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 Abstract: A numerical study is presented for boundary layer flow and heat transfer of  micropolar (non-Newtonian) fluid 

from a stretching/shrinking sheet in the presence of melting and viscous heating. In this study the velocity of ambient fluid 

and stretching/shrinking velocity vary linearly with the distance from the stagnation-point. A uniform magnetic field is 

applied normal to the sheet and moves with the free stream as encountered in certain magnetic materials processing systems. 

Using similarity transformations, the governing partial differential equations are transformed into a system of coupled, 

nonlinear ordinary differential equations. A variational finite element code is implemented to solve the resulting 

dimensionless boundary value problem. The influence of magnetic body force (M), stretching/shrinking () and melting 

(Me) parameters on velocity, microrotation, temperature, surface shear stress function (skin-friction) and local Nusselt 

number are elaborated in detail. Velocity is decreased with a rise in melting parameter, whereas far from the wall 

microrotation is reduced and furthermore temperatures are depressed. The flow is accelerated, micro-rotation (angular 

velocity of micro-elements) increased and temperature enhanced with increasing stretching rate ( > 0) whereas the 

converse behaviour is observed with increasing shrinking rate ( < 0). Increasing magnetic parameter is found to both 

increase temperatures and to accelerate the flow whereas it reduces microrotation near the wall and enhances it further from 

the wall. Special cases of the present model (with magnetic, dissipative and melting effects negated) are benchmarked with 

earlier results from the literature and found to be in excellent agreement. Excellent convergence and stability is achieved 

with the numerical method.  
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INTRODUCTION 

Heat transfer accompanied with melting effects arises in many diverse areas of chemical and mechanical 

engineering. These include cooling of micro-electronic circuits [1] and binary mixture synthesis [2]. Numerous 

experimental and theoretical studies of melting thermal convection flows have been communicated. Saxena et al. [3] 

studied melting of a cone in hot air, elaborating on the strong influence of melting and interface movement on the 

phase change fluid mechanics. Zhang and Bejan [4] examined theoretically and experimentally the effect of melting 

by natural convection. Cheng and Lin [5] studied numerically the influence of melting on unsteady convective flow 

from a vertical surface using the method of lines and a central finite difference technique. Bertrand et al. [6] studied 

computationally the combined natural convection and melting from an isothermal vertical wall in 2-dimensional 

enclosures. Takhar et al. [7] employed shooting quadrature and asymptotic methods to study melting effects on 

transient swirling convection flow from a disk. Bachok et al. [8] examined the influence of melting on the convective 

flow past a stretching/shrinking sheet.  

The above studies were all confined to Newtonian flows. Melting convection flows in non-Newtonian fluids 

however also feature in many chemical technology processes. Many rheological models have been utilized for such 

simulations. Poulikakos and Spatz [9] studied the influence of non-Newtonian free convection past a melting surface. 

Kairi and Murthy [10] examined numerically the effect of melting and Soret on convection heat and mass transfer 

through a porous medium. Hayat et al. [11] used the homotopy semi-numerical technique to simulate melting effects 

on flow and heat transfer of viscoelastic fluid. Hayat et al. [12] also examined analytically the combined melting and 

viscous heating effects on stagnation-point third grade viscoelastic flow from a stretching surface, showing that 

increasing melting parameter serves to accelerate the flow and elevate momentum boundary layer thickness.  

The rheological models described hitherto cannot simulate the complex microstructural characteristics of 

numerous polymeric materials. Eringen [13] developed the micropolar fluids theory. This theory has been deployed 

extensively to simulate a tremendous range of chemical engineering fluid dynamics problems. These include reactive 

diffusion flows [14], magnetohydrodynamic materials processing [15], stagnation flows [16], magnetic filtration flows 

[17], hydromagnetic generator flows [18], magneto-convective and transpiration-controlled plastic synthesis [19] and 

thin film electro-conductive polymer flows [20]. Further applications of micropolar fluid mechanics in polymeric 

materials flows are elaborated by Bég et al.  [21] and furthermore in unsteady magnetized sheet stretching by Sharma 

et al. [22]. Although very sparse research has been reported on melting heat transfer in micropolar fluids, a recent 

effort in this regard has been made by Yacob et al. [23].  

The shrinking sheet flows are of substantial concern in the manufacturing industries. The flow due to a shrinking 

sheet was first presented by Wang [24]. Later, Miklavčič and Wang [25] proved the existence of the solution for a 

shrinking sheet flow. Flow past a shrinking sheet was studied by Wang [26]. Micropolar fluid flow past a shrinking 

sheet was presented by Ishak et al. [27]. Mahapatra et al. [28] studied the effect of radiation on the flow and heat 

transfer over a shrinking sheet. Influence of convective boundary condition on the heat transfer of a viscous fluid flow 

over a stretching/shrinking sheet was investigated by Yao et al. [29]. 

The aim of the present paper is to study the effect of melting on the stagnation-point flow and heat transfer of an 

electrically conducting micropolar fluid past a stretching/shrinking sheet. It is assumed that the magnetic field moves 

with the free stream. This magnetic field scenario aids flow as opposed to the static magnetic field case which inhibits 

boundary layer flows [30].  Viscous heating is included. It is assumed that the melting of the sheet occurs at a steady 

rate i.e. transient effects are neglected. The conservation equations for mass, momentum, energy and angular 

momentum are transfered into a set of dimensionless non-linear ordinary differential equations which are solved under 

given boundary conditions with a variational finite element code. Under special conditions, the numerical results 

obtained for skin friction coefficient and the local Nusselt number are compared with those reported by Yacob et al. 

[23] and also Wang [24] demonstrating excellent correlation. Mesh independence of the numerical code is also 

demonstrated. The present work has applications in electro-conductive polymer thermal sheet processing [31, 32].       

MATHEMATICAL THERMO-FLUID DYNAMIC MODEL 

Consider the two-dimensional stagnation-point, steady flow of an incompressible micropolar fluid impinging 

normally on a stretching/shrinking sheet in the presence of magnetic field. This sheet is melting steadily into a constant 

property warm liquid of the same material. The x-axis is taken in the direction of the sheet and y-axis is taken normal 
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to it. It is supposed that the stretching/shrinking velocity of the sheet is given by xcuw =  and the external flow 

velocity is xaue = , where a positive value of c  represents stretching sheet while negative value implies a shrinking 

sheet and a  is a positive constant. Uniform magnetic field 0B  is applied in the positive y-direction normal to the 

sheet. It is assumed that magnetic field is moving with the free stream. For the present study the effect of the induced 

magnetic field can be neglected as compared to the imposed field. The temperature of the melting surface is mT  while 

the free stream temperature is T  where T  exceeds mT . Under the above assumptions the governing boundary 

layer equations may be presented as follows: 
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The relevant boundary conditions are given by: 
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where L  is the latent heat of the fluid and sc  is the heat capacity of the solid surface. The last condition in eqn. (5) 

corresponds to the melting effect [23]. The velocity components u  and v  can be expressed in the form of the stream 

function   such that 
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Clearly, the continuity equation (1) is satisfied automatically. To normalize the boundary value problem defined by 

eqns (1) to (6), we select and implement a suitable group of coordinate and variable transformations, where all terms 

are defined in the notation:  
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This leads to the following group of coupled momentum, angular momentum and energy ordinary differential 

equations: 

( ) ( ) ,011)1(
2

=+−++−++ fMgKffffK                                                                                           (9) 

( ) ( ) ,02 =+−−+ fgKgfgfCgA
                                                                                                           (10) 

( ) ( ) ,0EcPr1Pr
2
=+++ fKf 

                                                                                                             (11) 

 

The corresponding non-dimensional boundary conditions at the wall and in the free stream become: 

( ) ( ) ( ) ( ) ,00,0)0(0Pr,00,0 ==+==  Mefgf                                                                                 (12) 

( ) ( ) ( ) ,1,0,1 === gf                                                                                                                           (13) 
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where dash depicts the differentiation with respect to   only, SK =  is the micropolar coupling constant 

parameter, aBM o  2

0=  is the magnetic body force parameter, 
2 aA =  is the micropolar spin gradient 

viscosity parameter, jaC = , is the microinertia density parameter, ( )mpe TTcuEc −= 

2
 is the Eckert 

number,  pc=Pr  is the Prandtl number, ac= ;  >0 [for stretching and  <0 for shrinking], 

( ) ( )( )0TTcLTTcMe msmf −+−=   is the melting parameter which is a combination of the Stefan numbers 

( ) LTTc mf −  for liquid phase and ( ) LTTc ms 0−  solid phase. The skin-friction coefficient and local Nusselt 

number are physical important parameters for materials processing flows, and are defined, respectively by: 
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where w  and wq  are the wall shear stress and heat flux. Using the similarity transformations (10), along with the 

following definitions: 
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where 2Re axx =   is the local Reynolds number. 

 

VARIATIONAL FINITE ELEMENT COMPUTATIONAL SOLUTIONS 

The collective set of differential eqns. (9)-(11) is strongly non-linear and therefore, the finite element method 

has been employed for a numerical solution. Comprehensive details of this very popular and efficient technique are 

provided in Reddy [33]. The version employed herein is a variational formulation which has met with considerable 

success in recent years in simulating many complex fluid flows. These include thermal radiation-convection 

micropolar flow [34], mixed convection micropolar flow [35], magneto-hemodynamic non-Newtonian flow [36], 

nanofluid mechanics [36-38] and free surface wave hydrodynamics [39]. 

In order to apply finite element method first we assume 

.hf =                                                                                                                                                                       (17) 

Thus the set of equations (9)-(11) reduce to:  

( ) ,011)1( 2 =+−++−++ hMgKhhfhK                                                                                               (18) 

( ) ( ) ,02 =+−−+ hgKhggfCgA                                                                                                                (19)                             

( ) ( ) ,0Pr1Pr
2
=+++ hEcKf                                                                                                                   (20) 

The corresponding boundary conditions become: 

( ) ( ) ( ) ( ) ,00,0)0(0Pr,00,0 ==+==  Mefgh                                                                                  (21) 

( ) ( ) ( ) .1,0,1 === gh                                                                                                                             (22) 

The system of equations obtained after the assembly of the elements is non-linear and a robust iterative scheme is 

employed for a solution. In order to check the convergence of the results the computations have been performed for 

20, 40, 60, 80, 100, 120, 140, 160, 180, 200 elements and are presented in Table 1. It is observed that by increasing 

the number of elements beyond 160 there is no significant change in the value of f , h , g  and  , therefore the 

final results for 160 elements suffice. Mesh independence of the numerical code is therefore achieved. 
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Table 2 and 3 show the comparison of local skin friction and local Nusselt number values with the present 

FEM results and the previously published work of Yacob et al. [23] for non-magnetic, non-dissipative micropolar 

melting heat transfer and also Wang [24] for non-magnetic, non-dissipative, Newtonian flow without melting. It is 

clear from the tables that the numerical results computed are in excellent agreement with the data available in the 

literature.  

 
Table 1: Convergence of results with the variation of number of elements n  

)1,5.0,02.0,733.0Pr,1,1,3,1( =−======= MeEcCAMK   

         n  )6.1(f  )6.1(h  )6.1(g  )6.1(  

20 0.24752 0.88268 -0.09302 0.54839 

40 0.24132 0.87860 -0.09197 0.54480 

60 0.23956 0.87782 -0.09181 0.54396 

80 0.23851 0.87741 -0.09174 0.54349 

100 0.23832 0.87734 -0.09172 0.54340 

120 0.23820 0.87730 -0.09172 0.54335 

140 0.23812 0.87727 -0.09171 0.54331 

160 0.23806 0.87725 -0.09171 0.54329 

180 0.23802 0.87724 -0.09171 0.54327 

200 0.23799 0.87723 -0.09171 0.54326 

 

Table 2: Comparison of ( )0f   for different values of )0,0,0,0( ==== MeEcMK  

 
  Wang [26] Yacob et al.  [23] Present results 

0 1.232588 1.232588 1.232784 

0.50 0.71330 0.713295 0.713148 

2.00 -1.88731 -1.887307 -1.884940 

5.00           -10.26475             -10.264749                    -10.231600 

-0.25 1.40224 1.402241 1.402736 

-0.50 1.49567 1.495670 1.496505 

-0.75 1.48930 1.489298 1.490471 

-1.00 1.32882 1.328817 1.330265 

-1.15 1.08223 1.082231 1.083805 

 

Table 3: Comparison of ( )0 −  for different values of )0,0,0,0( ==== MeEcMK  

 
  Yacob et al.  [23] Present results 

0 -0.570465 -0.570609 

0.50 -0.692964 -0.692454 

2.00 -0.979271 -0.980752 

5.00 -1.396355 -1.400973 
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                                                                               )5.0,3( −== MMe  

RESULTS AND DISCUSSION 

In order to have a physical point of view of the problem, rigorous numerical calculations have been performed 

for velocity, microrotation and temperature function distributions across the boundary layer for different values of the 

thermophysical parameters i.e. magnetic parameter M , stretching/shrinking parameter   and melting parameter 

Me . These results are shown graphically in Figs. 1-9. Streamlines are shown in Figs. 10-11. Tables 4-5 show the 

skin-friction coefficient and local Nusselt number for various values of the parameters. In the present study, coupling 

constant parameter, Pr and Ec are kept fixed as 1, 0.733 and 0.02, whereas values of spin gradient viscosity and 

microinertia density parameters are fixed at unity. This approach follows the established simulations of previous works 

in the literature including Pal et al. [18] and Yacob et al. [24].  

The effect of magnetic parameter M  on the velocity evolution is examined in Fig. 1. Velocity increases and 

the momentum boundary layer thickness also increases with increase in the magnetic parameter, M . The magnetic 

field is mobile and tends to drag the fluid with it. The body force term, )1( fM −  shows that for 1f , the 

contribution of magnetism is to assist the momentum development (the Lorentzian force is positive for )1( f . 

This effectively accelerates the flow. Larger magnetic field serves to decrease the momentum boundary layer 

thickness and enhances velocity gradient. The shear stress at the wall will also be elevated as the fluid is accelerated 

and this effect is amplified as the fluid transfers momentum to adjacent layers through the action of viscosity, with 

progressive distance into the boundary layer transverse to the wall. In materials processing operations, the shrinking 

sheet ( = -0.5 in fig. 1) flow is therefore accelerated with stronger magnetic field strength. Fig. 1 also corresponds to 

strong melting effects (Me = 1.0). Fig. 2 depicts the microrotation profiles for different values of magnetic parameter, 

M . As M  rises, microrotation is strongly accentuated in the boundary layer. The acceleration in the momentum 

field indirectly influences the micro-rotation field via the coupling term, gK   , in eqn. (9) and furthermore via the 

coupling terms in eqn (10), ( )gfgfC −+  and ( )fK − . The momentum boost will aid the spin of micro-

elements as does distance from the wall. Rotary motions are therefore enhanced strongly and angular momentum 

boundary layer thickness is decreased with increasing magnetic body force effect. For the case M = 1, the magnetic 

body force and viscous hydrodynamic force in the regime are of equal magnitude and the angular velocity (micro-

rotation) is found to be minimized. Angular momentum boundary layer thickness will therefore be a maximum for 

this weakest magnetic field case. Fig. 3 illustrates the strong enhancement in temperature () again for the shrinking 

sheet case, with increasing magnetic field parameter, M. Similar observation has been made by Das [40]. In all the 

computations, Pr has been prescribed a value of 0.733, representative of certain low molecular weight polymers. The 

increase in temperature with magnetic field however will also increase heat transfer rate from the wall to the fluid. 

This will decrease thermal boundary layer thickness.  

 Figs. 4-6 illustrate the effect of stretching/shrinking parameter ( ) on the boundary layer characteristics. In 

fig 4, the variations of velocity within the boundary layer for different values of stretching/shrinking parameter (  ) 

are presented. Positive values of   imply stretching of the sheet and negative values correspond to shrinking of the 

sheet. The case of 0=  implies a stationary wall without magnetic field, melting and non-Newtonian effects and 

this classical scenario is known as Hiemenz flow (stagnation flow on a solid surface). Velocity is considerably elevated 

with increase in the stretching rate, since this causes decrease in the momentum boundary layer thickness, as a result 

of which shear stresses are enhanced and the flow is accelerated. The converse behaviour is observed with increasing 

shrinking rate. Inspection of Fig. 5 shows that microrotation  (angular velocity, g) increases with increase in stretching 

rate ( 0 ) whereas it is significantly suppressed with increase in shrinking rate. Negative value of microrotation 

indicates the reverse rotation of microelements. Although negative values are sustained throughout the boundary layer 

irrespective of sheet stretching or shrinkage, the intensity of reverse spin is inhibited with stretching but accentuated 

with shrinking. Micro-element rotary motions are therefore benefited with greater stretching of the sheet but opposed 

with greater shrinkage. The profile for the solid wall case ( 0= ) naturally falls between the stretching and shrinking 

cases. Fig. 6 reveals that micropolar fluid temperature increases as stretching rate increases whereas it is depressed 

with increase in the shrinking rate. This can be explained by the fact that the thermal boundary layer becomes thinner 

as stretching rate increases with a concomitant rise in fluid temperatures. On the other hand, thermal boundary layer 
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thickness is enhanced with increasing shrinking rate. The extension or contraction of the sheet effectively therefore 

exerts a major effect on flow and heat transfer properties in the region close to the sheet and is a principal control 

mechanism in practical operations.  

Figs. 7-9 depict the influence of the melting parameter on the velocity, angular velocity and temperature 

fields, for the shrinking sheet case (<0) with strong magnetic field (M = 3). In fig. 7 it is apparent that the velocity 

reduces with rise in melting parameter. This trend has also been identified by Bachok et al. [8]. Enhanced melting 

forces a deceleration in the flow as more material is converted into fluid. This thickens the momentum boundary layer, 

enhances wall shear stress and serves to weakly damp the flow. A same result has also been given by Cheng and Lin 

[5] and Takhar et al. [7]. In all the graphs, the boundary conditions (22) are satisfied asymptotically in the free stream 

which confirms the convergence of the computations. The melting parameter does not feature in the conservation 

eqns. (18)–(20), and only arises in the wall boundary condition (21) i.e. ( ) 0)0(0Pr =+ Mef . Inspite of this the 

parameter, Me, still exerts an influence far from the wall. This is also observed in the micro-rotation and temperature 

fields. It is observed from Fig. 8 that in the vicinity of the sheet effect of melting parameter on the microrotation is 

almost negligible whereas far from the sheet microrotation decreases strongly with increase in melting parameter. The 

negative values as elaborated earlier correspond to a reversal in micro-element spin. The effect of Me  on the 

temperature distribution (Fig. 9) is to decrease the temperature of the fluid. Similar observations were reported by 

Hayat et al. [11].  

In the presence of melting the streamlines for shrinking and stretching sheet scenarios are shown in Figs. 10 

(a, b), whereas in absence of melting they are illustrated in Figs. 11 (a, b). Due to reflective symmetry only a half 

portion of the flow is visualized in the figures. In Figs. 10 (a, b) the tendency of more intense flow towards the 

streamwise direction further from the shrinking sheet with melting is observed. For the stretching sheet (fig. 10b) the 

flow converges to a narrower band near the sheet. From Fig. 11 (a) it appears that flow reversal takes place near the 

shrinking sheet. There is a discontinuity in the flow near the sheet. However with stretching the streamlines all 

converge consistently towards the downstream direction. These patterns are consistent with the findings of Mahapatra 

et al. [28]. 

Table 4 presents the influence of magnetic, stretching/shrinking and melting parameters on the skin friction

 )0(f  . The skin friction decreases with rise in melting and stretching rate, whereas it increases with rise in M

and shrinking rate. Hence skin friction can be minimized effectively by judicious selection of the melting and 

stretching parameters. From Table 5 it may be noted that the rate of heat transfer increases numerically as magnetic 

parameter and stretching rate increase, while it decreases with rise in melting parameter and shrinking rate.  For smaller 

values of melting parameter, heat transfer rate is higher. This observation matches with the results obtained by Yacob 

et al. [23]. Negative values of the heat transfer rate indicate that the heat is transferred from the fluid to the solid 

surface (sheet). 
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Table 4: The skin friction coefficient )0(f   for different values of M ,   and Me  

)02.0,733.0Pr,1,1,1( ===== EcCAK  
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5.0−= , 1=Me  3=M , 1=Me  3=M , 5.0−=  

M  )0(f     )0(f   Me  )0(f   

1 1.293535 -1.20 2.527196 0.2 2.015478 

2 1.623619 -0.50 1.901793 0.5 1.963669 

3 1.901793 0.00 1.344154 0.7 1.936108 

6 2.572453 0.25 1.034979 1.0 1.901793 

12 3.568898 0.50 0.707193 1.5 1.857108 
 

Table 5: The local Nusselt number ( )0 −  for different values of M ,   and Me  

)02.0,733.0Pr,1,1,1( ===== EcCAK  

5.0−= , 1=Me  3=M , 1=Me  3=M , 5.0−=  

M  )0( −    )0( −  Me  )0( −  

1 -0.262633 -1.20 -0.247543 0.2 -0.417924 

2 -0.285805 -0.50 -0.302602 0.5 -0.363580 

3 -0.302602 0.00 -0.343835 0.7 -0.335852 

6 -0.336089 0.25 -0.365199 1.0 -0.302602 

12 -0.374561 0.50 -0.387205 1.5 -0.261611 

 

CONCLUSIONS 

 In the present work we have addressed the influence of melting heat transfer on the MHD stagnation-point 

micropolar fluid flow over a stretching/shrinking sheet with viscous dissipation. It is found that the drag can be reduced 

effectively with melting parameter and stretching rate. It has also been observed that the rate of heat transfer can be 

increased with the magnetic parameter and stretching rate. The results obtained in the present investigation may be 

helpful in the selection of a micropolar fluid with suitable combinations of various parameters for achieving drag 

reduction and heat transfer rate augmentation in materials processing systems. The study reported here has ignored 

slip effects [40] at the sheet. These may be considered in the future.  
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Nomenclature 

 

A         spin gradient viscosity  

fc  heat capacity of fluid 

pc  specific heat at constant pressure 

sc  heat capacity of solid 

C         microinertia density  

fC       skin friction coefficient 

Ec  Eckert number    

f  dimensionless velocity  

g  dimensionless microrotation 

K  coupling constant parameter 

L          latent heat of the fluid 

M        magnetic parameter 

Me       melting parameter 

 

 

mT  temperature of the melting surface 

T  temperature of the ambient fluid  

u  velocity in the −x direction 

eu  free stream velocity 

wu        velocity of stretching/shrinking sheet 

v  velocity in the −y direction 

x  distance along the surface 

y  distance normal to the surface  

Greek symbols 

          spin gradient viscosity 

,  similarity variables 

  the dynamic viscosity 

  density of the fluid 

  thermal conductivity  
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N  microrotation component 

xNu     local Nusselt number 

Pr  Prandtl number 

wq  heat flux   

xRe      local Reynolds number 

S  constant characteristic of the fluid 

T  temperature of the fluid 

0T  temperature of the solid 

          kinematic viscosity    

          dimensionless temperature   

          stream function     

          stretching/shrinking parameter  

w         wall shear stress 

Subscripts 

w         surface condition 

         conditions far away from the surface 

 

 

 
  


