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Abstract:   

This article studies the pattern of heat lines in free convection non-Newtonian flow from a 

semi-infinite vertical cylinder via Bejan’s heat function concept. The viscoelastic Jeffrey fluid 

model is employed. The time-dependent, coupled, non-linear conservation equations for 

momentum and energy (heat) are solved computationally with the unconditionally stable finite 

difference Crank-Nicolson method. Extensive graphical results are presented for the influence 

of Deborah number (viscoelastic parameter) and Prandtl number (with ranges 0 - 0.8 and 0.68 

- 7.2, respectively) on thermal and flow characteristics including time histories of overall skin-

friction and heat transfer rate. Lower values of Deborah number indicate that the material acts 

in a more fluid-like manner whereas the higher values of Deborah number correspond to the 

material showing characteristics more associated with a solid. The solutions indicate that the 

time taken for the flow-field variables to achieve the steady-state is increased with higher 

values of Deborah number. Boundary flow visualization is presented using heat lines, 

isotherms and streamlines. It is observed that as Deborah number increases the intensity of heat 

lines increases and they tend to deviate from the hot cylindrical wall.  Furthermore, the flow-

field variables for the Newtonian fluid case exhibit a significantly different pattern from that 

of Jeffrey fluid.   

 

Keywords: Jeffrey fluid; Heat lines; Vertical cylinder; Implicit method; Deborah number. 

 

mailto:gjr@cuk.ac.in
mailto:gjr@cuk.ac.in


2 
 

1.INTRODUCTION  

   The study of exterior boundary layer flows with heat transfer is fundamental to numerous 

processes arising in materials fabrication, chemical processing and manufacturing systems. In 

most engineering systems the surface is curved. Typical configurations include conical bodies, 

spheres, ellipses, toroids, curved ducts and cylinders. In particular, the cylinder features in 

numerous convective flow operations includes tubular flows, heat exchangers, membrane-

based separation modules, filtration screens used for clarifying suspensions, coating of wires, 

mixing processes, polymer fiber spinning, food stuff synthesis, nanotechnology etc. Such 

geometries have stimulated considerable interest in engineering analysis and a number of 

investigations have presented solutions for momentum and heat transfer features from cylinders 

with different cross-sections. [1-5].  

      Research on the flow of a non-Newtonian fluid with heat transfer is also a fervent area of 

endeavour owing to abundant industrial applications. These fluids show shear-stress-strain 

relationships which differ considerably from the standard Newtonian model. Many studies 

have been communicated for transport phenomena in non-Newtonian fluids [6-10]. These 

studies feature diverse mathematical models to characterize the behaviour of non-Newtonian 

fluids. Examples of non-Newtonian fluids include coal in water, synthetic lubricants, pulps, 

molten plastics, polymers, ink, glues, emulsions, etc. Some technologies in which such fluids 

are deployed include energy systems, chemicals, cosmetics, polymer processing, 

pharmaceuticals, biotechnology, surface coating of machine components, automotive body 

forming etc. Free convection flows of non-Newtonian fluids have also generated substantial 

attention and an extensive spectrum of rheological models have been utilized including 

viscoelastic, visco-plastic, microstructural and memory fluids. Turan et al. [11] analysed two-

dimensional laminar free convection in an enclosure occupied with non-Newtonian fluids with 

differentially heated sidewalls. Kim et al. [12] have analysed the time-dependent natural 

convection in a square enclosure containing power-law fluids. Recently, Sheremet and Pop 

[13] analysed the flow of viscoelastic fluid in a square cavity. Further, Reddy et al. [14] studied 

the non-Newtonian thermal convection from a vertical cylinder numerically with entropy 

generation. Using finite difference scheme, Reddy et al. [15] analysed the flow of a non-

Newtonian fluid with MHD effects from a vertical plate.  

       In the view of the very complex range of behaviours observed in viscoelastic non-

Newtonian fluids, many different constitutive formulations have been developed in the 

literature. A popular subclass of elastic-viscous models is the Jeffrey fluid [16-21] which 

includes important characteristics of retardation and relaxation times. In fact, this model is a 
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comparatively simple linear model that uses the time derivative rather than convective 

derivative. When subjected to stress a Jeffrey fluid is deformed; however, when stress is 

eliminated, the deformation does not vanish immediately like Newtonian fluids. In this fluid, 

the interior molecular configuration can endure stress for a certain time. Therefore, this Jeffrey 

fluid model has received considerable attention in mathematical modelling. Recently, Hayat et 

al. [22] studied the Jeffrey fluid boundary layer flow over an impermeable inclined stretching 

cylinder with heat transfer. Incompressible Jeffrey flow and heat transfer between coaxial 

cylinders was investigated by Malik et al. [23]. Prasad et al. [24] studied numerically the 

thermal convection boundary layer flow from a cylinder to a Jeffery fluid with the Keller box 

scheme. Sreenadh et al. [25] investigated the free convective Jeffery fluid flow in a vertical 

porous stratum.  

 

       In thermal flow simulation, a very powerful tool is fluid-flow and temperature contour 

visualization which is achieved usually with the assistance of isotherms and streamlines. The 

isotherms are used to exemplify the temperature field distribution in a given region. However, 

they are unable to quantify in sufficient details the actual energy flow pathways. Particularly 

in convective heat transport problems, due to pure conduction, the heat flux direction is non-

orthogonal to that of the temperature contours. In such situations, the heat lines are the best 

way to visualize heat transfer in two-dimensional convective transport processes. These will 

provide the path for transfer of energy which occurs from hot to cold walls. Initially, the  

concept of heat line visualization was developed by Kimura and Bejan [26] and Bejan [27]. 

For open cavities, Bondareva et al. [28-29] examined the heat lines visualization for natural 

convective with nanofluid. Pratibha et al. [30] studied the visualization of heat lines in mixed 

convection flows within a triangular cavity. Using the same idea, Monisha et al. [31] conducted 

heat line visualization in a cavity with a moving horizontal wall. Recently, Vinay et al. [32] 

numerically studied the heat line and mass line visualization in an enclosure. Also, Reddy et 

al. [33] examined the heat line visualization for non-Newtonian fluid from a hollow cylinder. 

The deployment of the heat lines methodology for convection problems is further elucidated in 

[34]. Thus far however the heat lines visualization has not been studied widely in non-

Newtonian heat transfer simulations and has been neglected for the case of the Jeffrey 

viscoelastic fluid. Furthermore, an inspection of literature reveals that relatively limited analysis 

has been presented so far, for time-dependent flows of elastic-viscous Jeffrey fluid from a 

vertical cylinder. Hence the current work presents, for the first time, accurate and detailed 
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visualization of unsteady boundary layer thermal convection flow of a Jeffrey fluid from a uniform 

vertical cylinder by means of the Bejan heat function concept. The mathematical model 

developed in the next section is non-dimensionalized and then solved with a Crank-Nicolson 

finite difference method. Validation with earlier studies (Newtonian) is included. Extensive 

graphical results are presented for the influence of the viscoelastic parameter (Deborah 

number), Prandtl number and also Jeffery rheological parameter on heat and momentum 

characteristics. The current study has to the authors’ knowledge not appeared anywhere in the 

literature and constitutes a novel contribution to modelling aspects of for example thermal 

polymer processing. 

 

2. MATHEMATICAL FORMULATION   

      Consider time-dependent two-dimensional incompressible buoyancy-driven flow of a 

Jeffrey viscoelastic fluid from a heated vertical cylinder. The cylinder has radius  𝑟0 and is 

depicted in Fig. 1. A rectangular coordinate system is adopted in which the x-axis and r-axis 

are considered to be vertically upward and normal to the cylinder. The neighbouring fluid 

temperature is static and analogous to the ambient temperature  𝑇∞
′ . At the initiation of flow, 

i.e.,  𝑡′ = 0, the temperature 𝑇∞
′  is identical for the cylinder and the neighbouring fluid. Soon 

after (𝑡′ > 0), the cylinder temperature is amplified to  𝑇𝑤
′  (> 𝑇∞

′ ) and maintained consistently 

there afterward.  The constitutive equations for viscous incompressible Jeffrey viscoelastic 

fluid are:  

 

  𝑇 = 𝑃𝐼 + 𝑆  and   S =  
μ

1+λ
(γ̇ + λ1γ̈)           (1) 

 

Here all terms are defined in the nomenclature. Incorporating the appropriate shear stress terms 

from Eqn (1), the problem under study may be described by the following governing equations 

for mass, momentum and energy conservation under the Boussinesq approximation [20, 35, 

36]:   

 

  𝜕(𝑟𝑢)

𝜕𝑥
+

𝜕(𝑟𝑣)

𝜕𝑟
 = 0                                                                                                                      (2) 

 𝜕𝑢

𝜕𝑡′ + 𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑟
=  

𝜐

1+𝜆
[

𝜕2𝑢

𝜕𝑟2 +
1

𝑟

𝜕𝑢

𝜕𝑟
+ 𝜆1 (

𝜕3𝑢

𝜕𝑟2𝜕𝑡′ +
𝜕𝑣

𝜕𝑟

𝜕2𝑢

𝜕𝑟2 + 𝑣
𝜕3𝑢

𝜕𝑟3 +
𝜕𝑢

𝜕𝑟

𝜕2𝑢

𝜕𝑥𝜕𝑟

+𝑢
𝜕3𝑢

𝜕𝑥𝜕𝑟2 +
1

𝑟

𝜕2𝑢

𝜕𝑟𝜕𝑡′ +
𝑣

𝑟

𝜕2𝑢

𝜕𝑟2 +
𝑢

𝑟

𝜕2𝑢

𝜕𝑥𝜕𝑟

)] (3)                                                                                                                                                                         

                                            +   g𝛽𝑇(𝑇′ − 𝑇∞
′ )     
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 𝜕𝑇′

𝜕𝑡′ + 𝑢
𝜕𝑇′

𝜕𝑥
+ 𝑣

𝜕𝑇′

𝜕𝑟
=

𝛼

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑇′

𝜕𝑟
)                                                                                  (4) 

The above system is closed by the following conditions: 

 𝑡′ ≤ 0: 𝑇′ =  𝑇∞
′  , 𝑢 = 0, 𝑣 = 0,             for all 𝑥 and 𝑟 

 𝑡′ > 0: 𝑇′ = 𝑇𝑤   
′ , 𝑢 = 0, 𝑣 = 0,              at  𝑟 =  𝑟0 

            𝑇′ = 𝑇∞ 
′ ,  𝑢 = 0, 𝑣 = 0               at  𝑥 = 0                                                                                              

            𝑇′ → 𝑇∞
′ , 𝑢 → 0,

𝜕𝑢

𝜕𝑟
→ 0, 𝑣 → 0    at 𝑟 → ∞                                                           (5) 

 

Invoking the following non-dimensional quantities (for all symbols refer to the nomenclature) 

[37, 38]:    

 X = 𝐺𝑟−1 𝑥

𝑟0
 ,  𝑅 =

𝑟

𝑟0
, 𝑈 = 𝐺𝑟−1 𝑢𝑟0

𝜐
,  𝑉 =

𝑣𝑟0

𝜐
,   𝑡 =

𝜐𝑡′

𝑟0
2 , θ =

𝑇′−𝑇∞
′

𝑇𝑤
′ −𝑇∞

′ , 𝐺𝑟 =
𝑔𝛽𝑇𝑟0

3(𝑇𝑤
′ −𝑇∞

′ )

𝜐2 ,   𝑃𝑟 =

 
𝜐

𝛼
 ,   β = 𝜆1𝜐/𝑟0

2 ,         

 

Insertion of the above relations into the governing Eqns. (2) - (5), leads to the following system 

of partial differential boundary layer equations:  

 

 𝜕𝑈

𝜕𝑋
+

𝜕𝑉

𝜕𝑅
+

𝑉

𝑅
= 0                                                                                                                      (6)  

 𝜕𝑈

𝜕𝑡
+ 𝑈

𝜕𝑈

𝜕𝑋
+ 𝑉

𝜕𝑈

𝜕𝑅
   = θ +   

1

1+𝜆
[

𝜕2𝑈

𝜕𝑅2 +
1

𝑅

𝜕𝑈

𝜕𝑅
+ 𝛽 (

𝜕3𝑈

𝜕𝑅2𝜕𝑡
+

𝜕𝑉

𝜕𝑅

𝜕2𝑈

𝜕𝑅2 + 𝑉
𝜕3𝑈

𝜕𝑅3 +
𝜕𝑈

𝜕𝑅

𝜕2𝑈

𝜕𝑋𝜕𝑅

+𝑈
𝜕3𝑈

𝜕𝑋𝜕𝑅2 +
1

𝑅

𝜕2𝑈

𝜕𝑅𝜕𝑡
+

𝑉

𝑅

𝜕2𝑈

𝜕𝑅2 +
𝑈

𝑅

𝜕2𝑈

𝜕𝑋𝜕𝑅

)]    (7) 

  

 
 𝜕θ

𝜕𝑡
+ 𝑈

𝜕θ

𝜕𝑋
+ 𝑉

𝜕θ

𝜕𝑅
=

1

𝑃𝑟
(

𝜕2θ

𝜕𝑅2 +
1

𝑅

𝜕θ

𝜕𝑅
)                                                                                      (8) 

 

The corresponding initial and boundary conditions are: 

𝑡 ≤ 0: θ = 0, 𝑈 = 0, 𝑉 = 0                 for all X and R  

𝑡 > 0: θ = 1, 𝑈 = 0, 𝑉 = 0                 at   𝑅 =  1; 

           θ = 0, 𝑈 = 0, 𝑉 = 0                  at  𝑋 = 0 

           θ → 0, 𝑈 → 0,
𝜕𝑈

𝜕𝑅
→ 0, 𝑉 → 0     as  𝑅 → ∞                                                               (9) 

 

3.  NUMERICAL SOLUTION  

The unsteady coupled non-linear Eqs. (6) - (8) are evaluated by Crank-Nicolson finite 

difference scheme and the corresponding finite difference equations are:  
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𝑈𝑖,𝑗

𝑘+1−𝑈𝑖−1,𝑗
𝑘+1 +𝑈𝑖,𝑗

𝑘 −𝑈𝑖−1,𝑗
𝑘

2Δ𝑋
+

𝑉𝑖,𝑗
𝑘+1−𝑉𝑖,𝑗−1

𝑘+1 +𝑉𝑖,𝑗
𝑘 −𝑉𝑖,𝑗−1

𝑘

2Δ𝑅
 + (𝐽𝑅)𝑉𝑖,𝑗

𝑘+1  =  0                   (10)    

 

𝑈𝑖,𝑗
𝑘+1−𝑈𝑖,𝑗

𝑘

Δ𝑡
+

𝑈𝑖,𝑗
𝑘

2Δ𝑋
(𝑈𝑖,𝑗

𝑘+1 − 𝑈𝑖−1,𝑗
𝑘+1 + 𝑈𝑖,𝑗

𝑘 − 𝑈𝑖−1,𝑗
𝑘 )+

𝑉𝑖,𝑗
𝑘

4Δ𝑅
(𝑈𝑖,𝑗+1

𝑘+1 − 𝑈𝑖,𝑗−1
𝑘+1 + 𝑈𝑖,𝑗+1

𝑘 − 𝑈𝑖,𝑗−1
𝑘 )  

= 
𝜃𝑖,𝑗

𝑘+1+𝜃𝑖,𝑗
𝑘

2
+

𝐽𝑅

1+𝜆
[

𝑈𝑖,𝑗+1
𝑘+1 −𝑈𝑖,𝑗−1

𝑘+1 +𝑈𝑖,𝑗+1
𝑘 −𝑈𝑖,𝑗−1

𝑘

4(∆𝑅)
]+

1

1+𝜆
[

𝑈𝑖,𝑗+1
𝑘+1 −2𝑈𝑖,𝑗

𝑘+1+𝑈𝑖,𝑗−1
𝑘+1 +𝑈𝑖,𝑗+1

𝑘 −2𝑈𝑖,𝑗
𝑘 +𝑈𝑖,𝑗−1

𝑘

2(∆𝑅)2 ]       

+ 
𝛽

1+𝜆
[

(𝑉𝑖,𝑗+1
𝑘+1 −𝑉𝑖,𝑗−1

𝑘+1 +𝑉𝑖,𝑗+1
𝑘 −𝑉𝑖,𝑗−1

𝑘 )(𝑈𝑖,𝑗+1
𝑘+1 −2𝑈𝑖,𝑗

𝑘+1+𝑈𝑖,𝑗−1
𝑘+1 +𝑈𝑖,𝑗+1

𝑘 −2𝑈𝑖,𝑗
𝑘 +𝑈𝑖,𝑗−1

𝑘 )

8(∆𝑅)3
]  

+
𝛽𝑉𝑖,𝑗

𝑘

1+𝜆
[

(𝑈𝑖,𝑗+2
𝑘+1 −2𝑈𝑖,𝑗+1

𝑘+1 +2𝑈𝑖,𝑗−1
𝑘+1 +𝑈𝑖,𝑗−2

𝑘+1 +𝑈𝑖,𝑗+2
𝑘 −2𝑈𝑖,𝑗+1

𝑘 +2𝑈𝑖,𝑗−1
𝑘 +𝑈𝑖,𝑗−2

𝑘 )

4(∆𝑅)3
] 

+
𝛽

1+𝜆
[

𝑈𝑖,𝑗+2
𝑘+1 −2𝑈𝑖,𝑗

𝑘+1+𝑈𝑖,𝑗−2
𝑘+1 −𝑈𝑖,𝑗+2

𝑘 +2𝑈𝑖,𝑗
𝑘 −𝑈𝑖,𝑗−2

𝑘

4(∆𝑅)2∆𝑡
] + 

(𝐽𝑅)𝛽

1+𝜆
[

𝑈𝑖,𝑗+1
𝑘+1 −𝑈𝑖,𝑗−1

𝑘+1 +𝑈𝑖,𝑗−1
𝑘 −𝑈𝑖,𝑗+1

𝑘

2(∆𝑅)∆𝑡
] 

+ 
𝛽

1+𝜆
[

(𝑈𝑖,𝑗+1
𝑘 −𝑈𝑖,𝑗−1

𝑘
)(𝑈𝑖,𝑗+1

𝑘+1 −𝑈𝑖−1,𝑗+1
𝑘+1 −𝑈𝑖,𝑗−1

𝑘+1 +𝑈𝑖−1,𝑗−1
𝑘+1 +𝑈𝑖,𝑗+1

𝑘 −𝑈𝑖−1,𝑗+1
𝑘 −𝑈𝑖,𝑗−1

𝑘 +𝑈𝑖−1,𝑗−1
𝑘

)

8(∆𝑅)
2

∆𝑋
]  

+ 
𝛽𝑈𝑖,𝑗

𝑘

1+𝜆
[

(𝑈𝑖,𝑗+1
𝑘+1 −𝑈𝑖−1,𝑗+1

𝑘+1 −2𝑈𝑖,𝑗
𝑘+1+2𝑈𝑖−1,𝑗

𝑘+1 +𝑈𝑖,𝑗−1
𝑘+1 −𝑈𝑖−1,𝑗−1

𝑘+1 +𝑈𝑖,𝑗+1
𝑘 −𝑈𝑖−1,𝑗+1

𝑘 −2𝑈𝑖,𝑗
𝑘 +2𝑈𝑖−1,𝑗

𝑘 +𝑈𝑖,𝑗−1
𝑘 −𝑈𝑖−1,𝑗−1

𝑘 )

2(∆𝑅)2∆𝑋
] 

+
(𝐽𝑅)𝛽𝑉𝑖,𝑗

𝑘

1+𝜆
[

𝑈𝑖,𝑗+1
𝑘+1 −2𝑈𝑖,𝑗

𝑘+1+𝑈𝑖,𝑗−1
𝑘+1 +𝑈𝑖,𝑗+1

𝑘 −2𝑈𝑖,𝑗
𝑘 +𝑈𝑖,𝑗−1

𝑘

2(∆𝑅)2
] 

+ 
(𝐽𝑅)𝛽𝑈𝑖,𝑗

𝑘

1+𝜆
[

𝑈𝑖,𝑗+1
𝑘+1 −𝑈𝑖−1,𝑗+1

𝑘+1 −𝑈𝑖,𝑗−1
𝑘+1 +𝑈𝑖−1,𝑗−1

𝑘+1 +𝑈𝑖,𝑗+1
𝑘 −𝑈𝑖−1,𝑗+1

𝑘 −𝑈𝑖,𝑗−1
𝑘 +𝑈𝑖−1,𝑗−1

𝑘

4(∆𝑅)∆𝑋
]             (11) 

    

𝜃𝑖,𝑗
𝑘+1−𝜃𝑖,𝑗

𝑘

Δ𝑡
 + 

𝑈𝑖,𝑗
𝑘

2Δ𝑋
(𝜃𝑖,𝑗

𝑘+1 − 𝜃𝑖−1,𝑗
𝑘+1 + 𝜃𝑖,𝑗

𝑘 − 𝜃𝑖−1,𝑗
𝑘 ) + 

𝑉𝑖,𝑗
𝑘

4Δ𝑅
(𝜃𝑖,𝑗+1

𝑘+1 − 𝜃𝑖,𝑗−1
𝑘+1 + 𝜃𝑖,𝑗+1

𝑘 − 𝜃𝑖,𝑗−1
𝑘 ) =  

[
𝜃𝑖,𝑗+1

𝑘+1 −2𝜃𝑖,𝑗
𝑘+1+𝜃𝑖,𝑗−1

𝑘+1 +𝜃𝑖,𝑗+1
𝑘 −2𝜃𝑖,𝑗

𝑘 +𝜃𝑖,𝑗−1
𝑘

2𝑃𝑟(∆𝑅)2
] + (JR)[

𝑈𝑖,𝑗+1
𝑘+1 −𝑈𝑖,𝑗−1

𝑘+1 +𝑈𝑖,𝑗+1
𝑘 −𝑈𝑖,𝑗−1

𝑘

4Pr (∆𝑅)
]               (12) 

where,  𝐽𝑅 =
1

[1+(𝐽−1)∆𝑅]
. The methodology to solve the above equations is explained at length 

in [15, 38]. The region of integration with  𝑋𝑚𝑖𝑛 = 0, 𝑋𝑚𝑎𝑥 = 1, 𝑅𝑚𝑖𝑛 = 1 and 𝑅𝑚𝑎𝑥(=  ∞)  =

20  is considered with 𝑅𝑚𝑎𝑥 far from the boundary layer edges. It is seen that 100×500 grid 

compared with 50×250 and 200×1000 does not have a significant effect on the results of steady-

state flow variables which are shown in the Fig. 2. Hence according to this observation, a 
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uniform grid size of 100 X 500 is of sufficient accuracy for this study with the mesh sizes of 

0.01 and 0.03, respectively. Also, to produce reliable results, the time-step sensitivity analysis 

has been conducted for various time-step sizes and is summarized in Table 3. The effective 

time-step size Δ𝑡 (𝑡 = 𝑘Δ𝑡, 𝑘 = 0, 1, 2, … ) is fixed as 0.01 for numerical computations.  

 

4. RESULTS AND DISCUSSION  

The correctness of the numerical results is checked by relating the present results with reported 

by Lee et al. [5], for air (Pr = 0.71), β = 0 and 𝜆 = 0  and shown in Fig. 3. Both results match 

well. The simulated non-dimensional flow variables, average heat transfer coefficients and wall 

shear stress are analysed in detail in the following subsections along with streamlines, heat 

lines and isotherms for different physical parameters values such as Deborah number (β) and 

Prandtl number (Pr). Such type of variations is shown graphically and discussed in the 

following subsections. Also, in this problem the Deborah number, β (=
λ1𝜐

𝑟0
2  ) is the ratio of the 

characteristic time to the time-scale of deformation. If β > 0.1 the elastic effects are dominant 

and the material follows viscoelastic behaviour whereas if β < 0.1 then viscous effects prevail. 

Hence for analysing the Jeffrey fluid flow model, we consider β > 0.1 values with fixed Jeffrey 

fluid parameter (λ=1.0) in the present research paper.  Similarly, the Prandtl number values 

0.68 and 7.2 signify the hydrogen and sea water, respectively. Thermal diffusivity dominates 

for lower value of Pr and for higher Pr the momentum diffusivity dominates the behaviour.   

 

3.1 Flow variables 

       The velocity (U) graph at two distinct locations, i.e., (1, 1.19) and (1, 3.09) for various Pr 

and 𝛽 with fixed 𝜆 values are drawn against t, and which are shown graphically in Figure 4.  

The velocity graphs depicted in Figs. 4(a-b) are drawn in the vicinity of and distant from the 

hot cylinder wall, respectively. It can be seen that the velocity at all the position upsurges with 

t, accomplishes the temporal maxima, and at the end reaches the asymptotic time-independent 

state. From Fig. 4a and 4b, it is clearly identified that for Pr value 0.68, the velocity declines 

as β increases. Also, augmenting value of β or Pr, results in the velocity magnitudes for the 

Jeffrey fluid being markedly lower than for the Newtonian fluid. Further for the case of the 

Newtonian fluid (𝛽 = 0, 𝜆 = 0) and Pr = 0.68, the wall velocity is enhanced with time 
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monotonically, fluctuates, accomplishes the temporal peak, and becomes asymptotically 

steady. The time taken for attaining the temporal peak of the velocity and the time-independent 

state upsurges with enhancing Pr or 𝛽. Further, when 𝛽 is increased, the time required to 

achieve the temporal peak is elevated whereas the time to reach the time-independent state 

decreases. When 𝛽 > 0.3  and Pr = 0.68 the velocity magnitudes for the Newtonian fluid 

exceed those of the Jeffrey fluid whereas when Pr = 7.2 this trend is opposite. Evidently the 

Prandtl number (ratio of momentum and thermal diffusivity) exerts a significant impact on 

velocity field and can therefore contribute to flow deceleration or acceleration of the 

viscoelastic fluid. For the second location (Fig.4b) for the values of β and Pr the time-

dependent velocity values of the Newtonian fluid are consistently in excess of the Jeffrey fluid 

i.e. the viscoelastic fluid exhibits flow deceleration.   

     The time-independent state velocity versus normal coordinate R for all values of the 

physical parameters is plotted in Fig.5. Here, the U curves commence with zero velocity then 

ascend to peak values, thereafter, plummeting to zero again, in consistency with the far field 

boundary conditions (vanishing free stream velocity). The deviation of the Jeffrey fluid U 

profiles from the hot wall is noticed to be less compared to that of the Newtonian U profiles.  

It is also manifest that, in close proximity to the hot wall the magnitude of the velocity of the 

Jeffrey fluid appears larger than for the Newtonian fluid whereas far from the heated wall 

(cylinder surface) this behaviour is opposite. Hence from this graph, it is identified that for 

different 𝛽 steady-state velocity profile for Jeffrey fluid are completely different as compared 

to Newtonian profiles. This result is due to the fact that at lower values of Deborah number, 

the material acts in a more fluid-like manner i.e. greater viscous behaviour akin to Newtonian 

liquids. At higher values of Deborah number, however, the material behaviour enters into the 

non-Newtonian fluid regime, dominated increasingly by elasticity showing characteristics 

more associated with a solid. Also, it is noted that from the hot wall the deviation of the velocity 

profiles is less for the Jeffrey fluid compared to the general Newtonian fluid.   

       The transient temperature profiles(𝜃) at a particular location (1, 1.15) for various values 

of Deborah number (𝛽) and Prandtl number (Pr) with constant λ are depicted in Fig. 6. It is 

pertinent to note that in the Jeffrey fluid model, λ is the ratio of relaxation and retardation times 

and λ1 is the retardation time. In the present study however, these parameters are fixed as they 

have been addressed for both internal and external flows in numerous other studies including 

Tripathi and Bég [39], Prasad et al. [40], Prasad et al. [41] and Tripathi et al. [42]. To conserve 

space, the temperature profiles at other locations are not shown since they also exhibit similar 
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transient behaviour. The temperature profiles in these graphs initially increase with time 

steadily and after reaching the temporal peak they become asymptotically steady. Temperature 

profiles decrease as Pr increases or 𝛽 decreases since fluids with higher Prandtl number have 

lower thermal conductivities implying a suppression in thermal diffusion into the fluid and 

greater heat transfer to the boundary (cylindrical surface). Also, it interesting to note that these 

profiles with respect to Jeffrey fluid primarily overlap with the Newtonian fluid and then 

exhibit divergence from the Newtonian case with progressively greater elapse in time. In 

particular when Pr = 7.2, the Jeffrey fluid 𝜃 profile deviates substantially from the profile for 

the Newtonian fluid at t = 7.68. Thus, during the initial time level, the Jeffrey fluid exhibits 

similar characteristics to Newtonian fluids. The time required to achieve the temporal peak of 

the temperature requires high values of Deborah number (β) while for a fixed value of Pr, this 

maximum value decreases as β increases. As Pr upsurges, the transient temperature value is 

reduced and it is evidently greater for the Jeffrey fluid compared with the Newtonian fluid.  

     Temperature profiles at steady-state for constant ratio of relaxation and retardation times 

(λ) and different values Pr and 𝛽 are shown in Figure 7. At all-time values, these profiles begin 

with the hot wall temperature i.e., θ = 1 and decrease monotonically to zero temperature along 

the R coordinate. Also, the time required to attain the steady-state is enhanced for increasing 𝛽 

and also give rise to thicker profiles. The opposite trend is apparent for a higher value of Pr. 

When Pr is high, instead of thermal diffusion, the momentum diffusion dominates, and this 

affects the behaviour near and at distance from the hot wall. Furthermore, it is identified that 

the 𝜃 profiles for the Jeffrey fluid (β, λ > 0) vary considerably as compared to the Newtonian 

fluid (β = 0, λ = 0).    

3.2 Average wall and heat transfer coefficients 

The non-dimensional wall shear stress and heat transfer rate are given, respectively by: 

 𝐶𝑓 = ∫ (
𝜕𝑈

𝜕𝑅
)

𝑅=1
𝑑𝑋

1

0
                                                                                                          (13) 

 𝑁𝑢 = − ∫ (
𝜕θ

𝜕𝑅
)

𝑅=1
𝑑𝑋

1

0
                                                                                                      (14) 

    The effects of Pr and β (for constant λ) on  𝐶𝑓 are shown graphically in Fig. 8.  For all values 

of Pr and β,  𝐶𝑓 increases with time and eventually the fluctuations are damped out and the 

skin friction exhibits steady-state asymptotically smooth behaviour. Also, for increasing value 
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of β, the  𝐶𝑓 magnitudes are enhanced (flow acceleration) and the reverse tendency (flow 

retardation) is observed with increasing the Pr. In particular it is seen that as Pr is elevated the 

value of  𝐶𝑓 is increased for the Jeffery fluid compared to that of Newtonian fluid.    

     Figure 9 depicts the influence of Pr and β on 𝑁𝑢. Increasing the β value leads to a 

decrement in 𝑁𝑢 and as Pr value increases, the 𝑁𝑢 (heat transfer rate at the cylinder wall) for 

the Jeffrey fluid is lower as compared with  𝑁𝑢 for the Newtonian fluid. Also, for fixed 𝛽 (= 

0.3) the 𝑁𝑢 magnitudes are markedly augmented with the rising values of Pr.   

4.3 STREAM AND HEAT FUNCTIONS 

        The fluid flow visualization patterns are simulated with the stream function 𝜓, which 

satisfies continuity equation i.e., Eqn. (6). The stream function 𝜓 related to velocity 

components U, V for two-dimensional flows is given as: 

𝑈 =
1

𝑅

𝜕ψ

𝜕𝑅
            and          𝑉 = −

1

𝑅

𝜕ψ

𝜕𝑋
                                                 (15)             

Eqn. (15) leads to the following equation and boundary conditions: 

𝜕2ψ

𝜕𝑋2 +
𝜕2ψ

𝜕𝑅2 = 𝑈 + 𝑅
𝜕𝑈

𝜕𝑅
− 𝑅

𝜕𝑉

𝜕𝑋
                                                                                          (16)   

The no-slip condition is valid at all boundaries as there is no cross flow, hence ψ = 0 is used 

as a boundary condition. i.e. ψ =
𝜕ψ

𝜕𝑋
= 0 at 𝑋 = 0 and 𝑋 = 1(𝑋𝑚𝑎𝑥), ψ =

𝜕ψ

𝜕𝑅
= 0 at 𝑅 = 1 , 

𝜕ψ

𝜕𝑅
→ 0 as 𝑅 → ∞. Also, the heat function (Θ′) is defined in terms of first-order derivatives as: 

𝜕Θ′

𝜕𝑥
= 𝜌𝑟𝑣𝑐𝑝(𝑇′ − 𝑇∞

′  ) − 𝑘1𝑟
𝜕𝑇′

𝜕𝑟
                                                                                   (17a) 

−
1

𝑟

𝜕Θ′

𝜕𝑟
= 𝜌𝑢𝑐𝑝(𝑇′ − 𝑇∞

′  )                                                                                  (17b) 

Here Θ′satisfies the thermal Eqn. (4). The dimensionless heat function Ω =
Θ′

𝑘1(𝑇𝑤
′  −𝑇∞

′  )𝑟0𝐺𝑟
  and 

non-dimensionality is achieved so that its higher value equals the 𝑁𝑢 on the hot wall [26] and 

equations (17a) and (17b) can then be rewritten as:  

𝜕Ω

𝜕𝑋
= 𝑃𝑟(𝑅𝑉θ) − 𝑅

𝜕θ

𝜕𝑅
                                                                                                    (18a) 
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−
𝜕Ω

𝜕𝑅
= 𝑃𝑟(𝑅𝑈θ)                                                                                                            (18b) 

It is easy to verify that equations (18a) and (18b) identically satisfy the steady-state form of 

energy Eq. (8) and using these equations, one can derive the Poisson equation which 

gives the heat function field.  

𝜕2Ω

𝜕𝑋2 +
𝜕2Ω

𝜕𝑅2 =  𝑃𝑟 [𝑅
𝜕(𝑉θ)

𝜕𝑋
− 𝑅

𝜕(𝑈θ)

𝜕𝑅
− 𝑈θ] − 𝑅

𝜕2θ

𝜕𝑋𝜕𝑅
                                                      (19) 

The boundary conditions for the heat function (𝛺) are taken directly from Eqns. (18a) and 

(18b), i.e., 

Ω(0,0) = 0 , 

𝜕Ω

𝜕𝑋
=

𝜕Ω

𝜕𝑅
= 0 at 𝑋 = 0,  

Ω = − ∫ (
𝜕𝜃

𝜕𝑅
)

1

𝑋=0
𝑑𝑋 = 𝑁𝑢  at  𝑅 = 1 and  

𝜕Ω

𝜕𝑅
→ 0 as 𝑅 → ∞.   

The values of 𝜓 and 𝛺, are evaluated with the help of second-order finite difference formulae. 

The steady-state temperature contours, streamlines, and heat lines are depicted in Fig. 10 for 

different values of Deborah number (𝛽) with fixed Pr and λ. It is evident that the variation of 

heat lines occurs closer to the hot wall than for the isotherms and streamlines. Noting that 

velocity satisfies the no-slip condition at the cylinder wall, Fig. 10(a), implies that the 

streamlines are compressed around the foremost edge of the cylinder and the maximum velocity 

occurs here. Hence, the heat lines in the vicinity of the cylinder wall are perceived to be thicker 

for small X values. Also, the relevant fluid flow and heat transport phenomena occur inside the 

thermal boundary layer, in consistency with boundary layer theory [43]. The heat lines depict 

the heat extraction from the hot wall. The heat lines denote the well-bordered corridors where 

the heat is transported. The heat function contours designate the surrounding pathways, and 

these are effective tools for visualizing rate of heat transfer rather than the isotherm lines. It is 

further noted that the isotherms presented in Fig. 10(b), are analysed by the temperature 

echelons in the thermal region; on the other hand, they are weak and inadequate tools for 

understanding the concept of heat flow visualization and analysis. Hence the study of heat lines 

is significant for achieving an improved understanding of heat transfer visualization and can 

be observed in Fig. 10(c). As 𝛽 is increased, the maximum value of the heat function Ω is 
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reduced, since the 𝑁𝑢 decreases on the hot wall (R=1) as shown in Table 2. The heat lines 

observed to be closer to the hot wall for higher values of 𝛽, whereas the converse trend is noted 

for the isotherms.       

4.4 Difference between the flow of Jeffrey and Newtonian fluids 

    Figure 11 visualizes the velocity and temperature variable contours for the non-Newtonian 

Jeffrey and Newtonian fluid.  The Jeffrey fluid velocity curve achieves lower magnitudes than 

the Newtonian fluid, which may be attributable to the occurrence in the Jeffrey fluid model of 

additive diffusion terms as given in Eqn. (8). Also, it is seen that the time-independent state 

temperature contours for the Jeffrey fluid attain a thicker temperature layer as compared to 

those of the Newtonian fluid.   

    Table 1 explains the difference between Jeffrey fluid (Table 1(a)) and Newtonian fluid 

(Table 1(b)) flows with respect to velocity and temperature in terms of the temporal peak and 

the steady-state values, at two distinct locations.  It is identified that times taken for the flow-

field variables to attain the temporal peak and steady-state are increased with amplifying values 

of Pr and β.  Also, for all values of Pr and β, the time required to attain the temporal peak and 

steady-state of all flow variables for the Jeffrey fluid is higher than the Newtonian fluid. 

Further, for a small value of Pr, the maximum velocities occur at X = 1.0. These values for 

Jeffrey fluid are smaller compared to Newtonian fluid. However, for higher Pr values this trend 

is reversed.   

    Table 2 compares 𝐶𝑓 and 𝑁𝑢 values for the Jeffrey fluid (Table 2(a)) and Newtonian fluid 

(Table 2(b)) with fixed λ value.  It is noticed that for each value of Pr and 𝛽 the average friction 

factor 𝐶𝑓 of a Jeffrey fluid attains larger values whereas for Newtonian fluid it shows lower 

values. The contrary behaviour is computed for the average heat transfer coefficient 𝑁𝑢. In 

short, the viscoelastic characteristic induces significant deviation in both skin friction and wall 

heat transfer rate. 

5. CONCLUDING REMARKS 

This paper presents a numerical study of time-dependent free convective flow of a Jeffrey 

viscoelastic fluid in the external boundary layer flow from a uniformly heated vertical cylinder. 

Graphical solutions are presented for the impact of two specific parameters i.e. Deborah 
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number 𝛽 and Prandtl number Pr with fixed Jeffrey fluid parameter relaxation to retardation 

time ratio (𝜆). Based on the above results we have drawn the following conclusions:    

1. The time required for attaining the steady-state is elevated with a rise in the values of 

Pr and  𝛽.   

2. The velocity and temperature functions are reduced with increasing of Pr and 

decreasing values of 𝛽. 

3. As β increases, the  𝐶𝑓 magnitudes are enhanced and the reverse tendency is observed 

with increasing Pr. Similarly, 𝑁𝑢 magnitudes are augmented with the rising values of 

Pr and the reverse trend is computed for 𝛽 values. 

4. Flow visualization shows that for increasing values of Deborah number, the streamlines 

and heat lines become closer to the hot wall whereas the isotherms increasingly move 

away from the wall.    

5. The deviations of the heat lines from the hot wall decrease with higher values of 

Deborah number.  

6. The transient and steady-state values of velocity, temperature, average wall shear stress 

(skin friction) and Nusselt number (wall heat transfer rate) for the Jeffrey fluid flow 

vary considerably from those computed for Newtonian fluids. 

The current study has examined one type of rheological fluid, namely viscoelastic fluid. Future 

studies will consider alternate models including Eringen’s micropolar model [44] and will be 

communicated imminently. 

 

NOMENCLATURE  

 𝐶𝑓        average skin-friction coefficient 

 g         acceleration due to gravity 

𝑁𝑢       average Nusselt number  

Gr        Grashof number 

Pr        Prandtl number 

𝑘1        thermal conductivity  

 𝑟0        radius of cylinder 

r           radial coordinate 

R         dimensionless radial coordinate 

𝑡′         time 

t          dimensionless time 
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𝑇′        temperature 

𝑢, 𝑣      velocity component in 𝑥, 𝑟 direction 

𝑥          axial coordinate 

𝑈, 𝑉     dimensionless velocity component in 𝑋, 𝑅 direction 

𝑋         dimensionless axial coordinate 

𝛽𝑇         volumetric coefficient of thermal expansion 

 

Greek letters 

 θ      dimensionless temperature   

 β      Deborah number  

 Θ′     heat function  

 𝜇      dynamic viscosity  

Ω       dimensionless heat function  

ψ       dimensionless stream function 

𝛼        thermal diffusivity of viscoelastic fluid 

𝜌        density of viscoelastic fluid 

𝜐        kinematic viscosity of viscoelastic fluid  

 

Subscripts 

(i, j)   grid level (X, R) coordinate system  

 w      condition on the wall 

 k       time step level 

 ∞      free stream condition 
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TABLES 

 

Table 1:  The time required for various flow-field variables to attain the temporal peak and the 

time-independent state; the peak velocity for various control parameters pertaining to (a) 

Jeffrey fluid; (b) Newtonian fluid (𝛽 = 0.0, 𝜆 = 0.0).  

 

 

 

 

 

 

 

 

  

 

  Pr            𝛃            𝛌                 

 Temporal maximum (t) of 

      

  U (1,1.19)       𝛉(1,1.15) 

 

 

Steady-state 

time(t) 

 

                                

 

Maximum velocity (U)                         

at X = 1.0 

(a) Jeffrey fluid 

0.68         0.3           0.1                                                                              

0.68         0.5           0.1 

0.68         0.6           0.1 

0.68         0.8           0.1 

7.2           0.3           0.1 

(b) Newtonian fluid             

0.68         0.0          0.0                 

7.2           0.0          0.0 

    

   12.14                 10.41                   

   15.54                 13.43 

   16.96                 14.79 

   19.82                 17.61 

   27.06                 24.33 

 

   4.65                   4.47                              

   7.90                   7.38 

 

     

               31.49   

               34.74 

               36.16 

               38.71 

               48.85 

 

               31.59 

               37.25              

 

                   0.2379 

                   0.1831 

                   0.1726 

                   0.1663 

                   0.0905 

 

                   0.5003 

                   0.2320 
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Table 2: Comparison between (a) Jeffrey fluid and (b) Newtonian fluid flows for various 

values of control parameters with respect to the average values of  −𝐶𝑓  and   𝑁𝑢. 

    

  Pr                     𝛃                  𝛌                 

  

                     −𝑪𝒇 

 

                                

          𝑵𝒖  

(a) Jeffrey fluid 

  

  

 

 

 

(b) Newtonian fluid             

    

 0.68            0.3          0.1                                                                                        

 0.68            0.5          0.1 

 0.68            0.6          0.1 

 0.68            0.8          0.1 

 7.2              0.3          0.1 

  

 0.68            0.0          0.0                    

 7.2              0.0          0.0 

 

     

                 2.6760 

                 3.1295 

                 3.2475 

                 3.3641 

                 1.0485 

                     

                 0.8920 

                 0.5576 

 

 

               0.6867 

               0.6405 

               0.6245 

               0.6000 

               1.0363 

 

               0.8523 

               1.4464 

                

  

Table 3: Analysis of the time-step sensitivity for selecting time-step size.             

 

 

 

Time step 

size  (∆𝑡 ) 

 

Average skin-friction coefficient (−𝐶𝑓)  

for Pr = 0.68,  β = 0.5 and  λ = 0.1 . 

 

Average Nusselt number ( 𝑁𝑢) for 

Pr = 0.68,  β = 0.5 and  λ = 0.1.  

 

0.5 

 

1.188643 

 

0.892280 

 

0.1 

 

1.293957 

 

0.806429 

 

0.08 

 

1.658031 

 

0.778909 

 

0.05 

 

2.928810 

 

0.702803 

 

0.02 

 

3.109601 

 

0.660701 

 

0.01 

 

3.129592  

 

0.640584  
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FIGURES 

 

 

         Figure 1:  Schematic of the investigated problem and coordinate system.  
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 Figure 2:  Grid independence test.  

 

 

 

 

 



24 
 

 

 

 

 

 

                         Figure 3: Comparison of the velocity and temperature profiles. 
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4(a) 

                                                                      

 

4(b) 
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Figure 4:  The simulated transient velocity profile (U) against time t for different values of Pr 

and β at the point (a) (1, 1.19); (b) (1, 3.09).  

 

Figure 5: The simulated steady-state velocity profile (U) against R at X = 1.0 for different 

values Pr and β. 
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Figure 6: The simulated transient temperature (θ) against time t at the point (1, 1.15) for                                                                                                                                                                                                                                                            

different values of Pr and β. 
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Figure 7:  The simulated steady state temperature profile (θ) against R at X = 1.0 for different 

values of Pr and  β.   
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             Figure 8:   The simulated average skin friction (𝐶𝑓 ) for different values of Pr and β.  

 

 

 

 

 

 



30 
 

 

 

 

 

 

       Figure 9:  The simulated average Nusselt number (𝑁𝑢 ) for different values of Pr and β. 
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                                                             (10a) 
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                                                                  (10b) 
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                                                                         (10c)  

Figure 10:  Steady-state (a) streamlines (Ψ), (b) isotherms (θ) and (c) heat lines (Ω) for 

different values of 𝛽 and fixed values of Pr = 0.68, λ = 0.1. 
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Figure 11:  Steady-state velocity (U) and temperature (θ) contours with Pr = 0.68, (a) Jeffrey 

fluid (b) Newtonian fluid.  

 

 


