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Abstract 

The Neotropical region comprises one of the greatest freshwater fish diversities in the world. 

Conservation and management actions in freshwater realms face great challenges in this 

region due to an insufficient knowledge base (e.g. shortage of taxonomic expertise, lack of 

robust, routine, standardised monitoring programmes), infrastructure limitations and logistic 

constraints (e.g. access to remote areas, insufficient funds to cover surveys). Biodiversity 

assessment depends on reliable detection and accurate identification of species; thus, 

additional methods (e.g. integrative taxonomy, DNA barcoding and other molecular 

diagnostic methods), associated with traditional taxonomic identification, are being 

increasingly implemented worldwide. Surprisingly, despite being a hugely biodiverse country, 

Brazil has not yet embraced these novel DNA-assisted approaches to biodiversity monitoring. 

Therefore, with this thesis, I aim to bolster the implementation of DNA barcoding and 

metabarcoding in Brazilian riverine ecosystems. With the cooperation of collaborators in both 

Brazilian and British institutions, I built a barcode library and provided a more robust 

biodiversity record for the ichthyofauna of the Doce river, reflecting communities as they 

were prior to a major chemical pollution disaster in that catchment. Furthermore, I evaluated 

the application of eDNA metabarcoding as a fish biodiversity assessment tool, along the 

course of the Jequitinhonha river. Results for the Doce suggested the occurrence of 

potentially cryptic species, species complex, or historical errors in morphological 

identification. Metabarcoding of the environmental samples in the Jequitinhonha allowed the 

detection of native and introduced species and provided data from localities often neglected 

due to the difficulties of traditional sampling. Collectively, my studies indicate that a range of 

powerful and cost-effective molecular approaches are now available to biologists and 

conservationists, which will empower and fast-track the process of characterising 

biodiversity, and ultimately ecosystem function, in Brazilian freshwater habitats.  

Keywords: DNA barcoding, environmental DNA, fish, metabarcoding, Neotropical  
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Chapter I 

 

INTRODUCTION AND BACKGROUND 

1.1 Fish biodiversity assessment and decline in Neotropical freshwater systems  

Anthropogenic alterations of the global environment are one of the key factors leading 

to biodiversity loss, leading to local extinction events, changes in community structure and 

loss of important ecosystem services.   Human impacts on natural populations are increasing 

at a fast pace, and many habitats and biological communities are likely to be currently 

undergoing severe ecological shifts (Krausmann et al., 2013; Steffen et al., 2015). Freshwater 

ecosystems are among the most vulnerable and susceptible to such rapid changes. 

Many anthropogenic impacts (e.g. pollution, deforestation, habitat loss) have been 

attributed as a main cause of species decline.  Water pollution is a well known factor imposing 

threats to natural aquatic species. Regarding freshwater fishes, increasing levels of toxicant 

residues originated from industrial, agricultural or other human activities and discharged in 

rivers  have demonstrated significant impacts on fish health (e.g. alteration of migration 

patterning, increase of mutation rates) and ecological integrity of habitats (Van Straalen & 

Timmermans, 2002; Viana et al., 2018). Additionaly, the construction of dams is well known 

as a fish diversity reduction factor, due to the modification of physical and ecological 

characteristics of the habitats (e.g. water flow, impoundments and flood control, nutrient 

dynamics, changes in water quality and temperature, increased predation pressure, and 
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habitat loss). These barriers also block movements responsible for connecting populations 

and enabling migratory fish species to complete their reproductive cycle (usually correlated 

to seasonal flood pulses) (FAO, 2002; Pelicice & Agostinho, 2007; Ziv et al., 2012; Pelicice et 

al., 2015; Pompeu et al., 2012).  

 In addition to habitat modifications, anthropogenic actions cause changes in species 

distribution, enhancing the mobility of organisms through biological introductions. The 

accidental or intentional spread of species beyond their native ranges represents a great 

threat to biodiversity, being second only to habitat loss as the leading cause of extinctions in 

vertebrates (Bellard et al., 2016; Vitousek, 1997; Schmitz & Simberloff, 1997, Chapin III et al., 

2000). When alien species become invasive, ecological change can be irreversible, or can only 

be curbed through costly, complex and challenging management or eradication measures. 

Thus, great efforts are necessary to detect the introduction quickly to maximize response 

success (Vilà et al., 2011; Rejmánek & Pitcairn, 2002; Simberloff et al., 2013). These factors 

combined are leading to the decline of freshwater species/populations (83% decline since 

1970) and management of freshwaters are deemed as a priority target for global biodiversity 

conservation (WWF, 2018). 

Species description and accurate identification are crucial factors for biodiversity 

conservation. Described neotropical ichthyofauna comprises more than 5,000 species and it 

is estimated that the true number may exceed 7,000 in this region (Albert & Reis, 1999; Reis 

et al., 2016). Still, fish biodiversity is often underestimated due to the great challenge imposed 

by infrastructure problems and difficulties of sampling (e.g. access to remote areas, 
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insufficient funds to cover expenses), a shortage in taxonomic expertise and the absence of 

morphological characters available to identify and distinguish between specimens at early 

development stages of life (Reis et al., 2016; Ely et al., 2017).  

The threats faced by fish species in freshwater realms require urgent action for 

management and conservation plans. A number of novel methods (e.g. integrative taxonomy, 

DNA barcoding, eDNA – associated with traditional taxonomic identification) are being 

employed worldwide to contribute to biodiversity assessment (Dayrat, 2005; Carvalho et al., 

2011; Gomes et al., 2015; Hänfling et al., 2015). An integrative approach, through the 

association of distinct methodologies (e.g. morphological and molecular identifications) has 

yet to contribute to biodiversity assessment and conservation in neotropical rivers.  

 

1.2 Brazilian fish biodiversity: Doce and Jequitinhonha river basins 

 

The Doce and Jequitinhonha river basins are located in Southeastern Brazil (Fig.1 and 

Fig.2), belong to a group of eastern coastal catchments and are characterized by a high level 

of endemic and endangered species (Rosa & Lima, 2008).  Both catchments are facing 

unprecedent levels of threats, such as the construction of dams, siltation, pollution, water 

contamination and introduction of non-native fishes.  

The Doce river basin comprises approximately 83.400 km², extending by 853 km and 

draining 230 cities in two states. This drainage is inserted in two Brazilian hotspots (Atlantic 

forest and Brazilian Savanna) and recognized as an area rich in fish biodiversity, with many 
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species not yet known to science (i.e. estimates indicate that the number of species reaches 

as twice the number found in Great Britain). Seventy-two native freshwater fish species have 

already been described for this basin and are considered currently threatened by 

environmental impacts such as dams, species introductions and siltation (Vieira, 2009). 

Furthermore, in 2015 a mining collapse lead to an important environmental modification in 

this already impacted catchment by greatly increasing the levels of heavy metals in the water 

(GFT, 2015). The accidental discharge of approximately 62 million m3 of a toxic mud along the 

main course of the Doce river affected the biodiversity and human communities of this basin, 

and thus was considered as the worst environmental accident reported for any South 

American catchment. After the mine burst, the  metal-rich tailings were released into the 

watershed and caused a massive loss of vegetation and die-off of fishes (GFT, 2015; IBAMA, 

2015; Fernandes et al., 2016). Understanding the impacts of this disaster on the fish 

biodiversity is crucial, as many riverine communities rely on fisheries for their livelihood (e.g. 

ecoturism, source of income and subsistence -Ecoplan-Lume, 2010; GFT, 2015; Neves et al., 

2016). However, the effects of this ecological disaster on fish populations still remain to be 

completely elucidated yet due to the high frequency of cryptic species and the occurrence of 

many putative endemic and undescribed species (Ramirez et al., 2016). The recovery of fish 

populations in the Doce river basin, after the ecological disaster, depends on the 

recolonization of the main course of this river and on the diversity, size and conservation 

status of the remnant fish populations in the tributaries (Fernandes et al., 2016). Until this 

date, the only genetic studies conducted in this river basin focused on the genetic diversity 
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and cytogenetic data of few species, or on phylogenetic/phylogeographic analyses comprising 

species from distinct Brazilian catchments (Santos et al., 2010; Barros et al., 2015; Ramirez et 

al., 2016; Swarça et al., 2018) and none study aiming to describe the entire fish biodiversity 

was published so far.   

The Jequitinhonha River basin (Fig.3), located in Southeast Brazil (17°, 43° W) is 

inserted in two biodiversity hotspots (Cerrado and Atlantic Forest) and characterized by a 

tropical climate and environmental heterogeneity. The main river flows over 1,082 km, from 

its source in Serro (Minas Gerais) at an elevation of 1200m, to drain its water in the ocean at 

the locality of Belmonte (Bahia). The known ichthyofauna of Jequitinhonha river basin 

comprises 52 species and is already composed by 16% of non-native species (Andrade-Neto, 

2009). Also, this catchment has two large dams constructed: the hydroelectric power plant of 

Irapé, the tallest dam in Brazil and implemented in 2006 and the hydroelectric power plant of 

Itapebi which was implemented in 2002. This basin is still poorly studied, and the only genetic 

studies conducted in this area were a DNA Barcoding of its ichthyofauna (Pugedo et al., 2016) 

and a population genetic study on hybridization between a native and introduced species 

(Sales et al., 2017). Interestingly, the species richness of the Jequitinhonha river basin (JRB) 

remains as a conundrum because, despite being considered as a low biodiversity catchment, 

it has the same geological formation as neighboring basins with higher biodiversity, thus 

leading to the hypothesis that the low biodiversity of this basin might be due to the lack of 

efficient sampling and knowledge regarding its ichthyofauna. Additionally, one of the most 
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abundant endemic fish species (Prochilodus hartii) was found to be threatened by 

hybridization with introduced congeneric species in this river system (Sales et al., 2017).  

 

 

 

 

 

 

 

 

 

FIGURE 1 | Map of Doce (blue circle) and Jequitinhonha (orange circle) River basins in Brazil.  
Adapted from Peixe Vivo, CEMIG.  
 
 

 
 
FIGURE 2 | Maps of Jequitinhonha (A) and Doce (B) river basins, showing in detail the 
catchment area including main river and tributaries.  
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FIGURE 3 | Jequitinhonha river basin. Clockwise from top left: Sampling site at Jequitinhonha 
city, site located at Itacambiruçu, example of road and difficulties in reaching the sampling 
location, traditional sampling in Araçuaí river.  

 
 

1.3 DNA barcoding as a tool for fish species identification  

Molecular approaches offer a universal key to identify, assess and quantify biodiversity, 

especially in biodiversity-rich and understudied ecosystems and regions (Schwartz et al., 

2006). A new system for species identification and discovery through DNA barcodes, based 

on the use of a fragment of the mitochondrial gene cytochrome oxidase subunit I (COI) 

(˜650bp), was proposed by Hebert et al. (2003) as the standard molecular method.  The 

Barcode of Life Project aims to describe the Earth biodiversity by sequencing and obtaining 
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barcodes for all living species and making it available as a reference library of DNA barcodes 

in the Barcode of Life Data Systems database (BOLD, www.bold.org).  The database includes 

now over 6 million barcodes belonging to almost 200,000species, and more than 12,000 

studies using DNA barcoding have been published since the concept was introduced in 2003. 

Since the Barcode of Life project launch, the DNA barcoding  system has been widely applied 

to different taxa worldwide. Identification of fish fauna using DNA barcoding was successfully 

conducted globally (e.g. mislabelling detection (Cawthorn et al., 2018; Carvalho et al. 2017), 

forensics analyses (Dawnay et al. 2007; Kumar at al., 2018), management of long term 

fisheries (Ardura et al., 2010; Metcalf et al. 2007), data regarding spawning and recruitment 

areas (Almeida et al., 2018; Becker et al., 2015; Frantine-Silva et al., 2015), description of 

cryptic and putative new species (Iyiola et al., 2018; Hou et al., 2018), and has proven to be a 

valuable tool for the identification of specimens at early life development stage, flag potential 

overlooked species and potential new candidate species (Nwani et al., 2011; Ward et al., 

2005; Hubert et al. 2008; Carvalho et al., 2011; Pereira et al., 2011; Becker et at., 2015).  

In Brazil, this approach was tested in distinct catchments and has already been applied 

as a biodiversity identification method and contributed to highlight species introductions, and 

the occurrence of putative cryptic and new species (Carvalho et al., 2011; Pereira et al., 2011; 

Pugedo et al., 2016; Gomes et al., 2015) which has contributed to improve the fish community 

composition knowledge, leading to the description of several new species (Jerep, Camelier & 

Zanata, 2016; Dutra et al., 2016, Nielsen et. al, 2017; Zawadzki et al., 2016, Pereira et al., 

2017). However, the effective performance of DNA barcoding relies in the so-called barcode 
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gap which is respresented by the existence of a gap between intra and interspecific genetic 

divergences, meaning that DNA sequences obtained for different individuals of the same 

species (intraspecific variability) need to present a greater similarity than between different 

species. For fish species, a 2% threshold of genetic distance was suggested after analysing 

1088 species (Ward et al., 2005), however, taking into account the different life histories of 

species, despite been reported the occurrence of a barcode gap for most fish species 

analysed, there are still exceptions (Hurst & Jiggins, 2005), especially in the case of recently 

diverged species (Prosdocimi et al,. 2012). Thus, when using the DNA barcoding data for 

infering the occurrence of cryptic and new candidate species, a robust and careful analyses is 

required and can greatly be improved when including an integrative approach in order to 

provide reliable information regarding the biodiversity studied.  

 

1.4 Metabarcoding using amplicon sequencing as an effective tool for biodiversity 
assessment 

Recent advancements have now opened new opportunities for studying biodiversity 

by sequencing trace DNA present in the environment – the so-called “environmental DNA” 

(eDNA), to identify species presence and, to some extent abundance, in aquatic environments 

(Thomsen et al., 2012). Since animals release DNA continuously into the surrounding 

environment (e.g. shed cells, faeces, gametes), this method consists in extracting such DNA 

remnants from environmental samples (e.g. water, sedimentsand ice cores) and using specific 

molecular markers to target taxa of interest. Single-taxon approaches use specific narrow-
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target markers using PCR or qPCR amplification (Ficetola et al., 2008;, Takahara et al., 2013; 

Piaggio et al., 2014) while community-level approaches use universal markers and parallel 

sequencing to detect a broad range of taxa (i.e. “metabarcoding” - Rees et al., 2014; Thomsen 

& Willerslev, 2015). Environmental DNA metabarcoding is a more efficient and cost-effective 

option when a broad characterisation of the ecosystem is required, also allowing the 

detection of unexpected species (Gillet et al., 2018). 

The term “environmental DNA” was used for the first time in 1987 to describe a DNA 

extraction protocol to obtain DNA from sediments (Ogram et al., 1987) and since then studies 

started to be conducted focusing primarly on microorganisms. Willerslev et al. (2003) 

conducted the first metagenomics/metabarcoding study on macroorganisms, demonstrating 

the feasibility of applying this method to reconstruct paleocommunities. However, the 

method applied (e.g. using cloning vectors) was expensive and time consuming. The advent 

of Next Generation sequencing in 2005 contributed to stimulate studies in this field. Ficetola 

et al. (2008) published the first study detecting species from freshwater samples, and since 

then a rapid and accelerated increase in publications occurred in the past decade (Figure 4).  
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FIGURE 4 | Records obtained when searching for “Environmental DNA” or “eDNA” (Period= 
2001-2019, n=556, Web of Science).  

However, the efforts are not distributed homogeneously worldwide. Most of the studies 

have been conducted in temperate regions and the use of eDNA in neotropical environments 

is still scarce (Figure 5). When looking for studies containing  the word “Brazil”, the search 

returned nine records from which only five records represent studies conducted in this 

country, including characterization of amphibian communities (Sasso et al., 2017, Lopes et al., 

2017), qPCR amplification for detecting the golden mussel (Limnoperna fortunei) (Pie et al., 

2017), detection of freshwater bacterioplankton (Tessler et al., 2017) and development of 

primers targeting the 16S gene for freshwater vertebrates (Vences et al., 2016). The 

remaining four records belonged to authors based in Brazil but with studies focused on a 

different geographical region.  
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FIGURE 5 | Distribution of eDNA studies across countries (based on authors address, Web of 
Science), including the continents: North America and Europe (dark and light blue, 
respectively), Oceania (brown), Asia (black), South America (green) and Africa (red). 

Since its advent, this approach has been tested in different contexts and areas and despite 

being considered as an attractive option for environmental monitoring, there remains much 

to be explored and ground-truthed before it can be routinely applied as a biomonitoring (i.e. 

continuous assess of current state and ongoing changes in environments, including habitats, 

species and populations)tool (Jeunen et al., 2019; Salter et al., 2018; Taberlet et al., 2018).  

Some aspects, including laboratory procedures and bioinformatics, remain challenging, but 

an ever increasing number of studies worldwide are contributing to making eDNA 

metabarcoding an established tool in ecological analysis (Taberlet et al., 2018). 

Below, I illustrate and discuss each step of the eDNA metabarcoding workflow. 
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1.5 Important considerations when working with eDNA  

- Sampling medium 

Persistence of eDNA molecules in the environment can vary significantly depending on 

the species shedding rates and DNA degradation in diverse habitats.  Sampling media (Fig.6) 

can harbor eDNA for distinct temporal periods, from days in water samples (Dejean et al., 

2011; Pilliod et al., 2014) to thousands of years in ice cores (Thomsen and Willerslev, 2015). 

Furthermore, studies demonstrated that the choice of sampling medium can critically affect 

the results obtained. For example, sediment samples can harbour up to 1800 times more 

eDNA when compared to water samples and even provide a higher number of OTUs and a 

different community composition when compared to water samples (Turner et al., 2015). On 

the other hand, for specific taxa (e.g. fish) this sampling medium might yield reduced 

detection of species compared to water (Holman et al., 2018, Koziol et al., 2018, Shaw et al., 

2016). When using a single substrate, the data obtained through metabarcoding are likely to 

be an underestimation of local biodiversity, and thus some authors recommend experimental 

designs that include multiple substrates (Koziol et al., 2018). However, despite the great 

difference found among sampling media and the importance of testing the suitability of each 

substrate before conducting monitoring surveys, few eDNA studies have incorporated this 

aspect in their analyses (Shaw et al., 2016).  
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FIGURE 6 | Examples of sampling media (water and sediment) obtained in the Jequitinhonha 
river. 

- Preservation of samples 

After being released in the environment, eDNA can degrade at a fast rate or settle and 

persist for longer times when bound to the sediment. Still, to overcome the degradation of 

environmental samples, the most recommended approach is to extract the DNA as quickly as 

possible after sampling. In some cases, when filtration and DNA extraction are not feasible to 

be conducted immediately after sampling (e.g.  field work conducted in remote sites), a 

preservation method must be employed in order to stop or decrease the microbial activities 

and minimize DNA degradation in the samples. The most widely employed method is storing 

the samples at low temperatures (i.e. freezing the samples or cooling using a cool box) which 

requires a substantial equipment increase (Eichmiller et al., 2016; Pilliod et al., 2014). The 

inclusion of buffers, such as EtOH–NaAc (ethanol-sodium acetate) solution  have been shown 

Water Sediment 
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to keep an eDNA persistence rate similar to samples stored in ice (Ladell et al., 2018), 

however, when sampling larger volumes of water the increased final volume obtained (i.e. 

addition of over 2x of solution) might be considered problematic during long sampling 

campaigns. Recently, Yamanaka et al. (2017) tested the addition of cationic surfactants as 

preservatives to suppress DNA degradation at ambient temperatures, demonstrating the 

efficiency of Benzalkonium chloride (0.01%) in retaining eDNA concentration even after 10-

day incubation at 21ºC.  However, as these methods have been tested individually in different 

contexts, a further evaluation should be conducted in order to provide a more reliable 

information regarding the best preservation method to be applied according to the 

environmental samples obtained.  

- DNA capture 

A critical step in eDNA analyses is DNA capture and the most used methods to obtain 

eDNA from environmental samples are filtration and precipitation. In the former, filters are 

employed, which permit the passage of water and retention of eDNA sources (e.g. tissue, 

cells, organelles)within the fine mesh of the filter; in the latter, a chemical process of 

precipitation of nucleic acids using ethanol is followed. Despite both being commonly used, 

filtration has been shown to be a better option for recovering eDNA from water samples 

(Jerde et al., 2011, Deiner et al., 2015, Eichmiller et al., 2016). A broad range of filters and 

DNA extraction techniques have been employed in eDNA surveys, but there is still there is no 

consensus about the best filter pore size and material and DNA extraction protocol to be 
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followed as the results varied accordingly to the environment sampled (e.g. marine, 

freshwater) and type of samples analyzed. Filtering using a syringe method (e.g. Sterivex filter 

unit) allows processing multiple samples independently, reducing cross contamination and 

allowing sampling multiple sites at the same time (, Lacoursière-Roussel et al., 2018). 

However, the filtering capacity of enclosed capsules filters might be shorter when compared 

to cellulose nitrate filters mounted to a funnel adapted to a peristaltic automatic pump, which 

were shown to outperform Sterivex capsule filters (Spens et al., 2017).  

Filter pore size should also be analyzed to obtain a tradeoff between DNA recovery and 

filtering time, as for turbid waters a larger pore size filters can greatly decrease filtration time 

but might also reduce eDNA recovery (Eichmiller et al., 2016). Regarding filter composition 

and pore size, recently, Majaneva et al. (2018) demonstrated that cellulose nitrate and mixed 

cellulose ester (MCE) filters yielded more eDNA than polyethersulfone filters, and filters with 

pore size of 0.45 µm despite yielding less DNA than small pore size filters (0.2 µm). This may 

be useful for sampling in turbid waters as the latter may clog easily. Additionally, 0.45 µm 

MCE filters have been considered as a better option when compared to larger pore size filters 

and the 0.45 µm Sterivex filter (Li et al., 2018). Li et al. (2018) also stress that after filtering, 

the filters should be kept either dry or in lysis buffer to avoid degradation.  

- Metabarcoding: markers choice 

In metabarcoding studies the choice of metabarcode is crucial as it greatly impacts the 

end results. Thus, several factors may be taken into account before making a choice: clear 
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definition of the target taxonomic group including the level of taxonomic resolution required, 

size of selected barcode as shorter fragments might be easier to detect in the case of 

degraded DNA; and the existence of reference sequences in the databases (Taberlet et al., 

2018). Therefore, an ideal primer for eDNA metabarcoding surveys should be specific to the 

target taxonomic group, amplify a short fragment (~150-200bp) containing sufficient 

taxonomic resolution to allow species assignment at high confidence rates, and amplify DNA 

from all species of the target group without favoring any of those (Coissac et al., 2012; 

Elbrecht & Leese, 2017). A trade-off between fragment size and taxonomic resolution 

represents a significant challenge when choosing the marker, but it should also be noted that 

fragment size is additionally constrained by the sequencing platform used. The Illumina MiSeq 

generates large amout of data through a fast and high-quality sequencing approach (i.e. low 

substitution and indel errors) when compared to other platforms (e.g. 454 GS, Ion Torrent 

PGM - Loman et al., 2012). However, for achivieng this high-quality standard and reduce 

errors during the sequencing proccess, the chemistry available for this platform allows the 

sequencing of fragments up to 500bp, limiting the fragment size analysed in metabarcoding 

studies (Slatko et al., 2018).  

The cytochrome c oxidase subunit I (COI) is the mitochondrial DNA marker of choice in 

DNA barcoding studies, having an associated robust reference database (BOLD Systems, 

www.boldsystems.org); however, COI is a coding gene (i.e. all third codons positions are 

variable) and is considered challenging for most of eDNA metabarcoding studies due the 

absence of highly conserved regions required for robust primer design (Deagle et al., 2014). 
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Mitochondrial ribosomal RNA (rRNA) gene regions generally show relatively similar taxonomic 

resolution to COI and are currently being widely used in metabarcoding studies (Riaz et al., 

2011; Valentini et al., 2009). In regards to assessing fish biodiversity, several primers targeting 

fragments of the mitochondrial 12S rRNA gene have been described for Actinopterygii 

species. Kelly et al. (2014) tested a set of primers, amplifying a 106bp fragment, which allowed 

the detection of bony fishes in a mesocosm, however those were only identified up to the 

genus level due to the limited variability of the amplicons analyzed. The same constraint (low 

taxonomic resolution) was also reported for the primers described by Valentini et al. (2016, 

˜70bp), whereas the MiFish primer set (172bp, Miya et al., 2015) allowed higher taxonomic 

assignments. Howewer, despite the increase in the taxonomic assignment, due to the still low 

phylogenetic resolution of the fragments been currently analysed many species migh not be 

realiably identified. Thus, the lack of appropriate genetic regions targeted hampers the 

identification at species level and then, the biodiversity detected remains surely 

underestimated. Optimization of new primer sets are still ongoing and this will allow a great 

improvement in the taxonomic assignment and monitoring using eDNA.  

Although eDNA studies have proved that this method can be very efficient in detecting 

species, most of the data obtained still represent an underestimation of true biodiversity, as 

a large part of the information recovered is lost due to the incompleteness of the reference 

databases and a great effort should be made in order to overcome this problem and improve 

the application of eDNA metabarcoding as a biomonitoring tool. While rapid improvements 

of the databases based on sequencing short fragments will offer increasingly accurate 
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metabarcoding results, an attractive perspective is provided by the possibility of generating 

whole mitogenome data. In addition to significantly improve eDNA studies by alloowing 

species detection after retrieving whole mitogenomes from the environment (Deiner et al., 

2017), it would also contribute to overcome the problems caused by the constant 

optimization of markers.  

 

- Potential use of eDNA in Brazilian rivers 

Environmental DNA metabarcoding offers a great opportunity to take biomonitoring to a 

higher level, improving species conservation and management for freshwater fishes in 

understudied regions. In Neotropical freshwater ecosystems, teleost populations are often 

monitored by live capture followed by morphological identification, and due to the water 

features (e.g. low conductivity, high water turbity and current velocity) observation and use 

of electrofishising are not feasible and traditional sampling is restricted to the use of invasive 

and selective methods (e.g. nets, toxicants). These methods are destructive to the 

ichthyofauna, and also provide biased or incomplete representation of the monitored 

community by selecting few species (e.g. size selection of nets) (Dalu et al., 2015; Gunzburger, 

2007).  

Traditional field monitoring techniques might also fail in detecting species when they are 

elusive, rare or occurring at low abundances or densities, and new non-invasive methods have 

been recently proposed to improve biodiversity assessment of fish by obtaining the DNA 

present in the environment. The effectiveness of non-invasive methods such as eDNA 
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metabarcoding has been proven for different environments and taxa, and when used as a 

complementary tool (i.e. associated with traditional sampling) has shown to increase the fish 

diversity assessment proving more accurate and reliable estimates. This method was shown 

to be more sensitive than traditional sampling approaches such as electrofishing (Shaw et al., 

2016; McDevitt et al., 2018) and BRUVs (Boussarie et al., 2018; Stat et al., 2018). As a notable 

example, when compared to gillnets surveys conducted in the Mekong basin, eDNA 

metabarcoding detected 30 more species that were not caught by the traditional methods in 

a 3 year-period (Gillet et al., 2018). Furthermore, eDNA is revolutionizing the monitoring of 

non-native species and has been used extensively to detect and track species invasion (Jerde 

et al., 2011; Dejean et al., 2012; Goldberg et al., 2013; Takahara et al., 2013; Fukumoto et al., 

2015; Hänfling et al., 2015; Hunter et al., 2015; Uchii & Minamoto, 2016).  

Biological invasions represent a major challenge in conservation biology and the 

management of natural population (Rhymer & Simberloff, 1996; Magalhães & Jacobi, 2013; 

Metcalf et al., 2007). Introduced species can spread pathogens, alter ecosystem structure, 

change ecological interactions, outcompete native species and promote biotic 

homogenization (Latini & Petrere, 2004; Catford et al., 2012). Introduced species can remain 

undiscovered for a long period before spreading into new habitat (Crooks, 2011; Essl et al., 

2011). Preventing introduction is considered the ideal scenario, but an early detection is 

particularly important to reduce the impacts invasive species may have further along the 

invasion process (Simberloff et al., 2013). Detecting alien species and mitigating against their 

negative impact is inherently difficult, and especially so in mega-diverse countries. In Brazil, 
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non-native fish introduction has become commonplace due to the absence of effective 

methods to deter such introductions (Agostinho et al., 2007; Pelicice et al., 2014; Azevedo-

Santos et al., 2015). Although different laws prohibit the release of non-native specimens, 

poor resources for enforcement, in a continent-sized country, hamper the effectiveness of 

the normative approach (Azevedo-Santos et al., 2015). In this context the use of innovative 

molecular tools such as the environmental DNA (eDNA) technique could prove to be an 

effective tool for general biodiversity assessment, and for offering an “early warning” system 

for the detection of non-native species and quickly enable swift eradication or mitigating 

measures (Takahara et al., 2013; Simberloff et al., 2013; Ficetola et al., 2008; Chown et al., 

2008; Rees et al., 2014). 

DNA barcoding and eDNA metabarcoding data can provide valuable information about 

freshwater fish community dynamics, and evaluate the impact of anthropogenic actions, such 

as pollution, species introduction, and the construction of dams and other forms of habitat 

modification. Biomonitoring of fish species using molecular tools could also contribute to 

establishing long-term monitoring schemes and obtain information from areas that are often 

negletected due to poor accessibility.  

DNA barcoding has already proven to be a valuable tool in describing fish biodiversity in 

Neotropical rivers, by contributing to flag taxonomic problems and uncover the occurrence 

of undescribed and/or cryptic species (Carvalho et al., 2011; Pugedo et al., 2015). Since the 

onset of eDNAstudies, the approach has been favourably received by monitoring agencies; 

however, the efficacy of  eDNA metabarcoding in a neotropical context remains to be 
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explored in-depth, especially due to a range of factors (e.g. high biodiversity, higher 

temperatures and solar radiation, water acidity and turbidity,high discharges), which may 

have strong influence on eDNA recovery and species detection in these habitats.  
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Aims of the PhD thesis 

My thesis work aims to: 

 

I) Apply different molecular tools (DNA barcoding and eDNA metabarcoding); 

II) Test their potential to improve knowledge of Brazilian freshwater communities;  

III) Establish these techniques as regular tools for ecological analysis in the 

Neotropics. 

 

Here, I enclose three research chapters that focus on three main issues: 

I)  The DNA barcoding section (Chapter 2) details on the generation of a DNA 

barcode library for the Doce River Basin (DRB) ichthyofauna, using data collected 

prior to the chemical spillage disaster of 2015. I contribute to an improved 

biodiversity baseline record for this recently impacted ecosystem, including the 

detection of invasive species and cryptic, likely undescribed, species. 

II) In Chapter 3, I investigate the influence of methodological aspects on eDNA 

metabarcoding inference, namely: i) the effect of two different sampling media 

(sediment and water); ii) the effect of preservation methods for water samples 

(low temperatures vs cationic surfactant solution); iii) the effect of sampling time, 

by conducting two sampling campaigns conducted at a three-week interval; 

III) In Chapter 4, I examine the fish communities along the Jequitinhonha river basin, 

based on environmental DNA metabarcoding of water and sediment samples. 
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2.1 Abstract 

Neotropical Rivers host a highly diverse ichthyofauna, but taxonomic uncertainty prevents 

appropriate conservation measures. The Doce River Basin (DRB), lying within two Brazilian 

threatened hotspots (Atlantic Forest and Brazilian Savanna) in south-east Brazil, faced the 

worst ever environmental accident reported for South American catchments, due to a dam 

collapse that spread a toxic mining tailing along the course of its main river. Its ichthyofauna 

was known to comprise 72 native freshwater fish species, of which 13 are endemic. Here, we 

build a DNA barcode library for the DRB ichthyofauna, using samples obtained before the 

2015 mining disaster, in order to provide a more robust biodiversity record for this basin, as 

a baseline for future management actions. Throughout the whole DRB, we obtained a total 

of 306 barcodes, assigned to 69 putative species (with a mean of 4.54 barcodes per species), 

belonging to 45 genera, 18 families and 5 orders. Average genetic distances within species, 

genus and families were 2.59%, 11.4% and 20.5% respectively. The 69 species identified 

represent over 76% of the known DRB ichthyofauna, comprising 43 native (five endemic, of 

which three threatened by extinction), 13 already known introduced species, and 13 unknown 

species (such as Characidium sp., Neoplecostomus sp. and specimens identified only at the 

sub-family level Neoplecostominae, according to morphological identification provided by the 

museum collections). Over one fifth of all analyzed species (N=16) had a mean intraspecific 

genetic divergence higher than 2%. An integrative approach, combining NND (nearest 

neighbor distance), BIN (barcode index number), ABGD (automatic barcode gap discovery) 

and bPTP (Bayesian Poisson Tree Processes model) analyses, suggested the occurrence of 

potential cryptic species, species complex, or historical errors in morphological identification. 

The evidence presented calls for a more robust, DNA-assisted cataloguing of biodiversity-rich 

ecosystems, in order to enable effective monitoring and informed actions to preserve and 

restore these delicate habitats.  

Keywords: barcode, biodiversity, cryptic diversity, Doce River, ichthyofauna, molecular 

identification 
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2.2 Introduction 

Neotropical rivers host an extremely diverse ichthyofauna, but anthropogenic impact 

associated with the occurrence of many still undescribed or unknown species may hamper 

conservation effort (Reis et al., 2016; Ely et al., 2017). Due to increasing, rapid anthropogenic 

environmental impacts (e.g. pollution, siltation, mining, damming), biodiversity in Neotropical 

rivers may be lost before scientists can fully describe and comprehend it (Agostinho et al., 

2005).  

Effective biodiversity conservation relies on unequivocal and precise species 

identification, especially in the case of ecosystems that underwent degradation and require 

restoration. However, high biodiversity regions, such as the Neotropics, and the increasingly 

reduced budget for basic taxonomical research, have led to the so-called “taxonomic 

impediment” or “poor taxonomy”, in which the shortage of funding and trained taxonomists, 

and the gaps in taxonomic knowledge, have delayed advances in assessment and description 

of biodiversity or even contributed to overestimate or underestimate species richness due to 

species misidentification or taxonomic confusions (Taylor, 1983; Ely et al., 2017).  

The DNA barcoding initiative offers a powerful and cost-effective tool to assist with the 

detection of cryptic species and flag potentially problematic taxa, with the standard universal 

COI marker having proven particularly successful in invertebrates (Hebert et al., 2004a), birds 

(Hebert et al., 2004b), and fish (Ward et al., 2005; Hubert et al., 2008; Valdez-Moreno et al., 

2009; Rosso et al., 2012; Carvalho et al., 2011). For effective DNA barcode performance, 

intraspecific variability must be lower than variability among congeneric species, the so-called 
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‘Barcode Gap’ (Meyer and Paulay, 2005). While the barcode gap tends to be around <1-2% 

sequence variability within species in most fish, there are exceptions (Hurst and Jiggins, 2005), 

especially in the case of recently diverged species (Vinas and Tudela, 2009;  Shum et al., 2017). 

Moreover, the unambiguous identification of species from early larval stage to adulthood can 

aid a variety of conservation management actions. Accurate molecular identification may 

contribute to improving management and sustainability of long term fisheries (Metcalf et al., 

2007), tracking invasive species (Corin et al., 2007; Carvalho et al., 2009), offer insights into 

community ecology (Pfenninger et al., 2007) and genetic certification of species used in 

restocking programs (Metcalf et al., 2007), as well as improving fundamental knowledge on 

cryptic and putatively new species (Pereira et al., 2011). Furthermore, molecular 

identification of eggs and larvae can provide data regarding spawning and recruitment areas, 

supporting a definition of priority areas for conservation (Becker et al., 2015; Frantine-Silva 

et al., 2015).  

DNA barcode libraries have been developed for several Neotropical river systems as a 

biodiversity identification tool and have contributed to reveal the existence of putatively 

cryptic/new fish species (Carvalho et al., 2011; Pereira et al., 2011; Gomes et al., 2015; Pugedo 

et al., 2016; Nascimento et al., 2016). However, the biodiversity complexity remains unknown 

in many already impacted catchments in Brazil. One emblematic case is that of the Doce River 

Basin (DRB), which faced the worst environmental accident reported for any South American 

catchment, in the form of the largest tailings dam burst in modern history; as a result, a toxic 

mud (i.e. extreme high concentration of iron) spread along its main river course, affecting wild 

http://www.sciencedirect.com/topics/agricultural-and-biological-sciences/dam-failure
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communities, as well as the local human populations (Fernandes et al., 2016; Neves et al., 

2016). As the local riverine human communities rely on fisheries for their livelihood (e.g. 

source of income and subsistence, resource for ecotourism), understanding the impacts of 

this disaster on the ichthyofauna is crucial for effective management actions (Ecoplan-Lume, 

2010; GFT, 2015; Neves et al., 2016). Moreover, the recovery of fish populations in DRB, after 

the ecological disaster, relies on the recolonization of the main course of this river and on the 

diversity, size, and conservation status of the remnant fish populations in the tributaries (Olds 

et al., 2012).  

The Doce River Basin runs through two Brazilian biodiversity hotspots (Atlantic forest 

and Brazilian Savanna) located in south-east Brazil (Myers et al., 2000). The river is 853 km 

long and the catchment covers a total drainage area of 83.400 km² in south-eastern Brazil, 

between the states of Minas Gerais (86%) and Espírito Santo (14%), an area inhabited by 3 

million people. DRB harbors a rich ichthyofauna, including several undescribed species, with 

the number of presently recognized native species summing up to 72 (Vieira, 2009). The Santo 

Antônio River, the second largest tributary of the Doce, was selected as a conservation 

priority area, since it hosts a great number of species considered endemic and threatened by 

extinction (Vieira et al., 2000; Vieira and Alves, 2001; Rosa and Lima, 2005). Historically, DRB 

is affected by human impacts by many ways. Native forest cover only 27% of DRB area (ANA, 

2016), and the remained area is used to cattle, forestry, agriculture, and mining (Vieira, 2009), 

resulting in high rate of siltation (da Silva et al., 2011). Habitat fragmentation lead by 

hydroelectric construction is also affect DRB, where there are 40 hydroelectric built along 
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main channel of Doce River and its principal tributaries (ANEEL, 2010). However, without 

accurate biodiversity knowledge, species conservation may be hindered in this river system, 

and it had already been suggested that the environmental disaster involving the mining 

collapse could have led to the depletion/extinction of many still unknown endemic species 

(Fernandes et al., 2016). Here, we develop a DNA barcode library for the DRB ichthyofauna, 

using data obtained prior to the dam burst environmental disaster, contributing to an 

improved biodiversity baseline record for this recently impacted ecosystem. 
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2.3 Material and Methods 

2.3.1 Sampling  

We obtained fish tissue samples from 306 specimens collected between 2011 and 2015 

along the main river channel and tributaries (Figure 1), identified and deposited by 

taxonomists in four Brazilian ichthyological collections: PUC Minas Natural History Museum 

(MCNIP), Museu de Biologia Professor Mello Leitão (MBML), Museu de Zoologia da 

Universidade Estadual de Campinas (ZUEC), and Núcleo de Pesquisas em Limnologia, 

Ictiologia e Aquicultura (NUPELIA). All analyzed specimens were photographed, geo-

referenced, and identified to the lowest taxonomic level from identification keys or previously 

published works (Vari, 1992; Albert et al., 1999; Castro and Vari, 2004; Zanata and Camelier, 

2009). 

 

FIGURE 1 | Map of Doce River Basin, including sample sites distribution. 
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2.3.2 Ethics Statement  

All fish analyzed in this study were collected in accordance with Brazilian legislation 

(Collection license 6421-1, number 5498740) or obtained from Ichthyological collections. Fish 

were collected, and euthanized, samples of fins were clipped from each individual and stored 

in absolute ethanol for subsequent molecular analysis. Specimens were fixed in 10% 

formaldehyde and then stored in 70% ethanol. 

 

2.3.3 DNA extraction, amplification and sequencing 

Genetic analyses were conducted, whenever possible, on a minimum of five specimens 

from different sample sites per species. DNA extraction followed the salting out protocol 

(adapted from Aljanabi and Martinez (1997)). The cytochrome c oxidase I (COI) gene (∼650bp) 

was amplified by polymerase chain reaction (PCR) using the primers FishF1/FishR1 described 

by Ward et al. (2005) and the Cocktail COI-3/C_FishF1t1-C_FishR1t1 described by Ivanova et 

al. (2007), and following the PCR protocol described in Gomes et al. (2015). The PCR products 

were visualized on 1% agarose gel, alongside negative controls and a size ladder, and positive 

amplifications were selected for DNA sequencing. DNA sequencing was conducted in both 

directions in an automated DNA analyzer ABI 3500 (Life Technologies).  

 

2.3.4 Data Analysis 

Barcode sequences were edited using DNA Baser® v.3.5.4 (DNA Sequence Assembler v4 

(2013), Heracle BioSoft, www.DnaBaser.com) and SeqScape v.2.1.1 (Applied Biosystems, 
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Foster City, CA, USA) (Díaz et al., 2016) softwares. DNA alignment was conducted using the 

CLUSTAL W alignment tool (Thompson et al., 1997). The neighbor-joining (NJ) trees (Saitou 

and Nei, 1987) and genetic distances estimations, using the K2P (Kimura-2-parameter) 

nucleotide evolution model (Kimura, 1980) were generated using MEGA 7 software (Kumar 

et al., 2016).  

 Intra- and inter-specific genetic distances, nearest neighbor distance (NND), and the 

barcode gap were calculated in the on-line BOLD Workbench (http://www.boldsystems.org) 

(Ratnasingham and Hebert, 2007). The nearest neighbor distance (NND) was used to estimate 

the minimum genetic distance between pairs of species.  Different approaches were used to 

delimitate the Molecular Operational Taxonomic Units (MOTUs), two clustering algorithms 

(BIN and ABGD) and one phylogenetic-coalescent methods (bPTP). The Barcode Index 

Number (BIN) (Ratnasingham and Hebert, 2013) was estimated automatically in BOLD 

Workbench and allowed comparing DNA barcodes obtained here with other river basins that 

have a comprehensive DNA Barcode library such as the São Francisco, the Mucuri, the 

Jequitinhonha, the Paraná, and the Paranaíba River Basins (Carvalho et al., 2011; Pereira et 

al., 2011; Gomes et al., 2015; Díaz et al., 2016; Pugedo et al., 2016). Using this approach, it is 

possible to identify endemic lineages and shared ichthyofauna. Automatic Barcode Gap 

Discovery (ABGD) analyses (Puillandre et al., 2012) were performed using the web interface 

(http://wwwabi.snv.jussieu.fr/public/abgd/abgdweb.html, web version ‘May 31 2017’) with 

a relative gap width value of X=1.0 and two available distance metrics [JC69 (Jukes and Cantor, 

1969) and K2P (Kimura, 1980)], while the other parameter values employed default settings. 
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The Bayesian Poisson Tree Processes model (bPTP) was conducted using both ML (maximum 

likelihood) and Bayesian approaches (Zhang et al., 2013). The PTP file input consisted in a 

nexus tree generated in MrBayes (Ronquist and Huelsenbeck, 2003) using six random 

parsimony trees, with the GTRGAMMA substitution model (obtained by MEGA 7 under BIC 

criteria), without rooting and applying the parameters of 20 million MCMC generations and a 

burn-in of 10%. Analysis was conducted applying default values through the bPTP server 

(500,000 generations, thinning = 100, burn-in= 10%).  

All data including fish photos, GPS coordinates of each sample site, vouchers numbers, 

detailed taxonomic identifications, and the corresponding sequence data and trace files were 

submitted to the Barcode of Life Data System (BOLD, http://www.boldsystems.org, see 

Ratnasingham and Herbert, 2007) within the project file ‘DNA Barcoding of Doce River Basin’. 

 

2.3.5 Species delimitation and hidden biodiversity  

Species delimitation based on integrative approaches that combine a diverse range of 

statistical methods has been extensively used to identify hidden biodiversity (i.e. Padial et al. 

2010; Costa-Silva et al., 2015, Gomes et al., 2015; Rossini et al., 2016, Ramirez et al., 2017). 

Here, species with >2% of intraspecific genetic divergences, still undescribed or unknown and 

identified only at genus or family level were investigated individually to detect the occurrence 

of new molecular operational taxonomic units (MOTUs) according to the congruence among 

BIN, ABGD, bPTP outputs.  

 Undescribed species or those only identified at genus or family level were checked 
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using the BIN and NND analyses in order to verify their occurrence in clusters composed by 

other nominal species, and their genetic divergence from the nearest neighbor (including 

species from DRB and/or distinct Brazilian basins). Were considered as new MOTUs when 

intraspecific genetic divergence was higher than 2% for described species and distinguished 

clusters identified by BIN, ABGD and bPTP outputs.  
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2.4 Results 
 

Morphological identification on the 306 specimens yielded 69 species (see Table S1 in 

of which 43 are native species (five endemic, three threatened by extinction and one endemic 

and threatened), 13 non-native species and 13 new records to the DRB (see Table S2 in the 

Supplementary material), representing over 76% of its known freshwater ichthyofauna 

(Vieira, 2009). We then obtained 306 partial sequences of the COI gene, consisting of 665 bp 

on average, and no insertions, deletions, or stop codons were detected, indicating that there 

was no case of NUMTS (Nuclear mitochondrial DNA sequences) (Bensasson et al., 2001). 

A mean of 4.54 individuals per species were sequenced, comprising 45 genera, 18 

families, and 5 orders (Characiformes (41.9%), Siluriformes (40.6%), Perciformes (9.4%), 

Gymnotiformes (4.7%), Cyprinodontiformes (3.4%)). Species represented by one or two 

specimens (N=19) were not included in the estimation of intraspecific divergences (Callichthys 

callichthys, Cichla kelberi, Clarias gariepinus, Hoplosternum littorale, Hyphessobrycon 

bifasciatus, H. eques, Hypostomus sp., Lophiosilurus alexandri, Metynnis maculatus, 

Parotocinclus maculicauda, Pimelodus maculatus, Poecilia vivipara, Prochilodus vimboides, 

Pygocentrus nattereri, Salminus brasiliensis, Steindachneridion doceanum, Trichomycterus 

aff. Auroguttatus, T. cf. brasiliensis and T. longibarbatus). The NJ tree identified species-

specific clades for 80.9% of all species. The mean genetic distances found within species, 

genera and families were: 2.59%, 11.4% and 20.5% (Table 1), respectively. Over 65% of the 

analyzed species showed genetic distances lower than 1% and for 70% of the species the 

divergence value was below 2% (Figure 2A). When considering intra-generic distance, 19% of 
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the species had a divergence higher than 20% (Figure 2B), suggesting the possibility of 

taxonomic errors or cryptic species.  

 

TABLE 1 | Distance summary reports for sequence divergence between species, genus and 
family level including minimum, mean and maximum genetic distances (K2P). 

  
Minimum 

distance (%) 
Mean 

distance (%) 
Maximum 

distance (%) 

Within species 0 2.59 21.82 

Within genera 0 11.4 24.2 

Within families 0 20.5 30.99 

 

 
FIGURE 2 | Genetic divergences found for all sequences analyzed at species (A) and genus 
(B) levels.  

 

2.4.1 Intra- and inter-specific divergence  

Intraspecific distance varied from 0% to 21.82%. Particularly high genetic distances 

(>10%) were recovered among specimens of Astyanax fasciatus (20.69%), Astyanax 

scabripinnis (21.82%), Astyanax sp. (20.5%), Characidium sp. (10.17%), Crenicichla lacustris 

(21.36%), Harttia sp. (12.2%), Poecilia reticulata (14.34%) and Trichomycterus aff. Alternatus 
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(18.49%), flagging possible new MOTUs (i.e. hidden diversity) or problems related with 

taxonomic morphological identification.  

Incongruences between morphological and barcode identifications (BIN, ABGD, bPTP) 

(i.e. one BIN/ABGD/bPTP cluster containing more than one morphological species, 

morphological species represented by more than one BIN/ABGD/bPTP cluster, and/or >2% of 

intraspecific genetic distance and <1% of interspecific divergence) were observed within 

species of the genus Astyanax, Characidium, Crenicichla, Deuterodon, Gymnotus, Harttia, 

Hoplias, Hyphessobrycon, Hypostomus, Knodus, Neoplecostomus, Oligosarcus, Pareiorhaphis, 

Poecilia, Prochilodus, Rhamdia, and Trichomycterus (Table S1 in the Supplementary material).  

The NJ tree encompassing all species showed the occurrence of monophyletic clades and 

absence of shared haplotypes for 44 of the 69 analyzed species. The interspecific genetic 

distance showed that 63.2% of the analyzed species had a K2P divergence higher than 2% to 

their closest neighbor, with the exception of: Astyanax spp., Deuterodon pedri, 

Hyphessobrycon eques, Characidium sp. and Characidium gr. timbuiense, Gymnotus spp., 

Oligosarcus argenteus and O. acutirostris, Poecilia reticulata and Poecilia vivipara, and 

Trichomycterus aff. Alternatus and T. longibarbatus (Figure S1).  

2.4.2 Identification of Molecular Operational Taxonomic Units (MOTUs) 

The BIN analysis identified 81 clusters, including 48 taxonomically concordant, 17 

discordant, and 16 singletons. The ABGD analysis detected 54-133 MOTUs when varying the 

prior maximal distance from P = 0.001 to P = 0.1000 (applying both the K2P and JC69 
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nucleotide evolution methods). The partition that recovered 81 groups (intraspecific distance 

P = 0.0077) was chosen due to its consistency with our BIN analysis. The bPTP analyses 

(Bayesian and ML approaches) resulted in the same number of clusters obtained by BIN, 

except for Harttia sp. (three BIN and ABGD clusters and one bPTP) and Prochilodus costatus 

(two BIN, and one ABGD and bPTP clusters). ABGD species delineation was in agreement with 

all the BIN clusters with the following exceptions, which contain more than one BIN for each 

morpho-species: Astyanax scabripinnis (BIN: AAC5910 and ACO5464,  ABGD: 36 and 81), 

Knodus moenkhausii (BIN: AAM1485, ABGD: 46 and 49), Prochilodus costatus (BIN: ADC2568 

and ADC2571, ABGD: 10), Trichomycterus sp./Trichomycterus aff. Alternatus/Trichomycterus 

aff. Auroguttatus/Trichomycterus longibarbatus (BIN: ACJ1164 and ACJ1161, ABGD: 64), 

Trichomycterus sp./Trichomycterus cf. brasiliensis (BIN: ACK5393 and ACT6325, ABGD: 65) 

(Table S2).   

 

2.4.3 Identification of hidden biodiversity  

Sequences from fifteen undescribed species or identified only at genus or family level 

were compared to other species available in BOLD database through NND and BIN analyses 

(Table 2). Within undescribed or unknown species, we recovered 9 new MOTUs from the 

following genera: Astyanax, Characidium, Gymnotus, Harttia, Hisonotus, Neoplecostomus, 

Pareiorhaphis, Phalloceros and Trichomycterus. The other six species were not considered 

new MOTUs (Brycon sp., Hasemania sp., Hypostomus sp., Imparfinis sp., Neoplecostominae 
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and Pimelodella sp.) since they were included in BINs composed by another nominal species 

and showed interspecific divergence <2% with the nearest neighbor.  

Among species with deep intraspecific divergence (>2%) we recovered additionally at 

least 3 putative cryptic species (i.e. species containing low levels of morphological/phenotypic 

in contrast to their high genetic differentiation – Struck et al., 2018)due to the congruence 

among BIN, ABGD, bPTP and genetic distance methods for Crenicichla lacustris, Hoplias 

malabaricus and Rhamdia cf. quelen (Table 3). Astyanax fasciatus and A. scabripinnis despite 

showing a congruence of BIN and ABGD analyses were included in clusters comprising another 

species of the genus. Knodus moenkhausii had a maximum intraspecific divergence of 3.07% 

and two distinct ABGD numbers, however, only one clade and one BIN was recovered for this 

species.  
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TABLE 2 | List of undescribed species including the nearest neighbor, BIN and genetic 
similarity (%). 
 

 
 

Species NND (nearest neighbor species) BIN BIN Classification Maximum similarity (%) 

Astyanax sp. 

Astyanax fasciatus AAC5910 Discordant 99.2 

Deterodon pedri ACJ9650 Discordant 99 

Astyanax intermedius ACT0040 Singleton 93.7 

Astyanax fasciatus, A. bockmanni AAY4812 Discordant 99.2 

Brycon sp.  Brycon ferox ACH8616 Concordant 100 

Characidium sp. 

Characidium sp.  ACS9348 Concordant 100 

Characidium cf. timbuiense ACJ1226 Discordant 100 

Characidium cf. timbuiense ACI3743 Discordant 100 

Gymnotus sp.  

Gymnotus carapo AAB6216 Discordant 100 

Gymnotus sylvius AAB6212 Concordant 100 

Gymnotus sp. ACT0768 Concordant 100 

Harttia sp. 

Harttia sp. ACJ1000 Singleton 100 

Harttia sp. ACI6845 Concordant 100 

Harttia sp. ACO6155 Singleton 100 

Hasemania sp. Hasemania hanseni AAO6055 Concordant 100 

Hisonotus sp. Hisotonus sp. ACW1732 Concordant 100 

Hypostomus sp. 

Hypostomus auroguttatus 

AAB9690 Discordant 

100 

Hypostomus heraldoi 98.52 

Hypostomus luetkeni 99.51 

Hypostomus strigaticeps 99.01 

Imparfinis sp. 
Imparfinis minutus 

AAC2103 Concordant 
99.28 

Imparfinis mirini 98.98 

Neoplecostomus sp.  
Neoplecostomus sp. AAX6581 Concordant 100 

Neoplecostomus sp. ACT2675 Concordant 100 

Neoplecostominae Pareiohaphis cf. bahianus ACC0721 Concordant 98.3 

Pareiorhaphis sp. Pareiohaphis scutula AAX0824 Discordant 99.8 

 Pareiorhaphis sp. ACI5663 Concordant 100 

Phalloceros sp. Phalloceros sp. AAB7265 Concordant 100 

Pimelodella sp. Pimelodella lateristriga AAC5327 Concordant 99.85 

Trichomycterus sp. 

Trichomycterus aff. Immaculatus/   T. cf. pradensis ACI3868 Discordant 99.26 

Trichomycterus aff. Auroguttatus ACJ1164 Discordant 100 

Trichomycterus sp. ACJ9705 Singleton 98 

Trichomycterus cf. brasiliensis ACK5393 Singleton 98.57 

  Trichomycterus cf. brasiliensis ACT6325 Discordant 99.8 
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TABLE 3 | List of described species with high intraspecific divergence (>2%), showing the 
maximum and mean intraspecific genetic distance, clades and number of BIN, ABGD and bPTP 
clusters. 

Species 
Maximum 

genetic distance 
(%) 

Mean 
genetic 

distance (%) 
Clades BIN ABGD bPTP 

Astyanax fasciatus 20.69 10.09 3 3 3 3 

Astyanax lacustris 3.35 1.67 2 2 2 2 

Astyanax scabripinnis 21.82 9.12 2 2 3 2 

Astyanax taeniatus 3.96 1.48 2 2 2 2 

Characidium sp./  
10.17/9.9 5.51/5.98 4 4 4 4 

Characidium cf. timbuiense* 

Crenicichla lacustris* 21.36 10.76 2 2 2 2 

Hoplias malabaricus* 6.7 3.27 2 2 2 2 

Knodus moenkhausii 3.07 1.21 1 1 2 1 

Poecilia reticulata 14.34 9.48 2 2 2 2 

Prochilodus costatus 2.6 1.32 2 1 1 2 

Rhamdia cf. quelen * 3.48 1.25 2 2 2 2 

Trichomycterus aff. Alternatus 18.49 10.8 2 2 2 2 

Trichomycterus aff. Immaculatus  5.84 2.23 2 2 2 2 

* Occurrence of cryptic species 
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 2.5 Discussion  

2.5.1 DNA Barcoding effectiveness 

We analyzed 306 fish specimens obtained before the dam burst in 2015 and provided 

genetic data for the ichthyofauna of the DRB, highlighting the occurrence of cryptic and 

previously unrecognized biodiversity. Therefore, we significantly extend the knowledge on 

this river system, whose previous surveys mostly focused on the middle course of the river 

and in lakes located inside the Doce State Park and its surroundings (Sunaga and Verani, 1987; 

Vieira, 1994; Vono and Barbosa, 2001; Latini and Petrere, 2004). This baseline offers a more 

robust platform for any future attempt to restore biodiversity and ecosystem functions to a 

level comparable to pre-disaster conditions. 

 Using DNA barcoding, we observed an intraspecific genetic distance considerably 

higher than previously reported for freshwater fish species from other Brazilian basins. On 

the other hand, intrageneric divergences were found to be similar to previous studies 

(Carvalho et al., 2011; Pereira et al., 2011; Pugedo et al., 2016). These results suggest a higher 

occurrence of hidden biodiversity in DRB when compared to other studied Brazilian basins 

(Table 4).  
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TABLE 4 | Comparison among DNA barcoding studies conducted in Brazilian basins, including 
the number of sequences and species analyzed, and intraspecific and intrageneric distances 
(Minimum and maximum. The mean is inside the parentheses). 
 

Reference Basin 
Number of 
sequences 

Number of 
species 

Intraspecific 
distance (%) 

Intrageneric 
distance (%) 

Pugedo et al., 2016 Jequitinhonha  260 52 
0-11.43 
(0.44) 

1.09-21.55 
(12.16) 

Nascimento et al., 2016 Itapecuru 440 64 0-8.9 (0.80) 2.65-7.70 (5.13) 

Benzaquem et al. 2015* Amazon 110 14 0-9.8 (2.8) 2.2-22.5 (19.0) 

Gomes et al., 2015 Mucuri 141 37 0-3.24 (0.74) 4.29-18.44 (9.5) 

Pereira et al., 2013 Upper Parana 1244 254 0-8.5 (1.3) 0-24.9 (6.8) 

Carvalho et al., 2011 São Francisco  431 101 0-10.54 (0.5) 0-22.88 (10.61) 

Pereira et al., 2011 Paraíba do Sul 295 58 0-3.48 (0.13) 
0.93-22.89 
(10.36) 

Present study  Doce 306 68 
0-21.82 
(2.59) 

0-24.2 (11.4) 

*Only Nannostomus spp.  

2.5.2 Hidden Biodiversity 

DNA barcoding has already been used to reveal hidden biodiversity such as cryptic 

species and new candidate fish species in the São Francisco (Carvalho et al., 2011), Mucuri 

(one species – Gomes et al., 2015) and Jequitinhonha (15 species – Pugedo et al., 2016) River 

catchments. In DRB, from 69 morphologically identified species, the barcode analyses 

recovered 12 putative cryptic species within Astyanax sp., Characidium sp., Characidium gr. 

timbuiense, Crenicichla lacustris, Gymnotus sp., Harttia sp. (2 putative cryptic species), 

Hoplias malabaricus, Neoplecostomus sp., Rhamdia cf. quelen, Trichomycterus sp. (2 putative 

cryptic species). The high intraspecific genetic distance estimation found for the DRB fish was 

related to the occurrence of cases of well-known species complexes – e.g. Astyanax spp. 

(maximum intraspecific distance reaching 21.82% in A. scabripinnis), Gymnotus sp. (6.32%), 
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Hoplias malabaricus (6.7%), Rhamdia cf. quelen (3.48%) and also due to the deep intraspecific 

barcode divergence found to putative overlooked cryptic MOTUs -e.g., Crenicichla lacustris 

(21.36%). 

DNA barcoding allows for the identification of cryptic variation among morphologically 

similar species, indicating the occurrence of more than one species and reinforcing the need 

of an integrative approach combining molecular and morphological characters (Nascimento 

et al., 2016). By combining distinct species delimitation methods, we were able to identify 

new MOTUs from nine undescribed species (Astyanax sp., Characidium sp., Gymnotus sp., 

Harttia sp., Hisonotus sp., Neoplecostomus sp., Pareiorhaphis sp., Phalloceros sp. and 

Trichomycterus sp.). Other species showed a high similarity with already described species 

from another river basins (e.g. specimens of Brycon sp. were assigned as B. ferox from Mucuri 

River basin) and were not considered as possible new MOTUs (Table 2) as shown by the BIN 

analysis.  

Among the undescribed species, we were able to highlight new MOTUs within five 

morpho-species due to their high intraspecific genetic divergence and based on BIN, ABGD 

and NND analyses. For instance, Harttia sp. showed mean divergence of 4.67% and 3 clades 

which were congruent within the BIN and ABGD clustering methods, suggesting the 

occurrence of 3 new MOTUs in this genus. Specimens of Hisonotus sp. were included in the 

same BIN/ABGD/bPTP cluster and had an exclusive BIN containing only specimens from DRB 

suggesting a new MOTU exclusive to this catchment. Neoplecostomus doceensis is the only 

loricariid from this genus described for DRB, however, we found 2 possible cryptic MOTUs 
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within this taxon, as the DNA barcodes from Neoplecostomus sp. did not cluster with barcodes 

available for this species and had two additional distinct BIN and ABGD clusters. Furthermore, 

exclusive BIN/ABGD clusters were recovered for Pareiorhaphis sp. and Phalloceros sp. 

suggesting at least one new MOTU for each genus endemic to the DRB. 

Species with high intraspecific divergence were recovered within Astyanax spp. (A. 

fasciatus, A. lacustris, A. scabripinnis, and A. taeniatus). Despite showing a deep intraspecific 

divergence, and congruence of BIN/ABGD clusters, these species were not considered as 

comprising new MOTUs due to its high genetic similarity with another nominal species (e.g. 

Astyanax parahybae, A.vermilion, Hyphesobrycon spp., Deuterodon sp.) observed within the 

BIN and NND analysis, and also, because this highly diverse group is a well known complex of 

species in need of more systematic studies (Garutti, 1995; Froese and Pauly, 2010; Eschmeyer, 

2015).  

High intraspecific divergence was also found for Trichomycterus aff. Alternatus and T. 

aff. Immaculatus. These species, despite showing a high intraspecific distance (18.49% and 

5.84%, respectively), were included in BINs comprised by another nominal species (e.g. 

Trichomycterus longibarbatus) indicating it may be a case of morphological misidentification 

and not the occurrence of new MOTUs. This genus has an extensive geographical range and 

its morphological identification is complex due to the lack of consistent synapomorphies 

(Barbosa and Costa, 2003). Therefore, further studies combining an integrative approach 

focusing in these species are required in order to investigate the occurrence of putative 

cryptic species. 
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Prochilodus costatus showed a high intraspecific divergence (2.6%) and occurrence of 

two clusters (NJ and BIN analyses). However, this non-native species was not considered as a 

putative cryptic species since it was included in BINs comprising another non-native species 

(e.g. Prochilodus argenteus, P. hartii). As suggested in previous studies, the incongruence 

between morphological and molecular identification of Prochilodus costatus may indicate the 

occurrence of Prochilodus hybrids and not due to new MOTUs (Gomes et al., 2015; Sales et 

al., 2018). 

Poecilia reticulata is a species introduced worldwide, occuring in more than 69 countries 

outside of its native range (Deacon et al., 2011). A high intraspecific divergence (14.34%) was 

found for this species in the Doce River Basin. However, two specimens of Poecilia reticulata 

were assigned to a BIN comprising specimens of P. vivipara (BIN AAC0279) and the high 

intraspecific divergence was due to the incongruence between morphological and molecular 

identification and not due to the occurrence of new MOTUs. Hybridization process between 

congeneric species of Poecilia (Poecilia velifera or P. petenensis and P. mexicana or P. orri) 

and between different populations of P. reticulata have already been reported (Kittell et al., 

2005; Lampert and Schartl, 2008; Sievers et al., 2012) and the incongruence detected in this 

study might be a case of hybridization between P. reticulata and P. vivipara or 

misidentification during the deposit in the museum collection and not due to the occurrence 

of cryptic species.  

Hidden biodiversity was found within the genera Characidium, Crenicichla, Gymnotus, 

Hoplias and Rhamdia due to high intraspecific genetic divergence and congruence among 
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clustering methods BIN, ABGD, bPTP (Table 3). For instance, within the genera Characidium 

spp. we detected a mean intraspecific divergence of 5.82% and the occurrence of four clades, 

of which: two mixed clades comprising specimens identified as Characidium gr. timbuiense 

(n=3 and n=4) and Characidium sp. (n=1 and n=1), one clade exclusive to Characidium gr. 

timbuiense (n=1) and one clade exclusive to Characidium sp. (n=4). Crenicichla lacustris 

showed intraspecific divergence of 10.76% and presence of two different clades and 

BIN/ABGD/bPTP clusters (one for samples collected in Manhuaçu River and one for samples 

collected below the Baguari Dam). The electric knifefishes Gymnotus spp.  had an intraspecific 

divergence above 2% and occurrence of 3 different clades corroborated by 3 BIN, ABGD, and 

bPTP clusters. All Gymnotus specimens were initially morphologically identified as Gymnotus 

sp. and Gymnotus cf. carapo. However, similarly to the findings obtained for this genus in 

Mucuri River Basin, these clusters may represent 2 different known species (Gymnotus carapo 

and the overlooked species Gymnotus sylvius) and a new MOTU yet to be analyzed and 

properly described (Gymnotus sp.). Two congruent BIN, ABGD, and bPTP clusters were 

identified for both Hoplias malabaricus and Rhamdia cf. quelen (mean intraspecific 

divergence of 3.27% and 1.25%, respectively) suggesting the occurrence of cryptic species for 

each of these taxa. The divergence found in H. malabaricus may be due to allopatric 

speciation resulting from geographical barriers enhanced by its sedentary habitat, since one 

cluster comprised exclusively specimens from Jose Pedro River and the other was exclusive 

for specimens from Corrente Grande River. High genetic diversity was already reported for 

this species in other studied systems (Paraná and Tibagi Rivers) suggesting distinct 
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evolutionary lineages, population structuring or occurrence of cryptic species (Dergam et al., 

1998; Blanco et al., 2011; Oliveira et al., 2015).  

Species of the genera Rhamdia, Characidium, Pareiorhaphis, Gymnotus were also 

flagged as cryptic and/or candidate species in other Brazilian basins (Carvalho et al., 2011; 

Gomes et al., 2015; Pugedo et al., 2016). Furthermore, genetic divergence was associated 

with the geographic location of some species (e.g. Crenicichla lacustris, Hoplias malabaricus) 

suggesting the occurrence of allopatric divergence between these populations.  

The increase of available barcodes in BOLD database, including adjacent basins, may 

contribute to expose endemic cryptic species and reduce the risk of synonymies (Gomes et 

al., 2015). However, Pugedo et al. (2016) highlighted the concern of using solely DNA 

barcodes in defining species (e.g. using NND, BIN, ABGD and bPTP analyses) due to the fact 

that Neotropical DNA barcode libraries are not yet complete. Furthermore, specimens 

included in BINs composed by different nominal species should be re-evaluated by a 

taxonomist to verify the data and check for potential misidentifications (Díaz et al., 2016). 

Thus, a thorough analysis should be done for each flagged species to verify the 

correspondence of new MOTUs with putative new candidate species based on accurate 

morphological taxonomy analysis and to evaluate the divergence causes and the correlation 

of speciation process to natural or anthropogenic causes (e.g. presence of dams). 
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2.5.3 Importance of DNA Barcoding library for the Doce River ichthyofauna 

This newly developed DNA barcode reference library for the DRB fish detected the 

occurrence of new MOTUs and suggested the existence of hidden biodiversity. This baseline 

information will provide a platform for several applications and management efforts such as 

ichthyoplankton identification for the detection of fish recruitment areas, unambiguous 

choice of species to be used in restocking programs, and environmental DNA research. This 

data may contribute as a baseline for restoration programs in this catchment, by pointing out 

new MOTUs and suggesting the occurrence of overlooked and cryptic species among the DRB 

ichthyofauna, highlighting the complexity of Neotropical biodiversity.  

The evidence presented here calls for a more robust, DNA-assisted cataloguing of 

biodiversity-rich ecosystems, in order to enable effective monitoring and informed actions to 

preserve and restore delicate habitats such as the DRB. Further studies should verify the 

extent to which fish biodiversity has been affected by the Doce dam collapse disaster, and 

what hotspots of diversity within the catchment can be identified as potential sources of 

replenishment. At the same time, the approaches used here, and additional high through-put 

methodologies (e.g. metabarcoding of water and sediment samples) should be increasingly 

employed to monitor biodiversity at a pace that can cater for the management needs of these 

increasingly impacted biodiverse habitats. 
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Table S1: Sixty nine fish species barcoded from Doce River Basin and identified as a unique Barcode 
Index Number (BIN). LGC and RD– Laboratório de Genética da Conservação do Programa de Pós-
graduação em Biologia de Vertebrados/PUC Minas, MBML – Museu de Biologia Professor Mello Leitão, 
MCNIP – Coleção de Ictiologia do Museu de Ciências Naturais da PUC Minas, ZUEC – Museu de 
Zoologia da Universidade Estadual de Campinas “Prof. Adão José Cardoso” 

Process ID Sample ID Museum ID Identification Lat Lon BIN 

RDOCE175-14 RD116 RD116 Astyanax fasciatus -19.996 -41.739 BOLD:ABU7523 

RDOCE229-14 LGC3525 BG-06VI-37 Astyanax fasciatus -18.996 -42.225 BOLD:ACJ1542 

RDOCE231-14 LGC3545 BG-12XII-06 Astyanax fasciatus -18.996 -42.225 BOLD:ACJ1542 

RDOCE234-14 LGC3688 LGC3688 Astyanax fasciatus -19.004 -43.375 BOLD:ACJ9650 

RDOCE284-14 LGC3567 LGC3567 Astyanax fasciatus -18.996 -42.225 BOLD:ACJ1542 

RDOCE285-14 LGC3568 LGC3568 Astyanax fasciatus -18.996 -42.225 BOLD:ACJ1542 

RDOCE286-14 LGC3569 LGC3569 Astyanax fasciatus -18.996 -42.225 BOLD:ACJ1542 

RDOCE212-14 LGC4145 MBML6827 Astyanax giton -19.837 -40.555 BOLD:ACL8007 

RDOCE214-14 LGC4153 MBML6842 Astyanax giton -19.889 -40.576 BOLD:ACL8007 

RDOCE321-15 LGC4147 MBML6831 Astyanax giton -19.884 -40.575 BOLD:ACL8007 

RDOCE091-13 LGC1819 MCNI-PUCMG-0476 Astyanax lacustris -20.079 -41.733 BOLD:ABZ1711 

RDOCE018-13 LGC153 MCNI-PUCMG-0476 Astyanax lacustris -20.079 -41.733 BOLD:ABZ1711 

RDOCE178-14 RD134 RD134 Astyanax lacustris -19.996 -41.739 BOLD:ABZ1711 

RDOCE179-14 RD136 RD136 Astyanax lacustris -18.937 -42.045 BOLD:ABY8634 

RDOCE180-14 RD137 RD137 Astyanax lacustris -18.993 -42.225 BOLD:ABY8634 

RDOCE152-13 RD139 RD139 Astyanax lacustris -19.062 -42.162 BOLD:ABY8634 

RDOCE221-14 RD132 RD132 Astyanax lacustris -19.973 -41.725 BOLD:ABZ1711 

RDOCE222-14 RD133 RD133 Astyanax lacustris -19.973 -41.725 BOLD:ABZ1711 

RDOCE250-14 LGC4598 MCNIP-1607 Astyanax lacustris -19.985 -41.722 BOLD:ABZ1711 

RDOCE176-14 RD121 RD121 Astyanax scabripinnis -20.04 -41.93 BOLD:AAC5910 

RDOCE218-14 RD120 RD120 Astyanax scabripinnis -20.024 -43.460 BOLD:AAC5910 

RDOCE219-14 RD123 RD123 Astyanax scabripinnis -20.110 -43.400 BOLD:AAC5910 

RDOCE220-14 RD124 RD124 Astyanax scabripinnis -20.110 -43.400 BOLD:AAC5910 

RDOCE237-14 LGC3727 83 Astyanax scabripinnis -18.913 -43.439 BOLD:ACO5464 

RDOCE142-13 RD68 RD68 Astyanax sp. -20.083 -43.420 BOLD:ACJ9650 

RDOCE143-13 RD69 RD69 Astyanax sp. -20.083 -43.420 BOLD:AAY4812 

RDOCE144-13 RD70 RD70 Astyanax sp. -20.083 -43.420 BOLD:AAC5910 

RDOCE272-14 RD159 RD159 Astyanax sp. -19.014 -43.377 BOLD:ACT0040 

RDOCE287-14 LGC3695 LGC3695 Astyanax sp. -19.011 -43.372 BOLD:ACJ9650 

RDOCE297-15 LGC3724 LGC3724 Astyanax sp. -19.011 -43.372 BOLD:ACJ9650 

RDOCE183-14 RD148 RD148 Astyanax taeniatus -18.967 -42.318 BOLD:ABU7523 

RDOCE184-14 RD149 RD149 Astyanax taeniatus -18.967 -42.318 BOLD:ABU7523 

RDOCE153-13 RD140 RD140 Astyanax taeniatus -20.120 -43.400 BOLD:ABU7523  
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Process ID Sample ID Museum ID Identification Lat Lon BIN 

RDOCE271-14 RD141 RD141 Astyanax taeniatus -20.121 -43.401 BOLD:ABU7523 

RDOCE203-14 LGC1533 LGC1533 Australoheros cf. ipatinguensis -19.275 -42.425 BOLD:ACR9799 

RDOCE204-14 LGC1534 LGC1534 Australoheros cf. ipatinguensis -19.275 -42.425 BOLD:ACR9799 

RDOCE205-14 LGC1535 LGC1535 Australoheros cf. ipatinguensis -19.275 -42.425 BOLD:ACR9799 

RDOCE206-14 LGC1536 LGC1536 Australoheros cf. ipatinguensis -19.275 -42.425 BOLD:ACR9799 

RDOCE207-14 LGC1537 LGC1537 Australoheros cf. ipatinguensis -19.275 -42.425 BOLD:ACR9799 

RDOCE189-14 LGC3678 LGC3678 Brycon opalinus -19.289 -43.192 BOLD:ACL7114 

RDOCE199-14 LGC3747 LGC3747 Brycon opalinus -18.763 -43.459 BOLD:ACL7114 

RDOCE232-14 LGC3677 1 Brycon opalinus -19.289 -43.192 BOLD:ACL7114 

RDOCE233-14 LGC3679 3 Brycon opalinus -19.289 -43.192 BOLD:ACL7114 

RDOCE238-14 LGC3745 6 Brycon opalinus -18.969 -43.438 BOLD:ACL7114 

RDOCE245-14 LGC4508 MCNIP-1602 Brycon sp.  -18.994 -42.226 BOLD:ACH8616 

RDOCE252-14 LGC4635 MCNIP-1601 Brycon sp.  -19.156 -42.231 BOLD:ACH8616 

RDOCE253-14 LGC4636 MCNIP-1601 Brycon sp.  -19.156 -42.231 BOLD:ACH8616 

RDOCE254-14 LGC4637 MCNIP-1601 Brycon sp.  -19.156 -42.231 BOLD:ACH8616 

RDOCE311-15 LGC5770 LGC5770 Callichthys callichthys -18.91 -43.442 BOLD:AAB5066 

RDOCE123-13 RD46 RD46 Characidium cf. timbuiense -19.022 -42.122 BOLD:ACJ1226 

RDOCE124-13 RD48 RD48 Characidium cf. timbuiense -19.022 -42.122 BOLD:ACI3743 

RDOCE125-13 RD51 RD51 Characidium cf. timbuiense -19.022 -42.122 BOLD:ACI3743 

RDOCE158-14 RD47 RD47 Characidium cf. timbuiense -19.996 -41.739 BOLD:ACJ1226 

RDOCE159-14 RD49 RD49 Characidium cf. timbuiense -18.964 -42.318 BOLD:ACI3743 

RDOCE140-13 RD45 RD45 Characidium cf. timbuiense -19.022 -42.122 BOLD:ACJ9733 

RDOCE141-13 RD50 RD50 Characidium cf. timbuiense -19.002 -42.127 BOLD:ACI3743 

RDOCE190-14 LGC3683 LGC3683 Characidium cf. timbuiense -18.974 -43.372 BOLD:ACJ1226 

RDOCE198-14 RD161 RD161 Characidium sp. -18.754 -43.447 BOLD:ACS9348 

RDOCE239-14 LGC4125 MBML4422 Characidium sp. -19.788 -40.663 BOLD:ACI3743 

RDOCE326-15 LGC5735 LGC5735 Characidium sp. -18.974 -43.371 BOLD:ACJ1226 

RDOCE327-15 LGC5719 LGC5719 Characidium sp. -18.813 -43.413 BOLD:ACS9348 

RDOCE328-15 LGC5752 LGC5752 Characidium sp. -18.974 -43.371 BOLD:ACS9348 

RDOCE230-14 LGC3540 BG-11XI-05 Cichla kelberi -18.996 -42.225 BOLD:AAO9230 

RDOCE258-14 LGC4697 3440 Cichla kelberi -19.156 -42.231 BOLD:AAO9230 

RDOCE094-13 LGC2674 LGC2674 Clarias gariepinus -19.022 -42.122 BOLD:AAB2256 

RDOCE053-13 LGC3555 ZUEC 8147 Crenicichla lacustris -19.022 -42.122 BOLD:AAD6380 

RDOCE054-13 LGC3556 ZUEC 8147 Crenicichla lacustris -19.022 -42.122 BOLD:AAD6380 

RDOCE248-14 LGC4579 17 Crenicichla lacustris -19.979 -41.714 BOLD:ACO6050 

RDOCE249-14 LGC4582 26 Crenicichla lacustris -19.979 -41.714 BOLD:ACO6050 

RDOCE294-14 LGC4978 ZUEC 8199 Crenicichla lacustris -19.979 -41.714 BOLD:ACO6050 

RDOCE295-14 LGC4979 ZUEC 8199 Crenicichla lacustris -19.979 -41.714 BOLD:ACO6050 

RDOCE090-13 LGC1810 MCNI-PUCMG-0458 Cyphocharax gilbert -19.988 -41.72 BOLD:ACK1539 
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Process ID Sample ID Museum ID Identification Lat Lon BIN 

RDOCE100-13 LGC3548 ZUEC 8153 Cyphocharax gilbert -18.945 -42.363 BOLD:ACK1539 

RDOCE101-13 LGC3550 ZUEC 8153 Cyphocharax gilbert -18.945 -42.363 BOLD:ACK1539 

RDOCE016-13 LGC143 MCNI-PUCMG-0458 Cyphocharax gilbert -19.988 -41.72 BOLD:ACK1539 

RDOCE050-13 LGC3549 ZUEC 8153 Cyphocharax gilbert -18.945 -42.363 BOLD:ACK1539 

RDOCE013-13 LGC129 MCNI-PUCMG-0444 Delturus carinotus -20.016 -41.735 BOLD:ACC0184 

RDOCE014-13 LGC130 MCNI-PUCMG-0446 Delturus carinotus -20.048 -41.747 BOLD:ACC0184 

RDOCE024-13 LGC164 LGC164 Delturus carinotus -19.986 -41.716 BOLD:ACC0184 

RDOCE065-13 LGC163 LGC163 Delturus carinotus -19.986 -41.716 BOLD:ACC0184 

RDOCE130-13 LGC165 LGC165 Delturus carinotus -19.985 -41.716 BOLD:ACC0184 

RDOCE224-14 RD58 RD58 Deuterodon pedri -19.001 -42.231 BOLD:AAY4812 

RDOCE273-14 RD56 RD56 Deuterodon pedri -19.002 -42.231 BOLD:AAY4812 

RDOCE274-14 RD57 RD57 Deuterodon pedri -19.002 -42.231 BOLD:AAY4812 

RDOCE086-13 LGC173 LGC173 Geophagus brasiliensis -19.988 -41.72 BOLD:AAA8514 

RDOCE088-13 LGC179 LGC179 Geophagus brasiliensis -19.988 -41.72 BOLD:AAA8514 

RDOCE110-13 RD29 RD29 Geophagus brasiliensis -19.022 -42.122 BOLD:AAA8514 

RDOCE111-13 RD30 RD30 Geophagus brasiliensis -19.022 -42.122 BOLD:AAA8514 

RDOCE112-13 RD31 RD31 Geophagus brasiliensis -19.022 -42.122 BOLD:AAA8514 

RDOCE113-13 RD33 RD33 Geophagus brasiliensis -19.022 -42.122 BOLD:AAA8514 

RDOCE114-13 RD34 RD34 Geophagus brasiliensis -19.022 -42.122 BOLD:AAA8514 

RDOCE021-13 LGC158 LGC158 Geophagus brasiliensis -19.986 -41.716 BOLD:AAA8514 

RDOCE032-13 LGC1817 MCNI-PUCMG-0476 Geophagus brasiliensis -20.046 -41.735 BOLD:AAA8514 

RDOCE062-13 LGC149 MCNI-PUCMG-0463 Geophagus brasiliensis -20.046 -41.735 BOLD:AAA8514 

RDOCE063-13 LGC159 LGC159 Geophagus brasiliensis -19.986 -41.716 BOLD:AAA8514 

RDOCE154-14 LGC150 MCNI-PUCMG-0463 Geophagus brasiliensis -20.046 -41.735 BOLD:AAA8514 

RDOCE264-14 LGC4961 ZUEC 8208 Gymnotus aff. Carapo -19.985 -41.722 BOLD:AAB6216 

RDOCE279-14 LGC4618 LGC4618 Gymnotus aff. Carapo -20.046 -41.735 BOLD:AAB6216 

RDOCE290-14 LGC4639 MCNIP-1604 Gymnotus aff. Carapo -19.156 -42.231 BOLD:AAB6216 

RDOCE292-14 LGC4704 MCNIP-1608 Gymnotus aff. Carapo -19.156 -42.231 BOLD:AAB6216 

RDOCE310-15 LGC4914 ZUEC 8208 Gymnotus aff. Carapo -20.046 -41.735 BOLD:AAB6216 

RDOCE322-15 LGC4955 ZUEC 8208 Gymnotus aff. Carapo -19.985 -41.722 BOLD:AAB6216 

RDOCE075-13 RD08 RD08 Gymnotus sp. -20.110 -43.400 BOLD:AAB6212 

RDOCE076-13 RD09 RD09 Gymnotus sp. -19.996 -41.739 BOLD:AAB6216 

RDOCE077-13 RD11 RD11 Gymnotus sp. -19.996 -41.739 BOLD:AAB6216 

RDOCE136-13 RD10 RD10 Gymnotus sp. -19.996 -41.739 BOLD:AAB6216 

RDOCE301-15 RD181 RD181 Gymnotus sp. -19.996 -41.739 BOLD:ACT0768 

RDOCE302-15 RD92 RD92 Gymnotus sp. -20.109 -43.399 BOLD:AAB6212 

RDOCE306-15 RD12 RD12 Gymnotus sp. -20 -42 BOLD:ACT0768 

RDOCE308-15 RD180 RD180 Gymnotus sp. -18.99 -42.215 BOLD:ACT0768 

RDOCE309-15 RD93 RD93 Gymnotus sp. -20.109 -43.399 BOLD:AAB6212 
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RDOCE115-13 RD35 RD35 Harttia sp. -19.022 -42.122 BOLD:ACJ1000 

RDOCE045-13 LGC3594 MCNIP-1637 Harttia sp. -19.023 -42.125 BOLD:ACI6845 

RDOCE235-14 LGC3700 54 Harttia sp. -19.011 -43.372 BOLD:ACO6155 

RDOCE247-14 LGC4531 MBML-PEIXES 7783 Harttia sp. -19.979 -41.714 BOLD:ACI6845 

RDOCE251-14 LGC4634 MCNIP-1606 Harttia sp. -20.046 -41.735 BOLD:ACI6845 

RDOCE265-14 LGC4976 ZUEC 8218 Harttia sp. -19.979 -41.714 BOLD:ACI6845 

RDOCE266-14 LGC4977 ZUEC 8218 Harttia sp. -19.979 -41.714 BOLD:ACI6845 

RDOCE267-14 LGC4985 ZUEC 8218 Harttia sp. -19.979 -41.714 BOLD:ACI6845 

RDOCE071-13 RD03 RD03 Hasemania sp. -20.084 -43.415 BOLD:AAO6055 

RDOCE072-13 RD04 RD04 Hasemania sp. -20.084 -43.415 BOLD:AAO6055 

RDOCE073-13 RD05 RD05 Hasemania sp. -20.084 -43.415 BOLD:AAO6055 

RDOCE074-13 RD06 RD06 Hasemania sp. -20.084 -43.415 BOLD:AAO6055 

RDOCE236-14 LGC3703 58 Hasemania sp. -18.933 -43.447 BOLD:AAO6055 

RDOCE166-14 RD85 RD85 Hisonotus sp. -18.967 -42.318 BOLD:ACW1732 

RDOCE134-13 RD01 RD01 Hisonotus sp. -19.062 -42.162 BOLD:ACW1732 

RDOCE323-15 RD86 RD86 Hisonotus sp. -18.952 -42.36 BOLD:ACW1732 

RDOCE102-13 LGC3552 ZUEC 8146 Hoplias intermedius -19.022 -42.122 BOLD:AAB1734 

RDOCE051-13 LGC3551 ZUEC 8146 Hoplias intermedius -19.022 -42.122 BOLD:AAB1734 

RDOCE052-13 LGC3553 ZUEC 8146 Hoplias intermedius -19.022 -42.122 BOLD:AAB1734 

RDOCE069-13 LGC3589 MCNIP-1638 Hoplias intermedius -20.084 -43.415 BOLD:AAB1734 

RDOCE097-13 LGC3532 ZUEC 8150 Hoplias malabaricus -18.986 -42.216 BOLD:ACI3811 

RDOCE098-13 LGC3533 ZUEC 8150 Hoplias malabaricus -18.986 -42.216 BOLD:ACI3811 

RDOCE099-13 LGC3541 MCNIP-1639 Hoplias malabaricus -18.972 -42.286 BOLD:ACI3811 

RDOCE022-13 LGC160 LGC160 Hoplias malabaricus -19.986 -41.716 BOLD:AAY4779 

RDOCE023-13 LGC162 LGC162 Hoplias malabaricus -19.986 -41.716 BOLD:AAY4779 

RDOCE031-13 LGC1814 MCNI-PUCMG-0461 Hoplias malabaricus -20.046 -41.735 BOLD:AAY4779 

RDOCE061-13 LGC147 MCNI-PUCMG-0461 Hoplias malabaricus -20.046 -41.735 BOLD:AAY4779 

RDOCE064-13 LGC161 LGC161 Hoplias malabaricus -19.986 -41.716 BOLD:AAY4779 

RDOCE068-13 LGC181 LGC181 Hoplias malabaricus -19.988 -41.720 BOLD:AAY4779 

RDOCE092-13 LGC1841 LGC1841 Hoplosternum littorale -19.988 -41.72 BOLD:AAB5068 

RDOCE037-13 LGC1845 LGC1845 Hoplosternum littorale -19.988 -41.72 BOLD:AAB5068 

RDOCE319-15 LGC4151 MBML6839 Hyphessobrycon bifasciatus -19.888 -40.575 BOLD:ACT0106 

RDOCE241-14 LGC4139 MBML6816 Hyphessobrycon eques -19.47 -40.184 BOLD:ABZ1711 

RDOCE280-14 LGC4963 ZUEC 8198 Hypomasticus mormyrops -19.979 -41.714 BOLD:ACH5050 

RDOCE281-14 LGC4964 ZUEC 8198 Hypomasticus mormyrops -19.979 -41.714 BOLD:ACH5050 

RDOCE282-14 LGC4965 ZUEC 8198 Hypomasticus mormyrops -19.979 -41.714 BOLD:ACH5050 

RDOCE283-14 LGC4966 ZUEC 8198 Hypomasticus mormyrops -19.979 -41.714 BOLD:ACH5050 

RDOCE293-14 LGC4967 ZUEC 8198 Hypomasticus mormyrops -19.979 -41.714 BOLD:ACH5050 

RDOCE296-15 LGC3715 LGC3715 Hypomasticus mormyrops -19 -43 BOLD:ACH5050 
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RDOCE303-15 LGC3713 LGC3713 Hypomasticus mormyrops -19 -43 BOLD:ACH5050 

RDOCE004-13 LGC08 MCNI-PUCMG-0197 Hypostomus affinis -18.972 -42.286 BOLD:AAW9386 

RDOCE006-13 LGC10 MCNI-PUCMG-0200 Hypostomus affinis -19.114 -42.176 BOLD:AAW9386 

RDOCE007-13 LGC11 MCNI-PUCMG-0200 Hypostomus affinis -19.114 -42.176 BOLD:AAW9386 

RDOCE008-13 LGC12 MCNI-PUCMG-0200 Hypostomus affinis -19.114 -42.176 BOLD:AAW9386 

RDOCE015-13 LGC138 MCNI-PUCMG-0451 Hypostomus affinis -20.079 -41.733 BOLD:AAW9386 

RDOCE002-13 LGC03 MCNI-PUCMG-0193 Hypostomus auroguttatus -19.018 -42.121 BOLD:AAB9690 

RDOCE003-13 LGC07 MCNI-PUCMG-0193 Hypostomus auroguttatus -19.018 -42.121 BOLD:AAB9690 

RDOCE009-13 LGC16 LGC16 Hypostomus auroguttatus -19.018 -42.121 BOLD:AAB9690 

RDOCE010-13 LGC17 LGC17 Hypostomus auroguttatus -19.018 -42.121 BOLD:AAB9690 

RDOCE011-13 LGC19 LGC19 Hypostomus auroguttatus -19.018 -42.121 BOLD:AAB9690 

RDOCE028-13 LGC1672 MCNI-PUCMG-0193 Hypostomus auroguttatus -19.018 -42.121 BOLD:AAB9690 

RDOCE194-14 LGC3712 LGC3712 Hypostomus sp. -18.917 -43.462 BOLD:AAB9690 

RDOCE313-15 LGC5786 LGC5786 Hypostomus sp. -18.916 -43.461 BOLD:AAB9690 

RDOCE129-13 RD55 RD55 Imparfinis sp. -19.022 -42.122 BOLD:AAC2103 

RDOCE080-13 RD16 RD16 Imparfinis sp. -18.967 -42.318 BOLD:AAC2103 

RDOCE156-14 RD17 RD17 Imparfinis sp. -18.967 -42.318 BOLD:AAC2103 

RDOCE227-14 RD76 RD76 Imparfinis sp. -19.202 -42.361 BOLD:AAC2103 

RDOCE276-14 RD77 RD77 Imparfinis sp. -20.111 -43.4 BOLD:AAC2103 

RDOCE197-14 RD160 RD160 Knodus moenkhausii -18.933 -43.447 BOLD:AAM1485 

RDOCE215-14 RD106 RD106 Knodus moenkhausii -20.045 -43.444 BOLD:AAM1485 

RDOCE216-14 RD107 RD107 Knodus moenkhausii -20.045 -43.444 BOLD:AAM1485 

RDOCE217-14 RD111 RD111 Knodus moenkhausii -19.001 -42.231 BOLD:AAM1485 

RDOCE268-14 RD104 RD104 Knodus moenkhausii -19.002 -42.231 BOLD:AAM1485 

RDOCE269-14 RD110 RD110 Knodus moenkhausii -19.002 -42.231 BOLD:AAM1485 

RDOCE095-13 LGC3033 LGC3033 Leporinus copelandii -19.022 -42.122 BOLD:ACI6721 

RDOCE030-13 LGC1811 MCNI-PUCMG-0459 Leporinus copelandii -19.978 -41.714 BOLD:ACI6721 

RDOCE034-13 LGC1823 LGC1823 Leporinus copelandii -19.978 -41.714 BOLD:ACI6721 

RDOCE155-14 LGC3544 BG-12XII-03 Leporinus copelandii -18.945 -42.362 BOLD:ACI6721 

RDOCE093-13 LGC2668 LGC2668 Lophiosilurus alexandri -19.022 -42.122 BOLD:AAE4855 

RDOCE128-13 RD54 RD54 Loricariichthys castaneus -19.022 -42.122 BOLD:ACI6497 

RDOCE038-13 LGC2671 LGC2671 Loricariichthys castaneus -19.032 -42.126 BOLD:ACI6497 

RDOCE040-13 LGC3036 LGC3036 Loricariichthys castaneus -19.022 -42.122 BOLD:ACI6497 

RDOCE208-14 LGC2672 LGC2672 Loricariichthys castaneus -19.032 -42.126 BOLD:ACI6497 

RDOCE209-14 LGC3034 LGC3034 Loricariichthys castaneus -19.022 -42.122 BOLD:ACI6497 

RDOCE133-13 LGC3537 LGC3537 Metynnis maculatus -18.985 -42.216 BOLD:AAE7443 

RDOCE168-14 RD96 RD96 Neoplecostominae -19.002 -42.127 BOLD:ACC0721 

RDOCE169-14 RD97 RD97 Neoplecostominae -19.002 -42.127 BOLD:ACC0721 

RDOCE170-14 RD98 RD98 Neoplecostominae -19.002 -42.127 BOLD:ACC0721 
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RDOCE173-14 RD103 RD103 Neoplecostominae -19.002 -42.127 BOLD:ACC0721 

RDOCE148-13 RD95 RD95 Neoplecostominae -19.022 -42.125 BOLD:ACC0721 

RDOCE149-13 RD100 RD100 Neoplecostominae -19.022 -42.125 BOLD:ACC0721 

RDOCE185-14 LGC1822 LGC1822 Neoplecostominae -20.079 -41.733 BOLD:ACC0721 

RDOCE195-14 LGC3717 LGC3717 Neoplecostominae -18.917 -43.462 BOLD:ACC0721 

RDOCE172-14 RD101 RD101 Neoplecostomus sp. -20.047 -41.685 BOLD:AAX6581 

RDOCE150-13 RD102 RD102 Neoplecostomus sp. -20.047 -41.685 BOLD:AAX6581 

RDOCE192-14 LGC3699 LGC3699 Neoplecostomus sp. -19.011 -43.372 BOLD:ACT2675 

RDOCE278-14 LGC3684 LGC3684 Neoplecostomus sp. -18.974 -43.372 BOLD:ACT2675 

RDOCE325-15 LGC5733 LGC5733 Neoplecostomus sp. -18.974 -43.371 BOLD:ACT2675 

RDOCE103-13 LGC3554 ZUEC 8149 Oligosarcus acutirostris -19.022 -42.122 BOLD:AAI3590 

RDOCE033-13 LGC1818 MCNI-PUCMG-01476 Oligosarcus acutirostris -19.988 -41.72 BOLD:AAI3590 

RDOCE048-13 LGC3546 LGC3546 Oligosarcus acutirostris -18.945 -42.363 BOLD:AAI3590 

RDOCE049-13 LGC3547 LGC3547 Oligosarcus acutirostris -18.945 -42.363 BOLD:AAI3590 

RDOCE055-13 LGC3557 ZUEC 8149 Oligosarcus acutirostris -19.022 -42.122 BOLD:AAI3590 

RDOCE316-15 LGC4518 MCNIP-1605 Oligosarcus argenteus -19.978 -41.714 BOLD:AAI3590 

RDOCE317-15 LGC4519 LGC4519 Oligosarcus argenteus -19.978 -41.714 BOLD:AAI3590 

RDOCE318-15 LGC4516 LGC4516 Oligosarcus argenteus -19.978 -41.714 BOLD:AAI3590 

RDOCE320-15 LGC3682 LGC3682 Oligosarcus argenteus -18.974 -43.371 BOLD:AAI3590 

RDOCE151-13 RD138 RD138 Pareiorhaphis scutula -20.045 -43.444 BOLD:AAX0824 

RDOCE188-14 RD127 RD127 Pareiorhaphis scutula -19.275 -42.425 BOLD:AAX0824 

RDOCE270-14 RD128 RD128 Pareiorhaphis scutula -20.025 -43.46 BOLD:AAX0824 

RDOCE177-14 RD129 RD129 Pareiorhaphis sp. -19.01 -43.37 BOLD:AAX0824 

RDOCE131-13 LGC1850 LGC1850 Pareiorhaphis sp. -20.048 -41.746 BOLD:ACI5663 

RDOCE210-14 LGC3710 LGC3710 Pareiorhaphis sp. -18.917 -43.462 BOLD:AAX0824 

RDOCE300-15 RD177 RD177 Pareiorhaphis sp. -20 -42 BOLD:ACI5663 

RDOCE307-15 RD178 RD178 Pareiorhaphis sp. -20 -42 BOLD:ACI5663 

RDOCE240-14 LGC4133 MBML4646 Parotocinclus maculicauda -19.888 -40.574 BOLD:ACO5053 

RDOCE242-14 LGC4148 MBML6834 Parotocinclus maculicauda -19.885 -40.575 BOLD:ACO5053 

RDOCE211-14 LGC4144 MBML6826 Phalloceros elachistos -19.837 -40.555 BOLD:ACO4001 

RDOCE243-14 LGC4149 MBML6835 Phalloceros elachistos -19.885 -40.575 BOLD:ACO4001 

RDOCE289-14 LGC4150 MBML6837 Phalloceros elachistos -19.889 -40.576 BOLD:ACO4001 

RDOCE193-14 LGC3704 LGC3704 Phalloceros sp. -18.933 -43.447 BOLD:AAB7265 

RDOCE312-15 LGC5776 LGC5776 Phalloceros sp. -18.933 -43.446 BOLD:AAB7265 

RDOCE314-15 LGC5788 LGC5788 Phalloceros sp. -18.924 -43.465 BOLD:AAB7265 

RDOCE126-13 RD52 RD52 Pimelodella sp. -19.022 -42.122 BOLD:AAC5327 

RDOCE127-13 RD53 RD53 Pimelodella sp. -19.022 -42.122 BOLD:AAC5327 

RDOCE039-13 LGC3016 LGC3016 Pimelodella sp. -19.023 -42.125 BOLD:AAC5327 

RDOCE132-13 LGC3015 LGC3015 Pimelodella sp. -19.022 -42.125 BOLD:AAC5327 
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RDOCE259-14 LGC4710 MCNIP-1609 Pimelodus maculatus -19.081 -42.159 BOLD:AAB6504 

RDOCE263-14 LGC4728 MCNIP-1610 Pimelodus maculatus -18.951 -42.361 BOLD:AAB6504 

RDOCE181-14 RD145 RD145 Poecilia reticulata -19.77 -40.63 BOLD:AAC0279 

RDOCE182-14 RD146 RD146 Poecilia reticulata -19.77 -40.63 BOLD:AAC0279 

RDOCE138-13 RD18 RD18 Poecilia reticulata -20.042 -41.698 BOLD:ACE9037 

RDOCE139-13 RD19 RD19 Poecilia reticulata -20.04 -41.698 BOLD:ACE9037 

RDOCE288-14 LGC4140 MBML6817 Poecilia vivipara -19.47 -40.184 BOLD:AAC0279 

RDOCE047-13 LGC3596 LGC3596 Pogonopoma wertheimeri -19.023 -42.125 BOLD:ACI3792 

RDOCE299-15 LGC4715 LGC4715 Pogonopoma wertheimeri -19 -42 BOLD:ACI3792 

RDOCE304-15 LGC4701 LGC4701 Pogonopoma wertheimeri -19 -42 BOLD:ACI3792 

RDOCE305-15 LGC4726 LGC4726 Pogonopoma wertheimeri -19 -42 BOLD:ACI3792 

RDOCE096-13 LGC3528 LGC3528 Prochilodus costatus -19.032 -42.126 BOLD:ADK5931 

RDOCE056-13 LGC3559 LGC3559 Prochilodus costatus -19.081 -42.158 BOLD:ADK5931 

RDOCE057-13 LGC3560 LGC3560 Prochilodus costatus -19.081 -42.158 BOLD:ADK5931 

RDOCE058-13 LGC3561 LGC3561 Prochilodus costatus -19.081 -42.158 BOLD:ADK5929 

RDOCE059-13 LGC3562 LGC3562 Prochilodus costatus -19.081 -42.158 BOLD:ADK5931 

RDOCE060-13 LGC3563 LGC3563 Prochilodus costatus -19.081 -42.158 BOLD:ADK5929 

RDOCE246-14 LGC4515 MCNIP-1603 Prochilodus vimboides -18.951 -42.361 BOLD:ACN4578 

RDOCE046-13 LGC3595 LGC3595 Pseudauchenipterus affinis -19.023 -42.125 BOLD:AAH8177 

RDOCE255-14 LGC4651 MCNIP-1598 Pseudauchenipterus affinis -19.239 -42.306 BOLD:AAH8177 

RDOCE256-14 LGC4652 MCNIP-1598 Pseudauchenipterus affinis -19.239 -42.306 BOLD:AAH8177 

RDOCE260-14 LGC4712 3503 Pseudauchenipterus affinis -19.081 -42.159 BOLD:AAH8177 

RDOCE261-14 LGC4713 3504 Pseudauchenipterus affinis -19.081 -42.159 BOLD:AAH8177 

RDOCE262-14 LGC4719 3525 Pseudauchenipterus affinis -18.994 -42.226 BOLD:AAH8177 

RDOCE291-14 LGC4656 MCNIP-1599 Pygocentrus nattereri -19.114 -42.177 BOLD:ABZ7351 

RDOCE105-13 LGC3572 LGC3572 Rhamdia cf. quelen -20.106 -43.403 BOLD:AAA6322 

RDOCE107-13 LGC3577 LGC3577 Rhamdia cf. quelen -20.025 -43.46 BOLD:AAA6322 

RDOCE036-13 LGC1844 LGC1844 Rhamdia cf. quelen -19.988 -41.72 BOLD:AAA6323 

RDOCE041-13 LGC3578 LGC3578 Rhamdia cf. quelen -20.025 -43.46 BOLD:AAA6322 

RDOCE042-13 LGC3579 LGC3579 Rhamdia cf. quelen -20.025 -43.46 BOLD:AAA6322 

RDOCE078-13 RD13 RD13 Rhamdia cf. quelen -19.996 -41.739 BOLD:AAA6323 

RDOCE079-13 RD15 RD15 Rhamdia cf. quelen -20.110 -43.400 BOLD:AAA6322 

RDOCE167-14 RD91 RD91 Rhamdia cf. quelen -18.967 -42.318 BOLD:AAA6322 

RDOCE137-13 RD14 RD14 Rhamdia cf. quelen -20.110 -43.400 BOLD:AAA6322 

RDOCE104-13 LGC3564 ZUEC 8145 Salminus brasiliensis -19.235 -42.313 BOLD:AAD2790 

RDOCE160-14 RD60 RD60 Serrapinnus heterodon -18.967 -42.318 BOLD:AAE1686 

RDOCE161-14 RD61 RD61 Serrapinnus heterodon -18.967 -42.318 BOLD:AAE1686 

RDOCE162-14 RD62 RD62 Serrapinnus heterodon -18.967 -42.318 BOLD:AAE1686 

RDOCE186-14 RD59 RD59 Serrapinnus heterodon -19.275 -42.425 BOLD:AAE1686 
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RDOCE226-14 RD65 RD65 Serrapinnus heterodon -18.962 -42.273 BOLD:AAE1686 

RDOCE108-13 RD27 RD27 Tilapia rendalli -19.022 -42.122 BOLD:ABZ6465 

RDOCE109-13 RD28 RD28 Tilapia rendalli -19.022 -42.122 BOLD:ABZ6465 

RDOCE081-13 RD25 RD25 Tilapia rendalli -20.046 -41.735 BOLD:ABZ6465 

RDOCE082-13 RD26 RD26 Tilapia rendalli -20.046 -41.735 BOLD:ABZ6465 

RDOCE298-15 LGC4612 LGC4612 Tilapia rendalli -20 -42 BOLD:ABZ6465 

RDOCE085-13 LGC170 LGC170 Trachelyopterus striatulus -19.986 -41.716 BOLD:ACI3769 

RDOCE035-13 LGC1833 LGC1833 Trachelyopterus striatulus -19.986 -41.716 BOLD:ACI3769 

RDOCE043-13 LGC3588 LGC3588 Trachelyopterus striatulus -19.022 -42.122 BOLD:ACI3769 

RDOCE044-13 LGC3593 LGC3593 Trachelyopterus striatulus -19.032 -42.126 BOLD:ACI3769 

RDOCE066-13 LGC169 LGC169 Trachelyopterus striatulus -19.986 41.7164 BOLD:ACI3769 

RDOCE116-13 RD36 RD36 Trichomycterus aff. Immaculatus -19.022 -42.122 BOLD:ACJ1022 

RDOCE117-13 RD39 RD39 Trichomycterus aff. Immaculatus -19.022 -42.122 BOLD:ACI3868 

RDOCE118-13 RD40 RD40 Trichomycterus aff. Immaculatus -19.022 -42.122 BOLD:ACI3868 

RDOCE157-14 RD37 RD37 Trichomycterus aff. Immaculatus -19.062 -42.162 BOLD:ACI3868 

RDOCE147-13 RD94 RD94 Trichomycterus aff. Immaculatus -20.051 -43.397 BOLD:ACI3868 

RDOCE120-13 RD42 RD42 Trichomycterus aff.alternatus -19.022 -42.122 BOLD:ACJ1151 

RDOCE121-13 RD43 RD43 Trichomycterus aff.alternatus -19.022 -42.122 BOLD:ACJ1151 

RDOCE122-13 RD44 RD44 Trichomycterus aff.alternatus -19.022 -42.122 BOLD:ACJ1151 

RDOCE187-14 RD88 RD88 Trichomycterus aff.alternatus -18.953 -42.361 BOLD:ACL7294 

RDOCE324-15 RD87 RD87 Trichomycterus aff.alternatus -18.952 -42.36 BOLD:ACL7294 

RDOCE196-14 RD150 RD150 Trichomycterus cf. brasiliensis -19.011 -43.372 BOLD:ACT6325 

RDOCE201-14 LGC4143 MBML6825 Trichomycterus longibarbatus -19.837 -40.555 BOLD:ACJ1022 

RDOCE202-14 LGC4152 MBML6841 Trichomycterus longibarbatus -19.889 -40.576 BOLD:ACJ1151 

RDOCE163-14 RD71 RD71 Trichomycterus sp. -18.967 -42.318 BOLD:ACI3868 

RDOCE164-14 RD72 RD72 Trichomycterus sp. -18.967 -42.318 BOLD:ACJ1164 

RDOCE165-14 RD73 RD73 Trichomycterus sp. -18.967 -42.318 BOLD:ACK5393 

RDOCE146-13 RD79 RD79 Trichomycterus sp. -20.109 -43.399 BOLD:ACJ9705 

RDOCE191-14 LGC3686 LGC3686 Trichomycterus sp. -18.974 -43.372 BOLD:ACT6325 
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Record, T=Threatened. 

Species Comparisons 
Minimum 

distance (%) 

Mean 

distance (%) 

Maximum 

distance (%) 

Number of MOTUs Number of 

specimens 
BIN_ID ABGD_ID BIN Status 

BIN ABGD bPTP 

Astyanax fasciatus 21 0 10.09 20.69 3 3 3 

1 ABU7523 35 Discordant 

N 5 ACJ1542 76 Concordant 

1 ACJ9650 42 Discordant 

Astyanax giton 3 0 0.52 0.84 1 1 1 3 ACL8007 73 Concordant N 

Astyanax lacustris 36 0 1.67 3.35 2 2 2 
3 ABY8634 59 Concordant 

N 
6 ABZ1711 5 Discordant 

Astyanax scabripinnis 10 0 9.12 21.82 2 3 2 
1 AAC5910 

36 Discordant 

N 81 Discordant 

1 ACO5464 74 Singleton 

Astyanax sp. 15 0.79 8.77 20.5 4 4 4 

1 AAC5910 81 Discordant 

N 
3 ACJ9650 42 Discordant 

1 ACT0040 75 Singleton 

1 AAY4812 80 Discordant 

Astyanax taeniatus 10 0 1.48 3.96 2 2 2 
1 AAY4812 80 Discordant 

N 
4 ABU7523 35 Discordant 

Australoeros cf. ipatinguensis 10 0 0.1 0.17 1 1 1 5 ACR9799 48 Concordant N.E 

Brycon opalinus 10 0 0.22 0.47 1 1 1 5 ACL7114 44 Concordant N.E.T 

Brycon sp.  6 0.18 0.7 1.43 1 1 1 4 ACH8616 78 Concordant N.E.T 

Callichthys callichthys - - - - 1 1 1 1 AAB5066 56 Singleton N 

Characidium cf. timbuiense 28 0 5.98 9.9 3 3 3 

4 ACI3743 20 Discordant 

N 3 ACJ1226 19 Discordant 

1 ACJ9733 41 Singleton 

Characidium sp. 10 0 5.51 10.17 3 3 3 

4 ACS9348 47 Concordant 

NR 1 ACI3743 20 Discordant 

1 ACJ1226 19 Discordant 

Cichla kelberi - - - - 1 1 1 1 AAO9230 50 Concordant I 

Clarias gariepinus - - - - 1 1 1 1 AAB2256 8 Singleton I 

Crenicichla lacustris  15 0 10.76 21.36 2 2 2 
2 AAD6380 28 Concordant 

N 
4 ACO6050 53 Concordant 

Cyphocharax gilbert 10 0 0.56 1.14 1 1 1 5 ACK1539 4 Concordant N 

Delturus carinotus 15 0 0.15 0.33 1 1 1 6 ACC0184 3 Concordant N.E 

Duterodon pedri 3 0 0.19 0.29 1 1 1 3 AAY4812 80 Discordant N.E 
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distance (%) 

Number of MOTUs Number of 

specimens 
BIN_ID ABGD_ID BIN Status 

BIN ABGD bPTP 

Geophagus brasiliensis 66 0 0.39 1.22 1 1 1 12 AAA8514 2 Concordant N 

Gymnotus aff. Carapo 15 0 0.14 0.46 1 1 1 6 AAB6216 69 Discordant N 

Gymnotus sp. 36 0 3.96 6.32 3 3 3 

3 AAB6216 69 Discordant 

NR 3 AAB6212 30 Concordant 

3 ACT0768 70 Concordant 

Harttia sp. 28 0 4.67 12.2 3 3 1 

1 ACJ1000 17 Singleton 

N 6 ACI6845  25 Concordant 

1 ACO6155 51 Singleton 

Hasemania sp. 15 0 0.28 0.75 1 1 1 6 AAO6055 29 Concordant N 

Hisonotus sp.  3 0 0.55 0.83 1 1 1 3 ACW1732 32 Concordant N 

Hoplias intermedius 6 0 0.28 0.64 1 1 1 5 AAB1734 12 Concordant N 

Hoplias malabaricus 36 0 3.27 6.7 2 2 2 
6 AAY4779 61 Concordant 

N 
3 ACI3811 11 Concordant 

Hoplosternum littorale - 0.3 0.3 0.3 1 1 1 2 AAB5068 6 Concordant I 

Hyphessobrycon bifasciatus - - - - 1 1 1 1 ACT0106 57 Singleton NR 

Hyphessobrycon eques - - - - 1 1 1 1 ABZ1711 5 Discordant I 

Hypomasticus mormyrops 21 0 0.13 0.49 1 1 1 7 ACH5050 60 Concordant N 

Hypostomus affinis 10 0 0.51 1.23 1 1 1 5 AAW9386 68 Concordant N 

Hypostomus auroguttatus 21 0 0.14 0.7 1 1 1 7 AAB9690 24 Discordant N 

Hypostomus sp.  - - - - 1 1 1 2 AAB9690 24 Discordant NR 

Imparfinis sp.  10 0 0.33 0.76 1 1 1 5 AAC2103 23 Concordant N 

Knodus moenkhausii 15 0 1.21 3.07 1 2 1 
1 AAM1485 46 Concordant 

N 
5 AAM1485 79 Concordant 

Leporinus copelandii 6 0 0.82 2.21 1 1 1 4 ACI6721 9 Concordant N 

Lophiosilurus alexandri - 0 - - 1 1 1 1 AAE4855 7 Singleton I 

Loricariichthys castaneus  10 0.2 0.85 2.16 1 1 1 5 ACI6497 22 Concordant N 

Metynnis maculatus - - - - 1 1 1 1 AAE7443 39 Singleton I 

Neoplecostominae 36 0 0.3 0.8 1 1 1 10 ACC0721 33 Concordant NR 

Neoplecostomus sp. 10 0.16 3.46 6.12 2 2 2 
2 AAX6581 34 Concordant 

N 
3 ACT2675 72 Concordant 

Oligosarcus acutirostris 10 0 0.34 0.76 1 1 1 8 AAI3590 13 Discordant NR 

Oligosarcus argenteus 10 0.17 0.7 1.24 1 1 1 5 AAI3590 13 Discordant N 

Pareiorhaphis scutula 3 0.16 0.46 0.75 1 1 1 3 AAX0824 37 Discordant NR.E.T 

Pareiorhaphis sp. 10 0 2.74 4.44 2 3 2 
2 AAX0824 37 Discordant 

N.E 
3 ACI5663 77 Concordant 
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Species 
Compari

sons 

Minimum 

distance (%) 

Mean 

distance (%) 

Maximum 

distance (%) 

Number of MOTUs Number of 

specimens 
BIN_ID ABGD_ID BIN Status 

BIN ABGD bPTP 

Parotocinclus maculicauda - - - - 1 1 1 2 ACO5053 71 Concordant NR 

Phalloceros elachistos 3 0 0.14 0.43 1 1 1 3 ACO4001 49 Concordant NE 

Phalloceros sp. 3 0.16 0.42 0.72 1 1 1 3 AAB7265 45 Concordant NR 

Pimelodella sp.  10 0 0.25 0.48 1 1 1 5 AAC5327 21 Concordant N 

Pimelodus maculatus - - - - 1 1 1 1 AAB6504 54 Concordant I 

Poecilia reticulata 6 0 9.48 14.34 2 2 2 
2 AAC0279 38 Discordant 

I 
2 ACE9037 40 Concordant 

Poecilia vivipara - - - - 1 1 1 1 AAC0279 38 Discordant N 

Pogonopoma wertheimeri 6 0.33 0.48 0.78 1 1 1 4 ACI3792 27 Concordant I 

Prochilodus costatus 15 0 1.32 2.6 2 1 1 
4 ADC2568 10 Concordant 

I 
2 ADC2571 10 Concordant 

Prochilodus vimboides - - - - 1 1 1 1 ACN4578 52 Singleton N.T 

Pseudauchenipterus affinis  15 0 0.52 1.16 1 1 1 6 AAH8177 26 Concordant N 

Pygocentrus nattereri - - - - 1 1 1 1 ABZ7351 55 Singleton I 

Rhamdia quelen 36 0 1.25 3.48 2 2 2 
7 AAA6322 15 Concordant 

N 
2 AAA6323 62 Concordant 

Salminus brasiliensis - - - - 1 1 1 1 AAD2790 14 Singleton I 

Serrapinus heterodon 15 0.32 0.76 1.36 1 1 1 6 AAE1686 31 Concordant N 

Steindachneridion doceanum - - - - 1 1 1 1 ACT0106 58 Singleton  N. E. T 

Tilapia rendalli 10 0 0 0 1 1 1 5 ABZ6465 16 Concordant I 

Trachelyopterus striatulus  10 0 0.26 1.23 1 1 1 5 ACI3769 1 Concordant N 

Trichomycterus aff. Alternatus 10 0 10.8 18.49 2 2 2 
3 ACJ1161 64 Discordant 

N 
2 ACL7294 43 Concordant 

Trichomycterus aff. Auroguttatus - - - - 1 1 1 1 ACJ1164 64 Discordant NR 

Trichomycterus brasiliensis - - - - 1 1 1 2 ACT6325 65 Discordant N 

Trichomycterus immaculatus - 0.15 2.23 5.84 2 2 2 
4 ACI3868 63 Discordant 

N 
1 ACJ1022 18 Discordant 

Trichomycterus longibarbatus - - - - 2 2 2 
1 ACJ1022 18 Discordant 

NR 
1 ACJ1161 64 Discordant 

Trichomycterus sp. 10 1.54 4.17 5.8 5 5 5 

1 ACI3868 63 Discordant 

N 

1 ACJ1164 64 Discordant 

1 ACT6325 67 Discordant 

1 ACJ9705 66 Singleton 

1 ACK5393 65 Singleton 
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3.1 Abstract 
 

Environmental DNA (eDNA) metabarcoding has rapidly emerged as a promising biodiversity 

assessment technique, proving to be a sensitive and cost-effective method. Despite the 

increasing popularity of using eDNA to survey species, several questions regarding its 

limitations remain to be addressed. We investigated the effect of sampling medium,  time, 

and preservation methods, on fish detection performance based on eDNA metabarcoding of 

neotropical freshwater samples. Water and sediment samples were collected from 11 sites 

along the Jequitinhonha River, Southeastern Brazil. Sediment samples were stored in ethanol, 

while the same amounts of water per sample (3L) were stored in a cool box with ice, as well 

as by adding the cationic surfactant Benzalkonium chloride (BAC). Sediment and water 

samples yielded a similar amount of fish MOTUs (237 vs 239 in the first sampling event, and 

153 vs 142 in the second sampling event). Water stored in ice provided better results than 

those preserved in BAC (239 and 142 vs 194 and 71 MOTUs). While documenting the 

effectiveness of eDNA surveys as practical tools for fish biodiversity monitoring in poorly 

accessible areas, we showed that keeping water samples cooled results in greater eDNA 

recovery and taxon detection than by adding cationic surfactants as sample preservatives. 

Furthermore, by comparing two sets of samples collected from the same locations at two 

distinct sampling events, we highlight the importance of conducting multiple sampling events 

when attempting to recover a realistic picture of fish assemblages in lotic systems. 

Key-words: environmental DNA, freshwater, metabarcoding, ichthyofauna, neotropical. 
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3.2 Introduction 
 

Environmental DNA metabarcoding has been hailed as a promising tool for 

biodiversity assessment and monitoring worldwide, in both marine and freshwater 

ecosystems (Bohmann et al., 2014; Boussarie et al., 2018; Deiner et al., 2017; Hänfling et al., 

2016; Pont et al., 2018; Thomsen & Willerslev, 2015). This method relies on obtaining the DNA 

shed by organisms in the surrounding environment (e.g. water, soil), amplifying it with 

primers targeting the taxonomic spectrum of interest, and sequencing it to reconstruct 

community composition (Bohmann et al., 2014; Handley et al., 2018; Valdez-Moreno et al., 

2018; Valentini et al., 2016). 

Despite the increased number of publications in the past decade, the application of 

eDNA techniques is still not considered straightforward (Taberlet, Bonin, Zinger, & Coissac, 

2018). Molecular and bioinformatics protocols continue to be revised and optimized, while 

uncertainties remain as to how to streamline and rationalize sampling and sample 

preservation (Dickie et al., 2018). The usefulness of eDNA approaches depend on their ability 

to provide effective and accurate detection of species, thus requiring a better understanding 

of the factors influencing detection rates (Lodge, 2012). Detectability of eDNA in 

environmental samples is limited mainly by three processes: i) eDNA production (i.e. rate of 

DNA shedding), ii) degradation, iii) removal and transport (Barnes and Turner, 2016; Strickler, 

Fremier & Goldberg, 2015). Several factors can affect eDNA production, such as the type of 

organism/species (with some species showing a higher eDNA release rate than others – 

Maruyama, Nakamura, Yamanaka, Kondoh, & Minamoto, 2014; Sassoubre, Yamahara, 
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Gardner, Block, & Boehm, 2016), biomass, density and life stage of specimens (Maruyama et 

al., 2014; Takahara, 2012), season (Buxton, Groombridge, Zakaria, & Griffiths, 2017), and 

water oxygen and temperature which can cause behavioral and physiological changes (e.g. 

stress) and affect metabolic rates, hence influencing eDNA production (Jo et al., 2010; 

Maruyama et al., 2014; Pilliod, Goldberg, Arkle, & Waits, 2014). After eDNA is released in the 

water it starts to be removed through transport and/or degradation. eDNA  can settle and 

bind to sediment, and/or be transported by long distances depending on the type of 

environment (e.g. lotic, lentic), and thus, degrade and become diluted during the transport 

downstream (Strickler et al., 2015).  

The DNA released in the environment can be degraded at a fast pace, hampering the 

identification of rare species and providing false negatives (Barnes et al., 2014; Dejean et al., 

2011; Pilliod et al., 2014; Strickler et al., 2015), which leads to the need for improved 

preservation systems that can maximize eDNA recovery (Fonseca, 2018; Hansen, Bekkevold, 

Clausen, & Nielsen, 2018). The persistence of DNA in environmental samples can be 

influenced by many factors (e.g. temperature, microbial activity, pH, salinity, solar radiation), 

and detectability of eDNA in water has been shown to be associated with cold temperatures, 

alkaline conditions, and low UV-B levels (Strickler et al., 2015; Tsuji, Ushio, Sakurai, Minamoto, 

& Yamanaka, 2017). Even though several studies suggest a negligible role of temperature, UV 

levels or seasonality on DNA degradation (Andruszkiewicz, Sassoubre, & Boehm, 2017; Collins 

et al., 2018; Robson et al., 2016; Seymour et al., 2018).  
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The most recommended approach to reduce degradation is to extract the DNA as 

quickly as possible after sampling. However, due to the constraints of field work conducted 

in remote sites located far from laboratory facilities (e.g. difficulties for on-site filtration due 

to lack of equipment, and risk of contamination), the filtering process and subsequent DNA 

extraction might not be possible or advisable, and a preservation method for the medium 

sampled must be employed in order to block biological activities and minimize DNA 

degradation.  

Different approaches have been tested to preserve water samples before the filtering 

process, showing distinct benefits and drawbacks. Storing the samples at low temperatures, 

including freezing the samples or cooling using a cool box, are widely employed; however, 

these approaches entail equipment requirement increase; whereas the efficiency of cooling 

the samples has also been questioned (Eichmiller, Best, & Sorensen, 2016; Pilliod et al., 2014). 

Inclusion of buffers, such as EtOH–NaAc (ethanol-sodium acetate) solution, have been 

reported to show an eDNA persistence rate similar to samples stored in ice (Ladell, Walleser, 

McCalla, Erickson, & Amberg, 2018), however, when sampling larger volumes of water the 

increased final volume obtained (i.e. addition of over 2x of solution) might be considered as 

a problem during long sampling campaigns. Recently, Yamanaka et al. (2017) tested the 

addition of cationic surfactants as preservatives to suppress DNA degradation at ambient 

temperatures and demonstrated the efficiency of Benzalkonium chloride (0.01%) in retaining 

eDNA concentration even after 10-day incubation at 21°C. Still, despite being considered as 

an effective eDNA preservative, this preservation method was restricted to a species specific 
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eDNA recovery test and the effectiveness of the cationic surfactant in preserving eDNA 

samples for metabarcoding analysis has not yet been evaluated.  

The application of eDNA as a biodiversity assessment tool requires the development, 

field validation and optimization of protocols in order to minimize bias and tailor procedures 

to the variety of environments and habitats investigated (Taberlet et al., 2018). Furthermore, 

the occurrence of a time lag between species presence and sampling event can contribute to 

DNA degradation, leading to an erroneous inference of species absence (i.e. short time frame 

detection due to high degradation rates may hamper the eDNA efficiency in detecting species 

where they are present). Sediment samples have shown to contribute to tackling this issue 

once DNA attached to sediments can be detected longer than in the water column. In 

addition, sediment samples can provide a higher concentration and longer persistence of 

genetic material for studying past and current species presence, also contributing to 

understand issues associated with eDNA transport and removal (Turner, Uy, & Everhart, 

2015).  

Neotropical freshwaters harbor high, and often understudied biodiversity (Sales, 

Mariani, Salvador, Pessali, & Carvalho, 2018), and eDNA could assist biodiversity assessment 

and monitoring programs, with the ultimate aim to contribute to conservation and 

management strategies. Higher temperatures,solar radiation, and associated turbidity in 

tropical waters might contribute to make rivers in the tropics a challenge for eDNA studies 

due to hypothesized higher degradation rates (Barnes et al., 2014; Matheson, Gurney, Esau, 

& Lehto, 2014; Pilliod et al., 2014). A rapid removal of eDNA (through transport and 
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degradation) might hamper the detection of species and lead to false negatives (Hansen et 

al., 2018), compromising the use of this method for biodiversity assessment and monitoring. 

In this context, testing effectiveness of sampling methods is particularly important in remote 

and tropical locations (Ladell et al., 2018). Furthermore, the knowledge regarding the use of 

eDNA in tropical rivers remains scarce and despite being considered as a promising tool for 

fish biodiversity assessment in this region, this approach still requires the optimization of field 

and laboratory protocols (Cilleros et al., 2018). Here, we hypothesized that: I) preservation 

method effects eDNA recovery and MOTU detection; II) sample medium detects different 

communities due to presumed preservation time; III) time of sampling detects different 

communities To advance our knowledge in how to collect, preserve and obtain eDNA samples 

in Neotropical catchments we obtained water and sediment samples from 11 sites located 

along the main stem of River Jequitinhonha (South-Eastern Brazil), and: a) compared two 

preservation methods for water samples (cooling the samples using ice and adding the 

cationic surfactant Benzalkonium chloride – BAC); b) compared MOTU recovery from water 

vs sediment samples, and c) examined the influence of short-term temporal sample 

replication by sampling the same locations between a three-week interval.  
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3.3 Material and Methods 
 

Study Site 

 The Jequitinhonha River Basin, located in Southeast Brazil, flows through two 

biodiversity hotspots (Atlantic Forest and Cerrado) encompassing an area of 70,315 km2 and 

running over 1082 km. This region is characterized by tropical climate and environmental 

heterogeneity, including semi-arid regions with high temperatures (annual mean of 24.9°C) 

and dry period extending over six months per year (Climate-Data, 2018, Bilibio, Hensel, & 

Selbach, 2011). This catchment, located in one of the poorest and least studied regions of 

Brazil, is part of an ecoregion (Coastal Drainages of Eastern Brazil) that harbors considerable 

fish biodiversity and one of the highest numbers of endemic and threatened fish species in 

Brazil (Machado, Drummond, & Paglia, 2008, Pugedo, Andrade-Neto, Pessali, Birindelli, & 

Carvalho, 2016, Rosa & Lima, 2008).  

 

eDNA sampling and processing  

Sediment and water samples were obtained from 11 sample sites, in the 

Jequitinhonha River Basin, during two replicated sampling events conducted with a three-

week interval (Figure 1, Table S1 Supplementary Material). In each sampling event, 6 liters of 

water were collected from each sample site (i.e. 3 samples each of 1 liter each, per treatment 

as described as following) and before the filtering process the water was preserved using two 

different methods to compare their efficiency. One set of samples (N=3) was stored at low 
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temperatures (using a cooling box with ice), while in the other samples (N=3) the cationic 

surfactant benzalkonium chloride (BAC) was added at a final concentration of 0.01% 

(Yamanaka et al. 2017). Water samples were filtered approximately 8 hours after collection, 

using Microfil V, 100mL, mixed cellulose esters (MCE) filters (diameter: 47 mm, pore size: 0.45 

μm, Merck Millipore) (Bakker et al. 2017) in combination with an automatic vacuum pump. 

Filters were stored in microcentrifuge tubes containing silica beads (Bakker et al. 2017). 

Sediment samples (2 samples/locality) were obtained in the shores, from the superficial layer 

(approximately 5cm), and were stored in 50mL centrifuge tubes and preserved in 100% 

ethanol. 

 

FIGURE 1 | Map of Jequitinhonha river basin sampling locations. 
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 DNA extraction from the filters was conducted using the Dneasy PowerWater Kit 

(Qiagen) and DNA from the sediments was extracted from 10g of sediment using Dneasy 

PowerMax Soil Kit (Qiagen), following the manufacturer’s protocol. Purified extracts were 

checked for DNA concentration in a Qubit fluorometer (Invitrogen).  

A contamination control procedure was applied in both field and laboratory works to 

avoid the occurrence of contamination. All samples were stored in disposable sterile 

collection bottles, disposable gloves were worn at all times, sampling and laboratory 

equipment and surfaces were treated with 50% bleach solution for 10 minutes, followed by 

rinsing in water after each use. Filtration blanks were run between every sample site, 

immediately before the next filtration in order to test for potential contamination during the 

filtration stage.  

 

Amplification, library preparation and sequencing  

The amplification of eDNA metabarcoding markers was conducted using a previously 

published fish-specific 12S primer set (Miya et al., 2015). Amplicons of ~172bp from a variable 

region of the mitochondrial 12S rRNA gene were obtained with the primers (MiFish-U-F, 5′-

GCCGGTAAAACTCGTGCCAGC-3′; MiFish-U-R, 5′- 

ACATTATCATAGTGGGGTATCTAATCCCAGTTTG -3′). 

A total of 183 samples including collection blanks (N=3) and laboratory negative 

controls -DNA extraction blanks (N=2) and PCR blanks (N=2) were sequenced in a single 
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multiplexed Illumina MiSeq run using 2 sets of 96 primers with seven-base sample-specific 

oligo-tags and a variable number (2-4) of leading Ns (fully degenerate positions) to increase 

variability in amplicon sequences. DNA extractions were not normalised prior PCR reactions 

and  PCR amplification was conducted using a single-step protocol and to minimize 

stochasticity in individual reactions, PCRs were replicated three times for each sample and 

the products subsequently pooled into single samples. The PCR reaction consisted of a total 

volume of 20 µL including 10 µl AmpliTaq Gold™ 360 Master Mix (Applied Biosystems); 0.16 

µl of bovine serum albumin; 1 µl of each of the two primers (5 µM); 5.84 µl of ultra-pure water 

and 2 µl of eDNA template. The PCR profile included an initial denaturing step of 95°C for 10 

min, 40 cycles of 95°C for 30s, 60°C for 45s, and 72°C for 30s and a final extension step of 72°C 

for 5 min. Amplifications were checked through electrophoresis in a 1.5% agarose gel stained 

with GelRed (Cambridge Bioscience). PCR products were pooled in two different sets and 

purified using MinElute columns (Qiagen), and Illumina libraries were built from each set, 

using a NextFlex PCR-free library preparation kit (Bioo Scientific) with unique 6-bp library tags. 

A left-sided size selection was performed using 1.1x Agencourt AMPure XP (Beckman Coulter). 

Libraries were then quantified by qPCR using a NEBNext qPCR quantification kit (New England 

Biolabs) and pooled in equimolar concentrations along with 1% PhiX (v3, Illumina). The 

libraries were run at a final molarity of 10pM on an Illumina MiSeq platform in a single MiSeq 

flow cell using the 2x 150bp v2 chemistry.  
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Bioinformatics analyses 

Bioinformatic analyses were based on the OBITools 1.2.2 metabarcoding package 

(Boyer et al. 2016). FastQC was used to assess the quality of the reads, paired-end reads were 

aligned using illuminapairedend, and dataset demultiplexing and primer removal were then 

conducted using ngsfilter command. A bespoke filter using obigrep was used to select 

fragments of 140-190bp and remove short fragments originated from library preparation 

artefacts (primer-dimer, non-specific amplifications) and reads containing ambiguous bases. 

Clustering of strictly identical sequences was performed using obiuniq and a chimera removal 

step was applied in vsearch 2.7.1 (Rognes, Flouri, Nichols, Quince, & Mahé, 2016) through the 

uchime-denovo algorithm (Edgar, Haas, Clemente, Quince, & Knight, 2011). Molecular 

Operational Taxonomic Unit (MOTU) delimitation was performed using SWARM 2.0 algorithm 

(Mahé, Rognes, Quince, de Vargas, & Duthorn, 2015) with a distance value of d=3 

(Siegenthaler et al., 2018) and ecotag (Boyer et al. 2016) was used for the subsequent 

taxonomic assignment, with a custom reference database including all known vertebrate 

sequences for the sequenced 12S fragment (Siegenthaler et al., 2018). Ambiguous taxonomic 

assignments (more than one species assigned per MOTU) after ecotag were checked using 

BLAST against the Genbank nucleotide database. 

A conservative approach was applied to our analyses to avoid false positives and 

exclude MOTUs/reads putatively belonging to sequencing errors or contamination. Reads 

detected in the negative controls were removed from all samples, and MOTUs containing less 
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than 5 reads were excluded from subsequent analyses.  

Statistical analyses  

Samples were grouped according to the treatments analyzed (Table 1) and all 

statistical analyses were performed in R v3.5.1 (https://www.R-project.org/). Due to 

differences in the sequencing depth for each sample, relative read abundances were used for 

all statistical analyses (i.e. for each sample the MOTU counts were divided by the total amount 

of reads obtained for that sample). The vegan package was used to perform the 

nonparametric method permutational multivariate analysis of variance (PERMANOVA - 

Anderson, 2017), through the ‘adonis’ function (Bray-Curtis dissimilarities, 1000 

permutations). Separate testes were used and pairwisecomparisons were performed on 

relative abundances calculated for MOTUs in each sample site, per preservation method (BAC 

vs ICE), sampling time (1st round vs 2nd round), and per sampling medium (water vs sediment), 

to verify the influence of these factors over eDNA recovery. A significance threshold of p < 

0.05 was applied at all analyses.  
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TABLE 1 | Treatments analyzed according to sampling medium, preservation method used 
and sampling event. 

 

 

Non-metric multidimensional scaling plots were obtained using Bray-Curtis 

dissimilarity, through PAST3 software (Hammer, Harper, & Ryan, 2001). Ggplot2 and esquisse 

packages were used to build ggplot charts in R, and due to an incomplete reference database 

and a relatively low taxonomic resolution of the 12S fragment we used the taxonomic 

assignment down to family level to compare those methods regarding their performance in 

detecting teleost fish communities. Venn diagrams were obtained with BioVenn (Hulsen, 

Vlieg, & Alkema, 2008). 

  

CODE 
Sampling 
Medium 

Preservation 
method 

Sampling 
event 

N Sampling Period 

SED1 Sediment Ethanol 1 22 (2x11) 22/01-01/02/2017 
SED2 Sediment Ethanol 2 22(2x11) 19/02-01/03/2017 

BAC1 Water 
Benzalkonium 

chloride 
1 

33 (3x11) 22/01-01/02/2017 

BAC2 Water 
Benzalkonium 

chloride 
2 

33 (3x11) 19/02-01/03/2017 

ICE1 Water ICE 1 33 (3x11) 22/01-01/02/2017 
ICE2 Water ICE 2 33 (3x11) 19/02-01/03/2017 
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3.4 Results  
 

Library quality and raw data 

A total of 16,104,492 raw reads were obtained in one Illumina MiSeq run (Library 1: 

6,399,823 reads, Library 2: 9,704,669 reads), including 44 sediment samples and 132 water 

samples. 10,064,034 reads were kept after initial quality filtering and removal of chimaeras.  

After applying a subsequent conservative filtering step (retaining only reads taxonomically 

assigned to Actinopterygii, and removal of MOTUs containing less than 5 reads) the number 

of reads per sample ranged from 0 (sample 10 – sediment; second sampling event) to 127,250. 

The final dataset comprised 311 MOTUs distributed differently in each treatment analyzed 

(Figure 2). 

 

FIGURE 2 | Number of MOTUs recovered per sampling medium and preservation method 
(sediment vs water – BAC and ICE) and sampling event. 
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Taxonomic assignment 

All MOTUs from the sediment samples could be taxonomically assigned at order level 

(see Appendix A1) whereas at family level the assignment rate was 96.4% (SED1) and 95.68% 

(SED2). Regarding the water samples, at order and family levels the assignment rates were, 

respectively, 98.97% and 95.88% for BAC1, 97.47% and 93.68% for BAC2, 100% and 96.83% 

for ICE1, and 98.72% and 94.17% for ICE2.  

 

Influence of preservation method, sampling medium, and sampling time  

All results of the PERMANOVA analyses (Bray-Curtis, p<0.005), including effect size (R2) 

and significance (p-value) are summarized in Table S2, Supplementary Material. A significant 

difference (p<0.05) in MOTU composition among all the treatments was found and to verify 

the influence of preservation methods, sampling medium, and sampling time we performed 

pairwise comparisons for all combinations of treatments.  

The influence of preservation method on MOTU diversity recovery was small (around 

2% variance explained) but significant between samples collected during the first sampling 

event (BAC1 vs ICE1, p=0.016). However, no significant effect was detected for the 

preservation methods in the second sampling event (BAC2 vs ICE2, p=0.06, Table S2).  

Overall and also in all pairwise comparisons, a significant difference between 

sediment and water samples was detected. Non-metric multidimensional scaling (nMDS) 

(Figure 3) showed a much greater variability among the water samples when compared to 
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the sediment samples, and a greater separation of water samples was apparent for the first 

sampling event (Figure 3A). During the second sampling, a higher similarity between sediment 

and water samples preserved cooled was found (Figure 3B), and the highest effect size 

(R2=0.08) was found between SED2 and BAC2 (sediment and water samples preserved in BAC, 

collected during the second sampling event).  

When testing for the effect of sampling event, the community composition differed 

from the two events for all treatments analyzed, showing a highest effect size for the 

sediment samples (R2=0.07) and a lower effect size for the water samples preserved in BAC 

(R2=0.04). A smaller effect was found for preservation method than sampling medium and 

time. Despite showing significant differences, overall, the R2 effect sizes never accounted for 

any more than 8% of the variance, with a mean around 6%. 

The Venn diagram overlaps showed a high similarity between the treatments in the 

first sampling event with 56.8% of the MOTUs detected in all of them (Figure 4). However, for 

the second sampling event a higher dissimilarity was detected when comparing the methods 

applied with only 27.55% of the MOTUs recovered being detected in all three methods 

(sediment, BAC, ICE). 
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 FIGURE 3 | Non-metric multidimensional scaling (nMDS) plots showing Bray-curtis dissimilarities of sample sites per sampling event. Analyses 
based on A) Sampling event 1; B) Sampling event 2; C) Sediment samples; D) Water samples preserved using BAC; and E) Water samples 
preserved using ICE. 
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FIGURE 4 | Comparison of MOTU recovery between sampling events. 
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Community composition across treatments 

In total, we detected 7 orders (Characiformes, Cichliformes, Clupeiformes, 

Cypriniformes, Cyprinodontiformes, Gymnotiformes, and Siluriformes) and 20 families. Order 

and family richness obtained were compared using ggplot charts (Figure 5) and showed a 

slight difference across all treatments. As for preservation methods, the relative read 

abundance (%) was similar between water samples preserved in BAC and ICE for the first 

sampling, however, eDNA from two families of Siluriformes (Callichthyidae and 

Auchenipteridae) was not recovered from samples preserved using the cationic surfactant. 

During the second sampling, the relative read abundance slightly differed between 

these two methods with a highest amount of reads from Trichomycteridae (Order 

Siluriformes) and also absence of reads from Pimelodidae (Order Siluriformes) in samples with 

added BAC. Thus, samples stored in ICE outperformed samples preserved with BAC in both 

MOTUs recovery and order/family richness.  

Regarding the sampling medium, sediment samples provided similar results to water 

samples, except in the order Siluriformes, where it outperformed water samples preserved 

with BAC by detecting the family Auchenipteridae, and was surpassed by water samples 

preserved in ICE in detecting the family Callichthyidae, during the first sampling event. 

Whereas during the second sampling, the sediment samples did not recover MOTUs from two 

orders (Gymnotiformes and Cypriniformes) but detected one order (Clupeiformes) not 

identified in the water samples. 
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In contrast with results obtained for MOTUs recovery, despite showing a lower 

amount of MOTUs when compared to samples obtained in the first sampling event, samples 

obtained in the second event allowed the detection of additional orders and families. For the 

sediment samples, two orders were not detected (Cypriniformes and Gymnotiformes) but 

one order (Clupeiformes) and one additional family of Siluriformes (Callichthyidae) were only 

detected in sediments collected at the second sampling time. Regarding the samples 

preserved in BAC, two families of the order Siluriformes were not detected during the second 

sampling (Claridae and Pimelodidae) and two additional families of the same order were 

included (Callichthyidae and Auchenipteridae), while samples stored in ICE detected one 

fewer family (Callichthyidae) when compared to the first sampling.  
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FIGURE 5 | Relative read abundance per order and family.  
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3.5 Discussion 
 

Despite the exponential increase of eDNA publications, most of the studies have been 

conducted in temperate regions and in fairly well accessible areas. To date, few studies have 

tested the use of eDNA metabarcoding in remote tropical sites. Here, we tested two 

preservation methods for neotropical water samples (cooling the samples vs adding a cationic 

surfactant as preservative) and also, we tested the influence of sampling medium (water vs 

sediment) and time on eDNA recovery to evaluate the most suitable method and provide a 

framework for downstream studies in tropical catchments. 

 Overall, comparisons between preservation methods showed a smaller effect on 

eDNA recovery than sampling medium and time (Table S2). Sediment and water samples kept 

in cooling boxes outperformed water samples preserved with the cationic surfactant solution 

(237 and 239 against 194 MOTUs, respectively), while the highest amount of MOTUs was 

detected during the first sampling event for all treatments. Most of the variance found resides 

within the treatments analyzed, this variance may be due to: i) the distribution of eDNA might 

be heterogeneous in rivers showing different spatial structures ; ii) eDNA transport distances 

may vary between species (Deiner & Altermatt, 2014); iii) natural differences found in 

community composition across samples sites, as the structure of freshwater fish communities 

are influenced by complex interactions and by heterogeneity of freshwaters along the river 

gradient (e.g. geomorphic and hydrologic conditions, microbiota, temperature, pH, acidity, 

and chemical composition - Spurgeon, Pegg, Parasiewicz, & Rogers, 2018). Also, as shown by 

Macher and Leese (2018) community composition can change even when sampling the same 
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location in a time frame shorter than one minute and our findings also agree with earlier 

authors in that patterns of persistence of eDNA in rivers can be irregular.  

Despite showing a significant difference, a small effect size was found for comparisons 

between preservation methods. The effect of preservation method might be related to the 

physical state of DNA molecules in the sample, free DNA can bind to humic substances and 

thus, be protected from enzymatic degradation and show a decreased rate on eDNA removal 

(Crecchio & Stotzky, 1998). Environmental DNA persistence can also be affected by the 

trophic state of the aquatic environment, showing a higher detectability in dystrophic and 

eutrophic waters than in oligotrophic systems (Eichmiller et al., 2016). The Jequitinhonha 

River is characterized by acid waters and contains mostly dystrophic and eutrophic soils 

(Intertechne, 2010). A faster degradation of eDNA throught chemical process is known  to 

occur in acidic environments, and perhaps, in this case, low temperatures could better 

preserve the eDNA molecules on water samples and might be more important to eDNA 

preservation than adding the cationic surfactant which are mostly used to decrease/stop 

degradation caused by microbial activities. However, degradation rates at complex tropical 

environments, such as the Jequitinhonha River, have not been evaluated and the trends for 

eDNA persistence remain unknown in this realm. A similar result was found by Laddel et al. 

(2018), who compared lowering the temperature of samples to adding EtOH–NaAc, where 

cooling of the samples outperformed the use of a buffer solution. It should also be noted that 

some of the discrepancies between ICE and BAC detections may simply be due to the 

reduction of stochasticity afforded by the additional PCRs conducted on each water sample 

(18 replicates in total) (Leray & Knowlton, 2017). 
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Thus, despite increasing the equipment need, cooling may be considered as the first 

option to decrease DNA degradation in water samples during field collection. Unless no other 

option is available, cationic surfactant solutions might not be worthwhile for field sampling in 

remote areas due to the difficulties in accessing these specific laboratory reagents and the 

significant safety hazard posed by these chemicals (Ladell et al., 2018). However, if neither 

filtering nor cooling is feasible for a few hours after sampling, the use of some form of 

preserving buffer should remain a requirement.  

Community composition is expected to differ between sampling media, as previous 

eDNA studies have found sediment to show a higher DNA concentration and a longer 

detectability than surface water (Turner et al., 2015). Since DNA can persist longer when 

incorporated into the sediment, temporal inference may be challenging (Turner et al., 2015); 

on the other hand, a higher degradation rate and lower detection lag time in aqueous eDNA 

samples provide a contemporary snapshot of the biodiversity being assessed (Hansen et al., 

2018). Here, we have found a significant difference (p<0.05) and a higher size effect (R2=0.06-

0.08) on MOTU recovery between sediment and water samples (Table 2). Sediment samples 

outperformed water samples preserved with BAC by detecting the family Auchenipteridae 

(Order Siluriformes), and was surpassed by water samples preserved in ICE in detecting the 

family Callichthyidae, during the first sampling event. In the second sampling event, sediment 

samples failed to detect the family Callichthyidae and the orders Gymnotiformes and 

Cypriniformes, however, the order Clupeiformes was only found in the sediments. MOTUs 

obtained (19.9%) for the second sampling event were exclusive to sediment. MOTUs detected 

only in water samples might indicate the contemporary presence of those while their absence 
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in sediments samples may be due to a short time frame for those to settle and bind to the 

substrate. MOTUs belonging to the order Clupeiformes were detected only in sample site 11, 

located at the river mouth and refer to marine species that occasionally venture into the river 

to feed (Andrade-Neto, 2010). Although these species might not have been there at the time 

of sampling, they might have shed DNA during their incursions and the eDNA bound to 

sediment can have persisted longer than the eDNA in the surface water, contributing to its 

later detection. Thus, combining sediment and water samples may contribute to obtain a 

snapshot of the fish community that can distinguish between resident and transient species.  

 

TABLE 2 | PERMANOVA results (R2-effect sizes and significance level) showing the effect of 
sampling medium on MOTU diversity recovery. 
 

 

 

 

Sampling time influenced MOTU recovery and community composition in all 

treatments analyzed, showing a highest effect size in sediment samples and a lowest effect 

size in water samples preserved in BAC. An correlation between the number of MOTUs and 

effect size was found, as the higher amount of MOTUs obtained, the higher was also the effect 

size of sampling event. Despite showing a lower amount of MOTUs detected, samples 

obtained in the second event allowed the detection of additional orders and families. During 

the second sampling event 19.9% of the MOTUs were only detected in sediment samples 

when contrasted to 2.56% in the first sampling. Sediments can act as eDNA molecules 

reservoirs, since eDNA can settle and bind to the substrate and when incorporated its 

persistence can be much longer (Eichmiller et al., 2014; Turner et al., 2014). 

Sampling medium R2 Effect Significance (p-value) 

SED vs WAT 0.03626 * 0.00099 

SED1 vs WAT1 0.07234 * 0.00999 

SED2 vs WAT2 0.08183 ** 0.00299 
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Environmental DNA concentration can change seasonally, as well as changes in 

community composition over time should be expected due to natural (e.g. environmental 

changes, such as variation in water temperature and flow) or anthropogenic factors (e.g. 

pollution, introduction of physical barriers) and this variation has already been documented 

through metabarcoding in estuaries (Stoeckle, Soboleva, & Charlop-Powers, 2017), lakes 

(Bista et al., 2017) and rivers, even over a small temporal scale (Macher & Leese, 2018). The 

Jequitinhonha Valley is a dry region that is under the risk of desertification and by the 

beginning of 2017, when the first sampling event was undertaken, the area was facing the 

worst drought in the past 80 years. However, the sampling was conducted during the rainy 

season and the average accumulated rainfall increased from 2.1-50 mm (first sampling time) 

to 100-250 mm (second sampling event) per month (CPTEC/INPE, 2018). The increase in the 

precipitation level in this region, with heavy rainfall causing floods in several sites and this 

seasonal change might have impacted the MOTU recovery during the second sampling, as the 

increase in water level can dilute the eDNA, change the water temperature and flow, and also 

cause fluctuations in community composition. Increased water volume after the rainfall 

contributes to a higher velocity and affects eDNA concentrations in water columns, as eDNA 

containing particles are transported and dispersed towards downstream river (Shogren et al., 

2017). Furthermore, an increase in water flow caused by rainfall might lead to eDNA particle 

resuspension, which could explain a higher similarity detected by the nMDS between 

sampling medium in the second sampling event. 

Understanding the effect of abiotic and biotic factors on eDNA recovery in tropical 

lotic environments is crucial to improve the interpretation of results and assure the 
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effectiveness of eDNA as a biodiversity assessment tool. Here, we showed the first results on 

effect of sampling medium, time, and preservation methods in lotic environments and our 

findings suggest that the interaction between preservation method and MOTU recovery 

might be less significant than the influence of sampling medium and sampling event. Cooling 

the water samples before the filtering might be a better option in field work conducted in 

remote areas due to logistical issues and to an increased eDNA recovery when compared to 

addition of cationic surfactants as sample preservatives.  

We also highlight the importance of a better interpretation of eDNA results when 

comparing sediment and water samples due to distinct temporal intervals covered, and 

comparing two sets of samples obtained in a short time interval we demonstrate the 

importance of applying multiple sampling collections when planning a realistic screening of 

fish biodiversity in lotic environments. The recovery of a high amount of MOTUs allowed the 

detection of a high degree of fish biodiversity, including changes in community composition, 

demonstrating the effectiveness of eDNA as a biodiversity assessment tool in neotropical lotic 

rivers. However, this study was method-focused and detailed ecological analysis of the 

recovered biodiversity is the natural next step. This will require an improved reference 

database, as the data obtained here (i.e. potentially hundreds of fish species) suggests that 

the biodiversity of this catchment is grossly underestimated (Andrade-Neto, 2010).  

 

DATA ACCESSIBILITY  

Data will be made public on the DRYAD repository upon acceptance. A list of all samples 

analysed (including additional information) is provided in Table S3, Supplementary Material. 
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Supplementary material 
 

Table S1: Sample sites, including GPS coordinates. 

 

 

Table S2: PERMANOVA results (R2-effect sizes and significance level) showing the effect of 

preservation method, sampling medium, and sampling time on MOTU richness. 

  R2 Effect Significance (p-value) 

Preservation 
method 

      

BAC1 vs ICE1 0.02636 * 0.01698 

BAC2 vs ICE2 0.0278 * 0.06493 

Sampling medium       

SED vs WAT 0.03626 * 0.00099 

SED1 vs WAT1 0.07234 * 0.00999 

SED2 vs WAT2 0.08183 ** 0.00299 

SED1 vs BAC1 0.06006 * 0.00099 

SED1 vs ICE1 0.0598 * 0.00099 

SED2 vs BAC2 0.0841 ** 0.00099 

SED2 vs ICE2 0.07056 * 0.00099 

Sampling time       

SED1 vs SED2 0.07762 * 0.00099 

BAC1 vs BAC2 0.04192 * 0.00099 

ICE1 vs ICE2 0.06436 * 0.00099 

 

ID CODE Sample site GPS Coordinates 

1 MED Medanha 18° 7'15.06"S 43°30'59.16"W 

2 TB Terra Branca 17°18'48.34''S 43°12'26.61''W 

3 JGON José Gonçalves (upstream the UHE Irapé dam)  16°44'25.89''S 42°34'16.34''W 

4 ITAC Itacambiruçu 16°36'24.00''S 42°49'46.00''W 

5 CM Coronel Murta (downstream the UHE Irapé dam)  16°44'26.85''S 42°34'11.78''W 

6 ARA Araçuaí 16°51'10.47"S 41°51'33.53"W 

7 JEQ Itaobim/Jequitinhonha 16°26'16.74"S 41°1'1.45"W 

8 ALM Almenara/Jacinto 16° 8'26.20"S 40°35'4.64"W 

9 SD Salto da Divisa 15°59'51.07"S 39°53'29.76"W 

10 ITAP Itapebi 15°56'57.69"S 39°31'27.08"W 

11 BEL Belmonte 15°51'0.02"S 38°52'13.66"W 
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Table S3: List of samples including primers and tags used.  

LIBRARY SAMPLE TAGS PRIMER FORWARD PRIMER REVERSE CODE 

BNA8 B1 TATCATT:TATCATT GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG ICE1 

BNA8 B6 AAAGACC:AAAGACC GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG ICE1 

BNA8 B9 GGTAGGG:GGTAGGG GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG ICE1 

BNA8 B2 AGCCCTC:AGCCCTC GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG ICE1 

BNA8 B7 CAAAGCG:CAAAGCG GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG ICE1 

BNA8 B10 CCGCTAA:CCGCTAA GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG ICE1 

BNA8 B13 GCTCAGA:GCTCAGA GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG ICE1 

BNA8 B14 TTAGAAC:TTAGAAC GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG ICE1 

BNA8 B15 CGGAAAC:CGGAAAC GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG ICE1 

BNA8 B16 ATCCCGG:ATCCCGG GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG ICE1 

BNA8 B19 AAAGGTA:AAAGGTA GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG ICE1 

BNA8 B22 TTAAACT:TTAAACT GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG ICE1 

BNA8 B24 GAGTCTA:GAGTCTA GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG ICE1 

BNA8 B26 GGTGACG:GGTGACG GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG ICE1 

BNA8 B28 AGCGTGC:AGCGTGC GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG ICE1 

BNA8 B30 GTTTGAT:GTTTGAT GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG ICE1 

BNA8 B31 TGTGGGT:TGTGGGT GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG ICE1 

BNA8 B32 TATCTAC:TATCTAC GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG ICE1 

BNA8 B33 TCTGTGC:TCTGTGC GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG ICE1 

BNA8 B35 GAGTAGC:GAGTAGC GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG ICE1 

BNA8 B37 CCCTGTG:CCCTGTG GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG ICE1 

BNA8 B39 AACACCA:AACACCA GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG ICE1 

BNA8 B44 TCAAATC:TCAAATC GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG ICE1 

BNA8 B47 GTCATTC:GTCATTC GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG ICE1 

BNA8 B50 AAACGGC:AAACGGC GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG ICE1 

BNA8 B54 AAAGCAT:AAAGCAT GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG ICE1 

BNA8 B57 CAGATCT:CAGATCT GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG ICE1 

BNA8 B60 TCTAGGA:TCTAGGA GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG ICE1 

BNA8 B63 AAATTCA:AAATTCA GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG ICE1 

BNA8 R66 GATAACT:GATAACT GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG ICE1 

BNA8 B69 GATAGAC:GATAGAC GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG ICE1 

BNA8 B72 ATCCGAC:ATCCGAC GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG ICE1 

BNA8 B75 GAGCTAT:GAGCTAT GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG ICE1 

BNA8 R1 GGTACCC:GGTACCC GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG BAC1 

BNA8 R2 TATGCCC:TATGCCC GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG BAC1 

BNA8 R3  AAATCTC:AAATCTC GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG BAC1 

BNA8 R4 GTTGAGC:GTTGAGC GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG BAC1 

BNA8 R9 TATTGTC:TATTGTC GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG BAC1 

BNA8 R13 AGCTAAA:AGCTAAA GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG BAC1 

BNA8 R18 AACCTAG:AACCTAG GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG BAC1 

BNA8 R19 TAGCGTG:TAGCGTG GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG BAC1 

BNA8 R20 CTGCATA:CTGCATA GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG BAC1 

BNA8 R21 ACCAATT:ACCAATT GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG BAC1 

BNA8 R23 ATCATCG:ATCATCG GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG BAC1 

BNA8 R25 ACCCAGC:ACCCAGC GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG BAC1 

BNA8 R28 CGGGCGC:CGGGCGC GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG BAC1 

BNA8 R30 ACCGCCC:ACCGCCC GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG BAC1 

BNA8 R32 ACCTACG:ACCTACG GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG BAC1 

BNA8 R34 GCGGGAG:GCGGGAG GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG BAC1 
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LIBRARY SAMPLE TAGS PRIMER FORWARD PRIMER REVERSE CODE 

BNA8 R36 TGTTATG:TGTTATG GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG BAC1 

BNA8 R38 AAAGTGG:AAAGTGG GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG BAC1 

BNA8 R40 AGCCGGT:AGCCGGT GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG BAC1 

BNA8 R42 CGGCTTG:CGGCTTG GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG BAC1 

BNA8 R44 AGCGGCG:AGCGGCG GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG BAC1 

BNA8 R46 ATGAAGA:ATGAAGA GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG BAC1 

BNA8 R48 CCGTATT:CCGTATT GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG BAC1 

BNA8 R50 AGCACAT:AGCACAT GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG BAC1 

BNA8 R53 ACATTAT:ACATTAT GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG BAC1 

BNA8 R55 CACTATA:CACTATA GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG BAC1 

BNA8 R57 ACCATAA:ACCATAA GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG BAC1 

BNA8 R60 AACAAAC:AACAAAC GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG BAC1 

BNA8 R61 GAGGAAA:GAGGAAA GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG BAC1 

BNA8 R62 CAGCAAG:CAGCAAG GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG BAC1 

BNA8 R65 GGTTCTT:GGTTCTT GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG BAC1 

BNA8 R66 TATCGCA:TATCGCA GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG BAC1 

BNA8 R68 TGTTCAC:TGTTCAC GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG BAC1 

BNA8 NS2_1_1 CGGCAGT:CGGCAGT GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG SED1 

BNA8 NS2_1_2 AAATGAG:AAATGAG GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG SED1 

BNA8 NS2_1_3 TTAATAA:TTAATAA GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG SED1 

BNA8 NS2_1_4 GATACGA:GATACGA GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG SED1 

BNA8 NS2_1_5 TGACACC:TGACACC GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG SED1 

BNA8 NS2_1_6 GATCCTC:GATCCTC GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG SED1 

BNA8 NS2_1_7 CTCCTGA:CTCCTGA GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG SED1 

BNA8 NS2_1_8 GAGGCCG:GAGGCCG GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG SED1 

BNA8 NS2_1_9 TATGGAG:TATGGAG GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG SED1 

BNA8 NS2_1_10 GTCCCTA:GTCCCTA GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG SED1 

BNA8 NS2_1_11 TATTCGG:TATTCGG GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG SED1 

BNA8 NS2_1_12 AACAGGG:AACAGGG GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG SED1 

BNA8 NS2_1_13 AACCACT:AACCACT GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG SED1 

BNA8 NS2_1_14 TCACAGT:TCACAGT GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG SED1 

BNA8 NS2_1_15 GTTAGCA:GTTAGCA GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG SED1 

BNA8 NS2_1_16 CACGTAT:CACGTAT GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG SED1 

BNA8 NS2_1_17 AAATAGT:AAATAGT GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG SED1 

BNA8 NS2_1_18 CACTGGT:CACTGGT GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG SED1 

BNA8 NS2_1_19 ACCCGCA:ACCCGCA GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG SED1 

BNA8 NS2_1_20 TCCGAGG:TCCGAGG GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG SED1 

BNA8 NS2_1_21 TTACTCG:TTACTCG GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG SED1 

BNA8 NS2_1_22 AACGAGA:AACGAGA GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG SED1 

BNA8 NegContField2 AAACTTT:AAACTTT GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG CONTROL 

BNA8 NegContField3 CGGAGTT:CGGAGTT GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG CONTROL 

BNA8 BlankPCR3 CACTCCG:CACTCCG GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG CONTROL 

BNA8 BlankPCR4 TACCCAA:TACCCAA GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG CONTROL 

BNA9 G1 TATCATT:TATCATT GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG ICE2 

BNA9 G2 AAAGACC:AAAGACC GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG ICE2 

BNA9 G3 GGTAGGG:GGTAGGG GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG ICE2 

BNA9 G4 AGCCCTC:AGCCCTC GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG ICE2 

BNA9 G5 CAAAGCG:CAAAGCG GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG ICE2 

BNA9 G6 CCGCTAA:CCGCTAA GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG ICE2 

BNA9 G7 GCTCAGA:GCTCAGA GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG ICE2 

BNA9 G8 TTAGAAC:TTAGAAC GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG ICE2 
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LIBRARY SAMPLE TAGS PRIMER FORWARD PRIMER REVERSE CODE 

BNA9 G9 CGGAAAC:CGGAAAC GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG ICE2 

BNA9 G10 ATCCCGG:ATCCCGG GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG ICE2 

BNA9 G12 AAAGGTA:AAAGGTA GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG ICE2 

BNA9 G14 TTAAACT:TTAAACT GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG ICE2 

BNA9 G16 GAGTCTA:GAGTCTA GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG ICE2 

BNA9 G17 GGTGACG:GGTGACG GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG ICE2 

BNA9 G18 AGCGTGC:AGCGTGC GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG ICE2 

BNA9 G19 GTTTGAT:GTTTGAT GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG ICE2 

BNA9 G21 TGTGGGT:TGTGGGT GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG ICE2 

BNA9 G22 TATCTAC:TATCTAC GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG ICE2 

BNA9 G24 TCTGTGC:TCTGTGC GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG ICE2 

BNA9 G25 GAGTAGC:GAGTAGC GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG ICE2 

BNA9 G26 CCCTGTG:CCCTGTG GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG ICE2 

BNA9 G28 AACACCA:AACACCA GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG ICE2 

BNA9 G30 TCAAATC:TCAAATC GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG ICE2 

BNA9 G32 GTCATTC:GTCATTC GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG ICE2 

BNA9 G34 AAACGGC:AAACGGC GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG ICE2 

BNA9 G35 AAAGCAT:AAAGCAT GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG ICE2 

BNA9 G38 CAGATCT:CAGATCT GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG ICE2 

BNA9 G39 TCTAGGA:TCTAGGA GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG ICE2 

BNA9 G40 AAATTCA:AAATTCA GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG ICE2 

BNA9 G42 GATAACT:GATAACT GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG ICE2 

BNA9 G43 GATAGAC:GATAGAC GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG ICE2 

BNA9 G44 ATCCGAC:ATCCGAC GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG ICE2 

BNA9 G45 GAGCTAT:GAGCTAT GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG ICE2 

BNA9 P1 GGTACCC:GGTACCC GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG BAC2 

BNA9 P2 TATGCCC:TATGCCC GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG BAC2 

BNA9 P3 AAATCTC:AAATCTC GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG BAC2 

BNA9 P5 GTTGAGC:GTTGAGC GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG BAC2 

BNA9 P6 TATTGTC:TATTGTC GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG BAC2 

BNA9 P7 AGCTAAA:AGCTAAA GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG BAC2 

BNA9 P8 AACCTAG:AACCTAG GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG BAC2 

BNA9 P9 TAGCGTG:TAGCGTG GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG BAC2 

BNA9 P10 CTGCATA:CTGCATA GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG BAC2 

BNA9 P11 ACCAATT:ACCAATT GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG BAC2 

BNA9 P13 ATCATCG:ATCATCG GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG BAC2 

BNA9 P15 ACCCAGC:ACCCAGC GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG BAC2 

BNA9 P17 CGGGCGC:CGGGCGC GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG BAC2 

BNA9 P18 ACCGCCC:ACCGCCC GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG BAC2 

BNA9 P19 ACCTACG:ACCTACG GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG BAC2 

BNA9 P20 GCGGGAG:GCGGGAG GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG BAC2 

BNA9 P22 TGTTATG:TGTTATG GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG BAC2 

BNA9 P24 AAAGTGG:AAAGTGG GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG BAC2 

BNA9 P26 AGCCGGT:AGCCGGT GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG BAC2 

BNA9 P28 CGGCTTG:CGGCTTG GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG BAC2 

BNA9 P30 AGCGGCG:AGCGGCG GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG BAC2 

BNA9 P32 ATGAAGA:ATGAAGA GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG BAC2 

BNA9 P34 CCGTATT:CCGTATT GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG BAC2 

BNA9 P36 AGCACAT:AGCACAT GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG BAC2 

BNA9 P39 ACATTAT:ACATTAT GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG BAC2 

BNA9 P41 CACTATA:CACTATA GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG BAC2 
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LIBRARY SAMPLE TAGS PRIMER FORWARD PRIMER REVERSE CODE 

BNA9 P44 ACCATAA:ACCATAA GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG BAC2 

BNA9 P47 AACAAAC:AACAAAC GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG BAC2 

BNA9 P49 GAGGAAA:GAGGAAA GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG BAC2 

BNA9 P51 CAGCAAG:CAGCAAG GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG BAC2 

BNA9 P53 GGTTCTT:GGTTCTT GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG BAC2 

BNA9 P54 TATCGCA:TATCGCA GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG BAC2 

BNA9 P55 TGTTCAC:TGTTCAC GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG BAC2 

BNA9 NS2_2_1 CGGCAGT:CGGCAGT GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG SED2 

BNA9 NS2_2_2 AAATGAG:AAATGAG GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG SED2 

BNA9 NS2_2_3 TTAATAA:TTAATAA GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG SED2 

BNA9 NS2_2_4 GATACGA:GATACGA GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG SED2 

BNA9 NS2_2_5 TGACACC:TGACACC GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG SED2 

BNA9 NS2_2_6 GATCCTC:GATCCTC GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG SED2 

BNA9 NS2_2_7 CTCCTGA:CTCCTGA GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG SED2 

BNA9 NS2_2_8 GAGGCCG:GAGGCCG GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG SED2 

BNA9 NS2_2_9 TATGGAG:TATGGAG GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG SED2 

BNA9 NS2_2_10 GTCCCTA:GTCCCTA GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG SED2 

BNA9 NS2_2_11 TATTCGG:TATTCGG GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG SED2 

BNA9 NS2_2_12 AACAGGG:AACAGGG GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG SED2 

BNA9 NS2_2_13 AACCACT:AACCACT GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG SED2 

BNA9 NS2_2_14 TCACAGT:TCACAGT GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG SED2 

BNA9 NS2_2_15 GTTAGCA:GTTAGCA GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG SED2 

BNA9 NS2_2_16 CACGTAT:CACGTAT GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG SED2 

BNA9 NS2_2_17 AAATAGT:AAATAGT GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG SED2 

BNA9 NS2_2_18 CACTGGT:CACTGGT GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG SED2 

BNA9 NS2_2_19 ACCCGCA:ACCCGCA GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG SED2 

BNA9 NS2_2_20 TCCGAGG:TCCGAGG GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG SED2 

BNA9 NS2_2_21 TTACTCG:TTACTCG GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG SED2 

BNA9 NS2_2_22 AACGAGA:AACGAGA GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG SED2 

BNA9 NegContField4 AAACTTT:AAACTTT GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG SED2 

BNA9 BlankPCR5 CGGAGTT:CGGAGTT GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG SED2 

BNA9 BlankPCR6 CACTCCG:CACTCCG GCCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG SED2 
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4.1 Abstract 
 

The Neotropical region harbours a vast amount biodiversity that remains insufficiently 

assessed, poorly managed, and threatened by unregulated human activities. Novel, rapid and 

cost-effective DNA-based approaches may represent a valuable avenue towards an improved 

understanding of the biological communities that underpin essential ecosystem services, 

especially in rural areas. Here, we evaluate eDNA metabarcoding as a biodiversity assessment 

and ecological analysis tool in Brazilian rivers. We obtained sediment and water samples from 

11 locations along the Jequitinhonha River catchment (South-eastern Brazil), with each site 

sampled twice in two independent sampling events. The fish-specific ribosomal 12S 

mitochondrial marker (˜172bp) was amplified and the sequences obtained allowed the 

detection of 252 Molecular Operational Taxonomical Units (MOTU), of which at least 34 were 

assigned to the species level, including endemic (Wertheimeria maculata) and introduced 

(Astronotus ocellatus, Moenkhausia costae) species, as well as new records for this basin 

(Salminus brasiliensis, Lophiosilurus alexandri). Short-term spatio-temporal variation of fish 

assemblages demonstrated that communities can vary even within weeks. Species richness 

during the first campaign was nearly twice as high as the second sampling series, though 

peaks of diversity were primarily associated with 4 locations, while a much more 

homogeneous trend was observed during the second campaign. Although no correlation 

between β-diversity and longitudinal distance or presence of dams (barriers) was detected, 

low species richness at sites located near the dams may still be the result of anthropogenic 

impacts.. Environmental DNA can contribute to fish biodiversity assessment in Brazil, by 

detecting introduced species and provides data from localities often neglected by traditional 

sampling surveys such as those sampled here.  

Keywords: eDNA, biodiversity assessment, fish, freshwater, Neotropical 
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4.2 Introduction 
 

Despite covering less than 1% of the Earth’s surface, freshwater habitats harbour over 

40% of the global fish diversity (Nelson, 2006; Eschmeyer, 2005; Dudgeon et al., 2006). Fish 

from rivers, lakes, and wetlands are important for the provision of essential protein 

subsistence for human populations worldwide (FAO, 2012), and are increasingly affected by 

anthropogenic impacts (e.g. habitat modification, fragmentation, climate change- 

Vörösmarty et al., 2010). In order to provide ecosystem services, a “good ecological status” 

of these habitats is crucial. Due to the trade-off between socioeconomic development and 

aquatic habitats preservation, several regulations and restoration programmes have been 

implemented to protect water resources worldwide and an accurate assessment is required 

to monitor the impacts and guarantee habitat recovery (Pawlowski et al., 2018; Friberg et al., 

2016; Palmer, 2010; Vorosmarty et al., 2010).  

Freshwater populations are declining at alarming rates (83% decline since 1970 WWF, 

2018) and their conservation and management are a priority for global biodiversity. 

Nevertheless, despite broad agreement on the requirements to understand and monitor 

biodiversity and ecological networks in freshwater habitats (Socolar et al., 2015), our 

comprehension of this realm is lagging behind, compared to marine or terrestrial 

environments (Jucker et al., 2018).  

The Neotropical region comprises one of the greatest freshwater fish diversities in the 

world (approximately 30% of all described fish species), which is currently facing 

unprecedented levels of anthropogenic pressure. Conservation and management actions in 
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freshwater habitats are challenging in this region due to infrastructure problems and sampling 

constraints, shortage of taxonomic expertise, and the limited amount of agreed descriptors 

to fully characterise this megadiverse ichthyofauna, especially when dealing with early life 

stages (Reis et al., 2016). Fish biodiversity assessment in Neotropical countries (e.g. Brazil) 

relies on the use of traditional methods and these, when not conducted extensively and 

meticulously, might be selective and fail to detect species (unable to detect organisms in early 

life stage, cryptic species, rare and/or elusive species; Becker et al., 2015; Sales et al., 2018). 

Furthermore, as a result of the effort required to apply these methods in wide geographical 

regions, the sampling might be punctual and cover only a small portion of the studied area. 

Underestimation of fish biodiversity resulting from low sampling efficiency may provide 

biased metrics and hamper management and conservation plans (Trimble & van Aarde, 2012). 

One of the most effective approaches to circumvent the limitations of traditional surveys in 

mega-diverse systems is the use of DNA methods (e.g. DNA barcoding and metabarcoding; 

Gomes et al., 2015; Sales et al., 2018, Shimabukuru-Dias et al., 2016, Silva-Santos et al., 2018). 

However, rapid technological advances in this field still make it difficult to agree on a set of 

standardized methodologies to be tailored and implemented in a range of monitoring 

schemes (Hering et al., 2018).  

Molecular approaches offer a universal key to identify, assess and quantify 

biodiversity, especially in biodiversity-rich and understudied ecosystems and regions 

(Schwartz et al., 2006). Recent advancements have now opened new opportunities for 

studying biodiversity by sequencing trace DNA present in the water – so-called 

“environmental DNA” (eDNA) – to identify species presence and, to some extent relative 
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abundance (Hajibabaei et al. 2011; Tillotson et al., 2018). DNA can be retrieved from water 

and sediment samples to reconstruct communities at various taxonomic levels, depending on 

the primers used (Deiner et al., 2017;Rees et al., 2014; Thomsen & Willerslev, 2015).  

The vast majority of environmental DNA studies have, focused on temperate regions, 

in established and fairly well-accessible environments (Handley et al., 2018; Holman et al., 

2018; Bracken et al., 2018; Parsons et al., 2018). Recently, Cilleros et al. (2018) demonstrated 

the efficiency of eDNA metabarcoding in providing spatially extensive data on freshwater fish 

biodiversity (in French Guyana) and a better discrimination of assemblage compositions when 

compared to traditional sampling. We recently showed (Sales et al., 2018) the influence of 

sampling medium, as well as sampling preservation and time, on the reconstruction of 

ichthyofaunal assemblages in a Brazilian catchment, inferred through eDNA. Here we delve 

deeper into the biodiversity of the Jequitinhonha river system and attempt to use the wealth 

of DNA detection data from both water and sediment, in order to assess fish biodiversity, 

spatially and temporally, and explore community structure along the course of the river. 

We hypothesise that i) eDNA metabarcoding can be used as a biodiversity assessment 

tool in neotropical freshwater ecosystems allowing the detection of multiple fish species, ii) 

sampling medium (sediment and water samples) provide different community composition, 

iii) community composition can vary even within short time frames; iv) biodiversity estimates 

(alpha and beta-diversities) can be obtained in the absence of taxonomic assignments, vi) 

spatio temporal fluctuation of fish assemblages can be associated to anthropogenic impacts 

and natural seasonal changes.  To address these questions we applied the following 

methodological framework: i) constructed a recent species list for the Jequitinhonha River 
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Basin compiling data already published reporting fish species occurrence in this river, ii) built 

a custom reference database for Jequitinhonha freshwater fish including new sequences for 

Neotropical species, iii) obtained eDNA metabarcoding data from 176 sediment and water 

samples collected during two sampling campaigns from 11 sample sites distributed along the 

entire river basin, iv) compared metabarcoding data with known ichthyofauna in this 

catchment, v) obtained ecological measures of diversity patterns (alpha, beta diversity), vi) 

evaluated the ecological communities dynamics by comparing two sets of samples obtained 

at the same localities at a three-week interval.  
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4.3 Material and Methods 
 

Study Area 

 The study area was the Jequitinhonha River basin (Figure 1), Southeast Brazil (17°, 43° 

W), inserted in two biodiversity hotspots (Cerrado and Atlantic Forest) and characterised by 

tropical climate and environmental heterogeneity. The main river flows over 1,082 km, from 

its source in Serro (MG) at an elevation of 1200 m, to drain its waters in the Atlantic Ocean at 

the locality of Belmonte (BA). According to its hydrology, this catchment is subdivided in three 

main regions: I) Headwaters, influenced by a tropical continental climate and a rainfall index 

of 1600 mm. The topography is high and rugged, influencing the climate with lower 

temperatures and creating rainfall events of higher intensity but shorter duration. Thus, there 

is a decrease in the rainfall towards the river mouth. II) The following region represents the 

confluence between the Jequitinhonha river and the Araçuaí tributary and is characterised by 

a tropical marine climate with a rainfall index of 1.000 mm-1600 mm, year. III) The final stretch 

comprises the Araçuaí headwaters until the river mouth (Belmonte) and is characterised by a 

climate similar to region II. The main river stem is interrupted by two large dams built for 

hydroelectric power generation: the Irapé, the tallest dam in Brazil, built in 2006 (located at 

region I), and the Itapebi, established in 2002 (region III). 
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FIGURE 1 | The Jequitinhonha river basin, including sampling sites used in the study, dams 

and respective hydrological regions 

 

 The Jequitinhonha River Basin belongs to the east Atlantic basin complex, 

characterised by a high number of endemism (67% of its fish species are endemic) (e.g. 

Wertheimeria sp., Delturus sp.; Reis et al., 2016, Vono & Birindelli, 2007). The Jequitinhonha 

is known to harbour a substantial number of endangered (Steindachnerion amblyurum, 

Rhamdia jequitinhonha, Nematocharax venustus) and endemic species (Rhamdia 

jequitinhonha) (Rosa & Lima, 2008). Until 2010, the known ichthyofauna of this catchment 

included 63 described fish species (including 10 introduced species; Andrade-Neto, 2010). 

This river has long been seen as a low biodiversity ecosystem when compared to neighbouring 

basins, and its reduced species richness had been linked to historical geological and 

geographical features (Andrade-Neto, 2010). Yet, the geological history of the Jequitinhonha 
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is very similar to that of adjacent basins (e.g. Doce river, Mucuri river), which led to the 

consideration of more recent factors to explain low biodiversity in the catchment, namely: 

the lack of adequate surveys, and anthropogenic activities (e.g. mining, exploitation fisheries, 

and deforestation). The Jequitinhonha is particularly affected by the impact of dams on the 

main river course and tributaries, and recent studies highlighted the occurrence of 

introduced, undescribed and cryptic species (Pugedo et al., 2016, Sales et al., 2017), leading 

to the description of several new species (Jerep et al., 2016; Dutra et al., 2016; Nielsen, Pessali 

& Dutra, 2017; Zawadzki et al., 2016, Pereira et al., 2017). Thus, the lack of adequate sampling 

might still account for a great number of native species yet to be described for this catchment.  

A compiled species list  was built by retrieving all papers available at Google Scholar,  

published in international journals (using the terms “fish”, “Jequitinhonha”), published in 

local Brazilian journals (applying the terms “peixe”, “Jequitinhonha”, “ictiofauna”) and also, 

we included  non-published data available only in environmental reports. Please see Table S2 

in Supporting information for references and additional data.  

 

Local reference database  

To obtain a better taxonomic assignment, we retrieved all 12S rRNA mitochondrial 

gene fish sequences available from GenBank and improved the Brazilian fish 12S sequence 

reference data from species hitherto missing from the repository (Table S7, Supplementary 

Material). Tissue samples of 108 specimens belonging to 55 neotropical fish species were 

obtained from the Laboratório de Genética da Conservação tissue collection (LGC), at 

Pontifícia Universidade Católica de Minas Gerais (PUC Minas). DNA was extracted from fin 
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clips, using DNeasy Animal tissue DNA extraction kit (Qiagen). Fragments of the mitochondrial 

12S gene were amplified using the MiFish primers (Miya et al., 2015) and the polymerase 

chain reaction (PCR) consisted in: 1.0µl of buffer MgCl2, 0.3µl of dNTP (total of 10mM), 0.25µl 

of each MiFish primer (10µM) (Miya et al., 2015), 0.2µl of BIOTAQ DNA polymerase (5U/µl) 

(Bioline), 7.0µl of ultrapure water, and 1.0µl of DNA template (10 ng/µl). PCR conditions 

consisted of an initial step of 10 min at 95 °C followed by 35 cycles of 30s at 95 °C, 45s at 60°C, 

and 30s at 72°C and one final step of 5 min at 72 °C. PCR products were visualised on 1% 

agarose gels and successfully amplified samples were sequenced by Macrogen Laboratories 

(www.macrogen.com).  

 

eDNA sampling and processing  

Two sampling campaigns were conducted covering a three-week interval (First 

sampling period: 22/01 to 01/02/2017; Second sampling: 19/02 to 01/03/2017) and 11 

sample sites including the main river and two tributaries (nine sites located in the main river 

course, one site in the Itacambiruçu river and one in Araçuaí river) (Figure 1). Six samples of 

one liter each of water and two sediment samples were collected in each sample site for each 

campaign, one set of samples (N=3) was stored at low temperatures (using a cooling box with 

ice), while in the other samples (N=3) the cationic surfactant benzalkonium chloride (BAC) 

was added at a final concentration of 0.01% (Yamanaka et al. 2017). In total: 132 water 

samples and 44 sediment samples were analysed. Water was filtered filtered approximately 

8 hours after collection, using Microfil V, 100mL, mixed cellulose esters (MCE) filters 

(diameter: 47 mm, pore size: 0.45 mm, Merck Millipore - Bakker et al, 2018) using an 
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automatic vacuum pump and stored at −20°C in microcentrifuge tubes containing silica beads 

(Majaneva et al., 2018) and sediment samples were stored in 50mL centrifuge tubes and 

preserved in 100% ethanol.  

DNA extraction from the filters was conducted using the DNeasy PowerWater Kit 

(Qiagen) and DNA from the sediments was extracted using DNeasy PowerMax Soil Kit 

(Qiagen), following the manufacturer’s protocol. Purified extracts were checked for DNA 

concentration in a Qubit fluorometer (Invitrogen).  

Field and laboratory works were conducted following a contamination control 

procedure, including the use of disposable sterile collection bottles, disposable gloves, and all 

equipment and surfaces were treated with 50% bleach solution for 10 minutes, followed by 

rinsing in distilled water after each use. Filtration blanks were run between every sample site, 

immediately before the next filtration to test for potential contamination during the filtration 

stage.  

 

Amplification, library preparation and sequencing  

Amplicons of 169-172bp from a variable region of the mitochondrial 12S rRNA gene 

were obtained with the MiFish primers (MiFish-U-F, 5′- GCCGGTAAAACTCGTGCCAGC-3′; 

MiFish-U-R, 5′- ACATTATCATAGTGGGGTATCTAATCCCAGTTTG -3′, Miya et al., 2015). 

Samples were sequenced in a single multiplexed Illumina MiSeq run, along with 54 

additional samples belonging to a non-related project (not included in this study). For the 

present study, two libraries were sequenced, containing a total of 183 samples including 
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collection blanks (N=3) and laboratory negative controls (N=4), using two sets of 96 primers 

with seven-base sample-specific oligo-tags and a variable number (2-4) of leading Ns (fully 

degenerate positions) to increase variability in amplicon sequences. PCR amplification was 

conducted using a single-step protocol and to minimize bias in individual reactions, PCRs were 

replicated three times for each sample and the products subsequently pooled into single 

samples. The PCR reaction consisted of a total volume of 20 µL including 10 µl AmpliTaq Gold™ 

360 Master Mix (Applied Biosystems); 0.16 µl of BSA; 1 µl of each of the two primers (5 µM); 

5.84 µl of ultra-pure water and 2 µl of eDNA template. The PCR profile included an initial 

denaturing step of 95°C for 10 min, 40 cycles of 95°C for 30s, 60°C for 45s, and 72°C for 30s 

and a final extension step of 72°C for 5 min. Amplifications were checked through 

electrophoresis in a 1.5% agarose gel stained with GelRed (Cambridge Bioscience). PCR 

products were pooled in two different sets and purified using MinElute columns (Qiagen), and 

Illumina libraries were built from each set, using a NextFlex PCR-free library preparation kit 

(Bioo Scientific). Size selection was performed using 1.1x Agencourt AMPure XP (Beckman 

Coulter), libraries were then quantified by qPCR using a NEBNext qPCR quantification kit (New 

England Biolabs) and pooled in equimolar concentrations along with 1% PhiX (v3, Illumina). 

The libraries were run at a final molarity of 10pM on an Illumina MiSeq platform in a single 

MiSeq flow cell using the 2x 150bp v2 chemistry. 
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Bioinformatic analyses  

The metabarcoding pipeline used for data analysis was based on the OBITools 

software suite (Boyer et al., 2016) following the protocol described in Sales et al. (2018). 

However, due to the high fish biodiversity expected in Neotropical realms, to optimize the 

clustering step we applied a clustering method based on variable cut-off (SWARM, Mahé et 

al., 2014) and evaluate the influence of three d (clustering threshold) values (d=1, d=2, and 

d=3) by comparing the MOTUs (Molecular Operational Taxonomic Unit) and species (identity 

>0.97) richness in the three datasets obtained.  

The taxonomic assignment was performed using ecotag with a custom reference 

database built retrieving all 12S sequences available from GenBank and the local reference 

database built in this study. MOTUs of other origin than teleost were removed, each MOTU 

was assigned to species based on 97% sequence similarity to references (identity 0.97). The 

cut off was established based on published eDNA metabarcoding studies which applied this 

threshold (>97%) for detecting a great variety of fish species (Li et al., 2018; Nakagawa et al., 

2018); MOTUs well represented but showing <97% similarity to references were presented 

and discussed as putatively belonging to species still absent in the database.  

 The risk of false positives due to contamination or tag jumping still challenges the 

application of eDNA metabarcoding analyses (Schnell et al, 2015), to take this issue into 

account we adopted a stringent approach to guarantee the removal of false positives and 

MOTUs putatively originated by sequencing error or contamination. Thus, for each MOTU the 

total number of reads detected in the negative controls (corresponding to this MOTU) were 

subtracted from all samples, then MOTUs containing less than 5 reads in total were not 
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included in the final dataset. 

 

Statistical analyses  

The use of eDNA metabarcoding data for inferring abundance estimates remains  a 

conundrum since some studies reported that the number of reads might not correspond to 

the amount of species or their biomass, due to multiple factors (e.g. eDNA degradation, 

primer bias, distinct DNA shedding rates across species) (Jo et al. 2019; Shaw et al, 2016) while 

some reports demonstrated similar patterns in molecular and morphological abundances 

recovered (Evans et al., 2016; Hänfling et al., 2016). Thus, for the diversity analyses (species 

richness and β-diversity) we applied a recommended conservative approach and treated our 

results as incidence-based (Li et al., 2018). Molecular Operational Taxonomic Units (MOTUs) 

are often used as substitute for species, however, the correlation between these two is not 

straightforward.  Biotic indices may be obtained based on both MOTUs or species richness, 

however each of these approaches have their own drawbacks. MOTUs richness is highly 

influenced by the occurrence of cryptic species and by the thresholds applied during the 

bioinformatic analyses (Pawlowski et al., 2018), still it may cause richness overestimation (e.g. 

inflation of different MOTUs belonging to the same species due to natural intraspecific 

variability, PCR amplification or sequencing errors) whilst richness based on species may be 

underestimate due the lack of a complete reference database or due to a low taxonomic 

resolution of the target fragment analysed.  

To verify whether the biodiversity patterns varied significantly due to the species 
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assignment process, two datasets were analysed individually applying the same methods. The 

filtered dataset included only MOTUs that could be identified up to species level, whereas the 

non-filtered dataset included all MOTUs retrieved after the initial filtering steps. The dataset 

including only species information is considered as a sub dataset of the total MOTU diversity 

recovered, and thus is expected to provide a more conservative overview (Li et al., 2018).   

Statistical analyses were performed in R v3.5.1 (https://www.R-project.org/). Sample 

replicates were pooled for each site (N=6 samples per site) prior the following statistical 

analyses. Alpha-diversity (species richness) was estimated as the total number of MOTUs 

(unfiltered dataset), or number of MOTUs assigned to species level (filtered dataset), at each 

sample site. β-diversity was obtained applying the Jaccard distance using the vegan package 

version 2.5-2 using the “vegdist” command (Oksanen et al. 2013). To visualize the 

relationships amongst sampling sites we obtained PCoA plots using the β-diversity matrix 

(“cmdscale” command) and the correlation between β-diversity and longitudinal distance and 

the β-diversity and presence of physical barriers (dams) was tested using the Mantel test 

(“mantel.rtest” command). The distance matrix was reconstructed using the distance 

between sample sites estimated using road route as the road follows the river course and 

thus, this distance would provide a better estimate when compared to linear river distances. 

The matrix used for testing the influence of physical barriers was constructed attributing 

distance values between sites according to the existence of barriers (e.g. 0 – no physical 

barrier between sites, 1- one barrier between sites and 2 – two barriers). 

Due to a still incomplete reference database, most of the MOTUs recovered were not 

identified up to species level and thus a great portion of information regarding the 
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biodiversity is lost after taxonomic assignment of MOTUs. To verify the total diversity 

recovered and visualize the community data using a hierarchical structure of taxonomic 

classifications we used the R package Metacoder (Foster et al., 2017). This package, designed 

for metabarcoding data, provides “heat tree” plots using statistics associated with taxa (e.g. 

read abundances) and includes, a pairwise comparison between samples or groups analysed. 

Venn diagrams were obtained by comparing the orders and families included in the compiled 

species list, and orders and families detected in each of the eDNA datasets (filtered and non-

filtered), using BioVenn (Hulsen, Vlieg, & Alkema, 2008).  
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4.4 Results 
 

The compiled list of species, including different reports for the Jequitinhonha river 

basin, resulted in 111 species records (90 already described and 21 identified up to the genus 

level and/or not described yet) (Table S1 and Table S2, Supplementary Material).  

We obtained 16.1 million raw reads (LIB1-6,399,823; LIB2-9.704.699) in one Illumina 

MiSeq run. To verify the influence of different thresholds in the MOTU diversity recovered we 

compared three thresholds (d=1, d=2, d=3) for the SWARM clustering. The dataset obtained 

applying the d=1 threshold was used for subsequent analysis due to the loss of species 

richness when using higher thresholds (e.g. d=3 recovered less than 15 species) (Table S3, 

Supplementary Material). After quality control, clustering and all initial filtering steps, 2056 

and 967 MOTUs were kept for library 1 and library 2, with 154 and 59 MOTUs being assigned 

to species with >0.97 min-identity, respectively. A great difference on number of MOTUs 

retained for each dataset was obtained and for several species more than one MOTU was also 

recovered (Figure 2 and Table S4, Supplementary Material).  
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FIGURE 2 | Workflow illustrating the methods used in this paper and respective number of 

MOTUs retrieved in each dataset analysed, and the final number of species assigned with 

>0.97 identity. 

 

Taxonomic assignment  

Based on the combined data (including all filtered datasets - species >0.97 identity) 

taxonomical diversity included six orders, 20 families, 28 genera and at least 34 fish “species” 

(Figure 2, Table S1, Supplementary material).  As expected, Characiformes (n=12) and 

Siluriformes (n=12) were the two orders represented by the largest number of species 

identified and all the remaining orders were comprised by less than 5 species. Due to the 

conservative criteria applied to analyse the data, the number of species detected is surely 

underestimated and many congeneric species might have been clustered together as one 

single species due to the low taxonomic resolution of the fragment analysed. 

The species name herein used might not correspond exactly to the species occurring 

in the Jequitinhonha river basin (based on the compiled species list) as when the correct 
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species is not present in the reference database the taxonomic assignment is based on the 

nearest neighbour species (e.g. Hypostomus gymnorhynchus may refer to a closely related 

species of the same genus). Thus, these species are referenced only up to the genus level, 

whereas species not previously reported for this basin are marked with an asterisk. Both cases 

are further discussed below. A comparison between species identified by eDNA and closely 

related species reported for the Jequitinhonha river basin suggests that several species might 

have been clustered together (e.g. Leporinus, Prochilodus, Trichomycterus) reducing the 

number of species detected. For instance, Prochilodus spp. showed low genetic divergence 

for the 12S fragment (maximum genetic divergence of 1.8%) and could not thus be reliably 

subdivided into the likely multiple species present in the catchment (Sales et al, 2018) (Figure 

S1, Supplementary material).  

 Comparing the data obtained for both sampling times (Figure 3, Table S5 

Supplementary Material), four species were detected only during the first sampling 

(Australoheros facetus, Cyprinus carpio*, Hypostomus sp.*, Trichomycterus sp.), whilst 

Coptodon zilli* and Hoplias intermedius were detected only in the second sampling. Sediment 

samples failed to detect five species (Australoheros facetus, Cyprinus carpio*, Hypostomus 

gymnorhyncus*, Poecilia reticulata, Trichomycterus sp.), whilst water samples detected all 

species present in the sediments. Analyses of water and sediment samples demonstrated the 

occurrence of widely distributed and less abundant species. Several taxa (e.g. Leporinus sp., 

Prochilodus sp., Rhamdia quelen) were detected in both water and sediment samples in most 

of sampling sites, in at least one sampling campaign, and therefore seem to have a broad 

geographic distribution in the Jequitinhonha river basin. Due to marker resolution, these likely 
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correspond to more than three species as species might be clustered together due to a low 

taxonomic resolution (please see Figure S1, Supplementary Material)  Yet, despite recovering 

less species than water samples, the sediments showed a higher proportion of eDNA for 

Prochilodontidae during the first campaign and for Anostomidae and Serrasalmidae in the 

second campaign (Figure 4).  

Some species, including native and non-indigenous species, were restricted to a few 

locations (e.g. non-indigenous: the oscar - Astronotus ocellatus, chameleon cichlid- 

Australoheros facetus, tilapias Coptodon sp.* and Oreochromis sp., native: roncador - 

Wertheimeria maculata) or were detected in only one campaign (e.g. Australoheros facetus, 

Coptodon sp., carp - Cyprinus carpio*, wolf fish - Hoplias intermedius, pleco - Hypostomus 

gymnorhyncus*, pencil catfish - Trichomycterus sp.). Furthermore, a notable result obtained 

by eDNA included the detection of species rarely reported in traditional sampling studies (e.g. 

Crenicichla sp.) in all sites analysed and, suggested the occurrence of putative new records 

for this basin including possibly invasive species such as the dourado - Salminus brasiliensis* 

and pacamã - Lophiosilurus alexandri*. 

Despite detecting over 30 species the data here surely represent an underestimation. 

The filtered dataset provides a more reliable data by assigning species with a minimum of 

0.97 identity, however, this conservative approach might hamper the detection of several 

taxa. Fish diversity depicted by the heat trees based on the unfiltered data shows that a 

hidden diversity might be present, especially for the Order Characiformes, as many families 

appears to comprise several MOTUs (e.g. Anostomidae, Prochilodontidae Figure 4). In all 

comparisons between the datasets analysed, the unfiltered dataset surpassed the filtered 
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one by detecting orders and families known to occur in this catchment and not identified up 

to the species level (Figure 5).  

FIGURE 3 | Species distribution in the Jequitinhonha river basin, according to sampling media 

and campaign.  
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Astronotus ocellatus Astronotus ocellatus

Australoheros facetus Australoheros facetus

Brycon sp. Brycon  sp.

Characidium sp. Characidium  sp.

Coptodon zillii Coptodon zillii

Crenicichla lacustris Crenicichla lacustris

Cyphocharax gilbert Cyphocharax gilbert

Cyprinus carpio Cyprinus carpio

Delturus carinotus Delturus carinotus

Geophagus brasiliensis Geophagus brasiliensis

Gymnotus carapo Gymnotus carapo

Hoplias intermedius Hoplias intermedius

Hoplias malabaricus Hoplias malabaricus

Hoplosternum littorale Hoplosternum littorale

Hypomasticus mormyrops Hypomasticus mormyrops

Hypostomus gymnorhynchus Hypostomus gymnorhynchus

Hypostomus nigromaculatus Hypostomus nigromaculatus

Leporinus copelandii Leporinus copelandii

Lophiosilurus alexandri Lophiosilurus alexandri

Megaleporinus garmani Megaleporinus garmani

Moenkhausia costae Moenkhausia costae

Neoplecostominae gen. 2 sp. FFR-2012 Neoplecostominae gen. 2 sp. FFR-2012

Neoplecostomini gen.n. sp.n TEP-2017 Neoplecostomini gen.n. sp.n TEP-2017

Oligosarcus argenteus Oligosarcus argenteus

Oreochromis aureus Oreochromis aureus

Phalloceros sp. Phalloceros sp.

Poecilia reticulata Poecilia reticulata

Prochilodus argenteus Prochilodus argenteus

Rhamdia quelen Rhamdia quelen

Salminus brasiliensis Salminus brasiliensis

Serrasalmus brandtii Serrasalmus brandtii

Trachelyopterus striatulus Trachelyopterus striatulus

Trichomycterus sp. Trichomycterus sp.

Trichomycterus  sp.2 Trichomycterus sp.2

Wertheimeria maculata Wertheimeria maculata
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FIGURE 4 | Heat trees displaying the fish diversity recovered for Jequitinhonha river Basin using eDNA metabarcoding, during the first (A) and 
second (B) campaigns. Blue = Water samples; Brown = Sediment samples.  

A 

B 
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 FIGURE 5 | Venn diagram of fish orders and families comparing the data included in the species list based on traditional sampling (SL) to eDNA 
detected in distinct sampling media (water vs sediment); sampling campaign; and datasets analysed (unfiltered vs filtered).
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Species richness and Beta diversity  

During the first campaign, according to the data obtained from water samples (Figure 

6A), the most upstream (site 1) and downstream (site 11) sampling sites harboured the 

highest MOTU richness, followed by locations 4 and 8. The lowest number of MOTUs was 

recovered for location 7. Beta diversity was similar between sites 4 and 11, and 1 and 8, 

whereas site 7 showed the most distinct fish assemblage when compared to all locations. 

Environmental DNA recovered from water samples after a three-week interval demonstrated 

fluctuations in species richness across time in this catchment (Figure 6B), with a relative 

increase of stability in the species richness amongst all sample sites. Still, the most upstream 

and downstream locations (1, 2, 10, 11), alongside location 8, harboured the highest number 

of species.  

Data recovered from sediment samples provided a different overview of species 

richness and beta diversity. Overall, in the first campaign the number of species recorded for 

sediment samples was lower compared to water samples (Figure 6C). Sample site 1 had a 

much lower species richness compared to water samples along with sites 2, 4, 8, 9, 10. An 

increase in the species richness was detected for site 3, 5 and 7, while sample sites 11 and 8 

were confirmed as highly species-rich locations. In the second campaign (Figure 6D), six 

sample sites (1, 2, 6, 8, 9, 10) had a lower species richness, while higher values were obtained 

for site 3, 4, 7.   

Over time, the pattern of harbouring the highest species richness appeared relatively 

constant in sites 1 and 11 for both sampling media, except in the first campaign where few 
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species were detected in location 1 for sediment. Yet, the most downstream location kept an 

almost stable species richness in both sampling media for both sampling campaigns. 

Longitudinal distance had a negligible effect on beta diversity amongst sample sites 

(p-value> 0.05) and the presence of physical barriers (e.g. dams) also did not show a 

significant influence on beta diversity of different sample types (water and sediment), Table 

1. A positive significant correlation was found between filtered and unfiltered datasets, for 

both water and sediment, Table 1. 

 

TABLE 1 | Mantel r and p-values (in parentheses) for all the pairwise comparisons between 
datasets, sampling media, geographic distance and presence of barriers (dams).  

 

   

First campaign Second campaign 

   

Water Sediment Water Sediment 

  

  Unfiltered Filtered Unfiltered Filtered Unfiltered Filtered Unfiltered Filtered 

1 

W 

Unfiltered 1        

Filtered 
0.689 

(p=0.001) 
1       

S 

Unfiltered 
0.050 

(p=0.359) 

-0.268 

(p=0.939) 
1      

Filtered 
0.219 

(p=0.162) 

0.134 

(p=0.250) 

0.534 

(p=0.005) 
1     

2 

W 

Unfiltered 
0.193 

(p=0.445) 

-0.142 

(p=0.815) 

0.110(p=0.22

1) 

0.029 

(p=0.386) 
1    

Filtered 
0.011 

(p=0.444) 

-0.017 

(p=0.491) 

0.055(p=0.30

9) 

-0.034 

(p=0.555) 

0.572 

(p=0.001) 
1   

S 

Unfiltered 
-0.100 

(p=0.656) 

-0.235 

(p=0.914) 

0.017(p=0.38

9) 

-0.047 

(p=0.548) 

-0.025 

(p=0.544) 

-0.174 

(p=0.870) 
1  

Filtered 
-0.121 

(p=0.691) 

-0.278 

(p=0.929) 

0.109(p=0.26

9) 

-0.104 

(p=0.645) 

0.075 

(p=0.309) 

-0.040 

(p=0.528) 

0.822 

(p=0.001) 
1 

 

 
Longitudinal 

distance 

-0.213 

(p=0.897) 

-0.258 

(p=0.947) 

-

0.041(p=599) 

-0.028 

(p=0.561) 

0.137 

(p=0.154) 

-0.043 

(p=0.597) 

0.189 

(p=0.114) 

0.290 

(p=0.052) 

 

 Presence of dam 
-0.102 

(p=0.690) 

-0.172 

(p=0.859) 

0.028 

(p=0.416) 

-0.004 

(p=0.514) 

-0.018 

(p=0.488) 
-0.181 (0.876) 

0.178 

(p=0.161) 

0.108 

(p=0.26) 
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For both sampling media, despite the variation in taxa richness showed by both 

datasets, the pattern of alpha diversity variation amongst sample sites obtained for filtered 

(species) and unfiltered (MOTUs) datasets were still quite congruent (Figure 7). However, for 

sediment samples collected in the first campaign, sites 3 and 11 had a greater MOTU diversity 

when compared to all nine remaining locations (Figure 7C). Despite also being the most 

species richness sites, the great amount of MOTUs obtained and not assigned with more than 

0.97 identity indicates that a great diversity remains hidden in this sampling medium. Also, as 

demonstrated by the PCoA (Figure 7C) these sites had a more distinct fish assemblage when 

compared to the others.  

Furthermore, a higher resolution was obtained for the unfiltered dataset as a greater 

similarity was obtained for the clusters in the PCoA based in the beta diversity. The only great 

variation was detected between sediment samples from the first campaign, where a relatively 

lower number of MOTUs was recovered for five sample sites (4, 5, 7, 8 and 9) in comparison 

to the other locations, when compared to the filtered dataset.    
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FIGURE 6 | Filtered dataset, showing the species richness distribution along the 

Jequitinhonha river basin and Principal Coordinates Analysis (PCoA) of β-diversity of sampling 

locations (Jaccard distance). A) Water samples obtained in the first campaign; B) Water 

samples obtained in the second campaign; C) Sediment samples obtained in the first 

campaign; D) Sediment samples obtained in the second campaign. 
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FIGURE 7 | Unfiltered dataset, showing the species richness distribution along the 

Jequitinhonha river basin and Principal Coordinates Analysis (PCoA) of β-diversity of sampling 

locations (Jaccard distance). A) Water samples obtained in the first campaign; B) Water 

samples obtained in the second campaign; C) Sediment samples obtained in the first 

campaign; D) Sediment samples obtained in the second campaign. 
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4.5 Discussion  
 

The identification of species distribution and the understanding of processes shaping 

spatial variation and community composition are crucial for management and conservation 

purposes, and rapid biodiversity survey methods are required to measure these fluctuations 

and support management schemes (Kelly et al., 2014). Here, we provided a list of fish species 

identified by eDNA and documented the variation in both species richness and beta diversity 

of different sampling media and time frames, for 11 sites located in the Jequitinhonha river 

basin, Brazil.  

 

4.5.1 Taxonomic assignment 

First, as expected, the compiled list of species reported for the Jequitinhonha river 

basin was higher than previously recorded in 2010, which corroborates previous estimates 

suggesting the occurrence of more than 80 species in this catchment (Andrade-Neto, 2010; 

Godinho et al., 1999). We conservatively contrasted the taxonomic assignment obtained by 

eDNA with a list of species reported for this basin; however, thes Jequitinhonha, like many 

other catchments in the Neotropical region, remains poorly studied and the knowledge 

regarding its fish diversity is still incomplete. Furthermore, an additional issue reported 

worldwide, is that even when monitoring programmes are conducted, most of the data 

obtained are often not published or made available and thus remain inaccessible to further 

scientific studies (Lindenmayer & Likens, 2009; Revenga et al., 2005). Taxonomic issues are 

often present in monitoring programs and the risk of misidentification exists regardless of the 
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method applied (i.e. traditional sampling, morphological identification, eDNA) (Radinger et 

al., 2018). Erroneous identifications might also be present in the reference databases, 

especially in biodiversity rich regions such as the Neotropics, where the amount of unknown 

and undescribed taxa and the occurrence of cryptic species are substantial issues.   

As suggested by Li et al. (2018) the filtered dataset provided a more conservative 

overview compared to the unfiltered dataset and thus did not detect several families and 

orders known to be present in this catchment. Fish diversity depicted by the heat trees based 

on the unfiltered data shows that a hidden diversity might be present, especially for the Order 

Characiformes, as many families appears to comprise several MOTUs (e.g. Anostomidae, 

Prochilodontidae). This likely reflects the presence of multiple genera/species such as 

Anostomidae, which includes at least seven species known to occur in this basin.  

 

4.5.2 Introduced and autoctonous species 

Environmental DNA metabarcoding allows the detection of multiple species 

simultaneously, including species not expected to occur in the area (Deiner et al., 2017), 

which makes it a great tool for tracking biological invasions and providing an early warning of 

species introduction. Here, almost 30% of the taxa detected by eDNA are represented by non-

indigenous species, including species not reported yet for this catchment. To our knowledge, 

records of Salminus brasiliensis and Lophiosilurus alexandri are absent in the literature. These 

are commercially important species, already introduced for fishery purposes in several 

Brazilian basins (Alves et al., 2007; Vitule et al., 2014), hence their occurrence in the 
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Jequitinhonha is not a surprise but raises the question: what are the ecosystem consequences 

of such unmanaged introductions? The only cyprinid documented in this basin was 

Hypophthalmichthys molitrix and here we registered the presence of Cyprinus carpio, another 

species that has been widely introduced to Brazilian waters (Alves et al., 2007).  Furthermore, 

eDNA also allowed the detection of distinct species of tilapia (Oreochromis sp. and Coptodon 

zilli). The impacts of tilapia invasion are well known worldwide, and all species show high 

invasive potential, including in Neotropical countries. Coptodon zillii invasion is almost 

restricted to North America (Cassemiro et al., 2017), however, closely related species have 

been reported in the Jequitinhonha river Basin (Oreochromis niloticus, Tilapia sp.) and 

neighbouring drainages (Tilapia rendalli – Doce river basin).  

Regarding the native species, eDNA allowed the detection of endemic species 

(Wertheimeria maculata) and other remarkable cases, such as Crenicichla sp. The cichlid 

genus Crenicichla is one of the most species rich among the Cichlids and know to widely occur 

in South America and still lacking an improved taxonomic resolution and conservation status 

evaluation (Kullander & de Lucena, 2006).    In 2006, an expedition applied extensive sampling 

efforts to collect Crenicichla sp. in the Jequitinhonha, without any success and this species 

were only documented in 2009 by an environmental report (Kullander & Lucena, 2006; 

Intertechne, 2009), whilst by using eDNA metabarcoding this species was recovered from 

several locations, indicating a possible large geographical distribution. 

As demonstrated in previous studies, identification of some species might be 

problematic when using eDNA metabarcoding based on the 12S fragment employed here, 

due to its lack of phylogenetic resolution and the incompleteness of the reference database 
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(Yu et al. 2012; Carew et al. 2013; Eiler et al. 2013). Most of the MOTUs belonging to 

Prochilodus sp. could not be assigned to species level due to the low taxonomic resolution. 

Despite the taxonomic assignment to Prochilodus argenteus, this represents an invasive 

species in the Jequitinhonha and due to a low genetic divergence from the endemic species 

P. hartii (Melo et al., 2018) these species are indistinguishable over the 172bp stretch of the 

12S fragment (Figure S1, Supplementary Material); therefore, these species are certainly 

clustered together in this study.   

Six anostomids are described for the Jequitinhonha, and here we identified one of 

these species (Megaleporinus garmanii) and two not previously reported (Leporinus 

copelandii and Hypomasticus mormyrops). The only previous record of Leporinus copelandii 

was deemed as an historical error (Andrade-Neto, 2010). Cilleros et al. (2018), despite using 

a different 12S fragment, also reported the limitations in the taxonomic assignment of species 

belonging to the genus Leporinus, therefore our data set is unable to clarify the nuances 

within this group.  

 

4.5.3 Caveats to species detection 

Despite providing important initial information regarding species occurrence and 

introduction, the data provided here should be used with caution. The effectiveness of this 

innovative method in recovering eDNA of rare and elusive species from the environment is 

widely recognized, however, some drawbacks might be discussed before drawing final 

conclusions. i) eDNA persistence and transport: DNA molecules have a relative fast 
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degradation and thus, the detection of species suggests their recent presence and a 

contemporary snapshot of the fish community is expected. However, eDNA persistence varies 

according to the sampling media, from days in the water column to many weeks in the 

sediment and as DNA can remain in the water column for more than few days it can also allow 

the detection of transient species not exactly present in the environment at the sampling time 

(Dejean et al., 2011, Thomsen et al., 2012). In addition to that, eDNA particles can also travel 

long distances and be detected far from their original source (Barnes & Turner, 2016; Deiner 

et al., 2014). However, despite having a high discharge rate (average of 409 m³/s), the 

approximate distance between sites was 100km and thus, the influence of eDNA transport on 

species recovered might not be considered as a great concern in species detection; ii) Origin: 

besides allowing the detection of fish relatively far from their natural occurrence (Jane et al., 

2015), eDNA recovered does not distinguish between dead and live animals and can be even 

originated from different sources (e.g. disposal of fish products, carcasses, or fishing baits) 

and this eDNA of exogenous origin should be considered as a potential source of 

contamination (Merkes et al., 2014). Thus, the presence of species not previously reported 

should be carefully analysed to verify the origin of their eDNA recovered; iii) Incorrect 

taxonomic assignment: although 108 new sequences were included in this study, this 

drainage exhibits high endemism and most of its species are still absent in the database. The 

incompleteness of genetic database and the lack of phylogenetic resolution of the 12S 

fragment analysed hampers full recovery of the diversity of neotropical fish, hence 

underestimating biodiversity. Therefore, efforts to screen longer DNA stretches and to 
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complete local reference libraries are required to improve the taxonomic assignment quality 

and take eDNA biomonitoring approach to the next level.  

 

4.5.4 Species richness vs anthropogenic impacts and seasonal changes 

Ecological communities vary in time and space, and the monitoring  of these dynamics 

is essential for conservation purposes (Bálint et al., 2018). In the Jequitinhonha River basin, 

significant spatial and temporal fluctuations in fish assemblages were detected. The 

longitudinal distance and presence of barriers did not explain the variation; however, 

anthropogenic impacts might still have an influence of fish diversity distribution in this river 

basin.  The sites showing the lowest species richness were represented by the reservoirs (3 – 

José Gonçalves/Irapé reservoir, 9 – Salto d Divisa/Itapebi reservoir) and the first sites 

downstream the dams (4 – Coronel Murta and 10 – Itapebi). The presence of dams impacts 

the environment due to modification of physical and ecological characteristics of the habitats 

(e.g. water flow, nutrient dynamics, water quality and temperature, increased predation 

pressure, habitat loss) and is well known as a fish diversity reduction factor (Pelicice & 

Agostinho, 2007; Pompeu et al., 2012). 

The sites comprising most of the fish diversity in this basin were represented by 

locations characterized by different influences. The most upstream site is located in a less 

populated and impacted region (Table S7, Supplementary Material), near two areas of natural 

preservation (State Parks Biribiri and Rio Preto) whilst the other two (Almenara and 

Belmonte) are included in more populated and impacted cities. Due to the deforestation and 
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mining activities, the siltation represents one of the greatest impacts in the Jequitinhonha 

river and it increases towards the river mouth (IBGE, 1997). Almenara is a particularly 

impacted area and during the sampling this location showed a low water level and 

accumulation of sediments, which might have contributed to increase the eDNA 

concentration and accumulation increasing the species diversity.  

Furthermore, the high alpha diversity values found for the site located at the river 

mouth deserves some consideration. This region has marine influence and its abiotic 

characteristics (e.g. increased salinity) would be expected to restrict the occurrence of some 

species. Still, most of the species were detected at this site during the first campaign. A 

hypothesis that could explain this result includes eDNA transport and accumulation. Species 

shed DNA constantly, which can be available in the water column or bound to sediment, with 

the latter showing a longer persistence than the eDNA in the surface water. DNA is known to 

be transported by long distances, in lotic systems the rainfall may lead to an increased water 

volume contributing to a higher velocity and thus, affect eDNA molecules transport and 

dispersal towards downstream river (Shogren et al., 2018). 

 In addition to that, an increase in water flow can also cause the eDNA particles 

resuspension, which associated with the resistance applied by the incursion of the marine 

waters into the river, can contribute to retain and resuspend the eDNA accumulated in this 

area, making it available in the water column. Another fact we need to take into account is 

that species richness recovered for each site might possibly reflect an overestimation, as 

eDNA transport from a different location upstream might be detected and thus does not 

mean that the species themselves are present there at the collection time. Still, eDNA 
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transport distances may vary between river systems due to abiotic factors (e.g. temperature, 

pH, UV light) or seasonal changes such as drought or intense rainfall periods (Deiner et al., 

2016). As no study has been conducted in Brazilian lotic environments focusing on 

understanding eDNA transport and diffusion, it is therefore difficult to draw sound 

conclusions regarding this matter.  

Seasonal changes driven by natural factors (e.g. water flow, rainfall) could also 

contribute to explain assemblage variation even over a short time frame (i.e. weeks) as mobile 

species such as fish can rapidly disperse and vary their distribution in response to changing 

abiotic conditions (Arrington & Winemiller, 2006; Fitzgerald et al., 2017). Water availability 

shows a great temporal variability in semi-arid and arid regions, with short but intense rainfall 

episodes followed by long dry periods (Leite et al., 2010). The Jequitinhonha river basin is 

inserted in a semi-arid region and in the first campaign it was facing a severe drought. Before 

the second sampling the increase in the average accumulated rainfall (2.1-50mm to 100-250 

mm) (CPTEC/INPE, 2018), might have contributed to a higher stability amongst sample sites, 

regarding the contemporary species richness (inferred through water samples), when 

compared to the first sampling campaign. An increased volume and subsequently higher 

connectivity of aquatic habitats might stimulate the dispersal and result in reduced densities 

of organisms (Fitzgerald et al., 2017). Thus, this result might suggest that freshwater fish 

assemblages in tropical habitats may vary significantly between dry and wet seasons.  
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4.5.5 Sampling media 

Studies conducted in marine and lotic freshwater environments reported a lower 

detection rate of fish eDNA in sediment compared to water samples (Holman et al., 2018; 

Koziol et al., 2018, McDevitt et al., 2018; Shaw et al., 2016). Our results were congruent with 

that, as sediment samples yielded less MOTUs in both filtered and unfiltered datasets and 

failed in detecting 5 species (Australoheros facetus, Cyprinus carpio, Hypostomus 

gymnorhyncus*, Poecilia reticulata, Trichomycterus sp.). The influence of substrate choice in 

eDNA detection rates have been correlated to many factors, including organisms’ biological 

characteristics (habitat preference, life history traits, etc). However, the species not detected 

by this sampling medium display a wide range of habitat preferences and thus, this might not 

be a major issue, at least in rivers with these features. Still, those species were detected in 

very few sites and might have a restricted distribution and occur at low abundances in this 

basin, which could explain the failed detection by sediments. Furthermore, as the number of 

samples analysed were different (two sediment samples vs 6L of water) the lower yield 

obtained from sediments compared to water samples might also be due to the lower number 

of samples collected. 

More importantly, both sampling media should be analysed differently since they 

provide distinct temporal information. While eDNA in the water surface reflects recent 

presence of species, eDNA bound to the sediment may correspond to an accumulation of DNA 

molecules during a longer period time and provide information regarding species occurrence 

over a longer time frame (Deiner et al., 2017).   
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Regarding the datasets analysed, the filtered data is considered as a sub dataset of 

the total diversity recovered and showed a lower diversity at the order and family levels. 

However, the significant positive correlation between datasets demonstrated that beta-

diversity is not influenced by the filtering criteria applied as much as sampling medium or 

sampling time. 

Given the unprecedent rates of populations and species decline and the increasing 

anthropogenic impacts on freshwater communities, the importance of a rapid, robust and 

efficient monitoring program has never been more in need. Here we demonstrate the 

advantages of applying eDNA metabarcoding in spatio-temporal ecological studies, as 

suggested by Bista et al. (2017). Environmental DNA metabarcoding used as a complementary 

monitoring tool, can extend the data recovered by traditional methods and could greatly 

contribute to improve biomonitoring in Brazilian freshwaters by providing data for difficult to 

access localities and allowing the detection of elusive, rare or patchily-distributed species, as 

shown here.  However, to avoid underestimating the biodiversity and reduce ambiguity in 

eDNA-based species detection, we stress the importance of coordinating morphological 

surveys with DNA assessments, and increasing the efforts towards building complete genetic 

databases, ideally composed of whole mitochondrial genomes.  
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Figure S1: Phylogenetic tree (A) and pairwise genetic distance (B) recovered for Prochilodus 
spp.

Species 1 Species 2 Dist 

KR014816.1_Prochilodus_argenteus_ KR014817.1_Prochilodus_costatus 0.018 

KR014816.1_Prochilodus_argenteus_ KM245045.1_Prochilodus_lineatus 0.012 

KR014817.1_Prochilodus_costatus KM245045.1_Prochilodus_lineatus 0.006 

KR014816.1_Prochilodus_argenteus Megaleporinus_elongatus 0.216 

KR014817.1_Prochilodus_costatus Megaleporinus_elongatus 0.205 

KM245045.1_Prochilodus_lineatus Megaleporinus_elongatus 0.216 

KR014816.1_Prochilodus_argenteus Prochilodus_hartii 0.000 

KR014817.1_Prochilodus_costatus Prochilodus_hartii 0.018 

KM245045.1_Prochilodus_lineatus Prochilodus_hartii 0.012 

Megaleporinus_elongatus Prochilodus_hartii 0.216 

A 

B 
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Table S1: Taxa detected by eDNA metabarcoding and correspondent nearest neighbor species reported for Jequitinhonha river basin.
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Table S2: Species reported for the Jequitinhonha River Basin.
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Table S3: Comparison of different SWARM clustering thresholds.  

  Sampling event 1 Sampling event 2 

  LIB1 LIB2 

  d=1 d=2 d=3 d=1 d=2 d=3 

Number of swarms 107567 60259 41094 131121 70633 46339 
Largest swarm 64783 135807 179901 40359 52581 91237 
Max generations 28 30 31 21 24 29 

 After SWARM Recount 
Clusters 107567 60259 41094 131121 70633 46339 
Cluster >2 reads 5249 4563 3595 5714 4766 3823 
Reads kept for calculations/Total reads = 404914 302596 349218 367415 369295 428835 452186 

Alignment cached 81.44% 78.15% 75.67 79.34 74.66 70.02 
Number of MOTUs 5249 4563 3595 5714 4766 3823 
Number of reads 3955997 4004093 4022641 3914479 3975772 3999426 

Actinopterygii-MOTUs 4821 3974 3065 5054 4128 3265 
Neotropical Orders-MOTUs 3195 2534 2168 2421 2041 1691 
Neotropical Families-MOTUs 2635 2058 1862 1732 1441 1007 
Neotropical species-MOTUs 2579 1918 1744 1417 1212 979 
Contamination removal 2056 1664 1491 967 893 820 

Number of MOTUs assigned to species (minid 0.97) 155 52 25 59 42 28 
Number of MOTUs assigned to genus (minid 0.97) 58 16 5 64 20 6 
Number of MOTUs assigned to Family (minid 0.97) 22 7 0 25 5 2 
Number of MOTUs assigned to Suborder (minid 0.97) 4 2 1 2 0 0 
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Table S4: Species identified applying the minimum identity of 0.97, according to each SWARM threshold.  

 

 

 

Species
Number of 

MOTUs
Species

Number of 

MOTUs
Species

Number of 

MOTUs
Species

Number of 

MOTUs
Species

Number of 

MOTUs
Species

Number of 

MOTUs

Astronotus ocellatus 1 Astronotus ocellatus 1 Astronotus ocellatus 1 Astronotus ocellatus 1 Astronotus ocellatus 1 Astronotus ocellatus 1

Australoheros facetus 1 Australoheros facetus 1 Australoheros facetus 1 Brycon sp. 1 Brycon sp. 1 Characidium sp. 1

Brycon sp. 1 Crenicichla lacustris 6 Crenicichla lacustris 3 Characidium sp. 6 Coptodon zillii 1 Coptodon zillii 1

Characidium sp. 11 Cyphocharax gilbert 1 Cyprinus carpio 1 Coptodon zillii 1 Crenicichla lacustris 2 Crenicichla lacustris 2

Crenicichla lacustris 9 Cyprinus carpio 1 Delturus carinotus 1 Crenicichla lacustris 3 Cyphocharax gilbert 1 Cyphocharax gilbert 1

Cyphocharax gilbert 2 Delturus carinotus 2 Geophagus brasiliensis 1 Cyphocharax gilbert 1 Delturus carinotus 1 Delturus carinotus 1

Cyprinus carpio 1 Geophagus brasiliensis 1 Gymnotus carapo 1 Delturus carinotus 1 Geophagus brasiliensis 1 Geophagus brasiliensis 1

Delturus carinotus 6 Gymnotus carapo 1 Hoplias malabaricus 1 Geophagus brasiliensis 1 Gymnotus carapo 1 Gymnotus carapo 1

Geophagus brasiliensis 6 Hoplias malabaricus 1 Hoplosternum littorale 1 Gymnotus carapo 1 Hoplias intermedius 1 Hoplias intermedius 1

Gymnotus carapo 1 Hoplosternum littorale 1 Hypomasticus mormyrops 1 Hoplias intermedius 1 Hoplias malabaricus 1 Hoplias malabaricus 1

Hoplias malabaricus 1 Hypomasticus mormyrops 4 Lophiosilurus alexandri 1 Hoplias malabaricus 1 Hoplosternum littorale 1 Hoplosternum littorale 1

Hoplosternum littorale 6 Hypostomus gymnorhynchus 1  2 Hoplosternum littorale 1 Hypomasticus mormyrops 1 Hypomasticus mormyrops 1

Hypomasticus mormyrops 6 Hypostomus nigromaculatus 1 Oreochromis aureus 1 Hypomasticus mormyrops 1 Hypostomus nigromaculatus 1 Lophiosilurus alexandri 1

Hypostomus gymnorhynchus 1 Leporinus copelandii 3 Phalloceros sp.J 1 Hypostomus nigromaculatus 1 Leporinus copelandii 2 Megaleporinus garmani 1

Hypostomus nigromaculatus 1 Lophiosilurus alexandri 1 Poecilia reticulata 1 Leporinus copelandii 3 Lophiosilurus alexandri 1 Moenkhausia costae 1

Leporinus copelandii 14 Megaleporinus garmani 1 Salminus brasiliensis 1 Lophiosilurus alexandri 2 Megaleporinus garmani 2 Neoplecostominae gen. 2 sp. FFR-2012 1

Lophiosilurus alexandri 5 Moenkhausia costae 3 Trachelyopterus striatulus 1 Megaleporinus garmani 9 Moenkhausia costae 3 Neoplecostomini gen.n. sp.n TEP-2017 1

Megaleporinus garmani 14 Neoplecostominae gen. 2 sp. FFR-2012 1 Trichomycterus sp. 1 Moenkhausia costae 3 Neoplecostominae gen. 2 sp. FFR-2012 2 Oligosarcus argenteus 1

Moenkhausia costae 6 Neoplecostomini gen.n. sp.n TEP-2017 3 Trichomycterus sp.J 1 Neoplecostominae gen. 2 sp. FFR-2012 2 Neoplecostomini gen.n. sp.n TEP-2017 1 Oreochromis aureus 1

Neoplecostominae gen. 2 sp. FFR-2012 3 Oreochromis aureus 1 Wertheimeria maculata 1 Neoplecostomini gen.n. sp.n TEP-2017 1 Oligosarcus argenteus 1 Poecilia reticulata 1

Neoplecostomini gen.n. sp.n TEP-2017 6 Phalloceros sp.J 1 Oligosarcus argenteus 1 Oreochromis aureus 1 Rhamdia quelen 1

Oligosarcus argenteus 3 Poecilia reticulata 1 Oreochromis aureus 1 Phalloceros sp.J 1 Salminus brasiliensis 1

Oreochromis aureus 1 Prochilodus argenteus 2 Phalloceros sp.J 1 Poecilia reticulata 1 Serrasalmus brandtii 1

Phalloceros sp.J 2 Rhamdia quelen 1 Poecilia reticulata 1 Prochilodus argenteus 4 Trachelyopterus striatulus 1

Poecilia reticulata 1 Salminus brasiliensis 2 Prochilodus argenteus 3 Rhamdia quelen 2 Trichomycterus sp.J 1

Prochilodus argenteus 28 Trachelyopterus striatulus 1 Rhamdia quelen 2 Salminus brasiliensis 2 Wertheimeria maculata 1

Rhamdia quelen 1 Trichomycterus sp. 1 Salminus brasiliensis 1 Serrasalmus brandtii 2

Salminus brasiliensis 5 Trichomycterus sp.J 2 Serrasalmus brandtii 3 Trachelyopterus striatulus 1

Serrasalmus brandtii 1 Wertheimeria maculata 1 Trachelyopterus striatulus 1 Trichomycterus sp.J 1

Trachelyopterus striatulus 5 Trichomycterus sp.J 3 Wertheimeria maculata 1

Trichomycterus sp. 1 Wertheimeria maculata 1

Trichomycterus sp.J 1

Wertheimeria maculata 1

First Sampling event Second Sampling event

d=2 d=3d=2

LIB2

d=1

LIB1

d=3 d=1

MOTUs assigned to species (minid 0.97)
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Table S5: Taxa detected in each sampling event and sampling medium. 

WATER SEDIMENT 

Sampling event 1 Sampling event 2 Sampling event 1 Sampling event 2 

Astronotus ocellatus Astronotus ocellatus Characidium sp. Astronotus ocellatus 

Australoheros facetus Brycon sp. Crenicichla lacustris Brycon sp. 

Brycon sp. Characidium sp. Cyphocharax gilbert Characidium sp. 

Characidium sp. Coptodon zillii Delturus carinotus Coptodon zillii 

Crenicichla lacustris Crenicichla lacustris Geophagus brasiliensis Crenicichla lacustris 

Cyphocharax gilbert Cyphocharax gilbert Hoplias malabaricus Cyphocharax gilbert 

Cyprinus carpio Delturus carinotus Hoplosternum littorale Delturus carinotus 

Delturus carinotus Geophagus brasiliensis Hypomasticus mormyrops Geophagus brasiliensis 

Geophagus brasiliensis Gymnotus carapo 
Hypostomus 
nigromaculatus Gymnotus carapo 

Gymnotus carapo Hoplias intermedius Leporinus copelandii Hoplias intermedius 

Hoplias malabaricus Hoplias malabaricus Lophiosilurus alexandri Hoplosternum littorale 

Hoplosternum littorale Hoplosternum littorale Megaleporinus garmani Hypomasticus mormyrops 

Hypomasticus mormyrops Hypomasticus mormyrops Moenkhausia costae 
Hypostomus 
nigromaculatus 

Hypostomus 
gymnorhynchus 

Hypostomus 
nigromaculatus 

Neoplecostominae gen. 2 
sp. FFR-2012 Leporinus copelandii 

Hypostomus 
nigromaculatus Leporinus copelandii 

Neoplecostomini gen.n. 
sp.n TEP-2017 Lophiosilurus alexandri 

Leporinus copelandii Lophiosilurus alexandri Oligosarcus argenteus Megaleporinus garmani 

Lophiosilurus alexandri Megaleporinus garmani Oreochromis aureus Moenkhausia costae 

Megaleporinus garmani Moenkhausia costae Phalloceros sp.J 
Neoplecostominae gen. 2 
sp. FFR-2012 

Moenkhausia costae 
Neoplecostominae gen. 2 
sp. FFR-2012 Prochilodus argenteus 

Neoplecostomini gen.n. 
sp.n TEP-2017 

Neoplecostominae gen. 2 
sp. FFR-2012 

Neoplecostomini gen.n. 
sp.n TEP-2017 Rhamdia quelen Oligosarcus argenteus 

Neoplecostomini gen.n. 
sp.n TEP-2017 Oligosarcus argenteus Salminus brasiliensis Oreochromis aureus 

Oligosarcus argenteus Oreochromis aureus Serrasalmus brandtii Phalloceros sp. 

Oreochromis aureus Phalloceros sp. Trachelyopterus striatulus Prochilodus argenteus 

Phalloceros sp. Poecilia reticulata Trichomycterus sp. Rhamdia quelen 

Poecilia reticulata Prochilodus argenteus Wertheimeria maculata Salminus brasiliensis 

Prochilodus argenteus Rhamdia quelen   Serrasalmus brandtii 

Rhamdia quelen Salminus brasiliensis   Trachelyopterus striatulus 

Salminus brasiliensis Serrasalmus brandtii   Trichomycterus sp. 

Serrasalmus brandtii Trachelyopterus striatulus   Wertheimeria maculata 

Trachelyopterus striatulus Trichomycterus sp.J    

Trichomycterus sp. Wertheimeria maculata    

Trichomycterus sp.     

Wertheimeria maculata       
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Table S6: Sample sites including code, city, human population* and GPS coordinates. 

Site City Population Coordinates 

1 Mendanha 639 18° 7'15.06"S 43°30'59.16"W 

2 Terra Branca <1000 17°18'48.34''S 43°12'26.61''W 

3 Jose Goncalves 4553 16°44'25.89''S 42°34'16.34''W 

4 Itacambirucu 15024 16°36'24.00''S 42°49'46.00''W 

5 Coronel Murta 9117 16°44'26.85''S 42°34'11.78''W 

6 Aracuai 36013 16°51'10.47"S 41°51'33.53"W 

7 Jequitinhonha 24131 16°26'16.74"S 41°1'1.45"W 

8 Almenara 38755 16° 8'26.20"S 40°35'4.64"W 

9 Salto da Divisa 6859 15°59'51.07"S 39°53'29.76"W 

10 Itapebi 10495 15°56'57.69"S 39°31'27.08"W 

11 Belmonte 21798 15°51'0.02"S 38°52'13.66"W 

*Human population census based on IBGE, 2018 
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Table S7: List of samples sequenced for the custom reference database.  

Sample Species 
 

Sample Species 
 

Sample Species 

233 Astyanax bimaculatus 
 

2644 Hoplosternum litoralle 
 

1629 Pimelodella sp.  

242 Astyanax fasciatus 
 

2643 Hoplosternum litoralle 
 

 NAI116 Prochilodus harttii 

226 Astyanax fasciatus 
 

1873 Hypomasticus garmani 
 

3056 Rhamdia cf. jequitinhonha 

6584 Australoeros sp.  
 

NAI3713 Hypomasticus mormyrops 
 

3056A Rhamdia cf. jequitinhonha 

6585 Australoeros sp.  
 

1566_B Hypoptopomatinae 
 

3055 Rhamdia cf. jequitinhonha 

1897 Brycon aff. devillei 
 

1565 Hypoptopomatinae 
 

3056 Rhamdia cf. jequitinhonha 

4508 Brycon ferox 
 

1566 Hypoptopomatinae 
 

 NAI101 Serrasalmus brandtii 

3745 Brycon opalinus 
 

4211 Hypostomus gr. affinis 
 

2996 Steindachneridion amblyurum 

3679 Brycon opalinus 
 

4212 Hypostomus gr. affinis 
 

2996 Steindachneridion amblyurum 

3678 Brycon opalinus 
 

3712 Hypostomus sp. 
 

3014 Steindachneridion amblyurum 

3062 Brycon sp. 
 

1069 Hypostomus sp. 
 

232 Steindachnerina elegans 

3063 Brycon sp. 
 

3544 Leporinus copelandii 
 

6556 Trachelyopterus striatulus 

4635 Brycon sp. 2 
 

1823 Leporinus copelandii 
 

6583 Trachelyopterus striatulus 

4636 Brycon sp. 2 
 

NAI1823 Leporinus copelandii 
 

1833 Trachelyopterus striatulus 

66 Brycon sp.  
 

NAI3033 Leporinus copelandii 
 

 NAI1833 Trachelyopterus striatulus 

1619 Characidium sp. 
 

296 Leporinus crassilabris 
 

1620 Trichomycterus sp.1 

NAI103 Characidium sp.  
 

221 Leporinus crassilabris 
 

1624 Trichomycterus sp.2 

3683 Characidium timbuiense 
 

84 Leporinus elongatus 
 

 NAI3708 Trichomycterus sp. 

294 Cichlasoma facetum 
 

85 Leporinus elongatus 
 

5778 Trichomycterus sp. 

293 Cichlasoma facetum 
 

52 Leporinus garmani 
 

77 Wertheimeria maculata 

1573 Corydoras sp. 
 

 NAI107 Leporinus garmani 
 

76 Wertheimeria maculata 

3556 Crenicichla lacustris 
 

58 Leporinus garmani 
   

NAI4579 Crenicichla lacustris 
 

93 Leporinus steindachneri 
   

NAI3555 Crenicichla lacustris 
 

2672 Loricariichthys castaneus 
   

3549 Cyphocharax gilbert 
 

BB run Loricariichthys castaneus 
   

1810 Cyphocharax gilbert 
 

236 Moenkhausia costae 
   

3549 Cyphocharax gilbert 
 

 NAI305 Moenkhausia costae 
   

1830 Delturus carinotus 
 

1822 Neoplecostominae 
   

1832 Delturus carinotus 
 

4519 Oligosarcus argenteus 
   

304 Geophagus brasiliensis 
 

 NAI3547 Oligosarcus argenteus 
   

302 Geophagus brasiliensis 
 

 NAI1818 Oligosarcus argenteus 
   

303 Geophagus brasiliensis 
 

4555 Oligosarcus macrolepis 
   

440 Harttia garavelloi 
 

1621 Pareiorhaphis sp. 
   

441 Harttia garavelloi 
 

3710 Pareiorhaphis sp. 
   

3703 Hasemania sp. 
 

 NAI Pareiorhaphis sp. 
   

1164 Hisonotus sp. 
 

467 Pareiorhaphis stephanus 
   

104 Hoplias brasiliensis 
 

466 Pareiorhaphis stephanus 
   

3573 Hoplias intermedius 
 

4144 Phalloceros elachistos 
   

3714 Hoplias intermedius 
 

 NAI4144 Phalloceros elachistos 
   

258 Hoplias malabaricus 
 

 NAI3704 Phalloceros sp. 
   

259 Hoplias malabaricus 
 

3704 Phalloceros sp. 
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Chapter V 

 

Final Considerations 
 

 

5.1 Thesis Summary - Main Findings 
 

Our understanding of Neotropical fish biodiversity has greatly increased in the recent 

decades. The number of known freshwater fish species is 6,000, and the true estimate that 

the true number may be over 9,000 (Birindelli & Sidlauskas, 2018). Molecular tools have 

become widespread and played an important role in understanding the biodiversity in the 

Neotropics (Mastrochirico filho et al., 2017), and as an example, in the past ˜10 years, studies 

on DNA barcoding of the Brazilian ichthyofauna have thrived, clarifying previous taxonomic 

ambiguities and leading to the description of several new species, which expanded the 

confines of an already high fish diversity (Carvalho et al., 2011; Pereira et al. 2011; Nascimento 

et al., 2016; Jerep, Camelier & Zanata, 2016; Dutra et al., 2016, Nielsen et. al, 2017; Zawadzki 

et al., 2016, Pereira et al., 2017).  

My studies lie in this context, by exemplifying the role of DNA approaches in improving 

biodiversity assessment, using both “traditional” DNA barcoding to improve accuracy of 

taxonomic delimitation, as well as novel metabarcoding methods for simultaneous multi-

species assessment from environmental samples. I have provided valuable information for 

the Doce river ichthyofauna by exploring the fish biodiversity that remains hidden from 
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traditional survey methods. This drainage has undergone one of the worst environmental 

disasters ever reported (Fernandes et al., 2016; Neves et al., 2016) and despite being known 

as a well studied area, I have shown that many of the species inhabiting the river remain 

undescribed or still unkown. By highlighting the occurrence of cryptic species and providing 

additional genetic data for 69 species obtained prior to the dam mining burst, we expect that 

this data can be used as a baseline for describing new species and also for comparison 

purposes with data obtained following the accident and thus, provide support for 

management and conservation plans in this basin. 

Despite the great advancements made by molecular ecologists in the past decades the 

knowledge gathered is still far from ideal, and a continued progress is required in the ultimate 

aim is to accurately describe species and protect them from anthopogenic impacts (Birindelli 

& Sidlauskas, 2018). Therefore, innovative methods focusing on a fast and realiable 

identification and description of freshwater communities could contribute to improve 

biodiversity assessment and speed up the information about species distribution in Brazilian 

catchments. To this end, I have explored the use of environmental DNA metabarcoding, which 

is proving to be a powerful bioassessment and biomonitoring tool in a vast array of aquatic 

environments (marine – Bruyn et al., 2018, Parsons et al., 2018; lakes – Handley et al., 2018; 

Valdez-Moreno et al., 2018; streams – Hinlo et al., 2018; Li et al., 2018; rivers – Bracken et al., 

2018, Pont et al., 2018).  

Still, studies on Neotropical freshwater communities are scarce (Cilleros et al., 2018) 

and to our knowledge, no studies focusing on fish biodiversity assessment in Brazilian waters 

have been conducted by means of eDNA. Given the countless future opportunities for this 

method in biomonitoring Neotopical freshwaters, it was important to critically assess a 
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number of methodological issues, prior to use eDNA data to characterise the fish community 

of the Jequitinhonha river basin. 

First, we compared distinct preservation methods (cooling samples vs adding the 

cationic surfactant Benzalkonium Chloride), sampling media (water vs sediment) and 

sampling time (three week interval) and demonstrated that in order to achieve the best 

yields: i) water samples should be kept at low temperatures to reduce eDNA degradation; ii) 

multiple sampling collections must be conducted when trying to obtain a full picture of the 

whole fish community present; iii) sampling media (water vs sediment) might recover similar 

amount of MOTUs but still provide significant different information due to distinct temporal 

scales covered.  

Subsequently, the evaluation of eDNA as a biodiversity assessment tool allowed the 

detection of over a hundred MOTUs, though only just over 30 of these could be reliably 

identified down to the species level. Nevertheless, I noted the occurrence of new records and 

flagged likely cases of recently introduced species. Furthermore, this method was shown to 

complement the data obtained through traditional sampling. For instance, eDNA detected in 

several sites the presence of a species (Crenicichla sp.) rarely collected by traditional sampling 

techniques in this area. Furthermore, two commercially important non-native species were 

reported for the first time in this basin (Salminus brasiliensis, Lophiosilurus alexandri), both of 

which are known as highly invasive species in other catchments (Alves et al., 2007). This 

highlights the importance of this method in both strengthening knowledge of autoctonous 

species distributions, as well as monitoning species introductions, with the view of limiting 

the loss caused by biological invasions. 
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Regarding the contemporary spatio-temporal variation of fish assemblages inferred 

by species detected in water samples, my data showed that communities can vary even within 

short time-frames (e.g. 3 weeks) and while few locations hosted the highest species richness 

during the first campaign, the distribution followed a much more homogeneous trend 

towards the second sampling period. Yet, despite the lack of correlation between beta 

diversity and longitudinal distance or presence of barriers, anthropogenic impacts might still 

influence fish assemblage’s distribution as sites located right near the dams (Irapé and 

Itapebi) had the lowest species richness. The presence of impoundments impacts the 

environment by ecologically and physically modifying habitats through habitat loss and 

changes in the water flow, flood control, dynamic of nutrients, and temperature. Thus, dams 

are often accounted as a biodiversity reduction factor (Pelicice & Agostinho, 2007; Pompeu 

et al., 2012). 

Species distribution depends on the interplay between ecological and spatial 

processes. Therefore, several factors may influence species distribution and detection. The 

Jequitinhonha Valley is a region of dry-climate in Brazil, as and other semi-arid and arid 

regions, it has an irregular precipitation, in which short rainfall periods can be followed by 

long dry periods (Leite et al., 2010). An extended and severe drought was recorded for this 

catchment until February/2017 when the first sampling was conducted, until the increase in 

the rainfall before the second sampling campaign (2.1-50 mm to 100-250 mm) (CPTEC/INPE, 

2018). For aquatic dispersers, river network constraints can influence diversity patterns and 

a lower water volume might  impact on the resources distribution and in the connectivity of 

habitats; thus, contributing to a higher dissimilarity between fish communities. An increased 

volume and higher connectivity of habitats might have contributed to a higher connectivity 



Chapter V – Final Considerations 

195 | P a g e  
 

 

of aquatic habitats and favoured the dispersal, leading to a higher stability amongst sample 

sites, regarding the contemporary species richness (inferred through water samples) 

(Fitzgerald et al., 2017). Thus, this result might suggest that freshwater fish assemblages in 

tropical habitats may vary significantly between dry and wet seasons. Furthermore,  increased 

rainfall might also influence eDNA particle recovery, as a higher water volume might dilute 

the DNA in the water column and could explain the lower amount of MOTUs detected in the 

second campaign compared to the first one.  

Regarding eDNA detection, some factors might be taken into account when inferring 

the data recovered. DNA molecules are known to be transported in varied rates in rivers, from 

short (10 km -Deiner & Altermatt, 2014) to long distances (more than 100 km - Pont et al., 

2018). The transport and subsequent accumulation of eDNA molecules can cause a species 

richness inflation in downstream locations. However, no correlation between species richness 

and longitudinal distance was found for the Jequitinhonha river basin and as the sampling 

sites were located approximately 100 km distant and the transport distances in this 

catchment had negligible effects on alpha diversity. Yet, these factors (transport and 

accumulation) should be carefully analysed in this environment, as a species richness 

overestimation was detected in the last sample site located at the river mouth. Thus, 

suggesting a spatial accumulation of eDNA molecules and a subsequent resuspension of 

those.  

Notably, one of the main caveats of eDNA studies is imposed by the lack of a complete 

reference database, hindering the identification and detection of species. However, 

unfiltered datasets (including the MOTUs not identified at species level) showed a positive 
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correlation with the filtered dataset and demonstrated that β-diversity is not influenced by 

the filtering criteria applied as much as sampling medium or sampling time. Thus, 

corroborating with the results found by Li et al. (2018) and suggesting that this data can be 

applied for obtaining ecological indices such as α- and β-diversity. 

5.2 Challenges and limitations  
 

Despite the significant information provided by DNA barcoding and initial results 

showing the potential of using eDNA for biomonitoring freshwater fish species in Brazil there 

is still a lot to accomplish in both fields. DNA barcoding can greatly contribute to the discovery 

of new species, highlight the occurrence of cryptic species, species complex, historical errors 

in morphological identification and introduced species. However, DNA barcoding data can 

only be used to provide a signal for hidden diversity and improvegspecies discovery if an 

integrative approach is applied. In order to provide a more robust and conclusive result DNA 

barcoding studies must be aligned with morphological and taxonomic analyses, which are 

often hindered by the lack of funding, infrastructure and shortage of trained taxonomists, 

known as “taxonomic impediment” (Birindelli and Sidlauskas, 2018; Dayrat, 2005; Ely et al., 

2017; Taylor, 1983). 

Furthermore, due to the maternal inheritance of the mitochondria, the COI fragment 

used for DNA barcoding studies does not allow the identification of hybrids. Thus, the 

hybridization between species might impose an additional challenge to DNA barcoding 

studies, as the introgression of mitochondrial DNA can incur in an absence of “barcoding gap” 

and errouneously lead to misidentifications (Ermakov et al., 2015). When the hybridization 

process is well documented in the literature the presence of hybrids might be suggested by 
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comparing mismatches between molecular and morphological identifications (Sales et al., 

2018). Otherwise, the occurrence of hybrids may hinder barcode-based species identification.   

Environmental DNA studies are still at an early stage and have many challenges and 

limitations associated with it. Some of the constraints of applying this method in Brazil has 

also been described for other research areas such as the lack of funding and support for 

scientific studies (Birindelli & Sidlauskas, 2018). Added to that are the setbacks inherent to 

the implementation of a relatively newly described approach which lacks standandized 

protocols and has many unaddressed questions, requiring empirical studies prior to its use. 

As an example, little is know regarding eDNA fate in neotropical lotic environments. Shedding, 

degradation, and transport rates are unknown and more conclusive inferences are often 

hampered by the lack of sufficient basic information.  

Here, we found a high species richness in the most downstream sample site which is 

not expected to harbour higher freshwater fish diversity due to the marine influence in its 

waters (such as increased salinity). Yet, it is expected that transport and subsequent 

accumulation of eDNA downstream from its main source (Pont et al., 2018), which could 

potentially lead to an inflation of species detected in downstream locations. However, this 

question remains as a conundrum since there are no estimates for the distance travelled by 

eDNA molecules and its persistence and accumulation in this lotic system. 

 Another question that remains unanswered is regarding the correlation between the 

read abundance and species abundance or species biomass (Fonseca et al., 2018). Positive 

correlations between relative abundances of fish assemblages obtained by eDNA and 

traditional methods (Pont et al., 2018) and eDNA-biomass were demonstrated (Doi et al., 

2015; Maruyama, et al., 2014, Takahara et al., 2012). Yet, Knudsen et al. (2019) have shown 
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a correlation between eDNA concentrations and and the known species distributions and 

abundances despite the absence of correlation between eDNA concentration and fish 

biomass (based on trawling data). Still many studies have questioned the correlation between 

eDNA and species abundances (Hansen et al., 2018). Hinlo et al. (2018) stressed the 

challenges of using eDNA data from flowing water to obtain density estimates as the 

chacteristics of the habitat might have an impact on the results obtained. Thus, using read 

abundance as a proxy to species abundance should be further investigated prior using read 

counts for obtaining biodiversity indices.  

One of the greatest limitations also relies on the taxonomic assignment. A massive 

amount of data can be generated by eDNA metabarcoding studies, however, most of the 

information is lost during the bioinformatics filtering steps. The bottleneck caused by the 

incompleteness of reference database and the low taxonomic resolution of the fragment 

currently being used hampers the dectection of many species. If a suitable reference 

sequence is not present in the database, the sequence remains unassigned and thus is usually 

not included in the subsequent analyses. Furthermore, the lack of phylogenetic resolution 

results in many species being grouped together as a single one. My work shows starkly that 

the majority of species that were molecularly detected could not be biologically assigned to 

a species, which reduces significantly the impact that these efforts can have. 

As previously mentioned, the risk of false positives and negatives should be 

considered and to obtain reliable data all steps must be meticulously conducted focused on 

avoiding contaminations and including as many controls as possible.  
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5.3 Future directions 
 

Since studies using eDNA in the neotropics are rare and the advancement of this field 

in this region is still far from what has been acomplished in temperate regions of the world, 

endless opportunities of evaluating this methodology are available. There is still a long way 

to go in terms of knowledge gathering for the full implementation of eDNA metabarcoding as 

a biomonitoring tool in Brazil, especially comparing the results obtained by this method with 

traditional sampling techniques. Furthermore, a great contribution to this field would be if 

studies were conducted assessing the influence of shedding, degradation and transport rates 

on eDNA recovery in Neotropical rivers.  

Perharps, most importantly, future endeavours should include a significant 

improvement in the reference database generation, as the majority of the fish diversity found 

in the Neotropics are endemic (Birindelli and Svalauskas, 2018), and we currently lack 

reference sequences for many. As previously discussed, and taking into consideration the 

advances made in high through-put sequencing associated with the reduction of its costs and 

adressing the problems raised by changing the markers/fragments used in DNA 

metabarcoding studies, the best option would be to include whole mitogenomes sequences 

to overcome the limitation imposed by the imcompletness of the genetic database. 

Furthermore, the data could contribute to phylogenetic investigations, and would be 

available for several eDNA metabarcoding studies applying different markers or even trying 

to directly recover the whole mitogenomes from eDNA samples, also avoiding the need of re-

sequencing all species when changing the gene regions investigated and overcoming the 
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problems associated with species identification based on short amplicons (Deiner et al., 

2017).  

The data provided here demonstrated the potential of applying genetics and 

metagenetics to provide additional biodiversity information and contribute to the 

conservation and management of a rapidly changing neotropical freshwater fish community. 

This project has highlighted the occurence of potential new candidate native species and 

provided a baseline for further studies focused on the management and conseravation of fish 

species in Doce river basin, especially after the mining collapse. 

Furthermore, the data and results provided herein represent a great advancement in 

terms of applying molecular tools for freshwater assessment and monitoring in Brazilan 

freshwaters. Environmental DNA is attracting a growing interest and increasing the ability to 

acquire data regarding communities composition, species distribution, biological invasions, 

and much more. However, as with any new emergent methodology it has the need for 

improvement in many aspects, and despite been widely used in temperate regions its 

application is still scarce in the Neotropics.  Here, the use of eDNA metabarcoding as a 

biodiversisty assessment tool for Brazilian ichthyofauna was evaluated for the first time and 

the publication of these results will demonstrate the potential of this method estimulating 

the emergence of new studies in this field, aiming its optimization and applications as a 

biomonitoring tool in Neotropical ecosystems.  
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APPENDIX  

Table A1: List of all MOTUs recovered for each treatment.  
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