1	The association between Toxoplasma gondii infection and
2	postpartum blues
3	
4	Jiang-Mei Gao ^{a#} , Zhi-Hui He ^{b#} , Yi-Ting Xie ^{a,c} , Geoff Hide ^d , De-Hua Lai ^{a*} , Zhao-Rong
5	Lun ^{a,d} *
6	
7	^a Center for Parasitic Organisms, State Key Laboratory of Biocontrol, School of Life
8	Sciences, and Key Laboratory of Tropical Disease Control of the Ministry of
9	Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou
10	510275, China;
11	^b Department of Obstetrics and Gynecology, the First Affiliated Hospital of
12	Guangzhou Medical University, Guangzhou510120, China;
13	^c Department of Human Parasitology, School of Basic Medical Science, Hubei
14	University of Medicine, Shiyan 442000, China.
15	^d Biomedical Research Centre and Ecosystems and Environment Research Centre,
16	School of Environment and Life Sciences, University of Salford, Salford, M5 4WT,
17	UK
18	# These authors contributed equally.
19	
20	*Corresponding authors: laidehua@mail.sysu.edu.cn (D.H.L) or
21	lsslzr@mail.sysu.edu.cn (Z.R.L.)
22	
23	
24	
25	

26 Abstract

27	Introduction and Aim: Toxoplasma gondii is an intracellular protozoan parasite
28	infecting approximately 30% of the global human population. It has often been
29	suggested that chronic infection with T. gondii is related to personality changes and
30	various mental disorders including depression. It is not known whether this includes
31	post-partum blues or depression. In this study, we test the hypothesis that there is a
32	relationship between T. gondii infection and post-partum blues by measuring the
33	association between infection and postpartum blues.
34	Methods: A total of 475 Chinese women who have just given birth were detected
35	serology for Toxoplasma IgG and IgM antibodies, and evaluated the degree of
36	depression by Hamilton Depression Scale (HAMD) score. Data were analyzed by
37	Chi-square or Fisher's Exact tests using SPSS software.
38	Results: We found an overall <i>Toxoplasma</i> seroprevalence of 5.68% (27/475; 95% CI:
39	3.59 - 7.77) which was broken down into a prevalence of 6.60% (7/106; 95% CI: 1.80
40	-11.41) in mothers with post-partum blues and 5.42% (20/369; 95% CI: 3.10 - 7.74)
41	in non-affected mothers. There was no significant association between infection and
42	post-partum blues ($p = 0.64$).
43	Conclusion: The results suggest that there is no relationship between T. gondii
44	infection and postpartum blues, at least in this sample of patients from China.
45	
46	Key words: Toxoplasma gondii, postpartum blues, seroprevalence, newborn, puerpera,

47 Hamilton Depression Scale

48 **1. Introduction**

Toxoplasma gondii, which infects 30% to 50% of the global population, is one of 49 the most common parasites affecting both healthy and immunocompromised humans 50 (Furtado et al., 2011; Klaren and Kijlstra, 2002; Prandota, 2014). It is believed that T. 51 gondii infection, termed toxoplasmosis, in immunocompetent individuals is generally 52 considered asymptomatic (Halonen and Weiss, 2013). However, considering an 53 extended set of disease conditions, evidence is accumulating that strongly suggests 54 that this parasite may be implicated in neurodegenerative diseases and are gradually 55 56 emerging as a global health threat (Nissapatorn, 2010; Furtado et al., 2011; Torgerson and Mastroiacovo, 2013). For example, chronic infection with T. gondii is more 57 frequent in individuals with schizophrenia than in psychiatrically healthy controls, as 58 59 indicated in several studies from different countries (Torrey and Yolken, 2001, 2003; Torrey et al., 2007). In addition, a number of studies have also demonstrated that T. 60 gondii seropositivity is related to personality changes and various mental disorders 61 62 including development of suicidal tendencies, obsessive compulsive disorder, bipolar disorder, and depression (Sutterland et al., 2015; Arling et al., 2009; Hinze-Selch et 63 al., 2010; Ling et al., 2011; Okusaga et al., 2011; Tedla et al., 2011). 64 Depressive disorder, also known as clinical depression, is a mood disturbance 65 characterized by changes in mood, and loss of interest, pleasure, cognitive function, sleep, 66 appetite, or energy level (Pratt and Brody, 2008). Furthermore, clinical depression is 67 68 commonly associated with significant morbidity and mortality (Hsu et al., 2014). It has been reported that, during 2009-2012, about 7.6% Americans aged 12 and over had 69

70	depression (Pratt and Brody, 2014). However, the prevalence of mood disorders in China
71	appears to be lower than that found in North America and Western Europe. Data indicated
72	that the prevalence of major depressive disorders in China was at 1.96% in Kunming,
73	5.3% in Beijing, 3.6% in Shenyang and 1.15% in Jiangsu, respectively (Hu, 2003; Lu et
74	al., 2008; Ma et al., 2009; Qin et al., 2008). Moreover, depression is also considered a
75	common mental health problem among women of childbearing age, with a higher
76	prevalence rate ranging from 10 to 32% (Ertel et al., 2011; Wang et al., 2011). Postpartum
77	nonpsychotic depression is the most common complication of childbirth, affecting
78	approximately 10-15% of women, and represents a considerable health problem affecting
79	women and their families. A mother's ongoing depression can contribute to later
80	emotional, behavioral, cognitive and interpersonal problems in the offspring. Because of
81	these serious consequences, exploring potential factors, early diagnosis and intervention
82	treatment of postpartum illnesses are imperative for the health and well-being of mother
83	and child (Robertson et al., 2004). Previous studies have consistently demonstrated
84	common significant predictors of postpartum depression as follows: experiencing
85	depressed moods or anxiety during pregnancy, life events, no social support and
86	socioeconomic status (Patel et al., 1999; Bartley, 1994; Beck, 2001; Brugha et al., 1998;
87	Neter et al., 1995). Furthermore, studies have shown that latent T. gondii infection is
88	associated with symptoms of depression during pregnancy (Groer et al., 2011).
89	Post partum blues are self-limiting depression commonly found within one week
90	soon after delivery, and are considered as important indicators of depression
91	(Maliszewska et al., 2016; Reck et al., 2009). However, it remains unknown whether

92	parasite infection may play an important role in postpartum blues. We are interested
93	in the relationship between chronic latent T. gondii infection and the development of
94	postpartum blues in new mothers. Using a cohort of new mothers in China, we aim to
95	investigate this globally important question and to test the hypothesis that T. gondii
96	infection may be more frequent and/or more intense in patients with major
97	postpartum depression compared with psychiatrically healthy controls.
98	
99	2. Materials and Methods
100	
101	Participants and Questionnaires
102	In this study, blood samples were collected from 475 women one week after
103	delivery (puerpera) in the First Affiliated Hospital of Guangzhou Medical University,
104	China. Mothers were randomly selected for this study and all those selected were
105	tested by a psychiatrist irrespective of any obvious signs of depression. Due to the low
106	prevalence of Toxoplasma infection in China, the sample size needed to ensure
107	sufficient statistical power (minimum n=442) was calculated using a previously
108	published prevalence of 7.8% (ONIHPDCSS, 2005). Furthermore, this value
109	concurred with our previous studies (collated from greater than 120000 pregnant
110	women (1990 - 2010)) that recorded the seroprevalence of <i>Toxoplasma</i> to be less than
111	10% in this demographic group (Gao et al., 2012). Sera were separated by
112	centrifugation and stored at -80 °C until serological testing. All participant
113	information was obtained (usually 2-3 days postpartum) through questionnaires and

114	recorded. These included participants' age, occupation, relevant eating habits
115	(consumption of raw or undercooked meat – past and current) and cat contact (current
116	and past cat ownership, cats in the same household, playing closely with cats,
117	cleaning cat litter).
118	
119	Ethical Approval
120	This study was approved by the Medical Science Ethical Committee of Sun-Yet
121	San University and the First Affiliated Hospital of Guangzhou Medical University. All
122	enrolled participants were informed about the objectives of the study, and written
123	informed consent was obtained from all of them.
124	
125	Hamilton Depression Scale (HAMD) score
126	Psychiatrists evaluated the degree of depression according to the HAMD
127	(Hamilton, 1967) depression scale score, clinical symptoms and the exclusive criteria.
128	A HAMD score of <8, was considered normal; 8-19, indicated mild depression; 20-
129	34, indicated medium depression; and \geq 35, was considered as severe depression. All
130	patients with mild, medium and severe depression were considered as postpartum
131	blues cases according to their clinical signs.
132	
133	Serological Tests
134	
	All serum samples were tested for anti-T. gondii antibodies - both IgM (indicator of

136	enzyme-linked immunosorbent assay (ELISA) kit (Modern Gaoda Biotechnology
137	Company, Beijing) according to the manufacturer's instructions (accuracy > 96.7%,
138	detection limit of 5 IU/ml and coefficient of variation $< 15\%$.). Positive, negative and
139	cutoff serum controls were included in every plate. The optical densities (ODs) were
140	measured at 450 nm in a microplate reader (Thermo Scientific Multiskan FC, Thermo
141	Scientific, China). All serum samples were run in triplicate. Samples with ODs above the
142	cutoff value were considered as serologically positive.
143	
144	Statistical Analysis
145	Data on the prevalence of anti-T. gondii antibodies and depression symptoms in
146	population groups were analyzed by Chi-square or Fisher's Exact tests using SPSS
147	software. Risk factors of occupation, serolopositivity for <i>T. gondii</i> , raw meat consumption
148	and a significant contact with cats were evaluated by using odds ratios (ORs), together
149	with their corresponding 95% confidence intervals (95% CIs). Bias corrected ORs were
150	obtained by adding 0.5 to each data point.
151	
152	3. Results

The collection of 475 serum samples taken from the new mothers was examined for anti-*T. gondii* IgG and IgM antibodies using enzyme-linked immunosorbent assay (ELISA). All 475 puerpera samples were IgM negative, suggesting that no current infection of the parasite was occurring. Anti-*Toxoplasma* positive IgG was detected in

158	27 (5.68%; 95% CI: 3.59 - 7.77) of the 475 serum samples as shown in Table 1.
159	Hamilton Depression Scale scores in the same set of new mothers were
160	determined. All patients with mild, medium and severe depression were considered as
161	true cases having postpartum blues according to their clinical signs. There was no
162	significant association between <i>T. gondii</i> seropositivity and postpartum blues (p =
163	0.643; n = 475). When broken down, the seroprevalence of <i>T. gondii</i> was slightly
164	higher in the new mothers with postpartum blues (6.60%, 7/106; 95% CI: $1.80 -$
165	11.41) than that in the remaining normal group (5.42%, 20/369; 95% CI: 3.10 – 7.74)
166	but this was not significant ($p = 0.643$, OR = $1.234[0.507-3.002]$) – see Table 1.
167	
168	To further explore the hypothesis that <i>T. gondii</i> infection is related to postpartum
169	depression, it is possible that there is a quantitative influence on the relationship. For
170	example, T. gondii-positive new mothers might show higher scores on the depression
171	scale when compared to their uninfected counterparts. To examine that, we further
172	analyzed the relationship between <i>T. gondii</i> immunoglobulin G (IgG) optical densities
173	(ODs) and the Hamilton Depression Scale (HAMD) scores. We found that depression
174	scores were not significantly different ($p = 0.873$) between the positive and negative
175	T. gondii optical density (ODs) groups in the entire population of new mothers
176	(n=475) (Figure S1A). In addition, as shown in Figure S1B, the <i>T. gondii</i> positive
177	group (n = 27) did not show a positive correlation of <i>T. gondii</i> ODs (serointensity)
178	with the Hamilton Depression Scale (HAMD) scores ($p = 0.214$). Although we
179	recognize that the sample sizes in this breakdown are small, these analyses further

180 support the prevalence data that suggests there is no significant association between181 infection and postpartum blues.

183	According to previous reports, the probability of becoming infected with T.
184	gondii increases with age because the infection is ubiquitous and the probability of
185	being exposed to infection increases with age (Hinze-Selch et al., 2007). Therefore,
186	we analysed the seroprevalence of <i>T. gondii</i> in the 475 pregnant women in different
187	age groups (Table 2) and the results demonstrated that there was no significant
188	correlation between <i>T. gondii</i> seroprevelence and age ($p = 0.872$). Therefore, the
189	results from our current study demonstrate that anti-T. gondii seropositivity is not age
190	dependent in this sample of mothers. One possible reason for the results is that the
191	age range of pregnant women is too narrow to reveal this effect and we also recognize
192	that the sample sizes in this breakdown are small. We also found that the incidence of
193	postpartum blues did not show a significant relationship with age of the mothers ($p =$
194	0.610) (Table 2) although again our numbers of individuals were small.
195	To investigate whether there was any association between the prevalence of
196	either post-partum blues or <i>T. gondii</i> seropositivity, analyses were conducted on a
197	breakdown of occupational status of the participants based on the questionnaire data
198	(Table 3). The participants were categorized into 10 occupational type groups:
199	farmers (most are less well educated and live in rural areas), workers (born in the city,
200	most are less well educated and tend to be employed in factories and companies),
201	medical staff (well-educated, with a good understanding of health and hygiene),

202	managers (born in the city and most are well-educated but may not have an
203	understanding of health issues), teachers (well-educated, have health awareness but
204	may not have detailed knowledge), business staff (may or may not be well-educated,
205	most of them do not have an understanding of health issues), self-employed (may or
206	may not be well-educated, most of them do not have an understanding of health
207	issues), housewives (most are less well educated and are responsible for the routine
208	work in the family), unemployed (most are less well educated and have been out of
209	work for the past few years) and others (no details of their working status). There was
210	no significant difference in anti-T. gondii seroprevalence ($p = 0.971$) and incidence of
211	postpartum blues ($p = 0.918$) between the different occupational groups. We again
212	recognize that there are small numbers of individuals sampled in this analysis.
213	We also investigated traditional risk factors associated with the seroprevalence
213 214	We also investigated traditional risk factors associated with the seroprevalence of <i>T. gondii</i> and prevalence of postpartum blues in new mothers (Table 4).
214	of <i>T. gondii</i> and prevalence of postpartum blues in new mothers (Table 4).
214 215	of <i>T. gondii</i> and prevalence of postpartum blues in new mothers (Table 4). Surprisingly, our analyses showed that contact with cats and consumption of raw or
214 215 216	of <i>T. gondii</i> and prevalence of postpartum blues in new mothers (Table 4). Surprisingly, our analyses showed that contact with cats and consumption of raw or uncooked meat, two generally well established risk factors, were not associated with
214 215 216 217	of <i>T. gondii</i> and prevalence of postpartum blues in new mothers (Table 4). Surprisingly, our analyses showed that contact with cats and consumption of raw or uncooked meat, two generally well established risk factors, were not associated with <i>T. gondii</i> seropositivity ($p = 0.766$ and 0.357, respectively). By contrast, consumption
214 215 216 217 218	of <i>T. gondii</i> and prevalence of postpartum blues in new mothers (Table 4). Surprisingly, our analyses showed that contact with cats and consumption of raw or uncooked meat, two generally well established risk factors, were not associated with <i>T. gondii</i> seropositivity ($p = 0.766$ and 0.357, respectively). By contrast, consumption of raw or uncooked meat was significantly associated with increased prevalence of
214 215 216 217 218 219	of <i>T. gondii</i> and prevalence of postpartum blues in new mothers (Table 4). Surprisingly, our analyses showed that contact with cats and consumption of raw or uncooked meat, two generally well established risk factors, were not associated with <i>T. gondii</i> seropositivity ($p = 0.766$ and 0.357, respectively). By contrast, consumption of raw or uncooked meat was significantly associated with increased prevalence of postpartum blues among new mothers ($p = 0.007$) albeit based on small numbers. The
214 215 216 217 218 219 220	of <i>T. gondii</i> and prevalence of postpartum blues in new mothers (Table 4). Surprisingly, our analyses showed that contact with cats and consumption of raw or uncooked meat, two generally well established risk factors, were not associated with <i>T. gondii</i> seropositivity ($p = 0.766$ and 0.357, respectively). By contrast, consumption of raw or uncooked meat was significantly associated with increased prevalence of postpartum blues among new mothers ($p = 0.007$) albeit based on small numbers. The prevalence of postpartum blues in the group of participants that consumed raw meat

224	close to significance at $p = 0.061$ suggesting that a larger sample size would be useful
225	to explore this further. The prevalence in the cat-contact group (29.47%, 28/95) is
226	slightly higher than that of the non-cat-contact group (20.53%, 78/380; OR: 1.618;
227	95%CI: 0.975-2.685).
228	
229	4. Discussion
230	Depression during the perinatal period does not only have a significant impact on
231	quality of life of the mother (Darcy et al., 2011), but also influences the
232	developmental outcomes of their children (Ertel et al., 2011; Turney, 2012). Many
233	previous studies have tried to identify the role of <i>T. gondii</i> in general neurological and
234	psychiatric conditions in humans (Torrey et al., 2007; Arling et al., 2009; Groer et al.,
235	2011; Hinze-Selch et al., 2010; Prandota, 2014; Sutterland et al., 2015). Clear
236	associations seem to be emerging for schizophrenia (Torrey et al., 2007, Sutterland et
237	al., 2015) and probable associations with attempted suicide (Arling et al., 2009) and
238	personality disorders (Hinze-Selch et al., 2010). A major detailed meta-analysis
239	provided convincing evidence of an association between T. gondii infection and
240	schizophrenia but also suggested links with bipolar disorder, obsessive-compulsive
241	disorder, addiction but not for major depression (Sutterland et al., 2015). Several
242	other studies also demonstrated no link with major depression (Gale et al 2014; Gale
243	et al 2016; Suvisaari et al 2017). Some studies have focused specifically on prenatal
244	depression. Groer et al (2011) conducted a study on women during pregnancy and

showed that there was no significant difference in *T. gondii* seroprevalence between

246	mothers with prenatal depression and controls. However, they observed that higher
247	titers of <i>T. gondii</i> IgG antibody were positively correlated with increased measures of
248	depression and anxiety (as measured by the Profile of Mood States -POMS -
249	method). Furthermore, other studies have shown no association between the
250	seroprevalence of <i>T. gondii</i> and prenatal depression in both low (5.25%) (Alvarado-
251	Esquival et al., 2017) and in high (59%) (Nourollahpour Shiadeh et al., 2016)
252	seroprevalence of infection. The latter study demonstrated that there was an
253	association of increasing <i>T. gondii</i> IgG titer with increasing depression score (as
254	measured by the Iranian version of the Edinburgh Post-Partum Depression Scale
255	(EPDS) (Nourollahpour Shiadeh et al., 2016) however, no such association was found
256	in the former one (EPDS, Mexican version) (Alvarado-Esquival et al., 2017). The
257	consensus seems to be emerging that there is no association of T. gondii
258	seroprevalence and prenatal depression although conflicting evidence exists with
259	regard to association between serointensity and depression severity score. To our
260	knowledge, no studies have been conducted that investigate any possible association
261	between T. gondii infection and postpartum depression or postpartum blues, the latter
262	being considered as sa elf-limiting mild depression commonly found in new mothers
263	a few days after delivery (Maliszewska et al., 2016). In our study, we report the first
264	investigation addressing this question. Using a cohort of 475 participants, we
265	analyzed the association between T. gondii infection and postpartum blues. Our
266	results show clearly that overall there was no significant association between
267	

268	association, between seroprevalence and postpartum blues, follows the same pattern
269	revealed by studies on prenatal depression during pregnancy, described above, and
270	supports a consensus that there may be no general association with perinatal
271	depression. Furthermore, when we broke our data down further, we found no
272	evidence of association between increasing IgG titer and depression severity score (as
273	measured by the Hamilton Depression Scale). Although we do recognize that the low
274	prevalence of <i>T. gondii</i> infection and prevalence of postpartum blues in our cohort
275	reduces the power of such a detailed analysis. Again, though, our data, on the
276	quantitative association between T. gondii IgG titer and depression score, is consistent
277	with some other studies (Alvarado-Esquival et al., 2017). However, both our results
278	and those of Alvarado-Esquival et al. (2017) conflict with those of Nourollahpour
279	Shiadeh et al. (2016) on this quantitative association. This could be due, in part, to
280	differences in either depression scoring methods or due to differing backgrounds of
281	the prevalence of parasite infections. The former is unlikely, since both the studies of
282	Alvarado-Esquival et al (2017) and Nourollahpour Shiadeh et al (2016) used variants
283	of the EPDS. However, the background of prevalences in each study differed
284	considerably (5.25% and 59%) with the former corresponding to our reported
285	prevalence in our cohort (5.68%) suggesting that this could be a factor. In China, the
286	seroprevalence of <i>T. gondii</i> in the Chinese population ($\sim 10\%$) is much lower than that
287	in some parts of South America and Europe (50%-80%) (Fromont et al., 2009;
288	ONIHPDCSS, 2005). In pregnant mothers in China, the prevalence is also low
289	(~10%) and corresponds to the general population levels (Gao et al., 2012). In this

study, the prevalence followed the typical low level found in China (5.68%). The 290 correspondence between the background prevalence in the study of Alvarado-291 292 Esquival et al (2017) and our study, both finding no quantitative association between T. gondii IgG titer and depression scores, supports a view that the conflict with the 293 study of Nourollahpour Shiadeh et al (2016) could be related to prevalence. This also 294 raises the issue that studies conducted in areas of low parasite prevalence may need 295 substantially larger samples sizes to achieve the required power to conduct more 296 detailed breakdowns of interactions. The question is clearly complex and it is 297 298 possible that other interacting factors may confound any role that *T. gondii* may possess in perinatal depression. 299

If T. gondii infection is not the main factor causing postpartum blues nor 300 301 depression in new mothers, are there any other factors, such as age, which could influence the seroprevalence of T. gondii or baby blues. Seroprevalence of T. gondii 302 has been shown to that increase with age (Hinze-Selch et al., 2007). For instance, in 303 the Israeli population, the seroprevalence rate of T. gondii is 7.6% in the 10-19 years 304 group, 31.4% in the 50-59 years group, followed by a sharp increase to 58.1% in the 305 \geq 60 years group (Markovich et al., 2014). In addition, similar results have been 306 observed in pregnant women in Poland, where mean prevalence of IgG antibodies 307 was seen at 40.6% and increased with age with a yearly seroconversion rate of 0.8%308 (95% CI: 0.6-1.0, p < 0.001) (Nowakowska et al., 2014). However, in an older study, 309 Ye and Zou (1993) reported that seroprevalence of T. gondii in new mothers in China 310 did not increase with age. In our study of Chinese new mothers, no age prevalence 311

increase was observed (p = 0.610). These latter studies may be explained by bias due to a relatively narrow age window found in cohorts of new mothers/women in pregnancy.

In our study, we investigated the influence of occupation, association with cats 315 and consumption of raw meat on the relationship between T. gondii infection and 316 postpartum blues. Our data shows no significant association between these risk 317 factors and infection or postpartum blues. However, we recognise that once our data 318 was broken down to these levels of detail, sample sizes were small and future studies 319 320 may be needed with increased statistical power to dissect these questions. To our knowledge, this is the first study that has investigated the association of 321 T. gondii infection with postpartum blues in new mothers. We found no association 322 323 between the seroprevalence of *T. gondii* and clinically depressed participants. Other studies, that have focused on prenatal depression during pregnancy, have also failed 324

to detect significant association with *T. gondii* seroprevalence. We propose, therefore, that, the current studies are tending towards a consensus that shows little support for the involvement of this parasite in perinatal depression in general. However, perinatal depression has a complex etiology and future larger scale studies may be required to unpick further detail and to investigate specific epidemiological interactions.

330

331 Authors' contributions

Jiang-Mei Gao and Zhao-Rong Lun they were responsible for designed research;
Jiang-Mei Gao and Yi-Ting Xie conducted research; Zhi-Hui He provided essential

3	334	materials; De-Hua Lai conducted analyzed data or performed statistical analysis;
3	335	Jiang-Mei Gao, Geoff Hide, De-Hua Lai and Zhao-Rong Lun wrote paper.
3	336	
Э	337	Funding
Э	338	This work was supported by the National Key R&D Program of China
Э	339	(2017YFD0500400), National Natural Science Foundation of China (31772445) and
Э	340	the 111 project (B12003).
Э	341	
3	342	Acknowledgments:
3	343	The authors wish to thank the funding agencies and a cohort of Chinese new
Э	344	mothers.
Э	345	
Э	346	Conflict of interest
3	347	The authors report no conflict of interest.
Э	348	
Э	349	References:
Э	350	Alvarado-Esquivel, C., Martínez-Martínez, A.L., Sánchez-Anguiano, L.F.,
Э	851	Hernández-Tinoco, J., Castillo-Orona, J.M., Salas-Martínez, C., et al., 2017.
Э	352	Lack of association between Toxoplasma gondii exposure and depression in
Э	353	pregnant women: a case-control study. BMC. Infect. Dis. 17(1), 190.
Э	354	Arling, T.A., Yolken, R.H., Lapidus, M., Langenberg, P., Dickerson, F.B.,
3	355	Zimmerman, S.A., et al., 2009. Toxoplasma gondii antibody titers and history of

- suicide attempts in patients with recurrent mood disorders. J. Nerv. Ment. Dis.
 197, 905-908.
- Bartley, M., 1994. Unemployment and ill health: understanding the relationship. J.
- Epidemiol. Community. Health. 48, 333-337.
- Beck, C.T., 2001. Predictors of postpartum depression: an update. Nurs. Res. 50, 275285.
- Brugha, T.S., Sharp, H.M., Cooper, S.A., Weisender, C., Britto, D., Shinkwin, R., et
- al.,1998. The Leicester 500 Project. Social support and the development of
- postnatal depressive symptoms, a prospective cohort survey. Psychol. Med. 28,63-79.
- 366 Darcy, J.M., Grzywacz, J.G., Stephens, R.L., Leng, I., Clinch, C.R., Arcury, T.A.,
- 3672011. Maternal depressive symptomatology: 16-month follow-up of infant and
- 368 maternal health-related quality of life. J. Am. Board. Fam. Med. 24, 249-257.
- Ertel, K.A., Rich-Edwards, J.W., Koenen, K.C., 2011. Maternal depression in the
- 370 United States: nationally representative rates and risks. J. Womens. Health
- 371 (Larchmt). 20, 1609-1617.
- 372 Fromont, E.G., Riche, B., Rabilloud, M., 2009. Toxoplasma seroprevalence in a rural
- population in France: detection of a household effect. Bmc. Infect. Dis. 9, 76.
- Furtado, J.M., Smith, J.R., Belfort, R.J., Gattey, D., Winthrop, K.L., 2011
- Toxoplasmosis: a global threat. J. Glob. Infect. Dis. 3, 281-284.
- Gale, S.D., Berrett, A.N., Brown, B., Erickson, L.D., Hedges, D.W., 2016. No
- association between current depression and latent toxoplasmosis in adults. Folia.

- 378 Parasitol (Praha). 26, 63.
- Gale, S.D., Brown, B.L., Berrett, A., Erickson, L.D., Hedges, D.W., 2014.
- 380 Association between latent toxoplasmosis and major depression, generalised
- anxiety disorder and panic disorder in human adults. Folia. Parasitol (Praha).
- **382 61(4)**, **285-292**.
- 383 Gao, X.J., Zhao, Z.J., He, Z.H., Wang, T., Yang, T.B., Chen, X.G., et al., 2012.
- *Toxoplasma gondii* infection in pregnant women in China. Parasitology. 139(2),
 139-147.
- Groer, M.W., Yolken, R.H., Xiao, J.C., Beckstead, J.W., Fuchs, D., Mohapatra, S.S.,
- et al., 2011. Prenatal depression and anxiety in *Toxoplasma gondii*-positive
 women. Am. J. Obstet. Gynecol. 204, 431-433.
- Halonen, S.K., Weiss, L.M., 2013. Toxoplasmosis. Handb. Clin. Neurol. 114, 125145.
- Hamilton, M., 1967. Development of a rating scale for primary depressive illness. Br.
- 392 J. Soc. Clin. Psychol. 6(4), 278-296.
- Hinze-Selch, D., Daubener, W., Eggert, L., Erdag, S., Stoltenberg, R., Wilms, S.,
- 2007. A controlled prospective study of *toxoplasma gondii* infection in
- individuals with schizophrenia: beyond seroprevalence. Schizophr. Bull. 33(3),
 782-788.
- Hinze-Selch, D., Daubener, W., Erdag, S., Wilms, S., 2010. The diagnosis of a
- 398 personality disorder increases the likelihood for seropositivity to *Toxoplasma*
- *gondii* in psychiatric patients. Folia. Parasitol (Praha). 57, 129-135.

- 400 Hsu, P.C., Groer, M., Beckie, T., 2014. New findings: depression, suicide, and
- 401 *Toxoplasma gondii* infection. J. Am. Assoc. Nurse. Pract. 26, 629-637.
- 402 Hu Bin, X.L.B.W., 2003. Epidemiological survey of depression prevalence in Jiangxi
- 403 Province. Chin. J. Psychiatry. 36, 242-245.
- Klaren, V.N., Kijlstra, A., 2002. Toxoplasmosis, an overview with emphasis on ocular
 involvement. Ocul. Immunol. Inflamm. 10, 1-26.
- Ling, V.J., Lester, D., Mortensen, P.B., Langenberg, P.W., Postolache, T.T., 2011.
- 407 *Toxoplasma gondii* seropositivity and suicide rates in women. J. Nerv. Ment.
- 408 Dis. 199, 440-444.
- Lu, J., Ruan, Y., Huang, Y., Yao, J., Dang, W., Gao, C., 2008. Major depression in
- Kunming: prevalence, correlates and co-morbidity in a south-western city ofChina. J. Affect. Disord. 111, 221-226.
- 412 Ma, X., Xiang, Y.T., Cai, Z.J., Li, S.R., Xiang, Y.Q., Guo, H.L., et al., 2009.
- 413 Prevalence and socio-demographic correlates of major depressive episode in
- 414 rural and urban areas of Beijing, China. J. Affect. Disord. 115, 323-330.
- 415 Markovich, M.P., Shohat, T., Riklis, I., Avni, R., Yujelevski-Rozenblit, D., Bassal,
- 416 R., et al., 2014. Seroepidemiology of *Toxoplasma gondii* infection in the Israeli
- 417 population. Epidemiol. Infect. 142, 149-155.
- 418 <u>Maliszewska K, Świątkowska-Freund M, Bidzan M, Preis K.</u>, 2016.
- 419 Relationship, social support, and personality as psychosocial determinants of
 420 the risk for postpartum blues. Ginekol Pol. 2016;87(6):442-7.
- 421 Neter, E., Collins, N.L., Lobel, M., Dunkel-Schetter, C., 1995. Psychosocial

422	predictors of postpartum depressed mood in socioeconomically disadvantaged
423	women. Womens. Health. 1, 51-75.
424	Nourollahpour Shiadeh, M., Rostami, A., Pearce, B.D., Gholipourmalekabadi, M.,
425	Newport, D.J., Danesh, M., et al., 2016. The correlation between Toxoplasma
426	gondii infection and prenatal depression in pregnant women. Eur. J. Clin.
427	Microbiol. Infect. Dis. 35(11), 1829-1835. Epub 2016 Aug 8. PubMed PMID:
428	27502929.
429	Nowakowska, D., Wujcicka, W., Sobala, W., Spiewak, E., Gaj, Z., Wilczynski, J.,
430	2014. Age-associated prevalence of Toxoplasma gondii in 8281 pregnant women
431	in Poland between 2004 and 2012. Epidemiol. Infect. 142, 656-661.
432	Okusaga, O., Langenberg, P., Sleemi, A., Vaswani, D., Giegling, I., Hartmann, A.M.,
433	et al., 2011. Toxoplasma gondii antibody titers and history of suicide attempts in
434	patients with schizophrenia. Schizophr. Res. 133, 150-155.
435	ONIHPDCSS. 2005. A national survey on current status of the important parasitic
436	diseases in human population. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng
437	Chong Bing Za Zhi. 23, 332-340.
438	Patel, V., Araya, R., de Lima, M., Ludermir, A., Todd, C., 1999. Women, poverty and
439	common mental disorders in four restructuring societies. Soc. Sci. Med. 49,
440	1461-1471.
441	Phillips, M.R., Zhang, J., Shi, Q., Song, Z., Ding, Z., Pang, S., et al., 2009.
442	Prevalence, treatment, and associated disability of mental disorders in four
443	provinces in China during 2001-05: an epidemiological survey. Lancet. 13,

- 444 373(9680).
- 445 Prandota, J., 2014. Possible link between *Toxoplasma gondii* and the anosmia
- 446 associated with neurodegenerative diseases. Am. J. Alzheimers. Dis. Other.
- 447 Demen. 29, 205-214.
- 448 Pratt, L.A., Brody, D.J., 2014. Depression in the U.S. household population, 2009-
- 449 2012. NCHS. Data. Brief. 1-8.
- 450 Pratt, L.A., Brody, D.J., 2008. Depression in the United States household population,
- 451 2005-2006. NCHS. Data. Brief. 1-8.
- 452 Qin, X., Wang, W., Jin, Q., Ai, L., Li, Y., Dong, G., et al., 2008. Prevalence and rates
- 453 of recognition of depressive disorders in internal medicine outpatient
- departments of 23 general hospitals in Shenyang, China. J. Affect. Disord. 110,46-54.
- 456 <u>Reck, C., Stehle, E., Reinig, K., Mundt, C.,</u> 2009. Maternity blues as
- 457 a predictor of DSM-IV depression and anxiety disorders in
- 458 the first threemonths postpartum. J. Affect. Disord. 113(1-2), 77-87.
- 459
- 460 Robertson, E., Grace, S., Wallington, T., Stewart, D.E., 2004. Antenatal risk factors
- for postpartum depression: a synthesis of recent literature. Gen. Hosp.
- 462 Psychiatry. 26, 289-295.
- 463 Sutterland, A.L., Fond, G., Kuin, A., Koeter, M.W., Lutter, R., van Gool, T., et al.,
- 464 2015. Beyond the association. *Toxoplasma gondii* in schizophrenia, bipolar
- disorder, and addiction: systematic review and meta-analysis. Acta. Psychiatr.

- 466 Scand. 132, 161-179.
- 467 Suvisaari, J., Torniainen-Holm, M., Lindgren, M., Härkänen, T., Yolken, R.H., 2017.
- 468 *Toxoplasma gondii* infection and common mental disorders in the Finnish
- d69 general population. J. Affect. Disord. 223, 20-25.
- Tedla, Y., Shibre, T., Ali, O., Tadele, G., Woldeamanuel, Y., Asrat, D., et al., 2011.
- 471 Serum antibodies to *Toxoplasma gondii* and Herpesvidae family viruses in
- individuals with schizophrenia and bipolar disorder: a case-control study. Ethiop.
- 473 Med. J49, 211-220.
- 474 Torgerson, P.R., Mastroiacovo, P., 2013. The global burden of congenital
- 475 toxoplasmosis: a systematic review. Bull. World. Health. Organ. 91, 501-508.
- 476 Torrey, E.F., Bartko, J.J., Lun, Z.R., Yolken, R.H., 2007. Antibodies to *Toxoplasma*
- *gondii* in patients with schizophrenia: a meta-analysis. Schizophr. Bull. 33, 729736.
- 479 Torrey, E.F., Yolken, R.H., 2001. The schizophrenia-rheumatoid arthritis connection:
- 480 infectious, immune, or both? Brain. Behav. Immun. 15, 401-410.
- 481 Torrey, E.F., Yolken, R.H., 2003. *Toxoplasma gondii* and schizophrenia. Emerg.
- 482 Infect. Dis. 9, 1375-1380.
- 483 Turney, K., 2012. Pathways of disadvantage: Explaining the relationship between
- 484 maternal depression and children's problem behaviors. Soc. Sci. Res. 41, 1546485 1564.
- 486 Wang, L., Wu, T., Anderson, J.L., Florence, J.E., 2011. Prevalence and risk factors of
- 487 maternal depression during the first three years of child rearing. J. Womens.

- 488 Health (Larchmt). 20; 711-718.
- 489 Ye, H., Zou, P., 1993. Analysis of *Toxoplasma gondii* infection in 251 puerperae.
- 490 Chinese Journal of Zoonoses. 9, 64. (In Chinese)
- 491
- 492

Table 1. Detection of anti-*Toxoplasma gondii* IgM and anti-*T. gondii* IgG antibodies in new mothers with baby blue and in the control group.

	Toxoplasma gondii IgM	[Toxoplasma gondii Ig	gG
	Total	Total	postpartum blues	Normal
No. examined	475	475	106	369
No. positive	0	27	7	20
Prevalence(95% CI), %	0	5.68(3.59-7.77)	6.60(1.80-11.41)	5.42(3.10-7.74)
OR (95% CI) –	_	— Ref.	1.234[0	.507-3.002]
<i>P</i> - — 0.64				
valu 3				
e				

504

505 **Table 2.** Association between age, seropositivity of *Toxoplasma gondii* and prevalence of post-partum blues in new mothers. * Figures in

506 brackets indicate the number of cases of new mothers with both depression and *T. gondii* seropositivity.

507

Age Toxo postplas partu

> *ma* m *gond* blues *ii*

> > IgG

508

No. No. Prev OR *P*- No. No. Prev OR *P*exampositialenc (95% value exampositialenc (95% value

ined ve e CI) ined ve e CI) (case (95% (95% s CI), CI), with % % depre ssion *)

509

<25 57 2 (0) 3.51(Ref. 0.872 57 14 24.56 Ref. 0.610 0-(13.0 4-8.43) 36.08) 510 25- 274 17 6.20(1.819 274 63 22.990.917 (5) 3.33-(0.40 30 (17.9 (0.47 9.08) 8-8- 1-8.102 28.011.784))) 511 30-25 22.12(14.35-29.90) 0.873(0.413-1.845) 113 6 (2) 5.31(1.11-9.51) 1.542(0.301-7.894) 113 35 3 4 12.90(0.40-25.40) 0.455(0.136-1.527) >35 31 2 (0) 6.45(0-15.61) 1.897(0.254-14.167) 1 475 All 475 27 (7) 5.68(3.59-22.32(18.56-106 7.77) 26.07) 512 513 514

516	
517	
518	
519	Table 3. Occupation demographics associated with seropositivity of <i>Toxoplasma gondii</i> and prevalence of postpartum blues in new mothers.
520	
	Occupation Toxoplasma gondii IgG post-partum blues
	No. No. Prevalence(95% OR(95% P- No. No. Prevalence(95% OR(95% P-
	examinedpositive CI),% CI) valueexaminedpositive CI),% CI) value
521	
521	Farm 22 2 9.09 (Ref. 0.971 22 5 22.73 Ref. 0.918
	er = 0- (3.71
	22.14 -
) 41.75
522	
522	Wor 51 2 3.92(0.408 51 11 21.570.935
	ker $0-(0.05)$ (9.89(0.28)
	9.44) 4 2-
	3.101 33.253.104
)))
523	
525	

	Medi 36	2 5.56(0.588 36	6 16.670.680			
	cal	0- (0.07	(3.88 (0.18			
	staff	13.42 7-	- 0-			
) 4.507	29.462.565			
)))			
ŀ						
	Manager	14 1 7.14(0-22.57)	0.769(0.063-9.371)	14 2	14.29(0-35.25)	0.567(0.094-3.423)
	Teacher	18 1 5.56(0-	0.588(0.049-	18 4	22.22(0.95-	0.971(0.218-
		17.28)	7.067)		43.50)	4.323)
	Busi 66	3 4.55(0.476 66	14 21.210.915			
	ness	0- (0.07	(11.0(0.28			
	staff	9.71) 4-	9- 7-			
		3.055	31.342.916			
)))			
	Self- 69	6 8.70(0.952 69	18 26.091.200			
	empl	1.88-(0.17	(15.4 (0.38			
	oyed	15.51 8-	6- 7-			
) 5.097	36.713.725			
)))			
	Hous 7	0 0.00(0.547 7	3 42.862.550			
	ewiv	0.00- (0.02	(0- (0.42			
	es	0.00) 3-	92.29 2-			
)			

	12.75	15.40
	0)*	6)
Une 47	3 6.38(0.682	47 9 19.150.805
mplo	0- (0.10	(7.47 (0.23
yed	13.64 6-	- 4-
) 4.405	30.832.765
)))
Othe 145	7 4.83(0.507	145 34 23.451.041
rs	1.30-(0.09	(16.4 (0.35
	8.36) 8-	7- 8-
	2.615	30.433.032
)))
	mplo yed Othe 145	0)* Une 47 3 6.38(0.682 mplo 0- (0.10 yed 13.64 6-) 4.405) Othe 145 7 4.83(0.507 rs 1.30-(0.09 8.36) 8- 2.615

Table 4. Risk factors associated with the seropositivity of *Toxoplasma gondii* and prevalence of postpartum blues in new mothers.

Ris Tox						
k opla						
fact sma						
or gon						
dii						
IgG						
No. exami	ned No	. positive (with	n depression)	Prevalence(95%	CI),% OR(95	5% CI) P-value
Cat Contac	t N	lo 380	21 (4)	5.53(3.22-7.83) Ref.	0.766
	Yes	95	6(3)	6.32(1.33-11.3)	1.152(0.452-2	.940)
Raw Meat	No	384	20(2)	5.21(2.98-7.44)	Ref.	0.357
Yes 91 7	7(5)7.691	.51				
	(2.17	(0.				
	1- 6	521				
	13.2	-				
	7) 3	.70				
		4)				

544			
545			
546			
547			
548			
549			

552	Figure S1A. Quantitative comparison between Toxoplasma gondii immunoglobulin
553	(IgG) optical density (OD) and Hamilton Depression Scale (HAMD) score in all new
554	mothers (n=475). There is no significant correlation between IgG optical density and
555	HAMD score ($p = 0.872$).
556	
557	Figure S1B. Quantitative analysis of all Toxoplasma gondii seropositive new mothers
558	(n=27) by comparison of immunoglobulin (IgG) optical density (OD) and Hamilton
559	Depression Scale (HAMD) score in the same mothers. There is no significant
560	correlation between IgG optical density and HAMD score ($p=0.214$).
561	
562	