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Biomimetic sulfur-deficient indium sulfide (In2.77S4) was synthesized by a template-assisted

hydrothermal method using leaves of Mimosa pudica as a template for the first time. The

effect of this template in modifying the morphology of the semiconductor particles was

determined by physicochemical characterization, revealing an increase in surface area,

decrease in microsphere size and pore size and an increase in pore volume density in

samples synthesized with the template. X-ray photoelectron spectroscopy (XPS) analysis

showed the presence of organic sulfur (SeO/SeC/SeH) and sulfur oxide species (eSO2, SO3
2�,

SO4
2�) at the surface of the indium sulfide in samples synthesized with the template. Bio-

mimetic indium sulfide also showed significant amounts of Fe introduced as a contaminant

present on theMimosa pudica leaves. The presence of these sulfur and iron species favors the

photocatalytic activity for hydrogen production by their acting as a sacrificial reagent and

promoting water oxidation on the surface of the templated particles, respectively. The

photocatalytic hydrogen production rates over optimally-prepared biomimetic indium sul-

fide and indium sulfide synthesized without the organic template were 73 and 22 mmol g�1,

respectively, indicating an improvement by a factor of three in the templated sample.
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Introduction

Hydrogen has emerged as a next-generation energy carrier,

and in recent years photocatalytic water splitting using solar

energy has been studied as a potential method for sustainable

hydrogen production. Since Fujishima and Honda demon-

strated that photocatalytic water splitting can be achieved

using a photoelectrochemical cell containing a TiO2 semi-

conductor anode, a large number of semiconductors have

been developed for this purpose. Unfortunately, most of them

are wide band gap semiconductors and only active under UV

light irradiation [1e5]. Tomake themost of the abundant solar

spectrum, the development of visible-light-driven photo-

catalysts is needed. Sulfides are attractive candidates due to

their suitable band gaps and good catalytic activities for

hydrogen production, with CdS being widely studied as a

significant sulfide in this regard [6e9]. However, its photo-

catalytic efficiency is low due to recombination of charge

carriers, and it is not stable under light irradiation because it

suffers from photo-corrosion [10]. In2S3, a typical IIIeVI group

chalcogenide with a band gap of 2.0e2.2 eV, has also been

thoroughly investigated as a visible-light and non-toxic pho-

tocatalyst due to its stable chemical composition and high

photoconductivity, properties that also make it useful for

applications in photovoltaic solar cells [11e13]. There are

three different crystalline structures of In2S3: a-In2S3, b-In2S3,

or g-In2S3, can be formed depending on the growth tempera-

ture. The b-In2S3 phase (typically sulfur-deficient In2.77S4) is

the most stable structural form with a cubic or tetragonal

structure [14]. Its structure is related to a spinel latticewith the

cation vacancies located on either the octahedral or tetrahe-

dral sites. The sulfur-deficient phase can be interpreted as a

quasi-ternary compound formula: (In1-x) (In2)S4, which con-

sists of a unit cell made of In atoms, S atoms and S vacancies

[15,16].

Among the many different methods used to process and

synthesize inorganic materials, hydrothermal synthesis pre-

sents several advantages over more conventional techniques,

such as, energy saving and cost effectiveness, simplicity,

higher purity products, higher reaction rates, better nucle-

ation control and better control of size and shape [17]. More-

over, desired morphologies can be obtained by using different

synthetic strategies, like varying reaction temperature and

time, or the incorporation of organic additives and templates

to impart structural features. This allows the preparation of

highly ordered low-dimensional arrays with morphologies

directly determined by the templates [17e20]. Indium sulfide

has been synthesized by the hydrothermal method, varying

different parameters such as, reaction time, temperature,

precursor reagents and additives or templates, with the aim of

optimizing its photocatalytic activity for hydrogen evolution

or the oxidation of different modelled water pollutants

[21e25]. In these studies it was found that only the cubic

crystal structure shows photocatalytic activity, while the

tetragonal structure does not. Moreover, better activities were

found with morphologies favoring the exposure of the (311)

plane, which is more active for the photodegradation of dyes

than the other planes of this structure [22,23]. Additionally,

coupling with other materials such as In2O3 and In(OH)3 that
induce charge separation, and the design of architectures that

enhance light absorption have been demonstrated to improve

the photocatalytic performance of indium sulfide [24,25].

Many approaches have been developed to improve ab-

sorption of light in photocatalysis, such as doping with noble,

transition or non-metals [26e28], and also adopting novel

morphology designs. Interestingly, nature creates a diversity

of biological structures and species that are currently used as

templates to synthesize functional materials [29,30], such as

bacteria, pollen grains, butterfly wings, diatoms, stems and

leaves [31e37]. Plant leaves are a synergy of intricate struc-

tures in which light harvesting, photoinduced charge sepa-

ration, and catalysis modules combine to perform

photosynthesis, capturing the solar energy and splitting water

into oxygen and hydrogen (in the form of reducing equiva-

lents) [38,39]. Thus, coupling the leaf-like hierarchical struc-

ture onto the electronic structure of a semiconductor may

offer a route to the development of new materials for solar

energy harvesting and conversion. Based on this concept, we

describe a simple and cost-effective method for the controlled

synthesis of indium sulfide via a biomimetic method using a

template-assisted hydrothermal process. The Mimosa pudica

leaf was selected as the template because of its microstruc-

ture, naturally adapted for the efficient absorption of light (as

is evident from its well-known sensitivity to sun light [40,41]),

a feature thatmay be transferrable to the biomimeticmaterial

by adopting its morphology to increase light harvesting [42].

This microstructure has recently inspired other designs, like

pressure sensors and self-organizing materials for applica-

tions in microfluidics, biosensors and water purification sys-

tems [43,44]. Moreover, extract fromMimosa pudica leaves and

flowers is becoming a popular reducing and capping agent (or

bio-template) and has already been used in the green syn-

thesis of Ni, Co, Cu, Au, Ag, Fe and ZnO nanoparticles as well

as for CaSiO3:Pr
3þ and CaSiO3:Sm

3þ nanophosphors [45e50].
Experimental

Synthesis of biomimetic indium sulfide by a template-
assisted hydrothermal method

Mimosa pudica leaves were collected and washed first with

ethanol in a sonicated bath for 15 min, and then with

deionized water. The leaves were dried in air for 48 h, pul-

verized in an agate mortar and used as the template. The

proper amount (see below) of indium acetate was dissolved

in 40 mL of deionized water in a beaker and 2 mL of sulfuric

acid (1:10) was added to adjust the pH to around 2 under

stirring. Citric acid (0.2 g) was used as stabilizer agent in the

reaction. Finally, thioacetamide and the treated Mimosa

pudica leaves were added into the solution. In order to eval-

uate the effect of the amount of template in the synthesis,

three weight ratios (indium acetate: Mimosa pudica); 2:1, 1:1

and 1:2 were used (referred to as S1, S2 and S3, respectively).

Then, the reaction mixture was transferred into a Teflon

liner, sealed in a stainless steel autoclave and maintained at

150 �C for 24 h. After cooling to room temperature, the pre-

cipitate obtained was vacuum filtered, washed with deion-

izedwater several times and calcined at 400 �C for 2 h under a
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Fig. 1 e XRD patterns of control sample (S0) and biomimetic

indium sulfide (S1, S2, S3).
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nitrogen atmosphere. As a comparison, indium sulfide

powder was synthesized under the same conditions

(including calcination) without the template, (denoted as S0).

Additionally, two control samples containing 0.1 and 1

atomic percent of Fe were prepared by adding iron acetyla-

cetonate to evaluate the influence of Fe on in the hydrogen

production activity.

Characterization

The crystal structure was determined by X-ray powder

diffraction (XRD) with a D8 Advance diffractometer using Cu

Ka radiation (l ¼ 1.5418 �A). The morphology was observed by

scanning electronmicroscopy (SEM) using a JEOL JSM-6490-LV

microscope adapted with an energy dispersive X-ray spec-

troscopy (EDS) system for the semi-quantitative determina-

tion of chemical compositions. Samples for scanning

transmission electron microscopy (STEM) were sonicated in

methanol for 5 min and then drop cast on AGAR Scientific 400

mesh continuous carbon coated Cu support grids. Elemental

mapping was conducted by STEM energy dispersive spec-

troscopy (STEM-EDS) using a FEI Titan G2 ChemiSTEM oper-

ating at 200 kV with 360 pA beam current and the

quantification was corrected using the ZAF method. The

specific surface area was determined using the nitrogen gas

adsorption-desorption method and the Brunauer-Emmer-

Teller (BET) model [51] was used to interpret the data. The

steady state UVeVis absorption spectra were recorded using a

Cary 5000 UVeViseNIR spectrometer. Photoelectrochemical

measurements were performed using the conventional three-

electrode setup connected to an AUTOLAB PGSTAT 302 N

potentiostat-galvanostat. In this configuration we used bio-

mimetic indium sulfide (active area of 1 cm2) over an adhesive

Cu tape asworking electrode. Pt wire and anAg/AgCl electrode

were used as the counter and reference electrodes, respec-

tively. The electrolyte was 0.5 M Na2SO4 aqueous solution

which was deoxygenated by bubbling nitrogen for 10 min

before each experiment. A 254 nm UV pen-ray lamp was used

as the irradiation source. The decay of the photocurrents was

modulated to calculate the transient time constants as

described by Fakhouri et al. [52]. For the XPS analysis, the

materials weremounted on a piece of Cu tape and analyzed by

depth-profiling XPS using synchrotron radiation at the I311

beamline, at the MAX II storage ring at MAX-Lab in Lund

Sweden. Survey scans were performed at photon energy of

950 eV. The binding energy of the spectra was calibrated to the

C 1s hydrocarbon peak at 284.8 eV. Photon energies were also

adjusted to obtain scans of the In 3d and S 2p core levels at

fixed kinetic energies (KEs) between 150 and 800 eV in order to

vary the sampling depth from 2.9 to 8.9 nm [53]. These were

calculated from the inelastic mean free path (IMFP), obtained

from the TPP-2M formula, taking the sampling depth to be

three times the IMFP [54]. The recorded data were corrected

for the different synchrotron flux and photoionization cross

sections [55] at different photon energies. Spin-orbit splitting

values of 1.1 eV and 7.5 eV [56] between the S 2p3/2 and S 2p1/2

multiplets and between In 3d3/2 and In 3d5/2 components were

used in the peak fitting, respectively, and the full width at half

maximum (FWHM) was constrained to be the same between

samples.
Photocatalytic hydrogen evaluation

The photocatalytic hydrogen production of the indium sul-

fide samples was evaluated using 4400 mW cm�2 of 254 nm

radiation provided by a UV pen-ray lamp. Experiments were

performed at room temperature as follows: 0.20 g of the

sample was added to 200 mL of deionized water in a batch-

type reactor. Before the reaction started, nitrogen gas was

bubbled for 10 min into the solution to deoxygenate the

system. During the whole photocatalytic water splitting

process (4 h), the samples were monitored using a TRACE GC

ULTRA chromatograph with a thermal conductivity detector

(TCD) and the hydrogen production was determined every

30 min.
Results and discussion

Morphology and structure

Fig. 1 shows the XRD pattern of the control and biomimetic

indium sulfide. The XRD peaks around 2q ¼ 27.7�, 33.4�, 43.9�

and 47.9� can be indexed to the (311), (400), (511) and (440)

planes, respectively, of the cubic spinel structure In2.77S4

with lattice constant a ¼ 10.74 �A consistent with previously

reported values (JCPDS 01-088-2495) [57]. No characteristic

peaks due to other impurities, such as In2O3 phases were

observed.

As can be seen, biomimetic indium sulfide (S1, S2 and S3)

has the same crystal structure as control indium sulfide (S0).

However, a change in the crystallinity of the material was

observed when varying the amount of template used in the

synthesis. For S1 and S2 all diffraction peaks are narrow and

sharp. In contrast, the peaks of S3 (which is the sample with

an excess of a template) are broader and less well defined. The

average crystal size of biomimetic indium sulfide was esti-

mated using Scherrer's equation [58] to be around 62.8, 59.8

and 28.4 nm (±0.2 nm) for S1, S2 and S3, respectively. This
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indicates that the average grain size of the biomimetic indium

sulfide decreases significantly for the sample with the highest

amount ofMimosa pudica. S1 and S2 have a similar grain size to

S0 (60.2 ± 0.2 nm).

The SEM images in Fig. 2a reveal the morphology of the

Mimosa pudica leaves used as a template. The leaf powder

consists of spherical particles of different diameters in the

range 1e3 mm with rough surfaces. The control sample S0

consists of spherical particles built up by many inter-

connected slightly bending flakes or sheets (consistent in

dimension with the microcrystallite size determined by

XRD), as shown in Fig. 2b. These microspheres show the

‘marigold-like’ superstructure characteristic of b-In2.77S4

[59]. The diameter of these particles ranges from less than

1 mme5 mm. Biomimetic indium sulfide synthesized in the

three different ratios (S1, S2 and S3) showed a similar su-

perstructure, but as the amount of template increased, both

the size of the microspheres and the size of the individual

microcrystallites (as determined by XRD) was reduced
Fig. 2 e SEM images of the samples; a) Mimosa pudica le
(Fig. 2). The particle size of S2 is similar to the originalMimosa

pudica powder particles. The STEM images in Fig. 3a and b

shows the ‘marigold-like’ microspheres of samples S0 and

S2, respectively. It can also be seen that the flakes that

compose the microspheres are slightly smaller in the sample

with template than in the control sample. In addition, the

high resolution STEM images in the insets show interplanar

distances corresponding to the (400) and (111) planes of the

cubic spinel structure of b-In2.77S4 consistent with the

structure observed by XRD. The In/S ratios obtained both by

SEM-EDS and STEM-EDS analysis are in agreement with the

stoichiometry of the In2.77S4 phase (In:S ¼ 1:1.44), but greater

amounts of sulfur were found in the templated sample.

Trace amounts of Fe were also detected by STEM-EDS in

sample S2 (about 1 atomic percent). This was evenly

distributed over the sample, with particle sizes of a few

nanometers, as mapped in Fig. 3b. These results, along with

the atomic ratios obtained by the XPS analysis (section 3.4)

are summarized in Table 1.
aves; b) S0; c) S1; d) S2; e) S3 and f) marigold flower.
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Fig. 3 e STEM images of the samples; a) S0 and b) S2.The high resolution-STEM images show interplanar distances of

0.267 nm and 0.627 nm corresponding respectively to the (400) and (111) planes of cubic b-In2.77S4. Elemental mapping by

STEM-EDS shows the presence of Fe only in the biomimetic sample (S2).
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The particle size and morphology also have an effect on

determining the surface area of the samples; the BET surface

area, total pore volume and pore diameter obtained for S2 and

the control sample (S0) are shown in Table 1. It is noteworthy

that besides a larger surface area, S2 has smaller pore diam-

eter but a larger pore volume density than S0. This implies

that S2 contains a higher density of smaller pores than S0,
Table 1 e Atomic ratios obtained by SEM-EDS, STEM-EDS and
diameter obtained from the nitrogen gas absorption-desorptio

Sample ID SEM-EDS
In:S:Fe (±0.1)

STEM-EDS
In:S:Fe (±0.05)

XPS In:S
(±0.1

S0 1.0:1.5:0.0 1.00:1.59:0.00 1.0:1.0:

S2 1.0:1.7:0.0 1.00:1.63:0.01 1.0:1.3:

a The total pore volume density was taken from the N2 volume adsorbed
which is likely to lead to an increase in the overall number of

active sites. Thus is expected that in S2 a larger number of

active sites will be present with a larger volume for the

transport of reactants and products, both of which can

improve the photocatalytic activity [59,60]. Overall, the effect

of the template on the morphology is to decrease the size of

the microcrystallite (as shown by XRD), decrease the size of
XPS as well as the BET surface area, pore volume and pore
n method for samples S0 and S2.

:Fe
)

SBET

(±0.1 m2 g�1)
Vpore

a

(±0.01 cm3 g�1)
Pdiam

(±0.1 nm)

0.0 19.2 0.10 22.1

0.9 69.3 0.16 10.4

at P/P0 ¼ 0.990.
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Fig. 4 e a) UVeVis absorption spectra of control sample (S0) and biomimetic indium sulfide (S1, S2, S3); b) Tauc plot showing

ðahyÞ2 vs. energy for the control sample (S0) and biomimetic indium sulfide (S1, S2, S3), used to estimate effective band gaps.

Table 3 e Binding energies of the assigned In 3d5/2

components compared with literature values
[56,70,73,74].

Assignment
In 3d5/2

Literature binding
energy (eV)

Binding energies
found in this

i n t e r n a t i o n a l j o u r n a l o f h y d r o g e n en e r g y 4 4 ( 2 0 1 9 ) 2 7 7 0e2 7 8 3 2775
the microspheres (as shown by SEM and STEM), and to

decrease the average pore size, but to increase their density

(as shown by BET measurements).

Optical characterization

The UVeVis absorption spectra of all the samples are

shown in Fig. 4a. It can be observed that for the control

sample (S0), the absorbance is at its maximum from ~230 to

~420 nm with an absorption edge at ~540 nm, after which

absorption decreases at wavelengths longer than 600 nm.

On the other hand, biomimetic indium sulfide showed a

higher absorption in the range between ~230 and ~800 nm,

i.e. from the UVevis to the near infrared parts of the solar

spectrum. This indicates that biomimetic indium sulfide is

more effective in absorbing the solar spectrum than the

untemplated semiconductor.

The optical band gap (Eg) of the untemplated indiumsulfide

was calculated using Tauc's formula [61].

ahy ¼ A
�
hy� Eg

�n
; (1)

where a is the absorption coefficient, h is Planck's constant, A

is a proportionality constant, y is the frequency of the vibra-

tion calculated by y ¼ c=l (where c is the velocity of light and l

is the wavelength obtained from the spectra), and the value of

n is taken to be 2, appropriate to a semiconductor with an

indirect band gap. The Kubelka-Munk function (F(R)) allows
Table 2 e Binding energies of the assigned S 2p3/2

components compared with literature values [56,70,71].

Assignment S 2p3/2 Literature binding
energy (eV)

Binding energies
found in this
work (±0.1 eV)

In2S3 161.8 [56,70] 161.7

eSO2 163.9 [70,71] 163.4

SO3
2- 167.1 [70,71] 166.8

SO4
2- 168.8 [70,71] 169.0

SeO/SeC/SeH 162.3/162.0/162.2 [71] 162.5
the optical absorbance to be approximated from its reflec-

tance, which is proportional to the absorption coefficient.

Thus, a is substituted with F(R) in Tauc's formula.

Fig. 4b shows the plot of (F(R)hy)2 vs photon energy (eV).

Extrapolation of this line to the photon energy axis gives the

semiconductor band gap for the untemplated sample to be

2.30 ± 0.01, eV, consistent with previous observations [62].

Band gaps for the templated samples cannot be estimated

reliably due the strong absorption in the visible part of the

spectrum which we attribute to residual organic matter from

the template (probed in more detail by XPS in section 3.4). A

similar behavior has been observed in surface-complex-

assisted sensitization of TiO2, used to make it active under

visible light illumination [63]. Although the presence of

organic compounds does not change the band gap energy

values of In2.77S4, their absorption in the visible and near

infrared regions could be beneficial for the photocatalytic ef-

ficiency if the energy levels are favorably positioned for charge

transfer as in dye-sensitized devices. The absorption edges
work (±0.1 eV)

In2S3 445.6 [56] 445.5

In(OH)xOy 446.0 [73] 446.3

In(OH)3 445.0 [70] e

In2O3 444.3 [56] e

In(C5H7O2)3 445.6 [74] e
aInPO4 445.7 [56] e
aIn(PO3)3 445.7 [56] e
aIn(PO3)4 446.0 [56] e

a No values of binding energy for the In 3d components in indium

(III) sulfite In2(SO3)3 and indium (III) sulfate In2(SO4)3 were found

in the literature, so values for phosphates are shown instead

since they are likely to be similar.

https://doi.org/10.1016/j.ijhydene.2018.12.043
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Table 4 e Summarized photocatalytic activity of biomimetic indium sulfide.

Sample Crystal size
(±0.2 nm)

Eg (*) (±0.01eV) H2 produced
(±0.2 mmol g�1)

H2 rate (±0.2 mmol g h�1) Time
constants (s)

QE (%)

S0 60.2 2.30 22.0 5.5 1.92 1.63

S0 e 0.1%Fe e e 34.2 8.6 e 2.54

S0 e 1%Fe e e 6.7 1.7 e 0.50

S1 62.8 1.82* 51.7 12.9 6.25 3.83

S2 59.8 1.24* 73.0 18.3 41.6 5.42

S3 28.4 1.46* 46.8 11.7 4.07 3.47

* 'Absorption edges' obtained from extrapolations of the Tauc plots (Fig. 4), which we take to reflect the extent of visible light absorption, rather

than the true band gap of the semiconducting In2.77S4.
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obtained for each templated material are shown along with

the hydrogen evolution data in Table 4.

Electrochemical characterization

The transient photocurrent responses of the samples are

shown in Fig. 5a. The control sample (S0) shows the highest

photocurrent in comparison with the biomimetic samples,

indicating a higher rate of photogeneration of charge carriers.

Among biomimetic samples, S2 shows the highest photocur-

rent, while S3 shows the lowest. According to this, the

photocurrent intensity decreases when an excess of Mimosa

pudica is added to the synthesis. Although S0 shows the

highest photocurrent amongst all the samples, no signs of

charge extraction or accumulation (characterized by a tran-

sient peak in the photocurrent [64]) are observed after the light

is turned on. This suggest that in the absence of template,

charge transfer to the water molecules is overcome by fast

electron-hole-pair recombination which is the dominant

process due to the slow kinetics of oxidation of water mole-

cules [65].

In contrast with the untemplated control sample (S0), an

anodic peak (a sharp peak in photocurrent) can be observed in

the response of all biomimetic samples when the light is

switched on, followed by an exponential decrease. This is

strongly indicative of hole trapping at the surfaces of these

samples [64]. This is produced by the separation of electron-
Fig. 5 e a) Photoresponse of control sample (S0) and biomimetic

circuit potential (VOCP); b) Linear sweep voltammetry (LSV) char

sulfide (S1, S2, S3) under 254 nm UV light at a sweep rate of 10
hole pairs at the semiconductor/electrolyte interface, when

electrons diffuse to the electrode back contact, while holes are

extracted by reduced species (hole acceptors) in the electro-

lyte. The efficient capture of holes by surface states causes an

accumulation of photogenerated holes near to the surface.

The decrease in photocurrent intensity shortly after the light

is turned on is due to recombination of the photogenerated

electrons with the accumulated holes at the surface until

equilibrium is reached and the photocurrent becomes con-

stant (a steady state is reached). When the light is turned off,

the remaining accumulated holes recombine with free elec-

trons causing electrons to be withdrawn from the external

circuit, explaining the transient cathodic response (the sharp

negative peaks in Fig. 5a [64,66,67]). Thus, for sample S3, the

generation rate of electrons under illumination is lower

compared to S2. The transient time constants obtained from

the modulation of these photocurrent responses are 1.9, 6.2,

41.6 and 4.1 s (±0.1 s), for S0, S1, S2 and S3, respectively. As

these depend on the electron-hole recombination rate, longer

time constants can indicate to more competitive water split-

ting reaction rates. We note that the longest electron-hole

recombination time is achieved from sample S2.

Overall, the transient photocurrent responses of the sam-

ples suggest that fast electron-hole pair recombination occurs

in the untemplated sample (S0), competing strongly with the

charge-transfer process needed for water oxidation. However,

the addition of a template causes pronounced accumulation
indium sulfide (S1, S2, S3) under 254 nm UV light at open

acteristic for control sample (S0) and biomimetic indium

mV/s.
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of long-lived surface holes, presumably due to the introduc-

tion of new surface states. It is therefore important to examine

any differences in the surface composition of the samples

(section 3.4).

Linear sweep voltammetry (LSV) curves are shown in

Fig. 5b. S0 and S3 showed negligible photocurrents at applied

potentials below 0.1 V vs Ag/AgCl (onset potential) followed by

a slight increase for the former and a plateau (saturation) for

the latter, when the applied potential reached 0.3 V vs Ag/

AgCl. In contrast, for samples S1 and S2, synthesized with a

lower amount of template, a positive change in the onset

potential to 0.04 V vs Ag/AgCl and a sharper rise in photo-

current was observed as the applied bias was increased,

indicating that these samples exhibit the lowest resistance for

the extraction of photogenerated electrons, which could be

beneficial for the photocatalytic process [68].

XPS analysis

Comparison of the core level XPS signals of S2 (Fig. 6a) with S0

(Fig. 6b) showed higher relative intensities of In 3d, S 2p and S

2s peaks for the latter relative to C 1s. Peaks from the weaker

core level features of In and S, such as In 4d, In 3p1/2 and In 3p3/

2 spectral lines are also present in the spectrum of S0. In

contrast, the spectrum of the sample with template (S2)

showed greater amounts of C 1s and O 1s and 2s, as expected

from the residual organic matter of the Mimosa pudica leaves,

and peaks corresponding to the binding energies of N 1s, Fe 2p,

3p and M23VV Auger (see Fig. 5a). Elemental quantification

from the peaks in these survey scans gives approximate

atomic ratios (ignoring variation in sampling depth with

photoelectron KE) of In:S:C:O:Fe as 1.0:1.0:4.5:1.3:0.0 (±0.1) for
S0 and 1.0:1.3:41.0:22.4:0.9 (±0.1) for S2. This clearly demon-

strates the very large increase in surface C and O in the tem-

plated sample, which we associate with residual organic

matter form the template. The Fe present in the templated

sample is believed to come from theMimosa pudica leaves as a

contaminant, since this is a metal found in abundance in

Particulate Matter Below 2.5 mm Size (PM2.5) air samples of the

area originating from the erosion of the naturally iron-rich soil

of the region [69]. Moreover, this element is present mainly on
Fig. 6 e Survey scans spectra of indium sulfide sam
the surface of the sample since higher amounts were detected

by XPS (which is a much more surface sensitive technique)

than by EDS.

The S 2p signals from the samples are shown in Fig. 7. The

sample synthesized with a template (S2), shown in Fig. 6a,

showed clear signals due to sulfur oxidation products such as

sulfur-adsorbed eSO2, SO3
2� and SO4

2� (each below 10% of total

S), and organic forms of sulfur species bonding with carbon,

oxygen and hydrogen (SeO/SeC/SeH) in amounts between 5

and 15% of the total amount of S probed at each sampling

depth [56,70,71]. These species are not present in S0 (Fig. 7b)

where all the sulfur present is associated with the indium

sulfide phase. Other authors have observed the formation of a

sulfate layer, In2(SO4)3, at the surface of sulfide materials

exposed to oxidizing environments such as O2 andH2O [70,72].

The binding energies used from literature for the components

fitted in the peak deconvolution of these spectra are given in

Table 2. The experimental data are generally in good agree-

ment with the literature values, given the uncertainty in

measurement (±0.1 eV).

Fig. 8 shows scans of the In 3d peaks at different kinetic

energies (KEs) (and hence sampling depths) for samples with

and without the template. The binding energies found in the

literature for the components fitted are shown in Table 3. As

can be seen in Fig. 8a, additional components at higher

binding energies than the In 3dmultiplet due to indiumsulfide

are present at the surface of the S2 sample. These could be

characteristic of a hydroxide/oxide phase (In(OH)xOy) formed

by surface oxidation. This phase has been seen as a nucleation

phase when growing In(OHx)Sy by chemical bath deposition

(CBD) [73]. We would expect the BEs of other oxidized In spe-

cies, such as indium (III) sulfite In2(SO3)3 and indium (III) sul-

fate In2(SO4)3 to be similar (see Table 3). These features

decrease in intensity as the sampling depth increases showing

that the bulk material is free of oxidation. In contrast, S0

shows only components corresponding to indium sulfide at all

the analyzed depths (see Fig. 8b) and (as for the S 2p peaks)

there are no signs of oxidation products or species other than

indium sulfide. The slight asymmetry observed in the lower

binding energy side of the In 3d3/2 peak at 150 KE arises from

an Auger S MNN feature with a kinetic energy of 152 eV.
ples at photon energy of 950 eV; a) S2, b) S0.
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Fig. 7 e Fitted spectra of the S 2p region for the samples showing the fitting of the S 2p3/2,1/2 multiplet for each chemical

component; a) S2, b) S0, at photon energies of 312 and 762 eV, respectively. Note that for clarity in the features shown, the

spectra compared in this image were recorded at different photon energies and thus correspond to different sampling

depths.

Fig. 8 e Fitted spectra of the In 3d region at 150, 450 and 800 eV kE (sampling depths of 2.9, 5.8 and 8.9 nm, respectively) for

the samples; a) S2, b) S0. The fitting of the In 3d5/2, 3/2 multiplet is shown for each chemical component.
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Overall, XPS shows significant changes in surface chem-

istry between the untemplated and templated samples.

Photocatalytic hydrogen production

Fig. 9 shows the photocatalytic hydrogen production of all the

samples. As can be seen, the rate of hydrogen production is

higher for biomimetic indium sulfide than for the control

samples (S0, S0 e 0.1%Fe and S0 e 1%Fe) and the photo-

catalytic activity increases as the amount of Mimosa pudica

increases up to a 1:1 ratio (S2) where hydrogen production

peaks, decreasing with an excess of template (S3). All values

are summarized in Table 4. The apparent quantum efficiency

ðQEÞ was calculated based on the formula

QEð%Þ ¼ 2NH2

Nhv
; (2)

where NH2
is the number of evolved H2 molecules and Nhv is

the number of incident photons [75,76], by quantifying the

amount of hydrogen at a given incident photon flux. The

number of incident photons was calculated as 5.62 � 1015
photons$s�1. The hydrogen production for the S0 sample is

22 mmol g�1, while for S2, the hydrogen production increases

sharply to 73 mmol g�1, more than 3 times the value for S0,

corresponding to a QE of 5.42% at 254 nm. S1 and S3 produced

similar amounts of hydrogen and showed practically the same

QE despite their difference in particle size and hence surface

areas. Among the control samples, S0 e 0.1%Fe showed the

highest hydrogen production, while S0 e 1%Fe showed the

lowest, indicating that the hydrogen production increases

with small amounts of Fe but decreases with an excess of it. A

similar behavior has been observed for indium sulfide films

where the presence of indium oxide in moderate amounts

induced efficient charge separation, but the overall activity

decreased for higher concentrations [25].

To summarize our observations, the addition of Mimosa

pudica leaves as template in the synthesis of indium sulfide

has an effect on the morphology, the optical properties and

the surface composition of biomimetic indium sulfide. The

morphology of the particles plays an important role in its

photocatalytic activity. Among the biomimetic indium sulfide

samples, sample S2 showed a significantly decreased

https://doi.org/10.1016/j.ijhydene.2018.12.043
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Fig. 9 e Photocatalytic hydrogen production of control

samples (S0, S0 - 0.1%Fe and S0 e 1%Fe) and biomimetic

indium sulfide (S1, S2, S3).
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microsphere size and increased pore volume density and

surface area but with a crystallinity (grain size) very close to

that of the control (S0). This sample also has the lowest ab-

sorption edge energy, indicating a better absorption of the

visible part of the solar spectrum. Moreover, its photo-

electrochemical performance was superior to that of samples

S1 and S3. The photocatalytic activity of samples S2 and S0 in

H2 production scales approximately with their surface areas.

This is anticipated, since larger specific surface areas promote

a higher charge transfer across the semiconductor enhancing

its photocatalytic activity. However, a large surface area may

also increase the non-radiative electron-hole pair recombi-

nation rate, due to the presence of more recombination sites.

In this context, the semiconductor must have an optimal

surface area to allow a better charge transfer while keeping

low the number of sites where the photogenerated electron-

hole pairs can recombine [77]. The fact that S1 and S3 have

the same QE and similar transient photocurrent time con-

stants (suggesting similar electron-hole recombination times)

but clearly (from XRD and SEM) different sizes, and therefore
Fig. 10 e Photocatalytic activity diagram of; a) control sa
very different surface areas, supports this idea. Further, we

note that as the microcrystallite and microsphere size is

reduced between S2 and S3 (which we would expect to in-

crease the active area) there is a decrease, not an increase in

the rate of photocatalytic H2 production.

In our case, however, there are also significant changes in

surface chemistry accompanying the morphology changes,

which are also likely to influence the photocatalytic activity.

The XPS analysis revealed that the surface of the biomimetic

sample S2 has significantly larger amounts of carbon and

organicmatter than control sample (S0). Consequently, it may

be the case that when an excess of template is used in the

synthesis (S3), a deactivation of the photocatalyst by coking,

i.e. the interaction of carbon-containing molecules with the

active sites in the surface, decreases the photocatalytic ac-

tivity [78]. Alternatively, although the organic matter from the

template clearly improves absorption in the visible part of the

spectrum (Fig. 3), the absolute photoabsorption cross section

of the underlying semiconductor may eventually be reduced

by the thick overlying organic layer asmore template is added.

Thus we suggest that an optimum photocatalytic behavior is

achieved for sample S2 because further increases in the sur-

face area and amount of template cause an increase in the

non-radiative recombination rate coupled with a decrease in

the availability of active sites and possible reduction in ab-

sorption cross section as the thickness of the surface organic

layer increases.

In addition to the possible deactivation of the catalyst by

the accumulation of a carbon overlayer, wemust also consider

the effects of the other species identified on the surface.

Among the species found on the surface of biomimetic indium

sulfide were also Fe (with a binding energy consistent with

Fe2O3) and sulfur oxidation products such as eSO2, SO3
2� and

SO4
2� in significant amounts. Fe2O3 is not active for hydrogen

production on its own because its conduction band is located

under the reduction potential of water [79]. However, its

valence band lies well below the water oxidation potential

[64,80] and photocatalytic activity has been reported for direct

O2 evolution [81]. Even though both bands of indium sulfide

are well positioned for overall water splitting [80] they are

more suitable for proton reduction, and therefore the coupling

with Fe2O3 (more favorable for water oxidation) could improve

the charge separation, increasing the hydrogen production

rate. This is in agreement with efforts being made to engineer
mple (S0) and b) the biomimetic indium sulfide (S2).
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the band alignment of semiconductor heterostructures to

promote charge separation reducing recombination rates.

Moreover, the accumulation of long-lived holes at surface

states described in the electrochemical characterization sec-

tion has been identified to be fundamental for the water

oxidation reaction on Fe2O3 surfaces [82]. The results from

samples S0 e 0.1%Fe and S0 e 1%Fe have shown that the

addition of iron oxide has an effect in the photocatalytic ac-

tivity of indium sulfide. The activity is enhanced for low Fe

concentrations (0.1%) but is reduced when larger amounts of

Fe (1%) are added. We suggest that this is due to increasing

transfer of electrons into Fe2O3 and holes into indium sulfide

consistent with the photocatalytic activity diagram in Fig. 10b.

Another significant aspect is the presence of partially-

oxidized sulfur species (eSO2 and SO3
2�) which are easily

oxidizable and could enhance the photocatalytic activity for

hydrogen production by acting as sacrificial reagents (electron

donors) on the surface of the indium sulfide particles [83]. A

summary of these effects is illustrated in Fig. 10.
Conclusions

In this work, biomimetic indium sulfide was synthesized by a

template-assisted hydrothermal method using Mimosa pudica

leaves as template for the first time. As a result, the photo-

catalytic hydrogen production of the biomimetic indium sul-

fide was increased. Specifically, biomimetic indium sulfide

prepared with 1:1 wt ratio (S2) showed the highest photo-

catalytic activity reaching 73 mmol$g�1, which is more than

three times the amount producedwith indium sulfidewithout

template (S0). This increased activity is correlated with a 20-

fold increase in the electron-hole recombination time

compared with the sample without the template. This

enhanced photocatalytic activity can be attributed to the dif-

ference in morphology obtained due to the Mimosa pudica

template and the chemical species found on the surface of the

biomimetic material. The effect of the template on

morphology is to decrease the size of the microspheres and

the average pore size, but to increase their density. The

morphology obtained in biomimetic indium sulfide, is bene-

ficial for light harvesting and electron mobility. Moreover, the

surface iron oxide (Fe2O3) and sulfur species (eSO2 and SO3
2�)

canwork as water oxidizer (driven by holes at the surface) and

sacrificial electron donors respectively, for photocatalytic

water splitting improving the performance for hydrogen pro-

duction. This strategy provides a new way to synthesize

functionalized photocatalysts inspired by nature that can be

used in many technological applications.
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