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Fluvial systems offer a challenging and varied environment for topographic survey, displaying a rapidly 6 
varying morphology, vegetation assemblage and degree of submergence. Traditionally theodolite or GPS 7 
based systems have been used to capture cross-section and breakline based topographic data which has 8 
subsequently been interpolated. Advances in survey technology has resulted in an improved ability to 9 
capture larger volumes of information with infrared terrestrial and aerial LiDAR systems capturing high-10 
density (<0.02 m) point data across terrestrial surfaces. The rise of Structure from Motion (SfM) 11 
photogrammetry, coupled with small unmanned aerial vehicles (sUAV), has potential to record elevation 12 
data at reach scale sub decimetre density. The approach has the additional advantage over LiDAR of 13 
seeing through clear water to capture bed detail, whilst also generating ortho-rectified photographic 14 
mosaics of the survey reach.  However, data accuracy has yet to be comprehensively assessed. Here we 15 
present a survey protocol for sUAV deployment and provide a reach scale comparison between a 16 
theodolite and SfM sUAV survey on the River Sprint, Kendal, the River Ehen at Egremont, England and 17 
the Afon Elwy, at Llanfair Talhaiarn, Wales. Comparative analysis between theodolite survey and SfM 18 
suggest similar accuracy and precision across terrestrial surfaces with error lowest over solid surfaces, 19 
increasing with vegetation complexity.  Submerged SfM data, captured bed levels generally to within 20 
±0.25 m with only a weak relationship recorded between error and flow depth. Significantly, associated 21 
error when linked to channel D50 highlights the ability of unmanned aerial vehicles to capture accurate 22 
fluvial data across a range of river biotopes and depths to 2.4 m. 23 
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1. Introduction 28 

New techniques for rapid and detailed spatial data collection combined with 29 

sophisticated spatial analytical software facilitates the construction of Digital Elevation 30 

Models (DEMs) that accurately represent landform surface variability and offer an 31 

increased ability to measure and monitor morphological change across a range of spatial 32 

scales (Brasington et al., 2000; Fuller et al., 2005). Fluvial systems offer a challenging 33 

and varied environment for topographic survey, displaying a rapidly varying 34 

morphology, diverse vegetation assemblage and varying degree of inundation. 35 

Traditionally theodolite or GPS based systems have been used to capture cross-section 36 

and break of slope-based data which are subsequently interpolated to generate a 37 

topographic surface. Advances in survey technology has resulted in an improved ability 38 

to capture larger volumes of data with infrared terrestrial and aerial LiDAR systems 39 

capturing high-density (<0.02 m) data across terrestrial surfaces (Heritage and 40 

Hetherington, 2007; Bangen et al., 2014; Entwistle et al. 2018) but instruments are 41 

expensive and cumbersome and generally fail to survey through water resulting in a 42 

lack of bathymetric data (Milan et al., 2010). The issue of measurement through water 43 

has to some degree been overcome through the advent of Structure from Motion (SfM) 44 

photogrammetry, coupled with small unmanned aerial vehicles (sUAV) and there is 45 

now the potential to rapidly record the information needed to derive elevation data at a 46 

reach scale with sub decimetre density, seeing through clear water to capture bed detail 47 

(Entwistle et al., 2018). 48 

Software utilising the photogrammetry Structure-from-Motion workflow (SfM) 49 

photogrammetry workflow facilitates the utilization of this technique by non-specialists 50 

allowing high-resolution morphometric 3D models and derived products such as digital 51 

surface models (DSMs) and orthophotographs to be produced (see Westoby et al., 2012; 52 
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Fonstad et al., 2013; Micheletti et al., 2014; Carrivick et al., 2016; Entwistle and 53 

Heritage, 2017). 54 

There has been a recent proliferation in publications assessing the accuracy of SfM-55 

derived data studies (for example Entwistle and Heritage, 2017, Harwin and Lucieer, 56 

2012; James and Robson, 2012; Westoby et al., 2012; Fonstad et al., 2013; Tonkin et 57 

al., 2014; Smith and Vericat, 2015; Brunier et al., 2016, James and Quinton, 2014; 58 

Stumpf et al., 2015). Reported accuracies vary widely, from <0.1 m to over 1 m, with 59 

error attributed variously to image resolution/quality, image distortion, camera 60 

calibration and to the characteristics of the surface being measured particularly with 61 

respect to vegetation (see Harwin and Lucieer, 2012; James and Robson, 2012; 62 

Westoby et al., 2012; Fonstad et al., 2013; James and Quinton, 2014; Tonkin et al., 63 

2014; Smith and Vericat, 2015; Stumpf et al., 2015; Brunier et al., 2016; Entwistle and 64 

Heritage 2017). 65 

Of interest is the lack of studies reviewing the accuracy of SfM photogrammetry 66 

bathymetric data. Woodget et al., (2015) surveyed the River Arrow and Coledale Beck 67 

in the UK to produce digital elevation models at 0.02 m resolution reporting error on 68 

submerged areas between 0.016 m to 0.089 m, reducing to 0.008 m to 0.053 m when 69 

corrected for refraction. Woodget et al., (2017a) report near continuous underestimation 70 

of water depth from sUAV based image photogrammetry for the River Teme and a 71 

study by Dietrich (2017) reduced error on bathymetric data to 0.01 m or less on the 72 

White River, Vermont using a spatially varied refraction correction. This study builds 73 

on their work through the collection and analysis of bathymetric data from three 74 

contrasting watercourses capturing a variety of hydraulic habitats. The accuracy of the 75 

data are assessed against theodolite measurements. 76 

 77 
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1.1 Approaches to bathymetric survey 78 

Theodolite based survey techniques and Global Positioning by Satellite (GPS) 79 

instruments have traditionally been used for shallow water bathymetric mapping 80 

(Woodget et al., 2015). Such point-based survey techniques, whilst accurate, are time 81 

consuming (Winterbottom and Gilvear, 1997) and the sparse data sets require careful 82 

interpolation to achieve a realistic surface representation (Fuller et al., 2003). They have 83 

also been shown to suffer from operator bias (Heritage and Hetherington 2007). 84 

Several remote sensing techniques are also able to collect data over submerged 85 

surfaces. Spectral depth approaches rely on an empirical relationship between the 86 

spectral absorption properties of water and water depth. Using this technique Lejot et 87 

al., (2007) achieved bathymetric measurements at a 0.05m resolution with elevation 88 

error generally below 0.1m through water depths up to 1 m. However, other researchers 89 

have noted that the technique requires field data collection for calibration and have 90 

documented issues associated with turbidity, water surface disruption, illumination 91 

angle and substrate type (Winterbottom and Gilvear 1997; Westaway et al., 2003; 92 

Legleiter et al., 2004; Carbonneau et al., 2006; Lejot et al., 2007; Legleiter et al., 2009; 93 

Bergeron and Carbonneau 2012; Legleiter, 2012). 94 

Terrestrial Laser Scanning (TLS) has emerged as a valuable technique in the fields of 95 

fluvial geomorphology and hydromorphology, providing means to acquire high 96 

precision, three-dimensional topographic data at resolutions previously unobtainable 97 

by conventional monitoring techniques. In addition, recent advances in analytical 98 

apparatus, computer software and computational ability have permitted construction of 99 

complex digital elevation models (DEMs) that accurately represent variability of 100 

landform through time (Heritage and Hetherington, 2007). In turn, this provides an 101 

opportunity to measure and monitor, quantifiably, morphological change at various 102 
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spatial and temporal scales (Marcus and Fondstad, 2010). Whilst these studies have 103 

elucidated the benefits of TLS, they have typically been of limited areal coverage (e.g. 104 

Resop and Hession, 2010). In addition, a number of limitations in its application 105 

including absorption and refraction over water (Wheaton, 2008) and vegetation 106 

(Heritage and Hetherington 2007) must be considered. 107 

Airborne Lidar systems are emerging as major sources of topographic data and faster 108 

systems are achieving data density comparable to older terrestrial systems. The laser 109 

pulse is also capable of canopy penetration, overcoming a significant limitation in terms 110 

of photogrammetry for DEM generation. Kraus and Pfeifer (1998) demonstrated that 111 

the accuracy of LiDAR- derived DEM in forested areas is equivalent to that of 112 

photogrammetry-derived DEM across open areas. The common use of eye safe near 113 

infra-red laser sources result in absorption and refraction issues with water (Legleiter, 114 

2012). Blue-green scanning approaches are less affected by turbidity and water surface 115 

roughness than passive remote sensing techniques (Marcus, 2012). This is partially due 116 

to active blue-green lasers being less affected by turbidity and water surface roughness 117 

(Marcus, 2012), however their pulse footprint is larger than for infra-red lasers and 118 

instruments are currently expensive. Estimation of gravel-bed river bathymetry from 119 

space has been accomplished using a variety of methods, as an example Legleiter et al., 120 

(2009) utilised hyperspectral image data and a spectrally based remote sensing 121 

algorithm to gain results that were spatially coherent, although greater error was found 122 

at channel margins where pixels mixed. Yoon et al., (2012) estimated bathymetry using 123 

data from the Surface Water and Ocean Topography (SWOT) satellite to improve 124 

simulation of discharge, but only on large rivers (> 50 m wide), however Biancamaria 125 

et al (2016) review other land hydrology capabilities of SWOT, including those related 126 

to transboundary river basins, human water withdrawals and wetland environments. 127 
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Others have used satellite data to map habitats (Hugue et al., 2016), for flood 128 

forecasting (García-Pintado et al., 2015) and to advance river modelling in ungauged 129 

basins (Maswood and Hossain, 2016). 130 

Digital photogrammetry is now widely used to capture topographic data with data 131 

resolution and positional accuracy dependent on image resolution and distance of 132 

capture. Early work used terrestrial photogrammetry to produce dense accurate 133 

morphometric data, but areal coverage was restricted by the camera field of view 134 

(Heritage et al.,2009). The recent development of small unmanned aerial vehicles and 135 

associated software advances have improved coverage and many studies are now 136 

published on its use across a range of environments (see Harwin and Lucieer, 2012; 137 

James and Robson, 2012; Westoby et al., 2012; Fonstad et al., 2013; Tonkin et al., 138 

2014; Smith and Vericat, 2015; Brunier et al., 2016, James and Quinton, 2014; Stumpf 139 

et al., 2015). Issues have been reported with light penetration and inaccurate positioning 140 

due to refraction through the water column. Westaway et al., (2001) partially overcame 141 

this using simple refraction correction and Dietrich (2017) further refined the correction 142 

process using spatially varying refraction rectification. Both approaches have helped 143 

adjust elevation predictions and improve depth estimation across submerged surfaces. 144 

 145 

2. Study sites 146 

Three sites were used in this study to assess the accuracy of photogrammetric 147 

estimation of water depth using imagery obtained from sUAV survey reflecting a 148 

diversity of fluvial environments. These were the River Sprint and River Ehen in 149 

Cumbria, England and the Afon Elwy in Wales, (Figure 1). 150 

 151 
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Figure 1. Location for the three sites used in this study to reflect a diversity of fluvial 152 
environments, A) River Sprint, Cumbria, England. B) Afon Elwy, North Wales, C) 153 
River Ehen, Cumbria, England. 154 
 155 
 156 
2.1 River Sprint 157 

The Sprint is a small river with a catchment area of around 35 km2 joining the River 158 

Kent just south of Burnside in the English Lake District. Average rainfall in the 159 

catchment is very high, amounting to 2,018 mm per year. Flow has been recorded at 160 

Sprint Mill since 1976, located just upstream of the confluence with the River Kent.  161 

Median flow there is around 1.0 m3s-1, whilst the Q95 (typical summer flow) is around 162 

0.17 m3s-1 and the Q10 (typical winter flow) is around 4.8 m3s-1.  The land use and 163 

habitat of the catchment is >80% grassland, approximately 10% mountainous, heath or 164 

bog with around 6% woodland, with a history of slate mining in the upper catchment 165 

and a number of steep coarse-bedded tributaries. These tributaries drain the surrounding 166 

fells delivering a coarse sediment load onto a flatter wider piedmont zone below where 167 

transport energy drops off rapidly creating a long (>750 m) depositional zone at the 168 

Sadghyll gravel trap study site (Figure 2a). This area is characterised by a wide coarse-169 

sediment covered valley floor dissected by multiple active and inactive distributary 170 

channels (Figure 2b). The bathymetric survey captured data in pool areas. A combined 171 

sUAV and theodolite survey generated a DEM for the site (Figure 2c) the 172 

characteristics of which are given in Table 1. Local Wolman samples suggest a general 173 

medium gravel size distribution (D16 0.024 m, D50 0.055 m, D84 0.103 m). 174 

 175 

Figure 2. River Sprint sUAV derived orthophoto (A) and Digital Terrain Model (B) 176 
including boundary of pool area used for bathymetry data analysis. 177 
 178 

2.2 Afon Elwy 179 
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The Elwy is the largest sub-catchment of the Clwyd catchment in North Wales. The 180 

confluence of the Afon Elwy with the Afon Clwyd is downstream of St Asaph. The 181 

study site is located at Bryn Yr Ur the on the main river. The watercourse here is 182 

characterised by a low sinuosity single thread channel with occasional bifurcations 183 

around gravel/cobble shoals. The study site was located at a bifurcation displaying a 184 

high morphologic and hydraulic diversity. Data were captured across, riffle, pool, glide, 185 

chute and backwater zones (Figure 3) considering a variety of surface water biotopes 186 

and a range of depths. A combined sUAV and theodolite survey generated a DEM for 187 

the site the characteristics of which are given in Table 1. Local Wolman samples 188 

suggest a general medium gravel size distribution (D16 0.03 m, D50 0.049 m, D84 0.107 189 

m). 190 

 191 

Figure 3. Afon Elwy sUAV derived orthophoto (A) and Digital Terrain Model (B). 192 
Inset image delimits the area used for biotope-based bathymetry data analysis. 193 
 194 

2.3 River Ehen 195 

The study area at Egremont lies within the lower part of the River Ehen, approximately 196 

10 km downstream from its source at the outflow of Ennerdale Lake. The river, in the 197 

vicinity of Egremont, Cumbria is an active single thread channel that has historically 198 

been heavily modified to stabilise the channel planform and to utilise the power of the 199 

water flow for industry. Median flow from records at Braystones (1974-2014) is around 200 

70 m3s-1, whilst the Q95 (typical summer flow) is around 0.96 m3s-1 and the Q10 (typical 201 

winter flow) is around 11.9 m3s-1. The study site is located across a transverse bar 202 

upstream of Ennerdale Mill Dam Weir (Figure 4) allowing data to be captured across 203 

an extensive riffle area and associated rapidly flowing chute and a shallow pool zone. 204 

A combined sUAV and theodolite survey generated a DEM for the site the 205 
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characteristics of which are given in Table 1. Local Wolman samples suggest a general 206 

medium gravel size distribution (D16 0.038 m, D50 0.068 m, D84 0.153 m). 207 

 208 

Figure 4. River Ehen sUAV derived orthophoto (A) and Digital Terrain Model (B) 209 
showing the area used for bathymetry data analysis. 210 
 211 

Table 1. Site survey characteristics for the three study sites 212 

 213 

3. Method 214 

3.1 sUAV Data acquisition 215 

A small unmanned aerial vehicle (sUAV) (DJi quadcopter – Phantom 3 professional) 216 

was used to obtain multiple aerial photographs of each study reach using a high-217 

resolution (12.76 Megapixels, at an image size resolution of 4000×3000). 94° of a 218 

20mm field of view was utilised by the on board 1/2.3” CMOS digital camera sensor, 219 

which is mounted on a remotely operated 3 axis gyroscopic gimble to allow for optimal 220 

stability during flight reducing blur issues on the captured imagery (see Woodget et al., 221 

2017b). Remote activation ensured sufficient spatial coverage and substantial image 222 

overlap (following the SfM principles of Micheletti et al., 2014). Further, manual flying 223 

minimised the likelihood of unfocussed images though maintaining a consistent flight 224 

height, controlling speed, curtailing external influences and ensuring sUAV stability 225 

for focused photographs.  226 

The importance of camera settings for standard photogrammetry has been reviewed by 227 

James et al. (2017) and survey settings were optimized for light conditions for each 228 

study reach, these included: ISO levels, exposure compensation, white balance, and 229 

capture format.  230 
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The sUAV was operated by a UK Civil Aviation Authority approved qualified drone 231 

capturing (>80%) overlapping nadir images. This was supplemented with a range of 232 

off-nadir images across the study reaches. The sUAV was flown at uniform height (~30 233 

m, 100 ft) to allow for accurate reconstruction during post-processing, although 234 

external influences, such as significant air turbulence, can affect the vertical hover 235 

accuracy, flights for this research were flown in optimal conditions and a hover 236 

accuracy range resulted in a ±0.1 m margin. Operator experience suggests that this 237 

altitude was optimal for day survey of a river and floodplain with a combined width of 238 

around 250 m. 239 

High quality survey georeferencing was achieved through a system of ground control 240 

points (GCPs) spaced roughly equidistant around 10 channel widths apart through the 241 

survey area. Such a systematic distribution maximises their effectiveness in post-242 

processing (Tonkin and Midgley, 2016), whilst James and Robson (2014) highlighted 243 

the importance of well-focussed, similar distance, imagery of consistent surface texture 244 

and as the important factor in accurate DEM construction, facilitating survey accuracy 245 

and reducing the overall number of GCPs required. GCPs and real-world bathymetric 246 

ground points in this research were surveyed using a calibrated TopCon GTS-210 EDM 247 

theodolite (±0.01 m accuracy) to provide a robust local coordinate system for each 248 

model and to test the bathymetric accuracy  249 

 250 

3.2 Post-processing of sUAV data 251 

All post-processing was conducted on Intel Xeon desktop computer with 256Gb RAM 252 

using Agisoft Structure from Motion (SfM) professional software. Images were 253 

mosaicked together using a SfM photogrammetry approach (Micheletti et al., 2015) 254 
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whereby rasterized three-dimensional representations are constructed from two-255 

dimensional (camera calibrated) images (see Scaramuzza et al., 2006).  256 

Images were manually inspected for quality, with out-of-focus or blurred photographs 257 

discarded. Whilst Agisoft’s image quality algorithm can automatically analyse images 258 

using the contrast between pixels to determine image quality, camera blur is often 259 

directional and as a result some sharp edges can remain.  Therefore using the Image 260 

Quality function estimated quality is not necessarily a meaningful value for sharpness. 261 

All images were subsequently cropped to utilise only the central (90%) area, this 262 

reduced any lens image distortion effects (Wackrow and Chandler, 2011) on the final 263 

model. Images were then aligned through the automated SfM software through 264 

identification of conjugate points common in several photographs.  This was 265 

propagated over the all of the study reaches. SfM photogrammetry strategies suggest 266 

that fewer systematic errors are a direct result of combining nadir and off-nadir image 267 

datasets (James and Robson, 2014; Dietrich 2017).  268 

Within each aerial image, the ground control points were manually assigned their 269 

corresponding theodolite-derived coordinate in the SfM software allowing the 270 

photographs to be realigned and scaled based on the local theodolite coordinate system. 271 

Dense point clouds were then built from the geo-rectified imagery using depth filtering 272 

to remove the lowest number of points which do not belong to a connected surface. 273 

This ignores unnecessary micro-scale details during processing, thereby decreasing 274 

computing time. Geometry was constructed using a height field approach and disabled 275 

interpolation yielded geometry based on points constructed in the dense point cloud. A 276 

textured model was then built using the previously computed geometry. Here, raw 277 

image pixels were draped over the geometric model to yield a DEM. In addition, this 278 

process provided fully orthorectified aerial images of each study reach.  279 
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To support accurate data comparison the sUAV survey approach followed the protocol 280 

set by Heritage and Hetherington (2007) and successfully adopted in a pool-riffle study 281 

by Entwistle (2011) whereby the channel and surrounding floodplain were surveyed to 282 

a single project coordinate system using the independent theodolite points and set to a 283 

point spacing of 0.02 m. The resultant meshed set of UAV derived data points were 284 

clipped to remove unwanted information such as distant points, overhanging tree 285 

canopy and any spurious aerial data points.  286 

 287 

3.3 Water Surface and Depth data collection 288 

A theodolite survey was conducted at each site to capture independent depth 289 

measurements across a range of submerged topography in the same coordinate system 290 

as the sUAV survey, Table 2 summarises the data collected. The reflector pole was 291 

placed on the bed of the channel, and then raised to the level of the water surface in the 292 

same place allowing flow depth to be computed from the difference between the two 293 

values. In addition, water edge points were surveyed to compute a water elevation 294 

surface map and sUAV points corresponding to the theodolite depth values were 295 

subtracted from this surface to generate a depth estimate from the sUAV approach. 296 

Comparative data points were collected across each study site to reflect hydraulic 297 

biotopes present (sensu Newson and Newson, 2000) allowing the sUAV data to be 298 

evaluated across each of these flow types. These data are summarised in table 2, 299 

numbers of points reflect the size and distribution of each biotope type at each site. 300 

 301 

Table 2. Measured water depth data characteristics for the three study sites 302 

 303 

3.4 Bed Roughness Estimation 304 
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Each sUAV surface point cloud was interrogated through filtering a moving window 305 

standard deviation (equivalent to the calibre of the largest grains observed in the field) 306 

to generate a surface roughness map of the surveyed sites. These data were multiplied 307 

by 2 to generate an approximation of the grain protrusion characteristics (see Gomez 308 

1995; Entwistle and Fuller, 2009; Heritage and Milan 2009). These data were then 309 

investigated to extract the roughness values (C axis) at each of the depth measurement 310 

points for later comparison against the depth estimation error. 311 

 312 

4. Results 313 

4.1 Model build characteristics 314 

Summary statistics of the general survey for each study site are presented in Table 1. It 315 

is clear that the SfM technique is able to locate georeferenced GCP sites to a high level 316 

of accuracy (RMSE <± 0.019 m) comparable with that reported by James and Robson, 317 

(2014); Fonstad et al., (2013); Dietrich (2017). The data point density may be controlled 318 

within the SfM software up to the pixel resolution on the captured images with higher 319 

density point clouds requiring considerably increased post-processing time and 320 

computing power. To overcome computational limitations, or reduce processing time 321 

on standard desktop machines, the point cloud can be extracted from the SfM software 322 

and imported into CloudCompare (Girardeau-Montaut, 2018) freeware to build a 323 

structured point cloud and generate the mesh for DEM construction.  324 

 325 

4.2 Overall sUAV Error associated with Submerged Surfaces 326 

sUAV derived depth estimates and those measured with the theodolite were 327 

comparatively plotted (Figure 5). Depths up to 2.4 m were measured with the majority 328 

falling below 1.75 m. Whilst some scatter appears in the data. The distribution of 329 
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difference (Figure 6) statistics reveal a low mean error of 0.04 m, the data are skewed 330 

slightly to the right of this mean with a tail of more positive error (skew = 0.224). The 331 

tails on the error are relatively large with the data displaying a kurtosis value of -0.229. 332 

 333 

Figure 5. Comparative theodolite and sUAV depth data for the three study rivers. The 334 
solid line represents equality and dashed lines ±10% difference. 335 
 336 

Figure 6. Theodolite and sUAV estimate depth discrepancy for Rivers Sprint A) Ehen 337 
B) and Elwy C). 338 
 339 

The difference between the sUAV and theodolite values are calculated independently 340 

for each study site (Figure 7a-c). For the River Sprint (Figure 7a) the relationship is 341 

strongly linear (r2 0.85) with a 1.02 multiplier on the regression line up to depths of 1m 342 

suggesting that the sUAV depths closely match the theodolite values across all depths. 343 

Error bands have been included on the graph representing the D84 grainsize measured 344 

at the site and the majority of error occurring within these bounds. The errors recorded 345 

on the Afon Elwy are shown in Figure 7b; again, the relationship is a strong linear one 346 

(r2 0.88), however, here there is a consistent underestimation of depth relative to the 347 

theodolite data. This may in part be due to refraction, however, there does not appear 348 

to be a trend of increasing difference with measured depth (up to 0.8 m depths 349 

measured) with the trend on the data and a refraction correction of 1.2 on the sUAV 350 

data would provide optimal depth prediction. Error bands have been included on the 351 

graph representing ±D84 grainsize measured at the site. This characteristic continues 352 

with the error plot for the River Ehen (Figure 7c) up to depths of around 1.5 m. After 353 

this error is seen to increase above that which could be attributed to the general bed 354 

roughness. A linear regression relationship also best described these data (r2 0.89) with 355 

a multiplier of 0.8 suggesting minor under prediction of depth by the sUAV 356 
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 357 

Figure 7. sUAV model estimate depth discrepancy relationship with measured depth 358 
for the a) River Sprint, b) Afon Elwy and c) River Ehen. Solid line represents 359 
regression, dashed lines equivalent to D84 grain size error. 360 
 361 

4.3 sUAV Error and Local Bed Roughness 362 

Figure 8 illustrates the bed roughness variability across the three study sites as defined 363 

by the local standard deviation of the sUAV point cloud. These data were multiplied by 364 

2 to generate an approximation of the grain protrusion characteristics (see Gomez 1995, 365 

Heritage and Milan, 2009; Entwistle and Fuller, 2009). The majority of the area subject 366 

to theodolite survey exhibits surface roughness variation up to 0.2 m. The River sprint 367 

is generally finest with the Afon Elwy exhibiting a finer apical pool area and smaller 368 

gravels are associated with a developing transverse bar feature towards the upstream 369 

survey extent on the River Ehen. These roughness values are less than those measured 370 

using a Wolman count as they are more characteristic of the sediment c-axis 371 

 372 

Figure 8. Bed roughness characteristics calculated by a moving window standard 373 
deviation across the DM surface for a) River Sprint, b) Afon Elwy and c) River Ehen. 374 
 375 

The local grain surface roughness character was extracted for each theodolite 376 

measurement point for all three rivers and these data were plotted against the error on 377 

the sUAV data compared to the theodolite survey (Figure 9). On the River Sprint the 378 

majority of the roughness data are below 0.3 m. The Afon Elwy plot shows a near 379 

random distribution of error compared to bed roughness (liner regression r2 0.1). The 380 

River Ehen suggests greatest error (up to 0.3 m) across areas of finer sediment (< 0.05 381 

m) before showing no relationship across rougher surfaces (Figure 9c).  382 

 383 
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Figure 9. Local bed roughness associated with measured sUAV error across a) River 384 
Sprint, b) Afon Elwy and c) River Ehen. 385 
 386 

This general absence of any relationship between sUAV error and grainsize suggest 387 

that it is unlikely that theodolite error is playing any major role in influencing the 388 

evaluation of the accuracy of the sUAV survey. It also suggested that the sUAV survey 389 

accuracy is also unaffected by bed roughness with the resolution on the survey 390 

sufficient to record local bed surface variation. 391 

 392 

4.4 sUAV Error and Local Hydraulic Roughness 393 

Error in the sUAV data was further investigated with respect to water surface 394 

conditions. Whilst water surface variation was not directly measured it can be inferred 395 

from the biotope distribution recorded at each site. As mentioned previously biotope 396 

types were assigned to each theodolite survey point during site survey and these were 397 

confirmed through interrogation of the sUAV orthophoto. For example, Milan et al. 398 

(2010) used water surface roughness delimiters to map hydraulic biotopes and through 399 

sUAV orthophoto analysis water surface roughess was seen to increase through pool, 400 

backwater, glide, run, riffle, chute biotope units. 401 

 402 

The spatial variation in sUAV error is shown for all three study sites in Figure 10. This 403 

error is overlain on the biotope distribution. For the River Sprint there is a strong 404 

tendency for the sUAV depth estimates to exhibit high error across chute units (Figure 405 

10a). On the Afon Elwy (Figure 10b) error is generally lower with pools exhibiting the 406 

worst depth predictions, this may reflect the general lower energy biotope ensemble 407 

present during the survey. sUAV error on the River Ehen was highest across the weir 408 
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zone where chuting flow dominated and was also recorded along channel margins 409 

characterised by a well-developed woody riparian (Figure 10c).  410 

 411 

Figure 10. Water surface roughness and sUAV depth error on a) River Sprint, b) Afon 412 
Elwy and c) River Ehen. 413 
 414 

The apparent links between sUAV depth estimation error and hydraulic conditions was 415 

investigated further through categorisation of the depth data by observed hydraulic 416 

biotope. Plotting the sUAV error against measured depth for each biotope (Figure 11) 417 

and linear regression lines were fitted to each hydraulic habitat. The slope each line 418 

reflects the degree of difference between the two measures and these are summarised 419 

in Table 3. 420 

 421 

Figure 11. sUAV and theodolite depth measurements split by hydraulic biotope for a) 422 
River Sprint, b) Afon Elwy and c) River Ehen. 423 
 424 

Table 3. Linear regression multipliers on sUAV depth error estimates for the study sites 425 
on the River Sprint, Afon Elwy and River Ehen. 426 
 427 

Shallow backwaters displaying no discernible water surface disruption appear to show 428 

near agreement between the theodolite and sUAV depth measurements. This is also 429 

true of the riffle areas, despite considerable water surface disruption and this is 430 

attributed to the shallow nature of these features effectively minimising refraction 431 

issues. This is not true of chute features where white water is severely impacting on bed 432 

visibility and the disrupted water surface is adding further complexity to refraction 433 

angles resulting in generally poor depth prediction from the sUAV survey. Glide and 434 

run linear regression multipliers range between 0.7 and 0.9 suggesting a general slight 435 

under prediction of depth. 436 
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 437 

5. Discussion 438 

In this paper we have investigated the accuracy of structure from motion digital 439 

elevation model using imagery collected from an sUAV platform. The three rivers 440 

studied exhibited measured depths up to 2.4 m extending the evaluation beyond the 441 

depths of 1.1 m, 0.7 m and ~1.5 m reported by Westaway et al., (2001), Woodget et al., 442 

(2015) and Dietrich (2017) respectively and cover a wide range of hydraulic roughness 443 

elements ranging from pools through to chuting flow. 444 

 445 

Individual histograms of mean average error on depth prediction by the sUAV at each 446 

of the survey sites are shown in Figure 6, a combined dataset generated a mean average 447 

error on depth prediction by the sUAV of ±0.03m (σ ±0.12 m), with individual data of 448 

River Sprint ±0.04 cm (σ 0.05), River Ehen ±0.03 (σ 0.12) and River Elwy ±0.03 cm 449 

(σ 0.06 cm) comparing favourably with the work of Westaway et al., (2001), who used 450 

conventional stereo photogrammetry to predict water depth achieving mean errors from 451 

0.054 to 0.105 m with standard deviations of 0.092 to 0.116 m. This study did not apply 452 

a refraction correction to the data, preferring to investigate the degree to which 453 

refraction was influencing the predictive capability of the sUAV technique, however 454 

our uncorrected general results were comparable to those of Woodget et al., (2015), 455 

who used a simple refraction correction to achieve mean depth errors of 0.029 to 0.053 456 

m (σ 0.064 to 0.086 m) and Dietrich (2017) applied a spatially varied refraction 457 

correction on two surveys of the White River achieving mean errors of -0.011 and 0. 458 

014m with standard deviations of 0.077 and 0.059 m.  459 

 460 
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It is recognised that refraction through water can impact depth estimation and many 461 

authors have utilised the simple depth correction factor of 1.4 proposed by Westaway 462 

et al., 2001 and Woodget et al., (2015) argue for a refraction correction to improve 463 

sUAV depth estimation accuracy. Results from these studies showed an improvement 464 

in mean error following refraction correction, and for depths less than 0.4m mean error 465 

became comparable with that of exposed terrain. However, larger errors were observed 466 

at depths beyond 0.4m which scaled with depth (Westaway et al., 2000).  This study 467 

has found that the level of error in the raw data is generally insufficient to warrant the 468 

application of any correction with errors in depth estimation within the range of bed 469 

roughness for all three study sites and measurement error on the water surface caused 470 

by turbulence. Shallow water error was recorded, however, the multiplier required to 471 

correct the depth estimates was closer to 1.2. Other regions characterised by a generally 472 

smooth water surface and depths up to a metre showed even stronger with only a 10% 473 

correction needed to increase the depth to that recorded by the theodolite survey. Higher 474 

energy flow areas create a more complex refraction effect, and this is discussed further 475 

below. 476 

 477 

Water surface disruption is also a source of survey error using remotely sensed data 478 

(Milan et al. 2010). This is true for both the sUAV (et al., 2017b) and the theodolite 479 

approach (Heritage et al., 2009) where a disrupted surface or fast flowing water requires 480 

the surveyor to estimate the average height of a rapidly varying water level. This effect 481 

has not been directly quantified in this study, however the biotope categorisation of the 482 

data can be used as a surrogate measure for water surface roughness with roughness 483 

seen to increase in the sequence, pool, glide, run, riffle, chute. Examination of the 484 

statistical significance of the empirical depth relationships discussed earlier suggest 485 
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much poorer relationships with the higher energy biotopes, most notably chutes where 486 

white water is common. Here the variability in depth prediction was highest, with 487 

regression correlation coefficients to between 0.6 and 0.7. This strongly suggests that 488 

optical approaches to characterising submerged surfaces should not be attempted over 489 

areas with rapidly varying water surface conditions. 490 

 491 

A source of possible error in the depth estimation process exists in the choice of DEM 492 

resolution. Point spacing of 0.08 m was selected in the SfM software to avoid excessive 493 

processing times. These data must then be interpolated to generate the topographic and 494 

bathymetric surfaces and measured depth points falling across interpolated areas may 495 

be in error. This error is likely to be a function of the local surface roughness. 496 

Comparison of the sUAV error compared to measured bed sediment size suggests that 497 

the error is within that of the bed roughness as defined by the grain size D84. When local 498 

bed roughness (defined by the standard deviation of the local elevation data on the 499 

DEM) was compared to the sUAV depth error, no relationship was found suggesting 500 

factors other than sediment size variability were influencing survey accuracy.  501 

 502 

Finally of note were errors recorded along the banks of the River Ehen study site, where 503 

riparian trees formed a dense canopy obscuring direct imaging of the bed of the channel. 504 

Insufficient oblique imagery meant that this was not correctable. Where vegetation 505 

infringes on survey areas further concentration of camera images, from multiple angles 506 

should be fed into the SfM facilitating DEM construction.  507 

  508 

6. CONCLUSION 509 
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The use of high resolution remote sensing from a UAV is an encouraging technique for 510 

quantifying the topography of fluvial environments at the meso-habitat scale. This 511 

study has critically evaluated the ability of sUAV survey data and subsequent DEM 512 

development using SfM point cloud generation to predict water depth and by inference 513 

to accurately map bathymetric surfaces in clear water. It has extended the published 514 

depth research to 2.4 m and has refined the data analysis to differentiate error according 515 

to hydraulic conditions. Linear regression relationships were found to best fit the error 516 

data suggesting that error estimates did not increase with depth. Error on the direct 517 

estimates showed a general under prediction, however, depth over predictions also 518 

occurred. These errors were generally within the bounds of the bed roughness as 519 

defined by the grain size D84. When investigated at the biotope scale across all three 520 

study sites the regression relationships suggest potential depth error corrections of 1.1 521 

to 1.2, these values are lower than that suggested by Westaway (2001) and suggest that 522 

applying such a correction to all data would result in less accurate depth estimation, 523 

most notably for pools/backwaters, glides, runs and riffles. Error on chute estimations 524 

were higher and certainly more varied and it would appear that water surface disruption 525 

is the key cause of this.  526 

 527 

It would appear from the results that good depth estimation levels can be achieved using 528 

the sUAV approach described. Caution must be exercised, however, where hydraulic 529 

energy levels and/or water depths relative to bed roughness are high as this appears to 530 

significantly increase the impact of refraction. More generally DEM generation can 531 

also be significantly impacted by vegetation and care must be taken to ensure that 532 

sUAV imagery captures detail across all wet areas to ensure correct model build.  533 

  534 

21 
 



7. References 535 

Bangen SG, Wheaton JM, Bouwes N, Bouwes B, Jordan C. 2014.  A methodological 536 

intercomparison of topographic survey techniques for characterizing wadeable 537 

streams and rivers. Geomorphology 206: 343-361. 538 

Bergeron, N. and Carbonneau, P.E. 2012. Geosalar: Innovative remote sensing methods 539 

for spatially continuous mapping of fluvial habitat at riverscape scale’ In Fluvial 540 

Remote Sensing for Science and Management, Carbonneau, P.E. and Piegay, H. 541 

(eds). Wiley-Blackwell, Chichester 542 

Biancamaria, S., Lettenmaier, D.P. and Pavelsky, T.M., 2016. The SWOT mission and 543 

its capabilities for land hydrology. In Remote Sensing and Water Resources (pp. 544 

117-147). Springer, Cham. 545 

Brasington, J., Rumsby, B.T. and McVey, R.A., 2000. Monitoring and modelling 546 

morphological change in a braided gravel-bed river using high resolution GPS-based 547 

survey. Earth Surface Processes and Landforms, 25(9), 973-990. 548 

Brunier, G., Fleury, J., Anthony, E.J., Gardel, A. and Dussouillez, P., 2016. Close-range 549 

airborne Structure-from-Motion Photogrammetry for high-resolution beach 550 

morphometric surveys: Examples from an embayed rotating 551 

beach. Geomorphology, 261, 76-88. 552 

Carbonneau, P.E., Lane, S.N. and Bergeron, N., 2006. Feature based image processing 553 

methods applied to bathymetric measurements from airborne remote sensing in 554 

fluvial environments. Earth Surface Processes and Landforms, 31(11), 1413-1423.  555 

Carrivick, J.L., Smith, M.W. and Quincey, D.J., 2016. Structure from Motion in the 556 

Geosciences. John Wiley & Sons. 557 

22 
 



Dietrich, J.T., 2017. Bathymetric Structure‐from‐Motion: extracting shallow stream 558 

bathymetry from multi‐view stereo photogrammetry. Earth Surface Processes and 559 

Landforms, 42(2), 355-364. 560 

Entwistle, N. S. (2011). Geomorphological effectiveness and maintenance of a riffle-561 

pool sequence (Doctoral dissertation, Salford: University of Salford). 562 

Entwistle, N.S. and Fuller, I.C., 2009. Terrestrial laser scanning to derive the surface 563 

grain size facies character of gravel bars. Laser Scanning for the Environmental 564 

Sciences, Chichester: Wiley, 102-114. 565 

Entwistle, N.S. and Heritage, G., 2017. An evaluation DEM accuracy acquired using a 566 

small unmanned aerial vehicle across a riverine environment. International Journal 567 

of New Technology and Research, 3(7): 43-48. 568 

Fonstad MA, Dietrich JT, Courville BC, Jensen JL, Carbonneau PE. 2013. Topographic 569 

structure from motion: a new development in photogrammetric measurement. Earth 570 

Surface Processes and Land-forms 38(4): 421–430. 571 

Fuller, I.C., Large, A.R.G., Charlton, M.E., Heritage, G.L. & Milan, D.J. (2003) Reach-572 

scale sediment transfers: an evaluation of two morphological Budgeting approaches. 573 

Earth Surface Processes & Landforms. 28, 889-904. 574 

Fuller, I.C., Large, A.R.G., Heritage, G.L., Milan, D.J. and Charlton, M.E. 2005. 575 

Derivation of annual reach-scale sediment transfers in the River Coquet, 576 

Northumberland, UK, International Association of Fluvial Sedimentologists Special 577 

Publication, 35, 61-74.  578 

García-Pintado, J., Mason, D. C., Dance, S. L., Cloke, H. L., Neal, J. C., Freer, J., & 579 

Bates, P. D. 2015. Satellite-supported flood forecasting in river networks: A real 580 

case study. Journal of Hydrology, 523, 706-724. 581 

23 
 



Girardeau-Montaut D. 2018. CloudCompare [online] Available from: 582 

http://www.cloudcompare.org/ 583 

Gomez, B., Mertes, L.A., Phillips, J.D., Magilligan, F.J. and James, L.A., 1995. 584 

Sediment characteristics of an extreme flood: 1993 upper Mississippi River 585 

valley. Geology, 23(11), 963-966. 586 

Harwin S, Lucieer A. 2012. Assessing the accuracy of georeferenced point clouds 587 

produced via multi-view stereopsis from unmanned aerial vehicle (UAV) imagery. 588 

Remote Sensing 4: 1573–1599.  589 

Heritage G, Hetherington D. 2007. Towards a protocol for laser scanning in fluvial 590 

geomorphology. Earth Surface Processes and Landforms 32:66–74. 591 

Heritage, G.L. and Milan, D.J., 2009. Terrestrial laser scanning of grain roughness in 592 

a gravel-bed river. Geomorphology, 113(1), 4-11. 593 

Heritage, G.L., Milan, D.J., Large, A.R. and Fuller, I.C., 2009. Influence of survey 594 

strategy and interpolation model on DEM quality. Geomorphology, 112(3-4), 334-595 

344.  596 

Hugue, F., Lapointe, M., Eaton, B. C., & Lepoutre, A. 2016. Satellite-based remote 597 

sensing of running water habitats at large riverscape scales: Tools to analyze habitat 598 

heterogeneity for river ecosystem management. Geomorphology, 253, 353-369. 599 

James, M. R., & Robson, S. 2014. Mitigating systematic error in topographic models 600 

derived from UAV and ground‐based image networks. Earth Surface Processes and 601 

Landforms, 39(10), 1413-1420. 602 

James, M. R., Robson, S., d'Oleire-Oltmanns, S., & Niethammer, U. 2017. Optimising 603 

UAV topographic surveys processed with structure-from-motion: Ground control 604 

quality, quantity and bundle adjustment, Geomorphology 280, 51-66. 605 

24 
 



James, M.R. and Quinton, J.N., 2014. Ultra‐rapid topographic surveying for complex 606 

environments: the hand‐held mobile laser scanner (HMLS). Earth surface processes 607 

and landforms, 39(1), 138-142. 608 

Kraus, K. and Pfeifer, N. 1998: Determination of terrain models in wooded areas with 609 

airborne laser scanner data. ISPRS Journal of Photogrammetry and Remote Sensing 610 

53(4), 193-203. 611 

Legleiter, C.J., 2012. Remote measurement of river morphology via fusion of LiDAR 612 

topography and spectrally based bathymetry. Earth Surface Processes and 613 

Landforms, 37(5), 499-518. 614 

Legleiter, C.J. and Overstreet, B.T., 2014. Measuring the Morphology and Dynamics 615 

of the Snake River by Remote Sensing. University of Wyoming National Park 616 

Service Research Center Annual Report, 37(1), 12-20. 617 

Legleiter CJ, Roberts DA, Marcus WA, Fonstad MA. 2004. Passive optical remote 618 

sensing of river channel morphology and in-stream habitat: physical basis and 619 

feasibility. Remote Sensing of Environment 93: 493–510. 620 

Legleiter CJ, Roberts DA. 2009. A forward image model for passive optical remote 621 

sensing of river bathymetry. Remote Sensing of Environment 113: 1025–1045. 622 

Lejot J, Delacourt C, Piegay H, Fournier T, Tremelo M-L, Allemand P. 2007. Very 623 

high spatial resolution imagery for channel bathymetry and topography from an 624 

unmanned mapping controlled platform. Earth Surface Processes and Landforms 625 

32: 1705–1725. 626 

Marcus, W.A., 2012. Remote Sensing of the Hydraulic Environment in Gravel‐Bed 627 

Rivers. Gravel-Bed Rivers: Processes, Tools, Environments, 259-285. 628 

25 
 



Marcus WA, Fonstad MA. 2010. Remote sensing of rivers: the emergence of a 629 

subdiscipline in the river sciences. Earth Surface Processes and Landforms 35: 630 

1867–1872 631 

Maswood, M., & Hossain, F. 2016. Advancing river modelling in ungauged basins 632 

using satellite remote sensing: the case of the Ganges–Brahmaputra–Meghna 633 

basin. International Journal of River Basin Management, 14(1), 103-117. 634 

Micheletti N, Chandler JH, Lane SN. 2014. Investigating the geomorphological 635 

potential of freely available and accessible structure from-motion photogrammetry 636 

using a smartphone. Earth Surface Processes and Landforms, DOI: 637 

10.1002/esp.3648 638 

Milan DJ, Heritage GL, Large ARG, Entwistle NS. 2010. Mapping hydraulic biotopes 639 

using terrestrial laser scan data of water surface properties. Earth Surface Processes 640 

and Landforms 35: 918-931. 641 

Milan, D.J., Heritage, G.L., Large, A.R. and Fuller, I.C., 2011. Filtering spatial error 642 

from DEMs: Implications for morphological change 643 

estimation. Geomorphology, 125(1), 160-171. 644 

Newson, M.D.& Newson, C.L., 2000 “Geomorphology, ecology and river channel 645 

habitat: mesoscale approaches to basinscale challenges”. Progress in Physical 646 

Geography. 24, 195–217. 647 

Pe'Eri, S., & Philpot, W. 2007. Increasing the existence of very shallow-water LIDAR 648 

measurements using the red-channel waveforms. IEEE Transactions on Geoscience 649 

and Remote Sensing, 45(5), 1217-1223. 650 

Resop, J.P. and Hession, W.C., 2010. Terrestrial laser scanning for monitoring 651 

streambank retreat: Comparison with traditional surveying techniques. Journal of 652 

Hydraulic Engineering, 136(10), 794-798. 653 

26 
 



Scaramuzza, D., Martinelli, A., & Siegwart, R. 2006. A flexible technique for accurate 654 

omnidirectional camera calibration and structure from motion. In Fourth IEEE 655 

International Conference on Computer Vision Systems (ICVS'06) (45-45). IEEE. 656 

Smith, M.W. and Vericat, D., 2015. From experimental plots to experimental 657 

landscapes: topography, erosion and deposition in sub‐humid badlands from 658 

structure‐from‐motion photogrammetry. Earth Surface Processes and 659 

Landforms, 40(12), 1656-1671. 660 

Stumpf, A., Malet, J.P., Allemand, P., Pierrot-Deseilligny, M. and Skupinski, G., 2015. 661 

Ground-based multi-view photogrammetry for the monitoring of landslide 662 

deformation and erosion. Geomorphology, 231, 130-145. 663 

Tonkin, T.N., Midgley, N.G., Graham, D.J. and Labadz, J.C., 2014. The potential of 664 

small unmanned aircraft systems and structure-from-motion for topographic 665 

surveys: A test of emerging integrated approaches at Cwm Idwal, North 666 

Wales. Geomorphology, 226, 35-43. 667 

Tonkin, T. N., & Midgley, N. G. 2016. Ground-Control Networks for Image Based 668 

Surface Reconstruction: An Investigation of Optimum Survey Designs Using UAV 669 

Derived Imagery and Structure-from-Motion Photogrammetry. Remote Sensing, 670 

8(9), 786. 671 

Wackrow, R. and Chandler, J.H. 2011. Minimising systematic error surfaces in digital 672 

elevation models using oblique convergent imagery. Photogrammetric Record 26 673 

(133): 16-31 674 

Westaway, R.M., Lane, S.N. and Hicks, D.M. 2001. Remote sensing of clear water, 675 

shallow, gravel-bed rivers using digital photogrammetry. Photogrammetric 676 

Engineering and Remote Sensing 67 (11): 1271-1281 677 

Westoby, M.J., Brasington, J., Glasser, N.F., Hambrey, M.J. and Reynolds, J.M., 2012. 678 

27 
 



‘Structure-from-Motion’photogrammetry: A low-cost, effective tool for geoscience 679 

applications. Geomorphology, 179, 300-314. 680 

Wheaton, J. M. 2008. Uncertainty in morphological sediment budgeting of rivers. An 681 

unpublished Doctor of Philosophy Thesis. University of Southampton, 682 

Southampton. 412p.  683 

Wheaton, J.M., Brasington, J., Darby, S.E. and Sear, D.A., 2010. Accounting for 684 

uncertainty in DEMs from repeat topographic surveys: improved sediment 685 

budgets. Earth Surface Processes and Landforms, 35(2), 136-156.  686 

Winterbottom SJ, Gilvear DJ. 1997. Quantification of channel bed morphology in 687 

gravel-bed rivers using airborne multispectral imagery and aerial photography. 688 

Regulated Rivers: Research & Management 13: 489–499.  689 

Woodget AS, Carbonneau PE, Visser F, Maddock IP. 2015. Quantifying submerged 690 

fluvial topography using hyperspatial resolution UAS imagery and structure from 691 

motion photogrammetry. Earth Surface Processes and Landforms 40: 47–64.  692 

Woodget, A.S. and Austrums, R., 2017a. Subaerial gravel size measurement using 693 

topographic data derived from a UAV‐SfM approach. Earth Surface Processes and 694 

Landforms, 42(9), 1434-1443.  695 

Woodget, A.S., Austrums, R., Maddock, I.P. and Habit, E., 2017. Drones and digital 696 

photogrammetry: From classifications to continuums for monitoring river habitat 697 

and hydromorphology. Wiley Interdisciplinary Reviews: Water, 4(4).  698 

Yoon, Y., Durand, M., Merry, C.J., Clark, E.A., Andreadis, K.M. and Alsdorf, D.E., 699 

2012. Estimating river bathymetry from data assimilation of synthetic SWOT 700 

measurements. Journal of Hydrology, 464, pp.363-375. 701 

 702 

Table 1. Site survey characteristics for the three study sites 703 
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 River Sprint Afon Elwy River Ehen 

Model extent (km2) 0.148  0.173 0.164 
Survey height (m AGL) 30 30 30 
Images used 650 642 643 
Final Model resolution 
(m) 

0.020 0.024 0.021 

Total number of points 391,871,123 387,382,170 496,849,445 
GCP accuracy (m) 0.012 0.011 0.019 
Field survey time (hours) 3.5 3 2.5 
Post-processing time 
(Hours) 

8.1 9.5 12.5 

 704 

 705 

 706 

Table 2. Measured water depth data characteristics for the three study sites 707 

 River Sprint Afon Elwy River Ehen 

Total number of 

data points 
188 204 327 

Mean depth (m) 0.49 0.24 0.63 

Minimum depth 

(m) 
0.02 0.02 0.15 

Maximum depth 

(m) 
0.96 0.71 2.57 

 Min Mean  Max Min Mean Max Min Mean Max 

Hydraulic 

habitat 

(data 

points) 

(m) 

Pool 0.13 0.62 0.96 0.02 0.33 0.71 1.01 1.22 2.57 

Glide 0.65 0.78 0.88 0.12 0.26 0.61 0.70 0.86 0.99 

Run 0.07 0.56 0.95 0.03 0.19 0.44 0.51 0.59 0.69 

Riffle 0.02 0.24 0.58 0.02 0.18 0.58 0.16 0.34 0.49 

Chute 0.12 0.38 0.90 0.12 0.23 0.41 0.15 0.49 0.66 

Back- 

water 
0.69 0.83 0.96 0.03 0.35 0.63 n/a n/a n/a 

 708 

 709 
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Table 3. Linear regression multipliers on sUAV depth error estimates for the study sites 710 
on the River Sprint, Afon Elwy and River Ehen. 711  

Pool Backwater Glide Run Riffle Chute 
Sprint 0.73 1.08 0.9 0.87 0.98 0.76 

Elwy 0.8 0.97 0.87 0.68 0.95 0.66 
Ehen 0.86 not present 0.87 0.86 1.17 0.57 
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Figure 1. Location for the three sites used in this study to reflect a diversity of fluvial environments, 
A) River Sprint, Cumbria, England. B) Afon Elwy, North Wales, C) River Ehen, Cumbria, England.
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Figure 2. River Sprint sUAV derived orthophoto (A) and Digital Terrain Model (B) 
including boundary of pool area used for bathymetry data analysis.
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Figure 3. Afon Elwy sUAV derived orthophoto (A) and 
Digital Terrain Model (B). Inset image delimits the area 
used for biotope-based bathymetry data analysis.
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Figure 4. River Ehen sUAV derived orthophoto (A) and 
Digital Terrain Model (B) showing the area used for 
bathymetry data analysis.
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Figure 5. Comparative theodolite and sUAV depth data 
for the three study rivers. The solid line represents 
equality and dashed lines ±10% difference.
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Figure 6. Theodolite and sUAV estimate depth 
discrepancy for Rivers Sprint A) Ehen B) and Elwy C). 
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Figure 7. sUAV model estimate
depth discrepancy relationship with
measured depth for the a) River
Sprint, b) Afon Elwy and c) River
Ehen. Solid line represents
equality, dashed lines show
deviation equivalent to the D84
grain size.
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Figure 8. Bed roughness characteristics across a) River
Sprint, b) Afon Elwy and c) River Ehen.
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Figure 9. Local
bed roughness
associated with
measured sUAV
error across a)
River Sprint, b)
Afon Elwy and c)
River Ehen.



Figure 10. Water
surface roughness
and sUAV depth
error on a) River
Sprint, b) Afon Elwy
and c) River Ehen.
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Figure 11. sUAV and
theodolite depth
measurements split by
hydraulic biotope for
a) River Sprint, b)
Afon Elwy and c)
River Ehen.
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