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Abstract: A mathematical model is presented for laminar, steady natural convection mass transfer in boundary layer 
flow from a rotating porous vertical cone in anisotropic high permeability porous media. The transformed boundary 
value problem is solved subject to prescribed surface and free stream boundary conditions with a MAPLE 17 
shooting method. Validation with a Chebyshev spectral collocation method is included. The influence of tangential 
Darcy number, swirl Darcy number, Schmidt number, rotational parameter, momentum (velocity slip), mass slip and 
wall mass flux (transpiration) on the velocity and concentration distributions is evaluated in detail. The computations 
show that tangential and swirl velocities are enhanced generally with increasing permeability functions (i.e. Darcy 
parameters). Increasing spin velocity of the cone accelerates the tangential flow whereas it retards the swirl flow. An 
elevation in wall suction depresses both tangential and swirl flow. However, increasing injection generates 
acceleration in the tangential and swirl flow. With greater momentum (hydrodynamic) slip, both tangential and swirl 
flows are accelerated. Concentration values and Sherwood number function values are also enhanced with 
momentum slip, although this is only achieved for the case of wall injection. A substantial suppression in tangential 
velocity is induced with higher mass (solutal) slip effect for any value of injection parameter. Concentration is also 
depressed at the wall (cone surface) with an increase in mass slip parameter, irrespective of whether injection or 
suction is present. The model is relevant to spin coating operations in filtration media (in which swirling boundary 
layers can be controlled with porous media to deposit thin films on industrial components), flow control of mixing 
devices in distillation processes and also chromatographical analysis systems.  
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1. Introduction 

 
    Mass transfer (species diffusion) with or without buoyancy forces is fundamental to many 

diverse procedures in modern chemical, environmental and biomedical engineering. It arises 

in catalytic packed-bed reactors [1], geological contaminant dispersion [2], oil spill penetration 

into stratified soils [3] and oxygen diffusion in neurological tissue [4]. The established 

methodology for simulating mass transfer is the Fickian law of mass diffusion.  To simulate 

transport in porous media, a variety of methods have been employed to solve the Fickian 

diffusion equation in permeable systems ranging from drag-force formulations to percolation 
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theory, in order to recreate the permeability (hydraulic conductivity) properties of such media. 

Ulson De Souza and Whitaker [5] used the volume-averaging method to simulate mass 

transfer in a packed-bed reactor, examining in detail the dispersion in the main fluid phase, 

internal diffusion of the reactant in the pores of the catalyst and surface reaction within the 

catalyst. Helmer et al. [6] studied unsteady water diffusion in tumors (diseased tissue) with a 

tortuous porous medium model. Cotta et al. [7] applied integral transforms to study a range of 

convective boundary layer mass transfer problems in permeable systems. Piquemal et al. [8] 

simulated species mobility in porous media with a dispersion-convection equation for the 

mobile fluid and a diffusion equation for the stagnant fluid, considering a cylindrical tube with 

stagnant pockets in its wall and also studied a stratified permeable medium. Vafai and Tien [9] 

conducted experiments and numerical studies of convective buoyancy-driven mass transfer in 

porous media with Brinkman friction and Forchheimer inertial drag effects, evaluating the time 

and space-averaged mass flux of a species in the porous medium. In these studies, the 

permeability of the material was considered to be isotropic i.e. permeability was assumed to 

be the same in any direction. However, in certain industrial filtration materials and foams and 

also invariably in geological systems, porous media are anisotropic. The variation in 

permeability in different directions can have a dramatic effect on transport phenomena and 

can influence, for example, the fate of contaminants, the rates of mass transfer on embedded 

body surfaces etc. Several articles have addressed anisotropic porous media hydrodynamics. 

Marcus [10] was among the first researchers to investigate anisotropic flows in porous media. 

He defined a directional permeability and conducted laboratory tests on carefully designed 

samples. Wang et al. [11] considered a variety of different structural models to analyze non-

Darcy flow in anisotropic porous media surrounding the near-wellbore region of high-capacity 

gas and condensate reservoirs. They showed that as pore-scale anisotropic parameter is 

increased, there is a reduction in permeability components. Adams et al. [12] used a finite 

element method to simulate radial encroachment of a viscous liquid into a homogeneous, 

anisotropic porous medium, deriving effective permeabilities as functions of the principal 

permeabilities. Other studies [13-14] examined the topology of flow in three-dimensional non-

stationary anisotropic heterogeneous porous media with a Monte Carlo simulator. Nakayama 

and Kuwahara [15] determined the permeability tensor for isothermal anisotropic porous 

media. 

 
The flow from a rotating curved body is also of great interest in chemical engineering 

operations. The Coriolis forces which are generated by centrifugal fields encourage fluid to be 

drawn along the curved surface and significantly alter momentum diffusion rates. If species 

diffusion also occurs, mass transfer rates at the curved surface are also generally enhanced. 

Although many investigations have been reported on heat transfer from spinning bodies, 

relatively few investigations have considered mass transfer. Salzberg and Kezios [16] 

presented an early experimental study of mass-transfer by sublimation from the surface of a 

rotating naphthalene cone in an airstream. Newman [17] employed laminar boundary layer 

theory to determine the limiting rates of mass transfer to a rotating sphere at high Schmidt 
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numbers. Smith and Colton [18] developed approximate solutions for mass transfer from a 

disk to a rotating fluid, observing that mass transfer is dominated by the outer-most zone of 

the disk owing to high transfer rate associated with the leading edge of the boundary layer, 

and furthermore that the species concentration field close to the axis of rotation extends to 

significant axial distances as a long slender plume. Ellison and Cornet [19] determined 

experimentally the mass transfer rates for oxygen diffusion to a disk rotating in aqueous 

sodium chloride solution and calculated average Sherwood numbers over an extensive range 

of Reynolds and Schmidt numbers. Laminar-turbulent transition in mass transfer from a 

rotating disk was investigated by Mohr and Newman [20]. Toren et al. [21] studied 

centrifugally-driven flow (due to a density gradient between the surface of an infinite disk and 

the ambient fluid) in rotating Von Karman mass transfer at high Schmidt number. They 

identified a linear Ekman layer driven by a buoyancy sublayer. Rashaida et al. [22] evaluated 

the laminar boundary layer mass transfer from a rotating disk to a Bingham non-Newtonian 

fluid, deriving a Sherwood number as a function of Reynolds number and dimensionless yield 

stress (Bingham number), and observing that higher Bingham number depresses wall mass 

transfer rates. 

 
In recent years slip flows have also attracted the attention of engineers.  These flows arise 

when the Navier no-slip boundary condition, a common approximation in viscous fluid 

dynamics, is not applicable. Slip may occur in the velocity field, thermal field (“thermal jump”) 

or mass distribution (species concentration distribution), at a boundary. It arises in certain 

polymeric manufacturing processes as well as in rarefied gas dynamics in high speed flight. 

Theoretical models often use the Navier condition for momentum slip. Taamneh and Omari 

[23] examined computationally the slip-flow and heat transfer in non-Newtonian inelastic fluids 

in a porous medium micro-channel, using a Knudsen number to evaluate slip effects and 

showing that with greater Knudsen numbers, the wall shear stress is enhanced i.e. the flow is 

accelerated. Miguel [24] established several discrete regimes for slip flow in porous media 

including free molecular (ballistic) flows at very high Knudsen numbers. He also observed that 

for a slip-flow regime, the dimensionless permeability of the porous medium is dependent on 

the structure of the medium and exhibits a power-law increase with the Knudsen number for 

high porosities. Other slip flow transport phenomena have been studied by Khan et al. [25] for 

nanofluid heat and mass transfer, Bég et al. [26] for magnetohydrodynamic radiative 

convective flow, Wang [27] for Newtonian flow from an extending wall with partial slip and 

Prasad et al. [28] for Casson non-Newtonian boundary layer heat transfer from a cylinder. The 

mass (solutal) slip phenomenon (in addition to velocity slip) was recently addressed by 

Bhattacharyya [29] for reactive mass transfer in a porous medium, in which it was shown that 

mass slip decreases mass transfer rate from the wall and, in addition, also depresses the 

concentration magnitude. 

  
In the present study, we examine, for the first time, momentum and mass slip in the rotating 

mass transfer (species diffusion) and boundary layer flow from a spinning cone in an 
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anisotropic porous medium. An axisymmetric laminar steady-state formulation with the 

generalized anisotropic Darcy law is used. The governing transport equations are rendered 

dimensionless and solved subject to modified boundary conditions with Maple17 software. 

The solutions are found to correlate well with Chebyshev spectral collocation computations 

for the general model and with earlier non-porous, no-slip solutions from the literature. 

 

2. Mathematical Model 
 

    The geometry of the problem is depicted in Figure 1, with respect to an (x, y,) coordinate 

system. Steady-state, laminar, incompressible, axisymmetric, natural convective mass 

transfer in boundary layer flow from a rotating porous cone embedded in an anisotropic 

saturated high-permeability medium is examined. The diffusing species is non-reactive. 

Rotation is sufficiently weak to neglect compressibility effects. An anisotropic Darcy model is 

employed to simulate different permeabilities in the medium, which is homogenous and fully-

saturated. Large permeabilities are considered which simulate foam-like materials. 

Forchheimer drag (inertial) and Brinkman boundary vorticity effects are ignored. The X 

direction is orientated along the cone slant surface, the Y direction normal to this and  

designates the angle in a plane perpendicular to the vertical symmetry axis:  

 

 
Fig. 1: Physical model for convective mass transfer from a rotating cone in an anisotropic 

porous medium 
 

The conservation equations for the problem may be presented by amalgamating the models in  

Bég et al. [26] (for heat and mass diffusion), Wang [27] (for anisotropic slip effects), Prasad et 

al. [28] (for anisotropic porous media drag forces and thermal slip) and Ece [31] (for the 

convective mass transfer analogy and rotational body forces in spinning flow) and take the 

form: 

 
Mass: 

( ) ( )
0

RU RV

X Y

 
+ =

 
                                                                        (1)  
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X-Momentum:  

( )
2

2

2

/
( )

X

U U R U
U V W U g cos C C

X Y R KY


   

  
+ − = − + −

  
                                                  (2) 

-Momentum: 
2

2

/
( )W W R W

U V UW W
X Y R KY 




  
+ + = −

  
                                                                               (3) 

Species (Concentration):  
2

2

C C C
U V D

X Y Y

  
+ =

  
                                                         (4) 

 

The Boussinesq approximation has been used so that buoyancy effects only appear in the X-

direction momentum equation (2), which is coupled to the species diffusion equation, 

constituting a free convective mass transfer regime. Since the medium is anisotropic, two 

discrete permeabilities are featured in the X and  direction momentum equations. These 

permeabilities appear as denominators in the Darcian bulk drag force terms in eqns. (2) and 

(3). A complex set of boundary conditions are prescribed at the surface and far from the cone, 

following Fang and Jing [30]: 

( )
( )( )1 1 1, , , / at 0,

/ (1 )
w

w

U D C W C
U N V W R N C C C C X L D Y

Y X L C Y Y Y
  

   
= = − =  + = + − + =

 −   

 
 
 

             (5) 

0; .U W C C as Y= = = →                                    (6) 

The velocity components are related to velocity gradients and species gradients, and 

furthermore the species boundary condition is linked to a species concentration gradient. In 

the formulation of [30], “slip factors” can then be easily introduced which allows the correct 

simulation of slip effects without the need to perform molecular dynamics simulations at the 

wall and instead permits the incorporation of local slip effects in the framework of boundary-

layer theory. Since mass slip is being studied i.e. slip of solute, a mass slip boundary condition 

must be included at the wall. Slip is not just confined to hydrodynamic or thermal slip. Mass 

slip is a separate phenomenon characterizing polymer and petroleum flows in spin coating. 

Here the following notation applies: X - coordinate parallel to cone surface, Y-coordinate 

normal to cone surface, -angular coordinate, R-radial coordinate, U - velocity component in X 

direction, V-velocity component in Y direction, W-velocity component in  direction, C-fluid 

concentration, Cw-cone surface concentration, C-free stream concentration, U*- reference 

velocity, g-gravitational acceleration, -kinematic viscosity of fluid, -density of  fluid, KX-

permeability in X direction , K-permeability in  (tangential coordinate) direction, D- thermal 

diffusivity of the fluid, - coefficient of mass expansion of the fluid, Ω-rotational velocity of the 

cone (spin velocity about symmetry axis), -semi-vertex angle of cone. The primitive boundary 

layer equations (1) to (4), although strongly nonlinear, may be solved by numerical methods 
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such as a finite difference technique. However important dimensionless numbers can only be 

invoking by normalization of these equations. Therefore, a group of transformations is defined, 

as follows: 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1/ 4 1/ 4

1/ 2

2 2
, / , Re /

/ , / , / , / , / , / ,

/ , / , / , ,

/

x x w

w Gr U L L

x X L y Y LGrL r R r u U U v V U GrL w W L

Da K Ur L Da K Ur L Sc D U g Cos L C C

C C C C

 

 

    

 −  −

−  
 

 


  = = 

= = = = = = 

= = = = −

 = − −

  (7) 

Here r* is local radius of the cone, L is a reference length (cone slant length). 
 
The transport equations are thereby reduced to the following dimensionless equations: 
 
Mass: 

( ) ( )
0

ru rv

x y

 
+ =

 
                                                                            (8) 

Tangential Momentum  
2 2

2

2

Re
/

x

u u u u
u v w r

x y Gr y Da

  
+ − = − + 

  
                                       (9) 

Swirl Momentum 
2

2
/

w w w w
u v uw r

x y y Da

  
+ + = −

  
                                                                      (10) 

Concentration (Species):  
2

2

1
u v

x y Sc y

   
+ =

  
                                                                        (11) 

The boundary conditions are now rendered into the following form: 

( )

( )
, , ( , 0) , 0

* 1/ 4
2 1

D C Cu ww
u a v w x r a x b at y

y y y yx C U LGrw

−   
= = − = + = + =

−   −
                   (12) 

0; 0 as .u w y= = = →                                  (13) 

In Eqns. (8)-(13), the following notation applies: F-similarity boundary layer stream function, G-

similarity boundary layer rotational (swirl) velocity, H-similarity boundary layer temperature 

function, x-transformed X coordinate, y-transformed Y coordinate, r-transformed local cone 

radius, u-transformed  X velocity, v-transformed Y  velocity, w-transformed  velocity, Dax-

tangential Darcy number, Da (swirl Darcy number), Sc-Schmidt number,-non-dimensional 

concentration function, Gr-species Grashof number, Re-rotational Reynolds number. The non-

dimensional equations (9) to (12) can be further simplified by employing appropriate similarity 

transformations. We first define a dimensional stream function,, following Ece [31]: 

,ru rv
y x

  
= = −
 

                                                                            (14) 

The boundary layer variables are now re-scaled as follows, with r= x sin  (where r is 

dimensionless local radius of the cone): 

( , ) ( ), ( ), ( )x y xrF y w rG y xH y = =  =                                                                                 (15) 
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Introducing these relations into Eqns. (8)-(13), generates the following system of “self-similar 

“ordinary differential equations, with the mass conservation eqn. (8) being automatically 

satisfied:  

 
Tangential Momentum: 

2 2
2 ( ) 0R

x

F
F FF F N G H

Da


  + − − + + =                                                                     (16) 

Swirl Momentum: 

2 2 0
G

G FG F G
Da

  + − − =                                                          (17) 

Species Diffusion (Concentration): 

1
2 0H FH F H

Sc
  + − =                                                                       (18) 

where F is the boundary-layer stream function, G is the boundary-layer rotational (swirl) 

velocity, H is the boundary-layer concentration, x and  denote the x-direction and -direction 

Darcy numbers, 
2(Re ) /RN sin Gr=  is the rotational (spin) parameter, 

1/ 4
1 /a N LGr −=  

is the velocity (momentum) slip parameter,
( )

( ) * 1/ 4
1

w

w

D C C
B

C U LGr



−

−
=

−
is the cone surface 

suction/injection parameter, 
1/ 4

1 /b D LGr
−

=  is the mass (concentration) slip parameter. For 

the purely fluid case, Dax (tangential Darcy number) →  and Da (swirl Darcy number)→   

since the permeability of the anisotropic regime becomes infinite (vanishing fibers of the 

porous medium). For the case of an isotropic porous medium, xDa Da= . The self-similar 

momentum equations (16) and (17) then reduce to exactly the non-magnetic case of the 

generalized hydromagnetic equations solved by Ece [31]: 

2 2
2 ( ) 0RF FF F N G H  + − + + =                                                      (19) 

2 2 0G FG F G  + − =                                                           (20) 

 
Eqn. (18) is identical also to the similarity heat transfer equation solved by Ece [31], although 

in that study the variable H designates temperature, not concentration. The transformed 

boundary conditions for the current problem take the form:  

; ; 1 , 1 at the cone surface ( 0)
2

0; 0; 0 in the freestream ( )

S
F H F aF G aG H y

Sc

F G H y

   = = = + = =

 → → → →

                                         (21) 

 

3.   Numerical Solutions by Maple 17 
    

The self-similar nonlinear two-point boundary value problem defined by eqns. (16)-(18) 

under boundary conditions (21) has been solved using MAPLE17 [32] shooting quadrature, 

employing Runge-Kutta-Fehlberg methods. This code has been utilized in many viscous 
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boundary layer flow problems recently by the authors including nanofluid slip flows in magnetic 

fields [33], Marangoni biological convection [34] and rheological nanofluid convection in 

porous media [35]. A Runge–Kutta–Fehlberg fourth-fifth order numerical algorithm (RKF45) is 

employed, available in the symbolic computer software Maple 17. This utilizes a collocation 

method in which a finite-dimensional space of candidate solutions is selected (usually, 

polynomials up to a certain degree) with a number of points in the domain (called collocation 

points), in order to generate a stable, accurate and fast converging solution which satisfies the 

given equation at the collocation points. The RFK45 algorithm is adaptive since it adjusts the 

quantity and location of grid points during iteration and thereby constrains the local error within 

acceptable specified bounds. In the current problem, the asymptotic boundary conditions 

given in Eq. (21) are replaced by a finite value in the range 10-15 depending on the parameter 

values. Infinity is prescribed to ensure that all numerical solutions approach the asymptotic 

values correctly. The selection of sufficiently large value for infinity is imperative for 

maintaining desired accuracy in boundary layer flows, and is a common pitfall encountered in 

numerous studies. The stepping formulae used to solve Eqns. (16)-(18) under conditions (21) 

via fifth-fourth order Runge-Kutta-Fehlberg algorithms are given below [36]: 

( )0 ,i ik f x y=                                                                                                                        (22) 

1 0

1 1
,

4 4
i ik f x h y hk

 
= + + 

 
                                                                                                (23) 

2 0 1

3 3 9
,

8 32 32
i ik f x h y k k h

  
= + + +  

  

                                                                          (24) 

3 0 1 2

12 1932 7200 7296
,

13 2197 2197 2197
i ik f x h y k k k h

  
= + + − +  

  

                                             (25) 

4 0 1 2 3

439 3860 845
, 8

216 513 4104
i ik f x h y k k k k h

  
= + + − + −  

  

                                           (26) 

5 0 1 2 3 4

1 8 3544 1859 11
, 2

2 27 2565 4104 40
i ik f x h y k k k k k h

  
= + + − + − − −  

  
                          (27) 

1 0 2 3 4

25 1408 2197 1

216 2565 4104 5
i iy y k k k k h+

 
= + + + − 

 
                                                             (28) 

1 0 2 3 4 5

16 6656 28561 9 2

135 12825 56430 50 55
i iz z k k k k k h+

 
= + + + − + 

 
                                            (29) 

 
Here 𝑦 denotes fourth-order Runge-Kutta phase and 𝑧 is the fifth-order Runge-Kutta phase. 

An estimate of the error is achieved by subtracting the two values obtained. If the error 

exceeds a specified threshold, the results can be re-calculated using a smaller step size. The 

approach to estimating the new step size is shown below: 

 

1/ 4

1 12

old
new old

i i

h
h h

z y



+ +

 
=   − 

                                                                                                 (30) 
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4.    Validation with Chebyshev Spectral Collocation 
 

The fifth order boundary value problem defined by eqns. (16)-(18) with wall and free 

stream boundary conditions (21) has also been solved with a spectral collocation method of 

Chebyshev type (SCM), using a Matlab-based code, SPINCHEB, developed for rotating 

transport phenomena. Spectral methods can provide exponential convergence in space and 

have been widely used to solve nonlinear fluid mechanics problems. Although these methods 

are relatively infrequently applied to simulate multi-dimensional complex geometries, for 

simple geometries e.g. channels, they provide excellent accuracy [37]. This technique has 

also been implemented to successfully simulate many diverse problems in applied thermo- 

mechanics including unsteady radiation convection in cavities [38], thermal conduction in 

biological materials [39], electrohydrodynamic (EHD) ion drag pumping flows at general 

electrical Hartmann numbers [40], magneto-hydrodynamic blood flow in a curved tube 

(magnetized Dean flow) [41] and nonlinear magnetic propulsion flows [42]. The principal 

advantage of SCM lies in the accuracy achievable for a given number of unknowns. For 

problems for which the solutions are sufficiently smooth, SCM demonstrates exponential rates 

of convergence and accuracy. To optimize the spectral solutions for the present problem, 

SPINCHEB has been tested for convergence with respect to the spatial resolution. The 

solutions converge in 30 iterations with Newton’s method. Numerical solutions are found to be 

independent of the number of collocation points for a sufficiently large number of collocation 

points. N = 70 yields the optimal convergence and very high accuracy (up to
6

10
−

) and is 

therefore implemented in all the computations in SPINCHEB. In SCM, we seek an 

approximate solution, which is a global Chebyshev polynomial of degree N defined on the re-

mapped interval [-1, 1]. We discretize the interval by using collocation points to define the 

Chebyshev nodes in [-1, 1], namely: 

.,.....2,1.0),cos( Nj
N

j
x j ==


.                                                              (31)   

The derivatives of the functions at the collocation points are given by: 

.2,1,)()(
0

==
=

nxfdxf
N

j

j

n

kjj

n
                                                                                 (32) 

where 
n

kjd  represents the differentiation matrix of order n and these are given by:   

,,....1,0,),()(
4

0

1

,0

1 NjkxTxT
c

n

N
d jn

N

n

k

n

l

n

oddlnl l

nj
kj ==  

=

−

=+=


                                         (33) 

,,....1,0,),()(
)(2

0

2

,0 1

22

2 NjkxTxT
c

lnn

N
d jn

N

n

k

n

l

n

evenlnl

nj
kj =

−
=  

=

−

=+=


                            (34) 

Here )( jn xT  are the Chebyshev polynomial and the coefficients j  and lc  are defined as:  

1

1
2 0,0,

( ) cos( cos ), 2
1 1,2,.... 1

1 1,2,.... 1
n j j j l

l or Nj or N
T x n x c

l N
j N

−


== 

= = = 
= − = −

     (35)  
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As described above, the Chebyshev polynomials are defined on the finite interval [-1,1]. 

Therefore, to apply the Chebyshev spectral method to the nonlinear boundary eqns. (9)-(10), 

we make a suitable linear transformation and transform the physical domain [0, ] to the 

Chebyshev computational domain [-1, 1]. We sample the unknown function w at the 

Chebyshev points to obtain the data vector, 
T

Nxwxwxwxww ]),(......),(),(),([ 210= . The 

next step is to find a Chebyshev polynomial P  of degree N that interpolates the data, i.e., 

,,...1,0,)( NjwxP jj == and obtain the spectral derivative vector w  by differentiating P  

and evaluating at the grid points, i.e., .,...1,0),('' NjxPw jj == This transforms the 

nonlinear differential equations into a system of nonlinear algebraic equations which are 

solved by Newton’s iterative method starting with an initial guess. We have compared the 

MAPLE17 solutions, and SPINCHEB computations with the reduced model in [31] obtained 

when porous drag forces are neglected (Dax →  and Da →  i.e. vanishing permeability 

case), the cone is solid (S =0) and mass and velocity slip ignored (a=b=0) and with Schmidt 

number replacing Prandtl number in Ece’s heat conservation equation [31]. This reduced 

system of ordinary differential equations is: 

2 2
2 ( ) 0RF FF F N G H  + − + + =                                                                                         (36) 

2 2 0G FG F G  + − =                                                                       (37) 

1
2 0H FH F H

Sc
  + − =                                                           (38) 

(0) 0; (0) 0; (0) 1, (0) 1 ( 0)

( ) 0; ( ) (0); ( ) 0 ( )

F F G H at the cone surface y

F y G y H y in the freestream y

= = = = =

 → → → →
                                             (39) 

Both MAPLE and SPIN-CHEB correlate very closely with the infinite permeability solutions of 

[31], as observed in Tables 1 and 2. Confidence in both algorithms is high; however, we elect 

to present graphical solutions here with MAPLE 17 software. 

 

5 Maple Computations, Results and Discussions 

Extensive computations are conducted to simulate the variation of the tangential velocity 

(F’),  swirl velocity (G) and concentration (H) with distance, y,  into the boundary layer 

(transverse to the cone surface); 7 physical parameters are analyzed i.e. xDa -tangential 

Darcy number, Da -swirl Darcy number, Sc –Schmidt number, RN - rotational (spin) 

parameter (a function of rotational Reynolds number), 1/ 4
1 /a N LGr −= -momentum (velocity 

slip) parameter, parameter, 1/ 4
1 /b D LGr−=  i.e. mass slip parameter and S - wall mass flux 

(transpiration) parameter (>0 for suction, <0 for injection and = 0 for solid cone). The regime 

has high permeability in both the x- and -directions so that high values are prescribed for 

xDa  and Da . i.e. 0.5, unless otherwise stated. Sc is prescribed as 0.22. NR = 1.0 (Coriolis 

force and buoyancy force effects are equivalent) unless otherwise indicated. All computations 
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were conducted with MAPLE17 and are illustrated in Figures 2-23. Infinity is prescribed as 12 

to ensure asymptotically smooth solutions are attained in the free stream. 

 

In Figures 2-5, the effects of rotational parameter, 
2(Re ) /RN Sin Gr= on tangential and 

swirl velocities, temperature and Nusselt number function (cone surface temperature gradient) 

are presented. In these figures, when Dax = Da  the regime is isotropic. Inspection of Figure 2 

shows that with greater values of spin parameter, NR, the tangential velocity is boosted 

significantly, in particular in close proximity, to the cone surface. This parameter arises only in 

the tangential momentum eqn. (16) as a quadratic assistive body force term, 
2

RN G+ . This 

couples the swirl momentum equation (17) very strongly to the tangential momentum field and 

leads to a marked influence of the former on the latter. As elaborated, this effect is assistive to 

the tangential velocity near the cone surface and for some distance into the boundary layer, 

transverse to the cone surface. However, as we progress further from the cone, the trend is 

infact reversed. The re-distribution of axial momentum via swirl near the cone is strongest in 

the regime closest to the axis of rotation; however further towards the free stream the effect 

diminishes and leads to a fall in tangential velocities (and corresponding increase in axial 

momentum, not shown). Momentum boundary layer thickness is accentuated initially with 

greater spin parameter i.e. larger Coriolis force associated with greater rotational cone velocity 

() enhances rotational Reynolds number (
2

Re /L =  ), which increases the spin parameter 

(
2(Re ) /RN sin Gr= ), for a prescribed  cone semi-apex angle and species Grashof number 

(Gr). Of course, the present study is laminar- with sufficiently greater rotational Reynolds 

numbers, flow transition and indeed separation will arise. Therefore, to maintain adherence of 

the boundary layer to the cone surface and mitigate detachment, the cone rotation must be 

constrained within certain limits. This avoids centrifugal instability as elaborated by Hussain 

[43], although he only considers viscous flow i.e. his model neglects species diffusion. In 

Figure. 2 the tangential velocity magnitudes are always positive indicating that flow reversal is 

never induced. The damping of tangential velocity with greater suction effect is also apparent 

in Figure 2. The rotating boundary layer is drawn closer to the cone surface with negative S 

values. The reverse effect is associated with greater surface injection (positive S) for which 

much higher tangential velocities are computed. For both cases, asymptotically smooth decay 

of the tangential velocity into the free stream is achieved. Swirl flow is slightly depressed 

(Figure 3) close to the cone surface. The swirl velocity profiles descend sharply in this vicinity.  

implying that swirl momentum boundary layer thickness is slightly increased in this zone. The 

freestream vanishing swirl velocity is attained very quickly. The swirl momentum which is lost 

to the tangential field with greater rotational velocity of the cone manifests in a depletion in 

swirl velocities in the fluid. These results agree with the trends reported strongly by Salzburg 

and Kezios [16], one of the relatively few studies which has considered purely convective 

mass transfer from a spinning cone. Greater suction (S<0) at the cone surface further acts to 

depress swirl velocity whereas enhanced injection (S >0) accelerates the swirl flow and 
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decreases momentum boundary layer thickness. Concentration of the diffusing species, C, 

(Figure 4) is substantially decreased with increasing NR, however the decay is much more 

gradual from the cone surface to the free stream. Greater spin effect therefore depresses 

concentration (species) boundary layer thickness. Suction suppresses mass diffusion in the 

flow whereas injection results in a boost in mass diffusion i.e. elevation in concentration 

magnitudes. In consistency with figure 4, the mass transfer rate (dimensionless Sherwood 

number function) magnitudes (Figure 5) are elevated near the cone surface with greater spin 

parameter. The reduction in concentrations in the species boundary layer is induced by an 

elevation in mass flux to the cone surface. With suction, the mass transfer rate is increased 

whereas with injection it is reduced. 

  
Figures 6-9 present the evolution of the flow and species characteristics with tangential Darcy 

number, Da i.e. -direction permeability function. With greater Da (and these values are 

intentionally large owing to the sparsely packed nature of the porous medium considered), the 

tangential velocity, F/, is noticeably elevated near the cone surface (Figure 6), attaining a peak 

and thereafter plummeting to the vanishing free stream value. This behaviour is sustained 

through the boundary layer for all values of transverse coordinate with all profiles converging 

in the free stream. The tangential flow is therefore accelerated strongly with greater Da 

values. In the swirl momentum equation, the inverse proportionality of the Darcian bulk 

impedance to tangential Darcy number is evident in the drag force term, ( )/G Da− , which 

has the opposite effect to the Coriolis body force. The coupling of the swirl and tangential 

momenta equations manifests in a strong influence of this Darcian drag impedance on the 

tangential flow. As tangential permeability increases, the porous medium comprises a 

progressively lower volume of solid particles (which cause resistance) and becomes 

increasingly fluidic in nature. In chemical filtration processes, greater velocity control is 

therefore achieved with lower permeabilities in the tangential direction. The porous medium 

may be designed therefore to capitalize on this effect. Increasing injection at the cone surface 

physically accelerates the tangential flow whereas increasing suction suppresses it. Swirl 

velocity, G, (Figure 7) although also enhanced with greater tangential Darcy number, is less 

dramatically altered than tangential velocity. The swirl velocity field is also damped out much 

faster than the tangential field- profiles decay sharply to the free stream value for any value of 

rotation parameter even the case of a stationary cone (NR =0). Irrespective of the value of Da , 

the wall suction is observed to decelerate swirl flow whereas injection generates the converse 

response. As with the tangential flow, backflow does not arise for even high suction values. 

With increasing Da, concentration (H) values (Figure 8) are markedly elevated throughout the 

boundary layer. The wall values are also strongly increased. Increasing permeability 

decreases the concentration of solid particles in the regime i.e. increases the presence of 

voids. This serves to provide greater fluid for the species to diffuse in and enhances 

concentration distributions. With greater wall suction (S<0) the species diffusion (mass 

transfer) is suppressed whereas it is encouraged with wall injection (S>0). The momentum 
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boost with injection also serves to exacerbate species diffusion, owing to the coupling of the 

tangential flow with the species diffusion field via eqns. (16) and (18) respectively. In these 

figures, Schmidt number, Sc, is assumed to be 0.22 which corresponds to hydrogen diffusing 

in air [44], a common scenario in chemical engineering processing. Figure 9 demonstrates that 

the Sherwood number function (dimensionless mass transfer rate i.e. H/) at the wall is 

considerably reduced with increasing tangential Darcy number and surface injection; it is as 

expected, elevated with decreasing Darcy number and surface suction. 

  
Figures 10-13 depict the effects of swirl Darcy number, Dax i.e. x-direction permeability 

function, on the flow and mass transfer characteristics. A dramatic acceleration in the 

tangential velocity is sustained with increasing swirl Darcy number (figure 10); this effect is 

generally consistent at all values of transverse coordinate. In the tangential momentum 

equation (16) the Dax parameter arises in the Darcian retarding force term, - F //Dax., in a 

fashion analogous to the presence of Da in the drag force term, ( )/G Da− in eqn. (17). 

Anisotropy is achieved in the porous medium when Dax  Da . This provides an alternate 

approach to that propounded by Storesletten and Rees [45] wherein an anisotropic 

permeability ratio is employed, preventing individual variation of hydraulic conductivity 

properties in different directions in terms of a discrete Darcy number. Increasing Dax evidently 

reduces the tangential Darcian drag force which will effectively accelerate tangential flow. A 

noteworthy acceleration in tangential flow is also induced by strong injection at the cone with a 

retardation in the flow corresponding to an increase in suction parameter (S <0). In Figure 11 

we note that a non-trivial deceleration in swirl flow is computed with large increase in Dax, 

since the gain in tangential momentum is compensated for by a fall in swirl momentum. Strong 

enhancement in swirl flow however accompanies increasing injection at the wall with strong 

deceleration resulting from large suction. Concentration, H, is significantly reduced (Figure 12) 

with greater swirl Darcy number, Dax. As indicated earlier with progressive increase in 

permeability, the regime comprises a lower quantity of solid material fibers; this provides a 

greater volume of fluid enabling tangential momentum to be elevated and swirl momentum to 

be stifled. The latter results in suppression of species diffusion with greater swirl Darcy 

number values which manifests in a thinning in the species boundary layer thickness. Injection 

at the cone surface however is found to accelerate swirl flow whereas suction decelerates it. 

Surface concentration gradient ( H  ) i.e. Sherwood number function, is enhanced in 

magnitude with increasing swirl Darcy number (Figure 13) in particular, in close proximity to 

the cone surface. The flux of species away from the body of rotating fluid (boundary layer) to 

the wall therefore depresses concentration boundary layer thickness. 

 
Figures 14-16 present the influence of Schmidt number (Sc) on the velocity functions and 

concentration function distributions. A disproportionate number of studies address heat 

transfer in rotating cone flow compared with mass transfer. Schmidt number is therefore rarely 

studied in the literature for such flows. This important mass transfer parameter symbolizes the 
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ratio of the momentum to the mass diffusivity in convective mass transfer processes. It 

effectively quantifies the relative effectiveness of momentum and mass transport by diffusion 

in the hydrodynamic (velocity) and concentration (species) boundary layers. Smaller Sc values 

can represent for example hydrogen gas as the species diffusing (Sc ~0.2). Sc = 1.0 

corresponds to both momentum and species boundary layer thicknesses being the same. In 

the present investigation we consider Sc < 1, for species diffusivity exceeds momentum 

diffusivity and this range is appropriate for low-molecular weight gases (e.g. Hydrogen, 

Helium) diffusing in air. With increasing Sc, the tangential velocity (Figure 14) is very strongly 

decelerated; the near-wall peak is also progressively displaced closer to the cone surface with 

increasing Schmidt number. As noted earlier, tangential velocity is always greater for injection 

at the wall compared with suction. Concentration, H, as expected, is markedly suppressed 

throughout the boundary layer regime (Figure 15), with an increase in Sc. Maximum H 

corresponds to the lowest Sc value (0.22) since species diffusivities are much higher for such 

cases. Mass transfer rates i.e. Sherwood number function values (Figure 16) are elevated in 

magnitude, in particular, very close to the cone surface with an increase in Schmidt number. 

However, with greater injection mass transfer rate magnitudes are depressed whereas with 

stronger suction they are enhanced. Larger Schmidt numbers therefore achieve a consistent 

contraction in the concentration boundary layer. With thinner concentration boundary layers, 

the concentration gradients will be enhanced causing a decrease in concentration of species 

in the boundary layer.  The implication for chemical engineering designers is that in such a 

regime, a diffusing species with a lower Schmidt number is more amenable to achieving 

enhanced concentration distributions in the porous medium. This has also been noted by 

Gebhart et al. [46]. 

 
Figures 17-20 show the effects of the momentum slip parameter (a) on velocity functions and 

concentration characteristics. These plots correspond to very strong anisotropy with a much 

greater permeability in the swirl direction compared with the tangential direction. Figure 17 

shows that for the injection case (S>0) there is a consistent enhancement in tangential velocity 

at the wall owing to the slip effect and that this increases the near-wall peak velocity and also 

results in a migration in peaks closer to the wall. With increasing suction, a near-wall peak 

velocity is only computed when momentum slip is present- it is absent for the no-slip case 

(a=0). The tangential velocities as described earlier are accelerated with injection and retarded 

with suction. Significant acceleration in the swirl velocity, G, close to the wall is also observed 

with greater momentum slip in Figure 18. In all cases the maximum swirl velocity occurs at the 

cone surface and thereafter decays smoothly to zero in the free stream i.e. there are no 

overshoots in velocity near the wall. Injection always achieves greater magnitudes in swirl 

velocity than suction. The momentum boundary layer thickness is decreased as a result of 

increasing momentum slip at the wall. Figures 19 and 20 reveals that concentration values 

and Sherwood number function values are respectively increased in magnitude with greater 

momentum slip and greater wall injection (mass flux into the boundary layer) whereas they are 
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reduced in magnitude with greater wall suction (removal of fluid from the boundary layer 

through the cone surface). 

  
Finally, Figures 21-23 illustrate the influence of the solutal (concentration) slip parameter, b, 

on the convective mass transfer characteristics. Tangential velocity (Figure 21) is strongly 

decelerated with greater mass slip effect for any value of injection parameter. However, the 

tangential velocity is observed to be boosted with increasing b values when suction at the 

cone surface is present. Magnitudes of tangential velocity are however greater with injection 

than with suction. Figure 22 shows that species concentration is consistently decreased at the 

wall (cone surface) whether injection or suction is present, with an increase in mass slip 

parameter. Greater concentration is however achieved in the boundary layer with injection 

relative to suction. Both the momentum (hydrodynamic) slip and mass slip effects are 

executed via the cone surface boundary conditions, as documented in eqn. (21). They clearly 

alter the velocity and concentration fields in a substantial manner. Concentration gradient 

(Sherwood number function) is conversely increased with greater mass slip, due to the 

diffusion of species away from the boundary layer towards the cone surface. Greater wall 

suction enhances mass transfer rates whereas injection results in the converse effect. 

 

 
            Fig 2: Tangential velocity (F/) for various NR . 
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       Fig. 3: Swirl velocity (G) for various NR. 
 

 
         Fig. 4: Concentration (H) for various NR. 

 
 
 

 
          Fig. 5: Concentration gradient (H/) for various NR. 
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             Fig. 6: Tangential velocity (F/) for various Da . 

 

 
           Fig. 7: Swirl velocity (G) for various Da . 

 
       Fig. 8: Concentration (H) for various Da . 
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         Fig. 9: Concentration gradient (H/) for various Da . 

 

       
          Fig. 10: Tangential velocity (F/) for various Dax. 

 
             Fig. 11: Swirl velocity (G) for various Dax. 
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               Fig. 12: Concentration (H) for various Da x. 

      
                Fig. 13: Concentration gradient (H/) for various Dax. 

 
        Fig. 14: Tangential velocity (F/) for various Sc. 
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Fig. 15: Concentration (H) for various Sc 

 
         Fig. 16: Concentration gradient (H/) for various Sc. 

 
Fig 17: Tangential velocity (F/) for various a. 



 21 

 

Fig. 18: Swirl velocity (G) for various a. 
 

 
        Fig. 19: Concentration (H) for various a. 

 

 
              Fig. 20: Concentration gradient (H/) for various a. 
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Fig 21: Tangential velocity (F/) for various b 

           
                 Fig. 22: Concentration (H) for various b. 

 

    
        Fig. 23: Concentration gradient (H/) for various b. 
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Tables 1 and 2 further indicate that with an increase in spin parameter (
2

(Re ) /RN sin Gr= ), 

the primary skin friction (tangential velocity gradient) i.e. ( F  ) is elevated whereas with an 

increase in Schmidt number it is depressed. The near the surface of rotation is forced radially 

outwards with a simultaneous upward flow induced tangential to the spinning body surface. 

2
(Re ) /RN sin Gr=  and this parameter relates inertial forces to buoyancy forces. As this 

parameter increases the tangential momentum is boosted and this accelerates the tangential 

flow leading to a rise in primary (tangential) skin friction. The increase in Schmidt number 

induces the contrary effect. The concentration boundary layer thickness is substantially lower 

than velocity (momentum) boundary layer thickness. The thickening of the momentum 

boundary layer corresponds to a deceleration in the flow which explains the fall in tangential 

velocity gradient i.e. tangential surface shear stress function ( F  ) with larger Schmidt 

numbers. 

 

Table 1: Values of ( )F 0 for free-convective mass transfer over a spinning cone with Dax →  

and Da →  (purely fluid case) and injection/suction and mass/momentum slip ignored. 

RN
 

( )0F   

1Sc =  10Sc =  

Ece [31] SPIN-CHEB Maple 17 (Ece, 2006) SPIN-CHEB Maple 17 

0.0 0.68150212 0.6814901 0.6814833 0.43327726 0.43298991 0.4291876 

0.5 0.84650616 0.8464791 0.8464882938 0.62601869 0.62458713 0.6228014 

1.0 1.00196008 1.00194601 1.001943127 0.79828572 0.79839769 0.798418104 

2.0 1.29230021 1.29228503 1.29228491 1.10990481 1.10990489 1.10990496 

 

Table 2: Values of ( )- 0H  for free-convection mass transfer over a spinning cone with Dax → 

 and Da →  (purely fluid case) and injection/suction mass/momentum slip. 

RN
 

( )- 0H   

1Sc =  10Sc =  

Ece [31] SPIN-CHEB Maple 17 (Ece, 2006) SPIN-CHEB Maple 17 

0.0 0.63886614  0.63885988 0.63885470 1.27552680 1.268971 1.26598645 

0.5 0.67194897  0.67194396 0.67193844 1.47165986 1.504325 1.547638332 

1.0 0.70053401  0.70052873 0.70052453 1.60768499 1.607697 1.60756132 

2.0 0.74869559  0.74869028 0.74868824 1.80575019 1.805749 1.80574943 

6 Conclusions 

A self-similar mathematical model has been derived for the steady free convective mass transfer 

from a rotating porous cone embedded in an anisotropic Darcian highly permeable medium with 

surface momentum and mass (solutal) effects. The partial differential boundary layer equations 

have been transformed into a system of coupled, nonlinear ordinary differential equations, by 

virtue of a group of appropriate scaling transformations. A complex set of boundary conditions 

have been imposed at the cone surface. MAPLE 17 quadrature numerical solutions have been 

obtained for the seventh order nonlinear two-point boundary value problem. Validation has been 

achieved with earlier non-porous solutions in the absence of mass and momentum slip (Ece [31]) 

and additionally via a Chebyshev spectral collocation algorithm, achieving very good correlation. 
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Anisotropy has been studied via a unique Darcy number in each momentum conservation 

equation. Tangential and swirl velocities have been found to be generally elevated with increasing 

permeability functions (i.e. and x-direction Darcy parameters). Increasing spin velocity of the 

cone has been shown to accelerate tangential flow but to decelerate swirl flow. Greater suction is 

also found to retard both tangential and swirl flow whereas increasing injection manifests in the 

converse effect. With greater momentum slip, both tangential and swirl flows are accelerated. 

Concentration values and Sherwood number function values are also enhanced with momentum 

slip but only for the case of wall injection. A strong reduction in tangential velocity is generated 

with greater mass (solutal) slip effect for any value of injection parameter. Concentration is also 

depressed at the wall (cone surface) whether injection or suction is present, with an increase in 

mass slip parameter. Generally, the parametric investigation performed has demonstrated that 

spin coating processes in chemical engineering can be influenced strongly with simple 

modifications in the porous medium anisotropy, cone surface conditions (slip effects) and in the 

judicious selection of the diffusing species. The present model has been confined to Newtonian 

flow. However, in spin coating operations many liquids may exhibit non-Newtonian (rheological) 

characteristics. Future studies may therefore examine rotating convective mass transfer of non-

Newtonian fluids with slip effects and interesting possible rheological models include micropolar 

viscoelastic models [48], Jeffery viscoelastic nanofluids [49] (which also involve thermal diffusion), 

variable-viscosity models [50] and second order Reiner-Rivlin differential models which 

approximate well the behavior of certain polymeric coatings [51]. Additionally, it may be useful to 

explore the combined heat and mass transfer in spin coating flows with the inclusion of non-

Fourier heat transfer models [52] in conjunction with non-Fickian mass transfer models. 
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