
Agile Software Development Practices in Egypt SMEs: A

Grounded Theory Investigation

Amr A. Mohallel1[0000-0002-0599-7853] and Julian M. Bass2[0000-0002-0570-7086]

University of Salford, Manchester M5 4WT, UK
1 a.hamed@edu.salford.ac.uk 2 j.bass@salford.ac.uk

Abstract. Agile information system development methods have been adopted

by most software development organizations due to their proven benefits in terms

of flexibility, reliability, and responsiveness. However, companies face signifi-

cant challenges in adopting these approaches. Specifically, this research investi-

gates challenges faced by software development companies in Egypt while tran-

sitioning to Agile. As little previous research is available targeting their concerns,

we have conducted a grounded theory investigation. Key problem areas were

found including lack of cadence in sprints planning, inadequate use of effort es-

timation and product quality issues.

The developed grounded theory reflects on the key problem areas found with

SMEs adopting agile practices and can be used by software development practi-

tioners adopting agile methods in Egypt or similar developing countries as an

outline for the common problem areas they are expected to find.

Keywords: Agile Methods, Egypt, Agile Methods Adoption.

1 Introduction

Agile methods are based on an iterative and incremental approach where projects are

divided into smaller analyze, implement, integrate, and test cycles. They have been

shown to be more effective for software development than traditional waterfall models

for small and large-scale projects [1].

Although Agile methods have been adopted by the software industry for more than

a decade and started to rise with the Agile Manifesto in 2001 [9], it only started to gain

popularity in Egypt a decade later. Based on the first author’s previous experience of

the Egyptian software development sector, we were aware that agile practitioners in

Egypt are struggling to make the transition from traditional development models to

Agile.

After conducting research interviews with Egyptian agile practitioners, we have

learnt about their struggle with adopting agile development practices. Little previous

research is available to study or investigate their problem areas, therefore, we are con-

ducting this exploratory research to identify, evaluate, and potentially mitigate their

problems.

2

We approached the problem using grounded theory which is based on interviewing

agile practitioners and identifying their key problem areas. Findings from data collec-

tion were analyzed and evaluated in comparison to the current literate.

The aim of this research is to get an in-depth understanding of the agile software

development practices and help Egyptian practitioners overcome their problem areas.

This was achieved by interviewing 9 agile software development practitioners using

Scrum, in 7 companies, in the north of Egypt. Scrum is the most popular method for

agile project management [2] The findings showed mixed results in terms of agile adop-

tion.

Although the interviews did show clear motivation from practitioners to adopt agile

methods, four key common problem areas were found:

• Scrum is based on Sprints i.e. repeatable time-boxes during which a potentially ship-

pable product is delivered. Sprints ideally vary from 1-4 weeks [2]. The reason why

these time-boxes are fixed is that they help teams calculate their Velocity. Velocity

is one of the key outcomes of applying Scrum to software development. It is a metric

for work done by a team in a sprint. Scrum teams use velocity for effort estimation

before a project starts and for forecasting the amount of time needed to complete a

given project [16]. We discovered that companies tend to change the length of sprints

based on the workload they put in each.

• Unlike traditional software development methods that calculate the time needed to

complete a given task by looking at how big it is, Scrum uses story points which

takes priority, size and complexity into consideration. We discovered that companies

have insufficient use of story points which leads to a dramatic failure in sprints plan-

ning.

• As Scrum promotes constant deliverables in short periods of time to enhance, prac-

titioners experience higher levels of stress which negatively affect the quality of

products.

• Teams have difficulties handling task switching and handoffs.

The contribution of this research is a grounded theory that can be used by software

developers adopting agile methods in Egypt or similar developing countries that sets an

outline of the common problem they are expected to find and how to mitigate them.

2 Related Work

Software development models have been produced to help organize, scope and keep

software projects on time and within budget. Agile software development methodolo-

gies were developed to help solve the problems aroused by traditional development

methodologies [3]. The main goal of applying Agile methods is having a more adapta-

ble, flexible and responsive development lifecycle.

It has been shown that agile methods improve both product quality and development

productivity [21], they enhanced customer involvement, adaptability and incremental

delivery of software projects [22].

3

The Agile manifesto defined a set of values and principles for developing software

projects [20]. Since then, several methods (e.g. Lean [23], Extreme Programming [9]

and Scrum [23]) were defined to provide guidelines and clear up the application of the

Agile values in the development of software projects.

Agile development is based on self-organizing teams [26] who collaborate to adjust

to customers’ changing requirements [24]. Several practices are adopted in Agile meth-

ods, however, daily stand-ups, sprint planning and retrospectives are the most com-

monly used, with a percentage of 90%, 88% and 85% respectively [6].

Although guidelines and practices are defined for applying Agile methods in soft-

ware development, companies, especially SMEs tend to ‘cherry-pick’ selected Scrum

and XP practices from the full constellation of practices available [19].

Agile software development has been an active area of research ever since the agile

manifesto was published in 2001, however, the research literature fails to reflect spe-

cific challenges faced by Egyptian practitioners. By 2012, from a sum of 1,427 papers

on agile methodologies, only one paper was based on Egyptian experience [25].

Some research did focus on investigating software development challenges faced by

practitioners in smaller software companies in specific regions e.g. sub-Saharan Africa

where contributions were to literature in areas such as agile awareness and adoption

challenges [8]. It was concluded that further research is required on how agile method-

ologies can be tailored for use in a developing country context.

3 Research Methods

3.1 Research Sites

We were curious about exploring the transition process and whether agile is adding

value to the practitioners or not. There is a lot of focus in literature on studying agile

practices in European/western countries, while little research focused on studying agile

practices in Egypt [25]. In that sense, we do believe that this study is ground-breaking.

3.2 Data Collection

As presented in [4], this study is to follow a grounded theory approach to gather and

analyse data from agile practitioners in Egypt. Grounded theory is a qualitative research

method that seeks to discover emerging patterns in data. Data collection was based on

reviewing agile practices in literature, artefact modelling and interviewing agile practi-

tioners.

Sampling. The sample identified in this study is composed of 9 agile practitioners in-

cluding 3 project managers, 1 business analyst (ex-developer), 1 quality assurance en-

gineer, 1 senior software engineer and 3 junior software developers. The selected com-

panies have 5-25 employees with businesses offering custom web-based software so-

lutions. All 7 companies have been using Scrum for less than 5 years.

4

After engaging 9 interviewees, the data collection process did reach a saturation level

as no new data is being reviled by collecting more data if more interviewees are to be

made. Qualitative research should not be concerned about how many people contrib-

uted to a study as long as the interviews did discover new constructs and values [5].

Although minor data will always be reviled from conducting more interviews, the

main issues raised as a result from the interviews were pretty much the same (as ex-

plained further). For this reason, the chosen individuals who contributed to the study

were chosen carefully to represent different points of views and aspects depending on

their various specialties and experiences dealing with practicing agile development.

Coding Scheme. Companies were coded from Comp1 to Comp7, while participants

were coded as follows:

• Project managers: PM1, PM2, and PM3

• Business analysts: BA1

• Senior software engineers: SSE1

• Quality assurance engineers: QA1

• Junior software developers: JD1, JD2, and JD3

Creating the Interview Guides. As Scrum was initially based on principles from Lean

manufacturing [7], and since the fact that the main idea behind Lean is to provoke the

customer-focused value idea while mitigating waste as is the case for all the agile ap-

proaches, the interviews were built to help rate each company on how Lean they are.

The interview guide was developed to cover each individual’s implementation of agile

practices and artefacts along with their use of Lean software development.

3.3 Data Analysis

The data is to be extracted from the interview scripts following a content analysis ap-

proach [26]. In content analysis, responses are coded based on patterns or themes found

in the interview scripts.

Selective Coding (also known as Open Coding) is the first step of data analysis where

it starts by noting down Key Points during and post every interview, then coding these

points to summarize findings [26].

While conducting the interviews, memos were written down to summarize the main

issues faced by each interviewee. Then the constant comparison method [26] was fol-

lowed where the memos were constantly edited and enhanced. By the end of the inter-

viewing process, the core issues raised were categorized into core categories based on

the generated memos.

4 Findings and Data Analysis

While conducting the interviews, key points were noted along with a memo for each

interview reflecting on the key problem areas faced by each individual. The constant

comparison method [26] was used to enhance and develop the resulting memos. After

5

having all the memos written, three of them were chosen to represent three core cate-

gories. The resulting core categories are:

4.1 Lack of Cadence in Sprints Planning

The conducted interviews did investigate the efficiency of the teams’ planning for their

sprints and backlog items. The first interesting topic raised was the dynamic duration

of the sprints. 4 out of the 7 companies involved in the study did plan for dynamic

sprints where a sprint duration is decided mostly upon the amount of work that needs

to be done in the given sprint.

All participants were asked about their default sprint length and whether they change

it or not. Table 1 summarizes their answers.

Table 1. - A table showing for each company, the sprints duration and if they're dynamic or not

Compa-

nies

Comp1 Comp2 Comp3 Comp4 Comp5 Comp6 Comp7

Partici-

pants

PM1&BA1 SSE1 JD1&JD2 JD3 PM2 PM3 QA1

Duration

(weeks)

2-4 1.5 4 2 3 1-4 2-3

Dy-

namic?

Yes Yes Yes Yes No Yes No

As presented in table 5.1, we had different opinions on the lengths and dynamic

nature of the sprints. “Some sprints were 2 weeks, others were 3, and sometimes it could

take a bit longer to a month. Sometimes we have very short sprints, as for those made

to fix bugs” -PM3; “Sprints length changes. The first two sprints were 3 weeks. The

current sprint is four” -PM1; “95-98% of our sprints are fixed to 3 weeks. Under some

circumstances, we could have a hotfix, or we find that a group of story points can better

be completed in the same sprint together, so we could have a 1-2 weeks sprint to get

them all done then.” –PM1.

So it appeared that most of the companies do change the duration of their sprints

depending on the workload in each sprint. This has been described by using terms such

as “Well, it depends on what are we working on” -JD1; “So you decide a sprint length

depending on the amount of user stories you want to accomplish in it?”-Interviewer,

“Basically, yes”- PM1.

Comp2 seemed to have shorter sprints to get faster feedback; “We ‘tend’ not to ex-

ceed one and a half weeks. Just not to redo a lot of work if the feedback wasn’t positive”

-SSE1.

4.2 The Inadequate Use of Effort Estimations

After investigating the sprints durations, all participants were asked to rate their sprint

planning from their own point of view as follows:

6

“How much would you rate your sprint planning in a scale from 0-10? Where 0 re-

flects very bad planning, and 10 reflects perfect planning.” -Interviewer

As presented in table 5.2 below, the interviewees gave an average rate of 4.5 to the

sprints planning of their current or last completed projects.

Table 2. - Interviewee's individual rating on their company's sprints planning efficiency

Inter-

viewee

PM1 PM2 PM3 BA1 SSE1 QA1 JD1 JD2 JD3

Rating 7 8 7-8 0 3 7 3-4 - 5

Most participants mentioned that the lack of efficiency of sprints planning is mostly

related to weak effort estimation. This was clear to us from answers like “[Planning

fails] Mainly due to the bad estimation of time”-JD1; “[Sprint planning is] Very bad

mostly due to bad estimates” –BA1; “Mainly due to the bad estimation of time”-JD1;

“I believe estimation is the most painful part”-PM2.

While the inaccurate effort estimation problem started being a key point, we started

investigating the estimation criteria in each company. To begin with, the interviewees

were asked about the units they use for measuring their estimates. Five companies were

using points-based estimation as their used effort estimation unit, while 2 were using

hours.

Participants who used hourly-based estimation agreed on its unreliability; “I believe

time-based estimations always give false numbers” -BA1; “I believe estimating tasks

in hours just makes everything stressful. It doesn’t usually count time for testing, vali-

dation, documentation, etc.” -JD2.

However, those some of those who used story points mentioned that they struggle

with applying it. “I wasn’t comfortable using it. Neither me, nor my teams.”-PM3; “see

it beneficial when it comes to performance tracking” -QA1. PM2 stated that story points

were “easy to understand, but definitely hard to master”. Four out of the five companies

using story points clearly shown the teams misunderstanding of how points estimation

works. “Developers always tend to use time-based system. They normally calculate

how much time would it take them to finish a given task, then convert the hours to

points” -BA1. SSE1 explained how they estimate points as “We use points where each

point represents two hours.

Although PM1 did mention how he does not encourage developers to use time as a

main factor when deciding how many points they need to complete a given task, his

opinion was still somehow unclear. So he was asked if a developer has a min or max

number of points to burn in a given period of time. He answered “Typically, a developer

should burn an average of 2 story points per day. A working day has 7 working hours;

therefore, a story point should take an average of 3.5 working hours.” –PM1.

PM2 made a point on the connection between time and points showing how im-

portant the time factor is as this is what the client wants to hear at the end (similar to

PM3). He also added how he does intrude the estimation process when he finds out that

his development teams are giving estimations that would not fit with budget. Seems

like it was the case with JD2, she stated that she gets assigned to a task with an estimated

time to finish it. Same with BA1 where he said that “Team leaders make a point

7

estimation and pass it to developers.” –BA1. PM2 does the same with his team, and

when asked for the reason, he said “When you give a certain team the full responsibility

to make their own estimations, they always tend to over-estimate story points just to

feel more relaxed and less tensed while developing the given project.” –PM2

4.3 The Pressure Factor and Code Quality

While the constant pressure on software development teams was being mentioned by

more participants, a direct connection started to rise between the pressure and the over-

all product quality.

As claimed by PM2 in the quote above, teams do tend to over-estimate the efforts

they need to finish a given job. He claimed that the reason behind their tendency to

over-estimate is “just to feel more relaxed and less tensed”.

JD1 and 2 did show their concern with agile being stressful; “[Scrum] is generally

more stressful”; she later added “it stresses me out having to attend a meeting every

day to report my progress” -JD1. PM3 also made the same point on stress stating:

“Instead of dividing a given system into phases and get feedback on each phase, we

had to develop fully-functional releases that the customer can actually use and start

inputting data into. This caused more much stress on the development team due to the

small intervals of time needed to produce functional releases, however, the teams pro-

duced better outputs” -PM3.

QA1 approved the point stating that he has issues with Scrum rushing their work;

“We always have pressure and deadlines where we have to submit tasks and so on,

sometimes there are too many stories are assigned to a two weeks sprint. Sometimes

we don’t have time to finish them while maintaining testing and so on.” –QA1”

JD2 mentioned that her main cause of stress is that “..They [the team leaders who

estimate the tasks for her] normally do not count the time needed for testing, validation,

documentation, etc. So, when I have a short period of time, I find myself skipping eve-

rything but actual coding.” –JD2

Those participants how mentioned that Scrum makes them to be in a constant rush,

they were asked about how they think rushing the project affect the quality of their

work.

Some participants mentioned this affects documenting their code; “We have no time

to document the code.” –SSE1; “I never really have time [for documentation]”-JD2;

“As the nature of work in the company being in a continuous rush; documentation is

often done.” –QA1.

Others mentioned problems with testing; “I believe it causes a lot of pressure on us.

Rushing always prevents us from having enough time to conduct complete regression

testing to discover problems or bugs.” -QA1; “Due to the fact that he [the manager] is

always in a rush, we couldn’t make any test-driven development or unit testing, etc.” –

JD3

8

5 Discussions and Evaluation

The data collection did show how the participants were motivated to adopt the agile

project management methodologies, more precisely Scrum. All the participants did

show decent understanding of the agile practices and how they could be applied.

5.1 Key Problem Areas

Inadequate Use of Effort Estimation. The accuracy of effort estimation can indeed

determine the success or failure of any given software development project [10]. As

presented in the data analysis, participants did manage to find the connection between

weak effort estimation and weak sprints planning. In fact, some practitioners did men-

tion how effort estimation is their biggest problem since they made the transition to

adopting the agile methodologies.

While analyzing the collected data, we found out that five out of the seven companies

that participated in the study did use the Scrum point-based estimation system which is

the recommended effort estimation system in Scrum [11] and it is the most used esti-

mation system in Scrum practitioners worldwide [12], nevertheless, practitioners did

find difficulties using it.

The estimation accuracy for teams do increase remarkably when planning poker is

used for planning releases [13]. Two studies were conducted to compare a given

group’s estimation accuracy using planning poker to traditional individual-expert-

based estimations. The results did show how the group’s estimations using planning

poker were much less optimistic and much more realistic [14].

The story points estimations does rely on three factors i.e. priority (=urgency*busi-

ness value), size, and complexity factors [15], however, as presented in the analysis

above, teams always tend to use time as the only factor when estimating their efforts.

Although some research does not include time as a factor at all [15], PM2 did mention

how his teams realized that time is at least becoming a less important factor by time.

When he was asked about his teams’ accuracy with estimating efforts using points, he

did mention how their accuracy was raised from 60% to 70% in one year. QA1 also

mentioned how the more his team work together, the more accurate estimations they

make.

Estimating points using planning poker can be difficult, but our findings and litera-

ture does prove how teams show constant improvement as they do more work together.

In case the teams are given tasks with pre-estimated points, there will be no chance of

getting the estimation accuracy increasing.

The Lack of Cadence in Sprint Planning. Although the teams’ commitment to their

sprint duration is a crucial pillar of Scrum [18], Our findings along with cases in liter-

ature [18] did show how development teams struggle to stay committed to their sprint

length decisions, so they end up extending it to fit the required user stories. In fact,

some participants did build the whole plan on a dynamic sprints basis.

Calculating the velocity, which is the key metric of Scrum [16], is based on having

the sprints duration fixed. Without velocity, it is impossible for a product owner to

estimate how many sprints a team needs to burndown a given number of stories.

9

However, this didn’t seem to be a problem for most of the participants. We had inter-

esting opinions about the reason why they do not worry about velocity; “each devel-

oper/team builds a reputation by time that indicates whether he/they can finish the as-

signed task in the given story points they estimated. I don’t believe team velocity should

be calculated as a quantitative number.” –PM1; “I don’t bother [calculating velocity]. I

don’t find it [burndown charts] very beneficial if the team is going smooth with the

estimates” -PM3.

Constant Pressure and Code Quality. As presented in the findings about, all the par-

ticipants -apart from project managers- did state that they either do minimal testing and

almost no documentation for their code. The findings did explain how the main reason

was the constant pressure and lack of time availability.

Many reasons can cause pressure on the team; that is why it is the scrum master’s

responsibility to be constantly observing his team’s social/psychological aspects. Prod-

uct owners or the management can also indicate whether the team is under pressure or

not.

The findings did show the constant problem between project managers not relying

completely on a team to make his estimations because they are expected to over-esti-

mate their effort to be more relaxed, and on the other hand, developers do need time to

make sure they get their job done right.

In Scrum, although the development teams can make use of some experienced guid-

ance, they must estimate the story points for each backlog item, and they should be

responsible for choosing how much work they can do in each sprint [17]. However, in

some investigated cases, the development teams were not trusted to give their own es-

timations. They were either given a task with pre-estimated duration or given a certain

amount of tasks to complete in a given sprint.

Agile and Flexibility. Sprints in Scrum should range from one to four weeks having

the same length during the project [2]. The term “suggested” was intentionally used in

the above sentence. In fact, most of the Scrum practices are not standardized. There are

no rules or guidelines that can walk you through some steps or practices that can guide

you to make the best use out of agile. It is seen more like a framework. It is based on

some set of principles providing the foundation to which a team will add its own ap-

proaches and practices. The result of applying Scrum will always be a unique version

for each development team.

However, practitioners did seem to confuse the difference between customizing a

practice and ignoring it. Scrum does offer some foundational practices where the more

you ignore them, the less benefits you are getting from the whole approach.

The term “suggested” did not refer to the sprint length being fixed. It was proven

that the companies using dynamic sprints are totally losing the benefits of calculating

velocity, hence not being able to make accurate forecasting, hence making the burn-

down chart lose its indication capabilities.

Although the more teams collaborate, the more they realize that burndown charts are

getting more and more accurate, and the velocity is stabilizing over time. Scrum is not

about steadily improving the velocity, it’s about making the velocity measures more

10

accurate, so that you can more reliably predict how much you can develop in an itera-

tion. Scrum teams work more on driving predictability in the process more than they

work on productivity.

6 Conclusions

The participants in our research mentioned how adopting agile had a positive reflection

on both their software development process and the overall satisfaction of their custom-

ers. However, since their migration to agile, many challenges were faced to implement

Scrum, the most commonly used method for agile project management.

This paper presents a grounded theory investigation that was conducted with agile

practitioners in Egypt regarding the challenges they face with adopting agile methods.

Memos were written to reflect on the main problems faced by practitioners. Using the

constant comparison methods, core categories were written to represent the common

key problem areas found during the memoing process. These problem areas are (a) lack

of cadence and insufficient planning of sprints, (b) constant pressure on development

teams and (c) inadequate use of effort estimation.

7 Future Work

The next stage of our research will be to explore lean principles e.g. eliminating waste,

amplifying learning, team empowerment, and building integrity in. We expected to find

companies using Lean principles, so we built our interviews to reflect on how Lean

companies are. However, our approach did not fit very well as what we found the chal-

lenges to be more fundamental with applying agile development which made the whole

assessment process in terms of Leanness not practical.

References

1. Brhel, M., Meth, H., Maedche, A., Werder, K.: Exploring Principles of User-Centered Agile

Software Development. Information and Software Technology 61(C), 163-181 (2015).

2. Rubin, K.: Essential Scrum: A practical guide to the most popular Agile process. 1st edn.

Addison-Wesley Professional (2012).

3. Pikkarainen, M., Haikara, J., Salo, O., Abrahamsson, P., Still, J.: The impact of Agile prac-

tices on communication in software development. Empirical Software Engineering, 13(3),

pp. 303–337 (2008).

4. Walker, D., Myrick, F.: Grounded theory: an exploration of process and procedure. Quali-

tative Health Research. 16(4), pp. 547-559 (2006).

5. Steinberg, W. Price, M.: Statistics alive!. 2nd edn. Sage Publications, Los Angeles, USA

(2011).

6. Rahy, S., Bass, M. J.: Information flows at inter-team boundaries in agile information sys-

tems development. In: 15th European, Mediterranean and Middle Eastern Conference on

Information Systems (EMCIS). Limassol, Cyprus (2018)

11

7. Janes, A.: A guide to lean software development in action. In: Software Testing, Verification

and Validation Workshops (ICSTW), 2015 IEEE Eighth International Conference. (2015).

8. Regassa Z., Bass J.M., Midekso D.: Agile Methods in Ethiopia: An Empirical Study. In:

Choudrie J., Islam M., Wahid F., Bass J., Priyatma J. (eds) Information and Communication

Technologies for Development. ICT4D 2017. IFIP Advances in Information and Commu-

nication Technology, vol 504. Springer, Cham (2017).

9. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley Profes-

sional. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (1999).

10. Akhtar, N., Ghafir, S., Tripathi, S.: Effort Estimation of the Scrum based Software Projects

using Particle Swarm Optimization. Advances in Computer Science and Information Tech-

nology (ACSIT), 2(7), pp. 24-26 (2015).

11. Gandomani, T., Wei, K. and Binhamid, A.: A Case Study Research on Software Cost Esti-

mation Using Experts’ Estimates, Wideband Delphi, and Planning Poker Technique. Inter-

national Journal of Software Engineering and Its Applications, 8(11), pp.73-182 (2014).

12. Mahnic, V.: A case study on agile estimating and planning using scrum. Elektronika, 111(5),

pp.123-128 (2011).

13. Mendez-Fernandez, D., Penzenstadler, B., Kuhrmann, M. and Broy, M.: A Meta Model for

Artefact-Orientation: Fundamentals and Lessons Learned in Requirements Engineering. In

Proceedings of the 13th International Conference on Model Driven Engineering Languages

and Systems (MODELS 2010), 6395/2010, pp.183–197 (2010).

14. Usman, M., Mendes, E., Britto, R., Weidt, F.: Effort estimation in agile software develop-

ment. In Proceedings of the 10th International Conference on Predictive Models in Software

Engineering - PROMISE. (2014)

15. Zahraoui, H. and Idrissi, M.: Adjusting story points calculation in scrum effort & time esti-

mation. Intelligent Systems: Theories and Applications (SITA), 2015 10th International

Conference (2015).

16. Downey, S., Sutherland, J., Scrum Metrics for Hyperproductive Teams: How They Fly like

Fighter Aircraft. In: 46th Hawaii International Conference on System Sciences. IEEE,

Wailea, USA (2013).

17. Viscardi, S.: The Professional ScrumMaster's Handbook. Packt Publishing (2013).

18. Sutherland, J. and Schwaber, K.: The Scrum Guide. O’reilly (2013).

19. Clutterbuck, P., Rowlands, T., Seamons, O.: A case study of SME web application develop-

ment effectiveness via agile methods. Electron. J. Inf. Syst. Eval. 12(1), 13–26 (2009).

20. Agilemanifesto, http://agilemanifesto.org/, last accessed 10/10/18.

21. Dyba, T., Dingsøyr, T.: What do we know about agile software development? IEEE Soft-

ware. 26(5), pp 6–9 (2009).

22. Dingsoyr, T., Nerur, S., Balijepally, V., Moe, N.B.: A decade of agile methodologies: To-

wards explaining agile software development (2012).

23. Poppendieck, M.B.: Lean software development: an agile toolkit. London: Boston Mass.

Addison-Wesley, London (2003).

24. Santos, V., Goldman, A., Desouza, C.: Fostering effective inter-team knowledge sharing in

agile software development. Empirical Software Engineering, 20(4), pp. 1006-1051 (2015).

25. Dingsøyr, T., Nerur, S., Balijepally, V., Moe, N. B.: A decade of agile methodologies: To-

wards explaining agile software development. Journal of Systems and Software, 85(6),

1213–1221 (2012).

26. Hoda, R., Noble J., Marshall S.: Supporting Self-organizing Agile Teams. In: Sillitti A.,

Hazzan O., Bache E., Albaladejo X. (eds) Agile Processes in Software Engineering and Ex-

treme Programming. XP 2011. Lecture Notes in Business Information Processing, vol 77.

Springer, Berlin, Heidelberg (2011).

http://agilemanifesto.org/

