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Session 1  

1.1) Introduction 

    

   Audio is a significant type of media and forms an important part of audiovisual 

databases. The increasing number of digital databases has enforced the necessity of 

their effective management, based on the analysis of their audio content. The audio 

content analysis describes the computerized understanding of the semantic meanings of 

an audio document. Methods that materialize such an automated analysis are 

indispensable for the efficient access, digest and information retrieval. In a multimedia 

document, its semantics are embedded in multiple forms that are usually complimentary 

of each other. There is therefore a need to analyse all the data types: sound tracks, image 

frames, spoken words or even text that can be extracted from the image frames. 

   The automated analysis briefly described, requires the segmentation of the document 

into semantically meaningful units, and the classification of each unit into a predefined 

category. The majority of the current research approaches are focused on the visual 

information of the databases, which leads to a far too fine segmentation of the 

audiovisual sequence with respect to the semantic meaning of the data. The integration 

of all the multimedia components (audio, visual and textual information) will lead to a 

fully functional system that will achieve effective information retrieval from the 

databases. While much effort has been made in the area of visual recognition, general 

audio recognition has had less attention and it is considered that focussing on this would 

render some benefit to the general problem of archival retrieval. Some of the 

applications of audio segmentation and classification are the following: audio archive 

management, professional media production, commercial music usage, database 

surveillance, video annotation and so on. 

   The current research approaches to this area, on feature extraction and classification 

of audio sounds, is relatively new compared to speech recognition. However, the 

following is an overview of the most recent and relevant literature on audio 

classification. Rice [12] proposed a method in which a prototype audio clip is created, 

and then the aim is to find clips that sound like the original one. He used various sounds, 

such as: human sounds, animals, machinery, musical instruments, electronic tones and 

environmental sounds. Zhang [17] [18] proposed a method based on audio content 

analysis. According to this method, the audio signal was segmented and then classified 
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into the following categories: speech, music, environmental sound and silence. Liu [14] 

proposed another method in which the feature extraction was based on the volume 

distribution, pitch contour and frequency related features. He categorized the audio 

signals in the following groups: news, weather reports, advertisements, football and 

basketball games. Foote [13] proposed a technique to retrieve audio clips by acoustic 

similarity. The feature extraction method was based on mel-scale cepstral coefficients 

while Li[19] proposed a method for content-based audio classification using a 

combination of perceptual and  cepstral features.  Pandit [21] also extended this work 

on audio recognition by using combinations of features. These included mel-scale 

cepstral coefficients, pitch value and zero crossing rate. As an alternative to mel-scale 

coefficients, LPC was used in other examples. Improvements in overall recognition 

rates were reported using these combinations. 

   In the work reported here, an alternative approach is described to the extraction of 

features for audio classification. There are two reservations to existing feature 

extraction methods that may limit the effectiveness of these audio recognition 

techniques. The first is that features such as LPC or cepstral coefficients were 

developed for speech recognition systems and were based on a model of the human 

speech production system. Such a model may not be appropriate for generalized audio 

classification problems. The second, is that such features tend to represent the 

magnitude spectrum of the acoustic unit and phase is under-represented though is 

partially included via time domain features such as zero-crossings and volume 

distribution. Here, an alternative approach is proposed where features are to be 

extracted from a spectral (frequency domain) representation but which include both 

magnitude and phase information. The approach firstly uses a suitable transform (such 

as the Fourier or Hartley) to generate a frequency-time surface or surfaces. A second 

transform is then applied to reduce the information present, so that it may be compactly 

presented to the chosen classifier. Since the surface is now in the form of an acoustic 

image, this second transform may be drawn from the image processing field and the 

Hough transform or DCT have been applied and results obtained. These are shown in 

section 3. The issues that are of concern are the types of transforms used and the 

manipulation of these to present the appropriate information to the classifier in a 

compact form.  

   The report is divided into three further sessions. The second one states the objective 

of the research and includes a review of the audio representation and analysis 
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techniques. In the third an analytical description of the proposed transform-based 

method of representation and analysis is described. Finally, the fourth session consists 

of the future plans.     

   

Session 2 

Audio representation and analysis techniques 

2.1) Overview of the system 

 

   Our system model can be divided, as for any other pattern recognition system model, 

into three stages: sensor, feature extractor and classifier. A schematic (Fig.1) that 

includes all the three stages and a brief theoretical description of each of them follows: 

 

  

    

      

Audio              Representation               Features                     Decision                                             

Stream                 Pattern                                                                           

Fig.1 Pattern Recognition System Model 

 

Sensor: its aim is to provide accurate representation of the audio stream to be classified. 

The performance limits of the system depend on it. 

Feature extractor: it extracts the appropriate information from the representation pattern 

in order to reduce the dimensionality of the pattern recognition problem. 

Classifier & Decision-maker:  the last stage of the system, forms its decision making 

part. The classifier assigns patterns of unknown class membership to their appropriate 

categories [4].  

 

2.2) Feature extraction of audio signals 

 

     Generally, the audio signal features used can be divided into three categories. The 

first one consists of the features that are related to the time domain of the signal and the 

second one includes features that are related to the signal’s frequency domain. Features 

that belong to the first category (a) are: i) Short-time energy function, ii) Short-time 

average zero-crossing rate iii) Volume iv) Linear Prediction Coefficients to name but 

four. 

     Sensor 

 

   Feature 

 Extractor 

  Classifier  Decision- 

  maker 
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Among the methods that belong to the second category (b) are: i) Pitch ii) Spectrogram 

iii) Frequency centroid iv) Bandwidth and v) Cepstral coefficients and Mel-frequency 

cepstral coefficients.   

 

2.2) a) i) Short-time energy function 

Definition/Mathematical expression: 

The short-time energy function of a signal is defined as: 

En = 
N

1 
m

[x(m)w(n-m)]2  where, 

x(m): discrete time audio signal 

n: time index of the short-time energy 

w(m): rectangle window 

 

                      1, for 0 1− Nn  

i.e. w(m) =   

                      0, otherwise    [17] 

Comments: 

The main reasons for using the short-time energy function are: 

i) it is a convenient representation of the amplitude variation over the time 

ii) for the special case in which the audio signal is speech, the values of En are 

in general, much smaller for the unvoiced components compared to the 

voiced ones. 

iii) it can also be used in order to distinguish audible sounds from silence when 

the value of the SNR is high. 

iv) the way the function varies over the time, may underline the rhythm and the 

periodicity of the sound.   

 

2.2) a) ii) Short-time Average Zero-Crossing Rate 

Definition/Mathematical expression: 

   In the context of discrete-time signals, a zero-crossing is said to occur if successive 

samples have different signs. The rate at which zero-crossings occur is a simple 

measure of the frequency content of a signal [17]. The short-time average zero-crossing 

rate is defined as: 

Zn = 
2

1
(

−

=

1

1

N

i

|sgn[sn(i)]-sgn[sn(i-1)]|)
N

fs
w(n-m), where, 
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fs: sampling rate 

w(n): rectangle window of length N 

                     1, for 0 1− Nn  

i.e. w(n) =   

                     0, otherwise 

and 

                            1,    x(n) 0, 

i.e. sgn[x(n)] =   

                          -1,    x(n) < 0.     

 

Figure 2 (fig.2) shows the time waveforms of commercial, news and sport clips. In the 

first one male speech over music background is recorded. The second one contains 

clean male speech, while the last one includes live broadcast from a basketball match.  

Figure 3 (fig.3) shows the corresponding curves of the average zero-crossing rate for 

commercial, news and sports clips respectively. 

 

Fig.2 Time waveforms of commercial, news and sports clips 

 

Fig.3 Average zero-crossing rate for commercial, news and sports clips  

  

Comments: 
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i) The zero-crossing rate expression is used as a measure of discrimination 

between voiced and unvoiced speech. Generally, the unvoiced speech 

components have much higher zero-crossing rate values compared to the 

voiced ones. For example, the zero-crossing rate curve of the news clip 

consists of peaks and troughs because of the unvoiced and voiced 

components respectively. Therefore, the curve presents large variance and a 

wide range of amplitudes. Finally, in general terms, the zero-crossing rate 

curves are characterized by a relatively low and stable baseline with high 

peaks above it. 

ii) The zero-crossing rate curves of the commercial and sport clips have a much 

lower variance and average amplitude compared to the curve of the news 

clip. The commercial clip has a relatively smooth curve since it has a music 

background, whereas the one of the sports clip is even smoother due to its 

noisy background. Generally, the zero-crossing rate curve of music clips is 

characterized by an irregular waveform with a changing baseline and a 

relatively small range of amplitudes. 

iii) In order to distinguish other kind of audible sounds, based on the zero-

crossing rate criterion, it is possible to use other characteristics of its curve 

such as regularity, periodicity, stability and amplitude range. 

 

2.2) a) iii) Volume 

Definition/Mathematical expression: 

The volume (also referred as loudness) of a signal frame n is defined as: 

v(n) = 
−

=

1

0

2
)(

1N

i

n is
N

  

where, 

s(i): discrete time audio signal 

Figure 4 (fig.4) shows curves of volume for commercial, news and sports clips. 
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Fig.4 Volume or commercial, news and sports clips 

Comments: 

i) The mean and standard deviation of the volume of an audio signal can be 

used as descriptors [14]. 

ii) An audio frame can be characterized as silent or not, based on the 

comparison of its volume with a threshold determined by the volume 

distribution of the entire audio clip. After the silence is detected, it is 

possible to calculate the silence ratio, which is defined as the ratio of the 

silence interval to the entire period. The silence ratio varies according to the 

content of the audio clip. In news reports the silence ratio is higher compared 

to the commercial clips because in the first case there are regular pauses of 

the reporter’s speech, whereas in the second case there is always some kind 

of background music.  

iii) Volume can also be a helpful tool in the discrimination between voiced and 

unvoiced speech. Usually, unvoiced speech is characterized  by low volume 

and high zero-crossing rate. So, by using both volume and zero-crossing 

rate, low energy unvoiced speech frames will not be misclassified as silence. 

iv) The VDR (Volume Dynamic Range) is defined as: 
)max(

)min()max(

v

vv−
 where 

max(v) and  min(v) are the maximum and minimum volumes within an 

audio clip respectively. VDR, which is a measure of the variation of an audio 

clip’s volume, does not change a lot in sports programs compared to news 

reports. This is explained, since in the first case there is usually a constant 

level of background sound so the volume does not change considerably, 

whereas in the second case, there are silent periods between speech, which 

result in a much higher VDR. 
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2.2) a) iv)Linear Prediction Coefficients 

 

     The linear predictive coefficients method has already being applied in speech 

analysis and coding. It is based on the digital model of a person’s vocal tract, which can 

be represented by the following transfer function: 
=

−
−

=
p

k

k

kza

A
zH

1

1

)(
 

This system is excited, for voiced speech, by an impulse train, whereas for unvoiced 

speech it is excited by random white noise.  From the last equation it is deduced that 

the relation between the audio samples x(n) and the excitation )(n is given by the 

following difference equation: 
=

+−=
p

k

k nknxanx
1

)()()(  . Assuming that the signal 

is processed by a linear predictor: 
=

−=
p

k

kp knxanx
1

)()( .So, the predictor error can be 

estimated using the following equation: 
=

−−=−=
p

k

kp knxanxnxnxne
1

)()()()()(  

The predictor error will be minimum, if  
=

−
p

k

k knxa
1

)( of x(n) and xp(n) are equal i.e. 

when the ak coefficients are equal. In this case, e(n) = )(n and so the predictor 

polynomial 
=

−
−=

p

k

k

kzazP
1

1)( is a good approximation of the denominator of the 

initial transfer function. The coefficients mentioned are computed for the Auto-

regressive model using the Levinson-Durbin algorithm.[21] 

 

2.2) b) i) Pitch 

Definition/Mathematical expression: 

Pitch is the fundamental frequency of an audio waveform and is an important parameter 

in the analysis and synthesis of speech and music [20]. Pitch information can be 

extracted by using either temporal or frequency analysis. The temporal analysis method 

is based on the computation of the short-time autocorrelation function Rn(l) or AMDF 

(Average Magnitude Difference Function) An(l), where 
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 Rn(l) = 
−−

=

1

0

lN

i

sn(i)sn(i+l)   and   An(l) =  
−−

=

1

0

lN

i

| sn(i+l) - sn(i)|. 

where     s(i): discrete time audio signal 

   Based on frequency analysis methods, pitch can be determined from the periodic 

structure in the magnitude of the Fourier transform or cepstral coefficients of an audio 

frame. 

   Figure 5 (fig.5) shows the curves of the autocorrelation function and AMDF of a 

typical male voice segment. 

 

 Fig.5 Autocorrelation function and AMDF of a typical male voice segment 

  Comments: 

i) Generally, well-defined pitch characterizes only speech and harmonic music 

but it can still be used as a characteristic feature of the fundamental 

frequency of other audible waveforms. 

ii)      Pitch determination based on the temporal analysis method 

From the autocorrelation and AMDF curves (fig.5) periodic peaks and 

valleys can be observed respectively. Peaks and valleys represent local 

maximum and minimum points. Using the local maximum/minimum points 

as well as the global maximum/minimum points of the curve, it is possible 

to specify the value of the pitch frequency. For example, from the AMDF 

curve of Fig.5 pitch frequency can be calculated by taking the reciprocal of 

the time period between the origin and the first valley. Generally, such 

valleys can be observed in voice and music audio clips but not in the noisy 

or the unvoiced ones. 

iii)       Pitch determination based on the frequency analysis method 

When the frequency analysis method is chosen to determine the pitch, one 

way to do so is by calculating the maximum common divider for all the local 

peaks in the magnitude spectrum. 
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Figure 6 (fig.6) shows pitch curves for commercial, news and sports clips. 

The pitch contours are obtained using the autocorrelation function method. 

 

Fig.6 Pitch curves for commercial, news and sports clips 

                 Comments: 

i) The frames that are silent or where no pitch has been detected, are 

assigned a zero pitch frequency. Specifically, for the news clip first, 

by using the information obtained by the zero crossing rate and the 

volume curves, it is concluded that the segments with zero pitch 

correspond either to silence or unvoiced speech. Then for the sports 

clip, the zero pitch segments, which occur more often, correspond to 

periods with only background sounds but not silence as in the case 

of the news clip. Finally, discontinuous pitch segments in which the 

pitch has almost constant value, characterize the commercial clip. 

The music background of this kind of audio clips causes this 

characteristic. 

ii) In speech, the pitch frequency basically depends on the speaker 

(male/female). In music signals it depends on the strongest note 

being played. 

iii) There are three different features that are used in order to estimate 

the pitch variation: the standard deviation of the pitch, the smooth 

pitch ratio and the non-pitch ratio. The smooth pitch ratio feature 

estimates the percentage of music or voiced speech that exists within 

a clip, since only music and voiced speech are characterized by 

smooth pitch. On the contrary, the non-pitch ratio estimates the 

percentage of unvoiced speech or noise within an audio clip, since 

these two have no pitch. 
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2.2) b) ii) Spectrogram 

Definition/Mathematical expression 

     Spectrogram is the 3-D plot that presents the magnitude spectrum (magnitude of the 

Fourier Transform) of a signal across time. Figure 7 (fig.7) shows the spectrograms of 

the commercial, news and sports clips.   

 

Fig.7 Spectrograms of the commercial, news and sports clips 

Comments: 

i) The distinct features between the three clips can be spotted more easily in 

the spectrogram compared to their time domain representations (Fig. 7 and 

Fig.2 respectively). Thus, the frequency domain representation of a signal 

may help more in the feature extraction process.  

ii) The peak track in the spectrogram of an audio signal often reveals important 

characteristics of the sound [18].  For example, the spectral peak tracks of 

musical instruments, in their spectrograms, remain at the same frequency 

level and last for a certain period of time. Music may be classified into three 

subcategories, based again on the spectral peak track method: a) song, b) 

speech with music, and c) environmental sound with music background.  

a) Song audio signals are characterized by one of the following three 

features: ripple-shaped harmonic peak tracks due to voice sound, tracks 

with longer duration than speech or tracks with fundamental frequency 

higher than 300Hz. 

b) Speech with music background has its spectral peak tracks, 

concentrating in the lower to middle frequency bands and has lengths 

within a certain range.  

c) Finally, the environmental sound with music background does not have 

any certain characteristics. 
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iii) The major disadvantage of the use of the spectrum as a feature extraction 

tool is complexity. For audio retrieval applications, it is necessary to use a 

more compact way of signal representation in any domain to be used.    

 

2.2) b) iii) iv) Frequency centroid, Bandwidth 

Definition/Mathematical expression: 

The frequency centroid (FC) and bandwidth (BW2) of a signal are defined as: 

FC(n) = 











dSn

dSn

)(

)(

0

0

      and     BW2(n) = 






−





dSn

dSnnFC

)(

)())((

0

2

0

 where, 

Sn(): power spectrum (magnitude square of the spectrum) of the audio signal 

n: time index  

Comments: 

i) Let  be a random variable and Sn(), normalized by the total power, be 

the probability density function of . The mean and standard deviation value 

of  correspond to the formulas of the frequency centroid (FC(n)) and 

bandwidth (BW2(n)), respectively.  

Note: It has been found that FC is related to the human sensation of the 

brightness of a sound [20]. 

2.2) b) v) Cepstral coefficients and Mel-frequency cepstral coefficients 

   Cepstral coefficients and Mel-frequency cepstral coefficients (MFCC) are mainly 

applied to speech and speaker recognition. Although, both techniques provide a 

smoothed representation of the original spectrum the MFCC technique takes into 

account the nonlinear property of the human hearing system with respect to different 

frequencies [20]. Generally, cepstral analysis attempts to deconvolve the excitation 

from the transfer function (mentioned in the [1.3) a)] paragraph), without making the 

assumptions that were necessary for linear prediction [8].  

   One way to generate the cepstral coefficients is from the linear prediction coefficients: 

11 =c  


−

=

−+







−=

1

1

1
n

k

nknkn aca
k

n
c  for pn1  

where ic  and ia  are the ith-order cepstral and linear predictor coefficients respectively. 

   Another way to generate cepstral coefficients is based on mel-scale.  
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Note: The mel-scale is defined in the following equation: 

M=2595log10(1+
700

f
) 

   These coefficients can be obtained by simulating critical-band filtering with a set of 

triangular band-pass filters, see Figure 8 (fig.8). 

 

Fig.8 Triangular band-pass filter set  

   The filters are spaced linearly in the range 0 to 1000Hz. Also, each filter’s center 

frequency is given by: 

ii ff 148.11=+     where the initial frequency (f1), is 1kHz. 

So, the cepstral coefficients are obtained from the following formula: 


=

















−=

L

k

kn
L

knXc
1 2

1
cos


 for n=1,2,…,M 

where Xk is the log-energy output of the kth filter, L is the number of filters in the 

desired bandwidth and M is the total number of coefficients required. [8].  

   

Session 3 

Transform-based signal representation and analysis 

3.1) Overview of the method 

 

   In this paragraph a brief explanation of the proposed method will be given. The 

procedure can be divided into two main parts. The aim of the first part is to represent 

the signal in an efficient way so as to extract the information that will be useful for its 

correct classification. The second part has two aims. The first one is to keep the least 

possible necessary information extracted from the first part in order not to overload the 

classifier, and the second is to maximize the features that make one signal distinct from 

the others. 
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   So, for the first part, two transforms were applied. The first one is the Fourier 

transform that provides a visual representation of the signal magnitude as well as the 

signal phase. The second one is the Hartley transform which gives a real frequency 

domain function for a real time signal. The disadvantage of the Fourier transform when 

compared to the Hartley is that information may be lost if the magnitude spectrum is 

retained but the phase is neglected. Using the Fourier transform, in order to preserve all 

the information, it is necessary to use both the magnitude and phase spectra. On the 

other hand, when using the Harley transform, only one time-frequency surface need be 

used, because both magnitude and phase information are present in the one surface. 

Later in this report, an alternative method is described where the signal is analyzed from 

its energy distribution point of view using the Wigner-Ville distribution. Although 

some phase information is lost, enhanced resolution is obtained which may provide 

improved performance.  For the second part, in order to fulfill the compression aim the 

2-D cosine transform is used. This transform is applied over both the Fourier and 

Hartley. Then, using the Hough transform, which is applied over the Wigner-Ville 

distribution, the maximization of the distinct features of each signal is achieved.  

All the transforms and approaches that described before have been applied to signals 

and the results are presented.  

 

3.2) The Fourier transform & the Fourier cosine transform 

 

   The Fourier transform and the Fourier cosine transform are not analysed and 

discussed because the reader is already familiar with both of them. Instead, in the next 

two pages are included the periodogram, phasegram and 2-D Cosine transform of two 

different audio signals. The first sound is a F1 racing car and the second is the sound of 

countryside atmosphere. 

In the next pages are presented the graphs: 

Fig.9 Spectrogram of an audio sample of  Formula1 car 

Fig.10 DCT-2 applied on the spectrogram of the Formula1 car 

Fig.11 DCT-2 (focus) applied on the spectrogram of the Formula1 car 

Fig.12 Phasegram of an audio sample of a Formula1 car 

Fig.13 DCT-2 applied on the phasegram of the Formula1 car 

Fig.14 DCT-2 (focus) applied on the phasegram of the Formula1 car 

Fig.15 Spectrogram of an audio sample of country atmosphere 
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Fig.16 DCT-2 applied on the spectrogram of the country atmosphere 

Fig.17 DCT-2 (focus) applied on the spectrogram of the country atmosphere 

Fig.18 Phasegram of an audio sample of country atmosphere 

Fig.19 DCT-2 applied on the phasegram of country atmosphere 

Fig.20 DCT-2 (focus) applied on the phasegram of country atmosphere 

 

 

Fig.9 Spectrogram of a Formula1 car 

 

Fig.10 DCT-2 applied on the spectrogram of the Formula1 car 

 

Fig.11 DCT-2 (focus) applied on the spectrogram of the Formula1 car 
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Fig.12 Phasegram of an audio sample of a Formula1 car 

 

Fig.13 DCT-2 applied on the phasegram of the Formula1 car 

 

Fig.14 DCT-2 (focus) applied on the phasegram of the Formula1 car 

 

Fig.15 Spectrogram of an audio sample of country atmosphere 
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Fig.16 DCT-2 applied on the spectrogram of the country atmosphere 

 

Fig.17 DCT-2 (focus) applied on the spectrogram of the country atmosphere 

 

Fig.18 Phasegram of an audio sample of country atmosphere 

 



Transfer Report 

Ioannis Paraskevas 

 

21 

Fig.19 DCT-2 applied on the phasegram of country atmosphere 

 

Fig.20 DCT-2 (focus) applied on the phasegram of country atmosphere 

Comments-Discussion 

   The first graph (spectrogram) represents the time-frequency energy distribution of the 

signal. Phase information has been lost due to the use of the magnitude squared terms. 

So, in order to have a visual representation of the phase evolution across time, the 

phase-gram surface was also implemented. Both surfaces, generated via the Fourier 

transform, contain complex structures spread across the time-frequency plain. In order 

to present this information to a classifier, the information needs to be compressed. The 

2-D Cosine transform (commonly used in image compression) was applied so as to 

compress all this information. Figures 13 and 19 show the result of applying the DCT 

to the phase-grams for two acoustic events. Figures 14 and 20 focus on the low order 

areas of interest of the 2-D Cosine transforms for each result, in order to visualise the 

different surface structure between the two audio signals. It is proposed that this might 

form the basis of a feature extraction process that would be applied to a suitable 

classifier.  

 

3.3) The Hartley transform 

Definition 

     The Hartley transform is one of a set of orthogonal transforms, which gives a real 

frequency domain function from a real time signal [6].  

The mathematical expression of the Hartley transform and its inverse are: 

H() =  + dtttts ))sin())(cos((   or 

H(v) = 
−

=

−
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   (discrete version) 

where t= ,  2=  cas )sin()cos()(  += and 
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s(t) =  +  dttH ))sin())(cos((  or 

s( 
−

=









=

1

0

2
)()

N

N
casvH




   (discrete version)  

respectively. 

 

Relationship between Hartley and Fourier transforms 

The definition of the Fourier transform is: 

S( 
−

= dtets
tj )() , S(  −= dttjtts ))sin())(cos(()   and S(

 −= dtttsjdttts )sin()()cos()()   

Let, 

=)(RS   dttts )cos()(   and 

=)(IS   dttts )sin()(   

So, =)(S jSR −)( )(IS  

Now, the same procedure will be applied to the Hartley transform: 

H() =  + dtttts ))sin())(cos((   

H(  += dtttsdttts )sin()()cos()()   

Let, =)(RS   dttts )cos()(   and =)(IS   dttts )sin()(   So,  

=)(H +)(RS )(IS  

Finally, 

=)(S jSR −)( )(IS  for the Fourier transform and 

=)(H +)(RS )(IS for the Hartley transform. 

The last two mathematical expressions that relate the two transforms, are considered as 

a very important tool for the derivation of the Hartley transform properties through the 

equivalent ones of the Fourier transform set. 

A summary of the basic properties of the Hartley transform is the following: 

Theorem f(x)  H(f) 

Linearity f1(x) + f2(x) H1(f) + H2(f) 

Scaling/Similarity f(kx) 
|
k

1
| H )(

k

f
 

Reversal f(-x) H(-f) 
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Shift f(x-T) H(f)=cos(2πfT)H(f)+sin(2πfT)H(-f) 

Modulation f(x) cos(2πf0T) 
H(f) = 

2

1
H(f - f0 ) +  

2

1
H(f + f0) 

Convolution f1(x) * f2(x) 

2

1
[H1(f)H2(f)+H1(-f) H2(f) 

+H1(f)H2(-f)-H1(-f) H2(-f)] 

Autocorrelation f1(x).f1(x) 

2

1
[H1(f)

2+H1(-f)
2] 

Product f1(x)f2(x) 

2

1
[H1(f)*H2(f)+H1(-f)*H2(f) 

+H1(f)*H2(-f)-H1(-f)*H2(-f)] 

 

The Hartley magnitude and phase 

The definitions of the Fourier magnitude and phase are: 

M() = )()(
22  IR SS +  and )

)(

)(
arctan()(





R

I

S

S
=  respectively. 

Also, =)(S +)(RS )(IS  (Hartley transform) 

and according to complex number theory, 

=)(S  M()(cos( )))(sin())(  j+  

         =  M()cos ))(sin()())((  jM+  

So,  )(RS  = M()cos( )( )   and 

        )(IS = M()sin( )( ) 

thus   =)(H +)(RS )(IS  

                    = M()cos( )( ) + M()sin( )( ) 

                    = M()(cos( )( ) + sin( )( )) 

   Concluding, the Hartley transform magnitude is the same as the Fourier transform 

one, but the Hartley phase is defined as: 

Y() = 
)(

)(





M

H
 = 

)(

)))(sin())()(cos((




M

M +
 = cos( )( ) + sin( )( ). 

The last equation is a function of the Fourier phase only and has been called the 

“whitened Hartley spectrum” or the “Hartley phase spectrum” [6].  
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The Hartley phase spectrum properties are listed as follows: 

i) it has zero mean 

ii) it has a standard deviation of unity 

iii) it is a continuous function of frequency 

iv) it has upper and lower bounds of  2  

All four properties are independent of the signal statistics. 

In the next pages are presented the graphs: 

Fig.21 Hartley spectrum of an audio sample of  Formula1 car (H.T)  

Fig.22 Phasegram of an audio sample of a Formula1 car (H.T) 

Fig.23 DCT-2 applied on the phasegram of the Formula1 car (H.T) 

Fig.24 DCT-2 (focus) applied on the phasegram of the Formula1 car (H.T) 

Fig.25 Hartley spectrum of an audio sample of  country atmosphere (H.T)  

Fig.26 Phasegram of an audio sample of country atmosphere (H.T) 

Fig.27 DCT-2 applied on the phasegram of country atmosphere (H.T) 

Fig.28 DCT-2 (focus) applied on the phasegram of country atmosphere (H.T) 

 

Fig.21 Hartley spectrum of an audio sample of  Formula1 car (Hartley Transform)   

 

Fig.22 Phasegram of an audio sample of a Formula1 car (Hartley Transform) 
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Fig.23 DCT-2 applied on the phasegram of the Formula1 car (Hartley Transform) 

 

Fig.24 DCT-2 (focus) applied on the phasegram of the Formula1 car (H.T) 

 

Fig.25 Hartley spectrum of an audio sample of  country atmosphere (H.T) 

 

Fig.26 Phasegram of an audio sample of country atmosphere (H.T) 
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Fig.27 DCT-2 applied on the phasegram of country atmosphere (H.T) 

 
Fig.28 DCT-2 (focus) applied on the phasegram of country atmosphere (H.T) 

Comments-Discussion 

In order to overcome the information (phase) loss observed in the Fourier transform 

case, the Hartley transform was applied to the audio signal. Here, only one time-

frequency surface is required to represent both magnitude and phase information. 

However, the phase information may be separated out and examined independently if 

needed. Both the magnitude and phase evolution of the signal across time were 

implemented but the 2-D Cosine transform was only applied to the phase surface, as an 

example of the compression properties of the DCT. Again, the last graph, focuses on 

the area of interest of the 2-D Cosine transform in order to visualise the different surface 

characteristics between the two audio signals. The use of these techniques with the 

Hartley transform are in the very early stages and these examples are presented here 

only as an indication of the possible lines of investigation that may be followed in the 

future.  

 

3.4) The Wigner-Ville distribution 
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     One very important property of the linear time-frequency representation using the 

Fourier Transform is the property of linearity. But, because of the complex nature of 

the spectrum, the time-frequency representation of a signal cannot be easily visualized. 

For that reason it is usual, to display the representation as time-frequency graphs of 

magnitude (squared) and phase separately. [6] 

   So, Linear Time-Frequency Representation (LTFR) is the complex time-frequency 

representation using the Fourier Transform and Quadratic Time-Frequency 

Representation  (QTFR) is the spectrogram due the presence of the squared terms.       

   The QTFRs have important characteristics that are derived from the fact that the time-

frequency function is real and relates to the distribution of signal energy (power). Let, 

T(f, )  be the QTFR of a signal s(t). Two major properties that the QTFRs should have 

are: =
f

dffT ),(  |s(t)|
2

   (instantaneous signal power) and =


dfT ),( |S(f)|
2

   

(power spectrum of the signal). 

These properties are called marginal properties of the QTFR. Because the spectrogram 

does not fulfill the marginal properties the Wigner-Ville Distribution (WD) is applied 

instead. 

The Wigner-Ville distribution is defined as: 
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Because the WD is a quadratic function, its sampling has to be done in a careful way 

So, let us write it as follows: 
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If x is sampled with a period Te, then x[n] = x(nTe) and the WD is evaluated at the 

sampling points nTe in time. So, a discrete-time expression of the WD is obtained: 


−
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   Except of the marginal properties some other important properties that characterize 

the WD are: 
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i) real valued 

ii) time shift: if s’(t) = s(t-t’) then WD(t-t’,f) 

iii) frequency shift: if s’(t) = s(t)
tfj

e
'2−
 then WD(t,f-f’) 

iv) Convolution: s(t) = x(t)*y(t)  (*: denotes convolution)                                                                                                                                    

                  YDXDSD ftWftWftW ),(*),(),( =   (*: denotes convolution in time) 

       v)        Multiplication: s(t) = x(t)y(t)                                                                                                                                      

                  YDXDSD ftWftWftW ),(*),(),( =   (*: denotes convolution in frequency)     

 

3.5) The Hough transform (applied to line detection) 

Definition 

     The Hough transform is a method that, in theory, can be used to find features of any 

shape in an image. In practice, it is generally used for finding straight lines or circles. 

The computational complexity of the method grows rapidly with more complex shapes. 

    Consider a point (xi, yi) on an image. The number of lines that can pass through this 

point are infinite. However, they all can be represented by the following equation: 

ryx =+ )sin()cos(   where 

       r   : represents the distance (perpendicular) of the line from the origin and 

  : represents the angle between this perpendicular and the x-axis 

 

 

 

 

 

y-axis 

 

        

        r            

        

                                   x-axis   

 

Note:  20    

   Assuming, in the last equation varying r and  , and fixed x and y (i.e. Xi and Yi 

respectively) then for each of the possible lines that pass through point (Xi, Yi) the 

equation has coordinates r and   in (r, ) space. In other words, each of the lines that 
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pass through point (Xi, Yi) have a unique value of r and  . Based on the previous 

assumptions, two spaces are defined i.e. the first one is the image (xy) space whereas 

the second one is the parameter  (r, ) space. Now, every line that passes through a 

point in image space is mapped to a line in parameter space.  

   So, the Hough transform is a mapping from image space to parameter space.  

N points that belong to the same line, i.e. (xi, yi) for i = 1,2…N, are transformed into N 

sinusoidal curves ryx =+ )sin()cos(   in the parameter (r, ) space, which intersect 

in the point (R, ). 

Comments/Conclusions 

i) A point in the image space corresponds to a sinusoidal curve in the 

parameter space. 

ii)  A point in the parameter space corresponds to a straight line in the image 

space. 

iii) Points that belong to the same straight line in the image space correspond to 

curves through a common point in the parameter space. 

iv) Points that belong to the same curve in the parameter space correspond to 

lines through a common point in the image space. 

In the next pages are presented the graphs: 

Fig.29 Chirp Signal 

Fig.30 Wigner-Ville distribution of the chirp signal 

Fig.31 Hough Transform (Detection of straight lines) of WD  

 

Fig.29 Chirp Signal 
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Fig.30 Wigner-Ville distribution of the chirp signal 

 

Fig.31 Hough Transform (Detection of straight lines) of WD 

Comments-Discussion 

The two-level transform method that is described and implemented in this paragraph, 

aims to visualise the difference amongst the energy distributions of various signals. The 

Wigner-Ville distribution provides the energy distribution of a particular signal, 

whereas the Hough transform detects the straight lines of the energy distribution 

surfaces and provides a way to visualise the difference surface characteristics between 

different kinds of signals. Although, the Wigner-Ville representation and is quite 

similar to the spectrogram technique analysed in the literature review this method has 

the advantage of preserving the marginal properties of the signal. 

General conclusions and discussion  

The first group of feature extraction methods i.e. Spectrogram and Phasegram were 

used as an introduction in order to understand the disadvantages of the Fourier-based 

methods. Applying the spectrogram to a signal there is information (phase) loss. So, 

the Hartley Transform is used so no phase loss is experienced, whereas the Wigner-

Ville distribution is a time-frequency graph that preserves the marginal properties of 

the signal. The second level of transforms i.e. 2-D Cosine and Hough are used for 

compression and maximization of the distinct features respectively.   
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Session 4 

4.1) Future plans 
 

 

     In the next time period, the project will be focused on the extraction of common 

characteristics between audio signals based on the feature extraction techniques 

described in the previous Session. The first (Fourier, Hartley and Wigner-Ville) 

processing level and the second (Hough and 2-D DCT) one will be combined in 

different ways in order to detect if there are other more effective ways of feature 

extraction. Also, it is planned to implement the wavelet transform so as to apply its 

compression properties to the signal.  

   The Wigner-Ville energy distribution belongs to the Cohen’s class of energy 

distributions. There are other members of the same category of distributions that 

represent the signal in a way that helps more to the extraction of distinct features 

between the various clips. So, another future plan is to apply the appropriate energy 

distribution to the signal for better feature extraction. 

    After the feature extraction part has finished, the next step is the signal classification. 

At the beginning a simple Euclidean classifier will be implemented so as to decide 

which combination of the feature extraction methods provides the best results. The next 

step will involve the implementation of a more sophisticated, self-organized classifier 

that will provide more accurate estimations. In the classification part it may be used a 

network of two simple classifiers that will be the input to a super- classifier in order to 

reduce the dimensionality of the input vector to each one of them. 

   The two-level feature extraction technique has only been applied to artificially 

constructed signals. Artificially constructed signals can easier be classified because 

there is apriory information. On the other hand, for sounds of nature and for other kinds 

of sounds apriory information does not exist, so the feature extraction part has to be 

more intensive. 

 

 

 

References 

 



Transfer Report 

Ioannis Paraskevas 

 

32 

Books, Ph.D. theses & Lecture Notes  

[1] R. Bracewell, “The Fourier Transform and Its Applications”, Second Edition, 

McGraw-Hill Book Company,1986 

[2] Matlab, “Signal Processing Toolbox, User’s Guide”, The MathWorks, December 

1996 

[3] [2] Matlab, “Signal Processing Toolbox, User’s Guide”, The MathWorks, 

December 1996 

[4] J. Kittler, Pattern Recognition Lecture Notes, University of Surrey, 2001 

[5] EHS Chilton, Digital Speech Processing Lecture Notes, University of Surrey, 2001 

[6] EHS Chilton, A Continuing Education Course on Advanced Digital Signal 

Processing Lecture Notes, University of Surrey, 2001 

[7] Peter R. Green, Digital Signal Processing Lecture Notes, UMIST, 2000 

[8] H.Kelleher, Continuous, Speaker Independent, Speech Recognition for a Speech to 

Viseme Translator, PhD thesis, University of Surrey, 1999 

[9] Alexander D. Poularikas,”The Transforms and Applications Handbook”,CRC 

Press&IEEE Press, 1996 

[10] Alan V. Oppenheim, Ronald W. Schafer, John R. Buck,”Discrete-Time Signal 

Processing”,Second Edition, Prentice Hall Sinal Processing Series, 1999 

[11] Petre Stoica, Randolph Moses, “Introduction to Spectral Analysis”, Prentice Hall, 

1997  

Publications 

Literature Review 

[12] Stephen Rice, Find audio and video! See the audio! Comparisonics Corporation, 

Grass Valley, CA 95945 USA, www.comparisonics.com 

[13] Jonathan Foote, Content-based retrieval of music and audio, Multimedia Storage 

and Archiving Systems (II), Procee. Of SPIE, vol.3229, pages 138-147, 1997 

[14] Zhu Liu, J. Huang, Y. Wang, and T.Chen, Audio feature extraction and analysis 

for scene classification, Workshop on Multimedia Signal Processing (Electronic 

Proceedings), June 23-25 1997 

[15] M.J. Ross, H.L. Schafer, Andrew Cohen, R.Freudberg, and H. Manley. Average 

magnitude difference function pitch extractor. IEEE Transactions on Acoustics, Speech 

and Signal Processing, vol. ASSP-22(No.5):353-361, 1974 

[16] R.Schafer and L.Rabiner, Digital representation of speech signals, Proceedings of 

IEEE, vol.63, No.4, pages 662-677, 1975 



Transfer Report 

Ioannis Paraskevas 

 

33 

[17] T. Zhang and C.C. Jay Kuo, Hierarchical classification of audio data for archiving 

and retrieving, International Conference on Acoustic, Speech and Signal Processing 

1999, volume 6, pages 3001-3004, 1999 

[18] Tong Zhang and C.-C. Jay Kuo, Audio-guided audiovisual data segmentation, 

indexing,, and retrieval, SPIE Conference on Storage and Retrieval for Image and 

Video Databases (VII), pages 316-327, 1999 

[19] Stan Z. Li, Content-based classification and retrieval of audio using the nearest 

feature line method, http://citeseer.nj.nec.com/202406.html 

[20] Yao Wang, Zhu Liu, and Jin-Cheng Huang, Multimedia Content Analysis using 

both Audio and Visual Clues, IEEE Signal Processing Magazine, Pages 12-36, Noveber 

2000  

[21] M. Pandit, J. Kittler, W. J. Christmas, Audio Classification, ASSAVID project, 

May 2001 

Wigner-Ville & Wigner-Hough Transform 

 [22] F. Auger and P. Flandrin, Improving the Readability of Time-Frequency and 

Time-Scale Representations by the Reassignment Method, IEEE Transactions on 

Signal Processing, 43(5):1068-89, 1995 

[23] S. Barbarossa Analysis of Multicomponent LFM Signals by a Combined Wigner-

Hough Transform, IEEE Transactions on Signal Processing, 43(6), June 1995 

[24] J. Bertrand and P. Bertrand, A class affline wigner functions with extended 

covariance properties, J.Math.Phys.,33(7), 1992 

[25] L. Cohen, Time-Frequency Distributions-A Review, Proceedings of the IEEE, 

77(7):941-980, 1989 

[26] F. Hlawatsch and F. Boudreaux-Bartels, Linear and Quadratic Time-Frequency 

Signal Representations, IEEE SP Magazine, pages 21-67, 1992 

Hough 

[27] P.V.C. Hough, “Method and means for recognizing complex patterns”, U.S. Patent 

3 069 654, Dec. 18, 1962 

[28] R.O. Duda and P.E. Hart, “Use of Hough Transformation to detect lines and curves 

in pictures”, Commun. Ass. Comput. Mach.,vol.15, Jan. 1972 

[29] Philip M. Merlin and David J. Farber, “A Parallel Mechanism for Detecting Curves 

in Pictures”, IEEE Transactions on Computers, January 1975 

 


