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Reproduced audio is often accompanied with visuals (i.e., television, virtual reality, gaming,
and cinema). However, the audio technology for these systems is often researched and evaluated
in isolation from the visual component. Previous research indicates that the auditory and visual
modalities are not processed separately. For example, visual stimuli can influence ratings of
audio quality and vice versa. This paper presents an experiment to investigate the influence
of visual stimuli on a set of attributes relevant to the perception of spatial audio. Eighteen
participants took part in a paired comparison listening test where they were asked to judge
pairs of stimuli rendered to 14-, 5-, and 2-channel systems using 10 perceptual attributes.
The stimuli were presented in audio only and audio-visual conditions. The results show a
significant and large main effect of the loudspeaker configuration for all the tested attributes
other than overall spectral balance and depth of field. The effect of visual stimuli was found
to be small and significant for the attributes realism, sense of space, and spatial clarity. These
results suggest that evaluations of audio-visual technologies aiming to evoke a sense of realism

or presence should consider the influence of both the audio and visual modalities.

1 INTRODUCTION

There has been an increase of interest in spatial audio
in recent years, facilitated in part by advances in object-
based audio technology and the proliferation of binaural
rendering in virtual reality and 360° applications. This is
reflected in research (for example, the S3A [1] and OR-
PHEUS [2] projects have investigated end-to-end object
based pipelines), the standardization of formats and meta-
data models (e.g., MPEG-H [3] and the Audio Definition
Model [4]), and the availability of spatial audio Software
Developer Kits [5-7]. Audio systems are typically eval-
uated by eliciting and rating perceptual attributes [8—12].
Despite the fact that reproduced sound is often experienced
alongside a visual component (i.e., television, cinema, vir-
tual reality (VR), and augmented reality (AR)), the per-
ceptual evaluation of audio systems typically does not take
into account the influence of visual stimuli. As such it is
currently not known what impact the presence of visuals
has on the perception of spatial audio.

There are several studies demonstrating that the auditory
and visual modalities are not processed independently [13].
The perceived location of an auditory object can be influ-
enced by visual stimuli [14, 15]—commonly referred to as
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the ventriloquist effect—or by the direction of the listener’s
gaze [16]. Speech perception has been shown to be influ-
enced by visual stimuli via the so called McGurk effect [17];
when an utterance of the syllable ba is dubbed onto a video
of a person uttering the syllable ga, most listeners report
hearing the syllable da. Auditory-visual interaction effects
have also been measured physiologically. Shams et al. [18]
demonstrated that when a single flash is accompanied by
two auditory beeps, two flashes are perceived and the ac-
tivity in the visual cortex for the illusory flash is similar to
that evoked by a real flash.

The presence of visual stimuli has been shown to have
an effect on preference and quality ratings for reproduced
audio. Iwamiya [19] found that subjective evaluations of
quality for both audio and video increased when the two
modalities were combined, compared to when presented in
isolation. A study into the interaction between audio and
visual factors in a home theater system [20, 21] showed
that both the audio reproduction method and the screen size
influenced the mean rating of the attribute space. Hollier
etal. [22] found that perceived audio quality increased when
the audio is accompanied by visuals. Rumsey et al. [23]
investigated the effect of visual stimuli on naive listener
ratings of preference. The presence of visuals was found to
have a statistically significant but small effect on listener
preference—an interaction effect between the presence of
visuals and the type of program material was also found.
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Rojas et al. [24] investigated the effect of auditory stimuli
on perceived visual fidelity in stereoscopic 3D and found
that when white noise was presented concurrently with an
image, ratings of visual fidelity were consistently reduced.

Interactions between the auditory and visual modalities
have been studied in the context of music. Iwamiya [19]
investigated the effects of matched and mismatched (i.e.,
videos with the “wrong” audio tracks) audio-visual content
on the perception of music. Average ratings of congru-
ence were found to be significantly higher for the matched
stimuli than the mismatched stimuli. Platz and Kopiez [25]
conducted a meta-analysis of studies into the influence of
the visual modality on evaluations of music performance.
Aggregating the results from 15 previous studies revealed
that the influence of the visual component has a medium ef-
fect size (quantified using Cohen’s d). Hendrickx et al. [26]
conducted an experiment on audio-visual coherence dur-
ing live music performances. In a perceptual evaluation of
two different mixes of the same performance, it was found
that listeners preferred the mix with audio-visual coherence
when a video was presented but a spatially unconstrained
mix when no video was presented.

Audio-visual interaction has also been investigated in the
context of virtual environments. Doukakis et al. [27] inves-
tigated the trade-off in the allocation of computational re-
sources between audio and visual rendering with respect to
perceived quality of virtual environments. It was found that
the visual component dominated quality ratings initially
when the available resources were low, but the difference
in importance between the two modalities decreased as the
available computational resources increased. Riecke et al.
[28] found that auditory stimuli can increase the perception
of self-motion and presence in virtual environments.

The presence of visual stimuli has been found to influ-
ence the perception of soundscapes. Villon et al. [29] found
that visuals of urban settings resulted in more negative rat-
ings of soundscapes. Similarly, Hong and Jong [30] found
that presenting images of vegetation significantly increased
soundscape preference. Preis et al. [31] found significant
differences in self reported comfort between reproduced
soundscapes with and without a visual component. Visuals
have also been found to have an effect on noise annoyance
[32, 33] and the perceived effectiveness of noise barriers
[34]. Conversely, Cain et al. [35] found that presenting
urban soundscapes with and without visuals had no signif-
icant effect on semantic differential ratings of soundscape
perception.

Considering the above, it is clear that there is an in-
teraction between the auditory and visual modalities. This
interaction can affect lower-level features such as localiza-
tion [14, 15] and higher-level features such as preference
[22,23] and annoyance [32, 33]. Although presenting audio
with a corresponding visual component has been shown to
have an effect on preference for different audio reproduc-
tion methods, it is currently not known which perceptual
attributes of spatial audio this affect.

There have been numerous studies that have aimed to
elicit perceptual attributes for reproduced sound. These
studies generally result in a non-orthogonal set of attributes
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describing various timbral (such as clarity and coloration)
and spatial (such as envelopment and horizontal width)
perceptual attributes [36—41, 9, 10, 42]. A recent study by
Francombe et al. [11, 12] systematically determined which
perceptual attributes contribute to the listener preference
of reproduced audio. The study included a wide range of
reproduction methods including systems with height up to
and including a 22.2 system. Groups of expert and non-
expert listeners took part in an elicitation experiment that
resulted in two sets of attributes (one for each of the listener
groups) covering a range of timbral and spatial attributes as
well as higher-level attributes such as realism and sense of
space. This attribute set is utilized in the present study (see
Sec. 2.4).

This paper presents the results of a paired comparison at-
tribute rating experiment that aims to address the research
question “Does the presence of visual stimuli influence per-
ceptual attributes of spatial audio reproduced over loud-
speakers?” The following section describes the design and
implementation of an experiment to address this question.
Secs. 3 and 4 present the results of the experiment and dis-
cuss their implications. Finally, conclusions are presented
in Sec. 5.

2 METHOD

2.1 Participants

Eighteen participants took part in the experiment. All of
the participants were experienced in taking part in formal
listening experiments and reported normal hearing at the
time of the experiment. The mean age of the participants
was 29.9 years (standard deviation 8.8). Ten participants
were male, five participants were female, and three did not
provide this information. Ethical approval for the experi-
ment was obtained from the University of Salford Ethics
Committee. The participants were paid £10 for their time.

2.2 Apparatus

The experiment took place in the audio booth at the
University of Salford. This room consists of 18 Genelec
8030A loudspeakers (only 16 speakers were used in the ex-
periment); 10 speakers are located in the horizontal plane
(positioned at azimuths +0°, +30°, +45°, +90°, +135°,
+180°, —30°, —45°, —90°, —135°), 4 at approximately
+30° elevation (positioned at azimuths +45°, +135°, —45°,
—135°), and 4 at approximately —30° elevation (positioned
at azimuths +45°, +135°, —45°, —135°). The speakers are
1.35 m from the center of the array. The reverberation time
of the room is around 0.1 s. The level of the loudspeakers
were adjusted to produce the same A-weighted equivalent
sound level (Ly,) (£ 0.5 dB) for a pink noise signal at the
central listening position.

Visuals were reproduced via a 42.5 inch Philips
BBDLA4330QL Full HD display, mounted on the front wall
of the room. The size of the display was selected to conform
with the recommendations in ITU-R BT.710-4 [43] for the
viewing distance in the audio booth.
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(a) Sintel

(c) Turning Forest

(b) BBC Proms

Fig. 1. Screenshots of the three program items used in the experiment.

2.3 Stimuli

Three different program items were used in the exper-
iment, each of which included accompanying moving vi-
suals that were part of the original program. The program
items were:

e Sintel, a CGI action movie. The scene consists of
the protagonist fighting a dragon and contains action
sounds and non-diegetic music. The scene contains
no dialogue. The video contains a number of cuts,
and there is a direct relationship between the diegetic
sounds and the video. The length of the clip is 15
seconds.

e Footage from the BBC Proms. The scene consists of
an orchestral performance. The video pans and cuts
to different sections of the orchestra while the audio
maintains a fixed perspective. The length of the clip
is 16 seconds.

e The Turning Forest, a fixed viewpoint from a VR ex-
perience. The scene contains immersive background
sound, action sounds, non-diegetic music, and nar-
ration. The video is an animated static shot of a for-
est, and there is no relationship between the diegetic
sounds and the video. The length of the clip is 19
seconds.

The scenes were selected to provide a variety of different
types of content. However, it should be noted that the selec-
tion of stimuli was partly limited by the availability of 3D
audio content with accompanying visuals. The Sintel scene
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provided a stimulus where the audio and visual components
were intended to be spatially coherent—each of the diegetic
sounds in the scene had a corresponding visual counterpart.
The BBC Proms scene provided a stimulus where the au-
dio and visual components were spatially incoherent—the
diegetic sounds in the scene had visual counterparts, but
the video panned and cut to different parts of the orchestra
while the audio remained static. The Turning Forest scene
provided a stimulus where the diegetic sounds had no visual
counterpart—the visual component in this scene was a shot
of a forest where the only movement is falling leaves.

Screenshots of the visuals for each of the program items
are shown in Fig. 1. Each of the stimuli were available
in 22.2 format, allowing downmixes to multiple different
speaker layouts to be created.

Three systems, composed of a subset of the speakers
described in Sec. 2.2, were used in the test:

e Fourteen channel systemlz M+000, M-045, M-090,
M-135, M=£180, M+135, M+090, M+045, B-045,
B+045, U-045, U-135, U+135, U+045

e Five channel system: M+000, M-030, M-135,
M+030, M+135

e Two channel system: M-030, M+030

! This notation indicates whether the speaker is in the bottom
(B), middle (M), or upper (U) layer of the reproduction system
along with the azimuth in degrees.
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The original 22.2 renders of the stimuli were downmixed
using matrix methods to the 14-, 5-, and 2-channel systems
using an adaptation of the coefficients presented in [44]%.
The program items were loudness matched using the mul-
tichannel extension described in Annex I of ITU-R 1770-2
[45]. For each program item in the test, the stimuli were
presented to the participants with and without visuals for
each speaker layout meaning that there were a total of six
different conditions for each program item (three speaker
layouts x two visual conditions).

2.4 Test Protocol

The listening test followed a paired comparison method.
The method of paired comparisons is a widely used tech-
nique to measure the relative differences in the attributes
of a set of objects—these attributes may be subjective (i.e.,
preference, annoyance, taste, smell) or objective (i.e., ranks
of sports teams or number of citations to scientific journals).
For subjective attributes, the method consists of presenting
test participants with pairs of stimuli and asking them to
select the stimulus that has more of the specified attributes.
For example, participants could be presented with every
possible pair of a set of sounds and, for each pair, asked to
state which they prefer. Considering the small effect sizes
found for the influence of visual stimuli in some of the pre-
vious literature (see Sec. 1), the paired comparison method
was chosen over magnitude rating as it has been shown to
provide a higher discrimination power between stimuli than
magnitude rating tasks [46].

A separate paired comparison test was completed for
each of the program items described in Sec. 2.3. Each par-
ticipant completed the three tests in a random order. Par-
ticipants were presented with every possible pair of the six
stimuli within each program item (i.e., the three speaker
layouts with and without a screen). Participants were in-
structed to look at the screen displaying the visuals when-
ever any audio was playing. After randomizing the order
of the stimuli, pairs were presented according to a Ross
series to ensure the greatest separation between pairs with
common items [47].

For each pair of stimuli, participants were required to
indicate relative differences between the pair of stimuli on
10 perceptual attributes. Definitions for the 10 attributes
are given in Table 1. The attributes used in this study are
informed by a systematic investigation conducted by Fran-
combe et al. [11] into perceptual attributes for a range of
audio systems (mono up to 22.2). Two sets of attributes
were derived, one for expert listeners and one for non-
expert listeners. The attributes selected for use in this study
are those that were used at greater than chance frequency
in the study reported by Francombe et al. [11] by the expert
listener group. The final attribute set consists of lower-level
timbral and spatial features (i.e., spectral balance, depth of
field, horizontal width, spatial clarity, spectral clarity, and
envelopment) along with higher-level features (i.e., realism,
spatial openness, sense of space, and spatial naturalness).

2 These coefficients are provided in the supporting material.
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Table 1. Definitions of attributes used in the listening
experiment. The attributes and their definitions are derived
from an elicitation experiment described in Francombe
etal. [11].

Attribute Definition

Spectral balance The magnitude of broad cuts and boosts
in the spectrum.

Perceived proximity of sources.

360 degree horizontal width.

How claustrophobic the sound feels. The
proximity of the 3D sound field. A
sense of air/openness.

Ease of localization of individual sources.

The extent to which you feel you are in
the same space in which the
music/event was performed.

Overall, how realistic it sounds.

The ability to distinguish different
sources based on their spectral content

Depth of field
Horizontal width
Spatial openness

Spatial clarity
Sense of space

Realism
Spectral clarity

(timbre).

Spatial naturalness How natural the source position is within
the 3D image.

Enveloping How immersed/enveloped you feel in the
sound field.

The participants used the Max/MSP interface shown in
Fig. 2 to complete the experiment. This was shown on a
separate screen to the display showing the visual component
of the stimuli. The participants were allowed to listen to the
clips in each pair as many times as they wished. The clips
started from the beginning whenever one of the “Play clips”
buttons was selected.

2.5 Analysis

Generally, the outcome of a paired comparison test is
a count matrix C;x. Given a set of J objects indexed by j
and k:

j#k

ey ()

njk
where n; ; is the number of times object j is selected over
object k in a paired comparison test.

A common way of analyzing paired comparison data is
the Bradley-Terry model [48] that models the probability
that object j is selected over object k.
T

P(j > klmj, mp) = (@3]

T+ T

where 7; and m; are single figure scores for object j and
object k on an interval scale for the attribute being assessed
in the paired comparison ratings.

Assuming that Cj; can be used to estimate P(j > k),
the scale parameters 1; and m; can be estimated using a
log-linear model [49]. The outcome of this model is a rank
ordering of the stimuli on an interval scale. The R package
prefmod [49] with the extension to the basic Bradley-Terry
model that allows ties between pairs of objects was used to
calculate Cj . for each perceptual attribute.
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Fig. 2. Interface used in the listening test.

3 RESULTS

This section presents the analysis and results from the
experiment described in the previous section. In this section
CLIP, ATTRIBUTE, and SYSTEM refer to variables that
code the different program items, attributes, and systems
used in the experiment respectively.

3.1 Circular Errors

Intra-participant consistency in paired comparison tests
can be assessed using circular error rates [50]. A circular
error occurs when a participant makes an inconsistent judg-
ment on a triad of stimuli. For example, an inconsistency
would occur if, for a given attribute, a participant were to
judge stimulus A > stimulus B, stimulus B > stimulus C,
and stimulus C > stimulus A.

Fig. 3 shows the percentage of circular errors for each
participant, averaged over all attributes and broken down by
CLIP. It can be seen from this figure that participants 3, 15,
and 16 generated a higher proportion of circular errors than
the other participants. However, they are generally less than
10% suggesting that the ratings made by these participants
were still relatively consistent. In a loudness rating experi-
ment, Parizet [50] found that participants with circular error
percentages of up to 15% produced comparable results to
participants with circular error percentages of less than 1%.

Shapiro-Wilks tests revealed that the circular errors
within each level of ATTRIBUTE were not normally dis-
tributed. To investigate whether the percentage of circular
errors depended on the attribute being rated, a Kruskal-
Wallis test was conducted with the circular error percentage
as the dependent variable and ATTRIBUTE as the inde-
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CLIP

Sintel
Proms
Turning Forest

Circular errors (%)
(4]

o ml

N [[LJ Il.

zeev@o»ea};,};}
Participant

Fig. 3. Percentage of circular errors for each participant, averaged
over all attributes.

pendent variable. This analysis revealed a significant main
effect of ATTRIBUTE (H(9) = 18.6, p < 0.05) on the circu-
lar error percentage, suggesting that the mean circular error
percentage differed between attributes. Pairwise Wilcoxon
signed rank tests with Bonferroni corrections showed a sig-
nificantly higher percentage of circular errors for the at-
tribute depth of field compared to the attributes horizontal
width, sense of space, and spatial openness (Dcorrected <
0.05). A significant difference in the percentage of circular
errors was also observed between the attributes sense of
space and realism (Peorrectea < 0.05).

To investigate whether the program item had a significant
effect on the percentage of circular errors, a Kruskal-Wallis
test was conducted with circular error as the dependent
variable and CLIP as the independent variable. The test
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Fig. 4. Bradley-Terry scores for each attribute.

showed that CLIP did not have a significant effect on the
percentage of circular errors (H(2) = 1.82, p = 0.40).

3.2 Bradley-Terry Scaling

The paired comparison ratings were converted to at-
tribute scores using the Bradley-Terry model described in
Sec. 2.5. Fig. 4 shows the calculated scale values for each
system for all of the attributes; these values are calculated
over all three program items. In this figure, a higher value
means that the system was judged to have more of the given
attribute. Within each attribute, the rank order of the systems
is generally consistent other than overall spectral balance
and depth of field. As expected, the fl4-channel system
generally shows the highest value across all attributes, fol-
lowed by the 5-channel system and the 2-channel system.
There is little variation between the different system for the
overall spectral balance and depth of field attributes. This
is likely because all of the systems used the same types of
loudspeaker positioned equidistant from the listener.

3.3 Analysis of Individual Differences

To enable an investigation into where significant differ-
ences in the attributes occur, attribute scores were calculated
for each individual using the following equation:

1
Ajs = — Z Pj ks (3)
Ni =

where A;; is the single figure attribute rating for partici-
pant s and stimulus j, N; is the number of times stimulus
J was rated by participant s, and P;  is the paired com-

562

parison attribute rating for stimuli j and & for participant s.
This method has been utilized previously in the estima-
tion of single figure scores from paired comparison data
when individual scores are required [46, 51]. This method
of calculating the scale values also has the advantage of
taking into account the magnitude of the ratings, whereas
the Bradley-Terry scores presented in Sec. 3.2 only take
into account which of the stimuli in the pair was selected
as having more of a given attribute.

Shapiro-Wilks tests revealed that data in the 78% of con-
ditions met the assumption of normality, therefore para-
metric statistics are used in the following analysis. For each
of the attributes, a repeated measures ANOVA was con-
ducted with within-subject factors of SYSTEM, CLIP, and
SCREEN. For all of the attributes apart from overall spec-
tral balance and depth of field a significant main effect of
SYSTEM was found (p < 0.001) after Greenhouse-Geisser
sphericity corrections were applied. The size of the effect
of SYSTEM, judged by the generalized eta-squared (nZG)
was large in all cases (mean nZG = (.61, standard devia-
tion = 0.08). A significant main effect of SCREEN was
found for the attributes sense of space (F(1, 17) = 4.56,
p < 0.05, TIZG = 0.008) and realism (F(1, 17) = 6.19, p <
0.05, nZG = 0.014). A significant interaction effect between
SCREEN and CLIP was found for the attributes sense of
space (F(2,34) =3.94, p < 0.05, nzc = 0.009) and spatial
clarity (F(2,34) = 3.95, p < 0.05, n = 0.01).

Fig. 5 shows the mean and 95% confidence intervals
for the attributes where a significant effect of SCREEN
was found. For the realism and sense of space attributes, it
can be seen that when a screen is present there is a small
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Fig. 5. Mean and 95% confidence intervals for the attributes where a significant effect of SCREEN was found.

but significant increase in these attributes. For the spatial
clarity attribute, when the screen is present there is a small
but significant decrease in this attribute.

4 DISCUSSION

The results presented above answer the research question
posed in Sec. 1: “Does the presence of visual stimuli influ-
ence perceptual attributes of spatial audio reproduced over
loudspeakers?” The ANOVA analyses in Sec. 3.3 suggests
that the presence of visual stimuli has a significant effect on
the perception of spatial audio. This finding is in agreement
with the work conducted into the influence of visuals on
audio preference and the work investigating the effect of
visual stimuli on auditory perception outlined in Sec. 1.

The generalized eta squared (n2) for the main effect of
SCREEN on sense of space and realism suggests that this
effect is relatively small [52] compared to the large main
effect of SYSTEM. This finding can be observed in Fig. 5,
which shows that the differences between systems is much
larger than the differences within systems with and without
a screen. The paired comparison methodology was selected
because it allows a higher discrimination power than mag-
nitude estimation [46]. However, because participants were
able to directly compare the audio-visual and audio only
conditions this may have led to the relatively small ob-
served effect sizes. If the experiment were repeated using
a single stimulus magnitude rating paradigm, the observed
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effect sizes may be larger. However, this may be to the detri-
ment of inter- and intra- participant consistency meaning
that a greater sample size may be needed.

A significant effect of SCREEN was found for the at-
tributes realism and sense of space which both relate to the
concept of presence. Presence is often used to assess user
experience in virtual environments and gaming (e.g., [53]).
Lombard and Ditton [54] state that one conceptualization
of presence is “the degree to which a medium can produce
seemingly accurate representations of objects, events, and
people—representations that look, sound, and/or feel like
the “real” thing.” Another conceptualization of presence is
that of transportation whereby the user is transported to an-
other environment or the virtual environment is transported
to the user [54]. These two conceptualizations of presence
are well described by the attributes realism (“overall, how
realistic it sounds’) and sense of space (“the extent to which
you feel you are in the same space in which the music/event
was performed’), which were both found to be significantly
affected by visual stimuli.

It is interesting to note that the attribute spatial clarity
was significantly lowered by the presence of the screen.
This attribute is defined as the “ease of localization of in-
dividual sources.” A possible explanation for this is that
the screen is constrained to a viewing angle of around 30°
whereas the 5- and 14-channel systems are able to repro-
duce sources 360° around the listener. This means that there
is the possibility of an incongruity between the position of
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visual sources on the screen and auditory sources that may
lead to a degradation in spatial clarity. Future work could
investigate the imbalance of audio and visual conditions by
investigating the effect of the degree of visual immersion
on the perception of audio-visual stimuli.

Understanding the impact of the presence of visual stim-
uli on the perception of reproduced audio could influence
rendering strategies for object-based content. Object-based
audio provides the opportunity to optimize rendering based
on the target reproduction system, as well as contextual and
situational factors regarding the reproduction environment
and the listener. Knowledge of the influence of the presence
of visual stimuli on the perception of spatial audio could
therefore inform the development of rendering strategies
that are dependent on whether or not the audio content
is accompanied by visuals. Additionally, listener tracking
could be used to determine whether or not the listener is
currently looking at the screen, and the rendering could be
adapted accordingly.

Increasingly, object-based audio renderers are available
as part of VR and game development environments [55, 7,
6, 5]. The results presented in this paper suggest that visual
stimuli could be used to mask the deficiencies of lower com-
plexity audio rendering algorithms. Further work would be
needed using VR reproduction as stimuli to quantify the
extent to which this effect could be used. The findings also
have implications for object-based audio where knowledge
of the reproduction environment can be used to render con-
tent in different ways. This means that audio rendering
could be adapted to compensate for the decrease in certain
perceptual attributes when a screen is not present. Further
work would be needed to understand how the parameters
of an object-based audio renderer relate to these attributes.

Taken together, these results provide further evidence
that multi-modal perceptual information is not processed
independently [13]. That the visuals did not effect all of
the tested attributes in the same way suggests that the in-
teraction between the auditory and visual modalities is not
a simple summation of the two perceptual channels. These
findings suggest that audio technologies intended to be used
in an audio-visual application should generally be evalu-
ated alongside the intended visual component. However,
no significant effect of visual stimuli was found for the
lower-level timbral and spatial attributes that were tested.
This suggests that if only lower-level spatial and timbral
attributes such as spectral balance, envelopment, and clar-
ity are being evaluated, the evaluation could be conducted
without visual stimuli.

5 CONCLUSION

This study investigated the influence of visual stimuli
on a range of perceptual attributes of spatial audio repro-
duction. Significant main effects were found for the loud-
speaker configuration and the presence of visual stimuli.
The effect of loudspeaker configuration was found to be
large and significant for all of the tested attributes other
than overall spectral balance and depth of field. The effect
of visual stimuli was found to be small and significant for
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the attributes realism, sense of space, and spatial clarity.
The findings suggest that the presence of visuals do not
influence lower-level timbral and spatial attributes such as
spectral balance and envelopment, but do have an influ-
ence on higher-level attributes such as realism and sense
of space. This suggests that the influence of visual stimuli
may be context dependent and that evaluations of audio-
visual technologies aiming to evoke a sense of realism or
presence should take into account the influence of both the
audio and visual modalities.
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