E. Forbes, P. Wongthongtham, C. Terblanche, and U. Pakdeetrakulwong,

“Ontology Engineering,” in Ontology Engineering Applications in Healthcare and

Workforce Management Systems, vol. 123, Cham: Springer International Publishing,

2018, pp. 27–40.

[87] M. Gruninger, M. S. Fox, and others, “Methodology for the Design and Evaluation

of Ontologies,” Proc. Work. Basic Ontol. Issues Knowl. Sharing, IJCAI, vol. 95, pp.

1–10, 1995.

[88] A. De Nicola, M. Missikoff, and R. Navigli, “A Proposal for a Unified Process for

Ontology Building: UPON,” in DEXA 2005: Proceedings of the 16th International

Conference on Database and Expert Systems Applications, vol. LNCS 3588, 2005,

pp. 655–664.

[89] M. Ferndndez, A. Gomez-Perez, and N. Juristo, “METHONTOLOGY: From

Ontological Art Towards Ontological Engineering Mariano,” in Third International

Conference on Automated Production of Cross Media Content for Multi-Channel

Distribution (AXMEDIS’07), 2007, vol. SS-97-06, pp. 115–122.

140

[90] N. O. Bajnaid, “An Ontological Approach to Model Software Quality Assurance

Knowledge Domain,” 2013.

[91] F. Baader, I. Horrocks, and U. Sattler, “Description Logics as Ontology Languages

for the Semantic Web,” pp. 228–248, 2005.

[92] A. Shehzad, H. Ngo, K. Pham, and S. Lee, “Formal Modeling in Context Aware

Systems,” … Model. Retr. …, 2004.

[93] D. Tsarkov and I. Horrocks, “FaCT++ Description Logic Reasoner: System

Description,” pp. 292–297, 2006.

[94] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz, “Pellet: A practical OWL-

DL reasoner,” Web Semant., vol. 5, no. 2, pp. 51–53, 2007.

[95] V. Haarslev and R. Möller, “RACER System Description,” pp. 701–705, 2001.

[96] P. Kruchten, P. Lago, and H. van Vliet, “Building Up and Reasoning About

Architectural Knowledge,” in Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), vol. 4214 LNCS, 2006, pp. 43–58.

[97] A. Akerman and J. Tyree, “Using Ontology to Support Development of Software

Architectures,” IBM Syst. J., vol. 45, no. 4, pp. 813–825, 2006.

[98] L. Babu T., M. Seetha Ramaiah, T. V. Prabhakar, and D. Rambabu, “ArchVoc-

Towards an Ontology for Software Architecture,” in Second Workshop on Sharing

and Reusing Architectural Knowledge - Architecture, Rationale, and Design Intent

(SHARK/ADI’07: ICSE Workshops 2007), 2007, pp. 5–5.

[99] C. Pahl, S. Giesecke, and W. Hasselbring, “Ontology-Based Modelling of

Architectural Styles,” Inf. Softw. Technol., vol. 51, no. 12, pp. 1739–1749, 2009.

[100] Technical Standard, Service-Oriented Architecture Ontology. The Open Group, 2010.

[101] D. Ameller and X. Franch, “Ontology-Based Architectural Knowledge

Representation: Structural Elements Module,” in Lecture Notes in Business

Information Processing, vol. 83 LNBIP, C. Salinesi and O. Pastor, Eds. Springer

141

Berlin Heidelberg, 2011, pp. 296–301.

[102] P. Kruchten, P. Lago, H. Van Vliet, and T. Wolf, “Building up and Exploiting

Architectural Knowledge,” Proc. - 5th Work. IEEE/IFIP Conf. Softw. Archit. WICSA

2005, vol. 2005, pp. 291–292, 2005.

[103] C. López, V. Codocedo, H. Astudillo, and L. M. Cysneiros, “Bridging the gap

between software architecture rationale formalisms and actual architecture

documents: An ontology-driven approach,” Sci. Comput. Program., vol. 77, no. 1,

pp. 66–80, 2012.

[104] A. Figueiredo, J. Dos Reis, and M. Rodrigues, “Improving Access to Software

Architecture Knowledge An Ontology-based Search Approach,” Int. J. Multimed.

Image Process., vol. 2, no. 1/2, pp. 143–149, 2012.

[105] H. A. Duran-Limon, C. A. Garcia-Rios, F. E. Castillo-Barrera, and R. Capilla, “An

Ontology-Based Product Architecture Derivation Approach,” IEEE Trans. Softw.

Eng., vol. 41, no. 12, pp. 1153–1168, Dec. 2015.

[106] M. L. Roldán, S. Gonnet, and H. Leone, “An Ontology-based Approach for Sharing,

Integrating, and Retrieving Architectural Knowledge,” CLEI 2017 - 43rd Lat. Am.

Comput. Conf., 2017.

[107] N. Choobdaran, S. M. Sharfi, and M. R. Khayyambashi, “An Ontology-Based

Approach For Software Architectural Knowledge Management,” vol. 11, pp. 93–104,

2014.

[108] K. A. de Graaf, P. Liang, A. Tang, W. R. van Hage, and H. van Vliet, “An exploratory

study on ontology engineering for software architecture documentation,” Comput.

Ind., vol. 65, no. 7, pp. 1053–1064, Sep. 2014.

[109] C. R. Kothari, Research Methodology. Methods and Techniques. New Age

International, 2004.

[110] M. Saunders, P. Lewis, and A. Thornhill, Research Methods for Business Students,

4th ed. Harlow: Pearson Education Limited, 2007.

[111] J. Collis and R. Hussey, Business Research: A Practical Guide for Undergraduate

142

and Postgraduate Students, 2nd ed. Houndmills, Basingstoke, Hampshire, Palgrave-

Macmillan, 2003.

[112] J. Hussey and R. Hussey, Business Research: A Practical Guide for Undergraduate

and Postgraduate Students. London: Macmillan Press Ltd, 1997.

[113] R. Cavana, B. L. Delahaye, and U. Sekaran, Applied Business Research: Qualitative

and Quantitative Methods. John Wiley & Sons Australia, Milton, Queensland, 2001.

[114] S. Uma and B. Roger, Research Methods for Business: A Skill Building Approach,

4th ed. John Wiley & Sons, 2013.

[115] P. Ghauri and K. Gronhaug, Research Methods in Business Studies, Third. Prentice

Hall, 2005.

[116] J. Collis and R. Hussey, Business Research, Third. Palgrave-Macmillan, 2009.

[117] B. J. Oates, Researching Information Systems and Computing. Sage, 2005.

[118] M. Saunders, P. Lewis, and A. Thornhill, Research Methods for Business Students,

6th ed. Pearson, 2012.

[119] R. Weber, “The Rhetoric of Positivism Versus Interpretivism: A Personal View,” MIS

Q., vol. 28, no. 1, pp. iii–xii, 2004.

[120] R. K. Yin, Case Study Research: Design and Methods, Second. Thousand Oaks: Sage

Publications, 1994.

[121] A. Bryman and E. Bell, Business Research Methods, 3rd ed. Oxford, 2011.

[122] D. Gray, Doing Research in the Real World, 3rd ed. Sage Publications, 2014.

[123] D. Silverman, Qualitative Research, 3rd ed. London: Sage Publications, 2010.

[124] J. W. Creswell, Research Design: Qualitative, Quantitative and Mixed Methods

Approaches, Third. SAGA, 2013.

[125] J. W. Creswell, Qualitative Inquiry and Research Design: Choosing Among Five

Approaches, 3d ed. Thousand Oaks: Sage Publications, 2012.

143

[126] M. Saunders, P. Lewis, and A. Thornhill, Research Methods for Business Students.

Prentice Hall, 2009.

[127] R. K. Yin, Case Study Research: Design and Methods, 3rd ed. California: Sage

Publications, 2003.

[128] M. Q. Patton, Qualitative Evaluation and Research Methods. SAGE Publications,

inc, 1990.

[129] A. Fink, How to Analyze Survey Data. SAGE, 1995.

[130] B. A. Kitchenham and S. L. Pfleeger, “Personal Opinion Surveys,” in Guide to

Advanced Empirical Software Engineering, London: Springer London, 2008, pp. 63–

92.

[131] M. Van Der Velde, P. Jansen, and N. Anderson, Guide to Management Research

Methods. 2004.

[132] U. Sekaran and R. Bougie, Research Methods for Business: A Skill Building

Approach, 4th ed. John Wiley & Sons, 2010.

[133] E. M. Trauth, Qualitative Research in IS. IGI Global, 2001.

[134] J. Kim and J. F. Courtney, “A Survey of Knowledge Acquisition Techniques and

Their Relevance to Managerial Problem Domains,” Decis. Support Syst., vol. 4, no.

3, pp. 269–284, 1988.

[135] D. I. Moldovan, R. Girju, and V. Rus, “Domain-Specific Knowledge Acquisition

from Text,” Proc. 6th Conf. Appl. Nat. Lang. Process., no. 1, pp. 268–275, 2000.

[136] V. C. Storey, V. Sugumaran, and Y. Ding, “A Semi-automatic Approach to Extracting

Common Sense Knowledge from Knowledge Sources,” Nat. Lang. Process. Inf. Syst.,

pp. 322–332, 2005.

[137] S. P. Overmyer, L. Benoit, and R. Owen, “Conceptual Modeling through Linguistic

Analysis Using LIDA,” Proc. 23rd Int. Conf. Softw. Eng. ICSE 2001, pp. 401–410,

2001.

[138] B. Gelfand, M. Wulfekuler, and W. Punch, “Automated Concept Extraction from

144

Plain Text,” AAAI 1998 Work. Text …, pp. 1–7, 1998.

[139] H. M. Harmain and R. Gaizauskas, “CM-Builder: A Natural Language-Based CASE

Tool for Object-Oriented Analysis,” Autom. Softw. Eng., vol. 10, no. 2, pp. 157–181,

2003.

[140] D. Tsarkov and I. Horrocks, “FaCT++ Description Logic Reasoner: System

Description,” pp. 292–297, 2006.

[141] A. Jedlitschka, M. Ciolkowski, and D. Pfahl, “Reporting Experiments in Software

Engineering,” Guid. to Adv. Empir. Softw. Eng., pp. 201–228, 2008.

[142] V. R. Basili, “Software Modeling and Measurement: The Goal/Question/Metric

Paradigm,” Quality. p. 24, 1992.

[143] V. R. Basili, G. Caldiera, and H. D. Rombach, “The Goal, Metric, and Question

Approach,” in In Encyclopedia of Software Engineering, Wiley, 1994.

[144] U. Frank, “Evaluation of Reference Models,” Ref. Model. Bus. Syst. Anal., no. 6, pp.

118–140, 2007.

[145] ISO, “Systems and Software Engineering - Architecture Description,” ISO/IEC/IEEE

42010, pp. 1–46, 2011.

[146] I. Groher and R. Weinreich, “Integrating Variability Management and Software

Architecture,” in 2012 Joint Working IEEE/IFIP Conference on Software

Architecture and European Conference on Software Architecture, 2012, pp. 262–266.

[147] E. Y. Nakagawa and J. C. Maldonado, “Reference Architecture Knowledge

Representation: An Experience,” in Proceedings of the 3rd international workshop

on Sharing and reusing architectural knowledge - SHARK ’08, 2008, p. 51.

[148] H. Koziolek, “Goal, Question, Metric,” in Dependability Metrics, vol. 4909 LNCS,

Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 39–42.

[149] E. P. Cox, “The Optimal Number of Response Alternatives for a Scale: A Review,”

J. Mark. Res., vol. 17, no. 4, p. 407, 1980.

[150] K. Finstad, “Response Interpolation and Scale Sensitivity: Evidence Against 5-Point

145

Scales,” J. Usability Stud., vol. 5, no. 3, pp. 104–110, 2010.

[151] R. Likert, “A Technique for the Measurement of Attitudes,” The Science Press, New

York, 1932.

[152] A. Grosskurth and M. Godfrey, “Architecture and Evolution of the Modern Web

Browser,” Prepr. Submitt. to Elsevier Sci., no. June, pp. 1–24, 2006.

[153] K. Tei, R. Shimizu, Y. Fukazawa, and S. Honiden, “Model-Driven-Development-

Based Stepwise Software Development Process,” Syst. Man, Cybern. Syst. IEEE

Trans., vol. 45, no. 4, pp. 675–687, 2015.

[154] M. A. Chauhan, “Foundations for Tools as a Service Workspace: A Reference

Architecture,” IT University of Copenhagen, Cambridge, 2015.

[155] D. Dermeval, T. Tenório, I. I. Bittencourt, A. Silva, S. Isotani, and M. Ribeiro,

“Ontology-based feature modeling: An empirical study in changing scenarios,”

Expert Syst. Appl., vol. 42, no. 11, pp. 4950–4964, 2015.

[156] A. Elsts, J. Judvaitis, and L. Selavo, “SEAL: A Domain-Specific Language for

Novice Wireless Sensor Network Programmers,” Proc. - 39th Euromicro Conf. Ser.

Softw. Eng. Adv. Appl. SEAA 2013, pp. 220–227, 2013.

[157] K. A. De Graaf, A. Tang, P. Liang, and H. Van Vliet, “Ontology-based software

architecture documentation,” Proc. 2012 Jt. Work. Conf. Softw. Archit. 6th Eur. Conf.

Softw. Archit. WICSA/ECSA 2012, pp. 121–130, 2012.

[158] J. R. A. Santos, “Cronbach’s Alpha: A Tool for Assessing the Reliability of Scales,”

J. Ext., vol. 37, no. 2, pp. 1–5, 1999.

[159] F. Shull, J. Singer, and D. I. K. Sjøberg, Guide to Advanced Empirical Software

Engineering. 2008.

[160] L. B. R. de Oliveira, K. R. Felizardo, D. Feitosa, and E. Y. Nakagawa, “Reference

Models and Reference Architectures Based on Service-Oriented Architecture: A

Systematic Review,” Softw. Archit., no. 6285, pp. 360–367, 2010.

[161] E. Y. Nakagawa, “Reference Architectures and Variability: Current Status and Future

146

Perspectives,” in RProceedings of the WICSA/ECSA 2012, 2012, pp. 159–162.

[162] M. Guessi, L. B. R. de Oliveira, and E. Y. Nakagawa, “Current State on

Representation of Reference Architectures,” no. 363, pp. 1–29, 2011.

[163] E. Y. Nakagawa, E. F. Barbosa, and J. C. Maldonado, “Exploring Ontologies to

Support the Establishment of Reference Architectures: An Example on Software

Testing,” in 2009 Joint Working IEEE/IFIP Conference on Software Architecture &

European, 2009, pp. 249–252.

[164] P. Reed, Reference architecture: The best of best practices. The Rational Edge, 2002.

[165] N. F. D. Filho and E. F. Barbosa, “A Service-Oriented Reference Architecture for

Mobile Learning Environments,” in 2014 IEEE Frontiers in Education Conference

(FIE) Proceedings, 2014, no. Icmc, pp. 1–8.

[166] L. T. C. E. Mettala and M. H. Graham, “The Domain Specific Software Architecture

Program,” Proc. DARPA Softw. Technol. Conf., no. June, 1992.

[167] F. J. Ortiz, J. A. Pastor, D. Alonso, F. Losilla, and E. de J\’ odar, “A Reference

Architecture for Managing Variability among Teleoperated Service Robots,” 2nd Int.

Conf. Informatics Control. Autom. Robot., pp. 322–328, 2005.

[168] J. M. T. Portocarrero, F. C. Delicato, P. F. Pires, E. Y. Nakagawa, and F. Oquendo,

“Self-Adaptive middleware for wireless sensor networks: A reference architecture,”

ACM Int. Conf. Proceeding Ser., vol. 07–11–Sept, 2015.

147

APPENDICES

Appendix A: List of Included Studies

This appendix shows the studies that are used to define the initial general vocabularies.

No. Study title Ref.

1. The Past, Present, and Future for Software Architecture [2]

2. Representation of Reference Architectures: A Systematic Review [4]

3. The Concept of Reference Architectures [9]

4. Empirically-grounded Reference Architectures: A Proposal [10]

5.
Researching Reference Architectures and Their Relationship with

Frameworks, Methods, Techniques, and Tools
[16]

6.
Towards a Formal Description of Reference Architectures for Embedded

Systems
[29]

7. An Introduction to Software Architecture [58]

8.
IEEE Recommended Practice for Architectural Description of Software-

Intensive Systems
[36]

9.
An Approach to Reference Architecture Design for Different Domains of

Embedded Systems
[53]

10.
An Aspect-oriented Reference Architecture for Software Engineering

Environments
[56]

11. Reference Architecture Knowledge Representation: An Experience [147]

12.
Reference Models and Reference Architectures Based on Service-Oriented

Architecture: A Systematic Review
[160]

13.
Reference Architectures and Variability: Current Status and Future

Perspectives
[161]

14. Current State on Representation of Reference Architectures [162]

15.
Exploring Ontologies to Support the Establishment of Reference

Architectures: An Example on Software Testing
[163]

148

16. Reference architecture: The best of best practices [164]

17.
A Service-Oriented Reference Architecture for Mobile Learning

Environments
[165]

18. The Domain Specific Software Architecture Program [166]

19.
A Reference Architecture for Managing Variability among Teleoperated

Service Robots
[167]

20.
Self-adaptive middleware for wireless sensor networks: A reference

architecture
[168]

21.
A Reference Architecture for Managing Variability among Teleoperated

Service Robots
[167]

149

Appendix B: Vocabulary of the Case Studies

This appendix shows vocabularies which were used in each case study.

B.1: Vocabulary of the First Case Study - The Reference Architecture of

the Situated Multi-Agent System

No. Vocabulary No. Vocabulary No. Vocabulary

1. System 2. Subsystem 3. Module

4. Element 5. Unit 6. Component

7. View 8.
Module

Decomposition View
9.

Component and

Connector View

10.

Component and

Connector Shared

Data View

11.

Component and

Connector

Communicating

Processes View

12. Stakeholder

13.
Maintenance

Engineer
14. Project Manager 15. Architect

16. User 17. Developer 18. Function

19. Activity 20. Mechanism 21. Constraint

22. Data 23. Repository 24. Knowledge

25. Process 26. Resource 27. Hardware Resource

28. Software Resource 29. Responsibility 30. Service

31. Property 32. Interface 33. Observe Interface

34. Send Interface 35. Deliver Interface 36. Perceive Interface

37. Request Interface 38. Read-write Interface 39. Act Interface

40. Transmit Interface 41. Receive Interface 42. Update Interface

43. Influence Interface 44. Sense Interface 45.
Connector

Component

46.
Data Accessor

Component
47.

Representation

Generator

Component

48.

Observation & Data

Processing

Component

49.

Communication

Mediation

Component

50.
Concurrent Unit

Component
51.

Synchronization &

Data Processing

Component

52.
Communication

Service Component
53.

Low-Level Control

Component
54.

Interaction

Component

150

No. Vocabulary No. Vocabulary No. Vocabulary

55.
Communication

Subsystem
56.

Perception

Subsystem
57. Agent Subsystem

58.
Decision-making

Subsystem
59.

Application

Environment

Subsystem

60. Has a

61. Is part of 62. Enable 63. Access to

64. Is a 65. Describe 66. Decomposed into

67. Use 68. Consist of 69. Execute

70. Include 71. Define 72. Provide

151

B.2: Vocabulary of the Second Case Study - The Reference Architecture

of the Mobile Learning Environments

No. Vocabulary No. Vocabulary No. Vocabulary

1. View 2. General View 3. Module View

4. Runtime View 5. Deployment View 6. Element

7. Information 8. Function 9. Role

10. XML Protocol 11. SOAP Protocol 12. User

13. Mobile Device 14. Web Server 15. Browser

16. Module 17. Controller Module 18.
Services Engine

Module

19. Teaching Module 20.
Administration

Module
21.

Personalization

Module

22. Access Module 23.
Communication

Module
24.

Documentation

Module

25. Authoring Module 26. Mechanism 27. Feature

28. Service 29. Knowledge 30. Security

31. Activity 32. Database 33. Data

34. Request 35. Analyse 36. Perform

37. Change 38. Define 39. Located

40. Task 41. Use 42. Describe

43. Store 44. Retrieve 45. Return

46. Enable 47. Receive 48. Consume

49. Exchange 50. Produce 51. Control

52. Represent 53. Consist of 54. Establish

55. Provide 56. Access to 57.

152

B.3: Vocabulary of the Third Case Study - The Reference Architecture of

the Cloud Computing

No. Vocabulary No. Vocabulary No. Vocabulary

1. Define 2. Describe 3. View

4. Actor 5. Activity 6. Function

7. Constraint 8. Person 9. Resource

10. Hardware Resource 11. Software Resource 12. Service

13. SaaS 14. PaaS 15. IaaS

16. Tool 17. Security 18. Role

19. Process 20.
Developing

Application
21.

Managing

Application

22.
Deploying

Application
23. Testing Application 24.

Monitoring

Application

25. Instance of 26. Use 27. Attribute

28. Include 29. Consume 30. Manage

31. Is 32. Has 33. Produce

34. Execute 35. Require 36. Consist of

37. Apply to 38. Used by 39. Access to

40.
Cloud Provider

Actor
41. Cloud Auditor Actor 42.

Cloud Consumer

Actor

43. Cloud Carrier Actor 44. Cloud Broker Actor 45.

153

B.4: Vocabulary of the Forth Case Study - The Reference Architecture of

the Web Servers

No. Vocabulary No. Vocabulary No. Vocabulary

1. Component 2. Constraint 3. Encompasses

4. System 5. Subsystem 6. User

7. Developer 8. Security 9. Is

10. Resource 11. HTML 12. Text File

13. Service 14. Daily News Service 15. Email Service

16. Architectural Style 17. Pipe-Filter Style 18.
Layered

Architectural Style

19. Program 20.
Java Servlet

Program
21.

Common Gateway

Interface Program

22. Protocol 23.
Hyper Text Transfer

Protocol
24. Consist of

25. Network 26. Computer 27. Describe

28. Instance of 29. Define 30. Is part of

31. Use 32. Control 33. Apply to

34. Operating System 35. Include 36. Require

37. Browser 38.
Netscape Navigator

Browser
39. Lynx Browser

40.
Internet Explorer

Browser
41.

Transaction Log

Subsystem
42.

Request Analyser

Subsystem

43.
OS Abstraction

Layer Subsystem
44.

Resource Handler

Subsystem
45.

Reception

Subsystem

46.
Access Control

Subsystem
47. Utility Subsystem 48.

154

B.5: Vocabulary of the Fifth Case Study - The Reference Architecture of

the Sensor Networks Integration and Management System

No. Vocabulary No. Vocabulary No. Vocabulary

1. System 2. Component 3. Wrapper Component

4.
Mediator

Component
5. Describe 6. Include

7. Module 8.

Mediator

Communications

Module

9.

Network

Classification

Module

10. Architecture Style 11.
Layered Architecture

Style
12.

Query Processing

Module

13. Responsibility 14. Interface 15. Mediator Interface

16. Network Interface 17.

Wrapper

Communications

Module

18.

User

Communications

Module

19. Protocol 20. Provide 21. Sensor Component

22.
Communication

Manager Component
23. Network Component 24.

Access Manager

Component

25.
Query Builder

Component
26.

Result Viewer

Component
27. User Interface

28. Wrapper Interface 29. Information 30. Use a/an

31. Repository 32.
Network Changes

Handler Component
33.

Network Discovery

Component

34.
Query Analyser

Component
35.

Query Engine

Component
36.

Results Handler

Component

37.
Request Interpreter

Component
38. Access to 39. Is a/an

40. Has a/an 41. Used by 42.

155

B.6: Vocabulary of the Sixth Case Study - The reference architecture of

the Ubiquitous Computing

No. Vocabulary No. Vocabulary No. Vocabulary

1. View 2. Component View 3. Deployment View

4. Process View 5.
Layered

Architectural Style
6. System

7. Element 8. Component 9. Is a

10. Task 11. Interface 12. User

13. Use 14. Activity 15. Process

16. Information 17. Data 18. Sensor Component

19. Actuator Component 20.
Context Service

Component
21.

Actuation Service

Component

22.
Context Repository

Component
23. Context Component 24.

Reasoning

Component

25.
Adaptation

Component
26.

Coupling and

Mobility Mechanism

Component

27.
Aggregation

Component

28. Security 29. Module 30. Service

31. Constraint 32. Responsibility 33. Has

34. Encompasses 35. Function 36. Include

37. Attribute 38. Provide 39. Repository

40. Feature 41. Describe 42. Access to

43. Collect 44. Property 45.

156

B.7: Vocabulary of the Reference Architecture of the Web Browsers

No. Vocabulary No. Vocabulary No. Vocabulary

1. System 2.
Web Browser

System
3. Subsystem

4.
Networking

Subsystem
5.

Rendering Engine

Subsystem
6.

Browser Engine

Subsystem

7.
User Interface

Subsystem
8.

JavaScript

Interpreter

Subsystem

9.
Data Persistence

Subsystem

10.
Display Backend

Subsystem
11.

XML Parser

Subsystem
12. Resource

13. Function 14. Resource Hardware 15. Computer

16. Cell Phones 17. Web Page 18. Web Server

19. HTML 20. HTTP 21. Feature

22. Toolbars Feature 23.
Smart Download

Handling Feature
24. Preferences Feature

25. Printing Feature 26.
Visual Page-load

Progress Feature
27. Hooks Feature

28.
Set of User Interface

Widgets Feature
29.

Drawing and

Windowing

Primitives Feature

30. Fonts Feature

31.
Layered

Architectural Style
32.

Cascading Style

Sheets
33. User

34. Component 35. Curses Component 36.
GTK+ Adapter

Component

37. wwwlib Component 38.
UI Toolkit (XPEE)

Component
39. Browser Component

40.

Querying and

Manipulation of the

Rendering Engine

41.
User interface

Component
42.

GTK+ / X11

Libraries Component

43.
Security (Libgnutls)

Component
44. Necko Component 45. Secure component

46. Persist Component 47.
Spider−Monkey

Component
48.

Security (NSS/PSM)

Component

49. Expat Component 50.
HTML Parser

Component
51. Disk

52. Data 53. Cookies Data 54. Bookmarks Data

55. JavaScript Code 56. FTP 57. HTTP

58. XML 59.
Visual

Representation
60. Calculate a

61. Access to 62. Allow a 63. Apply to

157

No. Vocabulary No. Vocabulary No. Vocabulary

64.
Connect to/ Connect

a
65. Display a 66. Evaluate a

67. Has a 68. Implement a 69. Include a

70. Parse a 71. Produce a 72. Provide a

73. Represented as 74. Store in/ Stored in 75. Support a

76. Written by 77.
Execute on/ Execute

a
78. Provide feature to

79. Used by/Use a 80. Load a 81.

158

B.8: Vocabulary of the Reference Architecture of the Robot Teleoperation

No. Vocabulary No. Vocabulary No. Vocabulary

1. System 2. Subsystem 3. Module

4. Component 5. Element 6. Architectural Style

7.
Client-Server

Architectural Styles
8.

Communicating

Process

Architectural Style

9.
Layered

Architectural Styles

10. Function 11. Activity 12. User

13. Describe 14. Property 15. Service

16. Is a 17. Network 18. Mechanism

19. Data 20. Information 21. Resource

22. Hardware Resource 23. Software Resource 24. Operating system

25.
Communication

Subsystem
26. Protocol 27.

Programming

Language

28.
Collisions Detection

Subsystem
29.

User Interface

Subsystem
30.

Controller

Subsystem

31.

Graphical

Representation

Subsystem

32. Tool 33. Camera

34. Sensor 35. Computer 36. Send

37. Light 38. Include 39. Develop

40. Provide 41. Require 42. Consist of

43. Exchange 44. Request 45. Has a

46. Use a 47. Receive 48. Update

49. Execute

159

Appendix C: General Vocabulary

This appendix illustrates the general vocabulary that describes the entities and

relationships.

C.1: General Vocabulary that Describes Entities

No. Vocabulary No. Vocabulary No. Vocabulary

1. View 2. System 3. Subsystem

4. Stakeholder 5. Function 6. Task

7. Resource 8. Protocol 9. Interface

10. Data 11. Concern 12. Service

13. Responsibility 14. Activity 15. Mechanism

16. Information 17. Component 18. Architectural Style

19. Security 20. Process 21. Tool

22. Attribute 23. Repository 24. Knowledge

25. Feature 26. Role 27.

C.2: General Vocabulary that Describes the Relationships

No. Vocabulary No. Vocabulary No. Vocabulary

1. Require 2. Enable 3. Store

4. Apply to 5. Include 6. Is a

7. Describe 8. Produce 9. Composed of

10. Consume 11. Has a 12. Used by

13. Access to 14. Provide 15. Analyse

16. Perform 17. Retrieve 18. Return

19. Control 20. Manage 21. Instance of

22. Change 23. Encompasses 24. Decomposed into

160

No. Vocabulary No. Vocabulary No. Vocabulary

25. Consist of 26. Use a 27. Exchange

28. Define 29. Execute 30. Receive

31. Is part of 32. Request 33.

161

Appendix D: User Study Experiment

D.1: Ethical Approval Letter

This appendix shows the ethical approval letter.

162

D.2: Research Participant’s Consent Form

This appendix shows the research participant consent form.

163

D.3: Pre-experiment Questions

No. Question Answer

1.
Study Background (Example: software

engineering)

2. What is your current education level?

☐ Bachelor's Degree

☐ Master

☐ Doctorate

☐ Post-Doctorate

☐ Other

3.
What is the area related to your current

education level?

☐ Software

Engineering

☐ Information

System

☐ Computer Science

☐ Other

4.
How would you rate your knowledge in

software system architectures development?

☐ Beginner

☐ Intermediate

☐ Expert

☐ No information

5.
How do you rate your development skills

proficiency?

☐ Advance

☐ Intermediate

☐ Basic

☐ No skill

6.
Have you developed a software system

architecture?

☐ Yes

☐ No

7.
Have you used a reference architecture

before?

☐ Yes

☐ No

164

D.4: Post-experiment Questions

Goal Metrics
No

.
Statement Scale

Introductory Questions

1.
The given tutorials and

presentation were easy

to understand.

☐ Very Easy 5

☐ Easy 4

☐ Neutral 3

☐ Difficult 2

☐ Very Difficult 1

2. The descriptions of the

tasks were clear.

☐ Strongly Agree 5

☐ Agree 4

☐ Neutral 3

☐ Disagree 2

☐ Strongly

Disagree
1

Usability

Complexity

3.

How do you find the

development of

software system

architecture?

☐ Very Easy 5

☐ Easy 4

☐ Neutral 3

☐ Difficult 2

☐ Very Difficult 1

4.

How do you evaluate

the difficulty in finding

the components of the

reference architecture?

☐ Very Easy 5

☐ Easy 4

☐ Neutral 3

☐ Difficult 2

☐ Very Difficult 1

5.

How do you evaluate

the difficulty in finding

the relationships

between the

components of the

reference architecture?

☐ Very Easy 5

☐ Easy 4

☐ Neutral 3

☐ Difficult 2

☐ Very Difficult 1

Traceability
6.

The components of a

reference architecture

are easily traceable by

developers.

☐ Strongly Agree 5

☐ Agree 4

☐ Neutral 3

☐ Disagree 2

☐ Strongly

Disagree
1

Understandabil

ity

7. The description of

components is easy to

☐ Very Easy 5

☐ Easy 4

☐ Neutral 3

165

understand by

developers.
☐ Difficult 2

☐ Very Difficult 1

8.

The description of

relationships between

the components is easy

to understand by

developers.

☐ Very Easy 5

☐ Easy 4

☐ Neutral 3

☐ Difficult 2

☐ Very Difficult 1

Clarity

9.

The components of a

reference architecture

are presented in an

organised and structural

way.

☐ Strongly Agree 5

☐ Agree 4

☐ Neutral 3

☐ Disagree 2

☐ Strongly

Disagree
1

10.
The relationships of a

reference architecture

are presented clearly.

☐ Strongly Agree 5

☐ Agree 4

☐ Neutral 3

☐ Disagree 2

☐ Strongly

Disagree
1

Open Question

11.

Do you have any

recommendations to

improve the proposed

process? If yes, please

write them here

☐ Yes

☐ No

If yes, please write your

comments…….

