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Abstract 

Many practical problems in river engineering require predictions of velocity distributions 

in single and compound open channels. In this study, velocity distributions in rectangular 

and compound open channels under different flow regimes, in terms of roughness and 

turbulence conditions, were investigated experimentally and numerically. The detailed 

results from the experiments and numerical simulations were then used to assess and 

improve two velocity distribution models, which are widely used for rectangular and 

compound channel flows. The focus was mainly on the flow in narrow open channels. 

Two sets of experiments were conducted on rectangular and compound channels that had 

different hydraulic and roughness characteristics. In these experiments, three flow regimes 

in terms of the roughness (smooth, transitional and rough regimes) were established by 

changing roughness of the bed. Detailed measurements of velocity distributions were 

carried out to study the effect of roughness on the non-uniformity of velocity distributions 

in such channels. The channel flows tested in the experiments were also simulated using 

Computational Fluid Dynamic (CFD) models. The CFD models were developed and run 

using CFX package (v.15). 

The effect of the roughness on the velocity distributions in outer region was found to be 

significant. The non-uniformity of the velocity distribution, which can be described by the 

energy coefficient (α) and momentum coefficient (β), was considerably high in fully rough 

flow regime than in smooth and transitionally rough flows. The values of α are ranging 

from 1.07 to 1.16 in fully rough regimes while α values are varying from 1.05 to 1.13 in 

the corresponding smooth flow cases. The similar trend can be seen for β values, where β 

lies within a range of (1.013 – 1.032) in smooth flows and (1.022 - 1.045) in rough flows. 

It was also found that the velocity distribution coefficients (α and β) can be related to 

roughness Reynolds number (Re*) and aspect ratio (Ar) in rectangular channels and to the 

relative depth (Dr) in compound channels. The relationships for the velocity distribution 

coefficients (α or β) proposed in the present study can be used to describe the non-

uniformity of the velocity distributions and solve engineering flow problems that depend 

on the velocity distribution such as sediments and pollution transports. 

The detailed CFD results were also used as part of an investigation in the significance of 

secondary flows and turbulent eddy viscosity in the calculations of primary velocity 

distributions. Two analytical models for velocity distribution were used in this study. For 



 

xviii 

 

rectangular channel flows, the dip-modified log wake law (DMLW-law) was used. The 

DMLW-law accounts for the effects of the secondary flow and turbulence by two 

representative parameters. These two parameters are the dip correction factor (μ) and the 

wake strength parameter (Π). The analytical model developed by Shiono and Knight (1988, 

1991), which called SKM model, was applied for depth-averaged velocity calculations in 

compound channels. The SKM model relies on three parameters, namely friction factor (f), 

dimensionless eddy viscosity (λ), and secondary flow term (Γ).  

For velocity prediction in rectangular channels, expressions for estimating the values of μ 

and Π has been proposed in this study. Comparison with the experimental results indicated 

that the proposed expressions to calibrate the parameters (Π and μ) can provide efficiency 

to the application of the analytical model (DMLW-law) for rectangular channel flows under 

different flow regimes. For compound channel flows, it was found that the application of 

analytical SKM model with the existing expressions for the three parameters (f, λ, Γ) does 

not fit to the compound channel with narrow floodplains such as the one used in the present 

study. Therefore, the detailed Computational Fluid Dynamics (CFD) results were used to 

modify the traditional expressions. The modified expressions for λ and Г parameters 

proposed in the present study were proved to give better predictions for the narrow 

compound channel flows than the traditional calibration expressions. 
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Chapter 1                                                          

Introduction 

1.1 Research Motivation 

The velocity distribution of open channel flows has constantly interested river engineers 

and researchers for its practical implications on many engineering applications.  Accurate 

prediction of velocity distribution is necessary, for example, to study river water sediment 

transport, pollutant dispersion, channel scouring, and bank protection works. 

In order to predict the velocity distribution in rivers and open channels, measurements of 

local velocity and some hydraulic properties (e.g. depth and discharge) are often required. 

However, taking the measurements in open channels and rivers is not always convenient 

and may be impossible in some cases (e.g. during flood events). This has prompted a need 

to develop accurate and reliable models for predicting the velocity distribution and, at the 

same time, these models should be simple to be implemented by hydraulic engineers. Thus, 

several analytical models based on a simplified form of the Reynolds-averaged Navier–

Stokes equations (RANS) has been developed for predicting the vertical and lateral 

distributions of velocity in rectangular and compound channels. In these models, all the 

physical effects on the velocity distribution are often represented by a so called (calibration 

parameters). As suggested from the name, calibration parameters require a specific 

calibration process to produce accurate results. Therefore, the central concern of this 

research is to study the velocity distributions in open channel flows under different 

conditions in terms of roughness, focusing on the calibration process of most common 

models used for velocity prediction in open channels. A brief background of the most 

relevant issues to consider in the velocity distribution prediction are given in the following 

section. 

1.2 Research Background 

1.2.1 Primary and secondary flows 

In case of a three-dimensional turbulent flow, the flow is often regarded as comprising of 

two flow components, namely primary flow and secondary flow. Primary flow is parallel 

to the direction of fluid motion, whereas secondary flow is transverse to the primary flow 
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direction. In most flow cases, the secondary flow is a relatively minor component compared 

to the primary flow and is commonly termed secondary currents. 

The velocity of primary flow in open channels is not uniformly distributed over the cross-

section. This non-uniformity is caused by the presence of free surface and frictional 

resistance along the channel perimeter, (Singh, 2012). The turbulent flow field in open 

channel can be divided into three flow layers (Nezu and Nakagawa, 1993). These layers 

are defined as; wall shear layer (z < 0.2h), intermediate layer (0.2h ≤ z ≤ 0.6h) and free 

surface layer (0.6h < z ≤ h), where z is the distance from the solid boundary and h is the 

flow depth. The wall shear layer is often called inner layer, while the intermediate layer 

and free surface layer together compose what is called the outer layer.  

The boundary roughness plays an important role in defining the velocity distribution in 

both the inner and the outer layer (Hinze, 1975 and Schlichting, 1979). Based on the 

experimental findings on roughness, the flow regimes are classified as hydraulically 

smooth, rough, and transitional flows (Figure 1.1) (Schlichting, 1979). The roughness 

Reynolds number R* is used as a decisive parameter to define the flow regimes. The 

roughness Reynolds number can be expressed as (𝑅∗ = 𝑢∗𝐾𝑠 𝜐⁄ ), where 𝑢∗ is the shear 

velocity, 𝐾𝑠 is called equivalent sand roughness which represents the boundary roughness 

height and 𝜐 is the fluid viscosity.  

   

(a) smooth (b) transition (c) rough 

Figure 1.1 Classification of flow regimes. 

In hydraulically smooth flow, for which 𝑅∗ ≤ 5, the boundary roughness height 𝐾𝑠 is much 

smaller than the viscous sublayer thickness (𝛿′). Thus, the roughness elements are 

submerged by the viscous sublayer. In hydraulically rough flow, where 𝑅∗ ≥ 70, the 

boundary roughness height is much larger than the viscous sublayer thickness. The 
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roughness elements are therefore exposed to the main flow region and would affect 

significantly the velocity distribution in the outer region. 

In addition to the effects of the boundary roughness on the primary flow velocity, the 

secondary flow and the momentum transfer due the turbulence may also have significant 

effects on the velocity distribution. In straight open channels, secondary flows may 

generate because of turbulence anisotropy of normal Reynolds stresses (Tominaga et al., 

1989). This type of secondary flows is often defined as turbulence-driven secondary 

currents and no channel curvature is required to generate them. Turbulence-driven 

secondary currents were experimentally observed in simple open channels with rectangular 

or trapezoidal cross-section (Gessner, 1973; Müller & Studerus, 1979; Nezu & Nakagawa, 

1984; Nezu and Rodi, 1985; Tominaga et al., 1989; Wang & Cheng, 2006). Figure 1.2 

schematically shows the secondary currents in wide and narrow rectangular channels. The 

wide and narrow channels are defined based on the ratio of channel width (B) to flow depth 

(h), termed aspect ratio (Ar = B/h). For narrow channels, Ar is less 5, while for wide 

channels Ar is larger than 5, (Nezu and Rodi, 1985). 

  
(a) wide channel (b) narrow channel 

Figure 1.2 Schematic rectangular open channel with secondary currents. 

As a result of the generation of secondary currents, the maximum velocity appears below 

the free surface, which is called the dip phenomenon (Tominaga et al., 1989). This indicates 

that the secondary currents in simple open channels may introduce significant changes in 

the turbulence structure and then the primary flow. Therefore, the effects of the secondary 

flow on the primary flow, particularly in narrow open channels, should not be neglected.   

In compound open channels, the flow field becomes more complex due to the strong 

interaction developing between the flows in the main channel and on the floodplains 

(Shiono & Knight, 1991). In such a flow, a lateral interfacial shear is created due to the 

steep velocity gradients at the main channel floodplain interface, leading to generation of 

large-scale horizonal vortices, which also called planform vortices. In addition to these 
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vortices, streamwise secondary currents can often be observed in compound channels, 

especially near the junction between the main channel (MC) and floodplain (FP), as shown 

in Figure 1.3 (Shiono & Knight, 1991; Nezu and Nakagawa, 1993). The existence of 

planform vortices and secondary currents play an important role in momentum exchange 

between the main channel and floodplain, affecting the distribution of the primary flow 

velocity. 

 

Figure 1.3 Typical sketch for overbank flow in compound channels. 

1.2.2 Predicting velocity distribution in open channels 

The traditional laws, such as the law of the wall, may fail to express the velocity distribution 

in the outer region because they cannot capture the effects of the secondary flows (Guo & 

Julien, 2003; Yang et al. 2004). Therefore, several analytical models are developed to 

account for the effects of the secondary flows and turbulence on the primary flow 

calculations. Almost all the analytical models are based on analytical solutions of the 

Reynolds-averaged Navier-Stokes (RANS) equations by applying specific assumptions for 

the secondary currents and turbulence effects. These analytical solutions produce laws for 

velocity distribution that depends on parameters for secondary currents, turbulence and 

boundary roughness. For uniform flows in narrow rectangular channels, Yang et al. (2004) 

derived an analytical model called dip-modified logarithmic law (DML-law), including the 

dip phenomenon caused by the secondary flows. To simplify RANS equations, Yang et al. 

(2004) assume an empirical model for secondary flow term and use a parabolic distribution 

for eddy viscosity. Although this law can adequately simulate smooth flows, it fails to 

predict the velocity well in the rough channels (Guo & Julien, 2008; Bonakdari et al., 2008; 

Absi, 2011 and Lassabatere et al., 2012). The dip-modified log-wake law (DMLW-law) 
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was also developed to predict the velocity distribution in open channels under secondary 

currents effects (Absi, 2011). In this model, instead of a parabolic distribution used in 

DML-law, the eddy viscosity (𝜈𝑡) was approximated in accordance with the log-wake law 

given by Nezu and Rodi (1986). In addition to the above two models, there are other 

analytical models for predicting the velocity distributions (e.g., Guo & Julien, 2008; 

Bonakdari et al., 2008, Absi, 2011 and Lassabatere et al. 2012). However, it was found that 

the DMLW-law is the most practical model for both smooth and rough flows (Absi, 2011; 

Lassabatere et al. 2012). Therefore, only this law is considered in this study. The focus was 

on the calibration of the model parameters that represents the effects of the secondary flow 

and turbulence on the primary flow velocity. 

For compound channel flows, the Shiono & Knight model (SKM) is widely used to predict 

the lateral distribution of depth-averaged velocity and boundary shear stress (Shiono & 

Knight, 1991; Abril and Knight, 2004; Liao and Knight, 2007; Tang & Knight, 2008; and 

Devi & Khatua, 2016). The application of SKM model needs to divide the cross-section of 

the channel into a number of sub-areas and properly estimate the friction factor (f), the 

dimensionless eddy viscosity parameter (λ) and the secondary flow parameter (Γ) for each 

sub-area. The accuracy of the SKM results was found to depend substantially on these three 

calibration coefficients (i.e. f, λ and Γ) (Abril and Knight, 2004). Different methods have 

been suggested to calibrate each one of these three coefficients in the compound channel 

with wide floodplains, i.e. the floodplain width is equal to or larger than the main channel 

width (Shiono & Knight, 1991; Abril and Knight, 2004; Devi & Khatua, 2016). However, 

using the expressions suggested for a compound channel with wide floodplains to calculate 

the SKM parameters are not tested for a compound channel with narrow floodplains. 

Therefore, in the present study, the focus was on the application of SKM model to the 

narrow floodplain channels. 

Although the uniform flow is an important type of flow, which often occurs in long open 

channels with unvarying cross-section and bottom slope, natural river flows are frequently 

affected by upstream or downstream controls. This makes the flow non-uniform and even 

possibly unsteady. Under these circumstances, the flow velocity can be computed from the 

one-dimensional (1-D) momentum or energy equations. The major issue to appreciate when 

applying the 1-D flow models is how the three-dimensional velocity field can be included 

in a 1-D formulation of energy or momentum equations (Knight et al., 2010). This is usually 

achieved by use of the kinetic energy and momentum correction coefficients (α, β). These 
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two coefficients, which are also referred to as velocity distribution coefficients, are applied 

in momentum and energy equations to account for the non-uniformity of the velocity 

distribution by correcting the errors resulted from averaging the velocity over the cross-

section. In some engineering applications, the effect of nonuniform velocity distribution is 

assumed to be small. Thus, the energy and momentum correct coefficients are assumed to 

be unity. However, several previous studies have indicated that the velocity distribution 

coefficients (α, β) have a significant effect on the accuracy of the 1D flow solution (Xia 

and Yen, 1994; Fenton, 2005 and Costabile & Macchione, 2010). Therefore, there is a 

growing need to gain a better understanding of how various hydraulic conditions in the 

open channel, or river, may influence the velocity distribution coefficients. 

1.2.3 Computation Fluid Dynamics (CFD) 

Growing in computing power encourages on using Computational Fluid Dynamics (CFD) 

modelling to perform extensive studies on the turbulent flows in open channels. The 3D 

numerical simulations by the CFD may provide clearer explanations of the interactions of 

the key hydraulic components than do the traditional laboratory measurements (Bates et 

al., 2005). Many validation studies indicated that the CFD models can predict the most 

important characteristics of different pattern flows with an acceptable level of accuracy 

(e.g. Jing et al., 2009; Sharifipour et al., 2015; Asnaashari et al. 2016, Wu et al., 2018). 

 The CFD framework used in the present study are theoretically based on solving the 

Reynolds-Averaged Navier-Stokes (RANS) equations. In RANS approach, a turbulence 

model is usually developed to compute Reynolds stress tensor and close RANS equations 

(Bates et al., 2005). The Reynolds Stress Models (RSM), which solve directly an equation 

for the transport of Reynolds stresses, was used to close the RANS equations. It is known 

that the RSM models are more sophisticated than the two-equation (eddy-viscosity) 

turbulence models (Cokljat & Younis, 1995a). However, they are still the most practical 

turbulence models in use for the environmental applications because they can produce 

reasonably accurate solutions with the available computer power (Andersson et al., 2011). 

Furthermore, RSM models can predict secondary currents generated by the anisotropy in 

the normal Reynolds stresses because they can model the individual stresses (Cokljat & 

Younis, 1995a; Kang & Choi, 2006a). Therefore, the Reynolds Stress Model was used as 

a turbulence model in the present work. 
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1.3 Research hypotheses 

The 1-D numerical are often used for non-uniform flow problems because these models 

approximate the complicated 3-D flow equations and make their solution more handy and 

feasible. However, the non-uniformity distribution of velocity field has certain implications 

with respect to energy, momentum flux. Therefore, the energy and momentum coefficients 

(α and β), which also called velocity distribution coefficients are introduced into the 1-D 

energy and momentum equations. Based on the previous studies reviewed in this research, 

it can be noted that the velocity distribution coefficients (α and β) should properly be 

considered in 1D flow formulations for obtaining accurate flow calculations. Furthermore, 

most previous studies focused on the flows in simple or compound open channels with 

smooth beds only, expressing the velocity distribution coefficients as a function of some 

flow parameters. It is hypothesized that the velocity distribution coefficients (α and β) can 

possibly be expressed as a function of the whole flow regime in terms of the boundary 

roughness rather than some flow parameters. 

The analytical models based on the simplified RANS equations are commonly used for 

predicting the primary velocity distribution in uniform flow problems. The dip-modified 

log-wake law (DMLW-law) is the most feasible model for obtaining the vertical 

distribution of flow velocity in simple open channels. This analytical model requires two 

parameters to be carefully estimated, namely the wake strength parameter (Π) and the dip-

correction parameter (μ). These two parameters represent the effects of the turbulence and 

the secondary flow on the primary flow. Previous studies have suggested typical values and 

expressions for estimating these two parameters but are only applicable for smooth 

channels. Hence, it is hypothesised that the expressions of calculating the parameters (Π, 

μ) should be modified to be usable for both smooth and rough channels.  

On the other hand, the Shiono and Knight model (SKM) is widely used to analytically 

obtain depth-averaged velocity distributions. The solution of this analytical model relies on 

the calibration of three parameters that represent the boundary roughness, secondary 

currents and lateral shear stress. Previous studies on the SKM model have nearly always 

been made in wide compound channels, where the floodplain width is larger than the main 

channel width. Therefore, in the present study, it is suggested modifying the conventional 

methods for calibrating the key coefficients in SKM model to improve the accuracy of the 

model for narrow floodplain channels. 
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1.4 Research aim and objectives 

In this study, turbulent flow over a smooth and rough open-channel flows are examined to 

establish two aims. The first aim is to investigate the primary flow velocity in rectangular 

and compound open channels under different flow regimes in terms of roughness 

conditions. The second aim is to use detailed Computational Fluid Dynamics (CFD) results 

as part of an investigation in the significance of assumptions about secondary flows and 

turbulent eddy viscosity in calculations of velocity distributions. 

The overall objectives of this research are: 

1. To carry out the velocity measurements in the rectangular and compound channels to 

study the relationship between the velocity distribution coefficients (α and β) and flow 

regime from the point of roughness conditions. 

2. To construct 3D models by means of the CFD modelling for studying the effects of the 

secondary flow and turbulence on the primary flow in narrow rectangular and compound 

channels. 

3. To assess and improve the capability of the analytical model that derived from the 

simplified RANS equation to predict the velocity distributions in narrow rectangular and 

compound channels. 

4. To suggest new methods for evaluating the non-uniformity of velocity distributions for 

different flow regimes with respect to roughness conditions. 

5. To give references for treating and calibrating the secondary flows and eddy viscosity 

in the SKM model for compound channels with a narrow floodplain. 

6. To make further assessment of applying RSM models to turbulent flow cases in which 

the anisotropic Reynolds stress has a large effect on the fluid flow structures. 

This thesis consists of eight chapters. Chapter 1 gives the motivation, background and 

objectives of this research. Chapter 2 provides a broad review of the literature on open 

channel hydraulics and velocity distribution prediction to identify the research gap in this 

study. The experimental investigation is described in detail in chapter 3. Chapter 4 

illustrates the numerical methodologies of CFD and all numerical requirements (e.g., 

domain geometry, mesh size and boundary conditions) to define the simulations of the 

rectangular and compound channel flows. Chapter 5 concentrates on the prediction of the 

velocity distribution for the rectangular and compound channel by the analytical models. 

Chapters 6 and 7 provide an analysis of the experimental and numerical results for the flow 
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cases considered in this research and present proposed equations that addresses the effects 

of the roughness, secondary flow and turbulence on the velocity distributions. Chapter 8 

summarises the important findings from the research and makes recommendations for 

future research.
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Chapter 2                                                              

Literature Review 

2.1 Introduction 

Corresponding to the main objectives of the present study listed in the previous chapter, the 

literature review is mainly focused on the primary velocity distribution, secondary currents, 

flow resistance and momentum transfer mechanisms for two patterns of open channel flow. 

The first type of flows is the inbank flow in simple open channels, and the second is the 

overbank flow which occurs in compound open channels. the detailed and intensive 

literature review carried out here covers various aspects concerning the flow structure for 

inbank and overbank flows in engineered and natural open channels. Initially, the most 

important issues regarding the primary flow and main factors that could affect the velocity 

distributions in a simple open channel is presented. Thereafter, flow resistance and 

momentum transfer mechanisms with their impacts on the velocity distribution for 

compound channel flows are reviewed. Finally, a review is provided for numerical and 

analytical modelling approaches that can be employed to simulate open channel flows. 

2.2 Inbank flow in straight simple open channels 

2.2.1 Primary flow and stramwise velocity distribution 

In one-dimensional analysis of fluid flow, understanding the mean primary velocity 

distribution in the plane perpendicular of the solid boundary is of great interest to both 

researchers and engineers. It is known that most of flows in practical open channel 

problems are turbulent boundary-layer flows. Therefore, it is natural to start with review of 

the boundary layers before exploring the most common expressions or laws that are 

developed to describe the distributions of primary velocity over a cross section. 

In general, two different but overlapping regions of the flow can be recognized, namely 

inner and outer regions, as shown in Figure 2.1, (Rouse, 1959; Hinze, 1975; Schlichting, 

1979). The inner region occupies only a small percentage of the flow depth, no more than 

10–20%, (Grass, 1971). In terms of the relative importance of viscous shear stress and 

turbulent shear stress, there is a subtle difference between the smooth and rough flows at 

the inner region. In rough flow, the entire depth of the flow is dominated by turbulence, 
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and there may be no viscosity-dominated layer, but there are still inner and outer regions. 

In smooth flow, three integrating but well-defined layers (the viscous sublayer, the buffer 

layer, and the fully turbulent layer) can be recognised as shown in Figure 2.2. 

 
Figure 2.1 Inner and Outer regions in turbulent open-channel flow 

 

 
Figure 2.2 Division of turbulent open-channel flow into layers based on turbulence 

structure. 

Various semi-empirical models have been developed to obtain the velocity profiles of fully 

developed turbulent flow in both inner and outer regions. Some of the widely used 

expressions for this purpose are given in the following subsections. 

2.2.1.1 Inner region velocity profile 

In the viscous sublayer of the boundary layer for flow over a smooth surface, the mean 

velocity is generally controlled by the wall shear stress (τw), wall roughness (K), distance 
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from the wall (z), density (ρ) and the viscosity of the fluid (υ), (Cebeci & Smith, 1974). 

Experiments by Klebanoff (1955) showed that the total shear stress at some small distance 

from the wall is constant and equals the wall shear stress (τw). Therefore, the integration of 

Newton law of viscosity gives the velocity distribution in the viscous sublayer as: 

 
𝑢

𝑢∗
=
𝑢∗ 𝑧

𝜐
 (2.1) 

or 𝑢+ = 𝑧+    𝑤ℎ𝑒𝑛 (𝑧+ < 5) (2.2) 

where 𝑢∗= (√𝜏𝑜/𝜌) = the shear velocity; ρ = the density; υ = the kinematic viscosity of the 

fluid; z = the distance from the solid boundary. Thus, the velocity distribution in the viscous 

sublayer of the inner region can be considered linear. 

In the fully turbulent layer of the inner region, the logarithmic velocity distribution of von 

Kanman and prandtl, known as law of the wall or the inner law, is the universally accepted 

formula, 

 
𝑢

𝑢∗
= 𝐴 ln(

𝑢∗ 𝑧

𝜐
) + 𝐵      (2.3) 

or 𝑢+ =
1

𝑘
 𝑙𝑛(𝑧+) + 𝐵     𝑤ℎ𝑒𝑛 (0.2𝛿 > 𝑧+ > 30) (2.4) 

where 𝛿 is the thickness of the boundary layer, A & B are constants and k =von Karman's 

constant. Although k ≈ 0.4 and B = 5.5 were given for pipe flows by Nikuradse, 

(Schlichting, 1979), the values of k = 0.412 and B = 5.29 were obtained by Nezu & Rodi, 

(1986) for smooth open channel flows. 

For flow over rough surfaces, the velocity distribution is affected by the grading, shape, 

and spacing of the surface's roughness elements. The most common practice to represent 

the velocity distribution in rough flows is to use Nikuradse expression for fully rough 

turbulent flow in pipes, (Schilchting, 1979): 

 𝑢+ = 2.5 𝑙𝑛(
𝑧

𝐾𝑠
) + 8.5 (2.5) 

in which Ks is Nikuradse's original uniform sand grain roughness, which represents the 

equivalent sand roughness for any type of rough surface, and z is the distance from the 

bottom of the roughness elements. Nezu & Nakagawa (1993a) suggested a general form of 
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the log-law to describe the velocity distribution within the fully turbulent layer (log-law 

layer) on both smooth and rough surfaces, which can be written as: 

 𝑢+ =
1

𝑘
𝑙 𝑛 𝑧+ + 𝐵 − ∆𝑢+ (2.6) 

where k ≈ 0.4 is the von-Karman constant and the additive constant B = 5.0 for a smooth 

surface and  ∆𝑢+ is the roughness shift for flow over a rough surface. 

2.2.1.2 Outer region velocity profile 

In the outer region of turbulent flow, the primary velocity is mainly controlled by the 

turbulent shearing and the velocity distribution can be described by the velocity-defect law: 

 
𝑢𝑚 − 𝑢

𝑢∗
= −

1

𝑘
𝑙 𝑛
𝑧

𝛿
 (2.7) 

in which  𝑢𝑚 = the maximum velocity in the distribution; 𝛿 = the thickness of the boundary 

layer; and k ≈ 0.4. It is supposed that Eq. (2.7) can be applied to both smooth and rough 

walls, (Hinze J. O., 1975). 

Typical dimensionless velocity profile for turbulent boundary-layer flows are shown in 

Figure 2.3, summarizing the laws that govern the velocity distribution in the inner and outer 

regions. The regions of inner and outer laws are not full separated regions. There is an 

overlapping region between the lower limit of the outer law (z1) and the upper limit of the 

inner law (z2) as shown in Figure 2.3. In this overlapping region, the equations of the inner 

law (2.4) and outer law (2.7) both can be applied. 

  
Figure 2.3 Representative velocity distribution in turbulent flows 
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The law of wall is commonly believed to be insufficient to represent the outer region of the 

velocity profile. Therefore, Coles (1956) improved the law of wall by proposing the law of 

wake which can be used to predict the velocity profile in the fully turbulent part of inner 

region as well as in outer region. The law of wake can be given as follows: 

 
𝑢

𝑢∗
=
1

𝑘
𝑙 𝑛(

𝑢∗𝑧

𝜈
) + 𝐵 +

Π

𝑘
𝑤(
𝑧

𝛿
) (2.8) 

where Π is the wake strength parameter (which ranges from 0 to 0.55), and  𝑤(
𝑧

𝛿
) is called 

the function of the wake. For zero pressure gradient 𝑤(
𝑧

𝛿
) can be given by [2sin2(πz/2δ)], 

so Eq. (2.8) can be rewritten to take the following form: 

 
𝑢

𝑢∗
=
1

𝑘
𝑙 𝑛(

𝑢∗𝑧

𝜈
) + 𝐵 +

2Π

𝑘
𝑠𝑖𝑛2 (

𝜋𝑧

2𝛿
) (2.9) 

The log-wake law was found to be more accepted than the conventional log law for 

describing the velocity profile in outer region, provided that the wake strength parameter 

to be set to an empirically determined value, (Cardoso et al., 1989; Nezu and Rodi, 1986). 

However, in case of narrow open channel flows, the log-wake law was found to deviate 

from the experimental data near the free surface (Imamoto and Ishigaki, 1988; Wang and 

Cheng, 2005). This is because such a law cannot be able to capture the velocity dip 

phenomenon, which causes the maximum velocity to occur below the water surface. The 

velocity dip phenomenon occurs due to strong secondary currents generated in three-

dimensional open channel flow (Nezu and Nakagawa 1993). Therefore, several analytical 

models have recently been proposed, trying to predict the velocity dip phenomenon in open 

channels by accounting for the effect of the secondary currents (Yang et al., 2004; Yang et 

al., 2006; Guo and Julien, 2008; Bonakdari et al., 2008; Absi, 2011; Lassabatere et al., 

2013; Pu J. H., 2013). These analytical models are discussed in detail in subsequent 

sections. 

2.2.2 Roughness and resistance 

Channel roughness provides the primary resistance to the force driving the flow and this 

affects the fluid flow. The sum of all the forces on individual roughness elements on the 

boundary (or, in the case of a physically smooth boundary, the sum of the viscous shear 

stresses at all points of the boundary) constitutes the overall drag on the boundary, or 

conversely the overall resistance to the flow. When expressed as force per unit area, this 
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boundary resistance is called the boundary shear stress and is denoted by (τb). 

Understanding the nature of this resistive force or boundary shear stress is therefore 

essential in determining the water level, since a greater resistance will result in a slower 

flow and higher water level. Due to the turbulent flow being the situation in most flows that 

are of practical interest, therefore this section provides a review to the principles of flow 

resistance along with the mutual processes between a turbulent flow and its solid boundary. 

In the past years considerable research has been undertaken into the resistance to flow. 

Early methods for describing flow resistance are based on semi-empirical formulae, e.g. 

Chezy and Manning equations, which are not based on strict physics and include roughness 

coefficients that are increased to account for channel losses due to shape effects, (Chow, 

1959). In the 19th century, Darcy and Weisbach produced an equation for pipes flowing full 

which was similar to Chezy’s equation taking the form: 

 𝑈 = (
8𝑔

𝑓
)
1/2

𝑅1/2𝑆𝑓
1/2

 (2.10) 

where f is friction factor, R is the hydraulic radius (= area/wetted perimeter), and Sf is the 

slope of the energy grade line. 

In river engineering, Manning’s equation is usually used to represent channel resistance 

and is given by the relationship: 

 𝑛 =
𝑅1/2𝑆𝑓

1/2

𝑈
 (2.11) 

where n is Manning’s roughness parameter, R is hydraulic radius, Sf is energy slope and U 

is mean flow velocity. Equating the Darcy and Manning equations leads to: 

 𝑛 = 𝑅1/6 (
𝑓

8𝑔
)
1/2

 (2.12) 

The main difficulty in using Manning’s equation is estimating accurately a value of the 

roughness parameter n. Each channel exhibits its own characteristics and the roughness 

parameter is dependent on the size and shape of channel, the bed materials, the depth of 

water and other different features within the channel e.g. vegetation and boulders, (Knight 

et al., 2009). Field observations have shown that, at a given cross-section, the Manning’s n 

varies with depth. Therefore, the Darcy friction factor (f) may be preferred to Manning 

coefficient (n) in defining the roughness of channel surfaces.  
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Colebrook & White (1937) clarified how f varies in smooth and rough pipes, conduits 

running part full and open channels. The variation of f is usually expressed in terms of two 

parameters, the relative roughness (Ks/d) and the Reynolds Number, Re (= 4UR/ν). Two 

forms of the Colebrook-White equation are usually given, one for pipes and another for 

channels, but these are essentially the same, since the pipe diameter D = 4R: 

1

√𝑓
= −2.0𝑙𝑜𝑔 [

𝐾𝑠
3.71𝑑

+
2.51

(
𝑢𝑑
𝜈 )√𝑓

]   (pipes & culverts running full) (2.13) 

1

√𝑓
= −2.0𝑙𝑜𝑔 [

𝐾𝑠
14.8𝑅

+
2.51

(
4𝑈𝑅
𝜈
)√𝑓

]   (open channels and pipes part full) (2.14) 

The Colebrook-White equation (Eq. 2.14) is physically well established, since it tends 

towards two theoretically limiting cases, described by Schlichting (1979). For very smooth 

surfaces, as Ks→0, Eq. (2.14) becomes the Prandtl (smooth law), in which f depends solely 

on Reynolds Number (Re) giving: 

 
1

√𝑓
= −2.0𝑙𝑜𝑔(𝑅𝑒√𝑓) − 0.80 (2.15) 

On the other hand, as Re → ∞, Eq. (2.14) becomes the fully (rough law), in which f is 

independent of Re and depends solely on the ratio of surface roughness (Ks) to hydraulic 

radius (R), giving: 

 
1

√𝑓
= −2.0𝑙𝑜𝑔 [

𝐾𝑠
14.8𝑅

] (2.16) 

Based on Eq. (2.14), the roughness of any surface can be characterized by Ks, the so-called 

Nikuradse equivalent sand roughness size, which is defined as a measure of the size of 

roughness on a flat surface that would yield the same resistance as that in a circular pipe 

roughened with uniform grains of sand. Technically flow regime can be defined by the 

Roughness Reynolds Number, Re*(=𝑈∗𝐾𝑠/𝜈), as: Hydraulically smooth (Re* < 5), 

transitional flow (5 < Re* < 70), or hydraulically rough (Re* > 70). Where 𝑈∗ is known as 

the shear velocity (= √𝜏𝑜/𝜌). 

In recent years, much research and data has provided the basis for a comprehensive 

understanding of river roughness and boundary shear stress. Experimental measurements 

of boundary shear stress have been taken for inbank flow in uniform and non-uniform open 
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channel by a number of researchers, (e.g., Knight, Demetriou& Hamed, 1984; Wasantha, 

1995; Ramesh et al., 2000; Morvan et al., 2008). Valuable data obtained from these 

experimental measurements have greatly enhanced the understanding of how the boundary 

shear stress distribution and the wall roughness can affect the vertical and lateral 

distribution of the primary velocity. This helped in developing more accurate formulae for 

the calculation of the primary velocity in open channels. 

The energy losses in open channels, particularly in natural channels, could not only arise 

from the friction or the resistance caused by surface roughness, but they may arise from 

development of vortex structures on a variety of length scales, (Ikeda & McEwan 2009). 

Once vorticity is created, the streamwise translational kinetic energy is thus transferred in 

part to rotational kinetic energy, which no longer contributes to the primary flow. The 

resulting vorticity motion is referred to as the secondary flow which is closely related to 

the nature of the channel geometry i.e. a simple or compound, straight or meandering. Some 

general review for the occurrence and development of secondary flows in simple straight 

channels are disused in the next section. 

2.2.3 Secondary flow and vorticity 

As indicated previously, secondary flows which is also termed as secondary currents may 

be created and lead to energy losses in straight channels with inbank flow conditions. 

Prandtl (1952) divided the secondary currents into two categories. The first kind of 

secondary currents are generated as a consequence of the mean primary flow skewing due 

to curvilinearity in the streamwise direction and are called the secondary currents of 

Prandtl’s first kind. Secondary currents of this kind are also called pressure- or geometry-

driven secondary currents. The other kind of secondary currents are generated by the 

anisotropy of turbulence and are called secondary currents of Prandtl's second kind. These 

secondary currents are also called turbulence-driven secondary currents. The second 

category is the main focus here because it is induced by the turbulence and may be existing 

in straight uniform open-channel flows. 

Many researchers have investigated the mechanisms by which the secondary currents are 

generated in straight open channels. Einstein & Li (1958) first attributed the origin of 

secondary currents in straight channel flows to the gradient of Reynolds stresses based on 

the vorticity equation for fully developed turbulent flow. This suggestion was also 

supported by Gessner (1973). However, Nezu & Nakagawa (1984) verified experimentally 
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and Demuren & Rodi (1984) verified numerically the dominant effects of the cross-stream 

gradients of turbulent normal stresses on the generation of the secondary currents. Nezu & 

Nakagawa (1993) further concluded that anisotropy between lateral fluctuation (v') and 

vertical fluctuation (w') of turbulent flow velocities plays the main role in generating the 

secondary currents. They also indicated that this anisotropy of turbulence is caused by the 

boundary conditions at the solid walls and at the free surface. 

Secondary currents (Prandtl's second kind) have been observed by experimental 

measurements using different measurement techniques. Müller & Studerus (1979) first 

measured the secondary current in an open channel by making use of a low-power Laser 

Doppler Anemometer (LDA). Nezu & Nakagawa (1984) firstly measured cellular 

secondary currents in straight open channel flow by making use of the X-type hot-films. 

They indicated that although the maximum magnitude of the secondary currents is within 

only 5% of the maximum streamwise velocity (Umax), the experimental values of secondary 

current velocity show comparatively large scatters. Nezu and Rodi (1985) also measured 

secondary currents in rectangular open channel flows with a two-component LDA. They 

accurately measured the longitudinal velocity (U) and vertical velocity (W) in an open 

channel with a two-color LDA system and then calculated the transverse velocity (V) from 

the equation of continuity on the condition of fully developed flow. Figure 2.4a shows the 

velocity vectors of the secondary currents measured by Nezu & Rodi (1985) in a narrow 

rectangular open channel. It can be noted that a pair of counter-rotating vortices are 

generated in the cross-stream plane. The upper-side vortex is called free-surface vortex and 

the lower-side vortex is called bottom vortex. These two vortices lead to formation of outer 

and bottom secondary flows as shown in Figure 2.4b. 

Nezu et al. (1989) experimentally showed that there is a significant difference between the 

turbulence-driven secondary currents in duct flows and open channel flows. Tominaga et 

al. (1989) presented experiments on rectangular channels with different roughness 

conditions on the bed and walls and with different aspect ratios. They measured the three 

components of the velocity vector at several points in the cross section using an X-type hot-

film sensor. For the case of smooth bed, their measurements showed a strong secondary 

circulation in the region near the side walls, with a steady decay toward the centre of the 

channel when the aspect ratio becomes large (b/h = 8). The corresponding rough bed 

experiments showed that the surface vortex near the side walls was much stronger and 

larger than in the smooth bed case. 
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(a) measured by Nezu & Rodi (1985) (b) Schematic view 

Figure 2.4 Secondary flows in a rectangular open-channel. 

Nezu & Nakagawa (1993) indicated, based on experimental results, that the free surface 

vortex contributes in transporting momentum and energy from the side wall toward the 

channel center near the free surface and then causes a considerable amount of momentum 

to transport from the free surface to the mid-depth. As a result, these large counter-rotating 

secondary cells produce the velocity dip where the maximum primary velocity occurs 

below the free surface.  

The secondary currents are observed not only in rectangular channels, but also in the 

trapezoidal channels. Tominaga et al. (1989) measured three-dimensional flow in open 

smooth trapezoidal channels with different side slope angles and indicated to existence of 

secondary cells in all the channels considered. They observed that the maximum value of 

the secondary currents is of the same magnitude as that in the rectangular channel. Knight 

et al. (1994) investigated effects of secondary flows in straight trapezoidal channels on the 

boundary shear distributions, as shown in Figure 2.5. They found that the resulting 

distribution of boundary shear stress around the wetted perimeter can be influenced by the 

secondary vortices generated near the bottom and side walls. Knight et al. (2007) found that 

the number of secondary flow cells in a trapezoidal channel is dependent on the aspect ratio. 

For aspect ratios less than 2.2, the number of secondary cells are three, whereas for aspect 

ratios greater than 4, the number of secondary flow cells might be four. 

Secondary currents may also occur in wide channels, as observed by Nezu & Rodi (1985) 

and Wang & Cheng (2006). They indicated that the secondary currents in the wide channel 

are usually located close to walls but in the central region they may totally disappear due 
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to absence of spanwise variations in the bed shear stress. Rodriguez and Garcia (2008) 

observed the multicellular secondary motion in a very wide channel with a rough bed and 

smooth sidewalls. He attributed the generation of such multicellular structures to the 

considerable variation in roughness between a smooth glass wall and the rough gravel bed. 

Albayrak & Lemmin (2011) indicated that the effect of the aspect ratio on the dynamics of 

secondary currents in wide channels is significant, where the number of secondary current 

cells changes proportionally with the aspect ratio. 

 
Figure 2.5 Isovels of primary and secondary flows with wall shear distribution (Knight 

et al. 1994). 

Turbulence-driven secondary currents were also proved to exist in natural rivers by field 

measurements, (Nezu & Nakagawa, 1993; Sukhodolov et al., 1998). 

Numerical simulations by many researchers using different three-dimensional models have 

been performed to predict the secondary currents and evaluate their effects on the primary 

flow in open channels, e.g.; Naot & Rodi (1982), Demuren & Rodi (1984), Cokljat & 

Younis (1995), Shi et al. (1999), Wu et al. (2000), Kang & Choi (2006) and Yang et al. 

(2013). Most of these works are reviewed in section (2.6) where numerical modelling of 

turbulent open channel flow is discussed. 

On the basis of the experiments results presented above, it can be hypothesized that the 

secondary currents have a significant influence on the primary velocity distribution in 

straight open channels. Therefore, the existence of secondary currents and their effects have 

been considered in the investigation of the primary velocity distribution in straight 

rectangular channels. 
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2.3 Overbank flow in straight compound open channels 

2.3.1 Flow structure and vorticity  

Most natural rivers and engineered channels have floodplains that extend laterally away 

from the main channel, forming what is called a compound channel (Knight & Shiono 

1996). When the flow in the main channel exceeds bankfull flow, the water occupies the 

adjacent floodplains and the overbank flow conditions occur. Overbank flow is somewhat 

different in a number of aspects from inbank flow. As a river changes from inbank to 

overbank flow, there is a significant increase in the complexity of the flow behaviour, even 

for relatively straight reaches. The complex overbank flow structure in a compound channel 

are schematically illustrated in Figure 2.6 (Shiono & Knight 1991). 

 
Figure 2.6 Flow structure in straight compound channels (Shiono and Knight, 1991). 

When a complex turbulent overbank flow occurs, large vertical vortices develop at the 

interface between the main channel and the floodplain, as shown in Figure 2.6. These 

vertical vortices were first observed by Sellin (1964). He used a flow visualisation 

technique consisting of an aluminium powder scattered on the water surface and a camera 

moving downstream at a constant speed that is used to take photographs to the powder. 

Figure 2.7 provides an illustration for this type of large-scale vortices associated with 
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overbank flows in compound channels. The difference in velocity between the main 

channel and the floodplain flows may produce strong lateral shear layers, which 

consequentially lead to the generation of the large-scale vortices, which also called 

planform vortices. These vortices transport the high momentum fluid from the main 

channel towards the floodplain. As a result, the conveyance in the main channel decreases 

while the conveyance in the adjacent floodplain increases (Myers, 1978; Wormleaton, 

Allen, & Hadjipanos, 1982; Knight & Demetriou, 1983; Shiono & Knight, 1991). 

 
 

(a) (b) 

Figure 2.7 Large vortices observed at the interfaces between the main channel and the 

floodplains: (a) Photo from Sellin experiments (1964), (b) Schematic illustration. 

Ikeda et al. (2000) suggested that the planform vortices are induced by the shear instability. 

Based on his laboratory experiments, planform vortices were clearly observed in a 

laboratory flume which has a small relative depth ratio (Dr) of 0.18, as shown in Figure 

2.8(a). For a relatively large depth ratio of 0.344, the periodic planform vortices disappear, 

and active intermittent boils were observed, as seen in Figure 2.8(b). 

Particle Image Velocimetry (PIV) and Particle Tracking velocimetry (PTV) techniques 

have been employed to obtain the instantaneous flow field of the planform vortices, (Nezu, 

Nakagawa, & Saeki, 1994; Ikeda, Kuga, & Toda, 1995). Although the results from these 

experiments confirmed the existence of the large-scale motion, they were not sufficiently 

detailed to determine the mathematical explanation of this large-scale vortex. High 

resolution numerical simulations, in which the large-scale motion is resolved, have been 

performed by Ikeda et al. (2002), attempting to model the horizontal large-eddy in river 

flows. 
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(a) Dr = 0.180 (b) Dr = 0.344 

Figure 2.8 Horizontal vortices for different relative depths Dr (after Ikeda et al., 2000). 

In addition to the planform vortices rotating about vertical axes, helical streamwise vortices 

rotating about horizontal axes can often be observed in compound channels with overbank 

flows (Figure 2.6). This vortices form is closely related with secondary flow of Prandtl's 

second kind. The existence of such vortices also play an important role in the momentum 

exchange, especially near the junction between the main channel (MC) and floodplain (FP), 

(Shiono & Knight 1988; Tominaga & Nezu 1991). The interaction of planform and 

streamwise vortices, and their effects on the primary flow are reviewed in the next section. 

2.3.2 Secondary currents and their effects on the primary flow 

Secondary currents in compound channels are generated by anisotropic turbulence and their 

patterns are influenced by many factors, including the channel geometry (such as aspect 

ratio and relative depth) and by the turbulence conditions (Shiono and Knight, 1991). 

The nature of secondary currents in straight compound channels was investigated by 

Shiono and Knight (1989), Tominaga & Nezu (1991) and Nezu (1996) through a series of 

laboratory tests. Shiono and Knight (1989) investigated the influence of the shape of the 

cross-section on the secondary current circulations in symmetrical wide compound 

channels. According to their results, which are shown in Figure 2.9, they found that the 

shape of the cross section influences secondary current cells in the main channel, but has 

no significant effect on the secondary current cell that extends across the floodplain. For 

both rectangular and trapezoidal compound channels, two secondary current cells can be 

observed in the main channel. In the case of the rectangular main channel (Figure 2.9a), a 

large counter-clockwise cell exists in the upper region and a smaller clockwise cell exists 
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in the left comer of the main channel. However, in the trapezoidal main channel, a smaller 

counter-clockwise secondary cell exists near the MC-FP junction and a larger clockwise 

cell covers most of the main channel as shown in Figure 2.9b. 

  
(a) rectangular main channel (b) trapezoidal main channel 

Figure 2.9 Secondary currents in compound channels with two different cross-sections 

(Shiono & Knight, 1989). 

Tominaga & Nezu (1991) investigated three-dimensional (3-D) turbulent flow in 

rectangular compound channels with various relative depths and roughnesses. In their 

experiment, they used a fiber-optic laser Doppler anemometer (FLDA) which have enabled 

them to accurately describe the secondary current velocities and their influences on the 

primary mean velocity field. Figure 2.10 shows the vector description of secondary flow 

velocities and corresponding isovels of primary flow velocity that were obtained from 

Tominaga & Nezu (1991) measurements. In all cases, a pair of secondary currents cells 

were recognized on both sides of the MC-FP junction. The vortex on the side of the 

floodplain was called the floodplain vortex, whereas the vortex on the side of the main 

channel was called the main-channel vortex. A free-surface vortex was also observed in the 

sidewall region of the main channel. It was found that under high relative depth, Dr = 0.75, 

the free-surface vortex prevailed over the main channel vortex and the floodplain vortex 

expanded in the vertical direction and reached the free surface. It was also observed that 

the roughness of the floodplain did not change the essential structure of secondary currents 

near the MC-FP junction, although it changed the size of longitudinal vortices.  
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(a) Secondary current vectors (V, W) (b) Isovels of primary mean velocity (U) 

Figure 2.10 Flow patterns for straight compound channels with different relative depths 

and roughnesses (Tominaga & Nezu, 1991). 

From the results of the primary mean velocity (Figure 2.10), Tominaga & Nezu (1991) 

noted two remarkable features. One was the bulge from the junction towards the free 

surface, and the other was the velocity dip phenomenon, in which the maximum velocity 

appears below the free surface. Therefore, they suggested that the structure of the primary 

mean velocity is affected by the momentum transport due to the secondary currents. 

Nezu (1996) extended the study of the secondary flows in compound channels to cover 

various geometries in terms of the main channel and floodplain widths. Their results, which 

are shown in Figure 2.11, coincided well with those of Tominaga and Nezu (1991). The 

inclined up-flow from the junction toward the free surface was also observed, i.e. the same 

feature as shown in Figure 2.10. It was found that as the floodplain width gets smaller, the 

up-flow tends to incline towards the main channel, which may be due to an effect from the 

side wall of the main channel. 
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(a) Secondary flow velocities (b) Isovel lines of primary velocity 

Figure 2.11 Secondary and primary flow velocities in compound channels with 

different floodplain width [LDA data measured by Nezu (1996)]. 

Secondary currents in compound channels were also accurately simulated by the use of 

different turbulence models, e.g. Naot et al. (1993), Thomas and Williams (1995), 

Sofialidis and Prinos (1998), Kang and Choi (2006), Cater and Williams (2008), Kara et al. 

(2012), Xie et al. (2013), Filonovich et al (2015) and Yang et al. (2017). Further review of 

the numerical modelling for turbulent flow in compound channels are given in section (2.4). 

According to Tominaga and Nezu (1991), the maximum magnitude of is about 4% of the 

maximum longitudinal velocity in a compound channel. The magnitudes of secondary 

currents at the MC-FP junction in compound channels are usually about 5% of the bulk 

longitudinal velocity (Naot et al., 1993; Nezu, 1996). Although the magnitude is small, the 

secondary currents can greatly influence the flow behaviours, such as velocity and 

boundary shear stress, in the open compound channels (Naot et al., 1993). In this study, an 

investigation into the effects of the secondary currents on the velocity distributions and 

depth-averaged calculations are conducted by means of 3D CFD models. 

2.3.3 Flow resistance due to friction  

The flow resistance to flow in compound channel has been studied by many researchers. 

Lotter (1933), Einstein & Barbarossa (1952) and Krishnamurthy & Christensen (1972) 

proposed different formulae for predicting the composite roughness in compound channels. 
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One traditional approach used to estimate the conveyance capacities of compound channels 

is to subdivide the channel into a number of discrete sub areas. Then, the conveyance 

capacity for each sub area is calculated by using 1-D resistance equations (such as Manning 

equation) and the appropriate sub areas values for A, P, R, f and n. The individual 

conveyances are then summed to give the total discharge for the whole channel, (Chaudhry, 

2008). The global resistance coefficients are known to vary with depth in most channel 

flows as indicated by Knight et al., (1989) and Myers et al. (1999). Therefore, one of the 

difficulties in applying 1-D resistance equations such as Manning equations is variation of 

Manning resistance coefficient (n) for overbank flow. The composite or global value of 

Manning coefficient (ncomp.) for the whole compound channel may decrease sharply just 

above bankfull level as shown in Figure 2.12, (Knight et al., 1989). This effect is entirely 

fictitious, due to abrupt changes in the hydraulic radius (R), and actually there is no any 

real change in channel roughness. This example shows the difficulties associated with 

predicting resistance coefficients for open channels, when flowing as overbank flow. 

 
Figure 2.12 Variation of Manning resistance coefficient (n) for overbank flow at 

Montford, River Severn (Knight et al., 1989). 

For practical purposes, flow resistance may be expressed as mean boundary shear stress 

(τo) which is traditionally linked to the section-mean velocity (U) and the global or overall 

friction factor (f) by an empirical, dimensionally valid relationship. However, in compound 

channel flows, the local boundary shear stress (τb) and its relationship to the cross section-
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average (τo) is difficult to determine theoretically, as indicated by (Knight, Yuen, & Al-

Hamid, 1994). Therefore, care needs to be taken to distinguish between global and local 

friction factors, (Ikeda & McEwan2009). The two friction factor definitions, which 

commonly used in 1-D, 2-D and 3-D simulation models for compound open channel 

hydraulics, are often given as follows, 

 𝜏𝑜 = (
𝑓

8
) 𝜌𝑈2   (globle for 1D model) (2.17) 

 𝜏𝑏 = (
𝑓𝑏
8
)𝜌𝑈𝑑

2   (local/depth averaged for 2D model) (2.18) 

 𝜏𝑏 = (
𝑓𝑡
8
) 𝜌𝑢2   (local/turbulence for 3D model) (2.19) 

It should be noted that the depth-averaged friction factor defined in Eq. (2.18) implicitly 

include the effects of secondary flow and lateral shear because of using local values for 

velocities rather than section average values, (Knight et al., 2010). The local friction factor 

is a parameter that essentially relates the local boundary shear stress to the depth-averaged 

velocity. Therefore, it should consider the full three-dimensional flow effects throughout 

the depth of flow. This concept is attained using the Colebrook-White equation, given by 

Eq. (2.14). 

2.3.4 Momentum transfer mechanisms 

As presented earlier in this chapter, the velocity gradient between the fast-moving flow in 

the main channel and the slow-moving flow on the floodplains will cause strong mass and 

momentum transfers between them, leading to a very complex flow structure in the 

compound channel. Consequently, a significant lateral shear layer (mixing layer) will be 

created and various length scales vortices will be generated. The exchange of momentum 

taking place between the main channel and the floodplain acts as an apparent lateral shear 

stress that causes additional resistance to the flow, (Myers, 1978). 

A number of studies have been devoted to prediction of the momentum exchange and 

determination of the apparent lateral shear stress generating at the mixing layer between 

the main channel and the floodplain. Knight & Demetriou (1983) have experimentally 

demonstrated that the apparent shear force acting on the vertical interface between the main 

channel and the floodplains increased rapidly for low relative depths and high floodplain 

widths. Baird & Ervine (1984) suggested a relationship relating the apparent shear stress 
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with the mean velocity difference (ΔU) between the subsections for asymmetrical 

compound channels. Alavian and Chu (1985) proposed a mixing length approach to model 

the lateral turbulent shear stress, using the mixing layer width d as the length scale and the 

velocity difference between the channel and the floodplain (ΔU) as the velocity scale. 

Shiono & Knight (1991) found that there are three main mechanisms of momentum 

transfers in compound channels, including the bed-generated turbulence, lateral shear-

generated turbulence and secondary currents. The bed-generated turbulence is a small-scale 

turbulence induced by the bottom resistance, while lateral shear-generated turbulence 

appears in the form of large-scale horizontal vortices. Lambert and Sellin (1996) employed 

a mixing length approach, using the water depth as a length scale. They suggested that the 

bed-generated turbulence plays a major role in momentum transfers. Ervine et al. (2000) 

modelled the momentum transfer by accounting for the secondary currents in combination 

with a formulation for the combined contributions of bed-generated and lateral shear-

generated turbulence. Prooijen et al. (2005) investigated the momentum transfer in straight 

uniform compound channel, considering the different mechanisms that could play a role. 

They suggested that the momentum transfer is dominated by the horizontal planform 

vortices and the bottom turbulence, while secondary currents have a minor importance. 

Therefore, they proposed a new eddy viscosity model, in which the large-scale planform 

vortices and the bed-generated turbulence are incorporated. 

In this research, the different mechanisms responsible for the momentum exchange in a 

straight compound channel are considered in investigating the hydraulic factors that 

influence on the primary velocity distributions. Subsequently, the eddy viscosity is used as 

a parameter to characterise the lateral momentum exchange due to the turbulence. 

2.4 Numerical modelling of open channel flows 

In this section, the numerical approaches used for modelling the turbulent flows in open 

channels are described briefly, focusing on numerical techniques involved in the 

computational fluid dynamics (CFD) applications. Practical and theoretical issues that need 

to be considered when applying the numerical models are also reviewed through the 

previous studies. 
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2.4.1 Three-dimensional numerical approach 

Three-dimensional (3D) turbulence flow models (the basis of Computational Fluid 

Dynamics techniques, CFD) has increasingly used as an alternative and/or supplementary 

tool to the more traditional 1D and 2D approaches for modelling hydrodynamic and 

morphology problems in natural open channel flows, (Bates et al., 2005). 3D numerical 

CFD simulations may provide clearer explanations of the structure of the flow and the 

interactions of the key hydraulic components than do the traditional field and/or laboratory 

measurements. 

The governing equations for 3D turbulent flows are basically in the form of a coupled set 

of partial differential equations, known as the Navier–Stokes equations (N-S). The Navier 

Stoke equations are based on the conservation laws of mass (i.e. continuity equation) and 

momentum (Newton’s second law). The mass conservation for an incompressible fluid can 

be written in a Cartesian coordinate system as follows as follows (Hinze, 1975): 

 
𝜕𝑢𝑖
𝜕𝑥𝑖

= 0 (2.20) 

The conservation of momentum in the absence of external sources of momentum can be 

given as follows: 

 
𝜕𝑢𝑖
𝜕𝑡
+
𝜕

𝜕𝑥𝑗
(𝑢𝑖𝑢𝑗) = −

1

𝜌

𝜕𝑝

𝜕𝑥𝑖
+
1

𝜌

𝜕𝜏𝑖𝑗

𝜕𝑥𝑖
 (2.21) 

where, i,j (=1,2,3) are  index notations for Cartesian vector representations, 𝑢 is the 

velocity, p is the pressure and 𝜏𝑖𝑗 is the stress tensor. 

The laminar-turbulent field can be physically described by Eq. (2.21) which may be solved 

directly using a method called direct numerical simulation (DNS). However, the DNS 

method is prohibitively difficult, because of the significantly different length and time 

scales in a turbulent field that need to be resolved. Consequently, the DNS solution requires 

a fine mesh resolution to resolve the smallest turbulence vortices, and usually this is not 

practical within the available computational resources, (Spalart, 2000 and Filonovich, 

2015). 

Large Eddy Simulation (LES) approach has recently been suggested to be a more realistic 

modelling tool instead of using the DNS method. In LES, a spatially filter function is 

applied to the 3D unsteady Navier–Stokes equations to resolve directly all scales of motion 
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that are larger than the width of the filter. Smaller-scale motions, which is referred to as 

sub-grid scales, are typically modelled via a subgrid turbulence model. LES has been 

applied to solve hydraulic engineering problems by several researchers, (e.g. Thomas and 

Williams, 1995; Bradbrook et al., 2000; Cater & Williams, 2008; Kara et al., 2012 and Xie 

et al., 2013). Despite encouraging results obtained by LES simulations for moderate 

Reynolds number flows, LES would remain extremely costly in term of computer resources 

for domain with large dimension or at large Reynolds numbers (Xie et al., 2013; Chaouat, 

2017). 

Hence, the Reynolds-averaged Navier–Stokes (RANS) models that rely on Reynolds 

decomposition principle are used as a perfectly serviceable alternative for practical 

engineering computations. According to the Reynolds decomposition, instantaneous flow 

quantities, such as 𝑢𝑖, are decomposed in terms of a statistically stationary mean value (𝑈𝑖) 

and a zero-mean, random turbulent fluctuation (𝑢𝑖
′). In RANS models, the governing 

equations for the mean flow quantities are derived by introducing the Reynolds 

decomposition into the instantaneous Navier–Stokes equations, Eqs. (2.20) and (2.21), and 

applying time averaging. For an incompressible and turbulent fluid flow, the Reynolds 

averaged Navier-Stokes (RANS) equations can be written in a Cartesian coordinate system 

as follows: 

 
𝜕𝑈𝑖
𝜕𝑥𝑖

= 0 (2.22) 
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1

𝜌

𝜕𝑃

𝜕𝑥𝑖
+
𝜕

𝜕𝑥𝑗
[𝜈 (

𝜕𝑈𝑖
𝜕𝑥𝑗

+
𝜕𝑈𝑗

𝜕𝑥𝑖
)] −

𝜕

𝜕𝑥𝑗
(𝑢𝑖
′𝑢𝑗
′) (2.23) 

Due to the averaging operation, the resulting system of equations, i.e. RANS equations, 

contains six more unknowns than equations resulting in the system being not closed. These 

unknowns, which called Reynolds stresses (𝑢𝑖
′𝑢𝑗
′), involve time-averaged products of 

fluctuating velocity components. To solve the closure problem of turbulence, different 

turbulence models are developed by which the Reynolds stresses are related to the mean 

property of the fluid flow.  

Conceptually, the turbulence models are classified into two groups, specifically, Eddy-

Viscosity Models (EVM) and Reynolds Stress Models (RSM) (Bates et al., 2005). The 

EVM models employ an additional transport equation for the turbulence kinetic energy (k) 

in conjunction with a transport equation for the rate of viscous dissipation (ε) or the specific 
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dissipation rate (ω). On the other hand, RSM models provide one equation for each 

Reynolds stress as well as one equation for the dissipation of turbulent energy (ε or ω). The 

most used turbulent models for engineering calculations are presented in Table 2.1. More 

details on the theoretical formulations of these turbulence models are given in chapter 4. In 

the next subsection, CFD applications based on common RANS turbulence models are 

reviewed with emphasis on issues and challenges that are relevant to open channel flows. 

Table 2.1 List of Popular Turbulence Models for engineering and environmental flows. 

Model Classification Model Classification 

Eddy-Viscosity Models (EVM) Standard k-ε (Launder and Spalding, 1974) 

 RNG k-ε (Yakhot and Orszag, 1986) 

 Realizable k-ε (Shih et al., 1995) 

 LRN k-ω (Wilcox, 1994) 

 SST k-ω (Menter, 1994) 

Reynolds Stress Models (RSM) LRR-IP (Launder, Reece & Rodi, 1975) 

 LRR-IQ (Launder, Reece & Rodi, 1975) 

 SSG (Speziale, Sarkar & Gatski, 1991) 

 3D EARSM (Gatski & Speziale, 1993) 

 BSL RSM (Menter, 2009) 

2.4.2 CFD applications using RANS methodology 

Growing in computing power encourages on using CFD modelling to perform extensive 

studies on the turbulent flows in open channels. In particular, CFD modelling based on 

various RANS models have frequently been used to simulate the turbulent structure in 

simple and compound open channels. 

As in other engineering problems, the k-ε model has been the preferred choice and used by 

many researches for a wide variety of 3D open channel flows (e.g. Peric et al., 1988; 

Cheong & Xue, 1997; Fischer et al., 2000; Wu et al., 2003 and Rameshwaran & Naden, 

2003). Although, the k-ε model was found to be applicable in certain situations with 

reasonable success, the model does not produce satisfactory results when anisotropy of 

turbulence and special effects like streamline curvature play an important role (Pezzinga, 
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1994; Cokljat & Younis, 1995a). This means, the k-ε model cannot reproduce directional 

effects of turbulent flows such as secondary motions of fluids. 

For improving turbulence models based on the eddy viscosity concept, the linear strain rate 

is modified by including a nonlinear effect to account for the streamline curvature (Bernard 

& Wallace, 2002). The nonlinear RNG k-ε model is an example of such turbulence closures, 

which are often defined as anisotropic turbulence models. Pezzinga (1994) and Sofialidis 

& Prinos (1998) used the nonlinear k-ε model to predict open-channel flows with secondary 

currents. Although their modelling successfully predicted secondary currents in a 

compound channel, the mean flow and turbulence structure were not accurately simulated. 

For example, they found that the velocity-dip phenomenon can hardly be predicted by the 

nonlinear k-ε model used. 

Naot and Rodi (1982) proposed a modelling approach, which is known as algebraic stress 

model (ASM), to numerically simulate open channel flows with secondary currents. The 

principal advantage of ASM approach is that the turbulent stresses are obtained from 

algebraic rather than differential equations, reducing the computational cost. Following 

Naot and Rodi (1982), many researchers simulated open channel flows using the ASM 

(Demuren & Rodi, 1984; Krishnappan & Lau, 1986 and Naot et al., 1993). However, 

because the ASM solves empirical relationships instead of solving the exact equations for 

Reynolds stresses, the simulated mean flow and turbulence structures are not sufficiently 

accurate (Naot et al., 1996). 

Reynolds Stress Model (RSM) has been developed to overcome the weakness of the 

previous models. The RSM is a comprehensive model which is based on solving transport 

equations for the individual turbulent stress instead of using the eddy viscosity concept. 

Reece (1977) was the first investigator who developed and used the RSM model to simulate 

the open channel flows. Later, Cokljat & Younis (1995a, 1995b) and Basara & Cokljat 

(1995) proposed a RSM model for numerical simulations of free surface flows in a 

rectangular channel and in a compound channel. They found that the RSM model used can 

give a good agreement between predicted and measured data. Kang and Choi (2006a) used 

RSM to simulate a straight open channel flow and Jing et al. (2009) to simulate meandering 

open channel flows. They indicated that RSM can successfully predict the velocity fields, 

secondary currents, wall shear stresses, and Reynolds stresses for both straight and 

meandering open channel flows. Filonovich et al. (2012) tested the performance of different 
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RSM models on straight compound channels and found that all RSM models can reproduce 

the complex flow pattern of primary velocity field, secondary currents and anisotropy of 

turbulence. However, they indicated that the performance of BSL RSM is better compared 

with the other RSM models. 

In the light of the general review above, it can be concluded that the RSM models can 

predict the main turbulent features and the secondary motions in open-channel flows 

through accounting for the turbulence anisotropy effects. Furthermore, the RSM models 

are superior to eddy viscosity models because they can mathematically represent the 

physical processes of the free surface flow (Rodi, 2017). Therefore, the RSM model are 

used for the numerical simulations conducted in this study to understand the secondary 

flow and turbulence effects on the primary velocity distributions. 

2.4.3 One-dimensional numerical approaches 

The open channel flow can often be treated as one-dimensional (1D) rather than as a three-

dimensional (3D) flow, which is considered in complex hydraulic problems. The governing 

equations of 1D numerical approaches are usually derived from three principles of 

conservation: momentum conservation, mass conservation and energy conservation laws. 

The derivation can be performed in various ways. The approaches found in the literature, 

(e.g. Chow, 1959; Chaudhry, 2008; Szymkiewicz, 2010) and others differ with respect to 

the formulation of the principle of conservation. However, the open channel flow equations 

are very often derived by balancing the fluxes and forces acting on the considered control 

volume, with an assumption of uniform velocity flow distribution over a channel cross-

section. Next, when the governing equations are derived, some additional factors are 

introduced to correct the balanced quantity. 

One-dimensional unsteady flow in an open channel can be described by the so-called Saint-

Venant equations, which are based on momentum and mass conservation laws. These 

equations can be given as follows: 

 
𝜕𝐴

𝜕𝑡
+
𝜕𝑄

𝜕𝑥
= 𝑞  (2.24) 

 
𝜕𝑈

𝜕𝑡
+ 𝛽𝑈

𝜕𝑈

𝜕𝑥
+ 𝑔

𝜕ℎ

𝜕𝑥
+ 𝑔(𝑆𝑓 − 𝑆𝑜) = 0 (2.25) 

where t = time; x = longitudinal distance; A = cross-sectional area; Q = flow rate (= U.A); 

U = cross-sectional average flow velocity; h = flow depth; Sf = friction slop; So = bottom 
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slope and q = lateral inflow (in most cases q is assumed to be neglected). The velocity 

correction coefficient (β), which is also called the Boussinesq coefficient or momentum 

correction coefficient, is usually applied in momentum equation (Eq. 2.25) to correct the 

error in momentum balance resulted from velocity averaging (Chanson, 2004).  

In many practical applications the steady and gradually varied flow in open channels could 

be considered. Typical problem connected with this kind of flow is the determination of the 

flow profile behind a dam, which is also called backwater profile calculation. For such flow 

cases, the 1D energy equation derived from conservation of energy law is commonly used. 

The 1D energy equation is commonly written in the following form: 

 (ℎ1 + 𝛼1
𝑈1
2

2𝑔
) − (ℎ2 + 𝛼2

𝑈2
2

2𝑔
) = ∆𝑥(𝑆𝑜 − 𝑆𝑓̅) (2.26) 

where h1, h2 = depth of flow at considered cross sections 1 and 2; U1, U2 = cross-sectional 

average velocities and α1, α2 = kinetic energy correction coefficients (also called Coriolis 

coefficients). The velocity correction coefficient (α) is introduced to correct the kinetic 

energy calculated using the average flow velocity U instead of the actual velocities. 

The velocity distribution coefficients α and β can be defined from the comparison between 

the actual energy or momentum and the energy or momentum calculated with the averaged 

velocity U. Therefore, the coefficients α and β may be expressed as follows: 

 𝛼 =
1

𝑈3𝐴
∫ 𝑢3𝑑𝐴
𝐴

 (2.27) 

 𝛽 =
1

𝑈2𝐴
∫ 𝑢2𝑑𝐴
𝐴

 (2.28) 

The values of α and β coefficients increase with increase in non-uniformity of flow velocity 

distributions over cross-section (Chen, 1992). Therefore, these coefficients are used as 

indicators for the flow velocity distribution in the present research. 

2.4.4 Velocity distribution coefficients 

As mentioned in previous sections, the momentum and kinetic energy correction 

coefficients (β and α), which are also referred to as velocity distribution coefficients, reflect 

the extent of the nonuniformity for the velocity distribution over a cross section. In some 

limited cases these coefficients are assumed to be unity, however, in most situations, their 



Chapter 2 Literature Review 

 

36 

 

values are often larger than unity. Based on this fact, the evaluation of velocity distribution 

coefficients and their effects on the 1D flow computations have been focused on in many 

previous studies. 

In the past, there were many attempts by some researchers and engineers to find typical 

values for the velocity correction coefficients. Chow (1959) stated that for fairly straight 

prismatic channels, β varies approximately from 1.01 to 1.12, while α varies nearly from 

1.16 to 1.47. He also indicated that for channels with complex cross sections, β and α may 

exceed 1.2 and 1.5, with their values varying quite rapidly from section to section in case 

of irregular alignment. 

Some other researchers made attempts to suggest general formulas to estimate the values 

of the velocity correction coefficients instead of using typical values suggested in the 

classic textbook. Henderson (1966) assumed that for a linear velocity distribution α and β 

might be obtained from the following expressions: 

 𝛼 = 1 + 𝜀2 (2.29) 

 𝛽 = 1 +
𝜀2

3
 (2.30) 

and for logarithmic velocity distribution: 

 𝛼 = 1 + 3𝜀2 − 2𝜀3 (2.31) 

 𝛽 = 1 + 𝜀2 (2.32) 

in which 𝜀 = (𝑈𝑚𝑎𝑥/𝑈-1), Umax = maximum velocity and U = section mean velocity. 

Strauss (1967) based on experimental studies, has given empirical formulae for computing 

α and β for general channel section based on the velocity distribution given by the following 

power law: 

 𝑢 = 𝑎. 𝑦1/𝑚 (2.33) 

where u is the velocity at a point located at a height y from the bed, a is a constant and m is 

an exponent such that (1≤ m ≤ ∞). The application of Strauss’s method is practically limited, 

because it is not always true that the same velocity distribution prevails along all the 

verticals of the cross-section. Li & Hager (1991) considered (β and α) as functions of 

Umax/U for the channel is implicitly assumed to be prismatic or two-dimensional and there 
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is no flow separation. Li & Hager (1991) made also an attempt to relate (β and α) to 

boundary shear and to Manning’s n.  

In 1990’s, some studies were conducted to investigate the significance of the velocity 

correction factors (β and α) in solving one-dimensional flow equations (Eqs. 2.25 and 2.26). 

Chen (1992) derived theoretical expressions of the momentum coefficient (β) and energy 

coefficient (α) for turbulent shear flow in wide open channels from the power law and 

compared them with their counterparts based on the logarithmic law. According to his 

results, he has drawn the following two conclusions: (1) a comparison of the corresponding 

expressions for (β) and (α) derived using both laws showed that their values differ only 

slightly within a valid range of small m; (2) use of a power-law-based (β) expression in the 

averaged equation of momentum could remove the inconsistent assumption of (β = 1) made 

in the equation and make improvement on the accuracy of the 1D flow computations. Xia 

& Yen (1994) conducted a sensitivity numerical analysis to probe the impact of the 

momentum correction coefficient (β) on the solution of the 1D Saint-Venant equations, Eq. 

2.25. They found that there is always a difference in solutions between the nearly exact 

flow equations (i.e. for which β > 1) and the Saint-Venant equations for which the 

coefficient value is equal to unity. Also, their study indicated that the coefficient β has a 

greater impact on the solution for velocity than for depth. Fenton (2005) showed that 

neglecting the appropriate consideration of energy and momentum even in simple flow 

calculations might cause up to a 5-10% error. Thus, he indicated that α and β coefficients 

should be included in most applications in hydraulic practice. Costabile & Macchione 

(2010) highlighted the importance of the accurate evaluation of the momentum coefficient 

(Boussinesq coefficient) for the computation of flow variables (flow depth and flow rate) 

by using the 1D flow equations. 

In addition, a series of laboratory experiments was performed by many researchers to 

investigate the effects of the flow parameters on the velocity distribution coefficients (α, 

β). Al-Khatib & Gogus (1999) suggested that the values of the coefficients α and β slightly 

decrease with increasing depth of flow and the influence of the main channel width on α 

and β values is almost negligible. Seckin et al. (2009) showed that α and β coefficients 

decreases with increases the total discharge of the compound channel as the flow become 

more stable at higher discharge. Luo (2012) indicated that the value of both the energy and 

momentum coefficients in smooth compound channels decrease with the increase of water 

depth and Reynold’s number. Mohanty et al. (2013) proved that α could be related to β by 
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an equation following a straight-line relationship. Hamidifar (2016) developed expressions 

for calculating the kinetic energy and momentum correction coefficients as a function of 

the flow relative depth and vegetation density. 

Based on the previous studies reviewed above, it can be noted that the non-uniformity of 

velocity distribution, which can be expressed in terms of velocity distribution coefficients 

(α and β), should properly be considered in 1D flow formulations for obtaining accurate 

calculations. Furthermore, most previous studies focused on the flows in simple or 

compound open channels with smooth beds only, expressing the velocity distribution 

coefficients (α and β) as a function of few flow parameters. Therefore, as a part of this 

study, the velocity distribution coefficients are studied experimentally and numerically as 

a function of the whole flow regime classified according to the roughness and flow 

resistance. 

2.5 Analytical models for velocity distribution 

It is known that accurate predictions of mean velocity field for open channel flows can be 

obtained by applying sophisticated 3D models, which are based on Reynolds averaged 

Navier–Stokes (RANS) equations. However, it may be difficult and impractical to apply 

the 3D RANS models for engineering applications such as modelling flows in natural 

rivers. Furthermore, in most hydraulic problems, only the primary velocity distribution is 

of importance for hydraulic engineers. Therefore, instead of these 3D full RANS models, 

analytical models based on a simplified forms of RANS equations were proposed to predict 

the primary velocity distributions for both rectangular and compound channels. In this 

section, the development of these analytical models is briefly described, focusing on the 

theoretical considerations and related assumptions used in the development of such models. 

The full derivation of the analytical models used in the present study are discussed in more 

detail in chapter 5. 

2.5.1 Analytical models for vertical distribution 

Many analytical and semi analytical models have been proposed to predict the vertical 

distribution of the primary velocity in open channels as well as pipe flows. Such models 

were derived through integrating the RANS equations by assuming that the variations in 

the transverse direction at the centre of channels could be neglected. The proposed 

analytical models offered improvements to both the log and wake laws which were found 
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to be unable to represent the flow features such as velocity-dip phenomenon (Guo & Julien, 

2003).  

Yang et al. (2004) proposed a dip-modified-log-law (DML-Law) based on the analysis of 

the Reynolds-averaged Navier-Stokes (RANS) equations. They assumed that the vertical 

component of secondary currents is generally in the downward direction and can be 

modeled using a linear relationship for simplicity of RANS equations. DML-law of Yang 

(2004) can be given as follows: 

 
𝑈

𝑢∗
=
1

𝑘
ln
𝑧

𝑧𝑜
+
𝜇

𝑘
ln (1 −

𝑧

ℎ
) (2.34) 

where, z is vertical distance from bed, zo is the distance at which the velocity is 

hypothetically equal to zero, 𝑢∗ is shear velocity, h is the flow depth, k is the von Karman 

constant and 𝜇 is the dip-correction parameter which is a positive constant. The DML-law 

modified the log-law by adding the second term on the right-hand side of Eq. (2.34) that 

predicts the velocity dip position. The advantage of this law is that it contains only one 

parameter, i.e. 𝜇, for dip-correction. Although the DML-law can predict dip-phenomena 

well for smooth uniform open channel flows, it fails to predict the velocity well in the rough 

channels (Guo & Julien, 2008; Bonakdari et al., 2008; Absi, 2011 and Lassabatere et al., 

2012). 

Guo and Julien (2008) proposed a modified-log-wake law (MLW-Law) which fits velocity 

profiles with a dip phenomenon. However, this law cannot be used for predictive 

applications since it requires measurements for velocity. 

Lassabatere et al. (2012) proposed an analytical model for the streamwise velocity, on the 

basis of a specific formulation for the vertical velocity profile. Their proposed model was 

applicable to both rough and smooth flow regimes. However, the model is only applicable 

to the outer region and central part of channels. 

Based on an analysis of the Reynolds-averaged Navier–Stokes equations and a log-wake 

modified eddy viscosity distribution, Absi (2011) proposed the dip-modified log-wake law 

(DMLW-law) which can be given as follows: 
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where, 𝜉 = 𝑧 ℎ⁄ , 𝜉𝑜 = 𝑧𝑜 ℎ⁄  and Π is Coles parameter representing the strength of the wake. 

It was found that the DMLW-law can predict the velocity profiles for both smooth and 

rough flows. However, the dip correction is not sufficient for providing the accurate 

predictions and the appropriate values of strength parameter (Coles parameter) are also 

required.  

In the present work, an in-depth study regarding the related assumptions of analytical 

DMLW-law is done. Using the detailed results obtained from the CFD modelling, a 

complete estimation of the model parameters associated with dip phenomenon and eddy 

viscosity are made to improve the analytical model accuracy.  

2.5.2 Analytical models for depth-averaged distribution 

Many studies have concerned with the prediction of the depth-averaged velocity and 

boundary shear stress in compound channels, e.g. Ervine & Ellis (1987); Shiono and Knight 

(1988, 1991); Lambert and Sellin (1996); Ervine et al. (2000). Based on these studies, a 

number of analytical approaches for modelling the depth-averaged velocity and the 

boundary shear stress distributions have been developed. However, the methodology 

proposed by Shiono and Knight (1991), which is based on Reynolds averaged Navier–

Stokes (RANS) equation, is the most popular method and is widely used for modelling 

different cases associated with the compound channel flows. Therefore, this work 

concentrates only on the application of the Shiono and Knight methodology (SKM) to 

asymmetric compound channels that are considered here. 

The basic form of Shiono and Knight method (SKM) that is widely used for depth-averaged 

calculations in simple and compound channel flows can be given as follows: 

 𝜌𝑔𝐻𝑆𝑜 − 𝜌
𝑓

8
𝑈𝑑
2 (1 +

1

𝑆2
)

1
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+
𝜕

𝜕𝑦
[𝜌𝜆𝐻2 (

𝑓
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)
1/2

𝑈𝑑
𝜕𝑈𝑑
𝜕𝑦
] =

𝜕

𝜕𝑦
[𝐻(𝜌𝑈𝑉)𝑑] (2.36) 

where; f = Darcy-Weisbach friction factor, λ = dimensionless eddy viscosity; S = the 

channel side slope of the banks (1:S, vertical: horizontal), H = flow depth as a function of 

lateral distance y, and Ud, Vd = the depth-averaged streamwise and crosswise velocities. 

Solving Eq. (3.36) yields Ud as a function of y. 

The term on the right-hand side of Eq. (2.36) accounts for the effect of the secondary flow 

on the primary flow. Shiono and Knight (1991) observed that the lateral gradient of the 

secondary flow term [𝐻(𝜌𝑈𝑉)𝑑] decreases approximately linearly in the main channel and 
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linearly increases on the floodplains, as shown in Figure (2.13). Therefore, they suggested 

that a constant value of secondary flow term, which is referred to as secondary flow 

parameter (Γ) can be allocated for main channel and floodplains. Thus, Eq. (2.36) can be 

rewritten as follows: 

 𝜌𝑔𝐻𝑆𝑜 − 𝜌
𝑓

8
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𝜕𝑈𝑑
𝜕𝑦
] = Γ (2.37) 

 

 

 
Figure 2.13 Lateral variation of apparent stress [(𝜌𝑈𝑉)𝑑], and force per unit length 

[𝐻(𝜌𝑈𝑉)𝑑] due to secondary flows for different Dr, (Shiono and Knight, 1991). 

Based on the SKM method, many investigations have been undertaken into flow in straight 

and meandering compound channels. For example, the SKM method has been applied to 

straight prismatic channels by Shiono & Knight (1991); Abril and Knight (2004); Liao and 

Knight (2007); Tang & Knight (2008); and Devi & Khatua (2016). Attempts have also been 

undertaken to use the SKM in modelling meandering channels (Liu et al. 2014) and non-

prismatic channels (Rezaei & Knight 2009). 
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The accuracy of the SKM results was found to depend substantially on the three depth-

averaged calibration coefficients, which include local bed friction (the Darcy-Weisbach 

friction factor) f; the dimensionless eddy viscosity λ and the transverse gradient of 

secondary flow term Γ. In the compound channel with wide floodplains, different methods 

have been suggested to calibrate each one of these three coefficients. The friction factor is 

often assumed to be constant in each panel and may be back calculated using (𝑓 =

 8𝜏𝑏 /𝑈𝑑
2), where the mean depth-averaged velocity 𝑈𝑑 and shear stress 𝜏𝑏 are measured for 

each panel (Knight et al. 2007). The dimensionless eddy viscosity for the main channel 

(λmc) is usually taken as 0.07 for experimental channels and from 0.24 to 0.5 for natural 

channels (Shiono and Knight 1991). The value of the dimensionless eddy viscosity for the 

floodplain (λfp) is mostly predicted by the expression proposed by Abril and Knight (2004) 

and given as follows: 

 𝜆𝑓𝑝 = 𝜆𝑚𝑐(1.2𝐷𝑟
1.44 − 0.2) (2.38) 

where Dr is the relative depth and defined as the ratio between the flow depth of the 

floodplain to that of the main channel. The secondary flow parameter (Γ) can be defined as 

a fraction of the bed shear stresses (ρgHSo), (Abril and Knight 2004). The simplification 

for the secondary flow term may also be made by expressing the term of Vd as a function 

of the Ud, (Ervine et al. 2000). The assumption is that the product of the local Ud and Vd 

velocities produce a profile that is similar to that of the squared depth-averaged streamwise 

velocity. 

However, using the expressions suggested for a compound channel with wide floodplains 

to calculate the SKM parameters may not give the calibrated values that are proper for a 

compound channel with narrow floodplains. In this research, the conventional approaches 

discussed above are checked whether they can also be applicable to the compound channel 

with narrow floodplains and improved if necessary.  

2.6 Summary 

The previous sections have shown that that primary flows in simple and compound 

channels affected significantly by secondary flows, turbulence and roughness. For the 

inbank flow in a straight simple channel, secondary flows are generally generated due to 

the anisotropy of turbulence caused by the boundary conditions at the solid walls and at the 

free surface. Overbank flow in a straight compound channel is somewhat different in a 
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number of aspects from inbank flow. The difference in velocity between the main channel 

and the floodplain flows may produce strong lateral shear layers, which consequentially 

lead to the generation of the large-scale vortices, which also called planform vortices. These 

vortices transport the high momentum fluid from the main channel towards the floodplain. 

In addition to the planform vortices rotating about vertical axes, helical streamwise vortices 

rotating about horizontal axes can often be observed in compound channels with overbank 

flows. The existence of such vortices also play an important role in the momentum 

exchange, especially near the junction between the main channel (MC) and floodplain (FP). 

The open channel flow can often be treated as one-dimensional (1D) rather than as a three-

dimensional (3D) flow, which is considered in complex hydraulic problems. For example, 

the one-dimensional unsteady flow in an open channel can be described by the so-called 

Saint-Venant equations, which are based on momentum and mass conservation laws. In 

other practical applications the steady and gradually varied flow in open channels could be 

considered. For such flow cases, the 1D energy equation derived from conservation of 

energy law is commonly used. The momentum and kinetic energy correction coefficients 

(β and α), which are also referred to as velocity distribution coefficients, are applied in 

momentum and energy equations to capture the 3D features of the flow and correct the 

errors resulted from velocity averaging. Based on the previous studies reviewed in this 

study, it can be noted that the non-uniformity of velocity distribution, which can be 

expressed in terms of velocity distribution coefficients (α and β), should properly be 

considered in 1D flow formulations for obtaining accurate calculations. 

Furthermore, there are many analytical and semi analytical models have been proposed to 

predict the distribution of the primary velocity in both simple and compound open channels. 

Such models were derived through integrating the RANS equations by imposing specific 

assumptions for the secondary flows and turbulence. For the vertical velocity profile, the 

analytical dip-modified laws can be used, while Shiono and Knight method (SKM) is 

widely used for depth-averaged velocity distributions. The accuracy of the analytical 

models was found to depend substantially on the model parameters that account for the 

effects of secondary flows, turbulence and wall roughness. 

Growing in computing power encourages on using Computational Fluid Dynamics (CFD) 

modelling to perform extensive studies on the turbulent flows in open channels. The 3D 

numerical simulations by the CFD may provide clearer explanations of the flow structure 

and the interactions of the key hydraulic components than do the traditional laboratory 
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measurements. In the light of the review conducted in the present study, it can be concluded 

that the CFD model with Reynolds stress turbulence model (RSM) can predict the main 

turbulent features and the secondary motions in open-channel flows through accounting for 

the turbulence anisotropy effects. Furthermore, the RSM models can mathematically 

represent the physical processes of the free surface flow. Therefore, the RSM models are 

used for the numerical simulations conducted in this study to understand the secondary 

flow and turbulence effects on the primary velocity distributions. 

In this study, by using the CFD modeling approach, a method for evaluating the velocity 

distribution coefficients (α and β), which play an important role in 1D numerical approach, 

is proposed. Also, methods for calibrating the key coefficients in analytical models of 

velocity distributions are suggested to improve the accuracy of these models for narrow 

open channel flows.  
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Chapter 3                                                         

Experimental Investigation 

3.1 Introduction 

Experiments performed in this study were conducted in a (0.3 m) wide by (8.6 m) long 

flume in the Hydraulics Laboratory of the School of Computing, Science & Engineering 

(CSE) at the University of Salford. Velocity distributions and their non-uniformity were 

investigated for flows in rectangular and compound channels with different roughness 

regimes. Three flow regimes in terms of the roughness (smooth, transitional and rough 

regimes) were established by changing roughness configurations of the bed. The details of 

the experimental procedure and some typical data are described in this chapter, while the 

results are presented and discussed in Chapters 6 and 7. 

3.2 Experimental facilities 

3.2.1 Flume setup 

All experiments were conducted in a glass-sided tilting Arm-Field flume with a stainless-

steel bed. The typical flow section was rectangular with working dimensions of 0.30 m in 

width, 0.45 m in depth. The flume was composed of a channel, inlet tank and discharge 

tank as shown in Figure 3.1. The flume was also provided with a closed flow circulating 

system with a series of water sump tanks located on the floor and connected with each 

other. Water circulation was carried out by the centrifugal pump mounted beneath the 

flume, drawing water from the series of interconnected sump tanks. The flow was regulated 

using a manual control valve. The flow rate was measured using an electromagnetic flow-

meter (EMFM) and displayed on a digital readout located on the front of the electrical 

console. 

The flume was provided with a small manual moving cart that works as a carriage to move 

the point gauge and to hold the velocity measurement device along the entire length of the 

flume. The flume was marked with a millimeter scale to help in identifying the location of 

the carriage and the measuring devices. A tail gate located at the downstream end of the 

flume was used to adjust tail water levels. A hand wheel on the end jacking pedestal, which 

allows the slope of the channel bed to be varied, was used for setting the slope of the bed. 



Chapter 3 Experimental Investigation 

 

46 

 

For convenience the actual slope was displayed on an indicator adjacent to the hand wheel. 

The scale was calibrated to give a slope value of one in (scale reading), e.g. a value of 200 

on the scale corresponds to a slope of 1 in 200, or 0.005 m/m. 

  
(a) inlet with pump (b) discharge unit with sump tanks 

 
(c) Schematic diagram of the laboratory flume 

Figure 3.1 Photos and diagram for the laboratory flume used. 

3.2.2 Velocity measuring devices 

The main velocity measuring device used in this study is the Pitot Tube. In this section, 

only a general description and operating principle for the velocity instrument are given. 

The subsequent sections provide more detailed information about the set up and use of this 

device. 

A Pitot tube with inner diameter of 1.0 mm and with 4 holes (φ 0.75 mm), as shown in 

Figure 3.2, was used in the experiments of both rectangular and compound channels. It was 

used to obtain vertical velocity profiles, depth-averaged velocity profiles, and isovel line 

patterns. 

The Pitot tube was connected to the low-range digital pressure transducer (Comark 

C9551/SIL, 0 to ± 140mbar), to measure the pressure difference (Δp) between the static 

and dynamic pressures. The opening at the tip of the tube records the stagnation pressure 
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(total pressure, Pt) which is the sum of static and dynamic pressures (Ps+ Pv), while the side 

openings record the static pressure (Ps) as illustrated in Figure 3.2c. The difference of the 

two measurements gives the dynamic pressure which is recorded by the transducer as a 

differential head (in mmH2O) with approximate accuracy (±0.1 mm). The point velocity 

then can be calculated from the following equation derived based on Bernoulli principle: 

 𝑢 = √2𝑔∆ℎ (3.1) 

where u is local velocity of water at Pitot tube point, g is acceleration due to gravity and 

Δh is differential head measured using the pressure transducer. 

 
 

(a) (b) 

Figure 3.2 Photo and schematic of the Pitot tube. 

3.3 Test program 

The experimental program was designed to study various aspects of velocity distributions 

for inbank and overbank flows with different flow regimes in terms of roughness 

conditions. Therefore, two sets of experiments were conducted on two channel 

configurations that have different hydraulic and roughness characteristics for collecting the 

experimental data. One of the channels had a rectangular section to simulate the inbank 

flow condition, while the other had a compound section constructed inside the flume to 

represent the overbank flow condition. The main objectives and some details for all 

experiments considered in this study are summarised in Table 3.1. The description of 

experiments is given in the next following sections. 
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3.4 Experimental setup 

3.4.1 Experimental setup for rectangular channel flows 

The first set of experiments was concerned with investigating the combined effects of the 

bed roughness, secondary currents and turbulence characterised by the eddy viscosity on 

velocity distributions of flows in rectangular channels. Moreover, these experiments were 

undertaken to provide a basis for studying the potential relationship between the velocity 

distribution coefficients (α and β), which are taken as indicators for non-uniformity of 

velocity distributions, and the flow regime in terms of roughness conditions described by 

Re*. The effects of the secondary currents and the eddy viscosity on the non-uniformity of 

the velocity distribution were also examined based on the results from these experiments 

alongside numerical results obtained by CFD simulations.  

In this set of experiments, three different bed roughness elements were used to cover all 

hydraulically defined roughness regimes that might occur in engineered or natural open 

channels. Experimental conditions for the first set of test cases are given in Table 3.2. 

Table 3.2 Flow and channel conditions for rectangular channel experiments. 

Case 
Flow 

depth 

Aspect 

ratio 

Flow 

rate 

Mean 

bulk 

velocity 

Global 

shear 

velocity 

Reynolds 

number 

Roughness 

height 

Roughness 

Reynolds 

number 

 H Ar Q U U* Re (x104) Ks Re* 

[#] [cm] [---] [l/s] [m/s] [m/s] [---] [mm] [---] 

S6 6.0 5.0 5.22 0.290 0.0145 4.95 0.15 2.8 

S10 10.0 3.0 11.39 0.380 0.0172 9.08 0.15 3.4 

S15 15.0 2.0 21.17 0.470 0.0192 14.06 0.15 3.8 

S20 20.0 1.5 32.86 0.548 0.0205 18.70 0.15 4.0 

T6 6.0 5.0 4.13 0.229 0.0145 3.92 1.5 28.8 

T10 10.0 3.0 9.33 0.311 0.0172 7.44 1.5 34.1 

T15 15.0 2.0 17.42 0.387 0.0192 11.57 1.5 38.2 

T20 20.0 1.5 26.14 0.436 0.0205 14.88 1.5 40.8 

R6 6.0 5.0 3.12 0.174 0.0145 2.96 8.0 144.4 

R10 10.0 3.0 7.36 0.245 0.0172 5.87 8.0 170.8 

R15 15.0 2.0 14.92 0.332 0.0192 9.91 8.0 191.0 

R20 20.0 1.5 24.59 0.410 0.0205 14.00 8.0 204.2 

Ar = B/H, U = Q/A, A = the cross-sectional area of the flow, U* = √𝑔𝑅𝑆𝑜, R = hydraulic 

radius, Re = 4UmR/ν, Re* = U* Ks/ν, ν = Kinematic Viscosity of water. 

Experiments were classified into three groups. In the first group, which includes test cases 

S6 to S20 in Table 3.2, the smooth stainless bed surface of the flume was used for 
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establishing a hydraulically smooth condition for which Re* < 5. In the second group, 

which consists of experiments T6 to T20, an anti-slip sheet of 1.5 mm thick was used to 

roughen the channel bed. The equivalent sand roughness Ks of this rough bed was estimated 

to be the same magnitude as the sheet thickness. Therefore, the values of R* for cases of 

second group were laying in the range of transitional roughness conditions (5 < Re* < 70). 

The cases of third group, i.e. R6 to R20, represented the fully rough flow regime for which 

Re* > 70. The rough bed used in third group experiments were generated using a single 

layer of grains (D84 = 8.0 mm) affixed to an aluminium plate having the same width as that 

of the flume bed. D84 is the particle diameter so that 84% of the particles in the total grain-

size distribution are smaller than D84. The equivalent sand roughness height for the fully 

rough cases was estimated to be the same order of magnitude as D84. Figure 3.3 shows 

roughness elements used for generating all roughness conditions considered in the first set 

of experiments. 

   
(a) Smooth (b) Transitionally rough (c) Full rough 

Figure 3.3 Bed surfaces for test cases of flows in rectangular channels. 

All experiments within this set were performed at four different uniform flow depths (6, 

10, 15 and 20 cm) with a fixed-bed slope of 0.0005. The flow depth H was changed with 

keeping the channel width invariant to examine the effect of aspect ratio (Ar) on secondary 

currents. The adopted flow depths provide the range of aspect ratios from 1.5 to 5, covering 

the same range as for narrow rectangular channels. In the narrow channels where Ar < 5, 

strong secondary currents are developed and their effect on the primary flows is thought to 

be significant. Therefore, this range of Ar values was selected for rectangular channel 

experiments. Figure 3.4 shows roughness conditions for all rectangular channel 

experiments considered in the present study.   
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(a) smooth (b) Transitionally rough (c) Fully rough 

Figure 3.4 Photos showing roughness conditions of rectangular channels. 

3.4.2 Experimental setup for compound channel flows 

The second set of experiments was undertaken for investigating the effect of all energy loss 

mechanisms including roughness, secondary currents and turbulence on depth-averaged 

velocity distributions in overbank flows. Also, this set was conducted to provide a basis for 

exploring the relationship between the non-uniformity of velocity distribution described by 

α or β and between the parameters that characterize secondary currents, eddy viscosity and 

friction in compound channels.  

This set of experiments was carried out in the same flume used for the first set, but an 

asymmetric compound section was constructed from plywood plates inside the flume to 

simulate overbank flow conditions. The cross-section configuration is shown in Figure 3.5. 

The compound section consists of a rectangular main channel of width (b) 0.20 m and a 

single adjacent rectangular flood plain of width 0.10 m. 
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(a) (b) 

Figure 3.5 Compound channel configurations used in second set of experiments. 

Test cases within the second set were classified according to the bed roughness into three 

groups. Experimental conditions for all test cases are given in Table 3.3. In the first group, 

which includes the cases CS0.25 to CS0.50, both the main channel and the floodplain had 

smooth boundaries and the height of the floodplain (h) was 60 mm. In these smooth 

floodplain cases, the Manning coefficients (n) in the main channel and floodplain were 

estimated as about 0.010 from the normal depth measurements. The total flow depth was 

varied between 80 mm to 120 mm to cover a range of relative depth Dr [= (H-h)/H] from 

0.25 to 0.50. The relative depth was selected as a key experimental parameter in compound 

channel flows on the basis that the interaction between the floodplains and the main channel 

is known to be depth dependent. An upper limit of 0.5 was chosen on the grounds that Dr 

values in most practical flow cases are equal to or lower than this limit. 

Table 3.3 Flow and channel conditions for the compound channels experiments. 

Case Dr Hmc Ks,mc Hfp Ks,fp Q 
Average 

Re* 

[#] [---] [mm] [mm] [mm] [mm] [l/s] [---] 

CS0.25 0.25 80.0 0.2 20.0 0.2 6.09 2.9 

CS0.33 0.33 90.0 0.2 30.0 0.2 7.49 3.1 

CS0.40 0.40 100.0 0.2 40.0 0.2 9.01 3.3 

CS0.50 0.50 120.0 0.2 60.0 0.2 12.40 3.7 

CT0.25 0.25 80.0 0.2 20.0 1.5 5.28 28.6 

CT0.33 0.33 90.0 0.2 30.0 1.5 6.57 31.3 

CT0.40 0.40 100.0 0.2 40.0 1.5 7.99 33.4 

CT0.50 0.50 120.0 0.2 60.0 1.5 11.21 36.7 

CR0.25 0.25 100.0 0.2 25.0 8.0 6.60 122.9 

CR0.33 0.33 112.0 0.2 37.0 8.0 8.11 133.7 

CR0.40 0.40 125.0 0.2 50.0 8.0 9.90 142.8 

CR0.50 0.50 150.0 0.2 75.0 8.0 13.79 156.1 
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The cases considered in the second group (i.e. CT0.25 to CT0.50) had a rough bed on the 

bottom of the floodplain while the main channel was kept smooth. The bed of the floodplain 

was roughened by the same anti-skid sheet that was used for rectangular channel 

experiments. The equivalent sand roughness Ks of this rough bed was about 1.5 mm. The 

average values of Re* (= 𝑈̅∗𝐾𝑠 𝜈⁄ ) for cases CT0.25 to CT0.50 were then ranged from 28 

to 36, which lie in the range of transitionally rough regime (i.e., 5 < Re* < 70). 𝑈̅∗ is the 

averaged value of the shear velocity in the main and floodplain channels. The height of the 

floodplain (h) was 60 mm. The flow depth was varied between 80 mm and 120 mm to 

provide the range of relative depth from 0.25 to 0.50. 

The cases considered in the third group (i.e. CR0.25 to CR0.50) had a rough floodplain 

while the main channel was smooth. Gravel particles with D84 of approximately 8.0 mm 

are pasted closely over the bed of the floodplain to create a rough surface. Since the great 

part of gravel has a size of the same order of magnitude as D84, so the equivalent sand grain 

roughness height (Ks) for the floodplain can be estimated to be 8.0 mm. For the smooth 

main channel, Ks was calculated based on the Manning’s n to be 0.20 mm. The height of 

the floodplain (h) was 75 mm. The total flow depth was varied between 100 mm and 150 

mm to cover the similar range of relative depth that was provided for first and second 

groups. In all test cases, the bed slope of the channels was fixed at about 0.0070 m/m. 

Figure 3.6 shows the roughness conditions of channels used in the second set of 

experiments. 
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(a) smooth floodplain (b) transitional floodplain (b) rough floodplain 

Figure 3.6 Photos showing roughness conditions of compound channels. 

3.5 Experimental procedure 

3.5.1 Determination of bed slope (So) 

The bed slope was chosen to be 0.0005 for rectangular channel flows experiments (i.e. the 

first set of experiments). This is partly, because the chosen slope is hydraulically defined 

as a mild slope, and partly because with that slope a wide range of flow depths can be 

established within the flow capacity of the pump used to supply water for the flume. The 

pump used has a flow capacity of 35 l/s. For compound channel flows experiments (the 

second set of experiments), a slope of 0.0007 was chosen, which is nearly the same order 

of magnitude as that for most natural rivers. Added to this fact, by doing the experiments 

on the channel with this slope, it was found that all required flow depths can practically be 

set under the available flow capacity provided by the water pump. 

Before proceeding with the flume slope setting, the slope mechanical system of the flume 

was checked to ensure it gives accepted values when using its slope scale. For checking 

purposes, a simple method was adopted by using a transparent plastic tube filling with 

water. By this method, the slope of the channel bed was calculated from measuring the 

depth of water in the plastic tube at two points which were specified at the upstream and 
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downstream ends of the channel. With knowing the difference of water depth and the 

longitudinal distance between the points, the slope can easily be calculated. The slope 

recorded from slope scales on the flume (Sr) and the slope obtained by the checking method 

(So) are plotted in Figure 3.7. After comparing the slope values taken from the slope scale 

of the flume with those obtained experimentally, the following calibration equation can be 

proposed based on the regression analysis: 

 𝑆𝑜 = 1.0508𝑆𝑟 − 8 ∗ 10
−5,   𝑅2 = 0.9992      (3.2) 

The slope taken from the slope scale of the flume was then modified according to the 

calibration equation to give the required slope with an accepted order of accuracy. 

 
Figure 3.7 Bed slop calibration. 

3.5.2 Determination of channel roughness 

As mentioned in a previous section, the experiments considered in this study were 

performed on rectangular and compound channels under three different roughness 

conditions. A smooth bed and two roughened beds were used to generate three roughness 

regimes based on the roughness Reynolds number (Re*) which is a function of the 

equivalent sand roughness height (Ks). Furthermore, Ks is a prerequisite parameter for 

numerical prediction models that are used in the present study. Hence, it is important to 

determine equivalent sand roughness height Ks correctly and precisely for all beds of 

experimental channels under investigation. 
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For rough experiments in rectangular channels, the equivalent sand roughness Ks was 

estimated based on grain analysis results. According to the British Standard BS 882, sieve 

analysis was performed for the aggregates used in roughening the bed to find out its particle 

size distribution and other necessary properties such as D50, D84 and geometric standard 

deviation (σg). The percent finer range for the tested materials is shown in Figure 3.8.  

In general, the gravel or ball diameter can be taken as Ks for uniform roughness case, and 

for non-uniform gravel beds, Ks is estimated to be the mean diameter (D50). However, 

equivalent sand roughness may vary with grain non-uniformity and increase with 

increasing geometric standard deviation of the grain size distribution, (Cheng, 2015). Thus, 

for rough rectangular channels considered here, the Ks was estimated as D84 (i.e about 8.0 

mm) because of a relatively high non-uniformity for the aggregates used (σg =1.3). 

 
Figure 3.8 Particle size distribution of aggregates used for rough cases. 

Since the anti-slip sheet used to generate the transitional rough bed had uniform 

protrusions, so the equivalent sand roughness height for transitional rough cases can be 

estimated as the same magnitude as the sheet height (i.e. 1.5 mm). 

For experiments in smooth rectangular channels, the Manning coefficient n was firstly 

obtained from the experimental data for uniform flow over a smooth bed. The equivalent 

roughness height Ks was then calculated from the relationship proposed by Ackers (1991): 

 𝐾𝑠 = (8.25√𝑔𝑛)
6
 (3.3) 
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The Manning coefficients in the cases S6 to S20 were all about 0.009. Hence, the equivalent 

roughness height Ks calculated by Eq. (3.3) was 0.15 mm. It is found that in most river flow 

cases, Manning’s n has less variation with discharge (Ladson et al. 2013). Therefore, the 

value of n was assumed to be constant for all discharges considered here. 

The values of roughness heights Ks obtained from rectangular channel experiments were 

also adopted as resistance coefficients for compound channel experiments in the present 

study. The procedure of determining the roughness coefficients in compound channels 

based on inbank flow calculation has been adopted by many previous investigators, e.g. 

Myers and Brennan (1990) and Atabay and Knight (2006). 

3.5.3 Establishment of uniform flow 

The first and second sets of experiments were conducted under uniform flow conditions. 

Uniform flow by definition, implies that the water surface and energy gradient are parallel 

to the bed of the channel. The ability to establish and recognize uniform flow in a laboratory 

flume is difficult due to limited flume length and water surface irregularities. However, the 

best approximation under these conditions is when the average water surface line lies at the 

correct distance above the bed level and both the water and bed levels have the same slope. 

The flow was adjusted to achieve uniform flow at a specified normal depth by using an 

adjustable tailgate at the downstream end of the flume. 

In order to make setting the uniform flow easier, different flow rates with a range of 2.0 to 

30.0 l/s were pre-determined, then normal depth corresponding for each flow rate was 

determined for getting stage-discharge curves. These curves then used to find the flow rate 

for any depth in the experiments.  

The following procedure was adopted in establishing the uniform flow and finding the 

normal depth for rectangular channel experiments. For a given discharge predetermined by 

adjusting the inlet valve, the tailgate was raised or lowered to achieve various M1 or M2 

profiles, where M1 and M2 are customary textbook symbols for water surface profiles in 

open channel flow on a mild slope. M1 profile flow decelerates in the downstream 

direction, while M2 profile flow accelerates in the downstream direction. By using the point 

gage, the water surface elevation was measured at three points along the centreline of the 

channel. The normal depth was then determined by taking the mean of flow depths at a 

point where both M1 and M2 water surface profiles asymptotically approach one to another 

in the upstream direction, which was generally about 1.0 m downstream of the channel 
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entrance. Finally, each discharge was plotted against the corresponding normal depth to 

obtain the stage-discharge curves as shown in Figure 3.9. The same procedure is also 

followed to establish the uniform flow in the compound channel experiments. Figure 3.10 

shows the stage-discharge curves for flow cases in smooth, transitional and rough 

compound channels. 

  

 
Figure 3.9 Stage-discharge curves for rectangular channel flows. 
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Figure 3.10 Stage-discharge curves for compound channel flows. 

3.5.4 Taking velocity measurements 

In all the experiments on rectangular and compound channel flows, a micro-Pitot tube with 

an internal diameter of 1.0 mm in conjunction with a pressure transducer was used to 

measure velocity. The Pitot tube was fixed to a main scale attached to a vernier scale with 

least count of 0.1mm. Testing section located at 6.5 m downstream from the inlet was 

selected for measuring the point velocities across the channel section. This is because at 

that distance there were negligible entrance effects and the fully developed flow could 

nearly be established. 

In rectangular channel experiments, the point velocities were measured across the entire 

cross section by dividing the working section into grid every 20 mm laterally and every 10 

mm vertically as shown in Figure 3.11a. The velocity was taken at each point over a 10 

second interval and averaged over 60s. The velocity distributions were then integrated over 

the flow section to calculate the mean section velocity (Um) and the integrated discharge 

(Qm) by using Eqs. (3.3) and (3.4) below:  
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 𝑈𝑚 =
1

𝐴
∫𝑢𝑑𝐴 ≅

1

𝐴
∑𝑢𝑖∆𝐴𝑖

𝑛

1

 (3.4) 

 𝑄𝑚 = 𝑈𝑚𝐴 (3.5) 

where A is the cross-sectional area, ∆𝐴𝑖 is the representative area of the point at which the 

velocity ui is measured, and n is the number of measurements. The discharge, Qm, which is 

obtained by integration of the point velocities, was compared with those recorded by the 

electro-magnetic flow meter (EMFM). The percentages of deviations should be within 3%, 

otherwise the experiments were repeated. 

  
(a) Rectangular channel (b) Compound channel 

Figure 3.11 Velocity measurement grids. 

For experiments in the compound channels, fifteen vertical velocity profiles spaced 

laterally 20 mm apart were measured to obtain the depth-averaged velocity distribution 

over the entire cross section (Figure 3.11b). In the main channel, ten points measurements 

equally spaced along each vertical profile were taken to obtain the depth-averaged velocity 

in this region. For each vertical profile in the floodplain, depth-averaged velocity was 

established from a point velocity measurement at an elevation of 0.4 times the flow depth. 

The resulting measured velocity distributions when integrated over the cross section should 

produce discharges (Qm) that are within ±3 percent of the discharges measured by the 

calibrated electro-magnetic flow meter (EMFM) in the flume supply pipes. Figure 3.12 and 

Figure 3.13 show photos for some of the experiments carried out on rectangular and 

compound channels for taking velocity measurements. Examples of velocity measurements 

obtained from some of the experiments are presented in Appendix A. 

The velocity distribution coefficients were also calculated based on the velocity 

distributions data as is described in the next section. 
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Figure 3.12 Photographs for some experiments on rectangular channels. 

 

   
Figure 3.13 Photographs for some experiments on compound channels. 

3.6 Calculation methods for experimental parameters 

3.6.1 Velocity distribution coefficients 

As mentioned previously, the energy and momentum coefficients (α, β) reflects the extent 

of non-uniform distribution of the velocity over a cross section. Therefore, velocity 

distribution coefficients were chosen in this study as indictors for describing the non-

uniformity of velocity distributions. The energy coefficient is defined by: 
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 𝛼 =
∫ 𝑢3𝑑𝐴
𝐴

𝑈3𝐴
 (3.6) 

and the momentum coefficient by: 

 𝛽 =
∫ 𝑢2𝑑𝐴
𝐴

𝑈2𝐴
 (3.7) 

in which u is the velocity at a point in the cross section, U is the mean velocity through the 

cross section computed by Eq. (3.4). 

In this study, α and β were calculated based on the point velocities obtained from the 

measurements in rectangular and compound channels. After taking velocity measurements, 

a cross section of the channel was divided into subareas with a small size. In rectangular 

channel cases, the subarea had a depth of 10 mm and a width of 25 mm. In compound 

channel cases, the width of subarea was 20mm while its depth was 1/10 of the flow depth. 

The variation of flow velocity in each subarea is small. Therefore, each subarea was 

assumed to have the same flow velocity throughout. In such a case, the integration of Eqs. 

(3.6) and (3.7) can be replaced by summation as follows: 

 𝛼 ≈
∑ (𝑢𝑖

3∆𝐴𝑖)
𝑛
𝑖=1

𝑈3𝐴
 (3.8) 

 𝛽 ≈
∑ (𝑢𝑖

2∆𝐴𝑖)
𝑛
𝑖=1

𝑈2𝐴
 (3.9) 

3.6.2 Shear velocity 

The shear velocity (u*) is the most fundamental velocity scale by which the mean velocity 

and turbulence quantities are usually normalised. In open channel flow, the shear velocity 

is often determined from direct measurements of boundary shear stress (𝜏𝑏) based on the 

following basic equation: 

 𝑢∗ = √𝜏𝑏 𝜌⁄  (3.10) 

Using the Preston tube (Preston, 1954; Patel, 1965) is a simpler technique to measure the 

boundary shear stress. Although the Preston tube technique can be successfully used on 

smooth surfaces, some problems arise when using on a rough surface. The additional 

parameters relating to the surface roughness condition make developing a calibration chart 
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for a rough surface more complicated than that for a smooth surface (Wu & Rajaratnam, 

2000). 

When the bed shear stress is difficult to be measured directly, it can be correlated with the 

average measured velocity. In the present work, the boundary shear stress (𝜏𝑏) was 

calculated from the square law of the depth-averaged velocity (U) using: 

 𝜏𝑏 = 𝐶𝑓𝜌𝑈
2 (3.11) 

The parameter 𝐶𝑓 is expressed in terms of a roughness parameter (Darcy-Weisbach factor, 

f) as follows: 

 𝐶𝑓 = 𝑓 8⁄  (3.12) 

The shear velocity u* was then calculated according to the above equations, using the 

measurements of the velocity taken in the rectangular and compound experiments. 
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Chapter 4                                                                       

CFD Modelling of Channel Flows 

4.1 Introduction 

In the present study, the computational fluid dynamic (CFD) models were applied to 

simulate the flow in the rectangular and compound channels that were used in the 

experiments. The 3D numerical CFD models were developed and run using CFX package 

(v.15). The detailed CFD results were used as part of an investigation to understand the 

significance of secondary flows and turbulent eddy viscosity in calculations of primary 

velocity distributions.  

This chapter presents the fundamental governing equations of fluid flow used in CFD 

schemes. Various turbulence models adopted in the modelling of turbulent flows are also 

discussed which will help in selecting a turbulence model that fits the flow cases under 

investigation. Then the boundary conditions and input parameters required for application 

of CFD models are presented in detail. 

4.2 Theoretical basis of CFD modelling 

4.2.1 Governing equations 

The numerical modelling using computational fluid dynamics (CFD) involves the solution 

of the Navier–Stokes (N-S) equations, which are derived based on the laws of conservation 

of mass and momentum within a moving fluid. For a turbulent flow of an incompressible 

and Newtonian fluid, Navier–Stokes equations can be formulated as follows: 

Continuity equation (the conservation of mass), 

 
𝜕𝑢𝑖
𝜕𝑥𝑖

= 0 (4.1) 

Momentum equation (the conservation of momentum), 

 
𝜕𝑢𝑖
𝜕𝑡
+
𝜕

𝜕𝑥𝑗
(𝑢𝑖𝑢𝑗) = −

1

𝜌

𝜕𝑝

𝜕𝑥𝑖
+
1

𝜌

𝜕𝜏𝑖𝑗

𝜕𝑥𝑖
 (4.2) 
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where ui (i = 1, 2, 3) are the instantaneous velocity components, p is the instantaneous 

pressure and 𝜏𝑖𝑗 (i,j = 1, 2, 3) are the components of the viscous stress tensor. For a 

Newtonian fluid the stress tensor can be related to the rate of strain tensor as follows: 

 𝜏𝑖𝑗 = 𝜌𝜈(
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖
) (4.3) 

in which ν is the kinematic viscosity of the fluid.  

Based on the Reynolds decomposition approach, instantaneous velocity components and 

pressure can be expressed into a mean value (Ui, P) plus a random fluctuating part (𝑢𝑖
′, 𝑝′) 

to account for turbulence. By relying on the Reynolds decomposition and applying time 

averaging to the instantaneous N-S equations (Eqs. 4.1 and 4.2), the Reynolds-averaged 

Navier–Stokes (RANS) equations are obtained as follows: 

 
𝜕𝑈𝑖
𝜕𝑥𝑖

= 0 (4.4) 

 
𝜕𝑈𝑖
𝜕𝑡

+ 𝑈𝑗
𝜕𝑈𝑖
𝜕𝑥𝑗

= −
1

𝜌

𝜕𝑃

𝜕𝑥𝑖
+
𝜕

𝜕𝑥𝑗
[𝜈 (

𝜕𝑈𝑖
𝜕𝑥𝑗

+
𝜕𝑈𝑗

𝜕𝑥𝑖
)] −

𝜕

𝜕𝑥𝑗
(𝑢𝑖
′𝑢𝑗
′) (4.5) 

The Reynolds-averaging operation produces nine extra unknown quantities (−𝑢𝑖
′𝑢𝑗
′) as a 

consequence of the non-linearity of the advection term, the second term in Eq. (4.2). These 

quantities comprise the so-called Reynolds stress tensor. Since (𝑢𝑖
′𝑢𝑗
′) equals (𝑢𝑗

′𝑢𝑖
′), the 

Reynolds stress tensor is symmetric and, thus, has only six independent components. This 

means, the Reynolds-averaging of the N-S equations introduced six new unknowns into the 

governing equations. Therefore, a mathematical closure model is needed for these six new 

unknowns. This usually involves the solution of additional transport equations known as a 

turbulence model. 

4.2.2 Turbulence models for the RANS equations 

Since the Reynolds stress is not known a priori, the Reynolds averaged Navier–Stokes 

(RANS) equations (4.4 and 4.5) are not closed, unless a model that relates the Reynolds 

stress tensor (−𝑢𝑖
′𝑢𝑗
′) to the global mean property of the fluid flow is provided. This has 

prompted the development of various turbulence models and some of these will be 

discussed in the next sections. 
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Two general closure strategies are typically adopted to develop practical turbulence models 

for engineering calculations (Rodi, 2017). The first strategy is based on the eddy-viscosity 

concept, whereas the second modelling strategy relies on Second-Moment Closure (SMC) 

approach. A brief description of both turbulence modelling methods is given herein in order 

to justify why the turbulence models based on the second strategy (SMC) was chosen for 

3D numerical simulations in the present study. 

4.3 Eddy-Viscosity turbulence models 

Eddy Viscosity Models (EVM), which are also called the first order models, are based on 

an analogy between laminar and turbulent flow. This analogy is referred to as the 

generalized Boussinesq hypothesis. Following Boussinesq’s assumption, the components 

of the Reynolds stress tensor are assumed to vary linearly with the mean rate of strain tensor 

as follows: 

 −𝑢𝑖
′𝑢𝑗
′ = 𝜈𝑡 (

𝜕𝑈𝑖
𝜕𝑥𝑗

+
𝜕𝑈𝑗

𝜕𝑥𝑖
) −

2

3
𝑘𝛿𝑖𝑗 (4.6) 

where k is the turbulence kinetic energy (=𝑢𝑖
′𝑢𝑖
′/2), 𝛿𝑖𝑗 is the unit tensor (Kronecker’s 

delta), and 𝜈𝑡 is the turbulent eddy viscosity. Unlike its molecular counterpart, i.e. 

kinematic viscosity ν, the eddy viscosity is a property of the flow not of the fluid. Therefore, 

it depends on flow quantities and vary in space and time. In eddy viscosity models, 𝜈𝑡 is 

expressed as the product of a turbulence length scale (ℓ𝑡) and a turbulence velocity scale 

(𝑢𝑡) as follows: 

 𝜈𝑡 = ℓ𝑡𝑢𝑡 (4.7) 

Depending on the approach adopted to calculate these scales, the eddy viscosity models 

can be classified in three general categories: zero-equation models, one-equation models 

and two-equation models. 

4.3.1 Zero-equation models 

These models, which are also called as algebraic eddy-viscosity models, specify both scales 

(ℓ𝑡,𝑢𝑡) in terms of an explicit algebraic relation. Algebraic models rely on Prandtl’s famous 

mixing-length hypothesis. For a simple 2D boundary layer flow, Prandtl (1925) proposed 

the following expression for the Reynolds shear stress: 
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 𝑢1
′𝑢2
′ = 𝜈𝑡

𝑑𝑈1
𝑑𝑥2

= ℓ𝑡
2 |
𝑑𝑈1
𝑑𝑥2

|
𝑑𝑈1
𝑑𝑥2

 (4.8) 

For 3D flows, the mixing-length model can be generalized to give a general formulation of 

𝜈𝑡: 

 𝜈𝑡 = 2ℓ𝑡
2√𝑆𝑖𝑗𝑆𝑖𝑗 ,   𝑆𝑖𝑗 =

1

2
(
𝜕𝑈𝑗

𝜕𝑥𝑖
+
𝜕𝑈𝑖
𝜕𝑥𝑗

) (4.9) 

The mixing-length (ℓ𝑡) is an empirical quantity and needs to be specified using input from 

experiments. It is often assumed to be proportional to some characteristic length scale of 

the flow such as hydraulic depth. 

The mixing-length assumption is valid only when the turbulence is in local equilibrium 

and, thus, the model is limited to calculate mean properties and turbulent shear stress for 

very simple 2D flows (Durbin and Reif, 2011). Therefore, the zero equation models were 

not used for modeling 3D turbulent flows under investigation in this work. 

4.3.2 One-equation models 

One-equation models employ one additional Partial Differential Equation (PDE) for the 

velocity scale and specify the length scale algebraically. In such models, the transport 

equation for the Turbulence Kinetic Energy (k) is used to calculate a local turbulence 

velocity scale (𝑢𝑡 ≈ 𝑘
1/2). The turbulent eddy viscosity is typically computed from the 

following equation: 

 𝜈𝑡 = 𝑐𝜇𝑘
1/2ℓ𝑡 (4.10) 

where 𝑐𝜇 is a constant that be determined empirically. The one-equation models lack 

accuracy when predicting the turbulent viscosity in complex open channel flows, therefore, 

they were not used for 3D numerical simulations within this study. 

4.3.3 Two-equation models 

As implied by their name, two-equation models employ two additional transport equations 

to calculate the turbulence velocity and length scales. Most such models employ the same 

transport equation for the turbulence kinetic energy (k) to calculate a local turbulence 

velocity scale. However, various two-equation closures differ from each other by the 

variable that is used to determine the turbulence length scale or equivalently the dissipation 
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of the turbulence kinetic energy (ε). The actual rate of dissipation ε and the specific 

dissipation rate, (ω = ε/k, dissipation per unit kinetic energy) are the most commonly used 

variables for defining the turbulence length scale (Rodi, 2017). Thus, in this study, only the 

turbulence models based on these two definitions of length scale is discussed in some 

details. 

4.3.3.1 The k- ε model 

The k-ε model is the most popular and widely used turbulence model, therefore it is 

incorporated in most commercial CFD codes. The model, which was originally proposed 

by Jones and Launder (1972) and later developed by Launder and Spalding (1974), employs 

a modelled equation for the turbulence kinetic energy k in conjunction with a transport 

equation for the rate of viscous dissipation ε. The equations of the standard k-ε model read 

as follows: 

 
𝜕𝑘

𝜕𝑡
+ 𝑈𝑗

𝜕𝑘

𝜕𝑥𝑗
= 𝑃𝑘 − 𝜀 +

𝜕

𝜕𝑥𝑗
(
𝜈𝑡
𝜎𝑘

𝜕𝑘

𝜕𝑥𝑗
) (4.11) 

 
𝜕𝜀

𝜕𝑡
+ 𝑈𝑖

𝜕𝜀

𝜕𝑥𝑗
=
𝜀

𝑘
(𝐶𝜀1𝑃𝑘 − 𝐶𝜀2𝜀) +

𝜕

𝜕𝑥𝑗
(
𝜈𝑡
𝜎𝜀

𝜕𝜀

𝜕𝑥𝑗
) (4.12) 

 𝜈𝑡 = 𝐶𝜇(𝑘
1/2) (

𝑘3/2

𝜀
) = 𝐶𝜇

𝑘2

𝜀
 (4.13) 

where Pk is the production of the turbulence kinetic energy by mean shear, which is 

modeled using the following equation: 

 𝑃𝑘 = 𝜈𝑡 (
𝜕𝑈𝑖
𝜕𝑥𝑗

+
𝜕𝑈𝑗

𝜕𝑥𝑖
)
𝜕𝑈𝑖
𝜕𝑥𝑗

 (4.14) 

The standard values of the constants in the above equations are given as follows (Launder 

and Sharma, 1974): 

 𝜎𝑘 = 1, 𝜎𝜀 = 1.3, 𝐶𝜇 = 0.09, 𝐶𝜀1 = 1.44, 𝐶𝜀2 = 1.92 (4.15) 

It should be mentioned that the modelled ε-equation, Eq. (4.12), is based entirely on 

empirical physical reasoning and dimensional arguments, (Bates, Lane, & Ferguson, 2005).  

The main shortcoming of the standard k- ε model is it produces a large turbulent viscosity 

because of its assumption of isotropy in the turbulence fluctuations. Therefore, this model 

frequently produces inaccurate predictions in some turbulent fluid flows (Mohammadi and 
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Pironneau, 1994). In addition, the k-ε model equations are valid only sufficiently far from 

solid boundaries, where such model is found to predict the wrong behavior for k and ε near 

the solid walls (low Reynolds Number region). For this reason, a near wall treatment is 

needed for the k-ε models through using the wall function formulation.  

As the weaknesses of the standard k-ε model have become known, improvements have been 

made to the model to improve its performance. Two of these improved k-ε models are the 

renormalization group (RNG) k-ε model and realizable k-ε model (Yakhot and Orszag, 

1986 and Shih et al., 1995). The RNG k-ε model includes refinements that account for low-

Reynolds number effects and rapidly strained flows. The realizable k-ε model differs from 

the standard k-ε model in containing an alternative formulation for the turbulent viscosity. 

4.3.3.2 The k-ω model 

The k-ω model solves two transport equations, one for the turbulent kinetic energy (k) and 

another for the turbulent frequency (ω = ε/k). The stress tensor is then computed from the 

eddy viscosity concept. The ω-equation was originally proposed by Kolmogorov (1942) 

who employed similar physical reasoning and dimensional arguments as those involved in 

the derivation of the ε-equation. However, the modern version of the k-ω model was 

proposed by Wilcox (1988), which can take the following formulations, (ANSYS Inc., 

2013): 

 
𝜕𝑘

𝜕𝑡
+ 𝑈𝑗

𝜕𝑘

𝜕𝑥𝑗
= 𝜈𝑡 (

𝜕𝑈𝑖
𝜕𝑥𝑗

+
𝜕𝑈𝑗

𝜕𝑥𝑖
)
𝜕𝑈𝑖
𝜕𝑥𝑗

− 𝛽∗𝑘𝜔 +
𝜕

𝜕𝑥𝑗
[(𝜈 + 𝜎∗𝜈𝑡)

𝜕𝑘

𝜕𝑥𝑗
] (4.16) 

 
𝜕𝜔

𝜕𝑡
+ 𝑈𝑗

𝜕𝜔

𝜕𝑥𝑗
= 𝛼

𝜔

𝑘
𝜈𝑡 (

𝜕𝑈𝑖
𝜕𝑥𝑗

+
𝜕𝑈𝑗

𝜕𝑥𝑖
)
𝜕𝑈𝑖
𝜕𝑥𝑗

− 𝛽𝜔2 +
𝜕

𝜕𝑥𝑗
[(𝜈 + 𝜎𝜈𝑡)

𝜕𝜔

𝜕𝑥𝑗
] (4.17) 

 𝜈𝑡 =
𝑘

𝜔
 (4.18) 

 𝛼 =
5

9
, 𝛽 =

3

40
, 𝛽∗ =

9

100
, 𝜎 =

1

2
, 𝜎∗ =

1

2
 (4.19) 

It should be referred that the k-ω model includes a low Reynolds number extension for the 

near-wall turbulence so that it does not require wall functions, although wall functions can 

be incorporated when necessary.  

It is found that the two equations models, such as k-ε model and k-ω model, fail to predict 

any evidence of secondary flow in the case of prismatic channels such as those that are 

considered in this work, (Knight D., 2005). This is because these models assume that the 
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turbulence is isotropic, whereas turbulence is known to be anisotropic. Hence, the models 

falling under this category were not employed for conducting the 3D simulations during 

this project. 

4.4 Second-Moment Closure (SMC) models 

In such models, also known as Reynolds Stress models (RSM), the components of the 

Reynolds stresses needed to close the RANS Equation, Eq. (4.5), are obtained by directly 

solving transport equations for the individual Reynolds stresses and an additional 

dissipation equation for the turbulence length scale (Rodi, 1993). The exact form of the 

Reynolds stress transport equations may be derived by taking moments of the instantaneous 

N-S equations. This process involves multiplying the exact momentum equations by a 

fluctuating property, and then applying time-averaging. Unfortunately, several terms in the 

exact equation are unknown and modeling assumptions are required to close the equations. 

The exact transport equation for the Reynolds stresses in Cartesian tensor notation reads as 

(e.g. Pope, 2000): 

 

𝜕𝑢𝑖
′𝑢𝑗
′

𝜕𝑡
+ 𝑈𝑘

𝜕𝑢𝑖
′𝑢𝑗
′

𝜕𝑥𝑘⏟          
(I)

= 𝑃𝑖𝑗⏟
(II)

+ 𝐷𝑇𝑖𝑗⏟
(III)

+ 𝐷𝐿𝑖𝑗⏟
(IV)

+Φ𝑖𝑗⏟
(V)

− 𝐸𝑖𝑗⏟
(VI)

 (4.20) 

The various terms in the above equations can be interpreted as follows: 

(I) Convection of Reynolds stresses by the mean flow. 

(II) Production of turbulence (𝑃𝑖𝑗) by mean shear. This term sustains turbulence by 

extracting energy from the mean flow and is given as follows: 

 𝑃𝑖𝑗 = −𝑢𝑖
′𝑢𝑘
′
𝜕𝑈𝑗

𝜕𝑥𝑘
− 𝑢𝑗

′𝑢𝑘
′
𝜕𝑈𝑖
𝜕𝑥𝑘

 (4.21) 

(III) Turbulent diffusion (𝐷𝑇𝑖𝑗) due to velocity and pressure fluctuations (ten new 

unknowns). This term is written as follows: 

 𝐷𝑇𝑖𝑗 = −
𝜕

𝜕𝑥𝑘
(𝜌𝑢𝑖

′𝑢𝑗
′𝑢𝑘
′ + 𝑝′𝑢𝑖

′𝛿𝑗𝑘 + 𝑝′𝑢𝑗
′𝛿𝑖𝑘) (4.22) 

(IV) Diffusion of Reynolds stresses via molecular mixing (𝐷𝐿𝑖𝑗): 
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 𝐷𝐿𝑖𝑗 =
𝜕

𝜕𝑥𝑘
(𝜈
𝜕𝑢𝑖

′𝑢𝑗
′

𝜕𝑥𝑘
) (4.23) 

(V) Pressure-strain redistribution term (Φ𝑖𝑗) (six new unknowns). This term acts to drive 

the turbulence toward an isotropic state by redistributing the Reynolds stresses and can be 

expressed as follows: 

 Φ𝑖𝑗 = 𝑝(
𝜕𝑢𝑖

′

𝜕𝑥𝑗
+
𝜕𝑢𝑗

′

𝜕𝑥𝑖
) (4.24) 

(VI) Viscous dissipation of Reynolds stresses (𝐸𝑖𝑗) (six new unknowns): 

 𝛦𝑖𝑗 = 2𝜇
𝜕𝑢𝑖

′

𝜕𝑥𝑘

𝜕𝑢𝑗
′

𝜕𝑥𝑘
 (4.25) 

Terms (I), (II) and (IV) contain only mean velocity components and the Reynolds stresses, 

thus, they do not require modelling when Eq. (4.20) is used to close the mean flow equation 

(Eq. 4.5). On the other hand, terms (III), (V) and (VI) introduce 22 new unknowns into the 

governing equations, thus they need to be modeled to close the equations. 

There are three standard Reynolds stress models in which the ε equation has been used to 

provide the length scale. These are commonly known as LRR-IP, LRR-QI and SSG. The 

LRR-IP and LRR-QI models were developed by Launder, Reece and Rodi (1975), whereas 

the SSG model was developed by Speziale, Sarkar and Gatski (1991). These models only 

differ in the formulation used for modelling the pressure-strain term. In LRR-IP and LRR-

QI models, the pressure-strain correlation is linear, while the SSG model uses quadratic 

relation for the pressure-strain correlation.  

In addition to the standard models, which are based on ε-equation to calculate turbulence 

dissipation rate, there are two other Reynolds stress models that use the ω-equation as the 

length scale-determining equation. They are Omega Reynolds Stress (SMC-ω) and 

Baseline Reynolds stress models (BSL-RSM). The advantage of the ω-equation is that it 

allows for a more accurate near wall treatment and switch automatically from a wall 

function to a low-Reynolds number formulation based on the grid size. 

In general, Reynolds Stress or Second Moment Closure (SMC) models physically include 

the effects of streamline curvature, sudden changes in the strain rate, anisotropic Reynolds 

stress and secondary flows (Cokijat, 1993). This means, Reynolds stress models (RSM) are 
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more appropriate choice for flows with sudden changes in strain rate or secondary flows 

and may be preferred over the turbulence models based on the eddy viscosity 

approximation. Therefore, to simulate the turbulent flows in the open channels considered 

in the present work, it is necessary to implement a turbulence model which is falling under 

this category. Nevertheless, it was reported that for wall bounded flows, Reynolds stress 

models based on ε-transport equation (i.e. LRR-IP, LRR-Q and SSG) might have a poor 

performance compared with Omega Based Reynolds Stress Models (SMC- ω and BSL-

RSM), (Knight, 2005). For this reason, the ω based RSM models have been considered 

during this project for performing 3D CFD numerical simulations. 

4.4.1 Omega-Based Reynolds Stress Models 

As explained previously, Omega Based Reynolds Stress Models are preferred over other 

RSM models based on ε-transport equation for wall bounded flow. This is because, ω-

equation allows for a more accurate treatment to near wall region. In this type of turbulence 

models, the modeled equations based on the exact equation (Eq. 4.20) for the Reynolds 

stresses can be written as follows (ANSYS Inc., 2013): 

 
𝜕𝜌𝑢𝑖

′𝑢𝑗
′

𝜕𝑡
+ 𝑈𝑘

𝜕𝜌𝑢𝑖
′𝑢𝑗
′

𝜕𝑥𝑘
= 𝑃𝑖𝑗 +Φ𝑖𝑗 +

𝜕

𝜕𝑥𝑘
[(𝜇 +

𝜇𝑡
𝜎𝑘
)
𝜕𝑢𝑖

′𝑢𝑗
′

𝜕𝑥𝑘
] −

2

3
𝛽′𝜌𝜔𝑘𝛿𝑖𝑗 (4.26) 

The pressure-strain (Φ𝑖𝑗) tensor is modeled by the following constitutive relationship: 

 
𝛷𝑖𝑗 = 𝛽

′𝐶1𝜌𝜔 (−𝑢𝑖
′𝑢𝑗
′ +

2

3
𝑘𝛿𝑖𝑗) − 𝑎

′ (−𝑃𝑖𝑗 −
2

3
𝑃𝛿𝑖𝑗)

− 𝛽′′ (−𝐷𝑖𝑗 −
2

3
𝑃𝛿𝑖𝑗) − 𝛾

′𝜌𝑘 (𝑆𝑖𝑗 −
1

3
𝑆𝑘𝑘𝛿𝑖𝑗) 

(4.27) 

The production tensor of Reynolds stresses is given by: 

 𝑃𝑖𝑗 = −𝜌𝑢𝑖
′𝑢𝑘
′
𝜕𝑈𝑗

𝜕𝑥𝑘
− 𝜌𝑢𝑗

′𝑢𝑘
′
𝜕𝑈𝑖
𝜕𝑥𝑘

;    𝑃 = 0.5𝑃𝑘𝑘 (4.28) 

The tensor 𝐷𝑖𝑗 is given by: 

 𝐷𝑖𝑗 = −𝜌𝑢𝑖
′𝑢𝑘
′
𝜕𝑈𝑘
𝜕𝑥𝑖

− 𝜌𝑢𝑗
′𝑢𝑘
′
𝜕𝑈𝑘
𝜕𝑥𝑗

 (4.29) 

The coefficients for the model are: 
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𝛽′ = 0.09; 𝑎′ =
8 + 𝐶2
11

; 𝛽′′ =
8𝐶2 − 2

11
; 𝛾′ =

60𝐶2 − 4

55
; 𝐶1 = 1.8; 𝐶2 = 0.52 (4.30) 

The omega Reynolds stress model uses the following equation for ω: 

 
𝜕(𝜌𝜔)

𝜕𝑡
+ 𝑈𝑘

𝜕(𝜌𝜔)

𝜕𝑥𝑘
= 𝛼𝜌

𝜔

𝑘
𝑃𝑘 +

𝜕

𝜕𝑥𝑘
[(𝜇 +

𝜇𝑡
𝜎
)
𝜕𝜔

𝜕𝑥𝑘
] − 𝛽𝜌𝜔2 (4.31) 

The following coefficients are applying with Eq. (4.31): 

 𝜎 = 2;  𝛽 = 0.075;  𝛼 =
5

9
 (4.32) 

The main problem with the standard k-ω model is its strong sensitivity to freestream 

conditions. Therefore, the Baseline Reynolds stress model (BSL-RSM) was developed, 

which is based on the ω-equation used in the Baseline (BSL) k-ω model proposed by 

Menter (1994).  

In BSL-RSM model, the coefficients α and β of the standard ω-equation (Eq. 4.31), as well 

as the turbulent Prandtl number σ are blended between values from two sets of constants, 

corresponding to the ω based mode constants and the ε based model constants. Hence, the 

following equation is employed for ω: 

 

𝜕(𝜌𝜔)

𝜕𝑡
+ 𝑈𝑘

𝜕(𝜌𝜔)

𝜕𝑥𝑘

= 𝛼3𝜌
𝜔

𝑘
𝑃𝑘 +

𝜕

𝜕𝑥𝑘
[(𝜇 +

𝜇𝑡
𝜎3
∗)
𝜕𝜔

𝜕𝑥𝑘
] − 𝛽3𝜌𝜔

2

+ (1 − 𝐹)2𝜌
1

𝜎3𝜔

𝜕𝑘

𝜕𝑥𝑘

𝜕𝜔

𝜕𝑥𝑘
 

(4.33) 

Based on BSL k-ω model proposed by Menter (1994), the equation for ω (Eq. 4.33) has 

two sets of constants, one corresponding to the ω zone: 

 𝜎1
∗ = 2; 𝜎1 = 2; 𝛽1 = 0.075; 𝛼1 = 0.553 (4.34) 

and the other to the ε zone: 

 𝜎2
∗ = 0.856; 𝜎2 = 1; 𝛽2 = 0.0828; 𝛼2 = 0.440 (4.35) 

The two sets of coefficients are blended by smooth linear interpolation using the weight 

function F, (Menter 1994): 

 𝜙3 = 𝐹𝜙1 + (1 − 𝐹)𝜙2 (4.36) 
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where F = tanh (arg4) with: 

 𝑎𝑟𝑔 = 𝑚𝑖𝑛 {𝑚𝑎𝑥 (
√𝑘

𝛽′𝜔𝑦
,
500𝜐

𝑦2𝜔
) ,

4𝜌𝑘

𝐶𝐷𝑘𝜔𝜎𝑘𝜀𝑦2
} (4.37) 

and 

 𝐶𝐷𝑘𝜔 = 𝑚𝑎𝑥 (2𝜌
1

𝜎𝑘𝜀𝜔

𝜕𝑘

𝜕𝑥𝑗

𝜕𝜔

𝜕𝑥𝑗
, 10−10) (4.38) 

The turbulent viscosity (𝜇𝑡) in the diffusion terms of the main equations 4.26 and 4.33 is 

calculated in the same way as in the Wilcox model (1988): 

 𝜇𝑡 = 𝜌
𝑘

𝜔
 (4.39) 

The Omega-Based Reynolds stress models have been used in simulating different open 

channel flow cases and its predictions were in a very good agreement with the 

measurements, e.g. Cokljat & Younis (1995a & 1995b); Morvan et al., (2002); Kang & 

Choi (2004); Jing et al., (2009); and Filonovich et al., (2015). However, BSL-RSM model 

is preferred over the Omega Reynolds stress model in engineering applications that 

includes free surface flow problems. For this reason, BSL-RSM model has been only used 

in the present study. 

4.5 Setting up and running the CFD simulations 

4.5.1 The software CFX 

The commercially available ANSYS-CFX software (2013) has been used to solve the 

governing equations described above. ANSYS-CFX is a general purpose Computational 

Fluid Dynamics (CFD) software that combines an advanced solver with powerful pre- and 

post-processing capabilities. The solver uses an unstructured Finite Element based Finite 

Volume method for both structured and unstructured meshes. The CFD package used in 

this study consists of three software modules that take a geometry, mesh and physical 

information required to perform a CFD analysis and pass them to the CFX-solver to solve 

the governing equations and tender the flow field. An example of CFX input file for one of 

the flow simulations performed in the present research is given in Appendix B. The results 

of simulations can be processed and displayed by Post-processor component. Data flow 

through CFX package is shown in Figure 4.1.  
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All categories of turbulence models are available for use in the CFX software like eddy-

viscosity two equations models and RSM models. As was discussed in a previous section, 

BSL-RSM model is preferred over the others due to its accuracy in predicting the secondary 

currents. Therefore, this type of turbulence model was selected to simulate the turbulence 

flows considered in this project. The following subsections give details of the procedure 

used for applying ANSYS-CFX packages to perform 3D CFD simulations. 

 
Figure 4.1 Data flow by CFX software. 

4.5.2 Constructing the Geometry 

3D numerical simulations were performed on two computational geometries for modelling 

the rectangular channel flows (investigated in first sets of experiments), and the compound 

channel flows (investigated in second set of experiments). Geometries of both models were 

constructed by using Geometry element in workbench of ANSYS 15.0. The approach 

adopted in creating the geometry was to create the upstream cross-section in the first place 

and then extended it in the streamwise direction to construct a prismatic channel.  

The rectangular geometry, which was constructed in the CFX-Pre. component, had six 

faces as shown in Figure 4.2a. These faces would be utilized for applying the boundary 

conditions to the computational domain. In all cases, the width of the domain (Ly) was fixed 

at 0.3m, i.e. identical to the channel width, and its length in streamwise direction (Lx) was 
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0.1m. The depth of the domain (Lz) was varied from 0.06m to 0.2m according to its 

magnitude in the corresponding experiment. 

The compound geometry, which was constructed for simulating compound channel flows, 

had eight faces as illustrated in Figure 4.2b. The dimensions of the computational domain 

were similar to those of compound sections used for experiments CS, CT and CR. The main 

channel was 0.2m wide, while the width of the floodplain was 0.1 m. The height of the 

internal wall (h) between the main channel and the floodplain was 0.06 m in CS and CT 

cases and 0.075m in CR cases. The total depth of the domain (H) was varied to provide the 

range of relative depth ratios (Dr) from 0.25 to 0.50, covering the same range of Dr values 

as that in the experiments. 

 
(a) Rectangular channel simulations 

 
(b) Compound channel simulations 

Figure 4.2 Schematic of domain geometry and boundary conditions. 
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4.5.3 Generating the mesh 

The mesh generation involves subdividing the geometry into smaller elements known as 

cells. Hexahedral cells were used for the generation of meshes in all simulations, where the 

domain is represented by series of six-sided polyhedron with rectangular faces. This type 

of mesh cells was utilized because it is relatively easy to implement with regular geometries 

such as the cases considered in this work.  

To ensure that the mesh does not negatively influence the accuracy of simulation results, a 

mesh or grid independence study was carried out first. During this study, three mesh 

structures were generated for the biggest computational domains of rectangular and 

compound channels, i.e. the cases S20 and CS0.50, as shown in Table 4.1. 

Table 4.1 Mesh structures used for grid independence study. 

Case simulated 
Number of Nodes 

Coarse mesh Medium mesh Fine mesh 

Rectangular Channel (S20) 129830 148967 167761 

Compound Channel (CS0.50) 96179 112209 134651 

Small discrepancies were observed after comparing the predicted results for key parameters 

(mean streamwise velocity and Reynolds stresses) between the medium and fine mesh. The 

maximum differences between these two mesh levels were less than 3% for the rectangular 

channel simulation and 3.2% for compound channel simulation. Therefore, it could be 

concluded that the fine mesh level was sufficient for obtaining grid-independent solutions. 

All results predicted by CFD modelling were obtained based upon the fine mesh. An 

illustration of the mesh structures generated for both channel configurations is shown in 

Figure 4.3 and Figure 4.4. 

In addition, it is important to provide a sufficiently fine mesh in the regions where the flow 

may experience rapid change in key variables such as velocity. For example, sufficient 

mesh resolutions are required near walls to resolve the large change in velocity in the wall 

normal direction. A non-dimensional distance (z+) is often used to define mesh so that the 

z+ for the cells nearest the wall lie within a certain range. z+ is a function of the normal 

distance from the wall to the first node, the flow velocity and viscosity. The specific criteria 

of the z+ depends upon the turbulence model that is selected to make the flow modelling. 

When using low-Re models (such as turbulence models based on the ω-equation), the 
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average z+ < 2 should be adopted to ensure capturing the laminar sub-layer. and low-

Reynolds number grids, without a loss in accuracy. This certainly helps in reducing the 

level of the refinement. 

On the other hand, when using wall function models (such as turbulence models based on 

the ε-equation), the z+ value should ideally be above 15 to avoid incorrect modelling of the 

buffer layer and the laminar sub-layer, (Bates, Lane, & Ferguson, 2005). However, CFX 

software offers the automatic wall treatment which allows a gradual switch between wall 

functions.  

Based on the above considerations, the automatic treatment was applied with BSL-RSM 

turbulence model in this work to reduce the resolution requirements. Also, the generated 

mesh was fined to a level so that z+ was around 15 to ensure that the first grid point is 

located within the log-law region when wall function is implemented. 

 
(a) Mesh for cases: S-6, T-6 and R-6 

 
(b) Mesh for cases: S-20, T-20 and R-20 

Figure 4.3 Illustrative mesh cross section for rectangular channel cases 
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(a) Mesh for cases: CS0.25, CT0.25 and CR0.25 

 
(b) Mesh for cases: CS0.5, CT0.5 and CR0.5 

Figure 4.4 Illustrative mesh cross section for compound channel cases 

4.5.4 Defining the boundary conditions 

Boundary conditions is required on all the boundaries of the computational domain to set 

the properties of domain surfaces, and to fully define the physical characteristics of the flow 

domain. The boundary conditions applied to the domain surfaces must reflect the actual 

conditions of the flow that is being modelled, although this task is not always simple. Also, 

any inaccuracy in estimating the boundary conditions may affect the accuracy and even the 

correctness of the numerical solution. If the boundary conditions are not applied correctly, 

it may cause the effort of choosing a sophisticated turbulence model to collapse, (Bates, 

Lane, & Ferguson, 2005). Therefore, care needs to be taken over the choice of the boundary 

conditions to be imposed for each surface of the computational domain. 

As indicated previously, two series of simulations have been conducted during this project, 

the first series were to simulate the uniform flow in rectangular channels, while the second 

series were for modelling the uniform flow in compound channels. The simulations 

conducted on these uniform flow cases were based on modelling the flow as a single phase 

of water. The boundary conditions implemented for the simulations of uninform flows in 

both the rectangular and compound channels are summarized in Table 4.2. 
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4.5.4.1 Inlet and outlet locations 

The simulations conducted as part of this project are based on modelling a uniform fully 

developed flow (i.e. zero gradients of all flow variables, except for the pressure). Under 

such flow conditions, it can be assumed that the flow is statistically homogenous in 

streamwise direction (i.e. flow characteristics at upstream and downstream boundaries are 

coincident). Thus, for the inlet and outlet locations of computational domain, the periodic 

boundary conditions were applied in the streamwise direction. As a consequence of 

employing the periodic boundary conditions the solution obtained was not varying along 

the length of the flow domain. Therefore, much shorter channel lengths coupled with fewer 

cells were used along the streamwise direction. 

Table 4.2 Boundary conditions applied for uniform flow simulations 

Location Boundary condition applied 

Inlet (flow in) Periodic boundary condition with constant pressure 

gradient (dp/dx) Outlet (flow out) 

Right sidewall No-slip wall (smooth) 

Left sidewall No-slip wall (smooth) 

Bed wall 
No-slip wall (smooth or rough depending on the case being 

simulated) 

Free surface 
Free-slip wall with zero gradient for turbulent kinetic 

energy (k).  

In the periodic motion, the flow is driven by a constant pressure gradient (dp/dx). Therefore, 

a constant pressure gradient was applied as a momentum source (Mx) in the governing 

equations to drive the flow in the streamwise direction, as follows: 

  𝑑𝑝 𝑑𝑥⁄ ≡ 𝑀𝑥 = 𝜌𝑔𝑆𝑜 (4.40) 

By applying the periodic boundary condition, the flow depth was specified at the same 

values recorded in the experiments while no value of discharge was needed to be assigned. 

In this way, a velocity distribution calculated by the CFD will be consistent with the flow 

depth, channel shape and wall roughness specified previously. The discharge obtained from 

the predicted velocity was then compared with the experimentally measured value. The 

differences between the computed and measured flow rates was found to be less than 

(∓3%). 
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4.5.4.2 Treatment of free surface 

For steady fluid flows, an approximate fixed lid approach can be specified to represent the 

water surface. Hence, this approach was adopted so that the position of the free surface can 

be specified at the depth measured experimentally. In all simulations conducted in this 

study, the free-slip condition with the modified free surface treatment proposed by Rodi 

(1993) was imposed on the free surface boundary. Through this approach, the value of 

dissipation (ε) at the free surface is specified based on the free surface value of the turbulent 

kinetic energy (k) obtained from the zero-gradient condition. The reason for imposing this 

type of boundary condition was to reproduce the effect of the velocity dip. Also, using this 

boundary condition helps to mimic the damping of turbulent fluctuations by the surface.  

4.5.4.3 Treatment of channel walls 

For the channel walls, including the bed and side walls, the no-slip wall boundary 

conditions were imposed for all test cases simulated in the present work. However, the 

details of the wall boundary conditions were different depending upon the type of wall 

surface, which should be set either smooth or rough. For hydraulically rough walls, the 

equivalent sand-grain roughness (Ks) was required as an input parameter for proper 

modelling of the surface roughness effects. For the cases of hydraulically smooth walls, the 

contribution of sand grain size to roughness was negligible, therefor the sand-grain 

roughness was not specified. The method by which the CFX software models the effect of 

wall roughness is presented in the next section. 

4.5.5 Modelling of roughness effect 

Surface roughness have a significant effect on flow computations, practically for the 

simulation of rough cases. The appropriate modelling of surface roughness effects is 

therefore essential for accurate predictions. The roughness causes the wall shear stress to 

increase due to increase in turbulence production. Furthermore, the wall roughness breaks 

up the viscous sub-layer in turbulent flows, particularly in fully rough flows. To account 

for these effects, the CFX has developed a rough wall treatment based on the formulation 

of the wall law for rough flows, with downward shift in the logarithmic velocity profile as 

shown in Figure (4.5). The law of wall for rough flow is given by CFX as follows: 

 𝑈+ =
1

𝑘
ln(𝑧+) + 𝐵 − Δ𝐵 (4.41) 
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where 𝑈+ = 𝑈 𝑢∗⁄ , 𝑧+ = 𝑧𝑢∗ 𝜈⁄ , k = 0.41 is the von Karman constant and B = 5.2. Δ𝐵 is 

the shift in the velocity profile due to the roughness effect. In CFX code the downward shift 

(Δ𝐵) can be calculated based on the equivalent sand-grain roughness height (Ks) as follows: 

 𝛥𝐵 =
1

𝑘
𝑙𝑛 (1 + 0.3𝐾𝑠

+) (4.42) 

where 𝐾𝑠
+ is the dimensionless roughness height and is defined as: 

 𝐾𝑠
+ =

𝐾𝑠𝑢∗
𝜈

 (4.43) 

 
Figure 4.5 Downward Shift of the Logarithmic Velocity Profile. 

In addition to modifying the wall function for rough flows, the distance of the nearest grid 

to the wall is also shifted by 50% of the height of the roughness elements to account for the 

blockage effect caused by the surface roughness (ANSYS Inc., 2013).  

In this study, the automatic rough wall treatment provided by CFX code was used for 

modelling turbulence and roughness effects. Based on this way, the viscous sublayer 

formulation has either a limited or neglected influence on the near wall treatment for rough 

walls. For rough flows considered in the present work, the equivalent sand-grain roughness 

height was needed to be specified as input in CFX solver. Therefore, roughness height of 

Ks = 1.5 mm is used in transitional flow simulations and 8 mm in rough flow simulations. 

The input roughness parameters Ks have the same values as that was estimated in the 

corresponding transitional and rough flow experiments described earlier in chapter 3. 
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4.5.6 Solver control and convergence criteria 

ANSYS CFX uses an element-based finite volume method, which first involves 

discretizing the spatial domain using a mesh. The mesh is then used to construct finite 

volumes, which are used to conserve relevant quantities such as mass, momentum, and 

energy. In all CFD simulations performed in the present work, High Resolution scheme 

was selected to calculate the advection terms in the discrete finite volume equations. This 

higher order numerical scheme was used because it gives the most accurate result with no 

difficulties in obtaining a converged solution (ANSYS Inc., 2013). 

Because all test cases considered here were modelled as steady state problems, therefore, 

unsteady effects have been averaged and time-dependent solutions were not obtained. 

However, an initial condition was needed as an initial guess to the flow conditions to make 

the solver start the simulation. To initialize the flow, a mean velocity was specified over 

the whole inlet plane. The inlet mean velocities were taken from the experimental average 

values. In addition, a medium turbulence intensity (5%) was defined in the inlet of the flow 

domain as the initial conditions for the turbulence. This option is recommended by previous 

studies when any information about the inlet turbulence is not available (Kang & Choi, 

2004; Jing et al., 2009 and Filonovich et al., 2015). Also, the automatic time step calculation 

algorithm that is part of the software was used to control and calculate the time scale 

automatically by the solver. Although the automatic option may lead to a slower 

convergence, but it was selected because this option tends to be conservative and the 

appropriate time scale is more difficult to be obtained manually. 

Before the solution stage, convergence criteria need to be defined and key flow quantities 

should be specified to monitor during the simulation. In this study, the reliable convergence 

was considered to be achieved when the root mean square (RMS) residual of main variables 

in mass and momentum equations dropped below the residual target value. A low residual 

target (<10-7) was defined for solution convergence in all simulations. Using such low 

convergence criteria was important for the secondary terms to stabilize and required to 

obtain accurate solution for turbulence shear stresses. In addition, the average velocity (U) 

and average shear stress on the channel walls (τo) were also monitored and used as 

additional convergence criteria. The monitor points specified within CFX needed to reach 

nearly a constant value to assume that the simulation is met all convergence criteria. Figure 

4.6 and Figure 4.7 show convergence plots for some of the simulations conducted in this 

work. 
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Figure 4.6 The convergence criteria: Root mean square (RMS) residual. 
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Figure 4.7 The convergence criteria: Monitor points for mean velocity and wall shear. 
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Chapter 5                                                                

Analytical Models for Velocity Distributions 

5.1 Introduction 

In this chapter, the formulation and analysis of various models based on the analytical 

solution of the simplified Navier-Stokes equations are given. These models are widely 

applied to engineering problems in open channel flows because of their simplicity 

compared to the 3D modeling approaches. The effects of bed friction, vertical and lateral 

turbulence and secondary flows are substantially considered when the analytical models 

are derived. Therefore, the focus in this chapter is on the methods and assumptions used to 

model the effects of these three features of the flow.  

5.2 Analytical models for velocity distribution in rectangular 

channels 

5.2.1 Simplified Reynolds Averaged Navier–Stokes Equations 

For steady state flow the RANS momentum in the streamwise direction and continuity 

equation can be written relative to the frame of reference shown in Figure 4.2, as follows: 

 

𝑈 (
𝜕𝑈

𝜕𝑥
) + 𝑉 (

𝜕𝑈

𝜕𝑦
) +𝑊 (

𝜕𝑈

𝜕𝑧
)

= 𝑔𝑆𝑜 + 𝜈 (
𝜕2𝑈

𝜕𝑥2
+
𝜕2𝑈

𝜕𝑦2
+
𝜕2𝑈

𝜕𝑧2
) +

𝜕

𝜕𝑥
(−𝑢′𝑢′̅̅ ̅̅ ̅̅ )

+
𝜕

𝜕𝑦
(−𝑢′𝑣′̅̅ ̅̅ ̅̅ ) +

𝜕

𝜕𝑧
(−𝑢′𝑤′̅̅ ̅̅ ̅̅ ) 

(5.1) 

 
𝜕𝑈

𝜕𝑥
+
𝜕𝑉

𝜕𝑦
+
𝜕𝑊

𝜕𝑧
= 0 (5.2) 

where U, V, and W = mean velocity in the streamwise (x), lateral (y), and vertical (z) 

directions, respectively; (−𝑢′𝑢′̅̅ ̅̅ ̅̅ ), (−𝑢′𝑣′̅̅ ̅̅ ̅̅ ), and (−𝑢′𝑤′̅̅ ̅̅ ̅̅ ) = Reynolds stress tensor 

components; and ν = fluid kinematic viscosity. Assuming a uniform and fully developed 

flow, Eqs. (5.1) and (5.2) can be easily combined to lead to (Yang et al., 2004): 

 (
𝜕𝑈𝑉

𝜕𝑦
) + (

𝜕𝑈𝑊

𝜕𝑧
) = 𝑔𝑆𝑜 + 𝜈 (

𝜕2𝑈

𝜕𝑦2
+
𝜕2𝑈

𝜕𝑧2
) +

𝜕

𝜕𝑦
(−𝑢′𝑣′̅̅ ̅̅ ̅̅ ) +

𝜕

𝜕𝑧
(−𝑢′𝑤′̅̅ ̅̅ ̅̅ ) (5.3) 
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Considering the central part of the channel, the vertical gradients (𝜕 𝜕𝑧⁄ ) are dominating 

and then all derivatives with respect to y can be assumed negligible. Therefore Eq. (5.3) 

can be simplified as follows: 

 
𝜕𝑈𝑊

𝜕𝑧
= 𝑔𝑆𝑜 + 𝜈

𝜕2𝑈

𝜕𝑧2
+
𝜕

𝜕𝑧
(−𝑢′𝑤′̅̅ ̅̅ ̅̅ ) (5.4) 

Integrating Eq. (5.4) in the vertical direction over an interval from a point z to the entire 

depth h and rearranging its terms yields: 

 𝜈
𝜕𝑈

𝜕𝑧
− 𝑢′𝑤′̅̅ ̅̅ ̅̅ − 𝑈𝑊 = 𝑔𝑆𝑜(ℎ − 𝑧) (5.5) 

When Eq. (5.4) was integrated to get Eq. (5.5), the boundary conditions applied at the free 

surface were: vertical component, W, equals zero and both the differentiation term and the 

velocity fluctuation in vertical direction was set to zero at h. 

Since for large values of z the viscous shear stress (𝜈 𝜕𝑈 𝜕𝑧⁄ ) is small compared to the 

turbulent shear stress (−𝑢′𝑤′̅̅ ̅̅ ̅̅  ) (Absi, 2008), Eq. (5.5) becomes: 

 −𝑢′𝑤′̅̅ ̅̅ ̅̅ = 𝑔𝑆𝑜(ℎ − 𝑧) + 𝑈𝑊 (5.6) 

Equation (5.6) can be rewritten after the shear velocity 𝑢∗ is defined as a function of the 

bed slope (√𝑔ℎ𝑆𝑜): 

 −𝑢′𝑤′̅̅ ̅̅ ̅̅ = 𝑢∗
2 (1 −

𝑧

ℎ
) + 𝑈𝑊 (5.7) 

Equation (5.7) can further be simplified by dividing with 𝑢∗
2 : 

 
−𝑢′𝑤′̅̅ ̅̅ ̅̅

𝑢∗2
= (1 −

𝑧

ℎ
) +

𝑈𝑊

𝑢∗2
 (5.8) 

In most simplified RANS approaches, two additional assumptions were often imposed on 

Eq. (5.7) to get an analytical solution. One for approximating the secondary flow term 

(𝑈𝑊) and the other for modelling the Reynolds shear stress (−𝑢′𝑤′̅̅ ̅̅ ̅̅ ).  

Due to the secondary flow effect, the maximum velocity come to below the water surface. 

This phenomenon, which is called the velocity dip, occurs in narrow open-channels where 

the aspect ratio of the channel width to water depth (B/h) < 5. Thus, to account for the 
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influence of secondary currents on the velocity distribution calculation, the analytical 

model should be capable of predicting the velocity-dip feature. Furthermore, Yang et al. 

(2004) found that secondary current velocity w in the outer region is generally in the 

downward direction, thus the third term in Eq. (5.8) can be modelled using a linear 

relationship, i.e., 

 
𝑈𝑊

𝑢∗2
≈ 𝜇

𝑧

ℎ
 (5.9) 

where 𝜇 is a coefficient representing the effect of secondary current on velocity distribution 

and called dip-correction parameter.  

On the other hand, the Boussinesq assumption is frequently used to model the Reynolds 

shear stress as following: 

 −𝑢′𝑤′̅̅ ̅̅ ̅̅ = 𝜈𝑡
𝑑𝑈

𝑑𝑧
 (5.10) 

where 𝜈𝑡 is the eddy viscosity. Substituting Eq. (5.9) and Eq. (5.10) into Eq. (5.8), the 

following partial differential equation (PDE) is obtained: 

 
𝑑𝑈

𝑑𝑧
=
𝑢∗
2

𝜈𝑡
[(1 −

𝑧

ℎ
) − 𝜇

𝑧

ℎ
] (5.11) 

Equation (5.11) is the simplified form to RANS equations which is used as a basic equation 

to obtain the analytical solution for the mean velocity profile in rectangular channels with 

uniform flows. Depending upon the models by which the eddy viscosity is expressed, 

different analytical formulations for calculating the velocity distribution can be obtained 

from the simplified RANS equation, Eq. (5.11). The analytical models based on the 

simplified RANs equation are known as dip-modified laws, because they can be used to 

predict the velocity dip phenomenon in open channels. 

5.2.2 Dip-modified laws 

5.2.2.1 Dip-modified log law (DML-law) 

Velocity distribution can be obtained by integrating Eq. (5.11) with a known profile for the 

eddy viscosity 𝜈𝑡(𝑧). Parabolic model for the eddy viscosity can be employed to define 

𝜈𝑡(𝑧) in Eq. (5.11). The widely used expression of the parabolic model is: 
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 𝜈𝑡 = 𝜅𝑢∗𝑧 (1 −
𝑧

ℎ
) (5.12) 

where k is the Von Karman constant (≈0.41). By using Eq. (5.12), Eq. (5.11) can be 

expressed as follows: 

 
𝑑𝑈

𝑑𝑧
=
𝑢∗
𝑘𝑧
[1 − 𝜇

(
𝑧
ℎ
)

(1 −
𝑧
ℎ
)
] (5.13) 

Integration of Eq. (5.13) gives: 

 
𝑈

𝑢∗
=
1

𝑘
[ln (

𝑧

𝑧𝑜
) + 𝜇 ln(

1 −
𝑧
ℎ

1 −
𝑧𝑜
ℎ

)] (5.14) 

where 𝑧𝑜 is the distance from the bed at which the velocity is hypothetically equal to zero. 

Since 𝑧𝑜 ℎ⁄  ≪ 1, with defining 𝑧 ℎ⁄ = 𝜉 and 𝑧𝑜 ℎ⁄ = 𝜉𝑜 , Eq. (5.14) can be simplified 

further to give: 

 
𝑈

𝑢∗
=
1

𝑘
[𝑙𝑛 (

𝜉

𝜉𝑜
) + 𝜇 𝑙𝑛(1 − 𝜉)] (5.15) 

Equation (5.15) is known as dip-modified log law (DML-law), which was first suggested 

by Yang et al. (2004). DML-law predicts the velocity-dip phenomenon by the term 

𝜇 𝑙𝑛(1 − 𝜉), which includes the dip-correction parameter 𝜇. This law returns into the 

classical log law if 𝜇 = 0. 

5.2.2.2 Dip-modified log wake law (DMLW-Law) 

Instead of parabolic model, the approximation for eddy viscosity distribution given by Nezu 

and Rodi (1986) can be employed in the simplified RANS Equation, Eq. (5.11), to drive a 

law for the velocity distribution. Nezu and Rodi (1986) suggested their model for eddy 

viscosity based on the log-wake law and it can be written as: 

 𝜈𝑡 = 𝜅𝑢∗ℎ (1 −
𝑧

ℎ
) [
ℎ

𝑧
+ 𝜋Π sin (𝜋

𝑧

ℎ
)]
−1

 (5.16) 

where Π is the wake strength parameter. In the outer region (z/h > 0.2), the log-law deviates 

from experimental data, and this deviation is accounted for by adding Coles (1956) wake 

function. Hence, it is thought that using the eddy viscosity model based on the wake 

function could probably improve the performance of dip modified law that is derived from 
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the simplified RANS equation. Using eddy viscosity model given by Nezu and Rodi (1986), 

i.e. Eq. (5.16), instead of the parabolic profile, the ordinary differential equation, Eq. (5.11), 

for velocity distribution leads to: 

 
𝑑𝑈

𝑑𝑧
=
𝑢∗
𝑘ℎ
[1 − 𝜇

(
𝑧
ℎ
)

(1 −
𝑧
ℎ
)
] [
ℎ

𝑧
+ 𝜋Π sin (𝜋

𝑧

ℎ
)] (5.17) 

In dimensionless form, Equation (5.17) can be rewritten as follows: 

 
𝑑𝑈

𝑑𝜉
=
𝑢∗
𝑘
(1 − 𝜇

𝜉

1 − 𝜉
) [
1

𝜉
+ 𝜋Π sin(𝜋𝜉)] (5.18) 

Integration of Eq. (5.18) for  𝜉𝑜 ≪ 1 gives: 

𝑈

𝑢∗
=
1

𝑘
𝑙𝑛 (

𝜉

𝜉𝑜
) +

2Π

𝑘
sin2 (

𝜋

2
𝜉) +

𝜇

𝑘
𝑙𝑛(1 − 𝜉) −

𝜇𝜋Π

𝑘
∫

𝜉

1 − 𝜉

𝜉

𝜉𝑜

sin(𝜋𝜉) 𝑑𝜉 (5.19) 

Equation (5.19) is called the full dip-modified-log-wake law (fDMLW-law), in which the 

last term on the right-hand side needs to be integrated using the trapezoidal or Simpson 

rules. For wide open-channels (Ar > 5), 𝜇 → 0, and the fDMLW-law reverts to log-wake 

law because the 3rd and 4th terms will vanish (Absi, 2011). As the 4th term is relatively 

small compared with the other terms in Eq. (5.19), this term can be considered negligible, 

giving the expression for the velocity distribution as: 

 
𝑈

𝑢∗
=
1

𝑘
𝑙𝑛 (

𝜉

𝜉𝑜
) +

2Π

𝑘
sin2 (

𝜋

2
𝜉) +

𝜇

𝑘
𝑙𝑛(1 − 𝜉) (5.20) 

Equation (5.20) is referred as the simple dip-modified-log-wake law (sDMLW-law). This 

equation differs from the (fDMLW-law, Eq. 5.19) only by truncating the integral term for 

simplicity. The DMLW-laws have the advantage of accounting for the combined effects of 

the secondary current and the wake turbulence strength in the outer region. Therefore, in 

3D open-channel flows with secondary currents, the DMLW-laws may predict the velocity 

distribution better than DML-law.  

5.2.3 Model parameters 

In this study, the predictive capability of the analytical DMLW-law, given by Eq. (5.20), is 

further assessed against experimental data for rectangular channels with different 

roughness regimes. Based on an analysis of eddy viscosity distributions and secondary 
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currents obtained from 3D CFD simulations, the model parameters (i.e. wake strength Π 

and dip-correction parameter 𝜇) were calibrated to improve the performance of the 

analytical model derived from the simplified RANS equation, Eq. (5.11).  

5.3 Analytical model for depth-averaged velocity in compound 

channels 

5.3.1 Depth-Averaged Reynolds Averaged Navier–Stokes Equations 

In a prismatic open channel, the equation for the stream wise component of momentum in 

a steady flow may be combined with the continuity equation to give: 

 𝜌 [
𝜕𝑈𝑉

𝜕𝑦
+
𝜕𝑈𝑊

𝜕𝑧
] = 𝜌𝑔𝑆𝑜 +

𝜕

𝜕𝑦
(−𝜌𝑢′𝑣′̅̅ ̅̅ ̅̅ ) +

𝜕

𝜕𝑧
(𝜌𝑢′𝑤′̅̅ ̅̅ ̅̅ ) (5.21) 

where (U, V, W) are the mean velocity components in the x (stream wise), y (lateral) and z 

(normal to bed) directions respectively; (𝑢′, 𝑣′, 𝑤′) are turbulent fluctuations of velocity 

with respect to the mean, ρ is the density of water, g is the gravitational acceleration and So 

is the bed slope. The depth-averaged momentum equation can be obtained by integrating 

Eq. (5.21) over the water depth, H, assuming W(H) = W(0) = 0, as given by Shiono and 

Knight (1991): 

 𝜌𝑔𝐻𝑆𝑜 +
𝜕𝐻𝜏𝑦̅𝑥

𝜕𝑦
− 𝜏𝑏√1 +

1

𝑠2
=
𝜕[𝐻(𝜌𝑈𝑉)𝑑]

𝜕𝑦
 (5.22) 

in which 𝜏𝑏 is the bed shear stress, s is the side slope (1:s = vertical: horizontal), and 

 (𝜌𝑈𝑉)𝑑 =
1

𝐻
∫ (𝜌𝑈𝑉)𝑑𝑧   and   𝜏𝑦̅𝑥 =

1

𝐻
∫ (−𝜌𝑢′𝑣′̅̅ ̅̅ ̅̅ )𝑑𝑧 
𝐻

0

𝐻

0

 (5.23) 

Based on the commonly used eddy viscosity assumptions, the depth-averaged Reynolds 

stress (𝜏𝑦̅𝑥) can be given as follows: 

 𝜏𝑦̅𝑥 = 𝜌𝜀𝑦̅𝑥
𝜕𝑈𝑑
𝜕𝑦

   and   𝜀𝑦̅𝑥 = 𝜆𝑢∗𝐻 (5.24) 

where 𝜀𝑦̅𝑥 is depth-averaged eddy viscosity, λ is the dimensionless eddy viscosity 

coefficient and 𝑢∗ (=√𝜏𝑏 𝜌⁄ ) is the local shear velocity. Using the customary flow 
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resistance relationship that relates local boundary shear stress (𝜏𝑏) with the depth-mean 

velocity (Ud) and the Darcy-Weisbach friction coefficient (f), 𝜏𝑏  can be computed by: 

 𝜏𝑏 = 𝜌
𝑓

8
𝑈𝑑
2   or   𝑈∗ = √

𝑓

8
𝑈𝑑    (5.25) 

Then, substituting Eq. (5.24) and Eq. (5.25) into (5.22) yields: 

 𝜌𝑔𝐻𝑆𝑜 − 𝜌
𝑓

8
𝑈𝑑
2√1 +

1

𝑠2
+
𝜕

𝜕𝑦
[𝜌𝜆𝐻2√

𝑓

8
𝑈𝑑
𝜕𝑈𝑑
𝜕𝑦
] =

𝜕

𝜕𝑦
[𝐻(𝜌𝑈𝑉)𝑑] (5.26) 

Based on experimental results, the shear stress due to secondary flow, (𝜌𝑈𝑉)𝑑, is assumed 

to vary approximately linearly with respect to y (Shiono and Knight, 1991). Therefore, the 

lateral gradient of the secondary flow force per unit length may be written as: 

 
𝜕

𝜕𝑦
[𝐻(𝜌𝑈𝑉)𝑑] = Γ (5.27) 

where Г is a dimensionless secondary flow parameter which is different for each part of the 

flow. Considering Γ defined by Eq. (5.27), the final depth-averaged equation for RANS can 

be obtained as follows: 

 𝜌𝑔𝐻𝑆𝑜 − 𝜌
𝑓

8
𝑈𝑑
2√1 +

1

𝑠2
+
𝜕

𝜕𝑦
[𝜌𝜆𝐻2√

𝑓

8
𝑈𝑑
𝜕𝑈𝑑
𝜕𝑦
] = Γ (5.28) 

An analytical solution to Eq. (5.28) for the lateral distribution of depth-mean velocity has 

been obtained by Shiono and Knight (1988, 1991). 

5.3.2 Analytical solution for depth-averaged velocity 

In the analytical method, which is used throughout this research, the cross section is divided 

into sub-areas (panels) with constant depth domains as shown in Figure 5.1. For a sub-area 

with a constant water depth H, the Ud distribution can analytically be obtained from Eq. 

(5.28) as follows:  

 𝑈𝑑 = [𝐴1𝑒
𝛾𝑦 + 𝐴2𝑒

−𝛾𝑦 + 𝑘]1/2 (5.29) 

where: 
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 𝑘 =
8𝑔𝑆𝑜𝐻

𝑓
(1 − 𝛽) (5.30) 

 𝛾 = √
2

𝜆
(
𝑓

8
)

1
4 1

𝐻
 (5.31) 

 𝛽 =
Γ

𝜌𝑔𝐻𝑆𝑜
 (5.32) 

A1 and A2 are integration constants and can be determined by considering the relevant 

boundary conditions.  

  
(a) with smooth floodplain (b) with rough floodplain 

Figure 5.1 Cross-section of compound channel divided into panels 

Different boundary conditions are usually used to determine the unknown A1 and A2 

constants. At the remote edges of the channel, the no-slip condition holds where the velocity 

can be assumed to be equal to zero, thus: 

 (𝑈𝑑)𝑦=0
(𝑖)

= (𝑈𝑑)𝑦=𝐵
(𝑖+1)

= 0 (5.33) 

At the interface between two adjacent panels, the following different forms of boundary 

conditions can often be applied (Knight, 2013): 

Form [A]: The continuities of the depth-averaged velocity and of the lateral gradient of 

velocity, i.e., 

 (𝑈𝑑)𝑦=𝑏
(𝑖)

= (𝑈𝑑)𝑦=𝑏
(𝑖+1)

 

(5.34) 

 (
𝜕𝑈𝑑
𝜕𝑦
)
𝑦=𝑏

(𝑖)

= (
𝜕𝑈𝑑
𝜕𝑦
)
𝑦=𝑏

(𝑖+1)
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Form [B]: The continuities of the depth-averaged velocity and of the lateral gradient of 

𝐻(𝑦)𝑈𝑑, i.e., 

 (𝑈𝑑)𝑦=𝑏
(𝑖)

= (𝑈𝑑)𝑦=𝑏
(𝑖+1)

 

(5.35) 

 (
𝜕𝐻𝑈𝑑
𝜕𝑦

)
𝑦=𝑏

(𝑖)

= (
𝜕𝐻𝑈𝑑
𝜕𝑦

)
𝑦=𝑏

(𝑖+1)

 

Form [C]: The continuities of the depth-averaged velocity and of the apparent shear force 

per unit length, i.e., 

 (𝑈𝑑)𝑦=𝑏
(𝑖)

= (𝑈𝑑)𝑦=𝑏
(𝑖+1)

 

(5.36) 

 (
1

2
𝜌𝜆𝐻2

𝜕𝑈𝑑
2

𝜕𝑦
)
𝑦=𝑏

(𝑖)

= (
1

2
𝜌𝜆𝐻2

𝜕𝑈𝑑
2

𝜕𝑦
)
𝑦=𝑏

(𝑖+1)

 

Form [D]: The continuities of the depth-averaged velocity and of the continuity of unit 

force with the boundary shear force along the internal wall, i.e., 

 (𝑈𝑑)𝑦=𝑏
(𝑖)

= (𝑈𝑑)𝑦=𝑏
(𝑖+1)

 

(5.37) 

 (𝜙
𝜕𝑈𝑑

2

𝜕𝑦
)
𝑦=𝑏

𝑖

= (𝜙
𝜕𝑈𝑑

2

𝜕𝑦
)
𝑦=𝑏

𝑖+1

−  ℎ𝜏𝑤 

where: 

 𝜙 =
1

2
𝜌𝜆𝐻2√𝑓 8⁄  𝑎𝑛𝑑 𝜏𝑤 = 𝜌𝑓𝑤(𝑈𝑑

2)𝑦=𝑏/8 (5.38) 

The boundary Forms [A]–[C] are physically reasonable for trapezoidal compound 

channels, and good predictions can be obtained by using these forms (e.g., Ervine et al. 

2000; Shiono and Knight 1991). However, for a rectangular compound channel, as shown 

in Figure 5.1, the flow depth at the internal vertical wall between the main channel and its 

floodplains is discontinuous. Therefore, the apparent shear force (ASF) at the conjunction 

is not continuous because of the existence of the boundary shear force along the internal 

wall, (Knight et al. 2004). This indicates that Form [C] is not physically reasonable in the 

case of a rectangular compound channel. Knight et al. (2004) indicated that the ASF is 

discontinuous over the vertical wall and the discontinuity is equal to the shear force on this 

wall. Based on that, Tang and Knight (2008) proposed the form [D] of boundary conditions 
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by considering the boundary shear force along the internal wall. However, determining the 

boundary shear force along the internal wall is particularly difficult and challenging. To 

check whether the boundary conditions described by form [D] can give good predictions 

for depth-averaged velocity, they were verified in this study by the experimental data.  

By applying the boundary conditions [D], the following set of linear equations is obtained 

in which the A coefficients in Eq. (5.29) are the unknowns: 

[

1 1 0 0
0 0 𝑒𝛾2𝐵 𝑒−𝛾2𝐵

𝑒𝛾1𝑏 𝑒−𝛾1𝑏 −𝑒𝛾2𝑏 −𝑒−𝛾2𝑏

(𝜙1𝛾1 + 𝜌𝑓𝑤𝐷/8)𝑒
𝛾1𝑏 −(𝜙1𝛾1 − 𝜌𝑓𝑤𝐷/8)𝑒

−𝛾1𝑏 −𝜙2𝛾2𝑒
𝛾2𝑏 𝜙2𝛾2𝑒

−𝛾2𝑏

] [

𝐴1
𝐴2
𝐴3
𝐴4

]

= [

−𝑘1
−𝑘2
𝑘2 − 𝑘1

−𝜌𝑓𝑤𝐷𝑘1/8

] 

(5.39) 

Once the A coefficients are defined, the lateral variation of depth-averaged velocity across 

the channel can be obtained from Eq. (5.29). The MATLAB Code that was developed for 

the analytical solution of the depth-averaged velocity is shown in Appendix C. 

5.3.3 Model parameters 

The value of friction factor (f) for each panel should be obtained along with the values of 

dimensionless eddy viscosity, λ, and secondary flow term, Γ, through calibration. The 

accurate prediction of depth averaged velocity depends on proper estimation of the three 

calibration parameters in the model (i.e. f, λ, and Г). In this study, the predictive capability 

of the analytical solution given by Eq. (5.29) is assessed against experimental data for an 

asymmetric compound open channel. Detailed Computational Fluid Dynamics (CFD) 

results were used to compute the detailed and averaged eddy viscosity and secondary 

currents in compound channels with different roughness regimes. Based on the CFD 

results, expressions were proposed to calibrate the three parameters (f, λ, and Г) for narrow 

compound channels having different floodplain roughnesses.   
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Chapter 6                                                                   

Results for Rectangular Channel Flows 

6.1 Introduction 

In this chapter, the results obtained from the CFD modelling for the rectangular channels 

were validated and described in conjunction with the findings of the first set of experiments. 

First, the CFD model was validated by comparing the computed results with experimental 

data. Next, the primary flow in a rectangular channel was investigated by examining the 

effects of boundary roughness, secondary flow and turbulence on the non-uniformity of the 

velocity distribution. Then, expressions for calculating the parameters that represent the 

secondary flow and turbulence effects were developed to improve the performance of the 

analytical model (DMWL-law) for smooth and rough flows. Finally, the application of the 

analytical model (DMWL-law) to narrow open channels with different roughness 

conditions was assessed.  

6.2 Verification and validation of CFD computations 

6.2.1 Conservation of momentum calculation 

To verify the CFD computations, a conservation of momentum calculation was performed 

for each case. For Rectangular channel cases, the average shear stress, 𝜏𝑜, is calculated as: 

 𝜏𝑜 =
1

𝑃
∫ 𝜏𝑑𝑙
𝑃

=
1

𝑃
[2ℎ𝜏𝑤 + 𝑏𝜏𝑏] (6.1) 

where 𝜏𝑤 and 𝜏𝑏 are the average wall and bed shear stress computed by the CFD software, 

and P is the wetted perimeter of the channel. Assuming uniform flow the average shear 

stress at the boundaries of the channel is analytically given by: 

 𝜏𝑜 = 𝜌𝑔𝑆𝑜𝑅 (6.2) 

where R is the hydraulic radius (= A/P). To verify that the momentum balance is established, 

the following equality should hold: 

 2ℎ𝜏𝑤 + 𝑏𝜏𝑏 = 𝜌𝑔𝑆𝑜𝐴 (6.3) 
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It can be seen from Table 6.1, the conservation of momentum is satisfied by the CFD model 

for all cases simulated in this research. 

Table 6.1 Conservation of momentum calculation for CFD simulations. 

Case H B 𝝉𝒘 𝝉𝒃 𝟐𝒉𝝉𝒘 + 𝒃𝝉𝒃 𝝆𝒈𝑺𝒐𝑨 

[#] [m] [m] [pa] [Pa] [computed] [analytical] 

S6 0.06 0.30 0.199 0.215 0.088 0.088 

S10 0.10 0.30 0.293 0.296 0.147 0.147 

S15 0.15 0.30 0.368 0.357 0.218 0.221 

S20 0.20 0.30 0.440 0.416 0.301 0.294 

T6 0.06 0.30 0.121 0.247 0.089 0.088 

T10 0.10 0.30 0.191 0.367 0.148 0.147 

T15 0.15 0.30 0.257 0.469 0.218 0.221 

T20 0.20 0.30 0.312 0.552 0.290 0.294 

R6 0.06 0.30 0.091 0.258 0.088 0.088 

R10 0.10 0.30 0.143 0.394 0.147 0.147 

R15 0.15 0.30 0.204 0.539 0.223 0.221 

R20 0.20 0.30 0.248 0.643 0.292 0.294 

6.2.2 Computed primary flow velocity 

To validate the primary flow patterns obtained using CFD simulations, vertical profiles and 

contours of the computed primary velocity for smooth, transitional and rough cases were 

compared with those measured. Figure 6.1 shows the comparison between the numerically 

predicted and the experimentally measured primary mean velocity profiles at the centreline 

of the channel for all rectangular flow cases considered in this work. It can be seen that the 

predicted vertical distribution of mean velocity (U) by the CFD using the RSM turbulence 

model is very close to the experimental measurements for all flow depths and for all 

roughness regimes. Figure 6.1 also indicates that the maximum velocity tends to appear 

below the free surface in the deeper channel cases with smaller aspect ratios (i.e. Ar = 1.5, 

2.0). The same phenomena (i.e. dip phenomena) can be observed by both experimental and 

numerical data. However, for high flow cases, CFD predictions appear to slightly deviate 

from the experimental data at the near-surface zone as shown in 6.1c and 6.1d. This is most 

probably due to the free surface boundary condition imposed here, which accounts for free 

surface effects on turbulence and secondary flow but not exactly on the primary flow. 

Nonetheless, it has been verified that the slight differences, which are noticed between the 

computed and measured velocity profiles at this small zone, has no considerable impact on 
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the velocity distribution over the entire cross section. Therefore, it can generally be stated 

that the CFD model fairly reproduced the velocity profile over the entire flow depth for all 

cases, and this is essential for the accurate prediction of the magnitudes and patterns of the 

other velocity components (V and W) as well as the secondary flow. 

  
(a) H = 6 cm, Ar=5.0 (b) H = 10 cm, Ar=3 

  
(c) H = 15 cm, Ar=2.0 (d) H = 20 cm, Ar=1.5 

Experiment:   

Simulation:   

Figure 6.1 Velocity profile at the center line of the rectangular channel for all cases. 

The simulated and measured primary velocity contours are compared in Figure 6.2 and 

Figure 6.3 for the two aspect ratios. The first figure plotted is for the cases of the largest 

aspect ratio (Ar = 5.0) while the second one is for the smallest aspect ratio (Ar = 1.5). The 
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velocity values in both figures were normalized by the maximum velocity of each flow 

case. Only velocity contours for half of the geometry has been displayed because of the 

symmetry in the velocity distribution along the centre of the channel. 

A reasonably good agreement between the numerical and experimental data for the primary 

flow has been obtained in terms of the general patterns of the velocity and the magnitudes 

of velocities. It can clearly be seen in both simulated and measured results for velocity how 

the contour of higher velocity rises up towards the free surface when the roughness of 

channel bed increases. From Figure 6.2, the approximate location of the velocity contour 

that has a value of 0.95 U/Umax occurs at z/H = 0.50 for smooth case (S6) compared with 

z/H = 0.60 for the rough case (R6). This implies that the CFD model, with RSM turbulence 

closure and shifted log-law methods, can successfully capture the blockage effects of the 

rough surfaces on the primary flow. For the cases with the aspect ratio of Ar = 1.5 (Figure 

6.3), the position of maximum velocity appears about 0.4H below the free surface when the 

flow regime is hydraulically smooth. When the flow regime is fully rough, the position of 

maximum velocity from the free surface reduces to about 0.2H. This fact coincides well 

with the data for open channel flows which were obtained using an LDA system by Nezu 

and Rodi (1985).   

The influence of the secondary current on the primary velocity contours is obviously 

predicted by the CFD simulations. There is some indication of bulging of velocity contours 

in the CFD results, where the contours tend towards the corner at the bottom due to the 

secondary currents. The bulging in the velocity contours is more visibly in the deep flow 

cases, i.e. with the smallest aspect ratio, as the secondary currents are expected to be 

stronger. In addition, it can be noticed that the contours of the simulated velocity are not 

normal to the free surface which conforms to the boundary conditions used. The results 

from the CFD model, which used RSM turbulence model in combination with the modified 

boundary condition supplied by CFX, verify that the maximum velocity lies beneath the 

free surface. Such a feature has also been observed experimentally as shown in Figure 6.3. 

It could therefore be argued that the CFD model with RSM turbulence closure adopted in 

this study can reproduce the primary flow over different boundary roughnesses. 

 

 

 



Chapter 6 Results for Rectangular Channel Flows 

 

100 

 

  
(a) S6 (Experiment) (b) S6 (simulation) 

  
(a) T6 (Experiment) (b) T6 (simulation) 

  
(a) R6 (Experiment) (b) R6 (simulation) 

Figure 6.2 Primary velocity contours for test cases of the largest aspect ratio (Ar = 5). 
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(a) S20 (Experiment) (b) S20 (simulation) 

  
(a) T20 (Experiment) (b) T20 (simulation) 

  
(a) R20 (Experiment) (b) R20 (simulation) 

Figure 6.3 Primary velocity contours for test cases of the smallest aspect ratio (Ar = 

1.5). 
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6.3 Results for secondary currents 

6.3.1 Patterns and magnitudes of secondary currents 

Secondary current vectors for the smooth case of Ar = 2.0 predicted by the present CFD 

model are given in Figure 6.4. The results from the present work are compared with 

experimental measurements by Tominaga et al. (1989) and LES data by Shi et al. (1999) 

for a rectangular channel that has similar value of Ar. 

The general pattern and the magnitudes of the secondary currents predicted by the present 

CFD model are seen to be consistent with measured and LES numerical results. For the 

present model (Figure 6.4c), the magnitude of the secondary flows is relatively small, with 

many points having values that equal to or less than 2% of the primary velocity. These 

results fairly agree with previous results obtained by Tominaga et al. (1989), and Shi et al. 

(1999) shown in Figures 6.4a and 6.4b. In all figures, two cells of secondary currents can 

be observed, one is located near the free surface (called as the free surface vortex) and the 

other is near the bottom (called as bottom vortex). However, there are slight differences 

between the locations and sizes of secondary vortices obtained by the numerical 

simulations (Figure 6.4b and 6.4c) and those measured in the experiments (Figure 6.4a). In 

the present simulation, the free surface vortex appears to be closer to the side wall. This is 

probably because the flow conditions in the present work are not exactly same as that in 

the experiments used for the comparison. 

Figure 6.5 and 6.6 show the numerically obtained secondary flow vectors normalized by 

Umax for the smooth, transitional and fully rough regimes with different aspect ratios (Ar). 

For all flow cases, it can clearly be seen that the pair of vortices (i.e., free-surface and 

bottom vortices) are generated near the side wall and the bottom bed. Also, Figures 6.5 and 

6.6 show that when the aspect ratio of the channel becomes larger, the spanwise scale of 

the bottom vortex increases and reaches about 1.5H. The length scale of the free-surface 

vortex is nearly confined to about 0.5H for all flow cases in regardless of whether the aspect 

ratio is small or large. The pattern of secondary currents predicted for flow cases considered 

here is reasonably similar to that observed in some literature studies, e.g. Nezu and Rodi 

(1985) and Tominaga & Nezu, (1989).  

 

 



Chapter 6 Results for Rectangular Channel Flows 

 

103 

 

  
(a) Exp. (Tominaga et al. 1989) (b) LES (Shi et al. 1999) 

 
(c) RSM (Present work) 

Figure 6.4 Measured and simulated secondary currents vectors for rectangular channel 

flows with aspect ratio Ar = 2.0. 

In terms of the magnitude of the secondary currents, the maximum magnitudes of the 

secondary currents computed by CFD modelling are averaged about 0.023Umax for smooth 

cases. These magnitudes are nearly close to the LDA data of Nezu and Rodi (1985) who 

estimated the maximum secondary currents to be about 0.020 Umax. The values of the 

maximum secondary currents in rough channel flows are somewhat greater than the value 

obtained in smooth channel flow. For the condition of rough bed, cases T and R, the free-

surface vortex becomes stronger near the side wall than in the smooth rectangular channel 

as shown in Figure 6.5 and 6.6. Hence, the maximum secondary velocity is of about 

0.034Umax for the transitional cases and 0.050Umax for rough cases. These magnitudes are 

in line with the measurements of McLean (1981) and Tominaga et al., (1989) in rough open 

channel flows.  
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In the light of the above mentioned, it can be concluded that the present CFD simulation 

correctly predicts the complex features of secondary currents in terms of the number and 

locations of secondary cells. The maximum magnitudes of secondary currents for all cases 

simulated are given in Table 6.2. The results in Table 6.2 indicates that the magnitude of 

secondary currents increases with decrease in aspect ratio, i.e. increase in flow depth. 

  
(a) S6 (Ar = 5) (b) S10 (Ar = 3.0) 

  
(a) T6 (Ar = 5) (b) T10 (Ar = 3.0) 

  
(a) R6 (Ar = 5) (b) R10 (Ar = 3.0) 

Figure 6.5 Secondary currents for flow cases H= 6 cm and H= 10 cm. 
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(a) S15 (Ar = 2) (b) S20 (Ar = 1.5) 

  
(a) T15 (Ar = 2) (b) T20 (Ar = 1.5) 

  
(a) R15 (Ar = 2) (b) R20 (Ar = 1.5) 

Figure 6.6 Secondary currents for flow cases H= 15 cm and H= 20 cm. 
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Table 6.2 Maximum magnitude of secondary velocity for all cases simulated 

Depth Ar Max.Usec (10-2) [m/s] Max.Usec /Umax 

H 

[cm] 
B/H Smooth Transitional Rough Smooth Transitional Rough 

6.0 5 0.676 0.844 1.154 0.020 0.034 0.057 

10.0 3 0.937 1.140 1.441 0.022 0.035 0.052 

15.0 2 1.173 1.351 1.625 0.024 0.034 0.046 

20.0 1.5 1.307 1.516 1.803 0.025 0.034 0.045 

    Average 0.023 0.034 0.050 

6.3.2 Production mechanism of secondary currents 

It is known that the turbulence anisotropy is the main reason for generation of turbulence-

driven secondary currents. In Figure 6.7, the secondary currents vectors are plotted together 

with the normalised turbulence anisotropy contours [(𝑣𝑣̅̅ ̅ − 𝑤𝑤̅̅̅̅̅) 𝑈∗
2⁄ ] to illustrate the 

strong interconnection between turbulence anisotropy and secondary currents. For the sake 

of brevity, only the cases of Ar = 2 are considered. The computed results of (𝑣𝑣̅̅ ̅ − 𝑤𝑤̅̅̅̅̅) is 

highly consistent with those for rectangular channels experiments conducted by Tominaga. 

et al (1989) and shown in Figure 6.8. It can be noticed that (𝑣𝑣̅̅ ̅ − 𝑤𝑤̅̅̅̅̅) have the maximum 

positive values at the bed and the maximum negative values at the sidewall. 

The location of the equilibrium or zero line, which represents the locations of points where 

𝑣𝑣̅̅ ̅ and 𝑤𝑤̅̅̅̅̅ are equal, is of particular interest here. From Figure 6.7, the increase of the bed 

roughness imparts an asymmetry to the flow, leading the line of zero turbulence anisotropy 

moving towards the side wall. Because of that, in rough bed case the contour lines near the 

side wall are close to each other and the values of the normal-stress anisotropy increase 

rapidly from zero to maximum value over a short distance. Therefore, the gradients of the 

normal-stress anisotropy are high, and hence the strong secondary velocities generated 

there. These results are well matched with the measurements of previous works (e.g. 

Tominaga. et al 1989). Differences in the positive maximum values of the turbulence 

anisotropy, which occur at the bottom, are also shown based on the roughness of the bed. 

The positive maximum value of [(𝑣𝑣̅̅ ̅ − 𝑤𝑤̅̅̅̅̅) 𝑈∗
2⁄ ] is about 0.90 for smooth case S15 

compared to 1.20 in rough case (R15). This reflects the impact of the bed roughness on the 

turbulence anisotropy and consequently on the secondary motion. 
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(a) S15 (𝑣𝑣̅̅ ̅ − 𝑤𝑤̅̅̅̅̅) 𝑈∗
2⁄  

 

 

(a) T15 (𝑣𝑣̅̅ ̅ − 𝑤𝑤̅̅̅̅̅) 𝑈∗
2⁄  

 

 

(a) R15 (𝑣𝑣̅̅ ̅ − 𝑤𝑤̅̅̅̅̅) 𝑈∗
2⁄  

 

 

Figure 6.7 Secondary current velocity vectors and turbulence 

anisotropy for flow cases with Ar = 2.0. 
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Figure 6.8 Measured turbulence anisotropy (𝑣𝑣̅̅ ̅ − 𝑤𝑤̅̅̅̅̅) for rectangular open channel 

flow by Tominaga et al (1989). 

6.4 Results for Turbulence characteristics 

6.4.1 Turbulence intensities 

Turbulence measurements were not performed in the experiments conducted in this study, 

so the turbulence intensities computed by CFD simulations were analysed based on some 

assumptions. The computed turbulence intensity was also compared with experimental 

measurements by Grass (1971). The main purpose of this analysis is to verify the prediction 

of the CFD for turbulence features and Reynolds shear stress, which can be used to calculate 

the eddy viscosity.  

Most of the available analytical attempts to describe the vertical distribution of turbulence 

intensities use the assumption of an equilibrium between turbulence production and 

dissipation. This assumption leads to the followings universal profiles proposed by Nezu 

& Nakagawa (1993) for laboratory open-channel flows: 

 
𝑢𝑟𝑚𝑠
𝑢∗

= 𝐷𝑢exp(−𝐶𝑘
𝑧

ℎ
) (6.4) 

 
𝑤𝑟𝑚𝑠
𝑢∗

= 𝐷𝑤exp(−𝐶𝑘
𝑧

ℎ
) (6.5) 

where urms (√𝑢′𝑢′̅̅ ̅̅ ̅̅ ) and wrms (√𝑤′𝑤′̅̅ ̅̅ ̅̅ ̅) are turbulence intensities in streamwise and vertical 

direction represented in the form of root mean square (RMS); Du, Dw, and Ck are empirical 
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parameters which for laboratory open-channel flows were determined experimentally to be 

equal to 2.30, 1.27, and 1.0, respectively (Nezu and Nakagawa, 1993).  

The CFD results of streamwise and vertical turbulence intensities were verified by 

comparing with the semi-theoretical equations given by Eqs. (6.4) and (6.5) and with 

experimental data from Grass (1971). Turbulence measurements of experiments, 

corresponding to hydraulically smooth and rough boundary conditions (Ks =9 mm) were 

used for comparison in this study. The roughness conditions in Grass experiments are 

nearly similar to those in the present study. 

Figures (6.9) and (6.10) represent the vertical distributions of urms and wrms for smooth and 

rough cases respectively. For smooth cases (S6 and S20), Figure (6.9) indicates that CFD 

results for urms and wrms fairly agree with both values measured by Grass (1971) and 

calculated by Nezu & Nakagawa (1993) equations. However, some deviations between 

computed CFD and theoretical values for urms occur in the region close to the boundary 

wall, z/h < 0.4, which may be due to difficulties in modelling the strong effect of the wall 

on the turbulence there. The figure also shows that the predicted values of the vertical 

intensity (wrms) is dampened as the free surface is approached, reflecting the suppression of 

vertical eddy movement. In turn, near to the free surface the streamwise intensity (urms) is 

nearly a constant. This coincides well with turbulent motion near the surface described by 

Hunt (1984). 

For rough flows (R6 and R20), Figure (6.10) indicates that the compatibility of the 

computed values for urms and wrms   to the universal equations (Eqs. 6.4 and 6.5) is almost 

similar to that of smooth flows. Also, the degree of agreement between CFD predictions 

and measurement data of Grass (1971) is reasonably high in the region near the bed, 0.2 < 

z/h < 0.6. However, in high flow case (R20) the computed values of intensities show a 

slight disagreement with universal profiles in some region. In spite of some deviations 

between CFD predictions and universal equations for turbulence intensity, it can be 

suggested that the CFD simulations generally give reasonably accurate results for 

turbulence motion in smooth and rough channels. 
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(a) S6 (b) S20 

Figure 6.9 streamwise and vertical components of turbulence intensity for smooth 

flows. 

 

  

  
(a) R6 (b) R20 

Figure 6.10 Streamwise and vertical components of turbulence intensity for rough flows. 
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6.4.2 Numerical calculation of eddy viscosity 

In the present study, the turbulent eddy viscosity (νt) for all smooth, transitional and rough 

flow cases were computed by making use the CFD results. The eddy viscosity was used as 

a parameter describing the turbulence strength of the flows. The turbulent eddy viscosity νt 

was calculated in the CFD post-processor from the definition equation of the eddy 

viscosity: 

 𝜈𝑡 =
−𝑢′𝑤′̅̅ ̅̅ ̅̅

𝑑𝑈 𝑑𝑧⁄
 (6.6) 

where the Reynolds stresses (−𝑢′𝑤′̅̅ ̅̅ ̅̅ ) and the velocity gradients (𝑑𝑈 𝑑𝑧⁄ ) are readily 

obtainable from the CFD simulations. The measured values of −𝑢′𝑤′̅̅ ̅̅ ̅̅  may show 

considerable scatter and could not be measured accurately near the bed and the free surface 

(Nezu and Rodi, 1985). This gives a justification for using numerical simulation to compute 

the eddy viscosity. 

To check the applicability of CFD model for calculation of the eddy viscosity profiles, the 

vertical distributions of the eddy viscosity computed by the CFD were compared against 

the experimental results of Nezu and Rodi (1986). Figure 6.11 compares the predicted and 

measured distributions of the normalised turbulent eddy viscosity (𝜈𝑡/𝐻𝑈∗) along the 

centreline for smooth and rough cases which have the smallest and largest aspect ratios. 

The runs P-1 and P-4 in Nezu and Rodi experiments were selected for comparison purposes 

because the Reynolds numbers (Re) for these experiments fall within the same range as that 

for the flow cases considered in the present study.  

For the smallest aspect ratio cases (S20 and R20), the agreement between the numerical 

prediction by the CFD and the measured profile by Nezu and Rodi (1986) appears to be 

satisfying, irrespective of the roughness conditions. However, for the cases of the largest 

aspect ratio (S6 and R6), there is some differences between the numerical and experimental 

data, where the model over-predicts the turbulent eddy viscosity in the near free surface 

region. This may be attributed to numerical diffusion associated with grid discretisation 

and the treatment of the water surface which may not give rigorous correction for the 

reduction of length scale at this region. Nevertheless, an encouraging qualitative agreement 

between model predictions and corresponding measured results is considered to be 

achieved. In both numerical and experimental results, the eddy viscosity is zero at the bed 

and at the free surface and has a maximum value at the mid-depth of the flow. 
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(a) Smooth flows (b) Rough flows 

Figure 6.11 Distribution of eddy viscosity: Comparison between CFD and experimental 

results 

6.4.3 The relationship between the eddy viscosity and wake strength 

As stated in previous sections in the present study, the wake strength parameter has a 

significant effect on the analytical calculations for velocity distributions. Therefore, in this 

section a numerical analysis was carried out to find out the relationship between the eddy 

viscosity and the wake strength parameter. 

According to Nezu and Rodi (1986), the eddy viscosity can be calculated by the following 

semi-theoretical equation: 

 
𝜐𝑡
𝑢∗𝐻

= 𝑘 (1 −
𝑧

𝐻
) [
𝐻

𝑧
+ 𝜋𝛱 𝑠𝑖𝑛 (𝜋

𝑧

𝐻
)]
−1

 (6.7) 

where Π is the Coles’ wake strength parameter. Nezu and Rodi (1986) proved that the value 

of Π depends on the shear Reynolds number (𝑅ℎ
∗ = 𝐻𝑢∗ 𝜐⁄ ), as shown in Figure 6.12. The 

figure indicates that at smaller values of 𝑅ℎ
∗ , Π increases rapidly with the Reynolds number 

but remains constant at Π = 0.2 beyond 𝑅ℎ
∗  > 2000. Based on this fact, the following 

equation, which expresses the dependency of the wake strength parameter Π on the 

roughness conditions of the flow, was suggested in this study: 

 Π = 0.1243 ln(𝑅ℎ
∗) − 0.7445 (6.8) 
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Equation (6.8) was used to estimate the values of Π that are needed for calculating the 

theoretical profiles of the eddy viscosity from Eq. (6.7). 

 
Figure 6.12 The relationship between wake strength parameter and 𝑅ℎ

∗ . 

Figures 6.13, 6.14 and 6.15 show the distributions of (𝜐𝑡/𝐻𝑢∗) obtained by the CFD model 

for all cases together with the theoretical curves according to Eq. (6.7). The solid lines 

represent the theoretical curves based on Π calculated from Eq. (6.8), while the dashed lines 

are the theoretical curves based on a constant Π = 0.2.  

For low flow cases, i.e. H = 6 and 10 cm, it can be seen that the prediction for the eddy 

viscosity is closer to theoretical curves based on Π < 0.20 than curves with constant Π = 

0.2. In contrast, for high flows (H = 15 and 20 cm) the predicted eddy viscosity profiles are 

asymptotic to theoretical curves calculated by a constant Π with a value of 0.2. The CFD 

results confirm the fact indicated by Nezu and Rodi (1986) that the parameter Π has a 

significant influence on the distribution of the eddy viscosity over the flow depth. The 

dependence of νt on Π is resulted from the dependence Π on the shear Reynolds number 𝑅ℎ
∗ . 

Therefore, the value of Π increases from 0 to 0.2 as 𝑅ℎ
∗  increases, giving better agreement 

between the CFD and theoretical profiles. On the other hand, the value of Π should be 

remain constant at 0.2 for high flows with large 𝑅ℎ
∗  > 2000, to obtain closer theoretical 

profiles to CFD predictions.   

The average magnitude of the vertical eddy viscosity for all the CFD results was found to 

be roughly equivalent to the value calculated by the theoretical approach when Eq. (6.8) 

was used for calculating Π. Table 6.3 shows the variations between the CFD and the based-

theoretical model results for average normalized eddy viscosity (vt/v). In general, the 
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variations lie within the range (3% - 13%). This could fairly justify using the average values 

of vt obtained by the CFD simulations as indicators of turbulence effects on the non-

uniformity of velocity. 

  
(a) S6 (H = 6 cm) (b) S10 (H = 10 cm) 

  
(c) S15 (H = 15 cm) (d) S20 (H = 20 cm) 

Figure 6.13 Distribution of eddy viscosity for smooth cases 
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(a) T6 (H = 6 cm) (b) T10 (H = 10 cm) 

  
(c) T15 (H = 15 cm) (d) T20 (H = 20 cm) 

Figure 6.14 Distribution of eddy viscosity for transitional cases 

 

Table 6.3 Average normalized eddy viscosity (νt/ν) for all flow cases. 

Case Average normalized eddy viscosity (νt/ν) Error  

[#] CFD computations Theoretical [%] 

S6 55.06 50.23 9 

S10 101.00 89.43 11 

S15 159.68 143.11 10 

S20 203.63 204.15 0 

T6 52.19 47.44 9 

T10 98.69 88.26 11 

T15 151.36 149.97 1 

T20 224.93 216.37 4 

R6 56.08 48.91 13 

R10 105.02 91.50 13 

R15 168.84 159.94 5 

R20 231.49 224.28 3 
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(a) R6 (H = 6 cm) (b) R10 (H = 10 cm) 

  
(c) R15 (H = 15 cm) (d) R20 (H = 20 cm) 

Figure 6.15 Distribution of eddy viscosity for rough cases 

6.5 Velocity distribution and its non-uniformity 

Based on the facts explained in previous sections, the effect of the roughness and the 

turbulence structures on the velocity distributions were found to be considerable. In the 

present study an analysis was made to explore the links between the velocity distribution 

and the flow regimes in terms of the roughness and turbulence conditions. During the 

analysis, the velocity distribution coefficients (α, β) were used as indictors to the non-

uniformity of the velocity distribution. 

For all test cases considered in this work, the velocity distribution coefficients (α, β) were 

plotted against the aspect ratio (Ar) as shown in Figure 6.16. In general, the figure indicates 

that for a given flow depth (i.e. Ar is constant), increasing the roughness causes α and β 

coefficients to increase. The values of α are ranging from 1.07 to 1.16 in fully rough regimes 
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while α values are varying from 1.05 to 1.13 in the corresponding smooth flow cases. The 

similar trend can be seen for β values, where β lies within a range of (1.013 – 1.032) in 

smooth flows and (1.022 - 1.045) in rough flows. This means that the non-uniformity of 

the velocity distribution in the cases of fully rough flow regimes (i.e Re* > 70) is more 

considerable than those in hydraulically smooth and transitionally rough flow cases (Re* < 

70). On the other hand, for specific flow regime (i.e. constant Re*), the velocity distribution 

coefficients (α, β) increase with increase in aspect ratio Ar. This is suggested to be related 

to the effects of secondary currents and turbulence conditions. 

  
(a) (b) 

Figure 6.16 Velocity distribution coefficients (α, β) for all flow regimes. 

It is known that generating the turbulence and the secondary currents in rectangular open 

channels is largely relying on the geometrical properties of the channel, particularly the 

aspect ratio. Variations α and maximum secondary currents (Usec) with aspect ratio (Ar) are 

shown in Figure 6.17. The figure suggests that for both smooth and rough regimes the 

values of α increase with increase in the aspect ratio. However, the values of Usec appear 

to follow reverse trends, where they decrease with increasing the aspect ratio. The reason 

is when the aspect ratio is small, i.e. the channel is narrow and the flow depth is high, the 

secondary currents are strong and their effect on the uniformity of velocity distributions is 

much more than that of the bed roughness. This, in turn, leads to more uniform distribution 

for velocity and less values for α. In the case of low flows with large values of Ar, the 

secondary currents are less and their effects on the velocity distribution become weaker 

compared with that of the bed roughness. Therefore, the velocity distributions are less 

uniform and α values become smaller because of the dominant effect of the bed roughness. 

The same effect can be seen in Figure 6.18 for turbulence strength on the uniformity of 

velocity distribution. Figure 6.18 represents the variations of the velocity coefficient (α) 
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and the normalised eddy viscosity (νt/ν) with aspect ratio Ar. The figure shows that the 

velocity distribution coefficient α increases while the eddy viscosity decreases with 

increase in Ar. This clearly suggest that the decrease in the turbulence strength in the cases 

of large Ar, i.e. low flows contribute to increase the non-uniformity of the primary velocity 

distribution and subsequently the velocity coefficients increase. 

  
(a) smooth flow (b) rough flow 

Figure 6.17 Variations of α and Usec with aspect ratio Ar. 

 

  
(a) smooth flow (b) rough flow 

Figure 6.18 Variations of α and νt with aspect ratio Ar. 

Based on the facts above, it can be concluded that the velocity distribution coefficients (α 

or β) can be related to both Roughness Reynolds number (Re*) and aspect ratio (Ar = B/H). 

Figure 6.19 shows the coefficients α plotted as a function of the roughness Reynolds 

number (Re*) for different aspect ratio (Ar), ranging from 1.5 to 5. The figure shows that 

the relation of the velocity coefficient α to the logarithm of Re* appears clearly linear and 

can be expressed as: 

 𝛼 = 𝐶 log 𝑅𝑒∗ + 𝐷 (6.9) 
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where C = slope of a line and D = intercept of a line. From Figure 6.19, it is also clear that 

the slopes of all lines for all Ar values are nearly similar. Therefore, it can be suggested that 

C = constant. However, there is a different intercept for each line with a specific Ar. Thus, 

it can be claimed that D is a function of Ar. The values of the parameters C and D were 

determined according to Figure 6.19 and given in Table 6.4. The equation provides a 

relationship by which the non-uniformity of velocity distribution can be measured as a 

function of the flow regime in terms of roughness, turbulence and secondary currents. 

 
Figure 6.19 Alpha as a function of Re* and Ar. 

Table 6.4 The coefficients of equation (6.9) developed in the present study. 

Ar C D 

5 0.008 1.076 

3 0.008 1.044 

2 0.008 1.033 

1.5 0.008 1.024 

6.6 Application of the analytical model to rectangular channels 

6.6.1 Discussion of model parameters 

In the analytical model (dip-modified log wake law) used in the present study, two 

parameters need to be characterized. They are the wake strength parameter Π, and the dip 

correction factor μ. The value of Π can serve as an indicator for the influence of the 

turbulence, while μ can be considered to represent the effect of the secondary currents on 

the primary velocity distribution.  
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Several researchers, e.g. Absi (2011) and Kundu and Ghoshal (2012), showed that the value 

of Π has a significant effect on velocity predictions obtained by analytical solutions based 

on the log wake low. Therefore, the values of Π should be estimated carefully. In open 

channel flows, the value of Π seems to be not universal where many researchers suggested 

different values of Π. Cebeci and Smith (1974) indicated that Π increases with the Reynolds 

number, suggesting a constant value of Π = 0.55 at high Reynolds numbers. Coleman 

(1981) obtained an average value of Π as 0.19, Steffler et al. (1985) as 0.08 – 0.15, and 

Kirkgöz (1989) as 0.1. Cardoso et al. (1989) recommended a relatively small wake strength 

parameter (Π ≈ 0.08) for uniform flow in a smooth open channel. Nezu and Rodi (1986) 

studied the behaviour of Π in flows with different friction Reynolds numbers (𝑅ℎ
∗ =

𝐻𝑈∗ 𝜈⁄ ). They indicated that Π increases from zero with the friction Reynolds number 𝑅ℎ
∗  

and take a nearly constant value Π = 0.2 at 𝑅ℎ
∗  > 2000.  

The numerical analysis of the eddy viscosity νt conducted in the present study demonstrated 

the dependence of νt on Π and confirmed the relation of Π with 𝑅ℎ
∗ . Therefore, the equation 

proposed here (Eq. 6.8), which is based on Nezu and Rodi (1986) results, was used to 

estimate the value of Π from knowing the value of  𝑅ℎ
∗  for each flow case.  

The value of dip correction factor μ can be determined from the distance of the maximum 

velocity from the bed as follows (Wang et al., 2001): 

 𝜇 =
1

𝜉𝑑𝑖𝑝
− 1 (6.10) 

where 𝜉𝑑𝑖𝑝 is normalized distance of maximum velocity from the channel bed (zmax/H). 

Experiments have shown that 𝜉𝑑𝑖𝑝 is mainly related to the lateral position (y /H) of the 

measured velocity profiles in the channel (Wang et al., 2001 and Yang et al., 2004). Hence, 

Yang et al. (2004) proposed an empirical formula for the dip correction factor and can 

written as follows: 

 𝜇 = 𝐶1 exp(−𝐶2
𝑦

𝐻
) (6.11) 

At the centreline of the channel, y is equal to 0.5B. Equation (6.11) has been derived for 

smooth flow regime with C1 = 1.3 and C2 = 1.0.  

When applying Eq. (6.11) to smooth flow cases considered here, the estimated values of μ 

appear to be close to those calculated by Eq. (6.10) based on the measured distance of 
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maximum velocity as shown in Figure 6.20. However, Figure 6.20 also shows that the 

parameter C1 in Eq. (6.11) should be reduced from 1.3 to 1.1 to make the equation 

applicable for rough flow cases. Therefore, Eq. (6.11) was used to calculate μ in smooth, 

transitional and rough flows, but with different value of C1 as listed in Table 6.5. 

 
Figure 6.20 Relationship between μ and z/H for smooth and rough flow cases. 

Table 6.5 Values of C1 and C2 parameters of Eq. (6.11) corresponding to each flow regime. 

Flow regime C1 C2 

Smooth 1.3 1.0 

Transitional 1.2 1.0 

Rough 1.1 1.0 

The validity of the equations proposed for estimating the values of Π and μ are tested in the 

next section throughout applying the analytical model to the flow cases considered in the 

present study.  

6.6.2 Comparison with experimental data 

The analytical dip-modified log wake law (DMLWL) given by Eq. (5.19) was used to 

obtain the velocity distribution for all flow cases considered in this study. When the 

analytical model was applied, the wake strength parameter, Π, and dip correction factor, μ, 

were determined using Eqs. (6.8) and (6.11), respectively, based on experimental data. The 

values of Π and μ calculated by Eqs. (6.8) and (6.11) are summarised in Table 6.6. 
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Table 6.6 Values of Π and μ used in the analytical model for rectangular channel flows. 

Case No. 𝑹𝒆𝒉
∗  Π from Eq. (6.8) μ from Eq. (6.11) 

S6 947.62 0.11 0.11 

S10 1825.03 0.19 0.29 

S15 2947.68 0.25 0.48 

S20 4205.07 0.29 0.61 

T6 885.72 0.10 0.10 

T10 1801.23 0.19 0.27 

T15 3089.01 0.25 0.44 

T20 4456.81 0.30 0.57 

R6 913.16 0.10 0.09 

R10 1867.41 0.19 0.25 

R15 3294.32 0.26 0.40 

R20 4768.19 0.31 0.52 

Figures (6.21), (6.22) and (6.23) compare the predicted velocity profiles obtained by the 

dip-modified log wake law (DMLWL) with the experimental data of smooth, transitional 

and rough flow cases. In all Figures, two values of Π were used, one was calculated from 

the equation (6.8) proposed in this study and the other value is assumed to be a constant as 

0.2.  

The application of the analytical model (DMLWL) to smooth cases (Figure 6.21) shows 

that the model is generally able to reproduce the experimental velocity distributions. Also, 

it can be seen that the dip-phenomena in high flow cases, i.e. S15 and S20, is reasonably 

modelled by the analytical model together with μ calculated by Eq. (6.11). However, there 

is some differences between the predicated and measured velocities in the upper part of the 

flow (z/H > 0.7). These differences may be attributed to imperfections of the measuring 

technique, as velocity measurements are difficult to measure in accurate way near the free 

surface.    

Furthermore, it should be noted that the value of Π plays an important role in obtaining 

accurate solutions for velocity distributions. For low flow cases (S6 ~ S10), where the 

friction Reynolds number is less than 2000, the analytical profiles with Π calculated by Eq. 

(6.8) are more consistent with the experimental data than the profile based on a constant 

value of Π, i.e. Π = 0.2. In contrast, Figure 6.21 clearly shows that the value of Π has no 

influence on the analytical solutions for high flow cases (S15 and S20), i.e. the cases with 

high friction Reynolds number (𝑅𝑒ℎ
∗). For these flow cases, the velocity profiles obtained 

analytically do not agree well with the experimental data when Π calculated from Eq. (6.8) 
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were used. However, when Π remains constant at 0.20, the analytical profiles for velocity 

improved and come closer to the experimental profiles. These results confirm the 

suggestion of depending the eddy viscosity and then Π on the friction Reynolds 

number 𝑅𝑒ℎ
∗ up to a certain value (< 2000). After this limit of 𝑅𝑒ℎ

∗, Π takes a constant value 

at 0.2 even though 𝑅𝑒ℎ
∗ increases. 

  
(a) S6 (H = 6 cm) (b) S10 (H = 10 cm) 

  
(c) S15 (H = 15 cm) (d) S20 (H = 20 cm) 

Figure 6.21 Comparison between analytical and experimental vertical distributions of U 

for smooth flow cases. 

For comparison, the application of the analytical model to the transitional and rough flow 

cases has also been undertaken, as illustrated in Figures (6.22) and (6.23). Both figures 

show that the analytical model can successfully predict velocity distributions for flows over 

rough surfaces. It is also clear from the two figures that the DMLWL is able to predict the 

maximum velocity and its position with an accepted degree of accuracy. This means that 

the modification made on Eq. (6.11) by reduce the value of C1 make the equation applicable 

to calculate the dip correction factor μ in smooth and rough flows as well. In addition, 

Figures (6.22) and (6.23) show the same influence of Π on the analytical results that was 
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shown in smooth flow cases. The figures indicate that using Π based on Eq. (6.8) gives 

good predicted velocity profiles in the cases of low flows (T6, R6). But for high flows (T20, 

R20), keeping Π constant at 0.20 lead to the best agreement between the analytical and 

experimental results. This clearly illustrates the effects of friction on estimating the value 

of Π and then on the results of the analytical solutions. 

In summary, the results indicate that the methods suggested in the present study to calibrate 

the parameters (Π and μ) may provide efficiency to the application of the analytical model 

for rectangular channel flows under different flow regimes.   

  
(a) T6 (H = 6 cm) (b) T10 (H = 10 cm) 

  
(c) T15 (H = 15 cm) (d) T20 (H = 20 cm) 

Figure 6.22 Comparison between analytical and experimental vertical distributions of U 

for transitional flow cases. 
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(a) R6 (H = 6 cm) (b) R10 (H = 10 cm) 

  
(c) R15 (H = 15 cm) (d) R20 (H = 20 cm) 

Figure 6.23 Comparison between analytical and experimental vertical distributions of U 

for rough flow cases. 
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Chapter 7                                                                   

Results for Compound Channel Flows 

7.1 Introduction 

In this chapter, the predicted CFD results for the compound channel flows were validated 

and described in accordance with the findings obtained by the second set of experiments. 

First, the CFD results for primary and secondary flows was validated by comparing the 

computed results with experimental data. second, numerical analysis of momentum 

transfers due to the turbulence and secondary flows was carried out. Third, the primary 

flow in a compound channel was investigated by examining the effects of boundary 

roughness, secondary flow and turbulence on the velocity distribution coefficients (α and 

β). Finally, the application of the analytical model (SKM) to a compound channels with a 

narrow floodplain was assessed and improved by developing the expressions used for 

calibrating the parameters of the eddy viscosity and secondary currents.   

7.2 Verification of CFD results 

7.2.1 Results for primary flow 

In this section, the vertical and lateral distributions of the primary velocity obtained 

numerically by the CFD model were compared with the experimental results to verify that 

the CFD model can reproduce the primary velocity fields for the flow cases considered in 

this study.  

Figure 7.1 shows the comparison between the measured and predicted primary velocity 

profiles at different locations for two test cases, namely CS0.40 and CR0.40. In the case 

CS0.40, the compound channel has a smooth floodplain, while the floodplain is rough in 

the case CR0.40. It can be seen that the computed mean velocity profiles agree reasonably 

well with the measured data for both simulated cases. However, the CFD model predicts 

the velocity profiles more accurately at some locations than does at other locations. For 

example, the velocity profiles are better predicted near the wall (y/B = 0.2) and the middle 

of the main channel (y/B = 0.3) than at the location (y/B = 0.5) near the junction between 

the main channel and floodplain. It is known that the prediction and also measurements of 

the flow features are rather hard at a location in the junction zone. Therefore, this may be a 
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reason for the differences between the predicted and the measured profiles at locations 

within the junction zone. Figure 7.1 also shows that the primary velocity in the main 

channel is greatly affected by the wall while it is not in the floodplain. Both CFD and 

experiment results indicate that the maximum velocity occurs below the free surface at the 

location near the wall due to the wall effects. On the other hand, in the floodplain, the 

primary velocity increases significantly with flow depth.  

 
(a) Case CS0.40 

 
(b) Case CR0.40 

Figure 7.1 Vertical distribution of primary velocity at different locations. 

Figures 7.2, 7.3 and 7.4 show the comparison between the predicted and measured lateral 

distribution of the depth-averaged velocity for all test cases. The agreement between the 

predicted and measured data is reasonably well for all cases, indicating the CFD model can 

acceptably reproduce the lateral distribution of the depth-averaged velocity. However, it 

should be noted that the predicated results for velocity over the floodplain is not as the same 

level of the accuracy as that in the main channel. This little difference in predictive ability 
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for the velocity over the floodplain can be argued if the error for the experimental results 

in this region is also considered.  

Based on the comparisons above, it can be concluded that the numerically predicted 

primary flow is very close to the experimental measurements and this is essential for the 

accurate prediction of the overall magnitude and variations of the other velocity 

components (V and W) as well as the secondary flow. 

  
(a) CS0.25 (Dr = 0.25) (b) CS0.33 (Dr = 0.33) 

  
(c) CS0.40 (Dr = 0.40) (d) CS0.50 (Dr = 0.50) 

Figure 7.2 Lateral distribution of primary velocity for smooth floodplain cases. 
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(a) CT0.25 (Dr = 0.25) (b) CT0.33 (Dr = 0.33) 

  
(c) CT0.40 (Dr = 0.40) (d) CT0.50 (Dr = 0.50) 

Figure 7.3 Lateral distribution of primary velocity for transitionally rough floodplain 

cases. 
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(a) CR0.25 (Dr = 0.25) (b) CR0.33 (Dr = 0.33) 

  
(c) CR0.40 (Dr = 0.40) (d) CR0.50 (Dr = 0.50) 

Figure 7.4 Lateral distribution of primary velocity for fully rough floodplain cases. 

7.2.2 Results for secondary flow 

Figures 7.5 and 7.6 show the secondary current vectors for smooth and transitionally rough 

floodplain cases with relative depth Dr = 0.50, i.e. the cases CS0.50 and CT0.50. In these 

figures the CFD solutions for secondary currents were compared with the experimental 

results obtained by Tominaga and Nezu, (1991) from experiments on compound channels 

have similar relative depth and roughness conditions to the channels used in the present 

study. In both figures, it can be seen that typical patterns of secondary flow in a compound 

channel are well predicted. Strong inclined secondary currents near the junction edge 

between the main channel and floodplain and twin vortices at each side of the junction 

clearly apparent in the CFD predictions as in the experimental results. These pair of vortices 

are called the main-channel vortex and the flood-plain vortex. Also, it should be noted that 

the floodplain vortex slightly moves towards the main channel in the cases of rough 

floodplain. This feature is seen in both numerical and experimental results, but it is clearer 

in the CFD results than in the experiment. The movement of the secondary cell over the 

floodplain to main channel side may be attributed to the roughness effects.  
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(a) CFD model (present study) 

 
(b) Experiment (Tominaga and Nezu, 1991) 

Figure 7.5 Predicted and measured secondary flow for smooth floodplain case. 

 
(a) CFD model (present study) 

 
(b) Experiment (Tominaga and Nezu, 1991) 

Figure 7.6 Predicted and measured secondary flow for transitionally rough 

floodplain case. 
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The magnitude of the computed secondary flows is very small compared with the primary 

flow, with many points being characterized by values of less than 2% of the maximum 

primary velocity (Umax). The maximum magnitudes of secondary velocity for all cases 

simulated are found to be within the range (3.5% to 5.5%) of the maximum mean 

streamwise velocity. These results are nearly of the same order of the secondary velocities 

(about 5%) estimated by Tominaga & Nezu, (1991).  

As a conclusion of this comparisons, the CFD simulation fairly predicts the complex 

features of secondary currents in terms of the number and locations of secondary cells 

observed in many literature studies, e.g. Tominaga & Nezu, (1991) and Nezu and 

Nakagawa (1993).      

7.3 Impact of roughness conditions on secondary currents 

The comparisons of the secondary currents for smooth, transitional rough, and fully rough 

floodplain are given in Figures 7.7 and 7.8. The first figure shows the vector description of 

the secondary currents which are obtained from CFD simulation for the cases CS0.25, 

CT0.25 and CR0.25, which have the smallest relative depth, i.e. Dr = 0.25. Irrespective of 

the roughness conditions of the floodplain, a pair of secondary cells can be recognized on 

both sides of the interface between the main channel and floodplain. However, the core of 

the main channel vortex shifts towards the internal wall of the channel and to below away 

from the water surface in the rough floodplain case. When the floodplain is rough, as in 

cases CT0.25 and CR0.25, the floodplain vortex becomes larger and extends inside the 

main channel, causing the main channel vortex to shift towards the bottom of the channel. 

This is suggested to be a consequence of the effect of the rough bed of the flood plain on 

the secondary filed structures. The same behaviour of the main channel and floodplain 

vortices can be seen in the cases of the high flow with larger Dr = 0.50, as shown in figure 

7.8. But the size of secondary cells in these cases are larger than those in the low flow with 

Dr = 0.25.  The same effect for the roughness on the patterns of the secondary vortices was 

found by Tominaga and Nezu (1991) in the rectangular compound channel. 

The shift in secondary vortices may consequently affected the mean streamwise velocity 

contours as shown in Figures 7.7 and 7.8. From the figures, it can be seen that the velocity 

contour of the primary velocity within the junction zone bulges horizontally when the 

floodplain is transitionally or fully rough.  
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(a) CS0.25  

  
(b) CT0.25  

  
(c) CR0.25  

Figure 7.7 Impact of roughness conditions on secondary currents in cases of Dr = 

0.25. 
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CS0.50  

 
 

CT0.50  

 
 

CR0.50  

Figure 7.8 Impact of roughness conditions on secondary currents in cases of Dr = 

0.50. 
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7.4 Numerical analysis of momentum transfers due to 

turbulence 

The lateral Reynolds stress (𝜏𝑦𝑥 = −𝜌𝑢′𝑣′̅̅ ̅̅ ̅̅ ) is also of significance on the primary flow 

because it is directly related to the lateral momentum transfer. In this section, the depth-

averaged Reynolds shear stress (𝜏𝑦̅𝑥) and depth-averaged eddy viscosity (𝜀𝑡) were 

calculated from the measurements of the velocity and friction data based on some 

assumptions. The calculated results of 𝜏𝑦̅𝑥 and 𝜀𝑡 were then compared with those 

numerically obtained from CFD simulations to check the approach used. An analysis was 

also made to investigate the effects of the floodplain roughness conditions on the depth-

averaged eddy viscosity, which can be used as a parameter to characterise the lateral 

momentum exchange in the shear layer. 

7.4.1 Computation method of depth-averaged Reynolds shear stress 

The depth-averaged Reynolds shear stress is related to the depth-averaged eddy viscosity 

and the velocity gradient through the following equation: 

 𝜏𝑦̅𝑥 = 𝜌𝜀𝑡
𝜕𝑈

𝜕𝑦
 (7.1) 

Using the mixing layer approach, Alavian and Chu (1985) proposed a model by taking the 

effects of both the bed-generated turbulence and shear-generated turbulence into account. 

Based on the Alavian and Chu model, Prooijen et al (2005) recently adopted the eddy 

viscosity concept and proposed a similar model. This eddy viscosity model was developed 

from experimental data and therefore it is expected to be applicable in similar experimental 

conditions such as those in this work. Therefore, the model by Prooijen et al. (2005) was 

used in the present study. 

According to Prooijen et al. (2005), both bottom turbulence and lateral shear contribute to 

the eddy viscosity. The depth-averaged eddy viscosity (𝜀𝑡𝑏) due to the bottom turbulence 

and that (𝜀𝑡𝑠) due to the lateral shear can be modelled as follows: 

 𝜀𝑡𝑏 = 𝜆𝑡𝑏 (
𝑓

8
)
1/2

𝑈𝑑𝐻 (7.2) 

 𝜀𝑡𝑠 =
𝐻𝑚
𝐻
(0.08𝛿)2 |

𝜕𝑈𝑑
𝜕𝑦
| (7.3) 
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where 𝜆𝑡𝑏 is the dimensionless depth-averaged eddy viscosity, Ud is the depth-averaged 

longitudinal velocity, f is the friction factor, Hm is the mean value of the water depth in the 

main channel and on the floodplain and δ is the width of the shear layer. For a laboratory 

flume, the value of 𝜆𝑡𝑏 was assumed as 0.07 (Rameshwaran & Shiono 2006).  

The width of the shear layer (δ) is determined from the distance between the positions 𝑦75% 

and 𝑦25% , as follows: 

 𝛿 = 2|𝑦75% − 𝑦25%| (7.4) 

where 𝑦75% is the position at which  𝑈(𝑦75%) = 𝑈̅𝑓 + 0.75(𝑈̅𝑐 − 𝑈̅𝑓) and 𝑦25% is the 

position at which  𝑈(𝑦25%) = 𝑈̅𝑓 + 0.25(𝑈̅𝑐 − 𝑈̅𝑓). 𝑈̅𝑐 and 𝑈̅𝑓 are the maximum velocity 

in the main channel and the floodplain respectively.  

Velocity gradient (𝜕𝑈𝑑 𝜕𝑦⁄ ) is calculated from two adjacent depth-averaged velocities from 

the following approximate formula: 

 
𝜕𝑦

𝜕𝑥
≈
𝑈𝑑,𝑖 − 𝑈𝑑,𝑖−1

𝑑𝑦
 (7.5) 

where 𝑈𝑑,𝑖 and 𝑈𝑑,𝑖−1 are depth-averaged velocities at y = yi and y = yi-1. 

By considering both the bed-generated turbulence and shear-generated turbulence the 

depth-averaged eddy viscosity (𝜀𝑡) can be expressed as follows: 

 𝜀𝑡 = 𝜀𝑡𝑏 + 𝜀𝑡𝑠 (7.6) 

Eddy viscosity and Reynolds shear stress were calculated using the above methods based 

on raw experimental data for velocity, water depth and bed friction. 

7.4.2 Lateral distribution of depth-averaged eddy viscosity  

The lateral distributions of the depth-averaged eddy viscosity (𝜀𝑡) in compound channel 

cases with Dr of 0.25 and 0.50 are shown in Figures 7.9 and 7.10. In the figures, the eddy 

viscosity (𝜀𝑡𝑏) calculated by considering the bed-turbulence contribution only are also 

presented. From Figure 7.9, the depth-averaged eddy viscosities (𝜀𝑡), considering the shear 

and bed turbulence contributions, are larger than those calculated without accounting for 

the shear contribution (𝜀𝑡𝑏). It can also be seen that the eddy viscosities at the main 

channel/floodplain junction increase significantly when the floodplain is rough, indicating 

an increase in the lateral shearing between the main channel and floodplain flows. The 
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increase of the floodplain roughness changes the primary velocity gradient and then this 

increases the lateral shear and generation rate of the turbulent energy. 

 
(a) Smooth floodplain (CS0.25) 

 
(b) Transitional floodplain (CT0.25) 

 
(c) Rough floodplain (CR0.25) 

Figure 7.9 Lateral distribution of depth-averaged eddy viscosity for cases of Dr = 0.25. 

From Figure 7.10, the eddy viscosities (𝜀𝑡) for the high flow cases (Dr = 0.50) behave in a 

different manner to those for low flow cases (Dr = 0.25). The distributions of 𝜀𝑡, which are 

calculated based on the combined effects of the bed and shear generated turbulence, diverge 
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slightly from the distribution of 𝜀𝑡𝑏, which calculated by accounting for the bed generated 

turbulence only. This indicates that the contribution of the lateral shear to the eddy viscosity 

is limited even in the case of the rough floodplain, i.e. CT0.5 and CR0.5.  

   
(a) Smooth floodplain (CS0.50). 

 
(b) Transitional floodplain (CT0.50). 

 
(c) Rough floodplain (CR0.50). 

Figure 7.10 Lateral distribution of depth-averaged eddy viscosity for cases of Dr = 

0.50. 
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The mean values of the eddy viscosities ( 𝜀𝑡 and 𝜀𝑡𝑏 ) in the main channel and the floodplain 

for the cases of small and large Dr are given in Table 7.1. The results in Table 7.1 indicate 

that the effect of roughness in small relative depth cases (Dr = 0.25) is to change the mean 

value of the eddy viscosity 𝜀𝑡 in the main channel from 1.08 to 1.33 m2/s and in the 

floodplain from 0.70 to 1.72 due to increasing the lateral shear. In the cases of the larger 

relative depth, the change of the mean values of  𝜀𝑡 due to roughness effects is relatively 

small with values varying from 1.73 to 2.16 m2/s in main channel and from 1.04 to 1.84 

m2/s in flood plain region. It should be noted that the mean eddy viscosity calculated based 

on only bottom turbulence also increase in both flow regions when the roughness of 

floodplain increase. This is not surprising because 𝜀𝑡𝑏 is defined as function of the friction 

parameter (f) which is large for the rough floodplain cases. The results of Table 7.1 also 

illustrate that the mean values of the eddy viscosity in both flow regions, i.e. the main 

channel and the floodplain, are increased when the lateral shear-generated turbulence 

contribution is included in calculating the eddy viscosity. 

Table 7.1 Mean values of the eddy viscosity in cases of small and large Dr (10-4 m2/s). 

  Main channel Floodplain 

Case Dr  𝜀𝑡  𝜀𝑡𝑏  𝜀𝑡  𝜀𝑡𝑏 

CS0.25 0.25 1.08 0.99 0.70 0.18 

CT0.25 0.25 1.30 1.04 0.92 0.21 

CR0.25 0.25 1.33 1.16 1.72 0.35 

CS0.50 0.50 1.73 1.61 1.04 0.86 

CT0.50 0.50 1.81 1.71 1.09 0.92 

CR0.50 0.50 2.16 1.91 1.84 1.35 

The above results of eddy viscosity indicate that the shear contribution to the eddy viscosity 

is very important when the flow is shallow with small relative depth, i.e. Dr = 0.25. The 

results also show that the effect of the lateral shear on the eddy viscosity increase in the 

compound channel with rough floodplain. 

7.4.3 Lateral distribution of depth-averaged Reynolds stress 

The lateral distributions of the depth-averaged Reynolds stress (𝜏𝑦̅𝑥) for smooth and rough 

floodplain cases with two different relative depths (Dr = 0.25 and 0.50) are shown in 

Figures 7.11 and 7.12. The later distributions of  𝜏𝑦̅𝑥 that obtained from the CFD 

simulations were also compared with those calculated by the experiment-based method for 

verification purposes. Equations 7.1 to 7.6 were used in calculating 𝜏𝑦̅𝑥 based on the 

experimental results of the velocity and bed friction. 
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In the case of Dr =0.25, i.e. Figure 7.11, the predicted CFD value is almost similar to the 

one calculated experimentally for the three roughness conditions. With an increase of the 

floodplain roughness, the predicted and experimentally calculated values of 𝜏𝑦𝑥 increase in 

the lateral shear region. The same degree of agreement between the predicted and 

experimentally calculated lateral distributions of 𝜏𝑦𝑥 can also be seen for the case of large 

Dr (= 0.50). However, in the case of small Dr, i.e. CS0.25 – CR0.25, the peak of the depth-

averaged Reynolds stress is slightly different in terms of the magnitude and the position, 

where the CFD model underestimates the peak value at the interfacial region. This 

underestimation of the Reynolds stress in the interfacial region may be caused by the fact 

that the approximate method used for calculating eddy viscosity relies on the approximation 

of the velocity gradients. It is suggested that the present turbulence model (BSL-RSM 

model) can predict the depth-averaged with an accepted degree of accuracy because such 

model solves transport equations of Reynolds stresses directly. Therefore, the present 

turbulence model (RSM model) can be used to estimate the momentum transfers due to the 

secondary currents, as is presented in the next section. 
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(a) Smooth floodplain (CS0.25) 

 
(b) Transitional floodplain (CT0.25) 

 
(c) Rough floodplain (CR0.25) 

Figure 7.11 Lateral distribution of depth-averaged Reynolds stress (𝜏𝑦𝑥) for Cases of 

Dr = 0.25. 
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(a) Smooth floodplain (CS0.50) 

 
(b) Transitional floodplain (CT0.50) 

 
(c) Rough floodplain (CR0.50) 

Figure 7.12 Lateral distribution of depth-averaged Reynolds stress (𝜏𝑦𝑥) for Cases of 

Dr = 0.50. 

7.5 Numerical analysis of momentum transfers due to secondary 

flow 

The secondary flow effects on lateral momentum transfer were estimated indirectly based 

on the CFD simulations because of the difficulty in measuring the secondary flow with 
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sufficient accuracy. It was clarified in a previous section that the simulated secondary flow 

has a structure is fairly similar to the observed one.  

The secondary flow contribution to momentum transfers was calculated by the following 

equation, using the detailed results obtained from the CFD simulations: 

 −(𝜌𝑈𝑉)𝑑 = −
1

𝐻
∫ (𝜌𝑔𝐻𝑆𝑜 − 𝜏𝑏)𝑑𝑦
𝑦

0

− 𝜏𝑦𝑥 (7.7) 

The results obtained from Eq. (7.7) for apparent shear stress due to the secondary flow 

[−(𝜌𝑈𝑉)𝑑] are shown in Figure 7.13. Only the cases with three different relative depths 

(Dr = 0.25, 0.33, 0.50) are shown. For each relative depth Dr, the results for three cases of 

different floodplain roughness were compared together.  

The profiles of [−(𝜌𝑈𝑉)𝑑] show the linearly descending feature at the interfacial zone that 

is quite similar to the experimental results obtained by Shiono & Knight (1991), but the 

magnitudes are different because of the differences in the geometrical properties. It can be 

seen that the apparent shear stress due to the secondary flow decreases from the left wall, 

reaches the maximum negative value at y ≈ 0.20 m, i.e. at the edge of the floodplain and 

then increases towards the right wall. In the main channel the profile of [−(𝜌𝑈𝑉)𝑑] is 

nearly constant for y < 0.15 m. However, near the junction between the main channel and 

the floodplain (0.15 < y < 0.20 m) the distribution decreases significantly to the maximum 

negative value, possibly indicating the presence of a strong secondary flow cells as shown 

by Figure 7.7 and 7.8 in a previous section. 

Figure 7.13 also shows that the maximum value of [−(𝜌𝑈𝑉)𝑑] increases as the relative 

depth increases. For example, the maximum magnitudes in smooth floodplain cases 

CS0.25, CS0.33 and CS0.50 are -0.78, -0.85 and -0.96 N/m2, respectively. This indicates 

that the contribution of the secondary flow to the momentum transfer is stronger under the 

conditions of higher flow depth, i.e. larger Dr. The results in Figure 7.13 also shows that 

when the floodplain is roughened, the profile shapes of [−(𝜌𝑈𝑉)𝑑] on the main channel do 

not differ significantly from those for smooth floodplain cases. This indicate that the 

influence of the floodplain roughness on the secondary current in the main channel is not 

considerable. However, the profile of [−(𝜌𝑈𝑉)𝑑] in the floodplain appears to be influenced 

by the increase of roughness over the floodplain. The variation of [−(𝜌𝑈𝑉)𝑑] in rough 

floodplain cases is larger than that shown for smooth floodplain cases. This indicates that 
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the effect of the roughness on the secondary current is more important in the floodplain, 

but is less important in the main channel. 

 
(a) Cases CS0.2, CT0.25 and CR0.25 (Dr = 0.25). 

 
(b) Cases CS0.33, CT0.33 and CR0.33 (Dr = 0.33). 

 
(c) Cases CS0.50, CT0.50 and CR0.50 (Dr = 0.50). 

Figure 7.13 Lateral distribution of apparent stress due to secondary flows for different 

Dr. 
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7.6 Non-uniformity of velocity distributions in compound 

channels 

To examine how the velocity distribution in the compound channel flows could be 

influenced by the geometry factors and roughness conditions, the velocity distribution 

coefficients (α, β) for all test cases were calculated based on the velocities obtained from 

the experiments. As mentioned previously, test cases considered in the present work 

includes three different types of roughness conditions for the floodplain so that three flow 

regimes are established. These flow regimes are smooth (cases CS-0.25 to CS0.50), 

transitionally rough (cases CT0.25 to CT0.50), and fully rough (cases CR0.25 to CR0.50). 

Figures 7.14 and 7.15 show the variations of the energy (α) and momentum (β) coefficients, 

respectively, for different values of flow relative depth and floodplain roughness. It can be 

seen in the two figures that for all roughness conditions, the maximum magnitudes of α and 

β occur for the lowest values of the relative depth Dr, whereas the minimum magnitudes of 

α and β correspond to the highest values of the relative depth. This indicates that the values 

of α and β decrease as the relative depth increases. According to Figure 7.14, the α takes a 

value of 1.078 for the case CS0.25 that has the smallest relative depth (Dr = 0.25) and 

smooth floodplain, then reach to 1.057 for the case CS0.50 that has the largest relative 

depth (Dr = 0.50) and smooth floodplain. Similar trends for the values of α can be seen for 

the cases with transitional and rough floodplains. As shown in Figure 7.15, the values of 

the momentum correction coefficient β also decrease as the values of the relative depths 

increase, irrespective of the roughness conditions of the floodplain flows. For example, for 

smooth floodplain cases, the values of β lower from 1.038 at the smallest relative depth (Dr 

= 0.25) to 1.02 at the largest relative depth (Dr = 0.50).  

The results in Figures 7.14 and 7.15 also shows that the roughness conditions have a 

significant effect on the values of the velocity distribution coefficients (α and β). For the 

cases of rough floodplain, the values of α and β are larger than those for the cases of smooth 

floodplain. For example, the value of α equals to 1.125 for the case CR0.25 in which the 

floodplain is fully rough, while the value of a is less at 1.078 in the case CS0.25 which have 

the same value of Dr but smooth floodplain.  

Based on the results above, it can be concluded that the velocity distribution is described 

as more non-uniform in the cases of low flows and fully rough floodplain. 
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Figure 7.14 Variations of the kinetic energy coefficient (α) against Dr for different 

floodplain roughness conditions. 

 

 
Figure 7.15 Variations of the momentum correction coefficient against Dr for different 

floodplain roughness conditions. 

Using regression analysis, some equations were fitted to the experimental data and the 

energy and momentum coefficients were correlated to the flow relative depth for each 

roughness flow regimes. The equations obtained from the analysis of velocity distribution 

coefficients (α and β) take the general polynomial forms as follows: 
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 𝛼 =  𝐴𝛼𝐷𝑟
2  −  𝐵𝛼𝐷𝑟 + 𝐶𝛼 (7.8) 

 𝛽 =  𝐴𝛽𝐷𝑟
2  − 𝐶𝛽𝐷𝑟 + 𝐶𝛽 (7.9) 

The coefficients (𝐴𝛼, 𝐵𝛼 and 𝐶𝛼) in Eq. (7.8) and (𝐴𝛽, 𝐵𝛽 and 𝐶𝛽) in Eq. (7.9) depends on 

roughness conditions over the floodplain. Based on the results of the experiments 

conducted in the present work, the equations proposed for estimating α and β are 

summarized in table 7.2. These equations can be used to explain the effects of the relative 

depth and roughness factors on the non-uniformity of the velocity distributions in a 

compound channel flows. It should be noted that the empirical equations given in Table 7.2 

are applicable only over the range of hydraulic conditions mentioned in this work. If these 

equations are intended to use for different flow conditions, calibration process needs to be 

made to evaluate the coefficients in Eq. (7.8) and (7.9). 

Table 7.2 Proposed equations to determine the coefficients of α and β in compound 

channels. 

Roughness Conditions Equations for α and β 

Correlation 

coefficient 

(R2) 

Smooth floodplain 
𝛼 =  0.3543𝐷𝑟2  −  0.3428𝐷𝑟 +  1.1406 0.97 

𝛽 =  0.0932𝐷𝑟2  −  0.1006𝐷𝑟 +  1.0579 0.95 

Transitional floodplain 
𝛼 =  0.3754𝐷𝑟2  −  0.3508𝐷𝑟 +  1.1839 0.99 

𝛽 =  0.0807𝐷𝑟2  −  0.1094𝐷𝑟 +  1.082 0.97 

Rough floodplain 
𝛼 =  −0.0025𝐷𝑟2  −  0.0405𝐷𝑟 +  1.135 0.96 

𝛽 =  0.3272𝐷𝑟2  −  0.3003𝐷𝑟 +  1.1227 0.99 

7.7 Application of analytical model 

7.7.1 Calibration of model parameters 

7.7.1.1 Friction factor (f) 

To be able to apply the analytical model given by Eq. (5.28) effectively, the values of local 

friction factor f for each flow region needs to be known. The bed friction factor across the 

channel can be determined based on the roughness height Ks. Rameshwaran and Shiono 

(2007) reformulated the Colebrook–White equation and suggested the following resistance 

relationship for compound channels: 
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 𝑓 = [−2 log (
3.02𝜐

√128𝑔𝐻3𝑆𝑜
+

𝐾𝑠
12.3𝐻

)]

−2

 (7.10) 

Equation (7.10) was applied to Series 8 carried out on a rectangular compound channel in 

the Flood Channel Facility (FCF) operated at Hydraulics Research Ltd, Wallingford, 

England (Shiono and Knight, 1991). The calculated values of the local friction factor across 

the section for two relative depths of 0.25 and 0.30 are shown in Figure 7.16. From the 

figure, it is seen that the friction factors calculated agree reasonably well with the 

experimental data, indicating that the friction factor f can be estimated using Eq. (7.10). 

Therefore, in the present work, the values of f for main channel and floodplain regions were 

calculated by using Eq. (7.10) based on the values of Ks estimated experimentally for each 

test case.  

For the smooth flow cases, where the equivalent roughness height Ks did not measure 

directly, the values of Ks were calculated from the Manning coefficient n by the following 

relationship (Ackers, 1991): 

 𝐾𝑠 = (8.25√𝑔𝑛)
6
 (7.11) 

Table 7.3 presents the values of f which are calculated for all test cases to use in the 

analytical model. 

Table 7.3 Friction factor f for all test cases. 

Case fmc ffp Case fmc ffp Case fmc ffp 

CS0.25 0.0181 0.0296 CT0.25 0.0201 0.0505 CR0.25 0.0188 0.0946 

CS0.33 0.0175 0.0252 CT0.33 0.0194 0.0408 CR0.33 0.0182 0.0719 

CS0.40 0.0169 0.0227 CT0.40 0.0188 0.0353 CR0.40 0.0176 0.0588 

CS0.50 0.0160 0.0198 CT0.50 0.0178 0.0290 CR0.50 0.0167 0.0452 
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(a) Dr = 0.25 

 

(b) Dr = 0.30 

Figure 7.16 Measured and predicted friction factor f across a section based on the 

rectangular compound channel of FCF. 

7.7.1.2 Dimensionless eddy viscosity (λ) 

The values of the eddy viscosity coefficient used in the analytical model must be properly 

selected by considering the bed and lateral shear effects to give satisfactory flow 

predictions. Therefore, the depth-averaged eddy viscosities defined by Eq. (7.6) and shown 

in Figures 7.9 and 7.10 were used to determine the dimensionless eddy-viscosity 

coefficients, λ (= 𝜀𝑡/𝑢∗𝐻). The lateral distribution of λ across the section are shown in 

Figure 7.17 for all flow cases, with smooth, transitional and rough floodplains. In the figure, 

the horizontal solid lines represent the averaged values of λ per panel for flow cases with 

the smallest relative depth (i.e. Dr = 0.25), while the horizontal dashed lines are the average 

value for the largest relative depth cases, with Dr = 0.50. 

Eq. (7.10) 

Eq. (7.10) 
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From Figure 7.17, it can be observed that the values of λ in the main channel are 

approximately constant irrespective of the relative depth and roughness conditions. The 

average values of λ in the main channel are about 0.07 for all Dr, which corresponds closely 

to the standard depth-averaged value suggested by Shiono and Knight (1991) for 

experimental channels. The figure also shows that the values of λ are higher in the 

floodplain than in the main channel, with higher values being observed in the floodplain 

for smaller relative depths. This indicate the dependence of λ in the floodplain on the 

relative depth (Dr). It should be noted that the value of λ does not change significantly with 

change of floodplain roughness, indicating no clear dependence of λ on the roughness of 

the floodplain. 

As discussed above, λ values increase on the floodplain and the degree of increase is related 

to the value of the relative depth, Dr. Shiono and Knight (1991) proposed an expression 

that relates the ratio of the floodplain and main channel values (𝜆𝑓𝑝 𝜆𝑚𝑐⁄ ) to the Dr, as 

follows: 

 𝜆𝑓𝑝 𝜆𝑚𝑐⁄ = (2𝐷𝑟)−4 (7.12) 

This relationship is only valid within the range 0.1 < Dr < 0.25 and related to the geometry 

of the channel by which the equation 7.12 was derived. 
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(a) Smooth floodplain cases 

 
(b) Transitional floodplain cases 

 
(c) Rough floodplain cases 

Figure 7.17 Lateral distribution of dimensionless eddy viscosity coefficient (λ) for all 

test cases. 
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To check the equation (7.12) for the channel geometries tested in this study, which have Dr 

ranging from 0.25 to 0.50, the values of 𝜆𝑓𝑝 𝜆𝑚𝑐⁄  calculated from Eq. (7.12) and those 

obtained from Figure 7.17 were plotted together in Figure 7.18. From the figure, it is seen 

that the calibration equation (7.12) gives much greater values for 𝜆𝑓𝑝 𝜆𝑚𝑐⁄  ratios than those 

obtained directly from the depth-averaged eddy viscosity, particularly at low relative 

depths. Therefore, in the present study the following general relationship between the ratio 

(𝜆𝑓𝑝 𝜆𝑚𝑐⁄ ) and the relative depth (Dr) was suggested to estimate the value of 𝜆 in the 

floodplain: 

 𝜆𝑓𝑝 𝜆𝑚𝑐⁄ = 𝑎(2𝐷𝑟)𝑏 (7.13) 

where a and b are constants which are different with respect to the channel geometry. Figure 

7.18 shows that Eq. (7.13), with a = 0.90 and b = -2, gives 𝜆𝑓𝑝 𝜆𝑚𝑐⁄  ratios that are better 

fitted to the values calculated experimentally. Therefore, Eq. (7.13) with a = 0.90 and b = -

2 was used for calibrating the value of λ in the narrow floodplain considered in the study. 

 
Figure 7.18 Eddy viscosity ratio (λfp/λmc) as a function of Dr. 

7.7.1.3 Secondary currents coefficient 

Figure 7.13 has already shown that the distribution of the lateral momentum transfers due 

to the secondary flow [−(𝜌𝑈𝑉)𝑑] is approximately linear in all regions, except in the 

junction region between the main channel and the floodplain. This implies that the 

secondary flow term Γ [= 𝜕𝐻(𝜌𝑈𝑉)𝑑 𝜕𝑦⁄ ] may be considered as a constant for a constant-

depth H(y) domain, but it is different for the main channel and the floodplain. Since Γ has 

the same dimensions of ρgHSo, it may be assumed to be expressed as: 
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 Γ = 𝑘𝜌𝑔𝐻𝑆𝑜 (7.14) 

where k is defined as the secondary flow coefficient and is different in the main channel 

and the floodplain regions. 

Based on the lateral distributions of [−(𝜌𝑈𝑉)𝑑] shown in Figure 7.13, the secondary flow 

coefficients were calculated for each flow case as follows: 

 𝑘 =
𝜕𝐻(𝜌𝑈𝑉)𝑑/𝜕𝑦

𝜌𝑔𝐻𝑆𝑜
 (7.15) 

The calculated values of k for the cases of smooth, transitional and rough floodplain are 

shown in Figure 7.19. The results in the figure indicate that for a given roughness condition 

the secondary flow coefficients may be considered as constants in each flow region 

irrespective of the relative depth. However, it should be noted that secondary flow 

coefficient k in the floodplain is larger for the cases of rough floodplain. From Figure 7.19, 

the mean values of the secondary flow coefficients for the floodplain are about -0.21, -0.32, 

and -0.36 for smooth, transitional and rough floodplain cases respectively. For the main 

channel the values of k are nearly constant at 0.20 for all flow cases. This indicates that 

secondary flow coefficient k varies from panel to panel and depend on the bottom 

roughness. 

In the present study, the values of k presented in Figure 7.19 were used in the application 

of the analytical model to compound channels with narrow floodplain. However, the values 

of k are related to the channel geometry. For example, Shiono and Knight (1991) suggested 

the values of kmc = 0.15 and kfp = -0.25 for a channel with wide floodplain. In case of the 

lateral distribution of the secondary flow term [−(𝜌𝑈𝑉)𝑑] is not known, the value of k may 

be determined by tuning the model until it gives a good depth-averaged velocity distribution 

compared with the experimental data. 
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(a) Smooth floodplain cases 

 
(b) Transitional floodplain cases 

 
(c) Rough floodplain cases 

Figure 7.19 Variation of secondary flow coefficient k with relative depth for main 

channel and floodplain. 
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7.7.2 Comparisons with experimental data 

The analytical model described earlier has been applied to the test cases of smooth 

floodplain (CS0.25 – CS0.50), transitional floodplain (CT0.25 – CT0.50), and rough 

floodplain (CR0.25 – CR0.50). For all simulations, the proposed calibration expressions 

and values for the friction factor (f), the dimensionless eddy viscosity parameter (λ) and the 

secondary flow coefficients (k) are used. f was estimated by Eq. (7.10), λ was calibrated 

based on the equation (7.13) suggested in the present study, and k values for the main 

channel and floodplain were taken as the values calculated in Figure 7.19. 

The predicted results of the depth-averaged velocity for both the proposed calibration 

method and the traditional calibration method proposed by Shiono and Knight (1991) are 

compared with the experimental data in Figures 7.20, 7.21 and 7.22. The predicted profiles 

based on the present calibration values of λ and k are indicated by the solid lines and those 

based on the traditional method values are indicated by dashed lines.  

From Figures 7.20 to 7.22, it can be seen that the prediction of velocity for the floodplain 

is underestimated when the eddy viscosity (λ) and secondary flow (k) parameters are 

calibrated based on their traditional method given by Shiono and Knight (1991). However, 

the figures also indicate that the predicted results can be improved when the eddy viscosity 

and secondary flow coefficients are calibrated by the equations and values suggested in the 

present study. This is probably because the traditional expression (Eq. 7.12) for calibrating 

the effect of the eddy viscosity was suggested for shallow flows in wide channels. 

Therefore, the traditional calibration equation gives large values for λ in the floodplain 

region, leading to a reduction in the predicted velocity in this flow region. The values of λ 

calibrated by the proposed equation (Eq. 7.13) are smaller to reflect the reducing in the 

lateral shear in flow cases with higher depths and narrow floodplain, which are considered 

in the current study. Thus, the predicted results of the velocity (Ud) based on the present 

calibration method are in a closer agreement with the experimental data than those 

produced from the traditional calibration method.   

Figures 7.20 to 7.22 also indicate that the velocity for the main channel is reasonably well 

predicted when the proposed or the traditional calibration methods are used. This is because 

the same values of λ and approximately comparable values of k were used in both methods 

for the main channel panel.  
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From Figures 7.20 to 7.22, the predicted values of Ud using the traditional calibration 

method comes closer to the predicted values by the present calibration method in the high 

flow cases with large relative depths.  This is not surprising because both the proposed and 

the traditional calibration methods give almost equal values of λ as shown in Figure 7.18. 

In the rough floodplain cases (Figure 7.22), the differences between the predicated values 

of Ud based on the traditional calibration expressions and those based on the present 

calibration expressions are larger than that in the smooth floodplain cases (Figure 7.20). 

this is thought to be that the traditional values of the secondary flow coefficient k are 

assumed to be same in the smooth and rough cases without considering the effect of the 

roughness on the secondary flow. However, the calculations conducted in the present work 

for the secondary flows indicate that the secondary flow coefficient k in the floodplain 

increase as the roughness height increases as shown in Figure 7.19.  

In summary, the agreement between the analytical and experimental values of Ud improves 

considerably when the proposed calibration expression for λ and calibrated values for k are 

adopted.  
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CS0.25 CS0.33 

  
CS0.40 CS0.50 

Figure 7.20 Comparison between analytical and experimental lateral distributions of Ud 

for smooth floodplain cases (solid lines represent the present calibration method, while 

the dashed lines represent the traditional calibration method). 
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CT0.25 CT0.33 

  
CT0.40 CT0.50 

Figure 7.21 Comparison between analytical and experimental lateral distributions of Ud 

for transitional floodplain cases (solid lines represent the present calibration method, 

while the dashed lines represent the traditional calibration method). 
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CR0.25 CR0.33 

  
CR0.40 CR0.50 

Figure 7.22 Comparison between analytical and experimental lateral distributions of Ud 

for rough floodplain cases (solid lines represent the present calibration method, while 

the dashed lines represent the traditional calibration method). 
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Chapter 8                                                            

Conclusions and Recommendations 

8.1 Research summary 

This study focused largely on the velocity distribution of the primary flow in rectangular 

and compound open channels under different flow regimes in terms of roughness 

conditions. A series of laboratory experiments was conducted for open channel flows with 

three artificial bed surfaces to establish three different regimes, namely the hydraulically 

smooth, transitionally rough and fully rough. The detailed Computational Fluid Dynamics 

(CFD) results were also used as part of an investigation in the significance of assumptions 

about secondary flows and turbulent eddy viscosity in calculations of velocity distributions. 

In the experimental investigation, two sets of experiments were conducted on two channel 

configurations that have different hydraulic and roughness characteristics for collecting the 

experimental data. One of the channels had a rectangular section to simulate the inbank 

flow condition, while the other had a compound section constructed inside the flume to 

represent the overbank flow condition.  

In the numerical study, the computational fluid dynamic (CFD) models were applied to 

simulate the flow in the rectangular and compound channels that were used in the 

experiments. The 3D numerical CFD models were developed and run using CFX package 

(v.15). The numerical CFD model developed in this study was created based on the 

Reynolds stress turbulence models (RSM). The RSM model was preferred over the other 

turbulence models due to its accuracy in predicting the secondary currents. 

This chapter includes two parts. In the first part, the findings from all experimental and 

numerical works are presented. whereas, the second part discusses the possible 

improvements that can be suggested for both the numerical and experimental investigations 

conducted in this study.  

8.2 Research Findings and Contributions 

The combination of the results obtained experimentally and numerically for rectangular 

channel flows leads to the following findings with respect to the velocity distributions and 

their calculations: 
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1. Based on the experimental measurements for the velocity distributions, the effect of the 

roughness on the velocity distributions in outer region was found to be considerable. 

The experimental results have shown that increasing the roughness causes the velocity 

distribution coefficients (α and β) to increase, even though the flow depth (H) and the 

aspect ratio (Ar = B/H) are constant. Therefore, the non-uniformity of the velocity 

distribution in the cases of fully rough flow regimes (i.e Re* > 70) is more considerable 

than those in hydraulically smooth and transitionally rough flow cases (Re* < 70). 

2. On the other hand, for specific flow regime (i.e. constant Re*), the velocity distribution 

coefficients (α, β) was found to increase with increase in aspect ratio Ar. This is 

suggested to be related to the effects of secondary currents and turbulence conditions. 

3. The results obtained from the CFD confirmed that the Reynolds Stress Model (RSM) 

used as the turbulence model can predict the main features of secondary currents and 

turbulence. However, the predicted results were found to be influenced by the boundary 

conditions imposed on the flow domain, particularly on the free surface and the walls.   

4. Based on the experiments and the numerical simulations conducted in this study, it was 

found that the velocity distribution coefficients (α or β) can be related to both 

Roughness Reynolds number (Re*) and aspect ratio (Ar) through a logarithmic 

relationship, which its general form can be given as Eq. (6.9). This equation can be used 

to estimate the energy coefficient (α) and momentum coefficient (β) when 1D 

modelling is used for solving the engineering hydraulic problems. 

5. The effects of the secondary currents and the wake contribution were found to play an 

important role in the calculation of the velocity distribution by the analytical models 

that based on simplified Reynolds Averaged Navier–Stokes (RANS) equations. 

Therefore, the analytical model called the dip-modified log wake law (DMLW-law) 

was used in this study because it accounts for the effects of both the secondary currents 

and wake strength by two calibration parameters. These two parameters the dip 

correction factor (μ) and the wake strength parameter (Π).   

6. The expressions used for estimating the dip correction factor (μ) in smooth flows was 

found to be not accurate for the rough flows. Therefore, in this study, the conventional 

expression given by Eq. (6.11) was modified to be applicable for rough flow cases. 

7.  This study confirmed that the dependency of the wake strength parameter Π on the 

roughness conditions of the flow as suggested by Nezu and Rodi (1986). Based on this 

fact, an expression was proposed to use in estimating the wake strength parameter when 

applying the analytical model (DMLW-law). 
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8. The results indicated that the expressions suggested in the present study to calibrate the 

parameters (Π and μ) may provide efficiency to the application of the analytical model 

(DMLW-law) for rectangular channel flows under different flow regimes.    

On the basis of the investigations concerning velocity distributions in narrow compound 

channels, the following conclusions are drawn. 

1. Based on the velocity measurements obtained from the experiments conducted in this 

study, the velocity distribution coefficients (α and β) in the compound channel flows 

was found to be influenced by the geometry and roughness conditions. The results of 

the energy (α) and momentum (β) coefficients for the compound channel flows showed 

that the velocity distribution is described as more non-uniform in the cases of low flows 

and fully rough floodplain. 

2. The results showed that the energy (α) and momentum (β) coefficients vary with the 

variations of the flow relative depth (Dr) and the floodplain roughness. Using the 

regression analysis, it was found that the energy and momentum coefficients can be 

correlated to the flow relative depth for each roughness flow regimes by polynomial 

(quadratic) equations such as Eqs. (7.8) and (7.9).  

3. The numerical analysis of the secondary flows and depth-averaged eddy viscosity 

confirmed the significance of the secondary flow and momentum transfer between the 

main channel and floodplain on the depth-averaged velocity distribution.   

4. In this study the analytical SKM model developed by Shiono and Knight (1988, 1991) 

was applied for depth-averaged velocity calculations. The SKM model relies on three 

parameters, namely friction factor (f), dimensionless eddy viscosity (λ), and secondary 

flow term (Γ). It was found that the application of SKM model with the traditional 

expressions for the three parameters (f, λ, Γ) does not fit to the compound channel with 

narrow floodplains such as the channels used in the present study. Therefore, the detailed 

Computational Fluid Dynamics (CFD) results were used to modify the traditional 

expressions so that they can be used to calibrate the model parameters (f, λ, and Г) for 

narrow compound channels having different floodplain roughnesses. 

5. The agreement between the analytical and experimental distributions of the depth-

averaged velocity improved considerably when the modified calibration expression for 

λ and new computed values for Г were adopted. This means that the expressions for λ, 

and Г parameters proposed in the present study can give better prediction for the narrow 
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compound channel flow than when the traditional expressions of the model parameters 

are used. 

8.3 Study limitations and further research 

The main conclusions given in the previous section may lead to the better understanding of 

the primary velocity distribution and its calculation in the straight rectangular and 

compound channels. However, the following future research recommendations are 

suggested for the findings of this research to be improved: 

1. The expressions proposed in the present study for estimation of the velocity distribution 

coefficients can only be used for straight prismatic channels. Therefore, it is suggested 

that further investigations should be made to extend the applications of these expressions 

to natural channels and other laboratory channels with different sinuosity, geometry and 

surface conditions. 

2. The effects of the secondary currents and the momentum transfers were found to have 

an important influence on the velocity distributions, particularly in compound channels. 

Further detailed studies under different flow conditions should be carried out to 

investigate these effects on the calculations of the primary velocity distribution. 

3. For the analytical formulations used for velocity calculation in rectangular channels, 

further experimental study is required to generalise the expression proposed for the 

velocity-dip and wake effects in other single channels with different shapes.   

4. For the analytical model used for velocity calculation in compound channels, the 

expressions developed for calibrating the parameters of secondary flow and eddy 

viscosity were only applied to the flow cases considered in the present study. Therefore, 

further detailed studies under different flow conditions should be carried out generalise 

these expressions for different engineering applications 

5. Turbulence measurements were not carried out in the flow cases tested in the present 

work. Therefore, further study is needed to explore the effect of the turbulence on the 

velocity distribution more accurately. 
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Appendices 

Appendix A: Examples of velocity measurements and 

calculations 

This Appendix gives examples for collecting the data used to calculate flow velocity in 

rectangular and compound channel experiments. 

Table A.1 Measurements and calculations of local velocities in rectangular channel 

cases of the smallest flow depth (H = 60 mm).  

 
 

y z Δp u y z Δp u y z Δp u

[mm] [mm] [mm] [m/s] [mm] [mm] [mm] [m/s] [mm] [mm] [mm] [m/s]

10 0 0.0 0.000 10 0 0.0 0.000 10 0 0.0 0.000

10 10 3.1 0.246 10 10 1.5 0.171 10 10 0.8 0.128

10 20 3.6 0.264 10 20 1.8 0.188 10 20 1.1 0.145

10 30 3.8 0.272 10 30 2.0 0.196 10 30 1.2 0.154

10 40 3.8 0.275 10 40 2.0 0.198 10 40 1.2 0.156

10 50 3.7 0.269 10 50 1.9 0.193 10 50 1.1 0.150

10 60 3.5 0.262 10 60 1.8 0.186 10 60 1.0 0.143

30 0 0.0 0.000 30 0 0.0 0.000 30 0 0.0 0.000

30 10 3.8 0.273 30 10 1.9 0.191 30 10 1.0 0.142

30 20 4.4 0.294 30 20 2.3 0.212 30 20 1.3 0.163

30 30 4.7 0.305 30 30 2.5 0.222 30 30 1.5 0.174

30 40 4.9 0.310 30 40 2.6 0.228 30 40 1.6 0.180

30 50 4.8 0.308 30 50 2.6 0.226 30 50 1.6 0.178

30 60 4.7 0.305 30 60 2.5 0.223 30 60 1.6 0.175

50 0 0.0 0.000 50 0 0.0 0.000 50 0 0.0 0.000

50 10 4.1 0.282 50 10 1.9 0.195 50 10 1.0 0.143

50 20 4.7 0.305 50 20 2.4 0.217 50 20 1.4 0.165

50 30 5.1 0.317 50 30 2.7 0.229 50 30 1.6 0.178

50 40 5.4 0.324 50 40 2.8 0.236 50 40 1.8 0.185

50 50 5.4 0.326 50 50 2.9 0.238 50 50 1.8 0.187

50 60 5.4 0.326 50 60 2.9 0.238 50 60 1.8 0.188

70 0 0.0 0.000 70 0 0.0 0.000 70 0 0.0 0.000

70 10 3.9 0.276 70 10 1.8 0.188 70 10 1.0 0.138

70 20 4.5 0.298 70 20 2.2 0.210 70 20 1.3 0.160

70 30 5.0 0.312 70 30 2.5 0.223 70 30 1.5 0.173

70 40 5.2 0.320 70 40 2.7 0.231 70 40 1.7 0.182

70 50 5.3 0.324 70 50 2.8 0.235 70 50 1.8 0.186

70 60 5.4 0.326 70 60 2.9 0.237 70 60 1.8 0.188

90 0 0.0 0.000 90 0 0.0 0.000 90 0 0.0 0.000

90 10 3.8 0.274 90 10 1.8 0.187 90 10 0.9 0.136

90 20 4.5 0.297 90 20 2.2 0.209 90 20 1.3 0.158

90 30 4.9 0.311 90 30 2.5 0.222 90 30 1.5 0.172

90 40 5.2 0.320 90 40 2.7 0.231 90 40 1.7 0.181

90 50 5.4 0.325 90 50 2.8 0.236 90 50 1.8 0.187

90 60 5.5 0.329 90 60 2.9 0.240 90 60 1.9 0.191

110 0 0.0 0.000 110 0 0.0 0.000 110 0 0.0 0.000

110 10 3.9 0.277 110 10 1.8 0.188 110 10 1.0 0.137

110 20 4.6 0.301 110 20 2.2 0.210 110 20 1.3 0.159

110 30 5.1 0.315 110 30 2.6 0.224 110 30 1.5 0.173

110 40 5.4 0.325 110 40 2.8 0.233 110 40 1.7 0.184

110 50 5.6 0.331 110 50 2.9 0.240 110 50 1.8 0.190

110 60 5.8 0.336 110 60 3.1 0.245 110 60 2.0 0.196

130 0 0.0 0.000 130 0 0.0 0.000 130 0 0.0 0.000

130 10 3.9 0.276 130 10 1.8 0.187 130 10 0.9 0.136

130 20 4.6 0.300 130 20 2.2 0.209 130 20 1.3 0.158

130 30 5.0 0.315 130 30 2.5 0.223 130 30 1.5 0.173

130 40 5.4 0.325 130 40 2.8 0.233 130 40 1.7 0.183

130 50 5.6 0.332 130 50 2.9 0.240 130 50 1.9 0.191

130 60 5.8 0.338 130 60 3.1 0.246 130 60 2.0 0.197

150 0 0.0 0.000 150 0 0.0 0.000 150 0 0.0 0.000

150 10 3.9 0.278 150 10 1.8 0.187 150 10 0.9 0.136

150 20 4.6 0.302 150 20 2.2 0.210 150 20 1.3 0.159

150 30 5.1 0.317 150 30 2.6 0.224 150 30 1.5 0.174

150 40 5.5 0.328 150 40 2.8 0.234 150 40 1.7 0.185

150 50 5.7 0.335 150 50 3.0 0.242 150 50 1.9 0.193

150 60 5.9 0.342 150 60 3.1 0.248 150 60 2.0 0.199

Test Case: S6 H  = 60 mm Test Case: T6 H  = 60 mm Test Case: R6 H  = 60 mm
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Table A.2 Measurements and calculations of local velocities in rectangular channel 

cases of the largest flow depth (H = 20 mm).  

 
 

 

y z Δp u y z Δp u y z Δp u

[mm] [mm] [mm] [m/s] [mm] [mm] [mm] [m/s] [mm] [mm] [mm] [m/s]

10 0 0.0 0.000 10 0 0.0 0.000 10 0 0.0 0.000

10 10 5.9 0.340 10 10 3.5 0.261 10 10 2.3 0.211

10 20 6.7 0.363 10 20 4.1 0.285 10 20 2.9 0.237

10 30 7.2 0.377 10 30 4.6 0.300 10 30 3.3 0.253

10 40 7.6 0.387 10 40 4.9 0.311 10 40 3.6 0.264

10 50 7.9 0.394 10 50 5.2 0.318 10 50 3.8 0.273

10 60 8.1 0.399 10 60 5.4 0.325 10 60 4.0 0.280

10 70 8.3 0.404 10 70 5.5 0.329 10 70 4.1 0.285

10 80 8.4 0.407 10 80 5.7 0.333 10 80 4.3 0.289

10 90 8.6 0.410 10 90 5.8 0.336 10 90 4.4 0.293

10 100 8.6 0.412 10 100 5.8 0.338 10 100 4.4 0.295

10 110 8.7 0.413 10 110 5.9 0.340 10 110 4.5 0.297

10 120 8.7 0.413 10 120 5.9 0.340 10 120 4.5 0.297

10 130 8.7 0.413 10 130 5.9 0.340 10 130 4.5 0.297

10 140 8.7 0.412 10 140 5.8 0.339 10 140 4.5 0.296

10 150 8.6 0.410 10 150 5.8 0.336 10 150 4.4 0.293

10 160 8.4 0.407 10 160 5.6 0.332 10 160 4.2 0.289

10 170 8.2 0.402 10 170 5.4 0.326 10 170 4.0 0.282

10 180 7.9 0.393 10 180 5.1 0.316 10 180 3.7 0.270

10 190 7.2 0.376 10 190 4.5 0.296 10 190 3.1 0.248

10 200 6.6 0.359 10 200 3.9 0.276 10 200 2.6 0.225

30 0 0.0 0.000 30 0 0.0 0.000 30 0 0.0 0.000

30 10 7.3 0.377 30 10 4.3 0.290 30 10 2.7 0.232

30 20 8.3 0.403 30 20 5.2 0.318 30 20 3.5 0.261

30 30 8.9 0.419 30 30 5.7 0.335 30 30 4.0 0.278

30 40 9.4 0.429 30 40 6.1 0.347 30 40 4.3 0.291

30 50 9.8 0.437 30 50 6.4 0.356 30 50 4.6 0.301

30 60 10.0 0.444 30 60 6.7 0.363 30 60 4.8 0.308

30 70 10.3 0.449 30 70 6.9 0.368 30 70 5.0 0.314

30 80 10.5 0.453 30 80 7.1 0.373 30 80 5.2 0.319

30 90 10.6 0.456 30 90 7.2 0.376 30 90 5.3 0.323

30 100 10.7 0.458 30 100 7.3 0.379 30 100 5.4 0.326

30 110 10.8 0.460 30 110 7.4 0.381 30 110 5.5 0.328

30 120 10.8 0.461 30 120 7.4 0.382 30 120 5.5 0.329

30 130 10.8 0.461 30 130 7.4 0.382 30 130 5.5 0.329

30 140 10.8 0.461 30 140 7.4 0.381 30 140 5.5 0.328

30 150 10.7 0.459 30 150 7.3 0.379 30 150 5.4 0.326

30 160 10.6 0.456 30 160 7.2 0.375 30 160 5.3 0.321

30 170 10.4 0.451 30 170 6.9 0.369 30 170 5.0 0.314

30 180 10.0 0.442 30 180 6.6 0.359 30 180 4.7 0.303

30 190 9.2 0.426 30 190 5.9 0.339 30 190 4.0 0.279

30 200 8.5 0.409 30 200 5.2 0.319 30 200 3.3 0.256

50 0 0.0 0.000 50 0 0.0 0.000 50 0 0.0 0.000

50 10 7.9 0.394 50 10 4.8 0.305 50 10 3.1 0.247

50 20 9.0 0.421 50 20 5.7 0.335 50 20 3.9 0.278

50 30 9.7 0.437 50 30 6.3 0.352 50 30 4.5 0.297

50 40 10.3 0.449 50 40 6.8 0.365 50 40 4.9 0.311

50 50 10.7 0.457 50 50 7.2 0.375 50 50 5.3 0.321

50 60 11.0 0.464 50 60 7.4 0.382 50 60 5.5 0.330

50 70 11.2 0.470 50 70 7.7 0.388 50 70 5.8 0.337

50 80 11.5 0.474 50 80 7.9 0.393 50 80 6.0 0.342

50 90 11.6 0.478 50 90 8.1 0.397 50 90 6.1 0.347

50 100 11.8 0.480 50 100 8.2 0.401 50 100 6.3 0.350

50 110 11.9 0.482 50 110 8.3 0.403 50 110 6.3 0.353

50 120 11.9 0.484 50 120 8.3 0.404 50 120 6.4 0.354

50 130 12.0 0.484 50 130 8.4 0.405 50 130 6.4 0.355

50 140 11.9 0.484 50 140 8.3 0.405 50 140 6.4 0.355

50 150 11.9 0.483 50 150 8.3 0.403 50 150 6.4 0.353

50 160 11.8 0.480 50 160 8.2 0.400 50 160 6.2 0.350

50 170 11.5 0.476 50 170 8.0 0.395 50 170 6.0 0.344

50 180 11.2 0.468 50 180 7.6 0.386 50 180 5.7 0.333

50 190 10.4 0.453 50 190 6.9 0.367 50 190 5.0 0.312

50 200 9.7 0.437 50 200 6.2 0.349 50 200 4.3 0.290

H  = 200 mmTest Case: S20 H  = 200 mm Test Case: T20 H  = 200 mm Test Case: R20
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Table A.2 (continued) 

 
 

 

y z Δp u y z Δp u y z Δp u

[mm] [mm] [mm] [m/s] [mm] [mm] [mm] [m/s] [mm] [mm] [mm] [m/s]

70 0 0.0 0.000 70 0 0.0 0.000 70 0 0.0 0.000

70 10 8.4 0.405 70 10 5.1 0.315 70 10 3.3 0.255

70 20 9.6 0.434 70 20 6.1 0.345 70 20 4.2 0.287

70 30 10.3 0.450 70 30 6.7 0.364 70 30 4.8 0.307

70 40 10.9 0.462 70 40 7.2 0.377 70 40 5.3 0.322

70 50 11.3 0.471 70 50 7.6 0.387 70 50 5.6 0.333

70 60 11.7 0.479 70 60 8.0 0.395 70 60 6.0 0.342

70 70 12.0 0.484 70 70 8.2 0.402 70 70 6.2 0.349

70 80 12.2 0.489 70 80 8.5 0.407 70 80 6.4 0.355

70 90 12.4 0.493 70 90 8.6 0.412 70 90 6.6 0.360

70 100 12.5 0.496 70 100 8.8 0.415 70 100 6.8 0.364

70 110 12.7 0.499 70 110 8.9 0.418 70 110 6.9 0.367

70 120 12.8 0.500 70 120 9.0 0.420 70 120 7.0 0.370

70 130 12.8 0.501 70 130 9.0 0.421 70 130 7.0 0.371

70 140 12.8 0.501 70 140 9.1 0.421 70 140 7.0 0.371

70 150 12.8 0.500 70 150 9.0 0.421 70 150 7.0 0.370

70 160 12.7 0.498 70 160 8.9 0.418 70 160 6.9 0.367

70 170 12.5 0.495 70 170 8.7 0.414 70 170 6.7 0.362

70 180 12.1 0.488 70 180 8.4 0.406 70 180 6.4 0.353

70 190 11.4 0.473 70 190 7.7 0.389 70 190 5.7 0.334

70 200 10.7 0.459 70 200 7.1 0.373 70 200 5.1 0.315

90 0 0.0 0.000 90 0 0.0 0.000 90 0 0.0 0.000

90 10 8.6 0.411 90 10 5.2 0.321 90 10 3.5 0.262

90 20 9.9 0.440 90 20 6.3 0.352 90 20 4.4 0.295

90 30 10.6 0.457 90 30 7.0 0.371 90 30 5.1 0.315

90 40 11.2 0.469 90 40 7.5 0.385 90 40 5.6 0.330

90 50 11.7 0.479 90 50 8.0 0.395 90 50 6.0 0.342

90 60 12.0 0.486 90 60 8.3 0.404 90 60 6.3 0.352

90 70 12.4 0.492 90 70 8.6 0.411 90 70 6.6 0.359

90 80 12.6 0.497 90 80 8.8 0.417 90 80 6.8 0.366

90 90 12.8 0.501 90 90 9.0 0.421 90 90 7.0 0.371

90 100 13.0 0.505 90 100 9.2 0.425 90 100 7.2 0.376

90 110 13.1 0.507 90 110 9.4 0.428 90 110 7.3 0.380

90 120 13.2 0.509 90 120 9.5 0.431 90 120 7.4 0.382

90 130 13.3 0.511 90 130 9.5 0.432 90 130 7.5 0.384

90 140 13.3 0.511 90 140 9.6 0.433 90 140 7.6 0.385

90 150 13.3 0.511 90 150 9.5 0.433 90 150 7.5 0.385

90 160 13.2 0.510 90 160 9.5 0.431 90 160 7.5 0.383

90 170 13.1 0.506 90 170 9.3 0.428 90 170 7.3 0.379

90 180 12.8 0.500 90 180 9.0 0.421 90 180 7.0 0.371

90 190 12.1 0.488 90 190 8.4 0.406 90 190 6.4 0.354

90 200 11.5 0.475 90 200 7.8 0.392 90 200 5.8 0.337

110 0 0.0 0.000 110 0 0.0 0.000 110 0 0.0 0.000

110 10 8.9 0.417 110 10 5.4 0.325 110 10 3.5 0.263

110 20 10.2 0.447 110 20 6.5 0.356 110 20 4.5 0.296

110 30 11.0 0.464 110 30 7.2 0.376 110 30 5.1 0.317

110 40 11.6 0.477 110 40 7.7 0.390 110 40 5.6 0.333

110 50 12.1 0.487 110 50 8.2 0.401 110 50 6.1 0.345

110 60 12.5 0.494 110 60 8.5 0.409 110 60 6.4 0.354

110 70 12.8 0.501 110 70 8.8 0.417 110 70 6.7 0.362

110 80 13.0 0.506 110 80 9.1 0.423 110 80 7.0 0.369

110 90 13.3 0.510 110 90 9.3 0.428 110 90 7.2 0.375

110 100 13.5 0.514 110 100 9.5 0.432 110 100 7.4 0.380

110 110 13.6 0.517 110 110 9.7 0.436 110 110 7.5 0.384

110 120 13.7 0.519 110 120 9.8 0.438 110 120 7.6 0.387

110 130 13.8 0.521 110 130 9.9 0.440 110 130 7.7 0.389

110 140 13.9 0.522 110 140 9.9 0.441 110 140 7.8 0.391

110 150 13.9 0.522 110 150 9.9 0.442 110 150 7.8 0.391

110 160 13.8 0.521 110 160 9.9 0.441 110 160 7.7 0.390

110 170 13.7 0.518 110 170 9.8 0.438 110 170 7.6 0.387

110 180 13.4 0.513 110 180 9.5 0.432 110 180 7.4 0.380

110 190 12.9 0.502 110 190 9.0 0.419 110 190 6.8 0.366

110 200 12.3 0.491 110 200 8.4 0.407 110 200 6.3 0.351

H  = 200 mmTest Case: S20 H  = 200 mm Test Case: T20 H  = 200 mm Test Case: R20
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Table A.2 (continued) 

 
 

 

 

 

 

 

 

 

 

 

y z Δp u y z Δp u y z Δp u

[mm] [mm] [mm] [m/s] [mm] [mm] [mm] [m/s] [mm] [mm] [mm] [m/s]

130 0 0.0 0.000 130 0 0.0 0.000 130 0 0.0 0.000

130 10 8.9 0.417 130 10 5.4 0.325 130 10 3.6 0.264

130 20 10.2 0.446 130 20 6.5 0.357 130 20 4.5 0.298

130 30 11.0 0.464 130 30 7.2 0.376 130 30 5.2 0.319

130 40 11.6 0.477 130 40 7.8 0.391 130 40 5.7 0.334

130 50 12.1 0.487 130 50 8.2 0.402 130 50 6.1 0.346

130 60 12.5 0.495 130 60 8.6 0.411 130 60 6.5 0.356

130 70 12.8 0.501 130 70 8.9 0.418 130 70 6.8 0.365

130 80 13.1 0.507 130 80 9.2 0.424 130 80 7.0 0.372

130 90 13.3 0.511 130 90 9.4 0.430 130 90 7.3 0.378

130 100 13.5 0.515 130 100 9.6 0.434 130 100 7.5 0.383

130 110 13.7 0.518 130 110 9.8 0.438 130 110 7.6 0.387

130 120 13.8 0.521 130 120 9.9 0.441 130 120 7.8 0.391

130 130 13.9 0.523 130 130 10.0 0.443 130 130 7.9 0.393

130 140 14.0 0.524 130 140 10.1 0.445 130 140 8.0 0.395

130 150 14.0 0.524 130 150 10.1 0.445 130 150 8.0 0.396

130 160 14.0 0.524 130 160 10.1 0.445 130 160 8.0 0.396

130 170 13.9 0.522 130 170 10.0 0.443 130 170 7.9 0.393

130 180 13.7 0.518 130 180 9.8 0.438 130 180 7.7 0.388

130 190 13.2 0.508 130 190 9.3 0.427 130 190 7.2 0.375

130 200 12.7 0.498 130 200 8.8 0.416 130 200 6.7 0.362

150 0 0.0 0.000 150 0 0.0 0.000 150 0 0.0 0.000

150 10 8.8 0.415 150 10 5.3 0.323 150 10 3.5 0.263

150 20 10.1 0.444 150 20 6.4 0.355 150 20 4.5 0.296

150 30 10.9 0.462 150 30 7.1 0.375 150 30 5.1 0.318

150 40 11.5 0.475 150 40 7.7 0.389 150 40 5.7 0.333

150 50 12.0 0.484 150 50 8.1 0.400 150 50 6.1 0.345

150 60 12.4 0.492 150 60 8.5 0.409 150 60 6.4 0.355

150 70 12.7 0.499 150 70 8.8 0.417 150 70 6.8 0.364

150 80 13.0 0.505 150 80 9.1 0.423 150 80 7.0 0.371

150 90 13.2 0.509 150 90 9.4 0.428 150 90 7.3 0.377

150 100 13.4 0.513 150 100 9.6 0.433 150 100 7.5 0.383

150 110 13.6 0.517 150 110 9.7 0.437 150 110 7.6 0.387

150 120 13.7 0.519 150 120 9.9 0.440 150 120 7.8 0.391

150 130 13.9 0.522 150 130 10.0 0.443 150 130 7.9 0.394

150 140 13.9 0.523 150 140 10.1 0.445 150 140 8.0 0.396

150 150 14.0 0.524 150 150 10.1 0.446 150 150 8.0 0.397

150 160 14.0 0.524 150 160 10.1 0.446 150 160 8.0 0.397

150 170 13.9 0.522 150 170 10.1 0.444 150 170 8.0 0.396

150 180 13.7 0.519 150 180 9.9 0.440 150 180 7.8 0.391

150 190 13.3 0.511 150 190 9.5 0.431 150 190 7.4 0.380

150 200 12.9 0.502 150 200 9.0 0.421 150 200 7.0 0.369

H  = 200 mmTest Case: S20 H  = 200 mm Test Case: T20 H  = 200 mm Test Case: R20
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Table A.3 Measurements and calculations of local velocities in the compound 

channel case CS0.40 that has a smooth floodplain.  

 
 

y z Δp u y z Δp u

[mm] [mm] [mm] [m/s] [mm] [mm] [mm] [m/s]

10 10 4.6 0.301 110 10 6.1 0.345

10 20 5.2 0.318 110 20 7.2 0.376

10 30 5.7 0.335 110 30 7.3 0.378

10 40 6.2 0.349 110 40 7.8 0.390

10 50 6.5 0.358 110 50 7.8 0.392

10 60 6.6 0.359 110 60 8.0 0.396

10 70 6.7 0.362 110 70 8.5 0.409

10 80 6.3 0.353 110 80 8.5 0.408

10 90 5.5 0.329 110 90 9.0 0.420

10 95 5.7 0.333 110 95 8.9 0.419

30 10 5.3 0.324 130 10 5.8 0.338

30 20 6.5 0.358 130 20 6.9 0.368

30 30 7.0 0.371 130 30 7.0 0.370

30 40 6.9 0.368 130 40 7.4 0.382

30 50 7.5 0.384 130 50 7.5 0.384

30 60 8.0 0.396 130 60 7.6 0.387

30 70 7.8 0.392 130 70 8.2 0.400

30 80 8.0 0.397 130 80 8.1 0.399

30 90 7.8 0.391 130 90 8.6 0.412

30 95 7.5 0.384 130 95 8.6 0.410

50 10 5.8 0.337 150 10 5.7 0.333

50 20 7.1 0.372 150 20 6.7 0.362

50 30 7.6 0.387 150 30 7.2 0.377

50 40 7.5 0.383 150 40 7.4 0.380

50 50 8.2 0.400 150 50 7.7 0.388

50 60 8.7 0.412 150 60 7.7 0.389

50 70 8.5 0.408 150 70 7.6 0.385

50 80 8.8 0.414 150 80 7.8 0.392

50 90 8.5 0.407 150 90 8.2 0.402

50 95 8.2 0.400 150 95 8.4 0.405

70 10 5.9 0.340 170 10 5.7 0.335

70 20 6.9 0.368 170 20 6.4 0.354

70 30 7.3 0.379 170 30 6.7 0.363

70 40 8.1 0.398 170 40 6.7 0.363

70 50 8.2 0.402 170 50 6.8 0.365

70 60 8.3 0.404 170 60 6.6 0.361

70 70 8.4 0.407 170 70 6.9 0.368

70 80 8.7 0.412 170 80 7.3 0.378

70 90 8.7 0.412 170 90 8.2 0.402

70 95 8.9 0.417 170 95 8.4 0.405

90 10 5.8 0.337 190 10 5.2 0.318

90 20 6.8 0.365 190 20 5.5 0.328

90 30 7.2 0.376 190 30 6.0 0.343

90 40 7.9 0.395 190 40 6.0 0.343

90 50 8.1 0.398 190 50 5.5 0.329

90 60 8.2 0.400 190 60 5.4 0.325

90 70 8.3 0.403 190 70 6.2 0.348

90 80 8.5 0.408 190 80 7.0 0.371

90 90 8.5 0.408 190 90 8.3 0.404

90 95 8.7 0.413 190 95 8.1 0.399

y z Δp u y z Δp u

[mm] [mm] [mm] [m/s] [mm] [mm] [mm] [m/s]

210 10 6.8 0.365 270 10 5.2 0.318

210 20 7.9 0.394 270 20 6.4 0.354

210 30 8.7 0.413 270 30 6.2 0.348

210 35 9.1 0.422 270 35 6.4 0.354

230 10 6.8 0.364 290 10 5.0 0.313

230 20 8.2 0.402 290 20 5.7 0.335

230 30 8.4 0.406 290 30 5.4 0.327

230 35 8.6 0.411 290 35 5.4 0.327

250 10 6.0 0.344 300 10 0.0 0.000

250 20 7.0 0.370 300 20 0.0 0.000

250 30 7.4 0.380 300 30 0.0 0.000

250 35 7.3 0.379 300 35 0.0 0.000

Floodplain (smooth)

Test Case: CS0.4 Dr  = 0.40

Main channel (smooth)
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Table A.4 Measurements and calculations of local velocities in the compound 

channel case CR0.40 that has a rough floodplain. 

 
 

y z Δp u y z Δp u

[mm] [mm] [mm] [m/s] [mm] [mm] [mm] [m/s]

10 10 3.8 0.271 110 10 4.9 0.312

10 20 4.2 0.287 110 20 5.7 0.336

10 30 4.4 0.295 110 30 6.3 0.350

10 40 4.9 0.310 110 40 6.5 0.358

10 50 5.6 0.331 110 50 6.8 0.364

10 60 5.5 0.327 110 60 6.8 0.367

10 70 5.7 0.333 110 70 7.1 0.373

10 80 5.9 0.341 110 80 7.0 0.371

10 90 5.6 0.332 110 90 7.0 0.370

10 100 5.7 0.335 110 100 7.1 0.372

10 110 5.3 0.323 110 110 7.1 0.372

10 120 5.3 0.323 110 120 7.1 0.372

30 10 4.4 0.293 130 10 4.8 0.307

30 20 4.9 0.310 130 20 5.5 0.328

30 30 5.2 0.318 130 30 6.2 0.348

30 40 5.7 0.336 130 40 6.4 0.355

30 50 6.2 0.349 130 50 6.5 0.358

30 60 6.2 0.350 130 60 6.8 0.364

30 70 6.4 0.354 130 70 6.7 0.363

30 80 6.4 0.355 130 80 6.8 0.364

30 90 6.4 0.355 130 90 6.5 0.357

30 100 6.4 0.353 130 100 6.8 0.366

30 110 6.2 0.348 130 110 6.8 0.365

30 120 6.2 0.348 130 120 6.8 0.365

50 10 5.0 0.313 150 10 4.7 0.303

50 20 5.6 0.331 150 20 5.3 0.322

50 30 5.9 0.340 150 30 5.7 0.334

50 40 6.6 0.360 150 40 5.8 0.337

50 50 6.8 0.366 150 50 5.8 0.339

50 60 7.0 0.371 150 60 5.8 0.337

50 70 7.1 0.374 150 70 6.0 0.343

50 80 6.9 0.368 150 80 6.1 0.347

50 90 7.2 0.377 150 90 6.4 0.355

50 100 7.0 0.370 150 100 6.6 0.360

50 110 7.0 0.371 150 110 6.9 0.368

50 120 7.0 0.371 150 120 6.9 0.368

70 10 5.0 0.315 170 10 4.4 0.293

70 20 5.8 0.337 170 20 4.8 0.306

70 30 6.1 0.346 170 30 5.2 0.319

70 40 6.6 0.361 170 40 5.1 0.315

70 50 6.9 0.369 170 50 4.9 0.311

70 60 7.0 0.370 170 60 4.6 0.301

70 70 7.3 0.378 170 70 4.3 0.291

70 80 7.1 0.373 170 80 5.3 0.323

70 90 7.3 0.379 170 90 6.3 0.351

70 100 7.1 0.374 170 100 6.4 0.354

70 110 7.2 0.375 170 110 6.4 0.356

70 120 7.2 0.375 170 120 6.4 0.356

90 10 5.1 0.316 190 10 3.7 0.269

90 20 6.0 0.343 190 20 3.9 0.276

90 30 6.3 0.353 190 30 4.2 0.287

90 40 6.7 0.362 190 40 4.1 0.282

90 50 7.0 0.371 190 50 3.7 0.270

90 60 6.9 0.369 190 60 3.2 0.252

90 70 7.5 0.383 190 70 2.9 0.238

90 80 7.2 0.377 190 80 3.9 0.277

90 90 7.4 0.382 190 90 4.9 0.311

90 100 7.3 0.378 190 100 5.8 0.339

90 110 7.3 0.379 190 110 6.4 0.354

90 120 7.3 0.379 190 120 6.4 0.354

y z Δp u y z Δp u

[mm] [mm] [mm] [m/s] [mm] [mm] [mm] [m/s]

210 10 2.8 0.235 270 10 2.3 0.212

210 20 5.0 0.313 270 20 3.1 0.245

210 30 5.2 0.319 270 30 3.5 0.262

210 40 5.7 0.334 270 40 3.6 0.266

210 50 5.7 0.334 270 48 3.6 0.266

230 10 2.5 0.223 290 10 2.3 0.213

230 20 4.1 0.282 290 20 3.0 0.242

230 30 4.6 0.300 290 30 3.0 0.244

230 40 4.9 0.312 290 40 3.0 0.242

230 48 4.9 0.312 290 50 3.0 0.242

250 10 2.3 0.211 300 10 0.0 0.000

250 20 3.1 0.247 300 20 0.0 0.000

250 30 4.0 0.280 300 30 0.0 0.000

250 40 4.2 0.287 300 40 0.0 0.000

250 50 4.2 0.287 300 50 0.0 0.000

Floodplain (rough)

Test Case: CR0.4 Dr  = 0.40

Main channel (smooth)
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Table A.5 The Absolute Relative Differences (ARD) between the measured and integrated 

flow rates for all test cases. 

Case # 
Channel 

Geometry 

Roughness 

Conditions 

Q 

(m3/s) 

Q  

(m3/s) 

ARD  

(%) 

  
 

EMFM 
Integrated 

(Eq. 3.5) 
[(Q-Qm) /Q]x100 

S6 Rectangular Smooth 5.22 5.13 1.8 

S10 Rectangular Smooth 11.39 11.26 1.1 

S15 Rectangular Smooth 21.17 20.61 2.6 

S20 Rectangular Smooth 32.86 31.89 2.9 

T6 Rectangular Transitional 4.13 4.02 2.6 

T10 Rectangular Transitional 9.33 9.06 2.8 

T15 Rectangular Transitional 17.42 17.00 2.4 

T20 Rectangular Transitional 26.14 25.38 2.9 

R6 Rectangular Rough 3.12 3.04 2.8 

R10 Rectangular Rough 7.36 7.17 2.5 

R15 Rectangular Rough 14.92 14.52 2.7 

R20 Rectangular Rough 24.59 23.90 2.8 

CS0.25 Compound Smooth 6.09 6.16 1.1 

CS0.33 Compound Smooth 7.49 7.60 1.5 

CS0.40 Compound Smooth 9.01 9.18 1.9 

CS0.50 Compound Smooth 12.40 12.67 2.1 

CT0.25 Compound Transitional 5.28 5.37 1.7 

CT0.33 Compound Transitional 6.57 6.76 2.9 

CT0.40 Compound Transitional 7.99 8.13 1.7 

CT0.50 Compound Transitional 11.21 11.45 2.1 

CR0.25 Compound Rough 6.60 6.75 2.2 

CR0.33 Compound Rough 8.11 8.26 1.8 

CR0.40 Compound Rough 9.90 10.10 2.0 

CR0.50 Compound Rough 13.79 14.14 2.5 
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Appendix B: Examples of CFX input file 
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Appendix C: MATLAB Code for the analytical solution of the 

SKM 

function Ud = SKM(B,b,H,D,S,YU,f1,La1,Ga1,f2,La2,Ga2) 

% Program to compute depth-averaged velocity profile from 

%the SKM analytical solution for asymmetric compound channels 

% B,b,H,D,S,YU are the data related to the experimental test 

case 

% f is the friction factor 

% La is the dimension less eddy viscosity 

% Ga is the secondary flow term 

%% Arranging SKM inputs 

h(1:2)=H; % flow depth in each panel 

S0(1:2)=S; % bed slope of each panel 

f=[f1 f2]; 

La=[La1 La2]; 

Ga=[Ga1 Ga2]; 

%% Calculating SKM variables (Beta,k,Nu,Phi) 

Beta=Ga./(9.81*1000.*h.*S0); 

k=8*9.81.*S0.*h./f.*(1-Beta); 

Nu=((2./La).^0.5).*((f/8).^0.25).*(1./h); 

Phi=0.5*1000.*La.*h.^2.*(f./8).^0.5; 

%% Calculating the variable matrix (X) 

X=ones(4,4); 

X(1,1:2)=1; 

X(1,3:4)=0; 

X(2,1:2)=0; 

X(2,3)=exp(Nu(1,2)*B); 

X(2,4)=exp(-1*Nu(1,2)*B); 

X(3,1)=exp(Nu(1,1)*b); 

X(3,2)=exp(-1*Nu(1,1)*b); 

X(3,3)=-exp(Nu(1,2)*b); 

X(3,4)=-exp(-1*Nu(1,2)*b); 

X(4,1)=(Phi(1,1)*Nu(1,1)+1000*f1*D/8)*exp(Nu(1,1)*b); 

X(4,2)=-1*(Phi(1,1)*Nu(1,1)-1000*f1*D/8)*exp(-1*Nu(1,1)*b); 

X(4,3)=-1*Phi(1,2)*Nu(1,2)*exp(Nu(1,2)*b); 
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X(4,4)=Phi(1,2)*Nu(1,2)*exp(-1*Nu(1,2)*b); 

%% Introducing the coefficient matrix (C) 

C(1,1)=-k(1,1); 

C(2,1)=-k(1,2); 

C(3,1)=k(1,2)-k(1,1); 

C(4,1)=-1000*f1*D*k(1,1)/8; 

%% Calculating the A coefficient matrix 

A=X\C; 

%% Calculating depth-averaged velocity (Ud) 

y=YU; 

for i=1:length(YU); 

    if y(1,i)< b 

Ud(1,i)=real((A(1,1)*exp(Nu(1,1)*y(1,i))+A(2,1)*exp(-

1*Nu(1,1)*... 

y(1,i))+k(1,1))^0.5); 

    else 

Ud(1,i)=real((A(3,1)*exp(Nu(1,2)*y(1,i))+A(4,1)*exp(-

1*Nu(1,2)*... 

y(1,i))+k(1,2))^0.5); 

    end 

end 

plot(y,Ud) 

end 


