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Abstract: The study reveals analytically on the 3-dimensional viscous time-dependent gyrotactic bioconvection in 

swirling nanofluid flow past from a rotating disk. It is known that the deformation of the disk is along the radial 

direction. In addition to that Stefan blowing is considered. The Buongiorno nanofluid model is taken care of assuming 

the fluid to be dilute and we find Brownian motion and thermophoresis have dominant role on nanoscale unit. The 

primitive mass conservation equation, radial, tangential and axial momentum, heat, nano-particle concentration and 

micro-organism density function are developed in a cylindrical polar coordinate system with appropriate wall (disk 

surface) and free stream boundary conditions. This highly nonlinear, strongly coupled system of unsteady partial 

differential equations is normalized with the classical Von Kármán and other transformations to render the boundary 

value problem into an ordinary differential system. The emerging 11th order system features an extensive range of 

dimensionless flow parameters i.e. disk stretching rate, Brownian motion, thermophoresis, bioconvection Lewis number, 

unsteadiness parameter, ordinary Lewis number, Prandtl number, mass convective Biot number, Péclet number and 

Stefan blowing parameter. Solutions of the system are obtained with developed semi-analytical technique i.e. Adomian 

decomposition method. Validation of the said problem is also conducted with earlier literature computed by 

Runge-Kutta shooting technique. 

Key words: Nanofluids; Gyrotactic bioconvection; Rotating disk bioreactors; Von Kármán swirling flow; Stefan 

blowing; Adomian decomposition method (ADM). 
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1 Introduction 

External heat and/or mass transfer from 

rotating bodies has received considerable attention 

in engineering sciences. Such flows feature 

centrifugal forces which can dramatically modify 

heat and mass transfer rates at the boundary (solid 

surface). When strong buoyancy forces are present 

the regime becomes a natural convection one. In the 

absence of buoyancy forces, forced convection is 

present. Heat transfer is generally analyzed based 

on the Fourier heat conduction equation and mass 

transfer via the Fickian diffusion equation. Many 

different investigations of rotating flows have been 

communicated over a wide spectrum of geometrical 

configurations including cones, ellipses, spheres, 

cylinders and disks and at different rates of rotation 

from very slow to extremely high speed. Ma et al. 

[1] investigated theoretically and experimentally the 

species diffusion in a rotating cylinder. Further 

Mohanty et al. [2] studied on cylinders, Anwar Bég 

et al. [3] on thermo-magnetic free convection 

boundary layers from a spinning cone in permeable 

media, Subhashini et al. [4] on compressible heat 

and mass transfer from a spinning sphere (using 
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finite difference methods) and Takhar and Whitelaw 

[5] on asymptotic convection from a rotating sphere. 

An important geometry in various biochemical and 

medical processes is the rotating disk apparatus. 

This is also deployed in petroleum engineering as a 

mechanism for evaluating the kinetics of 

heterogeneous reactions [6]. The swirling flow from 

rotating disks also arises in rotary atomization, 

photocatalytic fuel cells (RDPFCs) [7] and gas 

absorption dynamics [8]. The fluid mechanics of 

rotating disk flow was first evaluated in a 

monumental study by Von Kármán [9] who 

introduced his famous set of transformations 

rendering the Navier-Stokes equations into ordinary 

differential form. Many studies were communicated 

subsequently which are summarized in Greenspan 

[10]. Analyses of heat and mass transfer in Von 

Kármán flows have been lucidly reviewed more 

recently by Sehvchuk [11]. Many interesting studies 

have been conducted focused on either heat, mass 

or combined heat and mass transfer for both 

Newtonian and non-Newtonian fluids with 

multi-physical and chemical effects present.  

These studies have been communicated by 

Gambaryan-Roisman and Stephan [12] (considering 

wall topography and thermo capillary i.e. surface 

tension effects), Helcig and Wiesche [13] 

(experimental work considering both air and water). 

Recently, nanotechnology is an advanced area 

of research in engineering. Therefore, Choi [14] 

initiated the pioneer work on Nanofluids which 

contribute a emerging role in fluid dynamics due to 

significant achievements than that of conventional 

base fluids such as water, kerosene, air, etc with 

various nano-particles. The suspensions of these 

nanoparticles have enhanced properties on thermal 

conductivity and viscosity. Now a day, nanofluids 

have vast use in biomedical technology. Moreover, 

nanofluid research and development have extensive 

experimental investigations. Further, Buongiorno 

[15] developed a popular model on nanofluid. This 

suggests the contribution of dynamic role of 

thermophoresis and Brownian motion on the 

enhancement of conductivity. Das et al. [16] 

proposed advanced diverse applications and 

simulations of nanofluids. Rotating nanofluid flows 

have more recently garnered some attention. These 

combine the theory of rotating fluids with nanofluid 

properties. Use of similar flows which helps in 

reduction of maximum coordinates for non-linear 

coupled PDEs into systems of ODEs and they 

solved either analytically or numerically. 

Turkyilmazoglu [17] in his proposed study on 

nanofluid considering water as a base fluid and 

along with several nanoparticles such as Cu, Ag, 

CuO, etc. are imposed and for the solution he used 

spectral Chebyshev collocation method and 

concluded that copper nanofluids is best for heat 

transfer. Influence of solutal concentration on 

swirling disk flow of magnetite ferrous oxide was 

studied by Hayat et al. [18] and proposed homotopy 

series solutions. Raza et al. [19] computed 

magnetized three-dimensional nanofluid flow in a 

rotating medium using the Buongiorno model. 

Bioconvection refers to continuous formation 

of suspensions of swimming micro-organisms e.g. 

algae and bacteria. Steady patterns and also the 

formation of patterns in gyrotatic bioconvection can 

be strongly regulated by torques. Very sophisticated 

hydrodynamic models have been developed for the 

propulsion of such microorganism. Rotating 

bioconvection has also received considerable 

interest in recent years. For example, Chakraborty 

et al. [20] used bvpc function of Matlab to examine 

impacts of magnetic field and convective boundary 

conditions. Rotating bio convection in nanofluids is 

also a rich and emerging area of nano-bio-fluid 

dynamics which holds some promise for energy 

systems and medical applications. By suspend 

micro-organisms in nanofluids, both thermal 

enhancement benefits and green engineering 

benefits may be achieved simultaneously. This has 

inspired some recent activity in mathematical 

models of nanofluid bio convection in rotating 

systems. Xun et al. [21] used the MATLAB bvp4c 

ordinary differential equation solver to compute the 

nanofluid bio convection in a rotating channel with 

temperature-dependent viscosity and thermal 

variable conductivity. They observed that local 

Nusselt number and wall motile microorganisms 

flux are more significantly modified by thermal 

conductivity variation parameter and that larger 

values of bio convection Péclet number result in an 

accumulation of motile microorganisms in the core 

region of the channel. They further noted that this 

accumulation is intensified with thermophoresis but 

inhibited with Brownian motion. 

In the above studies whether they involve 

nanofluids or bio convection or both, the boundary 

walls have generally been rigid. However 
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deformable boundaries are increasingly featuring in 

modern biomedical designs. For example, microbial 

cell engaged in imposing bio convection in 

nanofluids are exploring stretching (and contracting) 

walls which can dramatically influence 

microorganism impacts heavily on fuel cell 

efficiency and sustainability. Recently Anwar Bég 

et al. [22] worked on stretching/shrinking) in a 

deformable channel as a model for bio convection 

nanofluid fuel cell. They showed that doping of the 

base fluid with nanoparticles and suspended 

gyrotactic microorganisms collectively enhances 

both nanoparticle and motile microorganism mass 

wall flux (Sherwood numbers) and generally, a 

stable mixture (suspension) is attained. Several 

authors (Li et al. [23], Imtiaz et al. [24], Hayat et al. 

[25] and Hayat et al. [26]) have proposed their work 

on bio convection nanofluid transport, in various 

model considering different nanofluids like 

magnetite-Fe3O4 ferro-nanofluid, CNT nanofluid 

etc. Other studies include Ahmed et al. [27] (for 

magneto-nanofluid squeezed between parallel disk), 

Mushtaq and Mustafa [28] (for nanofluids with 

convective mass wall conditions) and Chen et al. 

[29] (considering power-law stretching of the disk 

for gyrotactic bio Nano convection flow). From the 

aforesaid studies it is to note that stretching disk is 

useful for the distribution of temperature, 

nanoparticle concentration and motile micro- 

organism density. 

In the current study, we re-visit the recent 

investigation by Latiff et al. [30] to generalize their 

analysis of time-dependent Von Kármán swirl bio 

convection nanofluid flow from a rotating disk with 

Stefan blowing (wall mass transfer) and radial disk 

stretching. Thermophile (“heat loving”) gyrotactic 

micro-organism bio convection is addressed. Stefan 

blowing is a more sophisticated mechanism for 

studying wall mass transfer than conventional 

transpiration (injection velocity) models. The 

present nonlinear coupled partial differential 

equation boundary value problem is normalized 

with appropriate transformations into ordinary 

differential form. An optimized Adomian 

decomposition method based on power-series 

expansions is utilized to solve the dimensionless 

governing equations. The results of Latiff et al. [30] 

are verified. Extensive new computations are also 

presented which provide a wider insight into the 

mechanisms of transport in the boundary layer swirl 

regime. The simulations presented are relevant to 

biofilm rotating disk reactors modified with 

nano-particle doping. Furthermore, these studies 

provide a useful benchmark for more complex 

computational fluid dynamics analysis with 

commercial codes (e.g. ANSYS FLUENT) which 

will be of benefit to bio-nano-fuel cell designers. 

 

2 Mathematical vonkármán swirl 
bioconvection nanofluid model 

 

Considered an unsteady 3D bioconvection 

nanofluid over a rotating disk in a cylindrical polar 

coordinate system (r, ,z) with velocity components 

(u,v,w). The nanofluid is assumed to be a dilute 

suspension with a homogenous distribution of 

gyrotatic micro-organisms. Gyrotaxis is swimming 

directed by the balance between the torque due to 

gravity acting on a bottom-heavy cell and the 

torque due to viscous forces arising from local 

shear flows. In the present model the 

micro-organisms do not interact with the 

nano-particles. Similar to nanofluids, in suspensions 

of motile microorganisms that exhibit spontaneous 

formation of flow patterns (this phenomenon is 

called bioconvection) physical laws that govern 

smaller scales lead to a phenomenon visible on a 

larger scale. At the disk surface no-slip boundary 

conditions are  considered with Stefan’s blowing 

and simulated along axial velocity component. 

From Figure 1  the species concentration of 

nanofluid at the disk surface follow f wC C C  to 

impose mass convective conditions. Due to various 

nanoparticle concentration near to the disk 

concentration, wall and ambient states needs mass 

transfer coefficient .mh .From the aforesaid  

assumptions, the governing equations for continuity, 

radial, circumferential (azimuthal) and axial 

momentum, thermal energy (heat), nanoparticle 

concentration (species volume fraction)and motile 

microorganism density number, in cylindrical 

coordinates are as follows  [30]: 
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Figure 1 Flow configuration of problem 
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Following Watson and Wang [31], tangential 

velocity, ( ) ( ), , 0 / 1u r t  =  − . Stretching velocity 
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Here ,angular velocity,  , unsteadiness parameter 

( 0  ) and ( 0 = ) is associated to steady state, 

and c , stretching rate in radial direction. 

Following Latiff et al. [30], we have adopted the 

similarity transformations as: 

( ) ( )
( )

( )
( )

( )
( )

( ) ( ) ( )

, ,
11

2
, ,

1 1

, ,

r

z

f w

z r
u f

tt

r
u g u f

t t

T T C C n

T T C C nw



 
 


 

 

     



 
= =

−−

 − 
= =

− −

− −= = =
− −











  (9) 

Assimilating the similarity variables (9) into 

equations (2) – (7) and (8) yields the set of ODEs 

with boundary conditions as: 
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Here the time dependent parameter, /S =  , 

Prandtl number, Pr / = ,Brownian motion,  

/BNb D C C =  , thermophoresis parameter, 

/TNt D T T =  , Lewis number, / BLe D=  bio- 

convection Lewis number, / MLb D= is, bio-conv- 

ection Peclet number, /cPe bW = , Stefan blowing 

parameter, ( ) ( )/ 2 1w f wf C C C= − − , Biot number, 
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From Eqn. (16), the radial ( r ) direction shear 
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Introducing Eqns. (9) and (17) -(21) into (16) we 

get: 
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Here
2

Re /r r =  . 

 

3 Adomain decomposition solution of 
boundary value problem 

 

The higher order coupled ODEs (10)-(14) with 

boundary conditions (15) does not admit exact 

analytical solutions. Many such techniques are 

available for micro and nano-scale flows including 

finite element techniques [32] and shooting 

quadrature [33]. Another group of semi-numerical 

methods has in recent years also become popular. 

These power-series expansions and using the codes 

of MAPLE, MATHEMATICA, MATLAB we can 

compute to numerically. That is (homotopy 

methods (Daniel and Daniel [34])) and (the 

successive Taylor series linearization method 

(STSLM) utilizing Chebyshev interpolating 

polynomials and Gauss–Lobatto collocation, as 

employed by Bhatti et al. [35]). Finally, Adomian 

[36] uses a polynomial expansion to get higher 

accuracy result. Adomian decomposition method 

(ADM) is employed for nanofluid and 

multi-physical fluid dynamics problems. ADM is an 

analytical approximation without using 

linearization, or perturbation methods. ADM [36] 

gives an infinite series solution and utilizes 

recursive relations. The Eqns. (10) -(14) are first 

rearranged as: 
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( ) ( ) ( )

( )

1 1 1 2

1 1 1

1 2 1

1 1

2
1

1

2

L L f L f f L f

L g S L f f

− − −

− −

 = − +

 − + +
 
 
 

     (28) 

( ) ( ) ( )1 1 1

2 2 2

1

2

2 2
2

1

2

L L g L f g L g f

S L g g

− − −

−

 = − +

+ +
 
 
 

        (29) 

( ) ( ) ( )

( ) ( )

1 1 1 2

2 2 2 2

1 1

2 2

1
Pr 2 Pr

2

L L Nb L Nt L

S L L f

   

  

− − −

− −

 = − −

 + −

      (30) 

( ) ( ) ( )

( )

1 1 1

2 2 2

1

2

1
Pr

2 2

2 Pr

Nt
L L L Le S L

Nb

Le L f

   



− − −

−

 = − −

−

 (31) 

( ) ( )

( ) ( )

1 1

2 2 2

1 1

2 2

1
Pr

2

2 Pr Pr

L L Le S L

Lb L f Lb Pe L

 

    

− −

− −

= −

   − + +

 (32) 

The unknown functions ( ) ( ) ( ) ( ) ,,g,f  and 

( ) can be expressed as infinite series of the form: 

( ) ( ) ( )

( ) ( )

0 0 0

0 0

, , ,

,

m m m

m m m

m m

m m

f f g g    

     

  

= = =

 

= =


= = = 



= =


  

 

   (33) 

The remaining terms of (28) -(32) can be expressed 

as: 

2
, ,

0 0

2
, ,

0 0

, ,
0 0

, ,
0 0

, ,
0 0

2
, ,

0 0

, ,
0 0

, ,
0 0

,
0

A f f B fm m
m m

C g D fm m
m m

E f F f gm m
m m

G f g H gm m
m m

I g Jm m
m m

K Lm m
m m

M f Nm m
m m

O P fm m
m m

Q Rm m
m

 

 

 

 



 
 = = 

= =
 

= = 
= =
 

 = = 
= =
 

= = 
= =
 

  = = 
= =
 

 = = 
= =
 

 = = 
= =
 

 = = 
= =


=
=

,
0

,
0 0

f
m

S Tm m
m m



   


=

=
 

  = = 
= =





























          (34) 

Here recursive formula is used to find all the 

components. The exact solutions of (23) -(27) are 

( ) ( )

( ) ( )

( )

,

, ,
0 0

,
0 0

0

f Lim f g Lim gm m
m m

Lim Limm m
m m

Lim m
m

 

     

  

 
= = 

= =

 
= = 

= =


= 

=









   (35) 

Therefore, the RHSs of Eqns. (28) - (32) can be 

written as: 

( ) ( ) ( ) ( ) ( )
2

1

1 1 0 0 0
2!

L L f f f f f


 
−

 = − − −   (36) 

( ) ( ) ( ) ( )1

2 2 0L L g g g g  
−

= − −             (37) 

( ) ( ) ( ) ( )1

2 2 0 0L L     
−

= − −             (38) 

( ) ( ) ( ) ( )1

2 2 0 0L L     
−

= − −             (39) 

( ) ( ) ( ) ( )1

2 2 0 0L L    
−

= − −             (40) 

From (15), invoking the boundary conditions: 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )

0 1 , 0 ,

0 , 0 1, 0 ,

0 1, 0 , 0 ,

0 1 , 0 1,

0

f r f

f p g g q

t r

Nd r

u

 

  

 



= − − = 


 = = = 


= = = 


 = − − = 
 = 

          (41) 

The solutions of Eqns. (23) - (27) may therefore be 

written as   

( ) ( ) ( )

( ) ( )

2
1

1

1 2 1 2 1

1 1 1

1 2
2

1

2

f r p L f f

L f L g S L f f


  



−

− − −

= − − + + −

  + − + +
 
 
 

    (42) 

( ) ( ) ( )1 1

2 2

1

2

1 2 2

1

2

g q L f g L g f

S L g g

 



− −

−

 = + − +

+ +
 
 
 

       (43) 

( ) ( ) ( )

( ) ( )

1 1 2

2 2

1 1

2 2

1

1
Pr 2 Pr

2

t Nb L Nt L

S L L f

     

  

− −

− −

  = + − −

 + −

     (44) 

( ) ( ) ( )

( ) ( )

1

2

1 1

2 2

1

1
Pr 2 Pr

2

Nt
r Nd r L

Nb

Le S L Le L f

   

  

−

− −

= − − −

 + −

       (45) 
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( ) ( )

( ) ( )

1

2

1 1

2 2

1
1 Pr

2

2 Pr Pr

u Le S L

Lb L f Lb Pe L

   

    

−

− −

= + +

   − + +

   (46) 

Here it is necessary to evaluate the unknowns p, q ,r, 

t, u. Utilizing Eqns. (42) - (46) the initial imposed 

solutions along with higher order recursive 

solutions are 

( ) ( ) prf
2

1
2

0


 ++−−=            (47) 

( ) qg  +=10                         (48) 

( ) t +=10                          (49) 

( ) ( ) rNdr −−= 10                    (50) 

( )  u+=10                         (51) 

and 

( ) ( )

( )

1 1 2

1 1

1 2 1

1 1

2
1

1

2

f L f f L f
m

L g S L f f

− −

− −

 = − +
+

 − + +
 
 
 

          (52) 

( ) ( )1 1

2 2

1

2

2 2
1

1

2

g L f g L g f
m

S L g g

− −

−

 = − +
+

+ +
 
 
 

            (53) 

( ) ( )

( ) ( )

1 1 2

2 2

1 1

2 2

1

1
Pr 2 Pr

2

Nb L Nt L
m

S L L f

   

  

− −

− −

  = − −
+

 + −
         (54) 

( ) ( )

( )

1 1

2 2

1

2

1
Pr

1 2

2 Pr

Nt
L Le S L

m Nb

Le L f

   



− −

−

 = − +
+

−

    (55) 

( ) ( )

( )

1 1

2 2

1

2

1
Pr 2 Pr

1 2

Pr

Le S L Lb L f
m

Lb Pe L

  

   

− −

−

  = −
+

  + +

  (56) 

Using m=0,1,2 in Eqns. (52) -(56) with the aid of 

(34) the solutions of Eqns. (23) -(27) expressed in 

(33) emerge as follows: 

 

( ) ( ) ( )

( ) ( )

( ) ( )

2
3 4

1 2 7

5 6

3 8 17 9 18

7 8 9

10 19 11 20 21

10 11

22 23

1
2

f r p T T T

T T T T T

T T T T T

T T


    

 

  

 

= − − + + + + +

+ + + + +

+ + + + +

+ +

 (57) 

( ) ( )

( ) ( )

( )

2 3

4 5 12

4 5

6 13 24 14 25

7 8 9 10

16 27 28 29 30

11

31

1g q T T T

T T T T T

T T T T T

T

   

 

   



= + + + +

+ + + + +

+ + + + +

+

 (58) 

( ) ( )

( ) ( )

( ) ( )

2 3

32 33 41 59

4 5

34 42 60 43 61

6 7

44 62 45 63

8 9 10

64 65 66

1 t T T T T

T T T T T

T T T T

T T T

    

 

 

  

= + + + + +

+ + + + +

+ + + +

+ + +

  (59) 

( ) ( ) ( )

( ) ( )

( ) ( )

( )

2

35 46

3 4

36 47 67 37 48 68

5 6

49 69 50 70

7 8 9 11

51 71 72 73 74

1r Nd r T T

T T T T T T

T T T T

T T T T T

   

 

 

   

= − − + +

+ + + + + +

+ + + +

+ + + + +

   (60) 

( ) ( )

( ) ( )

( ) ( )

( )

2

52 38 53 75

3 4

39 54 76 40 55 77

5 6

56 78 57 79

7 8 9 10

58 80 81 82 83

1 u T T T T

T T T T T T

T T T T

T T T T T

    

 

 

   

= + + + + +

+ + + + + +

+ + + +

+ + + + +

 (61) 

The values of the notations 831−=i,s'iT  are 

summarized in the Appendix. 

 

4  Validation of ADM solutions 

 

The assumed values (0) , (0) , (0) ,f p g q r = = =  

(0) t = and (0) u  = are calculated by using 

symbolic software MATLAB [39] with code bvp4c. 

The conformity of ADM with earlier , the work of 

Latiff et al. [30] those are used Runge-Kutta 

quadrature rule. In presence of  unsteadiness 

parameter, S (S < 0) various cases are taken care of 

such as, a non-deformable disk ( = 0) and a 

radially stretching disk ( = 1.0). These values are 

presented in Tables 1 and 2 for the radial local skin 

friction (0)f  , local circumferential skin friction 

(0)g ,local Nusselt number (0) − , local Sherwood 

number or nano-particle wall concentration gradient 

(0)− and motile micro-organism wall mass flux 

(0) − i.e. number density gradient function). The 

confidence of ADM is justified due to good 

correlation. 
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Table-1: Comparison of results when 0 =  

 
S  

( )0f   ( )0g  

RK45 ADM 

(present) 

RK45 ADM 

(present) 

-0.1 0.5287 0.527889 -0.5779 -0.57663 

-0.2 0.5496 0.549070 -0.5407 -0.53914 

-0.5 0.6132 0.613551 -0.4280 -0.42734 

-1 0.7196 0.719461 -0.2365 -0.23433 

-2 0.9315 1.079269 0.1550 0.282443 

  
S  ( )0 −  ( )0−  ( )0 −  

-0.1 0.38045 0.107966 0.444195 

-0.2 0.412973 0.107892 0.476487 

-0.5 0.499995 0.112086 0.564525 

-1 0.616827 0.12128 0.683967 

-2 0.826726 0.136449 0.897399 

 
 

 

 Table-2: Comparison of results when 1.0 =  

 
S  

( )0f   ( )0g  

RK45 ADM 

(present) 

RK45 ADM 

(present) 

-0.1 -0.9191 -0.91796 -1.4656 -1.4604 

-0.2 -0.8896 -0.88725 -1.4441 -1.43743 

-0.5 -0.8008 -0.79244 -1.3797 -1.36755 

-1 -0.6520 -0.62533 -1.2716 -1.24843 

-2 -0.3517 -0.31715 -1.0534 -0.93917 

  
S  ( )0 −  ( )0−  ( )0 −  

-0.1 0.722863 0.089094 0.775458 

-0.2 0.746844 0.092758 0.80035 

-0.5 0.812721 0.102231 0.868371 

-1 0.907939 0.113936 0.966593 

-2 1.055982 0.126582 1.117173 

 
 

5  ADM results and interpretation  
 

Selected ADM solutions for ( ) ( )( ), , ,f g     

( ) ( ) ( ) ( ) ( ) ( ), , 0 , 0 , 0 , 0f g        − − and ( )0 −  

are given. For brevity our discussion restricted to 

the influences of stretching (S), unsteadiness (), 

and Stefan blowing/suction ( )wf .At the time of 

computation, we have considered as 
70.4, 10 , 1, 0.2,Pr 0.7.Nd Nb Nt Le Lb Pe −= = = = = = = =

These corresponds to air-based nanofluid with weak 

Brownian motion, thermophoresis and equal 

nano-particle, micro-organisms and thermal 

diffusivities. The current simulations apply to 

air-based rotating bio-nano rotating disk flows. (Pr 

= 0.7 for the base fluid of air). The data selected for 

nanofluid properties is based on the best currently 

available, namely the Das et al. [16] reference is 

based on real experiments.  

Results are visualized in Figures 2-16 and 

Tables 3-4.  

 

 
Figure 2 Suction/injection and unsteadiness 

parameters effect on radial velocity. 

 

 
Figure 3 Suction/injection and unsteadiness 

parameters effect on circumferential velocity. 

 

 
Figure 4 Suction/injection and unsteadiness 

parameters effect on temperature. 
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Figure 5 Suction/injection and unsteadiness 

parameters effect on concentration. 

 

 
Figure 6 Suction/injection and unsteadiness 

parameter effect on motile microorganism 

 

 
Figure 7 Suction/injection and disk stretching 

parameters effect on radial velocity. 

 

 

 

 
Figure 8 Suction/injection and disk stretching 

parameters effect on circumferential velocity. 

 

 
Figure 9 Suction/injection and disk stretching 

parameters effect on temperature. 

 

 
Figure 10 Suction/injection and disk stretching 

parameters effect on nanoparticle concentration 
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Figure 11 Suction/injection and disk stretching 

parameters effect on motile microorganism. 

 

 
Figure 12 Suction/injection parameter effect on 

radial skin friction. 

 
Figure 13 Suction/injection parameter effect on 

Azimuthal skin friction. 

 

 
Figure 14 Suction/injection parameter effect on 

Nusselt number . 

 

 
Figure 15 Suction/injection parameter effect on 

Sherwood number. 

 
Figure 16 Suction/injection parameter effect on 

microorganism wall mass flux. 
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Latiff et al. [30] rapt principally on the 

influence of the radial stretching parameter ( ) and 

to a lesser extent on the unsteadiness parameter (S). 

Herein we address both and consider significantly 

stronger blowing effects.  Figures 2- 6 illustrate 

the collective influence of unsteadiness parameter 

(S) and Stefan blowing/suction ( )wf on radial 

velocity, circumferential velocity, temperature, nano 

-particle concentration and motile microorganism 

density number. It is important to note that suction 

is not generated by perforations at the disk surface. 

The suction effect (reverse Stefan blowing) is 

associated with mass flux from the free stream of 

the boundary layer to the rotating disk surface. 

Similarly, the Stefan blowing is caused by the mass 

flux from rotating disk surface to the free stream. 

Additionally, it is pertinent to mention that weak 

radial disk stretching is prescribed (=0.2). Figure 

2 clearly shows that with strong suction 

( 0)wf  radial flow deceleration is induced whereas 

very strong radial flow acceleration is generated 

with strong blowing ( 0)wf  . The swirling flow 

mobilized by the disk rotation acts as a pump 

drawing fluid inward which spreads radially 

outwards over the disk face. This assists in 

momentum development in the radial direction. The 

presence of suction causes adherence of the 

boundary layer to disk surface whereas blowing 

results in the opposite effect. With weak 

unsteadiness (S=-1) i.e. weak disk deceleration, 

there is a more gradual evolution in radial velocity 

profiles from the disk surface ( 0) = to the free 

stream than for strong disk deceleration (S = -10). A 

very strong overshoot arises for the case of strong 

disk deceleration with strong blowing (S = -10, wf  

=2). This generates the maximum radial velocity. 

With absence of suction or blowing the peak is 

reduced and displaced closer to the wall and is in 

fact almost eliminated with suction (S = -10, 

wf =2). For the weak disk deceleration case (S = -1) 

a similar effect is produced although peak radial 

velocity magnitudes are somewhat lower. Negative 

radial velocity (back flow) is only induced for a 

short zone further from the disk surface with strong 

deceleration. The smoothness of the profile 

confirms the convergence of the ADM solutions for 

infinite boundary conditions imposed herewith. 

Figure 3 depicts the evolution in circumferential 

(azimuthal) velocity with transverse coordinate and 

various deceleration i.e. unsteadiness (S) and 

blowing/suction )( wf  parameters. There is a distinct 

absence of velocity overshoots for any combination 

of parameters. With weak disk deceleration the 

circumferential velocity decays monotonically from 

the disk surface to the free stream, whether suction 

or blowing is present. However, with strong disk 

deceleration, there is a much sharper decay in 

circumferential velocity from the disk surface 

resulting in backflow nearby disk. However, beside 

further progression into boundary layer there is a 

re-surge in circumferential velocity which 

eventually vanishes in the free stream. The 

circumferential (and radial velocity) distributions 

are generally also consistent with numerous other 

Von Kármán swirling flow studies, notably Evans 

[40]who did not consider disk deceleration) and 

more recently Fang and Tao [41] Watson and Wang 

[31]. Furthermore, the presence of nano-particles 

and micro-organisms therefore does not 

dramatically alter the classical velocity distributions 

in Von Kármán swirling flow. Figure 4 depicts the 

response in temperature distribution to unsteadiness 

(S) and Stefan blowing/suction ( )wf effects. 

Substantially lower values are computed with 

strong disk deceleration (S= -10) compared with 

weak disk acceleration (S = -1) indicating that 

thinner thermal boundary layer. As anticipated the 

temperatures are enhanced with Stefan blowing 

whereas they are reduced with suction. Additionally, 

there is a greater spread profiles at weaker 

deceleration compared with stronger deceleration.  

The diffusion of heat energy in the boundary layer 

dominion is clearly impacted with retardation in the 

disk spin and mass transfer conditions. Even though 

the regime is forced convection and there are no 

buoyancy effects, there is still significant coupling 

of the radial momentum (10) and energy equation 

(12) via the term 2 Pr f   in the latter. The 

unsteadiness parameter (S) also appears in many 

terms in all the conservation equations, notably in 

the radial equation in the term ( )( )1/ 2S f f − + , 

in the azimuthal equation in the term 

( )( )g/gS +− 21  and in the energy equation in the 

term ( )  − PrS/ 21 .  The momenta and 

temperature fields are therefore very sensitive to 

adjustment in the unsteadiness parameter and this is 

reflected in figures 2-4. A further point of note is 

that in figures 2-4 there is never any intersection of 

profiles corresponding to a specific unsteadiness 

value with each other. This trend is not sustained in 

Figure 5 displays the influence of unsteadiness and 

blowing/suction parameter on nano-particle 

concentration profiles. In addition to that the profile 

is partitioned into two distinct layer such as disk 

region (near and far). In the first region i.e. 

0 1  , for strong gust the magnitude of 

concentration layer is elevated and has a dominating 
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role for weak disk deceleration ( 1)S = −  in 

comparison with strong disk deceleration ( 10)S = − . 

Further, in the second region the effect is opposite 

i.e. concentration reduces with an increase in 

blowing whereas suction slightly enhances it. Again, 

the profiles deviate for particular value of S when 

we compare the weak situation with strong situation 

of disk deceleration. In the present case we have not 

discussed the case of S > 0. It validates with the 

mathematical expression presented in eqn. (13)  

( )  − S/ 21 and moreover at the time of 

computation via coupling terms, 2 f . Figure 6 

exhibits the effects of unsteadiness and Stefan 

blowing/suction on motile micro-organism density 

profiles for fixed values of various pertinent 

parameters. Detected that, an increase in blowing 

inflate micro-organisms effect is reversed in case of 

suction. Motile micro-organism retards significantly 

with Strong deceleration in comparison with weak 

disk deceleration. It is also clear from the 

expression presented in eqn. (14) ( )1/ 2 S −  

that Micro-organism suppressed directly and via 

coupling term 2 f   . Also, notable that there is a 

hefty mix between the nano-particle species () and 

micro-organism species () field via the terms, 

( )Pe    − + . 

Figures 7-11 illustrate the radial velocity, 

circumferential velocity, temperature, nano-particle 

concentration and motile micro-organism for 

various   and wf . A further motivation for the 

current study was to elaborate in more detail the 

findings of Latiff et al. [30] which were limited in 

interpretation. Radial velocity (figure 7) is 

accentuated with disk stretching i.e. the radial flow 

is strongly accelerated. However, this is confined to 

the near-wall zone. The profiles with disk stretching 

present and absent ( 0) = are significantly different. 

For 0  the velocity at the surface is non-zero 

which is presented in eqn. (15). Therefore, the 

traditional no-slip condition is modified with the 

particular type of slip condition and suggests 

decaying in the boundary layer. When 0 = , Von 

Kármán [9] presented their problem with classical 

no-slip radial velocity boundary condition. This 

results in the characteristic growth of the radial 

velocity from zero at the wall to a near-wall peak 

and subsequent decay into the free stream. In the 

disk stretching case, Stefan blowing consistently 

accelerates the radial flow whereas suction 

decelerates the flow up to considerably large 

distances from the disk surface; eventually all 

profiles converge asymptotically to vanishing radial 

velocity in  free stream. In the non-deformable 

disk case higher radial velocities are achieved 

further from the disk surface compared with the 

stretching case; again, all distributions converge to 

zero in the free stream. Figure 8 depicts evolution 

in azimuthal velocity distribution with transverse 

coordinate, for the case of disk deceleration (S = - 

0.5). In all cases decay from the wall to the free 

stream is maintained. Stretching effect therefore 

does not influence the topology of circumferential 

velocity distributions since the parameter  does 

not arise in the circumferential velocity disk surface 

(wall) boundary condition in Eqn. (15). However 

lower circumferential velocity magnitudes are 

evidently induced with disk stretching. This is 

attributable to the re-distribution in momentum and 

the coupling of the radial and azimuthal 

(circumferential) momentum Eqns. (10) and (11) 

via the terms
2g+ in the former and 

fggf − 2,2  in the latter. The boost in radial 

momentum near the disk surface is balanced by 

depletion in azimuthal momentum, since 

momentum has to be conserved. The azimuthal 

flow which is a secondary flow is therefore 

depleted, which is a predictable quality of swirling 

flows and studied by many including Shevchuk 

[11], for macroscopic fluids and by Turkyilmazoglu 

[17] for nanofluids. With strong Stefan blowing the 

circumferential flow is decelerated owing to 

assisting momentum development whereas with 

strong suction it is retarded, irrespective of whether 

the disk is stretching or not. This pattern is sustained 

throughout the entire boundary layer regime. Figure 

9 illustrates the modification in temperature 

distribution with the combined effects of 

blowing/suction parameter ( )wf and radial stretching 

parameter ( ) . A similar response is computed as 

with the azimuthal velocity field. Disk stretching is 

found to reduce temperatures (and thermal 

boundary layer thickness) whereas without 

stretching higher temperatures are generated in the 

boundary layer. The Prandtl number Pr is set as 0.7 

(air).  Since this parameter represents the ratio of 

momentum diffusion to thermal diffusion, the latter 

exceeds the former. This results in greater heat 

transfer to the disk surface from the body of the 

nanofluid which manifests in a reduction in 

temperatures. The disk stretching enhances the 

radial flow but curtails the azimuthal flow. 

Therefore, while momentum diffuses faster in the 

radial field which accelerates the radial flow, this 

impedes thermal diffusion from the disk surface. 

Strong blowing however enhances temperatures 

whereas strong suction decreases them, and this is 

generally, enforced whether the disk is stretching or 
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not. Figure 10 illustrates the nano-particle 

concentration profiles for various blowing/suction 

parameter ( )wf and radial stretching parameter ( )  

values. Significant inter-twining of profiles is 

observed. With disk stretching and strong Stefan 

blowing ( 2)wf =  initially the nano-particle 

concentrations are greater in the vicinity of the disk. 

Suction ( 2)wf = − is observed to reduce magnitudes 

in this zone. However further from the wall the 

absence of disk stretching ( 0) = results in 

enhanced nano-particle concentrations (volume 

fractions) and furthermore suction is found to boost 

magnitudes. The nano-particle concentration 

boundary layer thickness therefore does not exhibit 

a consistent response to disk stretching or mass 

transfer effects. Micro-organism density retards 

with disk stretching whereas in the absence of disk 

stretching it enhances (Figure 11). The thickness of 

both the boundary layer for micro-organism density 

and micro-organism species with greater Stefan 

blowing consistently since the diffusivity of 

Micro-organism species and nano-particle species 

equal to momentum diffusivity in Figures 10 and 

11. 

Figures 12-16 show the variation of different mass 

transfer parameters ( )wf for  = 0 on the physical 

quantities of interest described earlier in eqns. 

(17)-(21). It is seen that ( )0f  decreases as an 

increase in  (Figure 12). From Figure 13, 

Azimuthal skin friction ( )0g  , too diminish with 

increasing although upend profiles are computed 

as compared with ( )0f  . However, in case of 

blowing azimuthal skin friction is higher as 

compared to suction. For the non-deformable disk 

( = 0), both figures 12 and 13 radial and azimuthal 

skin friction are maximum. Figure 14 describes the 

rate of heat transfer ( (0)) − for various disk 

stretching. Fall in Nusselt number is marked with 

an increasing disk stretching. It is due to the reason, 

as increase in stretching in disk thermal diffusion 

decreases from the boundary layer to the wall. As a 

result, an increase in suction heat transfer rates 

retards. Figure 15 displays the Sherwood number 

which is opposite to that of fluid temperature. 

Though diffusion of nano-particles is greater which 

boosts Sherwood number as stretching increases. 

With no stretching mass transfer rate is minimized 

and effect is reversed for higher stretching ( 5) = . 

However, gust is favorable to reduce Sherwood 

number whereas suction enhances it.  Finally, 

Figure16 illustrates the influence of suction or 

blowing on motile micro-organism wall flux in 

presence or absence of stretching. The inter- 

connection is linear between motile micro- 

organism wall flux and disk stretching rate. In case 

of 0 = the magnitude is maximum than that of 

5 = . An increase in wf clearly boosts the ( )0 −  

for all values of the  . Conversely with strong 

suction there is a decrease in ( )0 − . 

Tables 3 and 4 also show the response 

in ( )0f  , ( )0g  , ( )0 − , ( )0− and ( )0 − to a collective 

variation in respectively, unsteadiness parameter (S) 

and mass transfer parameter ( )wf and stretching rate 

parameter ( ) and mass transfer parameter ( )wf . 

Table 4 has already been elaborated via Figures 

12-16 and is provided as a benchmark for reader 

interested in extending the current study. Table 3 

shows that with strong disk deceleration, radial skin 

friction is increased when suction is present 

whereas it is more dramatically elevated with 

Stefan blowing. Azimuthal skin friction is however 

very strongly reduced with disk deceleration and 

suction and weakly depleted with Stefan blowing. 

Similarly, ( )0 − , ( )0− and ( )0 −  are all reduced 

more substantially with disk deceleration and 

suction than with disk deceleration and Stefan 

blowing. 
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Table-3: Values of , , ,p q t r and u for 71, 10 , 0.4, 0.2Lb Le Pe Nt Nb Nd −= = = = = = = and Pr 0.7=  

S  
wf  p  q  t  r  u  

-10 -2 0.5596 -2.104903 -1.929682 -0.132956 -1.957172 

-10 0 1.257078 -0.895418 -1.606009 -0.159922 -1.667821 

-10 2 2.609129 -0.630569 -1.1918845 -0.2100199 -1.3196154 

-1 -2 0.3653548 -0.752887 -0.8893799 -0.089496 -0.9295347 

-1 0 0.5044829 -0.4913227 -0.677455 -0.1178999 -0.7418018 

-1 2 0.6159968 -0.1811816 -0.3668128 -0.1689003 -0.4682837 

 

Table-4: Values of , , ,p q t r and u for 71, 10 , 0.4, 1Lb Le Pe Nt Nb Nd S−= = = = = = = − and Pr 0.7=  

  
wf  p  q  t  r  u  

0 -2 0.5528668 -0.6447907 -0.6845458 -0.0814359 -0.7254309 

0 0 0.6127437 -0.4283855 -0.4997283 -0.1120909 -0.5642468 

0 2 0.61156458 -0.1530077 -0.2328863 -0.1578918 -0.3177025 

1 -2 -1.0925267 -1.6093531 -1.0039318 -0.0800487 -1.04140008 

1 0 -0.8008664 -1.380858 -0.8102526 -0.1006629 -0.8647324 

1 2 -0.4101898 -1.0504819 -0.5239979 -0.1405089 -0.6126271 

 

 

6  Conclusions 
 

3-dimensional laminar viscous gyrotactic 

forced bioconvection in swirling dilute nanofluid 

unsteady mathematical model flow from a rotating 

disk configuration with convective mass boundary 

conditions and Stefan blowing. Radial stretching of 

the disk has been included. The model is inspired 

by novel developments in nanofluid rotating 

bio-reactors exploiting specific taxes of thermophile 

microganisms. Employing the Buongiorno 

formulation and the Fang-Tao transformations [41], 

the normalized boundary layer equations for mass, 

radial and azmiuthal (circumferential) momentum, 

heat (energy), micro-organism density and 

nano-particle concentration function derived subject 

to physically viable wall (disk surface) and free 

stream boundary conditions. The Adomian 

decomposition method (ADM) has been 

implemented with MATLAB symbolic software to 

solve the emerging high order nonlinear coupled 

ordinary differential boundary value problem. 

Verification of solutions has also been included 

with alidation with earlier Runge-Kutta shooting 

quadrature solutions [30]. The present analysis has 

shown that: 

• An Increase in stretching parameter alog the 

radial direction decreases all the engineerig 

coefficients except local Sherwood number of 

nanoparticles. 

 

 

 

 

 

• Thinning in thermal boundary layer is marked 

due to disk deceleration which accelerates radial 

flow. 

• Radial and azimuthal flow along with 

nanoparticle concentration enhances with an 

increase in Stefan blowing however, suction 

causes  a reverse effect. 

• An increasein suction is favorable to enhance the 

local Sherwood number whereas other 

coefficients. Futher, other physical quantuities of 

interest redduces. 

• Rapid convergence of the ADM imposed for the 

said problem shows excellent result in simulating 

nano-bioconvection fluid dynamics problems. 

The Newtonian nanofluids considered in the present 

problem are taken care of with disk stretching. 

Future investigations can be obtained by 

considering various models of non-Newtonian 

nanofluids. These investigations will also utilize 

ADM and other numerical techniques (finite 

element method). Furthermore, wavy geometries 

for the disk surfaces may be considered [42,43] as 

well as thermophysical properties [44] which also 

constitutes interesting extensions to the present 

work. Porous media [45], onset of bioconvection 

[46] and specifically water based nanofluid bio 

convection [47] may also be examined. 
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Nomenclature  

b
~

 Chemotaxis constant 
C  nanoparticle volume fraction 

fC  fluid concentration 

rCf  axial  skin friction coefficient 

Cf


 tangential skin friction coefficient 

wC  wall concentration 

C  free stream concentration 

BD  Brownian diffusion coefficient (m2/s) 

nD  Microorganism diffusion coefficient (m2/s) 

TD  thermophoretic diffusion coefficient (m2/s) 

( )f  axial stream function 

wf  Stefan blowing parameter 

( )g  circumfrential stream function 

mh  convective fluid concentration 

Le  ordinary Lewis number 

Lb  bioconvection Lewis number 

wm  surface mass flux (W/m2) 

Nb  Brownian motion parameter 

Nd  Biot number 

Nt  thermophoresis parameter 

rNu local Nusselt number 

n  number of motile microrganism 

wN  motile microorganism at the wall 

P  constant fluid pressure 

Pe  bio convection Peclet number 

Pr  Prandtl number 

nq  surface microorganism flux 

wq wall heat flux (W/m2) 

Qnr local wall motile microoganism 

r  axial coordinate (m) 

Rer local Reynolds number 

S  unsteadiness parameter 

Shr local Sherwood number 

t  time (s) 

T  nanofluid temperature (K) 

fT   fluid temperature (K) 

wT  wall temperature (K) 

T  free stream temperature (K) 

ru   velocity component along the r axis(m/s) 

zu  velocity component along the z axis(m/s) 

u   velocity component along the axis(m/s) 

cW  maximum cell swimming speed (m/s) 

z  coordinate normal to the plate (m)    

Greek letters 

  thermal diffusivity (m2 /s) 

c  strength of disk radial stretching 

  constant 

( )  number of motile microrganism 

( )  nano particle volume fraction 

  independent similarity variable 

  dynamic viscosity (Kg/ ms) 

( )  temperature 

f  nanofluid density (Kg/m3) 

  ratio of heat capacity of nanofluid and heat 

capacity of the fluid  

r  skin friction in r direction (Pa) 

  skin friction in direction (Pa) 

  Kinematic viscosity (m2/s) 

  stream function (m2/s) 

  angular velocity 
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