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ABSTRACT  

A Riga plate is an electromagnetic actuator which comprises of permanent magnets and alternating electrodes 

placed on a plane surface. The present article investigates the influence of viscous and Joule heating (Ohmic 

dissipation) in the magnetohydrodynamic squeezing flow, heat and mass transfer between two Riga plates. A non-

Fourier (Cattaneo-Christov) heat flux model is employed which generalizes the classical Fourier law to 

incorporate thermal relaxation time. Via suitable transformations the governing partial differential conservation 

equations and boundary conditions are non-dimensionalized. The resulting nonlinear ordinary differential 

boundary value problem is well-posed and is solved analytically by the variational parameter method (VPM). 

Validation of the solutions is included for the special case of non-dissipative flow. Extensive graphical 

illustrations are presented for the effects of squeeze parameter, magnetic field parameter, modified Hartmann 

number, radiative parameter, thermal Biot number, concentration Biot number, Eckert number, length parameter, 

Schmidt number and chemical reaction parameter on the velocity, temperature and concentration distributions. 

Additionally, the influence of selected parameters on reduced skin friction, Nusselt number and Sherwood number 

are tabulated. An error analysis is also included for the VPM solutions. Detailed interpretation of the results is 

provided. The study is relevant to smart lubrication systems in biomechanical engineering and sensor design.  

 

KEYWORDS: Squeezing flow, Riga Plate, Magnetic field, Non-Fourier heat transfer, Reactive mass transfer, 

Thermal radiation, Viscous Dissipation, Joule Heating, Variational Parameter Method (VPM), smart lubrication.      

 

 

NOMENCLATURE 

 
a  dimensional constant 

b  width of magnets and electrodes 

B  dimensionless constant 

0B  applied magnetic field 

1iB  Biot number for temperature 

2iB  Biot number for concentration  

C  concentration of fluid 

1fC  concentration of upper plate 

fC  skin friction coefficient  

hC  ambient temperature 
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pC  specific heat capacity  

BD  Brownian diffusion coefficient  

Ec  Eckert number  

1h  convective heat transfer  

2h  convective mass transfer  

0j  applied current density 

k  thermal conductivity  

cK  dimensionless chemical reaction parameter  

2
M  Hartmann magnetic body force parameter 

0M  magnetization 

m


 coefficient of mean absorption 

xNu  local Nusselt number 

p  pressure 

rP  Prandtl number 

rq  radiative heat flux (W/m2) 

R  radiation parameter 

Re x  local Reynolds number 

Sc  bioconvection Schmidt number  

xSh  local Sherwood number 

t  time (s) 

T  temperature (K) 

1fT  temperatures of upper plate 

u  velocity component in x-direction (m/s) 

wU  stretching velocity 

v  velocity component in y-direction (m/s) 

fv  fluid velocity 

Z  modified Hartmann number 

 

GREEK SYMBOLS 

 

  squeezing parameter 

e  thermal relaxation time  

  dimensionless variable  

  fluid density (kg/m3) 

  electric conductivity 




 Stefan-Boltzmann constant  

  dynamic viscosity of squeeze film 

  characteristic constant parameter  

  length parameter 

E  temperature difference 

E  thermal radiation time  

  component of deformation  

  stream function 

  dimensional less temperature 

  dimensionless concentration 



3 
 

 

1    INTRODUCTION 

Squeeze film flows [1] are characterized by a thin layer of viscous fluid intercalated between approaching 

plane surfaces in which viscous effects dominate inertial effects (i.e. a low Reynolds number regime). A common 

assumption is that the plates are infinite in extent so that edge plates may be neglected. Squeezing flows arise in 

many diverse applications in engineering including smart dampers [2], anti-corrosion lubricants [3], helicopter 

rotor bearings [4], microsystems [5] and orthopedic tribology [6-8]. For some years, engineers have also explored 

the use of smart lubricants in squeeze films. These feature “intelligent” fluids which respond to an external 

stimulus such as electrical or magnetic fields. The advantage of electromagnetic lubricants is that they achieve a 

variable-damping performance and allow designers to fine tune the vibration of machine components. To simulate 

magnetic squeeze films mathematically the popular approach is magnetohydrodynamic (MHD) viscous flow 

models. These may be Newtonian or non-Newtonian depending on the lubricant. Wang et al. [9] studied the 

squeezing flow of a magnetized Bingham (viscoplastic) fluid in a damper-rigid rotor system, deriving and solving 

Reynolds equation to present extensive solutions for flowing velocity, pressure distribution, film force, and the 

magnetic pull force of the damper.Usha and Sridharan [10] presented closed-form solutions for the magneto-

hydrodynamic squeeze flow between two parallel disks with wall suction or injection, observing that with stronger 

injection the load carrying capacity is enhanced whereas the opposite response is computed with wall suction. 

Vadher et al. [11] investigated theoretically the magnetofluid squeeze film between two conducting rough porous 

electrically-conducting conical plates, observing that with higher values of magnetization parameter there is a 

steady elevation in pressure, load carrying capacity and the response time whereas there is an adverse response to 

transverse surface roughness. Shimpi and Deheri [12] studied the magnetohydrodynamic squeeze film flow 

between rotating transversely rough porous annular elastically-deforming plates. They found that the magnetic 

lubricant enhances bearing performance whereas the roughness of the bearing surfaces and deformation decreases 

load carrying capacity. Usha and Vimala [13] analyzed magnetic gas squeeze film flow between two circular 

parallel plates (in sinusoidal relative motion) containing a single central air bubble of cylindrical shape are 

theoretically investigated. They used both numerical and perturbation techniques to derive solutions for the air 

bubble radius, pressure distribution, and squeeze film force. Zueco and Bég [14] used an electro-thermal solver 

to simulate the magnetic Newtonian squeeze film flow between co-rotating disks with electromagnetic induction 

effects. They observed that both dimensionless axial and azimuthal magnetic field components and axial velocity 

are enhanced with an increase in rotational Reynolds number whereas the azimuthal velocity is reduced. Kumar 

et al. [15] investigated numerically the magnetic squeezed flow and heat transfer in a tangent hyperbolic 

rheological transport over a sensor surface with variable thermal conductivity, showing that with increasing 

Weissenberg (non-Newtonian) number temperature is elevated whereas the contrary response is computed with 

increased squeezed flow index parameter increased. They also noted that higher magnetic field decreases 

temperatures and accelerates the flow. 

In sophisticated sensor designs and magnetic lubrication systems, the Riga plate is often featured. This is a 

special electromagnetic actuator which comprises a spanwise aligned array of alternating electrodes and 

permanent magnets and enables precision flow control. The array permits the mobilization of a surface-parallel 

Lorentz magnetic body force which decreases exponentially in the direction normal to the plate. This device was 

first studied by Gailitis and Lielausis [16] who introduced the “Grinberg-term” for the wall parallel Lorentz force 
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due to Riga plate motion and also identified that the key electromagnetic parameter in Riga plate fluid mechanics 

is the modified Hartmann number. This parameter is positive when the Lorentz body force points in the direction 

of the free stream (aiding flow) and negative when it is opposite to the free stream (opposing flow). In recent years 

owing to rapid developments in micro-electromagnetic systems there has been a renewed interest in Riga plate 

fluid dynamics. Ahmad et al. [17] analyzed using both numerical and asymptotic methods the mixed convection 

boundary layer flow of a nanofluid from a vertical Riga plate with wall suction, computing skin friction, Nusselt 

number and Sherwood number. Anjum [18] analyzed the viscoelastic magnetized flow from a Riga plate with 

heat source and sink effects. Hayat et al. [19] presented homotopy solutions for double-diffusive stratified mixed 

convection from a Riga plate with thermal radiation, showing that buoyancy ratio and modified Hartmann number 

induces the opposite effects on wall heat transfer rates. 

In electromagnetic fluid dynamics, Joule heating (Ohmic dissipation) arises when the energy of an electric 

current is converted into heat as it flows through a resistance. In particular when electric current flows through 

a fluid with finite electrical conductivity, electric energy is converted to heat through resistive losses in the 

fluid. The heat is generated on the microscale when the conduction electrons transfer energy to the conductor 

atoms by way of collisions. Joule heating has been studied extensively in recent years in hydromagnetic 

transport phenomena and has been found to exert significant modifications in momentum, heat and mass 

diffusion characteristics. Mao et al. [20] investigated the influence of Joule heating on the heat transfer in a 

fully developed channel flow between two parallel thin electrically conducting plates under a transverse magnetic 

field. El-Amin [21] considered both viscous and Joule heating effects in non-isothermal hydromagnetic 

convection boundary layer flow from a horizontal cylinder in a permeable material. Bég et al. [22] examined 

computationally the Joule and viscous heating effects on time-dependent Hall magneto-gas dynamic flow in a 

channel containing a porous medium. Srinivasacharya and Jagadeeshwar [23] analysed numerically the Hall 

current and Joule heating effects on double-diffusive hydromagnetic convection from an exponentially stretching 

sheet using the Chebyshev pseudo- spectral method. Further studies considering Joule heating effects include 

Aurangzaib and Shafie [24] (on reactive transient convection from a stretching surface with cross diffusion), 

Tripathi et al. [25] (on nanofluid electro-osmotic pumping) and Golsefid et al. [26] (on electrohydrodynamic heat 

transfer in rectangular enclosures). Further studies of Joule heating in electromagnetic flows include Shamshuddin 

et al. [27] (on transient chemically reacting magnetic radiative micropolar transport from a tilted surface), Hussain 

et al. [28] (on magnetized viscoelastic nanofluid enrobing flow on an extending cylinder), Bég et al. [29] (on non-

isothermal Hall magnetic generator flow) and Sucharitha et al. [30] (on peristaltic pumping of magnetic 

nanofluids). Squeezing hydromagnetic flows featuring Joule dissipation have also received some attention. 

Ahmad et al. [31] used a homotopy method to study the combined effects of viscous and Joule dissipation and 

homogeneous-heterogeneous reactions on heat and mass transfer in squeezing flow of a magnetic fluid. They 

computed the variation in Nusselt number and skin friction. Ghadikolaei et al. [32] presented analytical solutions 

for time-dependent hydromagnetic squeezing flow, heat and mass transfer in an electrically-conducting Eyring-

Powell fluid through a stretching channel with Joule heating and radiative flux.   

In the current study, the collective influence of viscous and Joule heating (Ohmic dissipation) in 

magnetohydrodynamic squeezing flow and heat transfer between two Riga plates is investigated theoretically. A 

non-Fourier (Cattaneo-Christov) [33] heat flux model is employed which generalizes the classical Fourier law to 

incorporate thermal relaxation time. This model has been recently applied successfully in a variety of squeezing 
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flow lubrication studies including Hayat et al. [34] (on chemical reacting squeeze films between Riga plates), 

Muhammad et al. [35] (nanofluid squeezing flows) and Atlas et al. [36] (second law thermodynamic analysis of 

Riga plate squeezing flow). Other recent studies featuring the non-Fourier (Cattaneo-Christov) heat flux model 

include Von Karman swirling heat transfer as studied by Mishra et al. [37] and reactive hydromagnetic viscoelastic 

non-orthogonal stagnation flow as examined by Mehmood et al. [38]. In the present study, following the 

implementation of a set of transformations, the non-dimensional emerging nonlinear ordinary differential 

boundary value problem is solved analytically by the variational parameter method (VPM) introduced by Ma et 

al. [39]. Validation of the solutions is included for the special case of non-dissipative flow. The influence of 

squeeze parameter, magnetic field parameter, modified Hartmann number, radiative parameter, thermal Biot 

number, concentration Biot number, Eckert number, length parameter, Schmidt number and chemical reaction 

parameter on the velocity, temperature and concentration distributions is visualized graphically. The influence of 

selected parameters on reduced skin friction, Nusselt number and Sherwood number is also tabulated. An error 

analysis is also included for the VPM solutions. Extensive interpretation of the results is provided. The current 

problem Previous studies have neglected viscous and Joule dissipation effects. These are important in real 

magnetic lubrication systems since they capture actual thermal dissipation effects via fluid friction and 

electromagnetic field and provide a more accurate appraisal of the efficiency of such systems. The current study 

therefore incorporates these effects in conjunction with non-Fourier heat transfer and chemical reactivity of the 

working fluid, and thereby provides a more generalized model for Riga plate transport phenomena. The model 

described therefore, to the authors’ knowledge, not yet received attention in the literature and constitutes an 

important extension to the existing body of work. The results have important potential applications in disk type 

magnetic clutches in automobile engineering [40], electromagnetic squeeze-film pressure sensor systems in 

micro-biomedical systems [41] and magnetic sensor lubrication flows in materials processing [42, 43]. 

Furthermore, this work is the first to apply the VPM technique to electromagnetic Riga plate lubrication flows 

and therefore provides researchers with alternative numerical approaches to those traditionally used in tribology 

simulations. 

 

2   ELECTROMAGNETIC DUAL RIGA PLATE SQUEEZE FILM MODEL  

 
We consider the two-dimensional time-dependent electromagnetic squeezing viscous flow between two 

parallel Riga plates, as depicted in Fig. 1. The upper Riga plate is located at ( ) ( )1 /fy h t v t a= = − and the 

lower Riga plate (positioned at y = 0) is capable of stretching in its own plane with velocity ( )
1

1wU ax t
−

= − . 

The upper rigid (non-deformable) Riga plate approaches towards the lower stretching Riga plate and this approach 

motion generates an electromagnetic squeezing film flow with velocity /h dh dtv = . Heat transfer occurs in the 

flow regime and due to the presence of thermal relaxation, the Cattaneo-Christov non-Fourier heat flux model is 

deployed. The intercalated Newtonian lubricant is doped with a reactive species and mass diffusion is also present 

which obeys the Fickian law. An aligned magnetic field is applied parallel to the Riga plates. Thermal radiation 

flux is also present as are viscous dissipation and Joule heating (Ohmic dissipation) effects. Isothermal and iso-

solutal conditions are enforced at both Riga plates. A Cartesian coordinate system (x, y) is adopted as shown in 

Fig. 1. The appropriate mass, primary and secondary momentum, energy and species (concentration) conservation 
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equations describing the transport phenomena in the squeeze film regime are an amalgamation of the model for 

chemically-reacting Riga plate flow used by Hayat et al. [34] with supplementary terms for viscous and Joule 

heating following Mao et al. [20], El-Amin [21] and Bég et al. [22] combined with the non-Fourier heat transfer 

model of Muhammad et al. [35] and take the form: 

 

 

Fig 1: Physical description of the dual Riga plate squeezing flow problem 
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 .                                                                                        (5) 

The following boundary conditions are enforced at the lower Riga plate and upper Riga plate, respectively:  

( )
( ) ( )

( ) ( )

1 2
1 10 : , 0, ,

1

: 0, / 1 , ,
2

w f f

h h h

h hax T C
at y u U v T T C C

t y k y D

dh
at y h t u v v v a t T T C C

dt






 
= = = = = − − = − −

−  

= = = = = − − = =







                                    (6) 
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Here wU represents the stretching velocity, a represents dimensional constant, 1h represents convective heat 

transfer, 2h represents convective mass transfer, 1fT represents temperature of upper plate, 1fC represents 

concentration of upper plate also the boundary conditions describes that lower plate is placed at 0y = and 

stretched in the x-direction with the plate velocity wU and in y-direction with the velocity 0v = as described in 

[33]. The convective boundary conditions describe the energy balance at the fluid-solid interface. The Dirichlet 

boundary conditions are used for both temperature and concentration at the upper plate. The Rosseland diffusion 

flux approximation is employed which is appropriate for optically-thick fluids. The appropriate expression for the 

radiative heat flux rq is [44]:  

( )4

34 16

3 3

T T
q Tr

m y m y

 
 

 

 
= = −

 
  ,                                                                                                                     (7) 

Invoking Eqn. (7) in Eqn. (4), the energy equation is converted to the following: 

( ) ( )

( )
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22 2
20

1 16
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4
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f
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f f
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   −

   
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   
    
     

       ,                                      (8)                                                                                      

In equation (4) E i.e. the temperature function is formulated following Muhammad et al. [35] and Atlas et 

al. [36] may be written as follows: 

2 2 2 2
2 2

2
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      ,               (9) 

To normalize the governing partial differential equation boundary value problem, the following 

dimensionless local similarity transformations and introduced, following Hayat et al. [34]: 

( )
( ) ( ) ( ) ( ), , , , ,
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


                      (10) 

Applying these similarity transformations to the governing Eqns. (1)-(5), the mass conservation Eqn. (1) is 

automatically satisfied and the remaining Eqns. (2)-(5) are converted to the following non-dimensional ordinary 

differential equations:  
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Here the dimensionless parameters appearing are defined as:  

( )

( )
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The corresponding boundary conditions (6) are also rendered dimensionless and emerge as: 
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It is observed that for 0  , the Riga plates are moving away from each other and for 0  the Riga plates are 

moving towards each other. In Eqn (15), ( )1
1 1 /i f

h
B v t a

k
= − − denotes Biot number for temperature 

(thermal Biot number) and ( )2
2 1 /i f
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= − −  denotes Biot number for concentration (solutal Biot 

number). The other physical quantities which are of relevance to the current problem are the skin friction 

coefficient, local Nusselt number and Sherwood numbers which are defined respectively as:  
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The appropriate expressions for skin friction, Nusselt number and Sherwood number in dimensionless form are:  
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( ) ( )

1 Re1
, 1 , Re 1

Re 1

R x
C f x Nu Shx x xf

tx

 
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Here Re /x wUx v= is the local Reynolds number. 

 
3  VARIATION OF PARAMETERS METHOD (VPM) SOLUTIONS  
 

The nonlinear ordinary differential boundary value problem described by Eqns. (11)-(13) is an 8th order 

coupled problem. It is strongly non-linear. Many powerful numerical and analytical methods are available for 

solving this system. Here the Variation of Parameters Method (VPM) [39] is selected which is an analytical 

technique free from round off errors, perturbation, linearization or discretization. It uses only the initial conditions 

which are easier for implementation and reduces the computational work while still maintaining a higher level of 

accuracy. Recent applications of VPM in viscous flow and heat transfer include Moore and Jones [45] on nonlinear 

conduction, Zaidi et al. [46] on non-Newtonian inclined plane hydrodynamics, Khan et al. [47] on thermal 
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convection flows for fin configurations and Akinshilo and Olofinkua [48] on radiative convection flows.  

Deploying VPM we consider the general differential equation of the form: 

 ( ) ( ) ( )Lf Nf Rf g  + + = ,                       (19) 

Here L , the higher order (mth) derivative is linear, N denotes the nonlinear terms, R is the remainder terms 

present in the differential equation and g is the non-homogeneous function. The general iterative solution of 

VPM takes the form: 
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

        + = + − − + ,                   (20) 

Here, 0 ( )f   is the initial function defined as follows: 
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=

=  ,                       (21) 

The unknown constants i.e. rK are to be obtained using initial/boundary conditions and ( , )    is the 

multiplier obtained from the Wronskian technique, defined as:  
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  ,                    (22) 

Following the standard procedure of VPM [39] the appropriate equations for the current dual Riga squeeze 

film problem may be written as:  

3 2 2 3

1 0

0

2

( ) ( )
3! 2! 2! 3!

( ( ) 3 ( ) ) ( ) ( ) ( ) ( ) ( ) exp( )
2

n

n n n n n n n

f f

f f f f f f M f ZB B d


    

 


         

+

 
= + − + −  

 

      + − + + + − 
 


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0
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Using an iterative procedure, it is possible then to evaluate 1 2 3 1 2 3 1 2 3, , ,.... , , ,....and , , ......etcf f f       , 

with the initial conditions: 

2 3

0 1 2( )
2 3!

f K K
 

 = + + ,                       (26) 

0 3

1

1
( ) 1 K
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 

,                                     (27) 
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0 4

2

1
( ) 1 K

Bi
  = + +

 
 
 

 .                                    

(28) 

Further the values of ' , 1(1)4iK s i = are obtained using the available boundary conditions. Validation of the 

VPM solutions has been conducted by comparing the solutions with Hayat et al. [34] for the non-dissipative case 

of Ec = M=0.  Good correlation is achieved as shown in Table 1. Confidence in the VPM solutions is therefore 

justifiably high. In Table 1 the skin friction at the upper Riga plate (1)f  is computed for different values of 

squeezing parameter (β) and modified Hartmann number (Z). With increasing values of squeezing parameter (β) 

there is a strong decrease in skin friction. However, with increasing values of modified Hartmann number (Z) 

there is a weak increase in skin friction. 

 

Table 1: Comparison of HAM Solutions for (1)f   with VPM solutions for different values of β and Z with Ec 

= M = 0. 

β Z HAM [34] VPM 

(present) 

0.1 1.5 1.69635 1.67852 

0.3 “ 1.08543 1.069613 

0.5 “ 0.467511 0.435541 

 “ 0.0 0.422159 0.415059 

 “ 1.0 0.452395 0.428714 

 “ 1.5 0.467511 0.435541 

 

 

4   VPM RESULTS AND DISCUSSION 

Thirteen parameters arise in the mathematical model. Here extensive solutions for the impact of ten of these 

parameters (squeeze parameter β, magnetic field parameter M, modified Hartmann number Z, radiative parameter 

R, thermal Biot number Bi1, concentration Biot number Bi2, Eckert number Ec, length parameter , Schmidt 

number Sc and chemical reaction parameter Kc) on velocity, temperature and concentration profiles are visualized 

in Figs. 2-13 i.e. the other three parameter, namely constant B is constrained always as 10, non-Fourier thermal 

relaxation parameter βe, is fixed at 0.1 and  Prandtl number Pr is prescribed as unity, Tables 2-4 further provide 

solutions for skin friction coefficient, Nusselt number and Sherwood number at the upper Riga plate again with 

variation in selected parameters. 
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Fig. 2: Effect of squeezing parameter ( ) on the velocity profiles for M=0, e =0.1, Sc = 0.5, Z=1.5, B = 10, Pr 

= 1, Ec = 0,  Kc = 0.2,  = 0.1, R = 0.2, Bi1= 0.2, Bi2=0.2. 
 

 

Fig. 3: Effects of magnetic parameter ( )M , squeezing parameter ( ) on the velocity profiles for e =0.1, Sc = 

0.5, Z=1.5, B = 10, Pr = 1, Ec = 0.1,  Kc = 0.2,  = 0.1, R = 0.2, Bi1= 0.2, Bi2=0.2. 

 

Fig. 4: Effect of squeezing parameter ( )  on the temperature profiles for M=0, e =0.1, Sc = 0.5, Z=1.5, B = 

10, Pr = 1, Ec = 0.1,  Kc = 0.2,  = 0.1, R = 0.2, Bi1= 0.2, Bi2=0.2. 
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Fig. 5: Effect of magnetic parameter ( )M  on the temperature profiles for e =0.1, Sc = 0.5, Z=1.5, B = 10, Pr = 

1, Ec = 0.1,  Kc = 0.2,  = 0.1, R = 0.2, Bi1= 0.2, Bi2=0.2. 

 

Fig. 6: Effect of modified Hartmann number (Z) on the velocity profiles for M=5, e =0.1, Sc = 0.5, B = 10, Pr 

= 1, Ec = 0.1,  Kc = 0.2,  = 0.1, R = 0.2, Bi1= 0.2, Bi2=0.2. 

 

Fig. 7: Effect of thermal radiation parameter ( )R  on the temperature profiles for M= 5, e =0.1, β = 0.2, Sc = 

0.5, Z=1.5, B = 10, Pr = 1, Ec = 0.1,  Kc = 0.2,  = 0.1, Bi1= 0.2, Bi2=0.2. 
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Fig. 8: Effect of Eckert number ( )Ec  on the temperature profiles for M = 5, e =0.1, β = 0.2, Sc = 0.5, Z=1.5, 

B = 10, Pr = 1, R = 0.2,  Kc = 0.2,  = 0.1, Bi1= 0.2, Bi2=0.2. 

 

Fig. 9: Effect of thermal Biot number ( )1iB on the temperature profiles for M= 5, e =0.1, β = 0.2, Sc = 0.5, 

Z=1.5, B = 10, Pr = 1, R = 0.2, Ec = 0.1,  Kc = 0.2,  = 0.1, Bi2=0.2. 

 

Fig. 10: Effect of solutal Biot number (Bi2) on the concentration profiles for M= 5, e =0.1, β = 0.2, Sc = 0.5, 

Z=1.5, B = 10, Pr = 1, R = 0.2, Ec = 0.1,  Kc = 0.2,  = 0.1, Bi1=0.2. 
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Fig. 11: Effect of length parameter ( ) on the temperature profiles for M= 5, e =0.1, β = 0.2, Sc = 0.5, Z=1.5, 

B = 10, Pr = 1, R = 0.2, Ec = 0.1,  Kc = 0.2, Bi1= Bi2=0.2. 

 
Fig. 12: Effect of Schmidt number ( )Sc on the concentration profiles for M= 5, e =0.1, β = 0.2, Z=1.5, B = 

10, Pr = 1, R = 0.2, Ec = 0.1,  Kc = 0.2,  = 0.1, Bi1= Bi2=0.2. 

 
Fig. 13: Effect of chemical reaction parameter ( )Kc on the concentration profiles for M= 5, e =0.1, β = 0.2, 

Z=1.5, B = 10, Pr = 1, R = 0.2, Ec = 0.1,  Sc = 0.5,  = 0.1, Bi1= Bi2=0.2. 
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Table 2: Values of skin friction coefficient for different values of β, Z, M with e =0.1, B = 10, Pr = 1, R = 0.2, 

Ec = 0.1, Kc = 0.2,  Sc = 0.5,  = 0.1, Bi1= Bi2 = 0.2. 

  Z  M  (1)f   

0.1 1.5 0 1.67852 

0.3   1.069613 

0.5   0.435541 

  0  0.415059 

  1  0.428714 

  1.5  0.435541 

   1 0.380811 

   2 0.228311 

    3 0.006099 

 
 

 

Table 3: Values of Nusselt number for different values of Ec, , R, Bi1 with M = 5, e =0.1, β = 0.2, B = 10, Pr 

= 1, Kc = 0.2, Sc = 0.5,  = 0.1, Bi2=0.2. 

Ec   R  1Bi  (1 ) (1)R  − +   

0 0 0.2 0.1 0.135497 

0.01    0.152946 

0.02    0.170377 

  0.1   0.170484 

  0.2   0.170808 

  0.3   0.171347 

   1  0.305357 

   2  0.472464 

   3  0.63939 

   1 0.05 0.120061 

    0.1 0.186984 

      0.2 0.305357 

 

Table 4: Values of Sherwood number for different values of Sc, Kc and Bi2 with 

M = 5, Z= 1.5, e =0.1, β = 0.2, B = 10, Pr = 1, R = 0.2, Ec = 0.1,  = 0.1, Bi1 = 0.2. 

Sc  cK  2Bi  (1) −   

0.5 0.2 0.2 0.153789 

1   0.142203 

2   0.122256 

0.5 0.3  0.150561 

  0.4  0.147442 

  0.5  0.144426 

   0.3 0.201213 

   0.4 0.25045 

    0.5 0.29355 
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Fig. 2 illustrates the evolution of velocity, ( )f  , across the gap between the Riga plates for variation in 

squeezing parameter ( )  with all other parameters fixed. The prescribed data corresponds to M=0 (applied 

magnetic field ignored), 0.1e = (low thermal relaxation time), Sc = 0.5 (species has twice the molecular 

diffusivity as the momentum diffusivity), Z=1.5 (strong magnetization effect from Riga plates), B = 10, Ec = 0 

(viscous dissipation is neglected),  Pr = 1 (momentum diffusion rate is equivalent to heat diffusion rate), Kc = 0.2 

(destructive chemical reaction is present),  = 0.1 (weak length effect), R = 0.2 (weak radiative heat transfer 

relative to conductive heat transfer) and Bi1=Bi2=0.2 (thermal and solutal Biot numbers are equivalent). Evidently 

as β increases positively this increases the intensity of the squeezing flow between the Riga plates i.e. they move 

closer towards each other. However, for increasingly negative values of β the plates increasingly depart from each 

other. Enhanced squeezing accelerates the flow since it imparts greater inertial influence whereas increased 

separation of the Riga plates induces deceleration since the viscous effect dominates over inertia. The squeezing 

parameter is therefore critical in controlling the flow regime between the Riga plates. Similar observations have 

been reported by Hayat et al. [34]. Higher velocities are computed near the upper Riga plate and lower velocities 

near the lower (stationary) Riga plate. At very high negative squeezing parameter (β = - 0.6) the velocity profile 

exhibits a strongly parabolic decay from the upper Riga plate to the lower one. As β values become increasingly 

positive the decay assumes an increasingly linear behavior. There is no applied magnetic field or dissipation effect 

for this scenario (M= Ec = 0). 

Fig 3 illustrates the collective influence of magnetic parameter (M) and squeezing parameter (β) on velocity 

distribution ( ( )f  ) across the gap for the case where viscous heating is included (Ec =0.1). Flow acceleration 

is again apparent for positive β values and flow retardation is induced with negative β values. The intermediate 

case of vanishing β implies the upper Riga plate is also stationary i.e. both plates are immobile, and velocities 

computed fall between the plate squeezing (β =0.2) and plate separating flow (β = -0.2) case. With increasing 

magnetic field parameter, M, the Lorentz magnetohydrodynamic body force is enhanced. This leads to significant 

damping of the flow i.e. a decrease in velocity which is however restricted to the upper channel half space. The 

re-distribution in momentum results in a corresponding acceleration in the lower channel half space. There is 

therefore a cross-over in velocity response to external applied magnetic field and this is located near the gap 

center-line. This is frequently observed in squeezing magnetohydrodynamics as noted by Usha and Sridharan 

[10]. Again, it is noteworthy that substantial flow control is achieved in the squeezing regime with applied 

magnetic field, Bo to which M is proportional. Furthermore, generally parabolic decays in the velocity profiles 

from the upper Riga plate to the lower Riga plate are once again observed.  

Fig. 4 depicts the impact of squeezing parameter (β) on temperature,  () in the gap between the upper and 

lower Riga plates i.e. with transverse coordinate, . It is apparent that the reverse effect is induced as that 

computed for the velocity field. With increasing positive β values (stronger squeezing effect), temperatures are 

significantly decreased whereas with increasingly negative β values (enhanced separation of the Riga plates) 

temperatures are elevated significantly. Enhanced squeezing therefore curtails thermal diffusion whereas 

enhanced plate separation encourages it. The regime is therefore heated significantly with a wider gap whereas it 

is cooled with a narrower gap and this has also been observed in several studies of magnetic squeeze film flows 

including Muhammad et al. [36] and Atlas et al. [36]. A linear decrease in temperature is observed from the upper 
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Riga plate to the lower Riga plate for highest value of positive squeezing parameter. However, with negative 

values the decay is parabolic especially in the upper half space.  

Fig. 5 shows the impact of a variation in magnetic parameter (M) and squeezing parameter (β) on temperature 

distribution, ( )  . Increasing magnetic field is found to significantly boost temperatures across the gap. The 

supplementary work expended in dragging the fluid against the action of the transverse magnetic field, Bo, is 

dissipated as thermal energy. This heats the fluid in the gap and manifests in a temperature boost. Temperatures 

are therefore minimized with vanishing magnetic field (M =0) and maximized for the case of strongest magnetic 

field (M = 5). Again, with positive β values (stronger squeezing effect), temperatures are significantly decreased 

whereas with increasingly negative β values (enhanced separation of the Riga plates) temperatures are elevated 

significantly. 

Fig. 6 shows the collective influence of modified Hartmann number (Z) and squeezing parameter (β) on 

velocity distribution ( ( )f  ) across the gap.  Increasing Z exerts the opposite effect to the magnetic parameter, 

M, studied earlier. Larger Z values increase the magnetization between the plates. This effectively serves to 

accelerate the flow i.e. the opposite effect to the Lorentzian magnetic drag force associated with the applied 

magnetic field. This feature is unique to Riga plates. The enhanced magnetism between the plates may therefore 

be successfully utilized to accelerate the flow in the squeezing regime. Velocities are therefore minimized for the 

case where Z vanishes, and the Riga plates reduce to conventional plates in this scenario. As noted earlier 

substantially higher magnitudes of velocity are computed at the upper Riga plate compared with the lower Riga 

plate. At the upper Riga plate (moving) velocity is non-zero whereas at the lower Riga plate velocity vanishes in 

accordance with the no-slip boundary condition imposed there. Similar observations have been made by Hayat et 

al. [34]. A weak acceleration in the flow is computed with positive squeezing parameter (β>0) whereas the 

opposite behavior i.e. weak deceleration corresponds to the case of a negative squeezing parameter (β<0). 

Fig. 7 visualizes the impact of radiation parameter, R on temperature distribution, ( )   across the gap. The 

parameter R features in the dimensionless energy conservation Eqn. (12) in the augmented thermal diffusion term. 

It defines the relative contribution of thermal radiation heat transfer to thermal conduction heat transfer. When R 

= 0 thermal radiation contribution vanishes. When R > 1 thermal radiation dominates increasingly over thermal 

conduction. Although in conventional boundary-layer flows this would lead to energization of the flow and 

temperature enhancement, in the present regime increasing radiative parameter induces the opposite effect. The 

suppression of thermal diffusion with squeezing effect is responsible for the decreasing temperatures associated 

with greater radiation heat flux effect. With radiative flux absent the temperature decay between the upper and 

lower Riga plates is approximately linear. However, with increasing radiative effect the relationship becomes 

progressively nonlinear, in particular, in the vicinity of the lower Riga plate.  

Figure 8 illustrates the influence of the Eckert number (Ec) i.e. dissipation parameter on temperature profiles, 

( )  . Eckert number embodies the relative contribution of kinetic energy dissipated to the boundary layer 

enthalpy difference. For Ec = 0 there is no viscous dissipation. As Ec increases there is a progressively greater 

conversion of kinetic energy to heat which results in an elevation in temperatures. Ec features in both the viscous 

heating term, 
2

Pr Ec f  and the Joule dissipation term, 
2 2

Pr Ec M f   both arising in the energy conservation Eqn. 

(12). With magnetic field imposed as M = 5 there is a very strong Joule dissipation effect even with very low 
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values of Ec (associated with incompressible flows). The collective effect is to strongly elevate temperatures 

across the gap and in all cases the distributions decay from the lower Riga plate ( 0 = ) to the upper Riga plate (

1 = ). 

Fig. 9 illustrates the influence of thermal Biot number, Bi1 on temperature profiles, ( )  . This parameter 

features in the wall boundary conditions at the lower Riga plate in Eqn. (15). ( ) ( )1 1 / 1 /i fB h k v t a= − −  

and is a modification of conventional thermal Biot number. When this parameter is smaller than 0.1 this implies 

physically that the heat conduction inside the lower Riga plate is much faster than the heat convection away from 

its surface, and temperature gradients are negligible inside of it. This corresponds to the “thermally thin” scenario. 

When Bi>0.1, heat conduction inside the lower Riga plate is much slower than heat convection away from its 

surface into the squeezing flow regime, and this is known as the “thermally-thick” scenario. As Bi1 is increased 

there is a significant elevation in temperatures across the gap. Greater thermal convection is induced in the flow 

(i.e. stronger convection currents from the lower Riga plate to the squeezing regime) which becomes heated. The 

presence of thermal relaxation (βe >0) also contributes to this. 

Fig. 10 shows the response in concentration profiles, ( )  to variation in solutal Biot number, Bi2 . This 

parameter ( ) ( )2 2 / 1 /i fB h k v t a= − − also features in the wall boundary conditions at the lower Riga plate 

in Eqn. (15). For larger values of this parameter there is a greater contribution in convective mass transfer currents 

from the lower Riga plate to the squeezing flow regime. This generates an elevation in concentration magnitudes 

across the gap.  

Fig. 11 shows the impact of length parameter,  on the temperature evolution in the gap. This parameter arises 

only in the energy conservation Eqn. (15) and is associated with augmenting the dissipation effect. As this 

parameter increases progressively more kinetic energy is converted to heat and this elevates the temperatures and 

the effect is most pronounced near the lower Riga plate.  

Fig. 12 illustrates the influence of Schmidt number (Sc) on concentration profiles between the lower and 

upper Riga plates. Schmidt number symbolizes the ratio of the momentum to the mass diffusivity in convective 

mass transfer processes. It effectively quantifies the relative effectiveness of momentum and mass transport by 

diffusion. Smaller Sc values can represent for example hydrogen gas as the species diffusing (Sc ~0.2). Sc = 1.0 

corresponds to both momentum and species diffusion rates being equal. For Sc < 1, species diffusivity exceeds 

momentum diffusivity and this range is appropriate for low-molecular weight gases (e.g. Hydrogen, Helium) 

diffusing in air. With increasing Sc, there is a strong reduction in concentration magnitudes i.e. mass diffusion is 

inhibited in the squeezing regime.  

Fig. 13 presents the distributions of temperature across the gap with various values of chemical reaction 

parameter, Kc. When Kc > 0 this corresponds to the destructive type of homogeneous chemical reaction and it is 

observed that concentration magnitudes are decreased in the squeezing flow regime since more species is 

converted via chemical reaction i.e. the original species is reduced. When Kc < 0 this implies the constructive type 

of homogenous reaction and the opposite effect is induced i.e.  fewer original species is converted and therefore 

concentration magnitudes are elevated. Overall for destructive chemical reaction, concentration distributions 

decrease when the chemical reaction increases. Physically, for a destructive case, with stronger chemical reaction, 
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greater destruction of the original species takes place. This, in turn, suppresses molecular diffusion of the 

remaining species which leads to a fall in concentration magnitudes.  

Tables 2-4 show the variation in skin friction, Nusselt number and Sherwood number at the upper Riga plate 

with various parameters. Table 2 shows that with increasing squeezing parameter (β) and magnetic field parameter 

(M) there is a strong reduction in skin friction at the upper Riga plate, although the effect is more significant for 

magnetic field. With increasing modified Hartmann number (Z) the skin friction is conversely increased. Table 3 

reveals that with increasing Eckert number (Ec), length parameter (), radiation parameter (R) and thermal Biot 

number (Bi1) there is a consistent elevation in Nusselt number, although the most profound response is induced 

by thermal Biot number. Table 4 shows that with increasing Schmidt number (Sc) and chemical reaction 

parameter (Kc) there is a reduction in Sherwood number (wall mass transfer rate at the upper Riga plate) whereas 

with increasing solutal Biot number the Sherwood number is substantially enhanced. 

 

5    CONCLUSIONS 

A mathematical model has been developed for magnetohydrodynamic squeezing flow, heat and mass transfer 

between two Riga plates with viscous and Joule heating (Ohmic dissipation). A non-Fourier (Cattaneo-Christov) 

heat flux model is employed which generalizes the classical Fourier law to incorporate thermal relaxation time. 

Radiative heat flux is included. The transformed, non-dimensional emerging nonlinear ordinary differential 

boundary value problem with associated boundary conditions is solved analytically by the variational parameter 

method (VPM). Validation of the solutions is included for the special case of non-dissipative flow. The current 

study has shown that: 

➢ With increasing Sc, there is a strong reduction in concentration magnitudes i.e. mass diffusion is inhibited in 

the squeezing regime 

➢ When Kc > 0 this corresponds to the destructive type of homogeneous chemical reaction and concentration 

magnitudes are decreased. The opposite behavior is associated with Kc < 0 (constructive homogenous chemical 

reaction). 

➢ With increasing thermal Biot number, temperature magnitudes are elevated. 

➢ With increasing solutal Biot number, concentration magnitudes are elevated. 

➢ With increasing viscous dissipation and Joule dissipation there is a significant increase in temperatures across 

the gap between the two Riga plates. 

➢ Increasing radiative heat transfer results in an overall decrease in temperatures. 

➢ Increasing length parameter augments the dissipation effect and results in an increase in temperatures. 

➢ Increasing modified Hartmann number corresponds to greater magnetization between the Riga plates and 

accelerates the flow. 

➢ Increasing magnetic field parameter depresses velocities and increases temperatures across the gap. 

➢ Increasing positive values of squeezing parameter (stronger squeezing effect) increases velocity and reduces 

temperature whereas the opposite effect is computed increasingly negative values of squeezing parameter 

(enhanced separation of the Riga plates). 

➢ With increasing squeezing parameter (β) and magnetic field parameter (M) there is a strong reduction in skin 

friction at the upper Riga plate. 

➢ With increasing modified Hartmann number (Z) the skin friction is enhanced at the upper Riga plate. 
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➢ With increasing Eckert number (Ec), length parameter (), radiation parameter (R) and thermal Biot number 

(Bi1) there is a consistent increase in Nusselt number, although the greatest enhancement is induced by thermal 

Biot number. 

➢ With increasing Schmidt number (Sc) and chemical reaction parameter (Kc) there is a reduction in Sherwood 

number at the upper Riga plate and the contrary effect is induced with increasing solutal Biot number. 

 

The present study has been restricted to Newtonian fluids and has also neglected a number of thermophysical and 

other electromagnetic effects. Future investigations may consider two-phase flow and viscoplastic fluid behavior 

[49], ferrofluid magnetization in rotational systems [50], nano-particle doping [51] and also Hall current and heat 

generation/absorption effects [52]. Inclusion of these phenomena will serve to generalize the present Riga plate 

model further and may shed more light on the flows intrinsic to smart sensor systems. The variational parameter 

method (VPM) appears to hold significant promise in simulating such multi-physical problems in electromagnetic 

sensor technologies. 
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