
Deep Dive into Ransomware Threat Hunting and Intelligence at Fog Layer

Sajad Homayoun1,, Ali Dehghantanha2,, Marzieh Ahmadzadeh1,, Sattar Hashemi3,, Raouf Khayami1,, Kim-Kwang
Raymond Choo4,, David Ellis Newton5,

Abstract

Ransomware, a malware designed to encrypt data for ransom payments, is a threat to fog layer nodes as such nodes
typically contain considerably amount of sensitive data. The capability to efficiently hunt abnormalities relating to
ransomware activities is crucial in timely detection of ransomware. In this paper, we present our Deep Ransomware
Threat Hunting and Intelligence System (DRTHIS) to distinguish ransomware from goodware and identify their families.
Specifically, DRTHIS utilizes Long Short-Term Memory (LSTM) and Convolutional Neural Network (CNN), two deep
learning techniques, for classification using the softmax algorithm. We then use 220 Locky, 220 Cerber and 220 TeslaCrypt
ransomware samples, and 219 goodware samples, to train DRTHIS. Findings from our evaluations demonstrate that the
proposed system achieves an F-measure of 99.6% with a true positive rate of 97.2% in the classification of ransomware
instances. Additionally, we demonstrate that DRTHIS is capable of detecting previously unseen ransomware samples
from new ransomware families in a timely and accurate manner using ransomware from the CryptoWall, TorrentLocker
and Sage families. The findings show that 99% of CryptoWall samples, 75% of TorrentLocker samples and 92% of Sage
samples are correctly classified.

Keywords: Crypto-ransomware, ransomware detection, ransomware family detection, deep learning, Long Short-Term
Memory, Convolutional Neural Network.

1. Introduction

Ransomware is a recent threat that has affected a num-
ber of industries and countries [1], and is reportedly the
fastest growing malware type [2, 3]. Today’s ransomware is
a sophisticated threat affecting users all around the world.5

The first wave of misleading applications began to appear
in 2005 where performance enhancement tools or fake spy-
ware removal tools such as RegistryCare, PerformanceOp-
timizer and SpySherriff mainly affected Windows comput-
ers. These tools claimed that there is a critical perfor-10

mance/security issue in victim’s computer and suggested
to buy an extra program for removing the problem. After-
wards, a more disruptive form of extortion emerged that

Email addresses: S.Homayoun@sutech.ac.ir (Sajad
Homayoun), A.Dehghantanha@sheffield.ac.uk (Ali
Dehghantanha), Ahmadzadeh@sutech.ac.ir (Marzieh
Ahmadzadeh), S_Hashemi@shirazu.ac.ir (Sattar Hashemi),
Khayami@sutech.ac.ir (Raouf Khayami),
Raymond.Choo@fulbrightmail.org (Kim-Kwang Raymond Choo),
D.E.Newton@salford.ac.uk (David Ellis Newton)

1Department of Computer Engineering and Information Technol-
ogy, Shiraz University of Technology, Shiraz, Iran.

2Department of Computer Science, University of Sheffield,
Sheffield, U.K.

3Department of Computer Engineering, Shiraz University, Shiraz,
Iran.

4Department of Information Systems and Cyber Security and De-
partment of Electrical and Computer Engineering, The University of
Texas at San Antonio, San Antonio, TX 78249, USA.

5Department of Computer Science, School of Computing, Science
and Engineering, University of Salford, Salford, U.K.

disabled access and control of the computer by locking
up the computer from use. Because of effective recov-15

ery solutions such as re-installing the Operating System
or un-installing fake softwares, cyber criminals shifted to
cryptography based ransomware. In the literature there
are two main types of ransomwares namely Locker and
Crypto ransomwares. Lockers denies users’ access without20

making any changes to the data stored on the system while
the crypto-ransomware encrypts all or selected data based
on a predefined file formats such as *.pdf, *.doc etc. usu-
ally using a strong cryptography algorithm such as AES or
RSA[4]. After encryption, the victim is presented with the25

ransom payment instructions with possibility of recover-
ing ransomed data. Unsurprisingly, the ransomware topic
has also attracted the attention of security researchers and
practitioners. For example, ransomwaretracker.abuse.ch6

tracks major ransomware families, such as Locky, Cerber,30

TeslaCrypt, CryptoWall, TorrentLocker and Sage. Locky
ransomware is usually distributed via phishing e-mails that
contain Microsoft Word Office documents with embedded
malicious macros, which will subsequently result in the
download of the ransomware [5]. Cerber ransomware is35

often distributed via exploit kits [6], and has the capa-
bility to encrypt the victims data without connecting to
a command and control (C2) server. TeslaCrypt is an-
other major family of ransomware distributed using exploit
kits and capable of encrypting all user contents including40

6https://ransomwaretracker.abuse.ch/tracker/

Preprint submitted to Future Generation Computer Systems May 8, 2018

network mapped drives [7]. CryptoWall ransomware first
appeared in early 2014s [7], and is widely distributed us-
ing web exploit kits, phishing emails, and corrupted at-
tachments (e.g. PDF files). TorrentLocker ransomware is
distributed via emails that deceive victims into download-45

ing the ransomware by sending emails purporting to be
shipping notifications, driving violations, or other corpo-
rate/government correspondence. Sage is a more recent
ransomware, which is distributed via Microsoft Office doc-
uments and is capable of encrypting user data without the50

need to contact a C2 server.
With the popularity of Internet of Things (IoT) de-

vices and these devices being placed at the edge/fog layer
[8, 9, 10], such devices can also be targeted by ransomware
attackers [11, 12]. The naive solution of encrypting the55

fog layer of an IoT network (also known as data historian
nodes) would impact on data collection from IoT devices
(e.g. sensors being deployed in the field) as well as af-
fecting the quality of the architecture due to the exacting
computational requirements.60

While user training may minimize the success rate of
ransomware attack campaigns [13, 14, 15], such solutions
are not likely to work for fog layer nodes since these
nodes are not being in direct contact with end users. Ex-
isting detection approaches include signature-based and65

behavioral-based ransomware detection techniques. A de-
tection system may consider static features (e.g. entropy
of bytes, Program Executable - PE - imports, and ASCII
printable strings) to distinguish malware, and a system
with dynamic analysis usually focuses on the application’s70

Windows API calls[16, 17] or network behavior [18]. Al-
though static features can be very useful for characterizing
malware samples, attackers can easily obfuscate the mal-
ware code to complicate static analysis. Also, most ran-
somware behavior detection solutions rely on filesystem75

[19, 20, 21] and registry events [22] to identify malicious
behavior.

The use of machine learning to facilitate ransomware
detection is becoming popular, for example in static anal-
ysis [23], dynamic analysis [16, 17] or hybrid analysis [24]80

of malware and normal applications. However, using deep
learning algorithms to detect ransomware applications ap-
pear to be an understudied topic, despite its potential
to extract useful features based on ransomware activities.
This allows one to detect previously unseen ransomware85

samples.
Since system calls are of great importance in tracing

events for determining malware behavior [17], we focus
on detecting ransomware samples and characterizing their
families by analyzing the sequence of actions taken by an90

application. We implement a many to one classifier by
considering sequences of actions performed by goodware or
ransomware samples as the inputs for predicting whether
the sample is a ransomware and predicting their families
accurately. We use Long Short-Term Memory (LSTM)95

and Convolutional Neural Network (CNN) in our proposed
Deep Ransomware Threat Hunting and Intelligence System

(DRTHIS).
We implement the proposed system using Python2.7

and Python3.5, and using Keras2.0.5 which provides fast100

experimentation with its high-level neural networks API.
Keras [25] has the capability of running on top of Ten-
sorFlow, CNTK and Theano to make programming easier
for deep learning researchers and developers. We use Multi
layer Perceptron (MLP) with 3 layers of input, hidden and105

output in our comparative analysis. We set the input neu-
rons to be equal to the padded length of sequences to feed
one sequence at a time to the network. We also ensure that
the number of hidden neurons is not more than twice the
number of input neurons [26]. We then train and evaluate110

the performance of our proposed system using a dataset of
220 Locky samples, 220 Cerber samples, 220 TeslaCrypt,
as well as benign samples from our previous research [27]
augmented by 99 CryptoWall samples, 28 TorrentLocker
samples and 77 Sage. To avoid overfitting our system, we115

use Dropout [28] as a regularization technique to prevent
complex co-adaptations on the training data [29]. Dropout
ignores randomly selected neurons during training in for-
ward pass. In other words, the dropped out neurons are
temporarily removed from the forward pass and any weight120

updates are not applied to the neuron on the backward
pass.

1.1. Evaluation Metrics

We perform 10-fold cross validation to evaluate the pro-
posed system. We achieve a mean F-Measure of 99.6% in
the detection of ransomware samples and a mean true pos-
itive rate of 97.2% in the detection of their families in less
than 10 seconds of launching an application. Moreover, it
is shown that DRTHIS has the capability of identifying
families of unseen ransomware samples. For testing sam-
ples from unseen families, DRTHIS correctly classifies 99%
of CryptoWall samples, 75% of TorrentLocker samples and
92% of Sage samples as a new family of ransomware. We
use True Positive (TP), False Positive (FP), True Negative
(TN), and False Negative [30, 31] as the evaluation metrics.
TP indicates the total of the samples that are correctly
identified as a positive label, and FP shows the total nega-
tive samples incorrectly classified as positive. TN denotes
the number of correctly rejected samples, while FN refers
to incorrectly rejected samples. Precision (see below) re-
flects the positive predictive value by dividing TP by the
total of FP and TP predicted by a classifier as shown in
Equation (1). Recall shows the rate of positive samples
that are correctly identified which is calculated by divid-
ing TP by the total of TP and FN as shown in Equation
(2). F-measure considers both Precision and Recall of test
set in harmonic mean of precision and recall as shown in
Equation (3).

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

2

F −measure = 2 × Precision×Recall

Precision + Recall
(3)

Although Area Under the Curve (AUC) is a measure of
how well a parameter can be used to distinguish between125

two classes, there is no explicit formula to compute AUC
[32]. Matthews Correlation Coefficient (MCC) [33] was
first introduced to assess the performance of prediction in
bio-informatics and provides a measure of quality to com-
pare different classifiers [34]. The possible value of MCC130

is in [−1,+1], where +1 indicates perfect prediction. In
binary classifiers with total disagreement, the MCC value
will be −1 while value of 0 shows random classification.
MCC is also robust to imbalanced data [32]. While Pre-
cision, Recall or F-measure values in a random guessing135

would be higher than 0.5, the MCC value would be around
0 for random guessing. Therefore, for making sure that our
classifiers are far from random classifiers, we will compute
MCC values for each classifier. These values can be com-
puted using Equation (4).140

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(4)

The remainder of this paper is structured as follows.
In Section 2, we review related research in ransomware
detection. Section 3 presents our proposed DRTHIS. Sec-
tion 4 describes how DRTHIS trains best binary classifier
for threat hunting, and Section 5 describes the training of145

one class classifiers as well as deep feature extractor for
threat intelligence. Section 6 presents the findings of the
evaluation. Finally, we conclude the paper in Section 7.

2. Related Work

In recent years, ransomware has drawn the attention of150

information security researchers and practitioners as it is
reportedly becoming a dominant tool for cybercriminals
[35, 36].

Most ransomware samples detection solutions rely on
the dynamic behavior of applications such as registry155

changes [22], and filesystem activities [19, 20, 21] to
identify malicious applications. A study using 1359
ransomware samples revealed that the majority of ran-
somware samples are making similar API calls and sim-
ilar filesystem activities [20]. For instance, UNVEIL [20]160

utilizes filesystem activities to classify ransomware from
other types of malware with a 96.3% detection rate. De-
tecting abnormalities in filesystem operations is considered
in CloudRPS [37] using leveraged anomalies in file sys-
tem activities such as conversion of large quantities of files165

in a short interval to detect crypto-ransomware samples.
EldeRan [38] considered the presence of activities in a se-
quence to build a matrix of activities to detect ransomware
samples within 30 seconds of their execution with an AUC
of 0.995.170

Ahmadian et al., [22] proposed a Bayesian Network
based model to identify ransomware samples from good-
ware with an F-Measure of 0.93 by using 20 different types
of filesystem and registry events. Homayoun et al., [27] de-
veloped a ransomware detection system based on sequen-175

tial pattern activities and achieved 99% accuracy. How-
ever, the suggested system was not capable of detecting
previously unseen ransomware.

DL4MD [16] is a malware detection method, which uses
a deep Stacked Autoencoders (SAEs) network for unsuper-180

vised feature learning that is followed by supervised pa-
rameter fine-tuning process to classify malware and good-
ware. The approach reportedly achieves an accuracy of
95% with a false positive of 2.3%. A deep learning ap-
proach [17] was proposed to benefit system calls for de-185

tecting malware with a precision rate of 85.6% and a recall
rate of 89.4%.

Similar to [27], this paper attempts to classify a given
sample as a ransomware/goodware in its first stage of in-
fection. Specifically, we utilize a range of features for hunt-190

ing ransomware even if they are from new unseen families.
Moreover, identifying the family of a given ransomware is
considered as a threat intelligence task in our work. De-
termining the family of a ransomware in a reasonable time
would assist practitioners in following the threat profile for195

a given target.

3. Deep Ransomware Threat Hunting and Intelli-
gence System (DRTHIS)

The proposed DRTHIS utilizes a binary classifier, a
Deep Feature Extractor (DFE), and a One Class Classi-200

fier (OCCs), for hunting ransomware samples and identi-
fying their families based on the application sequence of
activities as shown in Figure 1.

When a user launches an application, the system records
all executed events that within the first 10 seconds of ap-205

plication execution, and transforms the captured sequence
to detect if a given sample is actually a ransomware (we
refer to this stage as Threat Hunting). Afterward, identi-
fied ransomware samples are forwarded to the system to
detect the ransomware family. During Threat Intelligence,210

we take advantage of the DFE component which uses a
pre-trained deep model (LSTM or CNN) in its first stage
to extract a vector to feed to the OCCs; thus, the capabil-
ity to identify the family of the given ransomware sample.

DRTHIS performs a Data Transformation task to trans-215

form textual sequences of events into a numerical form.
Then, the Combining and Labeling component combines
input datasets into one integrated dataset suitable for our
deep learning tasks. It is notable that Combining and La-
beling creates two separate datasets with the same sam-220

ples but different class labels. TDTotal(binary) has two
class labels of Ransomware and Goodware, and samples of
TDTotal(family) are labeled into four classes namely Locky,
Cerber, TeslaCrypt and Goodware.

3

Binary

Classifier

Ransomware

Goodware

Deep Learning Task:

Training Multi-Class

Classifier

Multi-Class

Classifier

Locky

Cerber

TeslaCrypt

Goodware

Goodware

Ransomware

Ransomware

or

Goodware

?

OCCLocky OCCCerber OCCTeslaCrypt

Final Decision

Locky / Cerber / TeslaCrypt

New

Family

-1/+1

Deep Features Extractor

(DFE)

Conflict

User Launches

an Application

Deep Feature

Extractor

(DFE)

TDLocky

TDCerber

TDTeslaCrypt

TDGoodware

T
h

r
e
a
t

H
u

n
ti

n
g

T
h

r
e
a
t

In
te

ll
ig

e
n

c
e

OCCLocky

OCCCerber

OCCTeslaCrypt

Train

OCC
Train

OCC

Train

OCC

Transformation

Event Recorder

(first 10 seconds)

Sequence of

events

TDLocky

TDCerber

TDTeslaCrypt

VD(Locky)

VD(Cerber)

VD(TeslaCrypt)

Deep Learning Task:

Training Binary Classifier

TDTotal(binary)

TDTotal(family)

Vector (V)

DLocky

DCerber

DTeslaCrypt

DGoodwareT
ra

n
sf

o
rm

a
ti

o
n

C
o

m
b

in
in

g

an
d

 L
a
b
e
li

n
g

D
a

ta
 T

r
a

n
sf

o
rm

a
ti

o
n

User Alert

User Infromation

-1/+1
-1/+1

Train

Train Test

Train Test

Figure 1: Proposed Deep Ransomware Threat hunting and Intelligence System (DRTHIS)

There are two Deep Learning Tasks (see Figure 1), which225

train a binary classifier for threat hunting and a multi-
class classifier for using DFE component. The former uses
TDTotal(binary) to create a classifier to detect ransomware
samples while the latter creates a classifier for separating
different classes (families) of ransomware. Unlike Threat230

Hunting which directly benefits the binary classifier to
detect ransomware, Threat Intelligence does not use the
multi-class classifier to classify instances directly. In other
words, DFE benefits trained LSTM/CNN to extract a vec-
tor of deep features from the given sequence. We will give235

the relevant details of DFE in Section 5.

Figure 2 shows the DRTHIS procedure. Train, Test and
EventRecorder are the three main modules of DRTHIS.
Train module (see Figure 3) returns the Best Binary Clas-
sifier (BBC), Best Multiclass Classifier (BMC), and the240

list of trained one class classifiers OCCs. Test module in
line 5 of Figure 2 returns the final decision on S, which is
sequence of all captured events during the first 10 seconds
of launching an application. Figure 3 describes the train-
ing procedure, where datasets DS are transformed in line245

4. Both BBC and BMC are trained using deep learning
tasks on TDTotal(binary) and TDTotal(family), respectively.
DFE extracts vectored version of dataset D using trained

multi class classifier (BMC). Train procedure creates one
OCC for each Vectored Dataset (VDS) and returns BBC,250

BMC and list of OCCList as shown in line 2 of Figure 2.

Figure 4 presents the DRTHIS algorithm when it is
hunting and capturing any intelligence of the new sequence
of S of events executed by an application in its first 10 sec-
onds of execution. Test procedure transforms the sequence255

using SeqTransformation(S), which transforms a single se-
quence in comparison to the Transformation(Dataset D)
that returns the transformed version of the dataset D.
Test procedure alerts users when a ransomware is de-
tected (hunting) and extracts its deep representation using260

DFE(S) to specify the family of S. Final Decision uses the
output of the OCCs (R) to return F to show the gathered
intelligence information.

DRTHIS utilizes the sequence (S) of events to differ-
entiate ransomware from goodware. In this paper, an ac-265

tivity (A) on an argument (argA) is called an event. A
set of sequential activities (A) on an argument (argA)
by an application creates a sequence S in the form of
Si = {A1,i(argA1), A2,i(argA2), ..., Am,i(argAm)}, where
Si refers to the sequence of actions executed by the ith sam-270

ple, and Ax,y(argAx) represents the activity x for an ap-
plication y, and argAx shows the argument passed to the

4

1: procedure DRTHIS(Dataset[] DS)
2: [BBC,BMC,OCCList] = Train(DS)
3: for each application started do
4: S = EventRecorder()
5: Decision = Test(S, [BBC,BMC,OCCList])
6: print Decision
7: end for
8: end procedure

Figure 2: DRTHIS for training threat hunting and intelligence com-
ponents

1: procedure Train(Dataset[] DS)
2: TDS = {} . transformed datasets
3: for all D ∈ DS do
4: TD = Transfomration(D)
5: TDS.add(TD)
6: end for
7: [TDTotal(binary), TDTotal(family)] =

Combine(TDS)
8: BBC = TrainBinaryClassifier(TDTotal(binary))
9: BMC = TrainMultiClassifier(TDTotal(family))

10: V DS = {} . vectored datasets
11: for all D ∈ DS do
12: V D = DFE(D,BMC)
13: V DS.add(V D)
14: end for
15: OCCList = {} . one class classifiers
16: for all V D ∈ V DS do
17: OCC = TrainOCC(V D)
18: OCCList.add(OCC)
19: end for
20: return [BBC,BMC,OCCList]
21: end procedure

Figure 3: Training components of DRTHIS

activity Ax. Therefore, we have Si = {ei,1, ei,2, ..., ei,m},
where m is the length of the sequence.

Our datasets are in the form of D = {S1, S2, ..., Sn},275

where each Si represents the sequence of events for the
ith sample. We create datasets listed in Table 1 to train
and evaluate our models. DLocky, DCerber, DTeslaCrypt

and DGoodware refer to the dataset of sequences generated
by Locky, Cerber, TeslaCrypt and benign applications, re-280

spectively.

We also create one dataset for each of
(DTest(Locky), DTest(Cerber) and DTest(TeslaCrypt)) ran-
somware families to evaluate the performance of our
system in detecting unseen as well as over-fitting tests.285

It is notable that DTest(x) datasets are very new for
our trained model because we will not use them in any
steps related to training classifiers such as mapping and
padding operations. We separated DTest(x) from the
main dataset Dx because the Mapping process in the290

early stage of our model works based on frequency of each
element in the dataset. If we don’t consider separated

1: procedure Test(Sequence S,BinaryClassifier
BBC,MultiClassifier BMC,OneClassClassifier[] OC-
CList)

2: TS = SeqTransformation(S)
3: if BBC(TS) == Goodware then
4: return Goodware
5: else
6: Alarm(”RansomwareAttack”)
7: V = DFE(TS,BMC)
8: R = {}
9: R.add(OCCListLocky(V))

10: R.add(OCCListCerber(V))
11: R.add(OCCListTeslaCrypt(V))
12: F = FinalDecision(R)
13: return F
14: end if
15: end procedure

Figure 4: Testing DRTHIS for threat hunting and intelligence

Test dataset from the beginning stage of our model, test
samples will be seen during Mapping process while we are
going to test DRTHIS against real unseen samples. We295

use DCryptoWall, DTorrentLocker and DSage to show each
dataset of sequences for new families.

Table 1: Datasets of sequences for each family

Dataset Number of Sequences

DLocky 154

DCerber 154

DTeslaCrypt 154

DGoodware 153

DTest(Locky) 66

DTest(Cerber) 66

DTest(TeslaCrypt) 66

DTest(Goodware) 66

DCryptoWall 99

DTorrentLocker 28

DSage 77

As neural networks require numerical features, we have
to pre-process and convert sequences (Si) of events (ei,j)
into equivalent sequences of scalar values (MSi) with300

mapped events (mei,j)(see Figure 5). Since our sequences
consist of text words as elements (malware activities), we
need a way to convert these text elements into continuous
values to feed our deep network.

Bag of Words, one of the most common techniques for305

converting text to numerical vectors, often results in sparse
vectors [39]. The dimensionality of the vectors is equal to
the size of the supported vocabulary, where there exists an
element for each possible word. It is obvious that in most

5

cases there exists a huge word vocabulary; therefore, this310

vector has a long length in order to cover all words in the
dictionary. The problem of long one-hot vector also ex-
ists for ransomware sequences, where many possible words
(events) are available by combining activities and paths.

We first combine samples of DLocky, DCerber and315

DTeslaCrypt into DRansomware, and rank all events by
their frequency of occurrence in DRansomware for mapping
events into numerical representations for each sequence.
Figure 5 depicts our steps in transforming textual events
into numerically coded sequences. We create a dictionary320

containing all the events sorted in descending order ac-
cording to their frequency of occurrence indexing from 1
to v, where v is the total number of words. Events with
a frequency of 1 are removed from the dataset as they are
not good for ransomware detection. Mapping(S) in line325

4 of Figure 5 uses the dictionary of events and returns
the mapped version of the input sequence S within the
MappedDataset.

1: procedure Transformation(Dataset D)
2: MappedDataset = {}
3: for all S ∈ D do
4: MS = Mapping(S)
5: MappedDataset.add(MS)
6: end for
7: TransformedDataset = {}
8: for all MS ∈MappedDataset do
9: PS = Padding(MS)

10: TransformedDataset.add(PS)
11: end for
12: return TransformedDataset
13: end procedure

Figure 5: Transforming of all sequences of dataset D.

LSTM and CNN are two common techniques of deep
learning among researchers. It is proved in the literature330

that CNN is very suitable for image machine learning
tasks. However, CNN has the capability of working on
sequential data because it employs sliding window (sliding
vector), and a CNN with one or more 1D sliding window
can extract precious features from sequences[40, 41, 42].335

LSTM naturally works on sequential datasets[43, 44] and
is very suitable for our project as we are considering se-
quences of activities for detecting ransomware samples. In
fact we are testing both LSTM and CNN in our project
to find the best one suitable for DRTHIS.340

LSTM network is usually applied in time-series analysis
[43] or sequences of data [45], such as city traffic fore-
casting [43], and driver distraction detection [46]. The
historical events of ransomware can be viewed as a priori
knowledge, so we can use LSTM to follow the temporal345

structure (sequence) of ransomware events. Figure 6 illus-
trates the steps taken to create a classifier to distinguish
ransomware samples from benign applications.

Since we use the Keras deep learning framework that

Softmax

LSTM Layer

with L units

Training Embedding

LSTM Unit
Class Label

Embedding

(converting to vector)

...

z1,1

1,nz p,nz

p,1z...

...

... ...

me1,1

men,1 men,p

p,1me...

...

... ...

v1 v2 v3 vL-2 vL-1 vL

Figure 6: LSTM model for detecting ransomware samples

works based on TensorFlow for implementing our models,350

we perform a padding operation (Padding(MS)) in line 9 of
Figure 5 to make all the mapped sequence (MS) with the
same length into a padded sequence (PS). In the padding
operation, any sequence longer than the padding size (p)
is truncated, while shorter sequences are padded with ze-355

roes to reach to the desired size. In theory, padding is
not a must in LSTMs but it is in CNNs. As LSTM natu-
rally works on sequential datasets, it has the capability of
considering sequences with various lengths. However, in
many deep learning implementation framework, padding360

is necessary for LSTMs. As we were going to use Keras
framework for implementing our models, we had to use
padding in our model. CNNs essentially requires a sam-
ple as a matrix (or vector for 1D convolution) to extract
similar number of features for each sample.365

After transformation, our data is in the form of an (n×
p) matrix (dataset) for the training operation, where n is
the total number of sequences and p is the padding size.
From here on, we will use TDx to refer to the transformed
version of datasets, e.g. TDLocky refers to the transformed370

version of DLocky.

Combining and Labelling Data Transformation creates

6

TDTotal(binary), which contains labeled samples as Ran-
somware and Goodware, and TDTotal(family). These in-
clude all samples with Locky, Cerber, TeslaCrypt and375

Goodware class labels.
We use the Embedding technique to build a new vec-

tored representation of numerical events in Transformed-
Dataset that reflects the relationships between different
events. Embedding provides contextual similarity; in other380

words, words that regularly occur nearby in text will
also be in close proximity in the vectored space. Em-
bedding complements the approach in Word2Vec [47] to
learn a new representation of sequence values by ran-
domly initializing, and training during back-propagation.385

If S = {me1,me2, ...,mep} is the input sequence, then the
output of embedding with d dimensions is in the form of
{Z1, ..., Zp}, where Zi = [zi,1, zi,2, ..., zi,d] is the embedded
vector of mei and d is the embedding size.

Although the quality of word embedding increases with390

higher dimensionality, the gain will diminish after reaching
some point [48, 49]. Therefore, we use embedding with size
8 in this paper. We use the median of the length of all se-
quences (5470) in our ransomware dataset (DRansomware)
as the padding size. In the transformation phase of pre-395

processing, we only consider events with a total occurrence
of more than one because there were too many events with
a frequency of one (which does not contribute any useful
information to this research). Therefore, in the mapping
process, we map events with a frequency of one to zero in400

our sequences. We eventually have 23,372 unique events
with a frequency of more than one in our dictionary of
events.

The LSTM layer in Figure 6 consists of several LSTM
units, which build dependencies between current and past405

events of a sequence. In fact, LSTM learns u best features
that represent the sequence in a vectored manner, where
u is the number of LSTM units in the LSTM layer.

Softmax [50] function is common as the final layer of
neural networks. Softmax assigns a probability to each410

class to classify the instances, where it exponentially scales
the values and normalizes them to sum up to 1. The class
with the highest probability will be predicted as the final
decision for any given data sample.

Since our focus is on detecting ransomware samples415

based on sequences of events, CNN can be a good solution
for creating a high quality classifier. In other words, the
relationship between different events of sequences is im-
portant in our approach, and CNN has the capability to
extract these relationships into one or more new feature420

maps. Therefore, we use CNN over captured sequences
of performed actions (events) of ransomware samples to
extract valuable features for classification.

Figure 7 depicts our architecture used to train a classi-
fier with the capability of detecting ransomware samples.425

We use CNN to extract relevant features into the Fully
Connected layer for training our final classifier. Zi repre-
sents the sequence of embedded events presented in Figure
7, and Filter Size is the size of the current filter that is con-

volving to make a new feature map. Since we have only430

one dimensional sequential, we use 1D-Convolution that
uses a vector (1D matrix) as its filter.

Softmax

Training Embedding

Class Label

Embedding

(converting to vector)

z1,1

1,nz p,nz

p,1z...

...

... ...

me1,1

men,1 men,p

p,1me...

...

... ...

filter size = fs
1D-Convolution:

1 Convolution with

filter size = fs

Zi
 p,iz ...)3+k(,iz)2+k(,iz)1+k(,iz k,iz ...1,iz

Max Pooling layer

with pool size = ps

Fully Connected Layer

...

Figure 7: CNN model for detecting ransomware

4. Threat Hunting

We apply LSTM and CNN methods introduced in Fig-
ures 6 and 7 to train final binary classifiers for detecting435

(hunting) ransomware samples. We create TDTotal(binary)

dataset by combining TDRansomware and TDGoodware to
train our models for the binary classification of ran-
somware and goodware. It worth noting that we have a
separate TDTest(binary) dataset for testing our final model,440

and TDTest(binary) does not contribute in the ranking and
Embedding processes.

At first, we train our LSTM model shown in Figure 6
using only one unit in its hidden layer with TDTotal(bibary).
We also train CNN shown in Figure 7 with only one con-445

volution filter of size 3 to obtain the final Softmax classi-
fiers. Table 2 shows the performance of LSTM and CNN,
where all values are rounded to three decimal places. As
shown in Table 2, the trained model using LSTM with one
LSTM unit has the potential to be under-fitting although450

it achieves high TPR (of 0.951). This is because, it gener-
ates a high false positive (of 0.324) as well. CNN achieves
lower FPR (0.036) in comparison with LSTM, while its

7

MCC value suggests that it is trained as a good predictor
for separating ransomware from benign applications.455

Table 2: Performance results on dataset TDTest(binary) for LSTM
with one LSTM unit in hidden layer and CNN with only one con-
volution filter

F-Measure TPR FPR MCC

LSTM 0.951 1 0.324 0.717

CNN 0.985 0.982 0.036 0.945

Higher performance metrics for CNN are not unex-
pected because the Softmax layer of Figure 7 trains the
final classifier based on 2,735 features output from a fully
connected layer that extracted by CNN. On the other
hand, the Softmax layer of Figure 6 with one LSTM unit460

is trained with only one feature. In other words, all events
of a sequence are fed to the LSTM unit, and after feeding
the last event, the value of this single unit is forwarded to
the next layer for training in the Softmax layer. Therefore,
we train our LSTM model with more LSTM units.465

Figures 8 and 9 depict the performance of LSTM net-
works with varying numbers of LSTM units from 2 to 20
increasing by 2. As Figures 8 and 9 show, LSTM achieves
better results when it uses more units of LSTM in its hid-
den layer. The rate of false positives is reduced to 0.16470

for LSTM with 2 units in comparison with a LSTM with
one unit only. We observe a significant reduction in FPR
for a trained model with 4 units of LSTM, and it reduces
to a zero percent false positive rate over TDTest. Figure 8
also shows that having too many LSTM units may over-fit475

the final classifier as the performance metrics decrease by
increasing the number of LSTM units.

0.95

0.96

0.97

0.98

0.99

1

2 4 6 8 10 12 14 16 18 20

V
al

u
e

Number of Units in Hidden Layer

TPR

F-Measure

Figure 8: Performance of LSTM model on TDTest for different num-
bers of LSTM units in hidden layer

We then design a MLP with an input size of 5470 (size
of padded sequence) to compare the results of simple MLP
with deep architecture in detecting ransomware from good-480

ware. To determine the most appropriate numbers of hid-
den units in the MLP, we evaluate the network with neu-

0

0.05

0.1

0.15

0.2

0.25

2 4 6 8 10 12 14 16 18 20

V
al

u
e

Number of Units in Hidden Layer

FPR

Figure 9: False Positive Rate on TDTest for different numbers of
LSTM units in hidden layer

rons from 1000 to 10000, and findings suggest that MLP
with 4000 hidden neurons results in the best F-Measure.

As expected (see Table 3), LSTM with 8 units in the485

hidden layer outperforms both CNN and MLP. This is
mainly because an LSTM with more units may extract
more features to create a higher quality classifier. There-
fore, DRTHIS uses a classifier trained by an LSTM net-
work with 8 units of LSTM. Moreover, the high false pos-490

itive rate of MLP (11.3%) may reflect the fact that MLP
is not suitable for detecting sequential relations between
different sequences of events.

Table 3: Performance of our models on TDTest

F-Measure TPR FPR MCC

LSTM 0.996 0.992 0 0.986

CNN 0.985 0.982 0.036 0.945

MLP 0.958 0.956 0.113 0.837

5. Threat Intelligence

Unlike Threat Hunting which separates ransomware495

from goodware, the deep learning task of Threat Intelli-
gence trains a Softmax classifier to separate samples from
4 class labels of DTotal(family). In fact, the objective of the
deep learning task is to create the best classifier for iden-
tifying known families, while DFE extracts features from500

a trained LSTM into a vector before feeding to Softmax
for the final classification ([v1, v2, v3, ..., vL−2, vL−1, vL], as
shown in Figure 6). We simply use classification perfor-
mance metrics for Softmax predictions to evaluate and
find the best LSTM model for extracting features, while505

DRTHIS does not use the created multi-class classifier for
threat intelligence.

We apply the same architecture as shown in Figures 6
and 7 on DTotal(family) with 4 class labels to find the best

8

LSTM and CNN models respectively. Table 4 presents510

the findings after training LSTM with one hidden unit
and CNN with one convolution filter with size 3. LSTM
displays poor outcomes in terms of identifying families of
ransomware while the created classifier based on CNN ex-
tracted features works much better than LSTM with one515

hidden unit.

Table 4: Performance of LSTM and CNN for identifying ransomware
family TDTest(family)

TPR FPR

LSTM 0.501 0.498

CNN 0.899 0.100

We increase the number of hidden units in LSTM layer
and calculate TPR, FPR and F-Measure in Figure 10. The
figure shows the highest performance for an LSTM with
18 units.520

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 4 6 8 10 12 14 16 18 20

V
al

u
e

Number of Units in Hidden Layer

TPR

FPR

F-Measure

Figure 10: Performance of our models on TDTest

Table 5 represents the best F-Measure achieved with
LSTM, CNN and MLP on TDTest(family). We determine
that MLP with 2000 hidden neurons offers the best perfor-
mance, while MLP still suffers from a high false positive
rate. The latter only identifies the family of 66.8% ran-525

somware correctly. This could be because of the inability
of MLP to consider sequential relations between different
events of sequences.

LSTM with multiple units may find more discriminative
features and hence results in the highest TPR with lowest530

FPR. Table 5 and Figure 10 show that the best model for
DFE component is a trained LSTM with 18 units.

We feed every sample of each family to a DFE
component, and store an equivalent Vector (V) con-
taining values of units after feeding the last event535

of the given sequence. We extract Vs of DLocky,
DCerber, DTeslaCrypt, DTest(Locky), DTest(Cerber) and
D(Test)TeslaCrypt to create Vectored Datasets (VD)
of V DLocky,V DCerber, V DTeslaCrypt, V DTest(Locky),
V DTest(Cerber) and V DTest(TeslaCrypt).540

Table 5: Performance of our models for identifying ransomware fam-
ily

TPR FPR

LSTM 0.972 0.027

CNN 0.899 0.100

MLP 0.668 0.331

DRTHIS attempts to identify ransomware families using
3 trained one class classifiers (OCCs). We use One Class
Support Vector Machine (OCSVM) for training OCCs as
a powerful one class classifier algorithm [51]. We create
a separate classifier for each ransomware family using a545

dataset V D(x), each of which has the capability of deter-
mining whether a sample belongs to a trained family class
x.

SVMs [52] are supervised learning models that can be
used for both classification and regression tasks. The SVM550

algorithm represents each sample as a point in space and
tries to find a separator with a gap to separate samples
from different classes. OCSVM may be viewed as a regular
two-class SVM, where all training data samples are in the
first class, and the origin is taken as the only member of555

the second class [53].

We use 3 one class classifiers for the 3 ransomware fam-
ilies (i.e. Locky, Cerber and TeslaCrypt). OCCLocky

in Figure 1 presents the OCC classifier trained using
V D(Locky) to detect Locky samples, OCCCerber shows560

OCC classifier trained by samples from V D(Cerber) to
identify Cerber samples, and OCCTeslaCrypt represents
OCC classifier trained from V D(TeslaCrypt) to detect Tes-
laCrypt samples. Output of OCCx is +1 if the sample is
classified as x; otherwise, it returns -1.565

Nu and Gamma are two important parameters for ex-
ecuting OCSVM. Nu can be between (0, 1]; that is, an
upper bound on the fraction of margin errors and a lower
bound of the fraction of support vectors relative to the
total number of training examples. Gamma is the Kernel570

coefficient for RBF kernel using SVM. As Nu and Gamma
affect the performance of created classifiers [53], we train
OCSVM with different values of Nu and Gamma to find
the best classifiers for DRTHIS. Figure 11 depicts the de-
tection ratio for each family on classifiers trained by dif-575

ferent values of Nu and Gamma. Blue colors in Figure
11 represent low detection rates while red surfaces indi-
cate higher detection rates. As shown in Figure 11a, the
highest detection rate for Locky samples is at Nu=0.15
and Gamma=0.3. Both Figures 11b and 11c suggest that580

Nu=0.05 and Gamma=0.55 are the best values to achieve
highest possible detection rates.

Equation 5 shows Final Decision after receiving outputs
from OCCs, where F is the final decision based on the
input set R containing outputs of OCCs. Final Decision585

determines a class label (i.e. family of given ransomware)
or specifies it as a new family of ransomware. In the case

9

Nu

0.0
0.1

0.2
0.3

0.4
0.5

0.6
Gamma

0.0
0.2

0.4
0.6

0.8
1.0

D
et

ec
tio

n
R

at
e

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

(a) Detection Rate for Locky test samples on TDTest(Locky)

Nu

0.0
0.1

0.2
0.3

0.4
0.5

0.6
Gamma

0.0
0.2

0.4
0.6

0.8
1.0

D
et

ec
tio

n
R

at
e

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

(b) Detection Rate for Cerber test samples on TDTest(Cerber)

Nu

0.0
0.1

0.2
0.3

0.4
0.5

0.6
Gamma

0.0
0.2

0.4
0.6

0.8
1.0

D
et

ec
tio

n
R

at
e

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

(c) Detection Rate for TeslaCrypt test samples
TDTest(TeslaCrypt)

Figure 11: Detection Ratio for different values of Nu and Gamma of
OCSVM over TDTest(x)

where a sample is a candidate for more than one family,
OCSVM (more than one +1 in R), Final Decision returns
a Conflict. Hence, if and only if one of Final Decision is590

+1 for a sample, then the output will be the class label of
the sample family (Family(x) in Equation 5). If all of the
inputs of the Final Decision component are -1 for a given
sample, then it will be classified as a sample belonging to
a new family.595

F =

Family(x), ∃x∈R∀y∈R∧y 6=x(x = +1 ∧ y = −1)

New, ∀x∈R(x = −1)

Conflict, ∃x∈R∃y∈R∧y 6=x(x = +1 ∧ y = +1

(5)

6. Evaluation and Discussion

We evaluate the performance of DRTHIS using both
ransomware samples from new families and unforeseen be-
nign applications.

Table 6 presents the classification result after apply-600

ing DRTHIS on TDGoodware, TDLocky, TDCerber and
TDTeslaCrypt. In the table, the New column represents
samples that do not belong to any family (ransomware be-
longing to unseen families) while the number of samples
detected in more than one family are listed in the Con-605

flict column. Only two Cerber samples encounter conflicts
after applying DRTHIS on TDTest(Locky), TDTest(Cerber)

and TDTest(TeslaCrypt).
Classifying 16 out of 66 Locky samples as Goodware

means that our created One Class classifier generated 24%610

wrong prediction over TDTest(Locky). Moreover, one Cer-
ber sample and two TeslaCrypt samples are wrongly clas-
sified as a new family of ransomware.

Table 6: Confusion matrix calculated after applying DRTHIS on
samples from TDTest

LC:Locky,CB:Cerber,TC:TeslaCrypt,GW:Goodware

LC CB TC GW New Conflicts Total

LC 50 0 0 16 0 0 66

CB 0 60 0 3 1 2 66

TC 0 0 64 0 2 0 66

GW 0 0 0 66 0 0 66

DRTHIS takes the advantage of One Class Classifier to
determine if a sample belongs to a known family of ran-615

somware or whether it belongs to a new family. We use
samples from CryptoWall, TorrentLocker and Sage fami-
lies for evaluating the performance of our system against
samples from unforeseen families.

Table 7 presents a confusion matrix after applying620

DRTHIS over TDCryptoWall, TDTorrenLocker and TDSage.
It is clear that DRTHIS identifies these three families as
a new family without any conflict with the trained fami-
lies. 99% of CryptoWall, 75% of TorrentLocker and 92% of
Sage samples are correctly detected as samples from a new625

10

family of ransomware. DRTHIS wrongly classifies 1 Cryp-
toWall sample (1%), 4 TorrentLocker samples (14.2%),
and 1 Sage sample (1.2%) as Goodware. DRTHIS iden-
tifies 2 TorrentLocker samples (7%) and 1 Sage sample
(1.2%) as Cerber samples. Three samples (3.8%) of Sage630

and 1 sample (3.5%) of TorrentLocker are also detected as
TeslaCrypt.

Table 7: Confusion matrix calculated after applying our detection
system on samples from studied families
LC:Locky,CB:Cerber,TC:TeslaCrypt,GW:Goodware, CW:CryptoWall,

TL:TorrentLocker,SG:Sage

LC CB TC GW New Conflicts Total

CW 0 0 0 1 98 0 99

TL 0 2 1 4 21 0 28

SG 1 1 3 1 71 0 77

7. Conclusion and Future Work

Fog computing will be increasingly commonplace and
with fog nodes having more computational and storage ca-635

pabilities (e.g. due to advances in technologies), fog nodes
will be an attractive target for ransomware (and other at-
tacks).

In this paper, we presented our proposed DRTHIS de-
signed to detect ransomware and identify the family of640

the ransomware within the first 10 seconds of an applica-
tion execution. In other words, the proposed system can
be deployed on the fog layer to serve as a fully automated
ransomware detection mechanism. Findings from our eval-
uations demonstrated that LSTM with 8 units results in645

a more powerful binary classifier in comparison with CNN
for hunting ransomware. This is because LSTM explicitly
extracts features from sequential activities to distinguish
ransomware. DRTHIS uses a pre-trained LSTM model
with multiple class labels in the DFE for vectorizing a se-650

quence of activities into a vector to feed into One Class
Classifiers. Our evaluation also showed that the multi-
class classifier used in the DFE component of our threat in-
telligence agent works much better when it is trained with
an LSTM network with 18 units of LSTM in comparison655

with the CNN technique. Specifically, we trained and eval-
uated our models using 220 Locky ransomware samples,
220 Cerber ransomware samples and 220 samples of Tes-
laCrypt ransomware, as well as evaluating our model with
new samples of ransomware belonging to unforeseen fami-660

lies of CryptoWall, TorrentLocker and Sage. We achieved
an F-Measure of 0.996 in detecting ransomware samples
with a true positive rate of 0.972 and a false positive rate
of 0.027 in identifying the ransomware family.

Findings from our studies suggested the potential of ap-665

plying deep learning techniques in achieving better results
in comparison with traditional neural networks to detect
ransomware. Future work will include exploring the utility
of other deep learning techniques, such as the Sequence-
discriminative training of Deep Neural Networks(DNNs),670

and Ensemble Deep Neural Network(DNN)/CNN/RNN, in
ransomware detection.

As DRTHIS has the capability of fast classification of
new instances, it can be considered as a basic method in
cyber security industry for implementing new threat hunt-675

ing and intelligence tools. Moreover, DRTHIS can detect
samples from new emerged families of ransomware, and it
makes DRTHIS a general and suitable solution for ran-
somware detection in practice.

Acknowledgment680

he authors would like to thank ransomware-
tracker.abuse.ch and virustotal.com for their support
of this research. This work was partially supported by
the European Council International Incoming Fellowship
(FP7-PEOPLE-2013-IIF) grant number 625402, and685

the Cloud Technology Endowed Professorship. The
information and views set out in this paper are those
of the authors and do not necessarily reflect the official
opinion of institutes they are working at.

11

References690

[1] EUROPOL, The internet organised crime threat assessment
(iocta) 2016 (2016).
URL https://www.europol.europa.eu/

activities-services/main-reports/

internet-organised-crime-threat-assessment-iocta-2016695

[2] ENISA, ENISA Threat Landscape Report 2016: 15 Top
Cyber-Threats And Trends, Tech. rep. (January 2017).
doi:10.2824/92184.
URL https://www.enisa.europa.eu/news/enisa-news/

enisa-threat-landscape-2016-report-cyber-threats-becoming-top-priority{%}0Ahttps:700

//www.enisa.europa.eu/publications/

enisa-threat-landscape-report-2016{%}0A

[3] TrendMicro, The reign of ransomware, Tech. rep. (2016).
URL http://www.trendmicro.com/cloud-content/

us/pdfs/security-intelligence/reports/705

rpt-the-reign-of-ransomware.pdf

[4] H. L. Kevin Savage, Peter Coogan, The evolution of ran-
somware, Symantec, 2015.

[5] Look into locky ransomware - malwarebytes labs —
malwarebytes labs, https://blog.malwarebytes.com/710

threat-analysis/2016/03/look-into-locky/, (Accessed
on 09/08/2017) (Mar 2016).

[6] Cerber ransomware - new, but mature - mal-
warebytes labs — malwarebytes labs, https://

blog.malwarebytes.com/threat-analysis/2016/03/715

cerber-ransomware-new-but-mature/, (Accessed on
09/08/2017) (Mar 2016).

[7] J. Wyke, A. Ajjan, The Current State of Ransomware, Tech.
Rep. December, Sophos (2015).
URL https://www.sophos.com/en-us/medialibrary/PDFs/720

technicalpapers/sophos-current-state-of-ransomware.

pdf?la=en

[8] K.-K. R. Choo, R. Lu, L. Chen, X. Yi, A foggy research future:
Advances and future opportunities in fog computing research,
Future Generation Computer Systems 78 (2018) 677–679. doi:725

10.1016/j.future.2017.09.014.
URL https://doi.org/10.1016/j.future.2017.09.014

[9] Gartner says 8.4 billion connected ”things” will be in use
in 2017, up 31 percent from 2016, http://www.gartner.com/

newsroom/id/3598917, (Accessed on 09/25/2017) (Feb 2017).730

[10] C. Huang, R. Lu, K.-K. R. Choo, Vehicular fog comput-
ing: Architecture, use case, and security and forensic chal-
lenges, IEEE Communications Magazine 55 (2017) 105–111.
doi:10.1016/j.future.2017.09.014.
URL https://doi.org/10.1016/j.future.2017.09.014735

[11] A. Azmoodeh, A. Dehghantanha, M. Conti, K.-K. R. Choo,
Detecting crypto-ransomware in IoT networks based on energy
consumption footprint, Journal of Ambient Intelligence and Hu-
manized Computingdoi:10.1007/s12652-017-0558-5.
URL https://doi.org/10.1007/s12652-017-0558-5740

[12] M. Conti, A. Dehghantanha, K. Franke, S. Watson, Internet
of things security and forensics: Challenges and opportunities,
Future Generation Computer Systems 78 (2018) 544–546. doi:
10.1016/j.future.2017.07.060.
URL https://doi.org/10.1016/j.future.2017.07.060745

[13] X. Luo, Q. Liao, Awareness education as the key to ransomware
prevention, Information Systems Security 16 (4) (2007) 195–
202. doi:10.1080/10658980701576412.
URL https://doi.org/10.1080%2F10658980701576412

[14] G. L. White, Education and prevention relationships on secu-750

rity incidents for home computers, Journal of Computer Infor-
mation Systems 55 (3) (2015) 29–37. doi:10.1080/08874417.

2015.11645769.
URL https://doi.org/10.1080/08874417.2015.11645769

[15] G. White, T. Ekin, L. Visinescu, Analysis of protective be-755

havior and security incidents for home computers, Journal of
Computer Information Systems 57 (4) (2016) 353–363. doi:

10.1080/08874417.2016.1232991.
URL https://doi.org/10.1080/08874417.2016.1232991

[16] W. Hardy, L. Chen, S. Hou, Y. Ye, X. Li, Dl4md: A deep learn-760

ing framework for intelligent malware detection, in: Proceedings
of the International Conference on Data Mining (DMIN), The
Steering Committee of The World Congress in Computer Sci-
ence, Computer Engineering and Applied Computing (World-
Comp), 2016, p. 61.765

[17] B. Kolosnjaji, A. Zarras, G. Webster, C. Eckert, Deep learning
for classification of malware system call sequences, in: AI 2016:
Advances in Artificial Intelligence, Springer International Pub-
lishing, 2016, pp. 137–149. doi:10.1007/978-3-319-50127-7_

11.770

URL https://doi.org/10.1007/978-3-319-50127-7_11

[18] E. Bocchi, L. Grimaudo, M. Mellia, E. Baralis, S. Saha,
S. Miskovic, G. Modelo-Howard, S.-J. Lee, Magma network
behavior classifier for malware traffic, Computer Networks
109 (Part 2) (2016) 142 – 156, traffic and Performance in the775

Big Data Era. doi:https://doi.org/10.1016/j.comnet.2016.
03.021.
URL http://www.sciencedirect.com/science/article/pii/

S1389128616300949

[19] A. Kharraz, W. Robertson, D. Balzarotti, L. Bilge, E. Kirda,780

Cutting the gordian knot: A look under the hood of ran-
somware attacks, in: Detection of Intrusions and Malware,
and Vulnerability Assessment, Springer Nature, 2015, pp. 3–
24. doi:10.1007/978-3-319-20550-2_1.
URL https://doi.org/10.1007%2F978-3-319-20550-2_1785

[20] A. Kharaz, S. Arshad, C. Mulliner, W. Robertson, E. Kirda,
Unveil: A large-scale, automated approach to detecting ran-
somware, in: 25th USENIX Security Symposium (USENIX
Security 16), USENIX Association, Austin, TX, 2016, pp.
757–772.790

URL https://www.usenix.org/conference/

usenixsecurity16/technical-sessions/presentation/

kharaz

[21] C. Moore, Detecting ransomware with honeypot techniques, in:
2016 Cybersecurity and Cyberforensics Conference (CCC), In-795

stitute of Electrical and Electronics Engineers (IEEE), 2016.
doi:10.1109/ccc.2016.14.
URL https://doi.org/10.1109%2Fccc.2016.14

[22] M. M. Ahmadian, H. R. Shahriari, 2entfox: A framework for
high survivable ransomwares detection, in: 2016 13th Interna-800

tional Iranian Society of Cryptology Conference on Informa-
tion Security and Cryptology (ISCISC), Institute of Electrical
and Electronics Engineers (IEEE), 2016. doi:10.1109/iscisc.
2016.7736455.
URL https://doi.org/10.1109%2Fiscisc.2016.7736455805

[23] J. Saxe, K. Berlin, Deep neural network based malware detec-
tion using two dimensional binary program features, in: 2015
10th International Conference on Malicious and Unwanted Soft-
ware (MALWARE), 2015, pp. 11–20. doi:10.1109/MALWARE.

2015.7413680.810

[24] Z. Yuan, Y. Lu, Y. Xue, Droiddetector: android malware char-
acterization and detection using deep learning, Tsinghua Sci-
ence and Technology 21 (1) (2016) 114–123. doi:10.1109/TST.
2016.7399288.

[25] Keras documentation, https://keras.io/, (Accessed on815

09/25/2017).
[26] M. T. Hagan, H. B. Demuth, M. H. Beale, Neural Network

Design, Martin Hagan, 2002.
[27] S. Homayoun, A. Dehghantanha, M. Ahmadzadeh, S. Hashemi,

R. Khayami, Know abnormal, find evil: Frequent pattern min-820

ing for ransomware threat hunting and intelligence, IEEE Trans-
actions on Emerging Topics in Computing (2017 - In Press) 1–
1doi:10.1109/tetc.2017.2756908.
URL https://doi.org/10.1109/tetc.2017.2756908

[28] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever,825

R. Salakhutdinov, Dropout: A simple way to prevent neural net-
works from overfitting, Journal of Machine Learning Research
15 (2014) 1929–1958.
URL http://jmlr.org/papers/v15/srivastava14a.html

[29] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever,830

12

https://www.europol.europa.eu/activities-services/main-reports/internet-organised-crime-threat-assessment-iocta-2016
https://www.europol.europa.eu/activities-services/main-reports/internet-organised-crime-threat-assessment-iocta-2016
https://www.europol.europa.eu/activities-services/main-reports/internet-organised-crime-threat-assessment-iocta-2016
https://www.europol.europa.eu/activities-services/main-reports/internet-organised-crime-threat-assessment-iocta-2016
https://www.europol.europa.eu/activities-services/main-reports/internet-organised-crime-threat-assessment-iocta-2016
https://www.europol.europa.eu/activities-services/main-reports/internet-organised-crime-threat-assessment-iocta-2016
https://www.europol.europa.eu/activities-services/main-reports/internet-organised-crime-threat-assessment-iocta-2016
https://www.europol.europa.eu/activities-services/main-reports/internet-organised-crime-threat-assessment-iocta-2016
https://www.enisa.europa.eu/news/enisa-news/enisa-threat-landscape-2016-report-cyber-threats-becoming-top-priority{%}0Ahttps://www.enisa.europa.eu/publications/enisa-threat-landscape-report-2016{%}0A
https://www.enisa.europa.eu/news/enisa-news/enisa-threat-landscape-2016-report-cyber-threats-becoming-top-priority{%}0Ahttps://www.enisa.europa.eu/publications/enisa-threat-landscape-report-2016{%}0A
https://www.enisa.europa.eu/news/enisa-news/enisa-threat-landscape-2016-report-cyber-threats-becoming-top-priority{%}0Ahttps://www.enisa.europa.eu/publications/enisa-threat-landscape-report-2016{%}0A
http://dx.doi.org/10.2824/92184
https://www.enisa.europa.eu/news/enisa-news/enisa-threat-landscape-2016-report-cyber-threats-becoming-top-priority{%}0Ahttps://www.enisa.europa.eu/publications/enisa-threat-landscape-report-2016{%}0A
https://www.enisa.europa.eu/news/enisa-news/enisa-threat-landscape-2016-report-cyber-threats-becoming-top-priority{%}0Ahttps://www.enisa.europa.eu/publications/enisa-threat-landscape-report-2016{%}0A
https://www.enisa.europa.eu/news/enisa-news/enisa-threat-landscape-2016-report-cyber-threats-becoming-top-priority{%}0Ahttps://www.enisa.europa.eu/publications/enisa-threat-landscape-report-2016{%}0A
https://www.enisa.europa.eu/news/enisa-news/enisa-threat-landscape-2016-report-cyber-threats-becoming-top-priority{%}0Ahttps://www.enisa.europa.eu/publications/enisa-threat-landscape-report-2016{%}0A
https://www.enisa.europa.eu/news/enisa-news/enisa-threat-landscape-2016-report-cyber-threats-becoming-top-priority{%}0Ahttps://www.enisa.europa.eu/publications/enisa-threat-landscape-report-2016{%}0A
https://www.enisa.europa.eu/news/enisa-news/enisa-threat-landscape-2016-report-cyber-threats-becoming-top-priority{%}0Ahttps://www.enisa.europa.eu/publications/enisa-threat-landscape-report-2016{%}0A
https://www.enisa.europa.eu/news/enisa-news/enisa-threat-landscape-2016-report-cyber-threats-becoming-top-priority{%}0Ahttps://www.enisa.europa.eu/publications/enisa-threat-landscape-report-2016{%}0A
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/reports/rpt-the-reign-of-ransomware.pdf
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/reports/rpt-the-reign-of-ransomware.pdf
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/reports/rpt-the-reign-of-ransomware.pdf
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/reports/rpt-the-reign-of-ransomware.pdf
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/reports/rpt-the-reign-of-ransomware.pdf
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/reports/rpt-the-reign-of-ransomware.pdf
https://blog.malwarebytes.com/threat-analysis/2016/03/look-into-locky/
https://blog.malwarebytes.com/threat-analysis/2016/03/look-into-locky/
https://blog.malwarebytes.com/threat-analysis/2016/03/look-into-locky/
https://blog.malwarebytes.com/threat-analysis/2016/03/cerber-ransomware-new-but-mature/
https://blog.malwarebytes.com/threat-analysis/2016/03/cerber-ransomware-new-but-mature/
https://blog.malwarebytes.com/threat-analysis/2016/03/cerber-ransomware-new-but-mature/
https://blog.malwarebytes.com/threat-analysis/2016/03/cerber-ransomware-new-but-mature/
https://blog.malwarebytes.com/threat-analysis/2016/03/cerber-ransomware-new-but-mature/
https://www.sophos.com/en-us/medialibrary/PDFs/technical papers/sophos-current-state-of-ransomware.pdf?la=en
https://www.sophos.com/en-us/medialibrary/PDFs/technical papers/sophos-current-state-of-ransomware.pdf?la=en
https://www.sophos.com/en-us/medialibrary/PDFs/technical papers/sophos-current-state-of-ransomware.pdf?la=en
https://www.sophos.com/en-us/medialibrary/PDFs/technical papers/sophos-current-state-of-ransomware.pdf?la=en
https://www.sophos.com/en-us/medialibrary/PDFs/technical papers/sophos-current-state-of-ransomware.pdf?la=en
https://www.sophos.com/en-us/medialibrary/PDFs/technical papers/sophos-current-state-of-ransomware.pdf?la=en
https://doi.org/10.1016/j.future.2017.09.014
https://doi.org/10.1016/j.future.2017.09.014
https://doi.org/10.1016/j.future.2017.09.014
http://dx.doi.org/10.1016/j.future.2017.09.014
http://dx.doi.org/10.1016/j.future.2017.09.014
http://dx.doi.org/10.1016/j.future.2017.09.014
https://doi.org/10.1016/j.future.2017.09.014
http://www.gartner.com/newsroom/id/3598917
http://www.gartner.com/newsroom/id/3598917
http://www.gartner.com/newsroom/id/3598917
https://doi.org/10.1016/j.future.2017.09.014
https://doi.org/10.1016/j.future.2017.09.014
https://doi.org/10.1016/j.future.2017.09.014
https://doi.org/10.1016/j.future.2017.09.014
https://doi.org/10.1016/j.future.2017.09.014
http://dx.doi.org/10.1016/j.future.2017.09.014
https://doi.org/10.1016/j.future.2017.09.014
https://doi.org/10.1007/s12652-017-0558-5
https://doi.org/10.1007/s12652-017-0558-5
https://doi.org/10.1007/s12652-017-0558-5
http://dx.doi.org/10.1007/s12652-017-0558-5
https://doi.org/10.1007/s12652-017-0558-5
https://doi.org/10.1016/j.future.2017.07.060
https://doi.org/10.1016/j.future.2017.07.060
https://doi.org/10.1016/j.future.2017.07.060
http://dx.doi.org/10.1016/j.future.2017.07.060
http://dx.doi.org/10.1016/j.future.2017.07.060
http://dx.doi.org/10.1016/j.future.2017.07.060
https://doi.org/10.1016/j.future.2017.07.060
https://doi.org/10.1080%2F10658980701576412
https://doi.org/10.1080%2F10658980701576412
https://doi.org/10.1080%2F10658980701576412
http://dx.doi.org/10.1080/10658980701576412
https://doi.org/10.1080%2F10658980701576412
https://doi.org/10.1080/08874417.2015.11645769
https://doi.org/10.1080/08874417.2015.11645769
https://doi.org/10.1080/08874417.2015.11645769
http://dx.doi.org/10.1080/08874417.2015.11645769
http://dx.doi.org/10.1080/08874417.2015.11645769
http://dx.doi.org/10.1080/08874417.2015.11645769
https://doi.org/10.1080/08874417.2015.11645769
https://doi.org/10.1080/08874417.2016.1232991
https://doi.org/10.1080/08874417.2016.1232991
https://doi.org/10.1080/08874417.2016.1232991
http://dx.doi.org/10.1080/08874417.2016.1232991
http://dx.doi.org/10.1080/08874417.2016.1232991
http://dx.doi.org/10.1080/08874417.2016.1232991
https://doi.org/10.1080/08874417.2016.1232991
https://doi.org/10.1007/978-3-319-50127-7_11
https://doi.org/10.1007/978-3-319-50127-7_11
https://doi.org/10.1007/978-3-319-50127-7_11
http://dx.doi.org/10.1007/978-3-319-50127-7_11
http://dx.doi.org/10.1007/978-3-319-50127-7_11
http://dx.doi.org/10.1007/978-3-319-50127-7_11
https://doi.org/10.1007/978-3-319-50127-7_11
http://www.sciencedirect.com/science/article/pii/S1389128616300949
http://www.sciencedirect.com/science/article/pii/S1389128616300949
http://www.sciencedirect.com/science/article/pii/S1389128616300949
http://dx.doi.org/https://doi.org/10.1016/j.comnet.2016.03.021
http://dx.doi.org/https://doi.org/10.1016/j.comnet.2016.03.021
http://dx.doi.org/https://doi.org/10.1016/j.comnet.2016.03.021
http://www.sciencedirect.com/science/article/pii/S1389128616300949
http://www.sciencedirect.com/science/article/pii/S1389128616300949
http://www.sciencedirect.com/science/article/pii/S1389128616300949
https://doi.org/10.1007%2F978-3-319-20550-2_1
https://doi.org/10.1007%2F978-3-319-20550-2_1
https://doi.org/10.1007%2F978-3-319-20550-2_1
http://dx.doi.org/10.1007/978-3-319-20550-2_1
https://doi.org/10.1007%2F978-3-319-20550-2_1
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/kharaz
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/kharaz
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/kharaz
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/kharaz
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/kharaz
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/kharaz
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/kharaz
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/kharaz
https://doi.org/10.1109%2Fccc.2016.14
http://dx.doi.org/10.1109/ccc.2016.14
https://doi.org/10.1109%2Fccc.2016.14
https://doi.org/10.1109%2Fiscisc.2016.7736455
https://doi.org/10.1109%2Fiscisc.2016.7736455
https://doi.org/10.1109%2Fiscisc.2016.7736455
http://dx.doi.org/10.1109/iscisc.2016.7736455
http://dx.doi.org/10.1109/iscisc.2016.7736455
http://dx.doi.org/10.1109/iscisc.2016.7736455
https://doi.org/10.1109%2Fiscisc.2016.7736455
http://dx.doi.org/10.1109/MALWARE.2015.7413680
http://dx.doi.org/10.1109/MALWARE.2015.7413680
http://dx.doi.org/10.1109/MALWARE.2015.7413680
http://dx.doi.org/10.1109/TST.2016.7399288
http://dx.doi.org/10.1109/TST.2016.7399288
http://dx.doi.org/10.1109/TST.2016.7399288
https://keras.io/
https://doi.org/10.1109/tetc.2017.2756908
https://doi.org/10.1109/tetc.2017.2756908
https://doi.org/10.1109/tetc.2017.2756908
http://dx.doi.org/10.1109/tetc.2017.2756908
https://doi.org/10.1109/tetc.2017.2756908
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html

R. Salakhutdinov, Improving neural networks by preventing co-
adaptation of feature detectors, CoRR abs/1207.0580.
URL http://arxiv.org/abs/1207.0580

[30] M. Sun, X. Li, J. C. S. Lui, R. T. B. Ma, Z. Liang, Monet:
A user-oriented behavior-based malware variants detection sys-835

tem for android, IEEE Transactions on Information Forensics
and Security 12 (5) (2017) 1103–1112. doi:10.1109/tifs.2016.
2646641.
URL https://doi.org/10.1109%2Ftifs.2016.2646641

[31] M. R. Watson, N. ul-hassan Shirazi, A. K. Marnerides, A. Mau-840

the, D. Hutchison, Malware detection in cloud computing in-
frastructures, IEEE Transactions on Dependable and Secure
Computing 13 (2) (2016) 192–205. doi:10.1109/tdsc.2015.

2457918.
URL https://doi.org/10.1109%2Ftdsc.2015.2457918845

[32] S. Boughorbel, F. Jarray, M. El-Anbari, Optimal classifier for
imbalanced data using matthews correlation coefficient metric,
PLOS ONE 12 (6) (2017) e0177678. doi:10.1371/journal.

pone.0177678.
URL https://doi.org/10.1371/journal.pone.0177678850

[33] B. Matthews, Comparison of the predicted and observed sec-
ondary structure of t4 phage lysozyme, Biochimica et Biophys-
ica Acta (BBA) - Protein Structure 405 (2) (1975) 442–451.
doi:10.1016/0005-2795(75)90109-9.
URL https://doi.org/10.1016%2F0005-2795%2875%2990109-9855

[34] D. M. Powers, Evaluation: from precision, recall and f-
measure to roc, informedness, markedness and correlation,
Tech. rep., School of Informatics and Engineering-Flinders Uni-
versity (2011).

[35] Ransomware becomes most popular form of attack as payouts860

approach $1bn a year, Network Security 2017 (1) (2017) 1–2.
doi:10.1016/s1353-4858(17)30001-6.
URL https://doi.org/10.1016/s1353-4858(17)30001-6

[36] UK major target for ransomware, Computer Fraud & Security
2016 (1) (2016) 3. doi:10.1016/s1361-3723(16)30003-3.865

URL https://doi.org/10.1016/s1361-3723(16)30003-3

[37] J. K. Lee, S. Y. Moon, J. H. Park, CloudRPS: a cloud analysis
based enhanced ransomware prevention system, The Journal of
Supercomputingdoi:10.1007/s11227-016-1825-5.
URL https://doi.org/10.1007/s11227-016-1825-5870

[38] D. Sgandurra, L. Muñoz-González, R. Mohsen, E. C. Lupu, Au-
tomated dynamic analysis of ransomware: Benefits, limitations
and use for detection, CoRR abs/1609.03020.
URL http://arxiv.org/abs/1609.03020

[39] R. Zhao, K. Mao, Fuzzy bag-of-words model for document rep-875

resentation, IEEE Transactions on Fuzzy Systems (2017) 1–
1doi:10.1109/tfuzz.2017.2690222.
URL https://doi.org/10.1109/tfuzz.2017.2690222

[40] T. Chen, R. Xuab, Y. Hec, X. Wang, Improving sentiment
analysis via sentence type classification using bilstm-crf and880

cnn, Expert Systems with Applications 72 (2017) 221–230.
doi:10.1016/j.eswa.2016.10.065.
URL https://doi.org/10.1016/j.eswa.2016.10.065

[41] H. Zeng, M. D. Edwards, G. Liu, D. K. Gifford, Convolu-
tional neural network architectures for predicting dnaprotein885

binding, Bioinformatics 32 (12) (2016) 121–127. doi:10.1093/

bioinformatics/btw255.
URL http://dx.doi.org/10.1093/bioinformatics/btw255

[42] N. G. Nguyen, V. A. Tran, D. L. Ngo, D. Phan, F. R. Lum-
banraja, M. R. Faisal, B. Abapihi, M. Kubo, K. Satou, Dna890

sequence classification by convolutional neural network, Jour-
nal of Biomedical Science and Engineering 9 (2016) 280–286.
doi:10.4236/jbise.2016.95021.
URL http://dx.doi.org/10.4236/jbise.2016.95021

[43] Z. Zhao, W. Chen, X. Wu, P. C. Y. Chen, J. Liu, LSTM895

network: a deep learning approach for short-term traffic fore-
cast, IET Intelligent Transport Systems 11 (2) (2017) 68–75.
doi:10.1049/iet-its.2016.0208.
URL https://doi.org/10.1049/iet-its.2016.0208

[44] Y. Yan, Y. Wang, W.-C. Gao, B.-W. Zhang, C. Yang, X.-C.900

Yin, Lstm 2: Multi-label ranking for document classification.

[45] T. Chen, R. Xu, Y. He, X. Wang, Improving sentiment analysis
via sentence type classification using BiLSTM-CRF and CNN,
Expert Systems with Applications 72 (2017) 221–230. doi:10.

1016/j.eswa.2016.10.065.905

URL https://doi.org/10.1016/j.eswa.2016.10.065

[46] M. Wollmer, C. Blaschke, T. Schindl, B. Schuller, B. Far-
ber, S. Mayer, B. Trefflich, Online driver distraction detec-
tion using long short-term memory, IEEE Transactions on In-
telligent Transportation Systems 12 (2) (2011) 574–582. doi:910

10.1109/tits.2011.2119483.
URL https://doi.org/10.1109/tits.2011.2119483

[47] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, J. Dean, Dis-
tributed representations of words and phrases and their compo-
sitionality, CoRR abs/1310.4546.915

URL http://arxiv.org/abs/1310.4546

[48] Vector representations of words — tensorflow, https:

//www.tensorflow.org/tutorials/word2vec, (Accessed on
08/05/2017) (Jun 2017).

[49] T. Mikolov, K. Chen, G. Corrado, J. Dean, Efficient estimation920

of word representations in vector space, ArXiv e-printsarXiv:
1301.3781.

[50] B. Christopher, Pattern Recognition and Machine Learning, 1st
Edition, Springer-Verlag New York, 2006.

[51] J. Shawe-Taylor, B. Žličar, Novelty Detection with One-Class925

Support Vector Machines, Springer International Publishing,
Cham, 2015, pp. 231–257. doi:10.1007/978-3-319-17377-1_

24.
URL https://doi.org/10.1007/978-3-319-17377-1_24

[52] C. Cortes, V. Vapnik, Support-vector networks, Machine Learn-930

ing 20 (3) (1995) 273–297. doi:10.1007/bf00994018.
URL https://doi.org/10.1007/bf00994018

[53] Y. Xiao, H. Wang, W. Xu, Parameter selection of gaussian ker-
nel for one-class SVM, IEEE Transactions on Cybernetics 45 (5)
(2015) 941–953. doi:10.1109/tcyb.2014.2340433.935

URL https://doi.org/10.1109/tcyb.2014.2340433

13

http://arxiv.org/abs/1207.0580
http://arxiv.org/abs/1207.0580
http://arxiv.org/abs/1207.0580
http://arxiv.org/abs/1207.0580
https://doi.org/10.1109%2Ftifs.2016.2646641
https://doi.org/10.1109%2Ftifs.2016.2646641
https://doi.org/10.1109%2Ftifs.2016.2646641
https://doi.org/10.1109%2Ftifs.2016.2646641
https://doi.org/10.1109%2Ftifs.2016.2646641
http://dx.doi.org/10.1109/tifs.2016.2646641
http://dx.doi.org/10.1109/tifs.2016.2646641
http://dx.doi.org/10.1109/tifs.2016.2646641
https://doi.org/10.1109%2Ftifs.2016.2646641
https://doi.org/10.1109%2Ftdsc.2015.2457918
https://doi.org/10.1109%2Ftdsc.2015.2457918
https://doi.org/10.1109%2Ftdsc.2015.2457918
http://dx.doi.org/10.1109/tdsc.2015.2457918
http://dx.doi.org/10.1109/tdsc.2015.2457918
http://dx.doi.org/10.1109/tdsc.2015.2457918
https://doi.org/10.1109%2Ftdsc.2015.2457918
https://doi.org/10.1371/journal.pone.0177678
https://doi.org/10.1371/journal.pone.0177678
https://doi.org/10.1371/journal.pone.0177678
http://dx.doi.org/10.1371/journal.pone.0177678
http://dx.doi.org/10.1371/journal.pone.0177678
http://dx.doi.org/10.1371/journal.pone.0177678
https://doi.org/10.1371/journal.pone.0177678
https://doi.org/10.1016%2F0005-2795%2875%2990109-9
https://doi.org/10.1016%2F0005-2795%2875%2990109-9
https://doi.org/10.1016%2F0005-2795%2875%2990109-9
http://dx.doi.org/10.1016/0005-2795(75)90109-9
https://doi.org/10.1016%2F0005-2795%2875%2990109-9
https://doi.org/10.1016/s1353-4858(17)30001-6
https://doi.org/10.1016/s1353-4858(17)30001-6
https://doi.org/10.1016/s1353-4858(17)30001-6
http://dx.doi.org/10.1016/s1353-4858(17)30001-6
https://doi.org/10.1016/s1353-4858(17)30001-6
https://doi.org/10.1016/s1361-3723(16)30003-3
http://dx.doi.org/10.1016/s1361-3723(16)30003-3
https://doi.org/10.1016/s1361-3723(16)30003-3
https://doi.org/10.1007/s11227-016-1825-5
https://doi.org/10.1007/s11227-016-1825-5
https://doi.org/10.1007/s11227-016-1825-5
http://dx.doi.org/10.1007/s11227-016-1825-5
https://doi.org/10.1007/s11227-016-1825-5
http://arxiv.org/abs/1609.03020
http://arxiv.org/abs/1609.03020
http://arxiv.org/abs/1609.03020
http://arxiv.org/abs/1609.03020
http://arxiv.org/abs/1609.03020
http://arxiv.org/abs/1609.03020
https://doi.org/10.1109/tfuzz.2017.2690222
https://doi.org/10.1109/tfuzz.2017.2690222
https://doi.org/10.1109/tfuzz.2017.2690222
http://dx.doi.org/10.1109/tfuzz.2017.2690222
https://doi.org/10.1109/tfuzz.2017.2690222
https://doi.org/10.1016/j.eswa.2016.10.065
https://doi.org/10.1016/j.eswa.2016.10.065
https://doi.org/10.1016/j.eswa.2016.10.065
https://doi.org/10.1016/j.eswa.2016.10.065
https://doi.org/10.1016/j.eswa.2016.10.065
http://dx.doi.org/10.1016/j.eswa.2016.10.065
https://doi.org/10.1016/j.eswa.2016.10.065
http://dx.doi.org/10.1093/bioinformatics/btw255
http://dx.doi.org/10.1093/bioinformatics/btw255
http://dx.doi.org/10.1093/bioinformatics/btw255
http://dx.doi.org/10.1093/bioinformatics/btw255
http://dx.doi.org/10.1093/bioinformatics/btw255
http://dx.doi.org/10.1093/bioinformatics/btw255
http://dx.doi.org/10.1093/bioinformatics/btw255
http://dx.doi.org/10.1093/bioinformatics/btw255
http://dx.doi.org/10.1093/bioinformatics/btw255
http://dx.doi.org/10.4236/jbise.2016.95021
http://dx.doi.org/10.4236/jbise.2016.95021
http://dx.doi.org/10.4236/jbise.2016.95021
http://dx.doi.org/10.4236/jbise.2016.95021
http://dx.doi.org/10.4236/jbise.2016.95021
https://doi.org/10.1049/iet-its.2016.0208
https://doi.org/10.1049/iet-its.2016.0208
https://doi.org/10.1049/iet-its.2016.0208
https://doi.org/10.1049/iet-its.2016.0208
https://doi.org/10.1049/iet-its.2016.0208
http://dx.doi.org/10.1049/iet-its.2016.0208
https://doi.org/10.1049/iet-its.2016.0208
https://doi.org/10.1016/j.eswa.2016.10.065
https://doi.org/10.1016/j.eswa.2016.10.065
https://doi.org/10.1016/j.eswa.2016.10.065
http://dx.doi.org/10.1016/j.eswa.2016.10.065
http://dx.doi.org/10.1016/j.eswa.2016.10.065
http://dx.doi.org/10.1016/j.eswa.2016.10.065
https://doi.org/10.1016/j.eswa.2016.10.065
https://doi.org/10.1109/tits.2011.2119483
https://doi.org/10.1109/tits.2011.2119483
https://doi.org/10.1109/tits.2011.2119483
http://dx.doi.org/10.1109/tits.2011.2119483
http://dx.doi.org/10.1109/tits.2011.2119483
http://dx.doi.org/10.1109/tits.2011.2119483
https://doi.org/10.1109/tits.2011.2119483
http://arxiv.org/abs/1310.4546
http://arxiv.org/abs/1310.4546
http://arxiv.org/abs/1310.4546
http://arxiv.org/abs/1310.4546
http://arxiv.org/abs/1310.4546
http://arxiv.org/abs/1310.4546
https://www.tensorflow.org/tutorials/word2vec
https://www.tensorflow.org/tutorials/word2vec
https://www.tensorflow.org/tutorials/word2vec
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
https://doi.org/10.1007/978-3-319-17377-1_24
https://doi.org/10.1007/978-3-319-17377-1_24
https://doi.org/10.1007/978-3-319-17377-1_24
http://dx.doi.org/10.1007/978-3-319-17377-1_24
http://dx.doi.org/10.1007/978-3-319-17377-1_24
http://dx.doi.org/10.1007/978-3-319-17377-1_24
https://doi.org/10.1007/978-3-319-17377-1_24
https://doi.org/10.1007/bf00994018
http://dx.doi.org/10.1007/bf00994018
https://doi.org/10.1007/bf00994018
https://doi.org/10.1109/tcyb.2014.2340433
https://doi.org/10.1109/tcyb.2014.2340433
https://doi.org/10.1109/tcyb.2014.2340433
http://dx.doi.org/10.1109/tcyb.2014.2340433
https://doi.org/10.1109/tcyb.2014.2340433

	Introduction
	Evaluation Metrics

	Related Work
	Deep Ransomware Threat Hunting and Intelligence System (DRTHIS)
	Threat Hunting
	Threat Intelligence
	Evaluation and Discussion
	Conclusion and Future Work

