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Abstract

The surging pace of Internet of Things (IoT) development and its applications

has resulted in significantly large amounts of data (commonly known as big

data) being communicated and processed across IoT networks. While cloud

computing has led to several possibilities in regard to this computational chal-

lenge, there are several security risks and concerns associated with it. Edge

computing is a state-of-the-art subject in IoT that attempts to decentralize,

distribute and transfer computation to IoT nodes. Furthermore, IoT nodes that

perform applications are the primary target vectors which allow cybercriminals

to threaten an IoT network. Hence, providing applied and robust methods to

detect malicious activities by nodes is a big step to protect all of the network.

In this study, we transmute the programs’ OpCodes into a vector space and

employ fuzzy and fast fuzzy pattern tree methods for malware detection and

categorization. We obtained a high degree of accuracy during reasonable run-
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times especially for the fast fuzzy pattern tree. Both utilized feature extraction

and fuzzy classification, which were robust, led to more powerful edge computing

malware detection and categorization method.

Keywords: Malware Detection, Edge Computing, IoT, Fuzzy Pattern Tree,

Machine Learning, Cyber Security.

1. Introduction

Over the last decade, the Internet of Things (IoT) has changed the face of

our world and ubiquitous sensing enabled by wireless technologies is expand-

ing into countless objects that surround us [1]. IoT, as a cutting-edge topic of

Information Technology, has penetrated into all facets of everyday life ranging5

from health [2] and agriculture [3] to smart city [4] and energy & transport

management systems [5, 6]. Numerous smart nodes are sensing, storing and

communicating valuable and private information over widely distributed IoT

networks without human intervention and this has caused increasing interest

for cybercriminals to attack and misuse IoT[7]. Although Cloud Computing has10

significantly changed our computation paradigms, since a considerable volume of

data is produced at the edge of IoT network, its speed of transportation is a bot-

tleneck for cloud-based computation[8]. Furthermore, there are several security

issues associated with the cloud-based computing model such as unauthorized

access, lack of control or availability risks, privacy risk and etc.[9, 10, 11].15

The intrinsic importance of IoT’s information and applications requires that

specific concerns are addressed which secure and protect IoT nodes and archi-

tecture [7, 12, 13]. Since malicious actors endeavour to attack compromised IoT

nodes, malware and intrusion detection is an essential and evolving research20

sphere in cyber security [14, 15, 16, 17]. While there are different approaches

which detect malicious activities and attack vectors[18, 19], Machine Learn-

ing has ranked amongst the top methods that robustly recognize malware and

intrusions[20, 21].
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Fuzzy system and inference [22] is a major category of machine learning meth-25

ods that demonstrate its abilities to deal with ambiguity and unseen conditions

and accurately simulates human brain decision making behavior. This potential

increases the fuzzy methods’ robustness against changes of malicious behavior

and signature during test time. Despite proposals for methods methods using

fuzzy in malware detection domains [23, 24, 25], this area is still not completely30

covered so and there are niche potentials to apply security and forensics issues.

Fuzzy Pattern Tree (FPT) induction was recently introduced as a novel machine

learning method for classification. The structure of an FPT is similar to a binary

decision tree in which inner nodes are marked with generalized (fuzzy) logical

and arithmetic operators, whereas the leaf nodes are associated with (unary)35

fuzzy predicates on a given set of input attributes[26, 27]. FPT is competitive

with other machine learning rival methods in terms of prediction performance.

Moreover, it tends to produce compact models that are quite appealing from an

interpretation point of view due to the limited processing resource of IoT nodes.

However, this method has a disadvantage which is its high computational com-40

plexity for large datasets with many examples or attributes, the runtime may

become unacceptably high. Therefore, a fast Fuzzy Pattern Tree [26] method

was proposed to improve the runtime learning. We demonstrate our major con-

tribution regarding fuzzy pattern tree advantages by applying fuzzy and fast

fuzzy pattern tree for malware detection, and obtained high accuracies of 100%45

for IoT and VxHeaven datasets, about 97% for Kaggle dataset and more than

93.13% for Ransomware dataset.

Typically, the following criteria are used to evaluate the utility of machine

learning aided techniques in malware detection:50

• True Positive(TP): indicates that a malware is correctly identified as a

malicious application.

• True Negative(TN): indicates that a benign is detected as a non-malicious

application correctly.
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• False Positive (FP): indicates that a benign is falsely detected as a mali-55

cious application.

• False Negative (FN): indicates that a malware is not detected and labeled

as a non-malicious application.

Based on the criteria described above, the following metrics will be introduced

to quantify a given system:60

Accuracy indicates the number of samples that a classifier correctly detects,

divided by the number of all malware and goodware:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision is another metric that indicates the ratio of predicted malware sam-

ples that are correctly predicted:

Precision =
TP

TP + FP
(2)

Recall indicates the ratio of malware samples that are correctly predicted:65

Recall =
TP + TN

TP + FN
(3)

F-Measure is the harmonic mean of prediction and recall, and defined as fol-

lows:

F −Measure =
2 ∗ TP

2 ∗ TP + FP + FN
(4)

Matthews correlation coefficient is used in machine learning as a measure of

the quality of classification and defined as follow:

F −Measure =
TP ∗ TN − FP ∗ FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(5)

Cross-validation is one of the most widely used techniques in machine learning70

to assess a detection method’s outcomes gained from experiments that can be

generalized into an independent dataset. There are many cross validation tech-

niques such as Leave-P-Out, K-fold and Repeated Random Sub-sampling and

K-fold validation which are suitable for datasets with limited size [28].

75
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In the next section, we briefly review related work. Section 3 describes our

collection, preprocessing and evaluation methodology. Section 4 presents our

proposed approach, followed by its evaluation in Section 5. Section 6 concludes

this paper and suggests a future research agenda.

2. Related Work80

Analyzing the extracted information from graph of programs is a practical

solution for malicious activity detection. Azmoodeh et al. [29] developed a deep

learning based method to detect Internet Of Battlefield Things (IoBT) malware

via the devices Operational Code (OpCode) sequence and they achieve 99.68%

of accuracy. They extracted an adjacency matrix of OpCode’s control flow85

and then applied deep learning on eigen-decomposition of the matrix. Yuxin

et al. [30], proposed a method based on graph matching using the common

behavior graph of the malware family. They used a dynamic taint analysis

technique for finding the dependency relations between system calls, extracted

the common behavior graphs and lastly, employed graph matching based on the90

maximum weight of subgraphs to detect malicious code and achieved 82% of

recall. Hashemi et al. [31] extracted OpCodes of Windows benign and malware

executable files and then formed a graph for each sample and turned the gen-

erated graph into a vector using Power Iteration procedure to train classifiers

such as Support Vector Machine and Adaboost. They achieved an accuracy and95

a F-measure of 96.09% and 95.98% respectively.

The IoT as state-of-the-art ubiquitous technology in modern life is a promi-

nent target for cybercriminals. Therefore, protecting IoT against cyber attack-

ers is a crucial requirement in generating trust IoT. Haddadpajouh et al. [32]100

employed the capability of Deep Recurrent Neural Networks and proposed a

method to accept OpCodes as features for three different Long Short Term

Memory settings and achieved 98.18% of detection rate to detect IoT malware.

In another study, Su et al.[33] converted IoT’s malware binary to image and
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then leveraged a light-weight convolutional neural network for classifying their105

families and achieved 94.0% of accuracy for the classification of goodware and

DDoS IoT malware. Sharmeen et al.[34] analyzed static, dynamic, and hybrid

detection methods for industrial IoT malware and discovered machine learning

approaches are commonly used to classify malware and benign in this domain.

They indicated that the permission list, API call list, and the system call list110

are major features to detect mobile malware with a high accuracy to ensure

Zero-day detection.

Robustness and an ability to deal with unseen conditions is an important mo-

tivation to apply fuzzy learning on the cybersecurity domain. Afifi et al.[23]

proposed a multi agent system for monitoring and data preparation. Then,115

they introduced a hybrid method to combine an adaptive neuro fuzzy inference

system (ANFIS) with a particle swarm optimization (PSO) for mobile mal-

ware detection. After extensive studying of fuzzy hashing methods, Li et al.[24]

proposed a clustering approach to cluster malware based on their novel fuzzy

hashing algorithm and obtained acceptable clustering outcome for different mal-120

ware families. Bernardi et al.[25] presented a dynamic mobile malware detection

method using process mining and fuzzy logic that characterized the behaviour

of malware and utilized fuzzy logic for malware classification and obtained high

precision for different mobile malware families.

3. Fuzzy Pattern Tree125

3.1. Fuzzy Pattern Tree

A fuzzy pattern tree [27] contains a tree-like structure in which the inner

nodes are fuzzy logic arithmetic operators and the leaf nodes are associated with

fuzzy predicates on input attribute, although a pattern tree has a bottom to top

induction which means that a node somehow takes the values of its descendants130

as input and combines them using fuzzy operators. Finally, submit the output

to its predecessor (Figure 1). During an iterative approach, several pattern trees

are generated for each class and at the end of each iteration, the best pattern
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Figure 1: Fuzzy Pattern Tree

tree that has least prediction error on the class is selected to expand leaf nodes

at the next stage. In order to use fuzzy pattern tree for malware detection, we135

applied it on processed datasets of OpCode sequences (described in Section 4)

in which an instance is a vector X = (x1, x2, ...., xm) ∈ X1×X2× ....×Xm. Xi is

the domain of ith attribute and for each domain, Xi is discretized by means of

a fuzzy partition Fi = {F(i,1), ..., F(i,di)} into a collection of fuzzy subsets that

Fi,j : Xi −→ [0, 1] (j = 1, ..., di) and
∑di
j=1 = Fi,j(xi) > 1 for all x ∈ Xi.140

The Fi,j defines a unary fuzzy predicator on individual attribute values that are

often associated with linguistic labels such as ”small” or ”large”, for example,

Fi,2 ' Xi is medium. On the other hand, each instance is associated with a

class label of malware or benign in the output space Y ∈ {malware, benign}

or generally, Y ∈ {Class1, ..., Classk}. Leaf nodes are associated with a fuzzy145

partition Fi,j and each inner node is a fuzzy operator, which belongs to:

• t-norms and t-conorms [35]

• weighted and ordered-weighted average (OWA) [36, 37]

A fuzzy pattern classifier is a collection of fuzzy pattern trees PT = {PTi|i =

1, ..., k} and each PTi is the pattern tree associated with class yi ∈ Y. For150
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classifying a new instance x, a prediction is made in favor of the class whose

tree produces the highest score:

ŷ = argmax(PTi(x)) for yi ∈ Y (6)

3.1.1. Top-Down Induction

During the learning phase and iteratively, by expansion of the leaf nodes,

several pattern trees for each class are generated and at the end of each iteration155

the best fuzzy pattern tree for each class is selected with respect to the root

mean squared error(Equation 7), which serves as a continuous and differentiable

surrogate of 0/1 loss.

error(PTz) =

√√√√ 1

N

N∑
j=1

(yj − PTz(xj)) (7)

In the first step, fuzzy partitions are constructed for each input attribute and the

candidate set C0 is initialized using all primitive pattern trees P in which each160

primitive tree is a tree that constructed with only one node that is labeled by a

fuzzy term Fi,j . Thus, the optimal PT is initialized by the model that has the

lowest empirical error i C0. During each iteration, a new set of candidate models

Ct that include all expansions of the current best model M∗ is reproduced. An

expansion of a primitive tree is a model that is constructed by replacing a165

leaf node L by a sub tree of two leaf nodes and a parent fuzzy operator node.

All existing candidates in Ct are evaluated based on their error score and M∗

replaced by the new best models.

3.2. Fast Fuzzy Pattern Tree

Although the fuzzy pattern tree has demonstrated its capability to compete170

with state-of-the-art classification methods, it suffers from computational com-

plexity especially for large datasets or those have curse of dimensionality. To

overcome this disadvantage, the fast fuzzy pattern tree as a modified version

was presented[26]. The first modification endeavors to speed up the detection

of the best model among a set of candidate models, and with the second one175

restricted the total number of candidates.
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3.2.1. Racing Algorithm

The Racing Algorithm intends to accelerate the selection of the best model

from a set of candidate models. By calculating the performance of all models,

those who have lower performance and are unlikely to exhibit the best produc-180

tivity at the end are eliminated in early steps. The race iterates over a random

number of datasets. For each model, two variable are stored; the number of

examples nj and the mean estimate of its error errj . Each two models are com-

pared pairwise and the model with the higher error is omitted. It is an heuristic

estimation of the models’ error and to obtain more accurate knowledge about185

the model a confidence interval is defined such as [lj , uj ] for the error of Mj

and [lk, uk] for Mk. Then a decision about the better model can be made if the

intervals do not overlap, e.g. lj > uj . Using the Hoeffding inequality [26] that

upper-bounds the deviation of the mean from the true expectation of a random

variable with high probability gives:190

[lnj , u
n
j ] = errj ±

√
B2log( 2

δ )

2n
(8)

where δ is an external parameter that controls the reliability of a confidence

interval and the constant B is an upper bound on the value of the random

variable and n is the number of observations.

3.2.2. Potential Heuristic

The idea behind Potential Heuristic is to narrow the search in each iteration195

with the algorithm creating new candidate models Ct by expanding every leaf

node. This heuristic restricts expansion to a constant number p < |Ct| of leaf

nodes with highest potential. In fact, this method calculates the potential of

each node to expand and selects the ones with highest potential. The potential

of each node is defined as follows: Let L be a leaf of a candidate tree ML ∈ Ct200

. A model M(LOpt) by replacing L in ML by LOpt, where LOpt is a fictitious

oracle leaf that provides the ideal output yi for every training instance (xi, yi)

in the dataset. Then, we define the potential of L in terms of the possible
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Dataset #instances #classes

Vx-Heaven 22000 2

Ransomware 555 6

IoT 1207 2

Kaggle 9601 9

Table 1: Datsets Information

reduction of empirical risk:

PM (L) = err(ML)− err(MLOpt
) (9)

4. Dataset205

4.1. Dataset Description

In this study, we applied fuzzy and fast fuzzy pattern tree on four differ-

ent data sets namely IoT, Vx-Heaven, Kaggle and Ransomware. IoT dataset

[29] includes malware and benign samples from ARM-Based architecture. Ran-

someware dataset [38] contains OpCodes’ of six different ransomware families.210

Vx-Heaven dataset includes 22000 Microsoft Windows samples belonging to

malware and benign categories. Kaggle1 dataset includes Microsoft Windows

malware from nine different families. Table 1 shows the dataset information.

4.2. Feature Extraction

Binary executable files contain a long sequence of OpCodes which are in-215

structions to be performed on each device’s processing unit. Although leverag-

ing OpCodes as features for learning algorithm is a common approach[39], the

curse of dimensionality turns it to a challenging topic to utilize. In this study, we

leverage Azmoodeh et al.[29] approach to extract features for fuzzy pattern tree

method. At the first stage, we extracted the OpCode sequence of each sample220

and generated a dictionary of unique OpCodes. Then, we assessed the utility

1https://www.kaggle.com/c/malware-classification
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of each OpCode by a class-wise information gain(CIG) approach[40]. CIG was

proposed to overcome global feature selection imperfection and endeavors to

recognize more useful features based on each dataset’s classes. CIG calculate

information gain for each unique OpCode-Class and this is our main criteria225

for selecting OpCodes as features. Equation 10 shows the CIG calculation for

a two-class dataset where P (vf = 1, Ci) denotes the probability of feature f

appearing in Ci, and P (vf = 0, Cj) is the probability of feature f being absent

from Cj . CB and CM denote benign program and malicious applications, re-

spectively.230

CIG(f, CB) = P (vf = 1, CB) ∗ log P (vf = 1, CB)

P (vf = 1)P (CB)

+P (vf = 0, CM ) ∗ log P (vf = 0, CM )

P (vf = 0)P (CM )

CIG(f, CM ) = P (vf = 1, CM ) ∗ log P (vf = 1, CM )

P (vf = 1)P (CM )

+P (vf = 0, CB) ∗ log P (vf = 0, CB)

P (vf = 0)P (CB)

(10)

Afterwards, the most beneficial features were selected to generate control flow

graph of each sample. A Control Flow Graph (CFG) is a data structure that

represents the order of OpCodes in an executable file. A graph, G = V,Ei,

has two sets: V and E. V Where denotes the graphs vertices and Ei,j shows235

the relation between Vi and Vj [29]. In order to generate OpCodes’ CGF, we

employed Equation 11 to calculate CFG’s edges Evi,vj .

Evi,vj =
∑
sεS

2

1 + α ∗ emin(|s−t−1|)

S = {index of all appearance of OpCodeVi
in sample′s OpCode sequence}

tε{index of all appearance of OpCodeVj in sample
′s OpCode sequence}

α is tuning paramter(here α = 1)

(11)

At the final stage, Azmoodeh et al.[29] demonstrated the usefulness of CFG’s

eigenspace instead a complete graph. Therefore, we extracted the first k eigen-240
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vectors and eigenvalues of graph as final features where k is the number of

classes.

5. Experiments

5.1. Settings

The experiments to demonstrate the ability of a fuzzy pattern tree for mal-245

ware detection have been implemented on a Microsoft Windows 10 station with

8GB of memory and a Core i7 CPU. Preprocessing for generating datasets was

implemented by Python 3.7 and classification phase was developed by MATLAB

2016.

5.2. Results250

In order to investigate and assess the competency of fuzzy and fast fuzzy

pattern tree methods for malware detection, we have conducted three different

approaches to obtain comparable results. The first experiment in Section 5.2.1

compares fuzzy and fast fuzzy with other state of the art classification algo-

rithms namely Support Vector Machine, Decision Tree, k-Nearest Neighbor and255

Random Forest. Section 5.2.2 includes outcomes for fuzzy and fast fuzzy pattern

tree with more emphasis on the racing algorithm and potential heuristic.

5.2.1. State-of-the-art Classifiers Comparison

Dataset PTTD PTTD-FAST SVM KNN Random Forest Decision Tree

VX-Heaven 100 100 100 99.9955 100 100

IOT 99.8347 99.8347 98.177 99.9174 99.9174 99.9167

Kaggle 97.0427 95.136 93.7086 99.4144 99.6505 99.4051

Ransomware 88.7641 83.0649 93.9416 94.5303 95.9805 93.0909

Table 2: Accuracy of different classifiers
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5.2.2. Fuzzy and Fast Fuzzy Pattern Tree Comparison

Dataset Accuracy Precision Recall F-measure MCC Time(Second)

Heaven 100 100 100 1 1 301.106437

IoT 99.8347 100 98.7302 0.99344 0.9922 29985.142449

Kaggle 97.0427 86.0988 87.2818 0.85879 0.84769 6507.781891

Ransomware 88.7641 91.2389 72.8486 0.71799 0.70787 2438.27705

Table 3: Performance of Fuzzy Pattern Tree Algorithm

Dataset Accuracy Precision Recall F-measure MCC Time(second)

Vx-Heaven 100 100 100 1 1 17.1706407

IoT 99.174 99.55 95.455 0.97393 0.94916 51.010565

Kaggle 90.093 77.81 77.506 0.72821 0.7079 66.853548

Ransomware 86.061 81.448 85.392 0.81741 0.74146 9.123403

Table 4: Performance of Fast Fuzzy Pattern Tree with Racing Algorithm

Dataset Accuracy Precision Recall F-measure MCC Time(second)

Vx-Heaven 100 100 100 1 1 61.68227

IoT 100 100 100 1 1 32.612093

Kaggle 89.861 84.907 87.1047 0.69092 0.71603 6287.274425

Ransomware 93.132 82.786 81.318 0.7925 0.77486 80.85638

Table 5: Performance of Fast Fuzzy Pattern Tree with Potential Heuristics

6. Concluding Remarks260

Edge Computing as a state-of-the-art trend related to the Internet of Things

has naturally drawn considerable attention. There are several risks associated

with cloud-based computing such as unauthorized access, lack of control or

availability risks & privacy risk and therefore, edge computing as an alternative

solution aids cyber scientists in providing an alternative practical security mech-265

anism. Hence, edge malware detection research is attracting more consideration

and investigation into its potentiality for for applied solutions.
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In this study, we employed fuzzy and fast fuzzy pattern or malware detection

and demonstrated that these methods are capable of accurately detecting ma-

licious codes and can compete with rival classification methods such as SVM,270

KNN, Random Forests and Decision Trees. What makes fuzzy approaches more

remarkable for their pattern recognition is their potential to deal with ambigu-

ities and human brain simulation.

During our research, we implemented fuzzy pattern and fast fuzzy pattern trees

and their variations. Based on experimental results, the fuzzy pattern tree could275

accurately classify malware and benign for IoT and Vx-Heaven dataset with an

accuracy of 99.834% and 100% respectively. Fast fuzzy pattern tree using Po-

tential Heuristics performed 100% accuracy for both dataset with much more

lower run-time. As for malware categorization, we applied both methods on

Kaggle and Vx-Heaven datasets and achieved 97.0427% and 88.76% of accu-280

racy by fuzzy pattern tree and 90.093% and 93.132% of accuracy by fast fuzzy

pattern tree. In the future, we plan to boost fuzzy pattern tree accuracy and

present a distributed variation of a fuzzy pattern tree that will be more efficient

regarding edge computing over an IoT network.

285
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