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Abstract

The vibro-acoustic response of complex structures with uncertain properties is a problem of great concern

for modern industries. In recent years, much research has been devoted to the prediction of this response

in the mid-frequency range where, because neither finite element analysis nor statistical energy analysis are

appropriate, a hybrid deterministic-statistical approach becomes a suitable solution. Despite its potential,

the existence of systems with active components that are too complex to be modelled numerically can limit

the application of the method. However, it may still be possible to measure the dynamical response of these

structures experimentally. This paper is hence concerned with the possibility of integrating experimental

data into a hybrid deterministic-statistical method. To explain the new methodology, two similar case

studies, consisting of a deterministic source structure that is coupled to a statistical plate receiver using

passive isolators, are used. For each case, the vibratory excitation, characterised using in-situ blocked

force measurements, the source structure mobility, and the isolators stiffness are experimentally determined

and inserted in the proposed hybrid model of the system. The paper explains the techniques used for

obtaining the considered experimental data and the theoretical model proposed for describing the systems.

To validate the proposed approach, the predicted vibration response of the receiver plate is compared to the

one obtained by experimentally randomising the plate in both case studies. The results show that a good

agreement is obtained, both for the ensemble average response of the receiver structure and for the ensemble

variance of this response. Moreover, the upper confidence bounds predicted by the hybrid method enclose

well the ensemble of experimental results. The cause of some narrow-band differences observed between

the predicted response and the experimental measurements is finally discussed. It is therefore concluded

that the capabilities of the hybrid deterministic-statistical method can be clearly enhanced through the

incorporation of experimental data prescribing active sub-systems.

Keywords: Statistical energy analysis; Experimental response; Hybrid modelling; Blocked forces

1. Introduction1

The analysis of the vibro-acoustic response of complex structures becomes especially challenging as the2

wavelength of the propagating waves decreases with the increase of the frequency of excitation. In this3
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situation, the use of Finite Element (FE) models becomes unsuitable due to two main reasons: firstly, the4

number of degrees of freedom required to represent the system may be prohibitively large and secondly,5

the response becomes more and more sensitive to small imperfections that add uncertainty to the predicted6

response. Several alternatives that consider a smaller number of degrees of freedom than a FE formulation7

(being therefore more computationally efficient) have been presented in literature. Examples include the8

variational theory of complex rays [1] and the wave based method [2], both based on the the Trefftz approach.9

Another proposed approach is the use of efficient FE formulations, such as the discontinuous Galerkin method10

with plane waves and Lagrange multipliers [3]. At high-frequencies, both FE difficulties are successfully11

overcome by the Statistical Energy Analysis (SEA) approach, which allows prediction of the mean [4] and12

variance [4, 5] of an ensemble of nominally identical systems by solving a relatively simple power balance13

equation. Additional difficulties arise in the commonly termed ’mid-frequency range’, the frequencies where14

neither FE analysis nor SEA are appropriate. Some authors have proposed methods that generalise the15

SEA formulation by, for example, employing a more detailed description of the system, as in the case of16

statistical modal energy distribution analysis (SmEdA) [6], or the vibrational conductivity approach [7]. A17

general wave-based approach for coupling both theories in a single model has been proposed by Shorter18

and Langley [8]. The approach, based on a diffuse field reciprocity result [9, 10], is briefly detailed in the19

next section. This hybrid FE-SEA approach has since been numerically and experimentally validated [11],20

demonstrating its use as a wide-band vibro-acoustic prediction tool. The method has been also extended21

with the development of expressions for determining the variance of the predicted response [12] and, more22

recently, with the inclusion of parametric uncertainties in the FE components of the system [13, 14]. Despite23

the capabilities and potential of the hybrid FE-SEA method, its applicability can be limited in those cases24

where the studied systems contain active structures that are too complex to be modelled numerically. In such25

cases, however, the dynamical response of these subsystems can still be measured experimentally, leading26

to the possibility of a combined experimental/numerical methodology.27

The use of experimental data in SEA models has been considered by many researchers. Cimerman et28

al. [15] reviewed the use of test-based or Experimental SEA (ESEA) methods, in which the prediction29

rely on parameters experimentally determined. Bies and Hamid [16] proposed a power injection method to30

determine the internal and coupling loss factors of two coupled plates. The instabilities of their method31

were addressed by Lalor [17], who proposed an alternative ESEA formulation. Rosen and Borello [18] made32

ESEA available for industrial applications, by developing the SEA-XP software. The accuracy of the ESEA33

formulations has been also discussed by Hopkins [19], who tested methods to identify the wave conversion in34

T-junctions. More recently, Guasch [20] proposed an alternative method to determine coupling loss factors35

from energy transmissibility measurements. Despite its great interest, the experimental approach of ESEA36

methods differs from the one proposed here.37

The independent characterisation of vibratory sources has been of interest to those within the field of38
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structural dynamics for many decades. Of the available quantities, there exist two fundamental descriptors of39

structural source activity. These are the blocked force and the free velocity [21]. In this work we are concerned40

primarily with the blocked force, and its application in the construction of a hybrid experimental/numerical41

model. The blocked force is defined as the force required to constrain the terminals of a vibration source42

such that their kinematics are constrained to zero. Direct measurement of the blocked force is complicated43

by the requirement of a sufficiently rigid termination which, in practice, can only be approximated over44

a limited frequency range. Recent work by Moorhouse et al. [22] has shown that the blocked force may45

instead be acquired in-situ (i.e. without removing the source from its intended installation) through an46

inverse procedure. The in-situ blocked force has since emerged as the most promising method towards47

the independent characterisation of structural sources and has found numerous applications within the48

automotive [23–31], aerospace [32], domestic product [33] and building acoustics [34] sectors. Whilst the49

in-situ blocked force approach has become well established, its experimental implementation is still an area50

of active research and its limitations must be acknowledged.51

This paper is concerned in the use of experimental data to extend and enhance the applicability of the52

hybrid FE-SEA method. The paper presents two case studies where the excitation caused by a vibration53

source and the dynamic response of several mechanical components are experimentally characterised in a54

form that is suitable to be embedded in the hybrid method formulation. In Section 2, the general formulation55

of the hybrid FE-SEA-eXperimental method is presented. The formulation is used in Section 3 to develop56

a hybrid model for the case studies considered. Then, the responses predicted by the developed hybrid57

models are compared with experimental results in Section 4. Finally, the main conclusions of this work are58

summarised in Section 5.59

2. Theoretical development60

This section presents a brief outline of the theoretical background on which the development of a hybrid61

FE-SEA-X model is based. The key aspects of the hybrid FE-SEA method and the expressions used for62

predicting the mean and variance of the response of an ensemble of random systems are summarised in63

Section 2.1. The section ends with a description of the modifications applied to the hybrid equations in64

order to include systems with components that are experimentally characterised. Then, methodologies for65

characterising vibratory sources and vibration isolators are described in Sections 2.2 and 2.3, respectively.66

2.1. The hybrid deterministic-statistical method67

This section presents a brief outline of the general hybrid FE-SEA method formulation, with the addition68

of experimental terms. A detailed derivation of the presented expressions is given in [8] and [12].69
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2.1.1. Method overview and main assumptions70

The hybrid FE-SEA formulation assumes that a built-up structure consists of a deterministic system71

which is coupled to a set of statistical subsystems. Each statistical subsystem is assumed to have random72

properties due to material or manufacturing imperfections. The deterministic system, modelled using the73

FE approach, is described by a set of degrees of freedom (DoF) representing the detailed deformation of74

the system; in contrast, each statistical subsystem is represented by only one DoF, its vibrational energy.75

The finite element model of the deterministic system yields a dynamic stiffness matrix Dd which must be76

coupled to the statistical subsystems. This is done by representing the response of each subsystem as the77

sum of a ”direct field” and a ”reverberant field”. The direct field is associated with waves generated at the78

connections to the FE model, and the coupling is accounted for through the addition of appropiate stiffness79

matrices to Dd. The reverberant (reflective) field is accounted for separately, as explained in Subsection80

2.1.2.81

As it will be detailed in the following subsections, the hybrid FE-SEA equations yield the mean and82

variance of the response of all the components of the built-up structure. The main assumptions of the83

method are:84

• The response of each statistical subsystem (across its ensemble) constitutes a diffuse wavefield [9, 10].85

• The subsystems are weakly coupled through the deterministic system. The hybrid method formulation86

considers the junctions between different statistical subsystems to be components of the deterministic87

system [8].88

• The statistical subsystems are sufficiently random to ensure that the statistics of their isolated natural89

frequencies and mode shapes conform to the Gaussian Orthogonal Ensemble (GOE) [35].90

2.1.2. Ensemble mean response91

The first step in the application of the hybrid FE-SEA method is the identification of which parts of the92

vibro-acoustic system under consideration can be assumed to be deterministic and which ones are better93

described as statistical subsystems. The deterministic part is then represented by a finite set of degrees94

of freedom (DoF) q and the statistical part is defined by a set of subsystems, with each subsystem having95

a single degree of freedom (the vibrational energy E). As mentioned in the previous subsection, the wave96

field generated in each of the statistical subsystems can be understood as the combination of two fields:97

the response due to the initially generated waves (direct field), and the contribution from all the waves98

generated by the reflections at the subsystem’s unknown boundaries (reverberant field). This separation99

can be used to define a direct field dynamic stiffness Ddir for each subsystem. This matrix, which will be100

only populated for those DoF that define the deterministic boundaries of the subsystem, can be computed101

analytically for many simple cases or by a boundary element analysis in general. Then, the contribution of102
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the statistical subsystem k on q is taken into account by, first, adding D
(k)
dir to the dynamic stiffness of the103

deterministic part Dd and, second, including the forces arising from the existence of the reverberant field in104

each subsystem f(k)rev. Then, for a given harmonic frequency ω, the governing equations of motion are [11]105

Dtot(ω)q(ω) = fext(ω) +
∑
k

f(k)rev(ω), (1)

Dtot(ω) = Dd(ω) +
∑
k

D
(k)
dir (ω), (2)

where the ω dependence has been explicitly written for clarity, but will be later omitted for brevity, and106

where Dtot is the dynamic stiffness matrix of the deterministic part augmented by the direct field stiffness107

matrices of the considered subsystems. The force term fext is used to prescribe external forces to the108

deterministic part of the system, and that the reverberant force term f(k)rev describes, physically, the blocking109

force required to constrain the interface DoF of subsystem k in the presence of the reverberant field.110

The key result to develop the hybrid FE-SEA method equations from Equations (1) and (2) is a reci-111

procity identity derived by Shorter and Langley [8] that relates the cross-spectral matrix of the reverberant112

forces of a subsystem k, denoted as S
(k)
ff,rev, with its energy Ek and with its direct field dynamic stiffness113

matrix D
(k)
dir . This relationship, valid when the ensemble response constitutes a diffuse random wavefield114

[10], can be expressed as115

S
(k)
ff,rev = E[f(k)revf

(k)∗T
rev ] =

(
4Ek

πωnk

)
Im{D(k)

dir}, (3)

where E[ ] denotes the ensemble average and Ek and nk are, respectively, the ensemble and time averaged116

vibrational energy and the ensemble averaged modal density of the subsystem.117

An analysis of the energy flow in subsystem j leads to a power balance equation of the form [13]118

ω(ηj + ηd,j)Ej +
∑
k

ωηjknj

(
Ej

nj
− Ek

nk

)
= Pj + P ext

in,j , (4)

where Pj and P ext
in,j are the power inputs from external sources applied, respectively, on the subsystem and119

on the deterministic system, ηj is the loss factor of the subsystem, ηjk is a coupling loss factor and ηd,j is120

the loss factor term associated with the deterministic system. The detailed expressions for these items are121

[13]122

ωηd,j =
2aj
πnj

∑
r,s

Im{Dd,rs}
(
D−1totIm{D

(j)
dir}D

−1∗T
tot

)
rs
, (5)

ωηjknj =
2aj
π

∑
r,s

Im{D(j)
dir,rs}

(
D−1totIm{D

(k)
dir}D

−1∗T
tot

)
rs
, (6)
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P ext
in,j =

ω

2

∑
r,s

Im{D(j)
dir,rs}

(
D−1totSffD−1∗Ttot

)
rs
, (7)

where the term aj is included to take into account local concentrations in the wavefield [12, 36] and where123

Sff is the cross-spectral matrix of external forces. In Equations (5)-(7) the subscripts rs are used to identify124

the rsth components of each matrix.125

The hybrid FE-SEA method also yields the cross-spectral matrix of the response q, which can be ex-126

pressed as127

Sqq = E[qq∗T ] = D−1tot

[
Sff +

∑
k

(
4akEk

πωnk

)
Im{D(k)

dir}

]
D−1∗Ttot . (8)

The set of equations obtained by writing Equation (4) for each subsystem can be expressed in matrix128

form:129

C0Ê = P + Pext
in , (9)

where Êj = Ej/nj is the ensemble averaged modal energy (i.e. the energy per mode) for subsystem j.130

Equation (9), which has exactly the same form of the SEA equations [4], relates the power inputs applied131

from external forces P and Pext
in with the subsystem modal energies Ê. The entries of the matrix C0 can be132

computed using Equations (5) and (6). Equation (9) can be solved to obtain the subsystem energies, and133

these energies can then be substituted in Equation (8) to obtain the deterministic response.134

2.1.3. Ensemble variance response135

It is shown by Langley and Cotoni [12] that an expression in the form of Equation (9) can be written136

for each member of the random ensemble as137

CĒ = P̄ + P̄
ext
in , (10)

where Ēj is the modal energy of subsystem j (so that Ê = E[Ē]) and where the overbar on a quantity138

indicates that it is referred to one member of the ensemble, instead of being an ensemble average. It follows139

from a first order expansion in C [12] that C0 = E[C]. Therefore, P̄, P̄
ext
in and C vary randomly across the140

ensemble but, their mean values can be computed from Equations (4)-(7).141

Then, the ensemble covariance of the subsystem modal energies Ēi and Ēj is obtained by considering a142

first order perturbation expansion of Equation (10). It has been shown in [12] that this covariance can be143

expressed as144

6
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Cov
[
Ēi, Ēj

]
=
∑
k

∑
s

C−10,ikC
−1
0,jsCov[P̄k + P̄ ext

in,k, P̄s + P̄ ext
in,s]

+
∑
k

∑
s

∑
r 6=k

[(C−10,ik − C
−1
0,ir)C−10,js + (C−10,jk − C

−1
0,jr)C−10,is]ÊrCov[Ckr, P̄s + P̄ ext

in,s]

+
∑
k

∑
p

∑
s6=k

∑
r 6=p

(C−10,ik − C
−1
0,is)(C

−1
0,jp − C

−1
0,jr)ÊsÊrCov[Cks, Cpr],

(11)

where the C−10,jk represents the jkth component of C−10 . The covariance terms on the right-hand side of145

Equation (11) can be derived by using random matrix theory and Equation (3). A detailed derivation of146

these terms can be found in [12] and, for the sake of brevity, general expressions for these terms will not147

be repeated here. However, the particular expressions used for the case studies considered in this work will148

be presented in Subsection 3.6. It is important to mention that, once the hybrid mean equations have been149

solved, all the right-hand side terms of Equation (11) are known quantities.150

The randomness in the subsystems leads to randomness in the response of the deterministic system.151

Langley and Cotoni [12] have shown that the ensemble variance of Sqq is given by152

Var[(Sqq)ij ] = 2(D−1totSffD−1∗Ttot )ij
∑
k

ÊkG
(k)
ij

+
∑
k,s

{2Cov[Ēk, Ēs] + ÊkÊs}G(k)
ij G

(s)
ij ,

(12)

where153

G(k) =

(
4ak
ωπ

)
D−1totIm{D

(k)
dir}D

−1∗T
tot . (13)

As in the case of the ensemble average response, once Equation (11) has been solved to obtain the154

subsystem covariances Cov
[
Ēi, Ēj

]
, these can be substituted in Equation (12) to determine the deterministic155

system variance Var[(Sqq)ij ].156

2.1.4. Hybrid FE-SEA-X method157

The hybrid FE-SEA method can be enhanced by considering that some of the deterministic components158

of the system are modelled using experimental data instead of using a FE or an analytical approach. This159

experimental data can be characterising either a passive quantity or an active quantity of the structure.160

More precisely, the dynamic stiffness matrix of the deterministic part of the system, Dd, can be assumed161

to be composed as a combination of a numerically/analytically determined dynamic stiffness matrix Dd,FE162

and one or more experimentally determined dynamic stiffness matrices D
(j)
d,exp. Then163

Dd = Dd,FE +
∑
j

D
(j)
d,exp, (14)
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where, the summation represents the assembly of the various matrices in the conventional fashion.164

A similar decomposition can be considered for the cross-spectral matrix of external forces, which can be165

expressed as166

Sff = Sff,FE +
∑
j

S
(j)
ff,exp, (15)

where S
(j)
ff,exp is an experimentally determined cross-spectral blocked force matrix.167

The procedures necessary for experimentally determining D
(j)
d,exp and S

(j)
ff,exp will be discussed in the168

following.169

2.2. Characterisation of structure-borne sound sources170

A vibratory source is an active sub-system that generates a disturbance as a result of some internal, often171

inaccessible, mechanism. Unlike passive sub-systems, a vibratory source is characterised by two parameters.172

The first, a passive quantity describing the source’s ability to transfer energy, and the second, an active173

quantity describing the operational behaviour of the source. In the context of the hybrid FE-SEA-X method174

discussed above, these quantities are characterised, independently, by the sub-system’s free interface dynamic175

stiffness matrix, Dd,exp, and blocked force, f̄ , respectively.176

2.2.1. Free interface dynamic stiffness matrix177

The free interface dynamic stiffness matrix, D
(S)
d,exp, of an experimental sub-system S describes the force178

on each DoF when another DoF is displaced, whilst all others are fixed. This constraint makes the direct179

measurement of D
(S)
d,exp impractical. Instead, it may be determined through its inverse relationship with180

some measurable frequency response function (FRF) matrix, for example, the free mobility.181

The free mobility of a sub-system with M interface DoF, YS ∈ CM×M , is an independent characterisation182

of its passive properties and is defined by the velocity/force ratios at and between its interface DoF whilst183

uncoupled and freely suspended. Analogous quantities include the free accelerance and the free receptance,184

which are related to the free mobility through integration and differentiation, respectively.185

Experimentally, a close approximation to the free mobility is achieved by resiliently suspending the186

sub-system and measuring its interface dynamics directly. However, if the sub-system is very large, or too187

lightweight, resilient suspension may not be practical or yield a suitable free boundary condition. In this188

case decoupling procedures may be required [37, 38]. Alternatively, the source mobility may be obtained, in189

theory, from a numerical model.190

Once acquired, the free mobility may be used to determine the free interface dynamic stiffness matrix191

required by the hybrid method,192

D
(S)
d,exp = iωY−1S . (16)

8
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It is important to note that the inversion of measured FRF matrices is an important source of errors in193

experimental sub-structuring [39]. Care should therefore be taken to ensure that a reliable YS is obtained.194

2.2.2. In-situ blocked force195

The blocked force is a fundamental descriptor of structural source activity and is defined as the force196

required to block the terminals of a vibration source such that their velocity is zero (see Figure 1a) [21]. It197

was shown by Moorhouse et al. [22] that the blocked force may be determined ‘in-situ’ through an inverse198

procedure. The relation of note is given by,199

vCb
= YCbc

f̄Sc
, (17)

where YCbc
∈ CN×M is the measured mobility matrix of the coupled assembly in which the source is200

installed, vCb
∈ CN is a measured operational velocity vector, and f̄Sc

∈ CM is the vector of unknown201

blocked forces. Here, subscripts b and c represent remote receiver and coupling interface DoFs, respectively.202

For N = M , providing that the measured mobility matrix is of full rank, a unique solution is found through203

the inverse mobility matrix Y−1Cbc
. For N > M , the Moore-Penrose pseudo inverse [40] may be used in place204

of the classical matrix inverse, leading to a least squares solution of the problem. The remote DoFs b are205

collocated with the DoFs c when measurements are performed solely at the coupling interface. In such a case206

over-determination may be achieved by including an additional set of remote DoFs, such that the interface207

DoFs are a subset of those used to determine the blocked forces.208

The experimental implementation of Equation (17) requires a two part measurement procedure. In part209

one, the source is turned on and the operational velocity, vCb
, is measured. In the other, the source is turned210

off and the mobility matrix, YCbc
, is measured.211

Once the blocked forces related to a vibratory source are determined, they can be used to compute the212

associated experimental cross-spectral blocked force matrix as follows213

S
(j)
ff,exp = f̄Sc f̄

∗T
Sc
. (18)

This cross-spectral matrix can then be used to compute the cross-spectral matrix of external forces Sff214

using Equation (15).215

9
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(a) Blocked force (b) Isolator stiffness

Figure 1: Diagrams for blocked force and isolator characterization.

2.3. Characterisation of vibration isolators216

It is typical to place vibratory sources on resilient foundations or footings so as to reduce the severity of217

their transmitted vibration. It is important therefore to be able to correctly characterise the properties of218

such elements in a way that they may be included in a hybrid model.219

The preferred quantity for the characterisation of a resilient element is the dynamic transfer stiffness220

[41], defined as the ratio of the applied displacement at one interface to the blocked force at the other (see221

Figure 1b). The dynamic transfer stiffness is an independent property of the element and therefore invariant222

to changes in the dynamics of source and receiver sub-systems (neglecting compressional effects such as223

pre-load). Whilst there exist standardised methods for the determination of dynamic transfer stiffness224

[42], they require elements to be removed from their intended installation and installed within specialized225

test rigs. This is not only inconvenient but arguably places the coupling element under a non-representative226

mounting condition. An alternative procedure was recently proposed by Meggitt et al. [43], where a coupling227

interface mobility matrix YC is measured and subsequently inverted, yielding a pair of independent transfer228

impedances, ZIc1c2 and ZIc2c1 ,229  ZCc1c1
ZIc1c2

ZIc2c1 ZCc2c2

 =

 YCc1c1
YCc1c2

YCc2c1
YCc2c2

−1 . (19)

Once acquired, the transfer impedance may be related to the dynamic transfer stiffness through,230

KIc1c2 = iωZIc1c2 . (20)

10
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This approach has been validated and shown to provide an independent and broad-band characterisation231

suitable for the hybrid method [43, 44]. Note that the in-situ method discussed above is related to a more232

general class of characterisation techniques referred to as inverse sub-structuring.233

Having determined the dynamic transfer stiffness of the element, an appropriate stiffness matrix D
(I)
d,exp234

must be formulated for use within the hybrid model. Assuming simple spring like behavior D
(I)
d,exp may be235

approximated as,236

D
(I)
d,exp =

 −KIc1c2 KIc1c2

KIc1c2 −KIc1c2

 . (21)

The above construction is only valid whilst force is conserved across the element, i.e. below its first internal237

resonance. If the coupling element possesses significant internal dynamics and/or requires rotational DoFs238

an alternative construction of D
(I)
d,exp may be required.239

3. Hybrid model for a case study240

As a means of illustrating the construction of a hybrid model, two case study structures are considered241

in this paper. Both structures consist of a vibration source coupled resiliently to a large thin plate. In242

this section, a brief description of these case studies is followed by the definition of the deterministic and243

random parts of the hybrid model developed to represent them. Then, expressions for the matrices Dd, Sff244

and Ddir are detailed and, finally, the energy mean and energy variance expressions required for these case245

studies are presented.246

3.1. Description of the case studies considered247

Figures 2a and 2b show the two case studies considered in this work. In both cases the vibration source is248

connected to a large thin receiver plate using four resilient elements. In the first study, the source subsystem249

is an electric pump that does not allow a direct access to the coupling interface, adding difficulties to its250

experimental characterisation. In the second, the source consists of a servomotor bolted to a small aluminium251

plate, and this small plate is bolted to four steel feet which have been designed to facilitate the placement252

of sensors in the coupling interface between the vibration source and the resilient elements. In each case253

study, resilient elements of an appropriate size are used. Figure 2b also shows the positions of the set of254

accelerometers used to measure the response and some of the additional small masses used to randomise255

the large thin plate to produce an ensemble of systems. Additional information regarding the experimental256

setup can be found in Section 4.257

The hybrid model of the case studies is developed by determining, for each of them, the matrices Dd258

and Sff experimentally. Therefore, the model does not contain any FE component and only the second259

right-hand side term in Equations (14) and (15) is considered.260
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(a) Source-isolators-plate setup for the

first case study

(b) Experimental setup for the second case study, with

the added masses and the measuring accelerometers on

the large thin plate.

Figure 2: Case studies considered

3.2. Definition of the deterministic and statistical parts of the case studies261

The case studies are modelled using the hybrid method by considering the vibration source and the four262

isolators to compose the deterministic part of the structure, and the large receiver plate, to be the (only)263

statistical subsystem. In order to compute the ensemble mean response of the statistical subsystem it is264

necessary to derive expressions for the matrices that appear in Equations (5) and (7) (Equation (6) is not265

computed in a hybrid model that has only one statistical subsystem). The size of these matrices depends266

on how many DoFs are considered for the deterministic part of the hybrid model.267

The aim of the present work is to characterise the dynamical properties of the deterministic subsystem268

(as represented by Dd), using experimentally determined properties. Therefore, the response at the DoF269

considered should be easily (directly or indirectly) measured. It has been assumed that, due to the type of270

coupling that exists between the different components of the system, it is sufficient to consider the vertical271

response at points situated at the top and base of the four isolator feet in order to model the system. Then,272

DoF q1 to q4 are defined at the contact between the source system and the top of the isolators, and DoF273

q5 to q8 are defined at the contact between the bottom of the isolators and the large receiver thin plate. A274

scheme with the position and number of each one of these eight DoF for the second case study is presented275

in Figure 3. The same positions and numbering are considered for the first case study.276
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E

I1

I3

I4

q4

Figure 3: Scheme of the hybrid model used in both case studies, with the considered degrees of freedom and the external forces

depicted.

3.3. Determination of Dd from experimental measurements277

The dynamic stiffness matrix of the deterministic part of the system can be expressed as a combination of278

the experimental dynamic stiffness matrices of the vibration source D
(S)
d,exp and of the experimental dynamic279

stiffness matrices of each one of the four isolators D
(Ik)
d,exp (k = 1, . . . , 4). With the DoF considered D

(S)
d,exp280

is a 4 × 4 matrix obtained from Equation (16), and each D
(Ik)
d,exp is a 2 × 2 matrix obtained from Equation281

(21). The experimental and numerical procedures performed to obtain both matrices have been described282

in Sections 2.2.1 and 2.3.283

Once the frequency response functions of the deterministic components have been experimentally deter-284

mined, they are combined to obtain the experimental Dd. This matrix can be written as285

Dd =



d
(S)
11 +d

(I1)
11 d

(S)
12 d

(S)
13 d

(S)
14 d

(I1)
15 0 0 0

d
(S)
21 d

(S)
22 +d

(I2)
22 d

(S)
23 d

(S)
24 0 d

(I2)
26 0 0

d
(S)
31 d

(S)
32 d

(S)
33 +d

(I3)
33 d

(S)
34 0 0 d

(I3)
37 0

d
(S)
41 d

(S)
42 d

(S)
43 d

(S)
44 +d

(I4)
44 0 0 0 d

(I4)
48

d
(I1)
51 0 0 0 d

(I1)
55 0 0 0

0 d
(I2)
62 0 0 0 d

(I2)
66 0 0

0 0 d
(I3)
73 0 0 0 d

(I3)
77 0

0 0 0 d
(I4)
84 0 0 0 d

(I4)
88


, (22)

where d
(S)
ij represents the ijth component of DS , and d

(Ik)
ij represents the ijth component of DIk .286

3.4. Determination of Sff from experimental measurements287

The cross-spectral matrix of external forces Sff = ff∗T is computed using the set of forces acting on the288

eight DoF considered. In order to do that, the blocked forces that characterise the operational behaviour289

of the vibration source are experimentally obtained using the in-situ procedure described in Section 2.2.2.290

This characterisation, which requires measurement at the coupling interface between the source and receiver291
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parts of the structure, has been performed considering that this coupling interface is defined by the DoF q1292

to q4. Therefore, the force vector acting on both case studies is293

f =
(
f̄1 f̄2 f̄3 f̄4 0 0 0 0

)T
, (23)

where, for each case study and for each type of excitation considered, the blocked forces f̄i are determined294

using Equation (17).295

3.5. Determination of Ddir for the case studies296

The direct field dynamic stiffness matrix for a set of point contacts on a statistical thin plate can be297

computed using analytical techniques. As the deterministic boundaries for the case study considered are298

simply the DoF q5 to q8, Ddir can be easily computed using the analytical expression of the transverse299

response of an infinite thin plate to a vertical point load (due to the type of coupling that exists between300

the plate and the isolators, it has been assumed that the effect of the in-plane forces and bending moments301

can be neglected). The response at a position i due to a point load applied at a position j can be expressed302

as [45]303

Hij = H(rij) =
H

(2)
0 (kBrij)− 2i/πK0(kBrij)

8iω
√
Dρh

, (24)

where rij is the distance between both positions, H
(2)
0 is the Hankel function of the second kind and zeroth304

order, K0 is the modified Bessel function of the second kind and zeroth order, D is the flexural rigidity of305

the plate, ρ is its mass density, h is its thickness and kB =
(
ρhω2/D

)1/4
is the plate bending wavenumber.306

Equation (24) can be used to build a 4 × 4 matrix of plate receptances H that defines the response at307

the boundary DoF q5 to q8. The matrix Ddir can then be simply obtained by inverting H and inflating the308

resulting matrix to the eight DoF considered. This yields309

Ddir =

04×4 04×4

04×4 H−1

 , (25)

where 04×4 denotes a 4× 4 matrix of zeros.310

3.6. Energy mean and variance expressions for the case studies311

In both case studies the structure is modelled considering only one statistical subsystem, and external312

forces are only applied on the deterministic part of the system. Therefore, Equation (4) reduces to313

ω(η + ηd)E = P ext
in , (26)
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where the subsystem subscripts have been omitted, and where ωηd and P ext
in are computed using Equations314

(5) and (7). Furthermore, the covariance expression defined by Equation (11) is reduced to the variance of315

the subsystem modal energy, which can be written as316

Var[Ē] = C−20 Var[P̄ ext
in ] = C−20 Relvar[P̄ ext

in ]E[P̄ ext
in ]2. (27)

In this case, the matrix C0 defined in Equation (9) is reduced to C0 = ω(η + ηd)n, and the value of317

E[P̄ ext
in ] can be again computed using Equation (7). The relative variance of the power input Relvar[P̄ ext

in ]318

is computed using the general expression for the relative covariance of the power inputs applied to different319

subsystems presented in [12]. For a system composed of only one statistical subsystem, this expression is320

reduced to321

Relvar[P̄ ext
in ] =

a

πm′

[
q(0),∗TJq(0)

q(0),∗T Im{Ddir}q(0)

]
. (28)

In Equation (28), q(0) = D−1totf is the zeroth order term in the perturbation expansion used in [12] to322

obtain an approximate solution of the equation of motion of the master system. In the considered case323

studies, the vector of external forces f is the vector of blocked forces defined in Equation (23). Additionally,324

m′ = ωη′n is the effective modal overlap of the subsystem, with η′ = 1/(ωnC−10 ) being the effective in-situ325

loss factor [4]. As before, the parameter a takes into account local concentrations in the wavefield [12, 36].326

Finally, for a single subsystem the Hermitian matrix J takes the following form327

J =4Im{Ddir}D−1totIm{Ddir}D−1∗Ttot Im{Ddir}+ Im{Ddir}

− 2iIm{Ddir}D−1totIm{Ddir}+ 2iIm{Ddir}D−1∗Ttot Im{Ddir}.
(29)

4. Comparison with experimental results328

4.1. Case study I: electric pump/isolators/damped plate329

4.1.1. The test system and the experimental setup330

The first case study considered in this work, shown in Figure 2a, consisted of an electric pump connected331

to a receiver large thin plate using four resilient elements. This type of vibration source is a realistic source332

likely encountered in practice. The construction of a hybrid model for this assembly required to characterise333

experimentally the source mobility, the blocked forces acting on the source-isolators interface (for each type334

of excitation considered) and the dynamic stiffness of the isolators.335

For the measurement of its free mobility YS , the source was suspended on soft elastic bungees. Each336

foot was instrumented with a single accelerometer, located directly above the coupling interface. Due to337
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restricted interface access, excitations were applied from beneath. A spaced pair of excitations were applied338

at each interface DoF. Appropriate averaging and sign corrections returned the free source mobility.339

In the characterisation of its blocked force the source was resiliently coupled to a second assembly. With340

access to the coupling interface restricted the blocked force was determined using remote receiver DoFs b341

only. A two fold over-determination was achieved using eight remote DoFs. The transfer mobility between342

the coupling interface and each remote DoF bi was measured reciprocally. The operational velocities at b343

were measured for both operational and artificial excitation conditions. For repeatability the operational344

velocities due to the artificial excitation were normalised to the input force. The blocked forces were345

subsequently calculated as per Section 2.2.2.346

The four resilient elements used in this case study (type: Fibet 1413vv10-60) were assumed to have347

nominally identical stiffness values. As such only a single element was characterised. This was done using348

the in-situ approach presented in Section 2.3. The resilient element was placed in a mass-isolator-mass349

assembly, as illustrated in Figure 1b, for characterization prior to constructing the main assembly. A spaced350

pair of accelerometers were mounted above and below the coupling element and excitations performed at351

each. The resulting mobilities were averaged appropriately to yield the coupling interface mobility matrix,352

YC ∈ C2×2. The element’s transfer stiffness was then determined as per Equations (19) and (20). The353

resilient elements were characterised only in the vertical translational DoFs, i.e. in-plane and rotational354

components were neglected. This was justified based on previous success when using the same source and355

coupling elements in an experimental sub-structuring prediction [46]. Similarly, for the resilient elements356

used in case study two experimental evidence in [47] justified this approximation. Furthermore, inspection357

of the transfer stiffness obtained (for both case studies) revealed that there were no significant dynamics358

(i.e. internal mount resonances) in the frequency range considered, thus enabling the use of Equation (21)359

to approximate the element stiffness matrix.360

The receiver subsystem was a large aluminium rectangular thin plate of dimensions L1 = 1 m, L2 = 0.8361

m and thickness h = 3 mm. The mechanical parameters considered for the aluminium were density ρ = 2700362

kg·m−3, Young modulus E = 70 GPa, and Poisson ratio ν = 0.33. The modal density was computed using363

the asymptotic expression for the bending modes of a thin plate [4] n = L1L2/4π
√
ρh/D, giving n = 0.013364

modes/(rad/s). The edges of the plate were supported on an external structure and the damping of the365

structure was increased by gluing viscoelastic damping patches to the plate structure. The loss factor of the366

plate was experimentally determined from its response without the deterministic subsystem, i.e. the source367

and the four isolators, placed on it. The loss factor was slightly frequency dependent, with an average value368

of η = 2.3% in the frequency range studied (1-1250 Hz). With these values, the modal overlap factor of the369

plate at 1000 Hz is m = ωnη = 1.87.370

In order to create an ensemble of subsystems, the plate response was randomised experimentally by371

adding seven small masses at randomly chosen locations. The total mass added was 650 g, approximately372
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10% of the initial mass of the plate.373

As a first step in the performed comparisons, the experimental response of the receiver plate was studied374

prior to attach the electric pump and the isolators on it. After that, two types of excitations were studied375

with the source subsystem coupled to the receiver plate: an impact excitation applied on the source structure376

using an instrumented hammer and the excitation caused by the electric pump operating at constant speed.377

A summary of the results presented for this case study (and for the one described in Section 4.2) can be378

found in Table 1.379

Figure Case study Response type Excitation

4 Case 1:Bare plate Plate E Impact

5 Case 1:Pump/isolator/plate Plate |v|2 Impact

6,7 Case 1:Pump/isolator/plate Plate |v|2 Operational

8 Case 2:Motor/isolator/plate Plate |v|2 Impact

9 Case 2:Motor/isolator/plate Plate E Impact

10 Case 2:Motor/isolator/plate Plate |v|2 Operational

11 Case 2:Motor/isolator/plate Plate E Operational

Table 1: Summary of the results presented in Section 4.

4.1.2. Receiver plate ensemble average and variance comparison380

To study the experimental response of the receiver plate, an impact excitation was applied on it using381

an instrumented hammer and, in order to have a space average of the plate vibration, the response was382

measured at four different positions. The responses per unit force were computed dividing the measured383

acceleration spectra by the measured force spectrum. The response of an ensemble of subsystems was384

obtained by performing the test 20 times with different mass locations each time.385

The vibration energy of the plate has been estimated from the experimental results by averaging the386

response of each test over the four accelerometers to give 〈|v|2〉a, and then noting that E = mp〈|v|2〉a/2.387

With this approach, an ensemble of 20 experimental estimations of the plate energy has been obtained.388

The response of the plate has been predicted by considering a hybrid FE-SEA model of the system. The389

model consists of a trivial deterministic system with a single DoF, the position where the hammer impacts390

were applied, and one statistical subsystem, the whole plate. The predicted response per unit force has391

been obtained by considering a vertical unitary force at the only DoF of the system. The matrices that392

appear in Equations (5) and (7) are then scalars with the following expressions: Dd = 0, Sff = 1 and393

Ddir = 8iω
√
Dρh.394
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A comparison between the experimental vibrational energy of the plate and the energy predicted by the395

hybrid model, computed using Equation (26), is shown in Figure 4(a). The experimental relative variance396

of the energy, i.e. the variance divided by the square of the expected value, has been compared with the397

predicted relative variance, computed using Equations (26) and (27), in Figure 4(b). This predicted relative398

variance has been used to obtain the upper Confidence Interval (CI) for a 95% Confidence Level (CL),399

and for a 99% CL shown in the energy comparison. These upper bounds have been computed using the400

procedure detailed in Appendix C of [48], which assumes that the statistical distribution of the plate energy401

is lognormal. The use of a lognormal probability density function for the energy of a random system has402

been theoretically justified by Langley et al. [49].403

Figure 4: (a) Energy of the plate due to a unit point force excitation. Gray: response of the 20 members of the ensemble;

red: experimental ensemble mean response; thick blue: hybrid method prediction; dashed black: 95% CI upper bound; dotted

black: 99% CI upper bound. (b) Relative variance of the energy. Red: experimental ensemble variance; thick blue: hybrid

method prediction.

In general, there is a good agreement between the measured plate ensemble average response and the404

response predicted by the hybrid model. The hybrid prediction seems to slightly overestimate the low-405

frequency response of the system and also the response in the range 450-700 Hz, a result that can be406

explained by the effect that the damping treatment has on the plate response. A good agreement has been407

also found in the relative variance results, with differences that are only significant at very low frequencies,408

where the ensemble of systems may not be random enough. The agreement in the average response could be409

slightly improved by using a frequency-dependent subsystem loss factor. However, as the differences observed410
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are acceptable, the authors have opted to use the frequency averaged constant loss factor previously defined411

for the comparisons presented in Sections 4.1.3 and 4.1.4.412

4.1.3. Coupled system. Results for an impact excitation413

The response of the coupled electric pump-isolators-plate system to an impact excitation is considered414

in this section. The excitation was applied, using an instrumented hammer, on the electric pump structure,415

and the response was measured at three different locations of the receiver plate. As before, the responses416

per unit force were computed dividing the measured acceleration spectra by the measured force spectrum.417

The response of an ensemble of experimental subsystems was obtained by performing the test 20 times (with418

different mass locations).419

Figure 5(a) presents the response per unit force of the receiver plate to the impact excitations. The420

responses of the three measuring accelerometers for all the 20 tests have been used to create an ensemble of421

60 experimental realisations. The ensemble mean of the experimental modulus squared of the velocity has422

been compared with the predicted response of the hybrid method. This prediction has been computed using423

Equation (26) and the relation E[|v|2] = 2E[E]/mp, where mp has been considered to be the mass of the424

receiver plate with the additional point masses. In this case, the set of blocked forces required by Equation425

(23) and determined following the experimental procedure described in Section 2.2.2, are blocked forces per426

unit of input force. Again, the upper CI for a 95% CL, and for a 99% CL have been computed assuming427

that the statistical distribution of the plate energy is lognormal. In this case, the CLs are computed using428

the relative variance of the energy density at a point (ε say), which is approximately related to the relative429

variance of the total subsystem energy as follows [48]430

Relvar[|v|2] = Relvar[ε] = 1 + 2Relvar[E]. (30)

The relative variance predicted by the hybrid method, computed using Equations (26) and (27), has been431

compared to the experimental relative variance of the response in Figure 5(b), and these values have been432

used to produce the confidence intervals in Figure 5(a).433
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Figure 5: (a) Modulus squared of the velocity of the receiver plate due to a unit point force excitation in the first case study.

Gray: response of the 60 members of the ensemble; red: experimental ensemble mean response; thick blue: hybrid method

prediction; dashed black: 95% CI upper bound; dotted black: 99% CI upper bound. (b) Relative variance of the modulus

squared of the velocity. Red: experimental ensemble variance; thick blue: hybrid method prediction.

In general, there is a good agreement between the measured plate ensemble average response and the434

response predicted by the hybrid model developed in this work. Significant discrepancies are only observed435

between 400 and 550 Hz and at 600 Hz, where the model predicts increases in the response that are not436

observed in the experimental results. These two peaks are mainly caused by an unexpectedly high amplitude437

of the characterised blocked forces and, as explained in the Appendix, these incorrect values are caused by438

consistency problems in the measurements. Solutions for overcoming this problem are currently being studied439

by the authors [47].440

The relative variance of the experimental modulus squared velocity only differs significantly from the441

predicted result at very low frequencies. Moreover, it can be seen in Figure 5(a) that the predicted upper442

CIs satisfactorily enclose the ensemble of experimental results for those frequencies where the blocked force443

measurements do not show consistency problems. This agreement shows that the assumption of a lognormal444

distribution for the statistics of the subsystem response is reasonable. As mentioned previously, this is an445

expected result for the type of experiment performed [49].446

4.1.4. Coupled system. Results for the operational excitation forces447

This section considers the response of the receiver plate to the excitation generated by the electric pump448

operating. Again, the response of the plate subsystem was measured at three different locations and, in449
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order to build the ensemble of experimental subsystems, the test was performed for 20 randomisations of450

the point masses. The locations of the three accelerometers and the seven masses for each randomisation451

were the same as the ones used for the impact excitation.452

Figure 6(a) presents the response of the receiver plate to the operational excitation forces. As before, an453

ensemble of 60 experimental realisations has been created combining the responses of the three accelerom-454

eters. An expanded view of a section of the Figure is shown in Figure 6(b). In this case, the blocked force455

contains a large number of strong harmonics, and these harmonics are propagated to the predicted response.456

Even in Figure 6(b), the comparison between the hybrid prediction and the experimental results is confused457

by the high degree of fluctuations in the curves.458

Figure 6: (a) Modulus squared of the velocity of the receiver plate for the running engine excitation (smoothed) in the first

case study. Gray: response of the 20 members of the ensemble; red: experimental ensemble mean response; thick blue: hybrid

method prediction; dashed black: 95% CI upper bound; dotted black: 99% CI upper bound. (b) Zoomed view of the results

presented in( a).

An alternative comparison is presented in Figure 7 where, for clarity, the results have been smoothed by459

applying a running band average of width ∆f = 40 Hz. As in the impact excitation case, there is a fairly460

good agreement between the experimental response of the plate and the response predicted by the hybrid461

model. In this case, significant differences are mainly observed between 150 and 250 Hz, and between 400462

and 550 Hz. Again, the cause of these differences, which is discussed in more detail in the Appendix, is an463

overprediction of the characterised blocked forces. Figure 7(b) shows that a good agreement is also observed464

between the measured and the predicted relative variance of the response.465
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Figure 7: (a) Modulus squared of the velocity of the receiver plate for the running engine excitation (smoothed) in the first

case study. Gray: response of the 20 members of the ensemble; red: experimental ensemble mean response; thick blue: hybrid

method prediction. (b) Relative variance of the modulus squared of the velocity. Red: experimental ensemble variance; thick

blue: hybrid method prediction.

4.2. Case study II: motor on a small plate/isolators/large thin plate466

4.2.1. The test system and the experimental setup467

The vibration source used in this case study, shown in Figure 2b, consisted of a servo motor bolted to468

a small aluminium plate, itself attached to four steel feet. Each foot was instrumented with two single axis469

accelerometers, spaced approx. 2.5cm apart. The source subsystem was again connected to a receiver large470

thin plate using four resilient elements. The construction of a hybrid model for this second assembly again471

required to characterise experimentally the source mobility, the blocked forces acting on the source-isolators472

interface and the dynamic stiffness of the isolators.473

In the characterisation of its free mobility, the source was suspended on soft elastic bungees and each474

foot excited in four positions. Appropriate averaging of the spaced excitation and response measurements475

returned the free source mobility, YS ∈ C4×4.476

In the characterisation of its blocked force the source was resiliently coupled to the intended installation477

and the coupled source mobility measured as per the above procedure. Note that the blocked force need478

not be characterised on the assembly in which predictions are made. This was done to avoid any variation479

in the excitation mechanism between the characterisation and validation phases.1 The characterisation was480

1In the first case study the source was characterised on a separate assembly, and the blocked forces were ‘transferred’ into

the intended installation.
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performed using only the coupling interface DoFs, i.e. b = c, thus no over-determination was performed.481

Operational velocities were measured for both operational and artificially excited conditions. For repeata-482

bility the operational velocities due to the artificial excitation were normalised to the input force. Having483

averaged the spaced velocities appropriately, the blocked forces were found as per Section 2.2.2.484

In this case each of the four resilient elements (type: Fibet 2525VV18-45) used in this study were485

characterised using the in-situ approach presented in Section 2.3. Each element was used to construct a486

mass-isolator-mass assembly, as illustrated in Figure 1b. A spaced pair of accelerometers were mounted487

above and below the coupling element and excitations performed at each. The resulting mobilities were488

averaged appropriately to yield the coupling interface mobility matrix, YC ∈ C2×2. The transfer stiffness489

of each element was then determined as per Equations (19) and (20).490

The receiver subsystem was the same aluminium plate considered in the first case study, but no damping491

treatment was applied in this case. The loss factor of the plate was again experimentally determined from492

its response without the deterministic subsystem, i.e. the source structure and the four isolators, placed on493

it. The loss factor was found to be approximately constant in the frequency range of interest (1-1250 Hz),494

with a value η = 0.7%. With this value, the modal overlap factor at 1000 Hz is m = ωnη = 0.57.495

In order to create an ensemble of subsystems, the plate response was randomised experimentally by496

adding 10 small masses at randomly chosen locations. The total mass added was 600 g, approximately 10%497

of the initial mass of the plate.498

Two types of excitations were studied with the source subsystem considered in this case study: an impact499

excitation applied on the source structure using an instrumented hammer and the excitation caused by the500

servomotor running at a constant speed of 2800 rpm. A summary of the results presented for this case study501

can be seen in Table 1.502

4.2.2. Results for an impact excitation503

Figure 8(a) presents the response of the receiver plate for the case where an impact excitation was504

applied on the source subsystem using an instrumented hammer. The impacts were applied on the small505

plate structure and the responses per unit force were computed dividing the measured acceleration spectra506

by the measured force spectrum. The plate response was measured at six different locations and the test507

was performed for 20 randomisations of the point masses.508

The responses of the six measuring accelerometers for all the 20 tests have been used to create an ensemble509

of 120 experimental realisations. The ensemble mean of the experimental modulus squared of the velocity510

has been compared with the predicted response of the hybrid method. As in the previous case study, the511

upper CI for a 95% CL and for a 99% CL have been computed assuming that the statistical distribution512

of the plate energy is lognormal. The relative variance predicted by the hybrid method, computed using513

Equations (26) and (27), has been compared to the experimental relative variance of the response in Figure514
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8(b). Again, this relative variance has been used to produce the confidence intervals shown in Figure 8(a).515

Figure 8: (a) Modulus squared of the velocity of the receiver plate due to a unit point force excitation in the second case study.

Gray: response of the 120 members of the ensemble; red: experimental ensemble mean response; thick blue: hybrid method

prediction; dashed black: 95% CI upper bound; dotted black: 99% CI upper bound. (b) Relative variance of the modulus

squared of the velocity. Red: experimental ensemble variance; thick blue: hybrid method prediction.

The results show that there is a good agreement between the measured plate ensemble average response516

and the response predicted by the hybrid model of this second case study. Significant discrepancies are517

only observed at very low frequencies, and around 180 and 250 Hz, where the model predicts two sharp518

peaks that are not observed in the experimental measures. Again, these peaks are caused by the consistency519

problems that arise in the experimental determination of the blocked forces, as explained in the Appendix.520

The good agreement between the experimental results and the predicted response can be also observed521

in the relative variance results. The relative variance of the experimental modulus squared velocity only522

differs significantly from the predicted result at very low frequencies. Moreover, it can be seen in Figure 8(a)523

that the predicted upper CIs are satisfactorily enclosing the ensemble of experimental results, showing once524

more that the experimental results support the assumption of a lognormal distribution for the statistics of525

the subsystem response [49].526

An ensemble of 20 experimental estimations of the plate energy has been obtained from the experimental527

results using that E = mp〈|v|2〉a/2. A comparison between the mean and relative variance of the experi-528

mental energy, and the responses predicted by the hybrid model, computed again using Equations (26) and529

(27), is shown in Figure 9. As before, the upper CI for a 95% and a 99 % CLs have been included in the530
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energy comparison.531

Figure 9: (a) Energy of the receiver plate due to a unit point force excitation in the first case study. Gray: response of the

20 members of the ensemble; red: experimental ensemble mean response; thick blue: hybrid method prediction; dashed black:

95% CI upper bound; dotted black: 99% CI upper bound. (b) Relative variance of the energy. Red: experimental ensemble

variance; thick blue: hybrid method prediction.

Again, there is a good agreement between the mean and variance of the energy predicted by the hybrid532

method and the experimental results. The main discrepancies observed are again the significant differences533

at low frequencies and the two peaks at 180 and 250 Hz. The space average performed in the experimental534

results has reduced significantly the variability of the ensemble responses and this effect has been properly535

caught by the hybrid model, which predicts a lower relative variance and, due to this, lower upper CIs. It536

should be mentioned that the experimental energy has been estimated by performing a space average of the537

response at only six positions and it is reasonable to expect that taking measurements at a larger number538

of positions would reduce the fluctuations in the experimental relative variance.539

4.3. Results for a running motor540

Figure 10(a) presents the response of the receiver plate for the case where the servomotor of the source541

subsystem was running at a constant speed of 2800 rpm. As in the previous excitation case, the response of542

the plate subsystem was measured at six different locations and the test was performed for 20 randomisations543

of the point masses. The locations of the six accelerometers and the 10 masses for each randomisation were544

the same as the ones used for the impact excitation. For clarity, the results have been smoothed by applying545

a frequency running average with a bandwidth ∆f = 40 Hz.546
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Figure 10: (a) Modulus squared of the velocity of the receiver plate for the running engine excitation (smoothed). Gray: response

of the 120 members of the ensemble; red: experimental ensemble mean response; thick blue: hybrid method prediction. (b)

Relative variance of the modulus squared of the velocity. Red: experimental ensemble variance; thick blue: hybrid method

prediction.

As in the impact excitation case, there is a good agreement between the experimental response of the547

plate and the response predicted by the hybrid model. A good agreement is also observed for the relative548

variance, as shown in Figure 10(b).549

The mean and relative variance of the vibrational energy of the plate predicted by the hybrid method550

are compared with their corresponding experimental values in Figure 11. The results again show that551

the predicted mean response agrees very well with the experimental results, but the hybrid model slightly552

underpredicts the relative variance of the structure. As in the impact excitation case, it is reasonable to553

assume that the differences observed would be reduced if a larger number of accelerometers were used to554

estimate the plate energy.555

26



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

0 500 1000
-160

-150

-140

-130

-120

-110

-100

-90

-80

-70

0 500 1000
10-2

10-1

100

101

102(a) (b)

Figure 11: (a) Energy of the receiver plate for the running engine excitation (smoothed). Gray: response of the 20 members of

the ensemble; red: experimental ensemble mean response; thick blue: hybrid method prediction. (b) Relative variance of the

energy. Red: experimental ensemble variance; thick blue: hybrid method prediction.

5. Conclusion556

This paper has presented a hybrid FE-SEA-experimental methodology for predicting the mid-frequency557

response of random dynamic systems. The proposed methodology combines the use of experimentally558

characterised structures with a previously developed hybrid FE-SEA numerical formulation [8, 12]. The559

methodology has been successfully applied to two case studies consisting of a vibration source coupled with560

isolators to a large thin receiver plate. These case studies show that both active (e.g., motors) and passive561

(e.g., vibration isolators) experimentally determined subsystems can be included in the new formulation.562

The proposed approach yields predictions for the ensemble mean and variance of the response of a563

random system, and confidence bands on this response can also be established. The method implicitly564

assumes that GOE statistics can be used to model the uncertainty in the SEA subsystems (in the case565

studies, a random plate) and this avoids the need for detailed information regarding the nature of the566

uncertainty, and also the need for Monte Carlo simulations. The approach has been shown to yield to good567

agreement with benchmark experimental results for randomised systems. One issue that has been found568

with the experimental characterisation of the vibration sources is that the use of the measured blocked forces569

can on rare occasions lead to unexpected sharp peaks in the predicted response. It has been shown that570

these peaks can be explained by the sensitivity of the determined blocked forces to experimental errors.571

Care is needed to try to identify these false peaks in the modelling process. This issue is left as further work.572
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It can be concluded that the approach can be used to extend the existing FE-SEA method [8, 12] to573

systems which contain components that cannot be modelled analytically, and therefore require experimental574

characterisation. The result is an efficient methodology which reduce modelling effort by employing SEA575

and experimental results, and which yields a detailed statistical description of the response.576
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industrial partners Bentley Motors Ltd, Brüel & Kjær, Dyson Ltd and Wave six LLC.579

Appendix A. Sensitivity of the blocked force determination580

The sensitivity of the determined blocked force to experimental errors is studied in this appendix using581

a simple hybrid FE-SEA model. The considered system, shown in Figure A.1, consists of three point582

masses (m1, m2 and m3) connected in series with two spring elements (with stiffness constants k1 and k2,583

respectively). The lower mass, m3, is considered to be perfectly attached to a large thin plate and the whole584

system is excited by a vertical unitary harmonic point load, fext = 1, applied on the upper mass m1.585

The deterministic part of the system is assumed to consist of three-DoF (q1-q3) representing the vertical586

response of the three point masses. The response of q2, q3 and of the receiver plate (defined by its vibrational587

energy E) to the external excitation is equivalent to that obtained by considering the following blocked force588

applied at q2589

f̄2 =
1

1−m1ω2/k1
. (A.1)
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Figure A.1: Analytical 3DoF-plate model with the external excitation considered (left) and its corresponding blocked force

excitation at q2 (right).

The matrices required to compute the hybrid mean and variance equations for the analytical model are590

Dd =


k1 −m1ω

2 −k1 0

−k1 k1 + k2 −m2ω
2 −k2

0 −k2 k2 −m3ω
2

 , (A.2)

591

Ddir =


0 0 0

0 0 0

0 0 8iω
√
Dρh

 , (A.3)

592

Sff =


0 0 0

0 f̄2f̄
∗
2 0

0 0 0

 , (A.4)

where it has been assumed that the applied excitation is the blocked force defined by Equation (A.1).593

The blocked force can also be expressed in terms of the free mobilities of the subsystem m1 − k1 −m2594

as follows595

f̄2 = Y −122 v2,fs = Y −122 Y21, (A.5)

where v2,fs is the free velocity of q2 and where596

Y22 = (k1 −m1ω
2)∆, Y21 = k1∆, (A.6)
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with ∆ =
iω

(k1 −m1ω2)(k1 −m2ω2)− k21
.597

598

The effect of adding an artificial numerical error to the measured mobilities can be assessed by considering599

measured mobilities Y m
21 = Y21 + ε1 and Y m

22 = Y22 + ε2, where εi are small errors added to the measurement.600

The effect that adding this small artificial errors has on the response of the system is shown in Figure A.2.601

The results have been computed considering m1 = 2 kg, m2 = 2.5 kg, m3 = 0.25 kg, k1 = 106 N/m, k2 =602

105 N/m. Structural damping has been added considering a complex valued stiffness kci = ki(1 + iη), with603

η = 0.01. For each computed frequency, the error quantities εi have been considered to have a constant604

amplitude and a random phase. These amplitudes have been considered to be equal to 0.2% of the maximum605

amplitude of the mobilities in the range of frequencies studied (50-200 Hz).606

The results highlight how sensitive is the blocked force determination to measuring errors at antireso-607

nances of Y22. As can be seen in Figures A.2(c) and (d), this error may cause an incorrect characterisation608

of the blocked force, which results in an incorrect prediction of the receiver plate energy. A general descrip-609

tion of this experimental inconsistency, not limited to the type of hybrid models presented in this work,610

can be found in [47]. It is worth noting that similar errors are often encountered in experimental dynamic611

sub-structuring, although in this case they stem from inconsistencies in measured FRF matrices [39], as612

opposed to blocked forces.613
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Figure A.2: Results for the simple 3 DoF-plate model with (solid line) and without (dashed line) a numerical error. (a) Mobility

Y21. (b) Mobility Y22. (c) Magnitude of the blocked force applied on q2. (d) Energy of the receiver plate.
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