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Abstract: Novel models of imperfect repair are fitted to classic reliability datasets. The models 

suppose that a virtual system comprises a component and a remainder in series. On failure of the 

component, the component is renewed, and on failure of the remainder, the component is renewed 

and the remainder is minimally repaired. It follows that the repair process is a counting process that 

is the superposition of a renewal process and a Poisson process. The repair effect, that is, the extent 

to the system is repaired by renewal of the component, depends on the relative intensities of the 

superposed processes. The repair effect may be negative, when the intensity of the part that is a 

renewal process is a decreasing function. Other special cases of the model exist (renewal process, 

Poisson process, superposed renewal process and homogeneous Poisson process). Model fit is 

important because the nature of the model and corresponding parameter values determine the 

effectiveness of maintenance, which we also consider. A cost-minimizing repair policy may be 

determined provided the cost of preventive-repair is less than the cost of corrective-repair and the 

repairable part is ageing. If the remainder is ageing, then policy needs to be adapted as it ages. 
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1. Introduction 

Much research has sought to model imperfect repair of a multi-component system in a way that 

captures a repair effect that lies somewhere between “as good as new” (perfect repair) and “as bad 

as old” (minimal repair). At the ends of this spectrum lie the renewal process (Ross, 1996) and the 

non-homogeneous Poisson process (Cox and Lewis, 1966). In between, and thus capturing 

imperfect repair, lie mixed processes (Brown and Proschan, 1983; Kallen, 2011; Doyen, 2014) 

virtual age-reduction models (Kijima and Sumita, 1986; Kijima, 1989; Jack, 1998; Tanwar et al., 

2014), geometric processes (Lam, 1988; Wang and Pham, 1996; Wu and Clements-Croome, 2006; 

Wu and Scarf, 2015; Zhang et al., 2015; Wu and Wang, 2018), hazard-reduction models (Doyen 

and Gaudoin, 2004; Percy and Alkali, 2006; Percy et al., 2010), virtual component models (Wu and 

Scarf, 2017); and generalizations of these (Doyen et al., 2017). All these attempt to model multi-

component systems parsimoniously. 

Models with few parameters are desirable because failure data are scarce (Scarf, 1997) and 

often non-existent (e.g. Desa and Christer, 2001). As a consequence, maintenance policy is 

imprecisely specified (Baker and Scarf, 1995). While a component-wise model of imperfect repair 

of multi-component systems, in which repair corresponds to renewal of a particular component, is 

conceptually simple, such a model requires knowledge of individual component reliabilities. 
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Component dependencies (e.g. Do et al., 2018) add further difficulties. Many components have 

never failed and most rarely fail (e.g. Akbarov et al., 2008). Thus, research that seeks to model the 

repair-effect, either directly or indirectly, with as few parameters as possible is important. This 

paper continues this tradition.  

A focus of these parsimonious models is estimation of the repair effect. This is directly 

parameterized within the age- and hazard-reduction models, and indirectly parameterized in the 

models described in this paper. Estimation of the repair effect is challenging because data are 

typically scarce and subjective elicitation from maintenance engineers who carry out repairs is 

compromising (Zhang and Wang, 2014). It may be better therefore for repair models to indirectly 

specify the repair effect, so that it is a property of the model (a function of parameters) rather than a 

parameter itself. Then it can be indirectly estimated. Thus, one of the objectives of this paper is the 

indirect estimation of the repair effect.  We also allow that this repair effect may be negative, 

whereby, for example, a poor-quality spare-part is used or a fault is induced (Scarf and Cavalcante, 

2012) at preventive maintenance. 

The repair effect is estimated using a model that we outline here. Conceptionally, the model 

posits a series system with an unknown number m of components. By unknown here, we mean that 

m is a parameter about which we have no information. Each component generates events that occur 

in time according to a counting process (Cox and Lewis, 1966). These events are typically failures 

but need not be so in general. This is convenient because failures are often ambiguously defined and 

what is observed are the times of maintenance interventions, which we term repairs. At each event, 

the system is repaired, so that the events are triggers for repair. On repair of the system, we suppose 

that a component is replaced with a new (age-zero) identical component, but the component 

replaced does not necessarily correspond to the component that fails, or more generally that 

generates the repair event. If these components are indeed different, then the component that 

generates the repair event is unaffected by the event. If they are one and the same, then it is 

replaced. In this way, we suppose the system is a virtual system consisting of a virtual component, 

which is the component that is always replaced on repair, and a virtual sub-system, which is the 

collection of the other virtual components in the system. The latter is the remainder of the system. 

We use this virtual-system terminology to distinguish the system from a 1-out-of-m series system—

models of repair of series systems (e.g. Smith and Dekker, 1997) usually assume that the 

component that fails is replaced. Further, we suppose that each virtual component corresponds to a 

counting process.  

The fundamental ideas for this type of model are described in Wu and Scarf (2017). In our 

paper here we take a number of further steps. First, we show that the virtual series-system model 

can be formulated as a superposition of a renewal process and a nonhomogeneous Poisson process. 

Second, we fit the model (and special cases of it) to a number of classic datasets from the reliability 

literature. In so doing, we consider carefully the goodness-of-fit of the models, a critical activity 

given the scarcity of data in real situations. We then use the models to show how the repair effect 

can be specified and estimated. Finally, we show how the models can be used to inform 

maintenance policy decision-making and discuss their implications for practice.  

The layout of the paper then corresponds to the order of these developments. However, first are 

some preliminaries about counting processes that will be needed for the model specification in 

Section 3. The subsections in Section 3 present the models and their properties. The final sub-

section of Section 3 describes parameter estimation for the model by the method of maximum 
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likelihood. Section 4 describes the classic datasets we use, the parameterization of the renewal 

process and Poisson process elements of the model, and the results of the model fitting. Section 5 is 

concerned with maintenance policy and the repair effect. We finish with conclusions in the final 

section. 

 

2. Preliminaries 

First we state some preliminary definitions and results that are well-known (Cox and Lewis, 1966). 

The number of events that arise in an interval [0, ]  is in general a counting process ( )N  whose 

behaviour is determined by the intensity function 

0

Pr( ( ) ( ) 1 )
( ) lim

t
t t

N t t N t
t

t







−
− →

+ − 
=

F
F , 

where t−F  is the history (filtration) of the process up to time t. ( )tt −F  is an intensity function of 

a counting process if and only if 
0

( ) ( )d
t

ut u u − =  F  exists for all [0, ]t  , is positive and is an 

increasing function in t. Essentially this means (.)  must be positive and defined everywhere on 

the positive real line. ( )t  is called the cumulative intensity function (CIF).  

If the intensity function does not depend on the history ( ( ) ( )tt t − =F ) and at most one event 

can occur at any time t, then the counting process is a Poisson process. If the intensity function is a 

constant ( ( )t = ) then the counting process is a homogeneous Poisson process. If the intensity 

function depends only on the time since the last event ( ( )( ) ( )t N tt h t T − −= −F ) then the counting 

process is a renewal process. Consequently, the renewal process is characterized by the distribution 

XF  of the time since the last event, ( )N tX t T −= − , and h is the hazard function of this distribution 

( ( ) ( ) /{1 ( )})X Xh x F x F x= − .  

The homogeneous Poisson process is a renewal process and X is exponentially distributed with 

mean 1/  , and ( ) ( ) /{1 ( )} exp( ) / exp( )X X Xh x F x F x x x   = − = − − = . 

Our next preliminary point concerns the addition (superposition) of counting processes. Let 

1( )N   and 2 ( )N   be counting processes. Then their superposition S 1 2( ) ( ) ( )N N N  = +  is a 

counting process, and if 1 1,( )tt −F  does not depend on 2,t−F  and vice versa (independence), then 

S( )N   has intensity function 1 1, 2 2,( ) ( )t tt t − −+F F .   

 

3. Virtual series-system models 

3.1. Partially renewing process 

We describe two models. In the first, it is always the oldest component in the virtual system that is 

replaced on repair. In the second model, notionally, it is the youngest.  

The virtual system (VS) is 1-out-of-m system with m identical and independent virtual 

components. Each virtual component corresponds to a counting process. We do not attempt to make 

a correspondence between these m virtual components of the virtual system and m components of a 

real, multi-component system. Thus, the virtual system idea is conceptual. We use the term virtual 

to qualify component and system deliberately, in a way that is analogous to using the term virtual in 

the virtual age models of imperfect repair.  

The 1-out-of-m system structure implies that the virtual system is the superposition of these m 

independent, identical counting processes. Suppose events (repairs) have occurred at times 

1 2 1, ,..., ,...it t t −  ( i m ). Let C (.)h  be a hazard function.   
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Proposition 1. The function  
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                   (1) 

is the intensity function of a counting process. 

Proof. For all 0t  , S S0
( ) ( )d

t
t u u =   is defined, positive and increasing in t because C ( )h t  is 

defined and positive because it is a hazard function. End of proof. 

The intensity function S( )t  characterises the virtual system, but the proof is not instructive, so 

we make some remarks. The construction of S( )t  is such that before the first repair (event) ( 1t t ) 

the m virtual components are each aged t with identical hazards C ( )h t . After the first repair, and at a 

time when the number of virtual components is at least as big as the number of repairs (second line 

on right hand side), then some virtual components have been replaced (renewed) and some have 

not. The latter collectively contribute C( 1) ( )m i h t− +  to the system intensity, the former 

C 1 C 2( ) ( ) ...h t t h t t− + − +  When the number of repairs exceeds the number of virtual components 

( )m i , the ages of the m virtual components (arguments of the hazards) correspond to the times 

since the m most recent repairs. In this way, we interpret the model as one in which the oldest 

component in the virtual system is replaced at a repair.  

At steady-state ( t → ), if C ( )h t  is increasing with t (IFR) (Barlow et al., 1996), then 

S C( ) ( )mt mh x  , where mx  is the time since the mth most recent repair, and so the counting process 

is stationary (in the sense that S( )t  never increases without limit). We might call this a partially 

renewing process. The size of m determines the extent to which the system is partially renewed at 

each repair, and the system is always somewhat better than old on repair. If C ( )h t  is decreasing with 

t (DFR), then again the counting process is stationary at steady-state, but here on repair the system 

will tend to be worse than old.  

 

3.2. Superposition of a renewal process and a Poisson process 

Consider now the notion that the youngest component is replaced on repair. Then the same 

component is always replaced on repair. The next proposition describes the system intensity 

function.  

Proposition 2. Let 0 0t t= = . Then the function  

S C 1 C 1( ) ( ) ( 1) ( ), , 1,2,...i i it h t t m h t t t t i − −= − + −   = ,                       (2) 

is the intensity function of a counting process. 

Proof. For all 0t  , S S0
( ) ( )d

t
t u u =   is defined, positive and increasing in t because C ( )h t  is 

defined and positive because it is a hazard function. End of proof. 

Here the same virtual component is replaced at every repair; this is the renewing hazard  

C 1( )ih t t −− . The other 1m−  virtual components have ages that are unchanged on repair; this is the 

non-renewing hazard C( 1) ( )m h t− .  

If C (.)h  is a decreasing function (DFR), so that a repair returns the system to a state that is 

“worse than old”, then S C( ) ( )t h x → +  as t →  C(lim ( ) 0)t h t → =  ), where x is the time 
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since last repair, and so the counting process is a renewal process in the limit (at steady-state). If 

0  , then the limiting process with intensity (2) is the superposition of a renewal process (RP) 

and a homogeneous Poisson process (HPP) with intensity  . When  C (.)h  is an increasing function 

(IFR), if it increases without limit ( C ( )h t →  as t → ),  then S( )t  increases without limit and 

the process is non-stationary. If C ( )h t →  as t → , then S C( ) ( )t h x → + , as ,t →  and again 

at steady-state the virtual system process is the superposition of a renewal process and a 

homogeneous Poisson process. This then suggests a modification to the model in which we set 

S,2 C 1 R 1( ) ( ) ( ), , 1,2,...i i it h t t t t t t i − −= − +   = ,                            (3) 

corresponding to a virtual system comprising a virtual, renewing component with hazard C (.)h  and 

the remainder of the system with intensity function R ( )t . This model is introduced as a failure 

model in Wu and Scarf (2017), wherein when the component fails it is replaced, and when the 

remainder fails, the component is replaced and the remainder is minimally repaired. The virtual, 

renewing component is called the virtual component (VC). The remainder, which is minimally 

repaired, is called the virtual sub-system (VSS). The VC and the VSS form the virtual system (VS). 

We shall use these terms in this paper. The model (3) is a superposition of a renewal process (RP) 

and a nonhomogeneous Poisson process (NHPP). 

In the special case of (3) with  

S,1 C 1 1( ) ( ) , , 1,2,...i i it h t t t t t i − −= − +   =   ,                             (4) 

the VC is a renewal process (RP) and the VSS is a homogeneous Poisson process (HPP), and so the 

VS is an RP—the superposition of an RP and an HPP is another RP. The partially renewing process 

(1) is a simplification of a second model introduced in Wu and Scarf (2017). 

For the model S,2 ( )t , equation (3), if C ( )h t  is DFR, then repairs return the system to a state 

that is worse than just before repair (worse than old). If C ( )h t  is IFR, then repairs return the system 

to a state that is better than just before repair (better than old but not as good as new). The repair 

effect—the extent to which repair improves (or worsens) the system—depends on C ( )h t . If R ( )t  is 

large, repairs are frequent but the reduction (if C ( )h t  is IFR) in intensity at each repair will be small. 

When  R ( )t  is small, repairs are infrequent but the reduction (if C ( )h t  is IFR) in intensity at each 

repair will be large.  

 

3.3. Further remarks  

The partially renewing process (1) might be generalized so that r from m virtual components are 

renewed on failure, although data are unlikely to distinguish a “1-from-3” model from a “2-from-6” 

model. Nonetheless the hazard function can be formulated in this case. 

Replacement of the youngest virtual component always on repair when C (.)h  is DFR may be 

an interesting model. Software reliability might follow such a process. On release (repair), a new 

version has new code that is the least reliable part of the software and the remainder of the code has 

been minimally repaired (debugged).  

When C (.)h h=  (a constant, non-time-dependent), then S( )t  in (1) is a constant intensity and 

the repair process is a homogeneous Poisson process (HPP). When C (.)h h= , S,2 ( )t  in (3) is the 

intensity of a superposition of an HPP and an NHPP, which is an NHPP. This suggests that S,2 ( )t  

provides a more flexible model than S( )t  in (1). Also, the latter partially renewing process is likely 

to be difficult to distinguish from an HPP (at estimation) because of its stationarity. Further, the 
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non-stationarity of (2)—its ageing behavior—is linked to the hazard of the VC. This essentially 

makes the model considerably less flexible than (3). 

So, in the remainder of the paper, we focus the model S,2 ( )t , equation (3), and its special case 

S,1( )t , equation (4).  

 

3.4. Parameterization 

When C (.)h  is specified with two parameters (e.g. Weibull hazard 1 1
1 1 1( ) ( / )( / )h t t    −=  

(Lawless, 1983), S,1( )t  (equation 4) has three parameters.  

A natural parameterization for remainder of the system (the non-renewing virtual sub-system, 

VSS) is 2 1
R 2 2 2( ) ( / )( / )t t     −= , which corresponds to the power-law non-homogeneous 

Poisson process (e.g. Rigdon and Asit, 1989), and can model degradation of  e.g. mechanical 

systems 2( 1)   and improvement of e.g. software systems 2( 1)  . Then S,2 ( )t  (equation 3) has 

four parameters. When R ( ) 0t =  for all t, then the model reduces to a renewal process (RP) (2 

parameters) 

Notice that intensity (2) can model an ageing VS with three parameters (m plus two for the RP). 

 

3.5. Mean time to next repair and mean time between repairs  

In this sub-section we derive the mean time to next repair of the virtual system, and, when it exists, 

the mean time between repairs.  

First consider the model with intensity function S,2 ( )t , equation (3). Given a repair at time *t

, the time to next repair min( , )Z X Y= , where X  is the random variable with hazard function  

C ( )h z  and Y  is the random variable with hazard function  R ( * )t z + . As an aside, we can see that 

the model is related to a competing risks model (e.g. Crowder, 2012).  

Then, the mean time to the next repair, {min( , )}E X Y  can be obtained as follows. Denote the 

probability density and reliability (survival) functions of X  by C ( )f x   and C ( )S x  and the 

probability density and reliability functions of Y  by R, *( )tf y  and R, *( )tS y . Then the probability 

density function of min( , )Z X Y=  is given by  

R, * R, * C( ) ( ) ( ) ( ) ( )Z C t tf z f z S z f z S z= + .                                            (5) 

This is because Pr{min( , ) } 1 Pr( ) Pr( )X Y z X z Y z = −    and differentiating both sides with 

respect to z gives (5). Then, given a repair at *t , the mean time to the next repair is  

R, * R, * C0
{min( , )} { ( ) ( ) ( ) ( )}dC t tE X Y z f z S z f z S z z


= + . 

When the VSS is HPP, ~ ( )Y Ex   (exponentially distributed) and   does not depend on *t , 

and so the mean time between repairs (MTBR) exists and is given by is a constant: 

MTBR = exp C0
{min( , )} { ( ) ( )}exp( )dCE X Y z f z S z z z 


= + − .                        (6) 

Finally, if X T=  is a constant and R ( )t = , then expmin( , )Z T Y=  and the repair process 

looks like that arising from an age based replacement policy (Barlow and Hunter, 1960) that is 

applied to a non-ageing system. 
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3.6. Parameter estimation  

Proposition 4. Suppose that the repair times are 1,..., nt t , the virtual system is new (all virtual 

components are new) at 0 0t t= = , the virtual system is observed over 1[0, ]nt + , and the intensity 

function S,2 ( ; )t   is parameterized by  . Then the log-likelihood function for  is given by 

1 1

1 C 1 R1

1

C R1 0 0

( , ,..., ) log{ ( ) ( )}

( )d ( )d .
k k n

n

n k k kk

t t tn

k

l t t h t t t

h t t t t

 


− +

−=

−+

=

= − +

− −



  
                             (7) 

Proof. The likelihood function for a counting process with intensity ( )t , and failure times as 

defined, is given by 1

1 0
( )exp{ ( )d }ntn

ii
t t t +

=
−   in general (Andersen et al., 1993). Hence (7) 

follows on substitution of S,2 ( )t . End of proof. 

Notice that when R ( )t =  (RP+HPP model with intensity S,1( )t ), the log-likelihood in (7) 

simplifies to  

11

1 C 1 C 11 1 0
( , ,..., ) log{ ( )} ( )d .

k kt tn n

n k k nk k
l t t h t t n h t t t  

−−+

− += =
= − + − −              (8) 

Setting 0 =  gives the likelihood for the RP. When C (.) 0h = , so the model is the HPP, 

expression (8) reduces to log nl n t = − . Equivalently, C (.)h h=  (constant) and 0 =  gives the 

same model (HPP).  

Competing models can be compared using AIC (Akaike, 2011). Model fit can be checked by 

plotting the cumulative number of repairs and the fitted cumulative intensity function, and by 

comparing the MTBR with that implied under the fitted model, provided it exists. 

 

4. Model fitting 

4.1. Classic datasets 

Now we fit models with intensities S,1( )t  and S,2 ( )t  to well-known datasets and compare with 

HPP and RP in each case, on basis of AIC. We cite the originator of the dataset in each case. The 

datasets are given in Table 1, in order of analysis: photocopier (Baker, 1996), Halfbeak (Ascher and 

Feingold, 1984), Grampus (Lee, 1980), 180t dump-truck (Coetzee, 1996), air-conditioners 7909, 

7912, 7913, 7914 (Proschan, 1963). These datasets have been analyzed by many (e.g.  Akman and 

Raftery, 1986; Baker, 1991; Vaurio, 1999; Phillips, 2000, 2001; Pulcini, 2001; Hong and Pai, 2006; 

Caroni, 2010; Fuqing and Kumar U, 2012; Gámiz and Lindqvist, 2016; Doyen et al., 2017; 

Syamsundar and Kumar, 2017), and feature in classic analyses in text books (e.g. Crowder et al., 

1991; Meeker and Escobar, 1998; Blischke and Murthy, 2000). 

4.2. Specification of the hazard functions 

We now specify the hazard functions of the VC and the VSS. We use a Weibull hazard for both the 

VC, so that 1 1
C 1 1 1( ) ( / )( / )h t t    −= , and the VSS, so that 2 1

R 2 2 2( ) ( / )( / )t t     −= . In this way 

the lifetime of the VC (which is always renewed on repair) is Weibull distributed, and failures of 

the VSS, which are minimally repaired, arise according to the power-law non-homogeneous 

Poisson process. The full model, which we denote “RP+NHPP”, has 4 parameters.  

The reduced model with 2 1 = , so that R 2( ) 1/t  = =  (constant), which we denote 

“RP+HPP”, has three parameters and its mean time between repairs (MTBR) is  
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MTBR =
1 11

1

0 1 1 2 1 2

1
exp d

z z z
z z

 


    

−
          

+ − −      
         

 .                        (9) 

When the virtual system is just the VC 2( 1/ 0) = = , the model is a renewal process, has 2 

parameters, and the MTBR is the mean of a Weibull distribution: 1 1(1 1/ )  + .  

When the virtual system is just the VSS (no renewing component) and the VSS is HPP, the 

model has one parameter 2( )  and the MTBR is 2 . 

Suppose the VS is subject to the maintenance policy and the VSS is HPP: on failure of the 

VSS, minimally repair the VSS and replace the VC; and when the VC reaches age 1 ,  then replace 

the VC. Then the MBTR is 1{min( , )}E Y , where ~ ( )Y Ex  . Thus 

MTBR =  
1

2
0

exp / dz z


− . 

 

Table 1. Times of repairs; photocopier in days; others in hours 

    photocopier Halfbeak Grampus 180t dump-truck 7909 7912 7913 7914 

7 411 768 1382 21603 860 11511 78 13265 17968 20432 90 23 97 50 

8 419 831 2990 21658 1258 11575 158 13508 17984 20433 100 284 148 94 

9 461 868 4124 21688 1317 12100 331 13673 18175 20434 160 371 159 196 

58 470 875 6827 21750 1442 12126 381 13780 18443 20698 346 378 163 268 

84 475 925 7472 21815 1897 12368 523 14443 18458 21460 407 498 304 290 

86 482 937 7567 21820 2011 12681 620 14501 18667 21543 456 512 322 329 

98 505 940 8845 21822 2122 12795 664 14656 18669 21584 470 574 464 332 

104 509 943 9450 21888 2439 13399 1805 14906 18701 21602 494 621 532 347 

104 527 946 9794 21930 3203 13668 1817 14983 18723 21645 550 846 609 544 

112 533 946 10848 21943 3298 13780 2068 15004 18822 21706 570 917 689 732 

113 552 952 11993 21946 3902 13877 3253 15062 18860 21762 649 1163 690 811 

119 555 954 12300 22181 3910 14007 4489 15072 18922 21867 733 1184 706 899 

121 561 957 15413 22311 4000 14028 4725 15136 18935 21912 777 1226 812 945 

127 561 993 16497 22634 4247 14035 4961 15206 18945 21914 836 1246 1018 950 

127 575 1013 17352 22635 4411 14173 5138 15247 18960 21937 865 1251 1100 955 

194 587 1077 17632 22669 4456 14173 5200 15700 18961 21938 983 1263 1154 991 

195 603 1099 18122 22691 4517 14449 5278 15714 18979 21939 1008 1383 1185 1013 

212 622 1108 19067 22846 4899 14587 5711 15972 19013 21951 1164 1394 1401 1152 

216 630 1125 19172 22947 4910 14610 6400 16186 19032 21954 1474 1397 1447 1362 

229 635 1135 19299 23149 5676 15070 6444 16284 19034 21982 1550 1411 1558 1459 

229 639 •••• 19360 23305 5755 ••••• 6677 16329 19169 ••••• 1576 1482 1597 1489 

230 646  19686 23491 6137  7999 16425 19184  1620 1493 1660 1512 

266 651  19940 23526 6221  8001 16605 19201  1643 1507 1678 1525 

267 651  19944 23774 6311  8489 16723 19416  1705 1518 1869 1539 

279 673  20121 23791 6613  9000 16731 19455  1835 1534 1887 •••• 

292 684  20132 23822 6975  9086 16797 19525  2043 1624 2050  

300 692  20431 24006 7335  10262 16859 19595  2113 1625 2074  

301 693  20525 24286 8158  10817 17090 19601  2214 1641 ••••  

308 695  21057 25000 8498  11062 17305 19613  2422 1693   

317 698  21061 25010 8690  11082 17484 19643  •••• 1788   

324 709  21309 25048 9042  11086 17510 19671   ••••   

335 712  21310 25268 9330  11122 17511 19713      

337 714  21378 25400 9394  11534 17536 19785      

352 722  21391 25500 9426  12031 17621 19801      

384 731  21456 25518 9872  12339 17703 19937      

393 742  21461 ••••• 10191  12733 17809 19990      
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4.3. Results 

Parameter estimates and AICs are shown in Table 2. Where the RP+NHPP is best model so far, we 

also fit the NHPP. The best models on the basis of minimum AIC are shaded. Observed cumulative 

number of failures and fitted cumulative intensity functions (CIF) are shown in Figures 1-5. Where 

there is some interesting behavior the CIF is shown “zoomed-in”.  

 

Table 2. Maximum likelihood estimates and standard errors, all datasets, and AIC and fitted 

(model) mean time between repairs (MTBR). 
 

  
1  s.e. 1  s.e. 2  s.e. 2  s.e.  AIC  

Fitted 
MTBR 

photocopier RP 11.781 1.418 0.914 0.072 - - - -  649.5  12.3 
n = 92 HPP - - - - 12.33 1.29 - -  648.3  12.3 
MTBR = 12.3 RP+HPP 66.19 1.23 46.96 29.15 12.62 1.34 - -  647.4  12.3 
 RP+NHPP 0.919 0.10 44.45 24.40 8.49 4.51 66.1 *  648.8   

Halfbeak RP 251.1 49.9 0.631 0.06 - - - -  949.3  355.3 
n = 71 HPP - - - - 359.4 42.68 - -  979.6  359.4 
MTBR = 359.4 RP+HPP 245.7 50.2 0.618 0.06 5.073e6 8388 - -  935.8  354.2 
 RP+NHPP 1599 443 1.499 0.48 1.201e4 2264 5.384 1.25  918.7   
 NHPP - - - - 5443.3 1010 2.759 0.32  927.9   

Grampus RP 265.8 38.43 0.971 0.103 - - - -  742.6  269.3 
n = 56 HPP     269.1 36.0    740.7  269.1 
MTBR = 269.1 RP+HPP 1320 19.5 69.00 73.9 273.7 * - -  741.2  271.4 
 RP+NHPP 1100 1433 0.991 0.703 730.1 305.4 1.24 *  744.8   

180t dump-t RP 132.4 17.8 0.693 0.047 - - - -  1541.6  169.1 
n = 128 HPP     171.7 15.2    1575.4  171.7 
MTBR = 171.7 RP+HPP 135.2 18.5 0.690 0.047 9783 4212 - -  1543.7  168.7 
 RP+NHPP 333.9 92.8 0.727 0.086 9232 1951 4.743 1.041  1515.1   
 NHPP     1004 279 1.572 0.139  1554.7   

7909 RP 90.90 13.83 1.293 0.18 - - - -  315.7  84.0 
n = 29 HPP - - - - 83.52 15.51 - -  316.7  83.5 
MTBR = 83.5 RP+HPP 310.1 2.297 124.7 129.4 72 * - -  316.5  87.3 
 RP+NHPP 99.74 18.23 1.324 0.20 503 * 0.718 0.55  319.6   

7912 RP 54.62 12.37 0.853 0.12 - - - -  307.8  59.3 
n = 30 HPP - - - - 59.60 10.88 - -  307.3  59.6 
MTBR = 59.6 RP+HPP 261.0 0.002 1.357e05 * 57.45 10.0 - -  292.7  56.8 
 RP+NHPP 261 0.000 1.000e06 * 266.6 99.3 1.745 0.32  285.3   
 NHPP     186.7 80.3 1.505 0.28  304.9   

7913 RP 79.91 14.37 1.123 0.17 - - - -  291.9  76.6 
n = 27 HPP - - - - 76.83 14.79 - -  290.4  76.8 
MTBR = 76.8 RP+HPP 213.7 5.14 46.99 60.6 82.40 16.8 - -  288.3  76.0 
 RP+NHPP 213.6 42.5 45.10 0.2 70.00 * 0.952 49.6  290.2   

7914 RP 64.80 13.63 1.025 0.16 - - - -  251.7  64.1 
n = 24 HPP - - - - 64.14 13.10 - -  249.7  64.1 
MTBR = 64.1 RP+HPP 210.0 0.002 1.229e5 1.68e04 69.70 15.2 - -  234.7  66.3 
 RP+NHPP 210.0 0.002 7.318e6 * 143.0 50.4 1.200 0.22  225.9   
 NHPP     82.91 51.82 1.088 0.22  251.6   

* standard error not estimable 

 

We now comment on the fitted models and parameter estimates, taking each dataset in turn. 

For the photocopier data, we might select RP+HPP as the best model here, and Figure 1 shows 

the cumulative number of failures against time and the fitted cumulative intensity function for this 

model. However, for the RP+HPP, 1̂  is very large, and so 1̂  is somewhat close to the boundary 

of the parameter space, 1,...,max ( )i n ix= , the largest inter-failure time. We can see this inter-failure 

time in Figure 1b, and the rapidly increasing hazard associated with it. This dataset is also 

complicated by frequent zero-valued inter-failure times, most likely due to imprecision in the timing 

of failure. We assumed the inter-failure times were 0.5 (half a day) in this case. So, some very short 
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inter-failure times, which suggest hyper-exponentiality ( 1
ˆ 1   in RP), and an absence of very long 

inter-failure times, which would account for the very large 1̂  in the RP+HPP, make drawing 

conclusions from these results difficult. 

The results for the Halfbeak data are clearer cut. The AIC and the standard errors of the best 

fitting model support this claim. The RP+NHPP is the best model, suggesting that the system 

comprises a renewing part that is IFR ( 1
ˆ 1.5 = ) and remainder that is ageing ( 2

ˆ 5.4 = ) and rapidly 

so in later life (Figure 2a). The renewing IFR component is apparent in the plotted cumulative 

intensity (Figure 2b). 

For the Grampus, failures appear completely random and the system is not ageing (HPP). This 

is confirmed to an extent by 1
ˆ 1   in the RP model. Here the MLE procedure for RP+HPP is 

encountering difficulty (very flat likelihood function) because this model is over-parameterized in 

these circumstances. Essentially, when the data arise from a Poisson process, parameters in a model 

that is a superposition of processes will be difficult to resolve. 

 

a)    b)  

Figure 1. Photocopier repair data: cumulative number of repairs (dotted line) and fitted (RP+HPP) 

cumulative intensity function (solid line). a) all data; b) zoomed in. 

 

a)    b)  

Figure 2. Halfbeak repair data: cumulative number of repairs (dotted line) and fitted (RP+NHPP) 

cumulative intensity function (solid line). a) all data; b) zoomed in. 

 

 
Figure 3. Grampus repair data: cumulative number of repairs (dotted line) and fitted (HPP) 

cumulative intensity function (solid line). 
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a)    b)  

Figure 4. 180t dump-truck repair data: cumulative number of repairs (dotted line) and fitted 

(RP+NHPP) cumulative intensity function (solid line). a) all data; b) zoomed in. 

 

The results for the 180t dump-truck are clear, like the Halfbeak. However, here the renewing 

part is DFR ( 1
ˆ 0.69 = ). This is apparent in Figure 4b, so that the system is at highest risk of failure 

immediately following a repair. The remainder of the system is also clearly ageing (Figure 4a). 

The air-conditioner datasets we discuss collectively (Figure 5). On the whole these datasets are 

much smaller than the others, and therefore our conclusions should be more cautious. 7912 and 

7914 show effects that are similar to the photocopier data: 1̂  very large for the minimum AIC 

model in each case, suggesting irregularity in the estimation (e.g. Cheng and Traylor, 1995). 7909 

(an RP which is IFR, 1
ˆ 1.3 = ) is straightforward. The results for 7914 (the smallest dataset) for the 

models that are superpositions are suspect, and so in these circumstances we select the HPP (purely 

random repairs) as the best model. 

 

  
a) 7909, RP b) 7912, RP+NHPP 

  

  
c) 7913, RP+HPP d) 7914, HPP 

Figure 5. Air-conditioner repair data: cumulative number of repairs (dotted line) and fitted 

cumulative intensity function (solid line). 

 

Throughout these analyses we use the mean time between repairs (MTBR) as a check on model 

fit, while noting that a fitted MTBR does not exist for a non-stationary model (NHPP or 
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RP+NHPP). We can see that when estimation is irregular there is a tendency for the fitted MTBR to 

disagree with the observed MTBR.  

Overall, we might conclude that 30 failures are is too few to fit models with more than two 

parameters. The RP+HPP has particular difficulties in this regard because it is stationary. Where the 

RP+NHPP fits well (Halfbeak and 180t dump-truck), the NHPP alone does not fit well. This 

supports the case for the usefulness of the models developed in this paper. 

 

5. Maintenance policy 

As we have so far not distinguished, both in the repair process modelling and the data fitting, 

preventive repairs from corrective repairs, we frame a maintenance policy in two ways: i) using a 

marginal-cost approach, and ii) as an age-based replacement policy (Barlow and Hunter, 1960).   

 

5.1. Marginal cost policy 

We consider a maintenance policy first in the context of the stationary model (4). Let us suppose 

that C (.)h  is IFR. Then it is natural to subject the VS to age-based repair: that is, to preventively 

repair the VS (and hence the VC) when the time since last repair reaches some control limit, T, say. 

We call this the T-policy. Then we will notionally regard the efficacy of age-based repair as the 

repair effect. We use the notation TZ  for the time between repairs under the T-policy, and note that 

TZ  does not depend on the time of the last repair (because the VS is an RP). X is the lifetime of the 

VC (with hazard function C ( )h x ). ~ ( )Y Ex   is the lifetime of the VSS. Then 

min( , , )TZ T X Y= . 

Definitions. (i) The marginal cost-rate TQ  of the T-policy is P P ( )c T  where Pc  is the cost of an 

additional, preventive repair and P ( )T  is the rate of occurrence of preventive repairs (preventive-

repair-rate) under the T-policy. (ii) The preventive-repair effect is P100 ( ) /T  =  , where   is 

the rate of occurrence of (all) repairs (repair-rate). 

The justification of these is as follows. A repair is either preventive or not preventive. Let us 

for this explanation call the latter event a failure. Then the preventive-repair effect is the percentage 

of failures prevented by preventive repair. If T is small, most repairs will be preventive and so 

P ( ) /T  will be close to 1, and the preventive-repair effect will be nearly 100%. To counterbalance 

this, the marginal cost of the small T-policy will be high. 

Proposition 4. Under the T-policy, (i) P ( ) Pr{min( , ) } / {min( , , )}T X Y T E T X Y =   and (ii) 

1/ {min( , , )}E T X Y = . 

Corollaries. 100 Pr{min( , ) }X Y T =    and   decreases as T increases.  

Proofs. The corollaries follow immediately from the definitions and Proposition 4. Proposition 4(i) 

is true because the T-policy defines a renewal policy with renewal at the time (since last renewal) of 

the preventive repair, T, or “failure” of the VC, X, or “failure” of the VSS, Y, whichever occurs 

soonest, that is, at min( , , )TZ T X Y= .  Therefore, the expected cycle length is { }TE Z  and the 

probability that a renewal cycle ends with preventive-repair is Pr{min( , ) }X Y T . Defining 

P ( ; )N T  as the number of preventive repairs in [0, ]  under the T-policy, it follows that 

P
P

( ; ) Pr{min( , ) }
( ) lim

{ }T

N T X Y T
T

E Z




→


= = ,                                     (11) 
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by the renewal-reward theorem. Proposition 4(ii) follows by a similar argument in respect the 

number of repairs in [0, ]  under the T-policy, ( ; )N T . End of Proof. 

For calculation of the terms in (11), we note that   

Pr{min( , ) } Pr( ) Pr( ) ( ) ( )X YX Y T X T Y T S T S T =   = ,                        (12) 

and  

min( , )0

0

0

{ } {min( , , )} {1 ( )}d

Pr{min( , ) }d

( ) ( )d .

T

T X Y

T

T

X Y

E Z E T X Y F u u

X Y u u

S u S u u

= = −

= 

=







                                  (13) 

 

5.2. Cost-rate policy 

An alternative to the marginal cost approach is a total-cost approach. This may be used if the cost of 

preventive-repair, Pc , and the cost of corrective repair, Fc , are specified. Then, because the VS is 

an RP, the optimum T-policy is that which minimizes the long-run cost per unit time (cost-rate) 

P F
ABR

Pr{min( , ) } Pr{min( , ) }
( )

{ }T

c X Y T c X Y T
Q T

E Z

 + 
= ,                      (14) 

and there exists an optimum policy, the T*-policy, provided  C (.)h  is IFR and P Fc c . This is just 

the age-based replacement policy when the random variable that describes the time to failure is 

min( , )X Y . 

Next we comment on the case when the VC is RP+NHPP (non-stationary). Our suggestion is to 

suppose that at some time t , at which the maintenance policy is being planned, R ( )t  is fixed at 

least as far as until the next preventive-repair (quasi-stationary), and then to use either of the 

approaches above, planning preventive repairs one step at a time. In this way, effectively, a varying 

R ( )t  is approximated by a step function (but is not fitted to data as such).  

 

5.3. Results 

We now implement this idea for the Halfbeak because RP+NHPP is the best model for this system 

and in this model 1 1  , so that preventive repair has a positive benefit (the system is better-than-

old after repair). Note, when 1 1  , preventive repair has a negative benefit (the system is worse-

than-old after repair).  

For the Halfbeak, 1 1~ We( , )X    so that 1
1( ) exp( ( / ) )XS x x = − , and R~ Ex( )Y   so that 

R( ) exp( )YS y y= − . Under the quasi-stationary idea, we set 2 1
R 2 2 2( / )( / )t     −= . From (12) 

and (13) we then obtain that at time t  

1 1 2 1
1 1 2 2 2Pr{min( , ) } exp{ ( / ) } exp{ ( / ) ( / )( / ) }X Y T T T T T t        − = − − = − −  

and  

1 2 1
1 2 2 20

{ } exp{ ( / ) ( / )( / ) }d
T

TE Z u u t u     −= − − . 

The parameters 1 2 1 2, , ,     are set at their maximum likelihood estimates. We suppose that 

P 1c =  and F 5c = .  
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In Figure 6a we present the preventive repair effect  , as we define it (Definition (ii) above), 

versus T under the notion of quasi-stationarity. Thus we consider, hypothetically, what would be 

appropriate preventive-repair intervals when the system is aged t  hours, that is, at the time at 

which the system has been operating for t  hours, for 10000t = , 20000t = , and 30000t = . 

These “ages” correspond roughly to early life, mature life, and beyond-useful operating life. The 

corresponding marginal cost-rates (assuming a unit cost for a preventive repair) are shown in Figure 

6b. Figure 7 presents the total cost-rate, equation (14). Separate graphs are required here because 

the total cost-rates for the various t  are on very different scales. The total cost-rate at the optimum 

policy increases 5-fold at each age-step.  

 

 

   
a)   b)   c) 

Figure 6. Halfbeak: a) repair effect   versus T, b) preventive-repair rate P ( )T versus T, c) mean 

time between preventive repairs P1/ ( )T versus T , under quasi-stationarity for 10000t =  (solid 

line), 20000t =  (dotted line), 30000t =  (dashed line). 

 

 

   
a)  10000t =  b)  20000t =  c)  30000t =  

Figure 7. Halfbeak: cost-rate ABR ( )Q T  versus T  under a quasi-stationarity for a) 10000t =  (solid 

line), b) 20000t =  (dotted line); c) 30000t =  (dashed line). 

 

In Figure 6a) we can observe that, in the early life of the system, preventive-repair (in which 

the part that corresponds to the VC is renewed) at a 1000 operating-hours interval is approximately 

50% effective. When the ratio of the cost-of-failure to cost of preventive-repair is 5, the cost-rate is 

minimized at this interval (Figure 7a). In later life, because the part of the system that is not affected 

by preventive-repair is failing more frequently, preventive repair is now less effective (<20% at 

500T =  hours) and preventive-repair is cost-inefficient (Figure 7b). Projecting beyond the actual 

lifetime of the system, we can see (Figure 6a and Figure 7c) that preventive maintenance is now 

hopeless in preventing failure. Figure 6c) confirms this analysis. When 10000t = , for small T 
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(<1000 hours) nearly all repairs are preventive repair (noting that if P1/ ( )T T =  then every repair 

is a preventive repair). For 30000t = , a T-policy even for a very small T —which would have a 

very large cost—is almost completely ineffective. 

 

5.4. Implications for practice 

It is understood that in reality repair cannot make a system like-new, and industry has sought to 

quantify the effect of repair on a system. The models studied in this paper demonstrate partial-

renewal, how the repair-effect can be quantified, and that repairs become less effective as a system 

ages, to a point where scrappage or complete overhaul is the only viable option. The models also 

quantify these notions, albeit once the system has been under observation for an extended period of 

operation. One might argue then this methodology is only useful for obsolete systems, and therefore 

never useful. We counter argue that the models will provide an environment (the mathematical 

world) in which to explore the behavior of new systems, for which data are not yet available, that 

are similar to those studied here. This paper then quantifies not only age-related partial-renewal but 

also shows—by considering a number of different systems—that systems differ in their ageing rates 

and in their balance of preventable to unpreventable failures and that maintenance needs to be 

adapted accordingly. The paper also indicates the typical quantity of objective data that is required 

for useful conclusions about system behavior to be drawn.  

 

6. Conclusions 

 

This paper describes some models of imperfect repair that are alternatives to age-reduction, hazard-

reduction, and geometric-type processes. The models use the concept of a virtual series system in 

which a virtual component is renewed whenever the system is repaired. Repairs may occur 

preventively or on failure of the virtual component or on failure of the remainder of the system. The 

system failure process is the superposition of the failure process of the virtual component and the 

failure process of the remainder. When the remainder fails it is minimally repaired (and the virtual 

component is replaced). This then models the notion that routine maintenance is carried out at every 

repair and that this routine maintenance is homogeneous and only marginally effective. The models 

developed can quantify the extent to which maintenance is effective and therefore be used in inform 

decision making about how often it should be scheduled. 

The failure processes of the virtual component and the remainder of the system are modelled 

with counting processes, a renewal process for the former and a nonhomogeneous Poisson process 

for the latter. Two parameters is the minimum specification for each of these, making four in total 

for the full model. This is considerably less than would be required for a multi-component model. 

This (parsimonious parameterization) is the nature of the class of models that includes these virtual 

system models. It lends them to fitting to failure data, and we demonstrate this for a range of classic 

failure datasets. Therein, we find that reduced models are often best-fitting. Reduced models 

include the superposition of a renewal process and a homogeneous Poisson process corresponding 

to a renewing part and a non-ageing part (three parameters), a nonhomogeneous Poisson process 

corresponding to a system with no renewing part (two parameters), a renewal process corresponding 

to a renewing system (two parameters), and a homogeneous Poisson process corresponding to a 

non-ageing system with no renewing part (one parameter). The best-fitting model then indicates 

which particular maintenance policy is appropriate.  
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A model with few parameters is important because failures are rare. Indeed extant systems for 

which the maintenance requirements must be specified may not have failed ever. Nonetheless, 

engineers can make judgements about whether extant systems are similar in their failure behaviour 

to legacy systems and use the modelling of legacy systems to inform decisions. Where some 

failures have been observed this suggests that estimation of the models described in this paper 

might proceed through a Bayesian approach, whereby fitted models for legacy systems are used to 

encode prior information about parameters. We will consider the efficacy of such an approach in 

further development of this work. Another development that can be explored in future is fitting the 

models to data with right censoring (survivals). The log-likelihood (7) lends itself directly to this. 

Analysis of model for software reliability would also be interesting. 

The implications for practice are as follows. Firstly, these models can be used to estimate 

repair-effects indirectly and objectively. Secondly, if repair is such that its effect is to renew one 

ageing part of a system, then more spending on repairs is beneficial, and if a particular benefit 

(preventive-repair-effect) is desired then its cost may be determined. Alternatively, a cost-

minimizing repair policy may be determined provided the cost of preventive-repair is less than the 

cost of corrective repair and the repairable part is ageing. If the remainder is ageing, then the 

maintenance policy needs to be adapted as it ages. 
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