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Abstract: The Hartley transform is a mathematical transformation which is closely related to the better known Fourier transform. The prop-
erties that differentiate the Hartley Transform from its Fourier counterpart are that the forward and the inverse transforms are identical and also
that the Hartley transform of a real signal is a real function of frequency. The Whitened Hartley spectrum, which stems from the Hartley trans-
form, is a bounded function that encapsulates the phase content of a signal. The Whitened Hartley spectrum, unlike the Fourier phase spectrum,
is a function that does not suffer from discontinuities or wrapping ambiguities. An overview on how the Whitened Hartley spectrum encap-
sulates the phase content of a signal more efficiently compared with its Fourier counterpart as well as the reason that phase unwrapping is not
necessary for the Whitened Hartley spectrum, are provided in this study. Moreover, in this study, the product–convolution relationship, the
time-shift property and the power spectral density function of the Hartley transform are presented. Finally, a short-time analysis of the
Whitened Hartley spectrum as well as the considerations related to the estimation of the phase spectral content of a signal via the Hartley
transform, are elaborated.
1 Introduction

The Hartley transform, a close relative of the better known Fourier
transform, was first introduced in 1942 [1]. Its appealing properties
of symmetry (its forward and inverse transforms are identical) and
that its transform of a real signal is also a real function of frequency,
were seen, at that time, as having useful applications in the area of
communications theory [2]. Little was heard of this transform until
Bracewell published an account of the discrete Hartley transform
followed shortly by another on the fast Hartley transform.
Bracewell observed that the real spectrum derived via the Hartley
transform from a real signal, contained phase information (as well
as magnitude information) and showed that analogue phase meas-
urement was possible with suitable laboratory apparatus [3–7].
Published work related to the Hartley transform in the area of
signal processing can be found in [8–12]; the Hartley transform
has also found application in diverse areas such as geophysics
[13, 14], electrical power engineering [15] and pattern recognition
[16–18].
A real signal could be exactly represented, via the short-time dis-

crete Hartley transform, by two separate frequency domain func-
tions, both real. One, the magnitude spectrum which is identical
to that derived via the Fourier transform and represents the square-
root of the power spectral density function of the signal, whereas the
second function, rather clumsily called the ‘Whitened Hartley spec-
trum’, is a function of phase only [19]; the term ‘whitened’ has been
used since the derivation of the ‘Whitened Hartley spectrum’ is the
result of the ‘whitening’ process [20]. This latter function, unlike its
Fourier counterpart, is bounded and does not suffer from wrapping
ambiguities thus avoiding the difficulties introduced by the discon-
tinuities in the discrete phase spectrum when this is derived via the
Fourier transform [21]. Thus, the ‘Whitened Hartley spectrum’ or
‘Hartley Phase Spectrum (HPS)’ encapsulates the phase content
of the signal more efficiently, compared with its Fourier counter-
part. Moreover, the HPS has already found useful application in:
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audio (gunshot) classification [19, 22], speech (phoneme) classifi-
cation [23–25] and as a noise robust feature for signal analysis
[26]. Please note that the terms ‘Whitened Hartley spectrum’ and
‘HPS’ are used in this paper interchangeably since both of them
convey the same meaning. Furthermore, the Hartley phase cep-
strum, which stems from the HPS, has been applied in: signal local-
isation [27, 28], detection of transient events for power quality [29]
and as a tool for improved phase spectral estimation [30, 31].

This paper aims to provide a theoretical overview of the Hartley
transform, to present its similarities with the Fourier transform as
well as its attractive properties compared with its Fourier counter-
part. Specifically, in Section 2 the Hartley transform as well as
the complementary Hartley transform are defined and its relation-
ship with the Fourier transform is stated. In the same section, the
product–convolution and the time-shift properties of the Hartley
transform are also explained. In Section 3, the ‘Whitened Hartley
spectrum’ is defined and its properties compared with the Fourier
phase spectrum are presented. In Section 4, the short-time analysis
of the HPS is described, and finally in Section 5 the time-delay of a
signal is evaluated based on the Whitened Hartley spectrum.
2 Properties of the Hartley transform

2.1 Some fundamental definitions

The Hartley transform is an orthogonal transform with cosinusoidal
basis functions. It is a close relative of the widely used Fourier
transform which is defined as

Fourier Transform: F[s(t)] = Fs(f ) =
∫1
−1

s(t)e−j2pft dt (1a)

where s(t) is a continuous function. The inverse Fourier transform is
access article published by the IET under the Creative Commons
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Fig. 1 Self-inverse property of Hartley transform

Fig. 2 Function s(t)
given by the relation

s(t) =
∫1
−1

Fs(f )e
jvt dv (1b)

Alternatively, (1a) and (1b) can be expressed as

F[s(t)] = Fs(v) =
1����
2p

√
∫1
−1

s(t)e−jvt dt (2a)

and

s(t) = 1����
2p

√
∫1
−1

Fs(v)e
jvt dv (2b)

The kernel function of the Fourier transform is the complex expo-
nential, e−jωt, whereas the kernel function of the Hartley transform
is the cas(ωt) function. The cas function was introduced by Hartley
in 1942 and is defined as cas(ωt) = cos(ωt) + sin(ωt). Hence, the
Hartley transform of a function s(t) is defined as

Hartley Transform: H[s(t)] = Hs(v)

= 1����
2p

√
∫1
−1

s(t)( cos vt + sin vt) dt
(3a)

where ω is the angular frequency in radians/second. Equivalently,
the Hartley transform can be defined using the linear frequency f
(units: 1/s) instead of the angular frequency ω. In this case, the
1/

����
2p

√
coefficient is omitted, that is

Hartley Transform: H[s(t)] = Hs(f )

=
∫1
−1

s(t)( cos 2pft + sin 2pft) dt
(4a)

Throughout this paper we use the definition in (3a), which means
that H[s(t)] denotes Hs(ω), unless stated otherwise.

The scaling and linearity properties of the Hartley transform are
identical to those of the Fourier transform. However, the Hartley
transform has two other useful properties that distinguish it from
its Fourier counterpart. The first one is that the inverse Hartley
transform is identical to the forward Hartley transform, Fig. 1.
This property applies to both definitions of the Hartley transform,
(3a) and (4a). Hence

s(t) = 1����
2p

√
∫1
−1

Hs(v)( cos vt + sin vt) dv (3b)

and

s(t) =
∫1
−1

Hs(f )( cos 2pft + sin 2pft) df (4b)

The second useful property is that the Hartley transform of a real
signal is a real function of frequency. As an example consider the
function

s(t) = e−t−1.5, if t ≥ −1.5
0, if t , −1.5

{

depicted in Fig. 2. The Hartley transform of s(t) is the real function

H[s(t)] = cas(−1.5v)+ v cas(1.5v)

1+ v2
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presented in Fig. 3, whereas the Fourier transform of s(t) is

F(s(t)) = ej1.5v

1+ jv

which is a complex function of the angular frequency ω.
Furthermore, it can be easily shown, using definitions (2a) and

(3a) and the Euler’s formula, that the Hartley transform can be
expressed in terms of the Fourier transform. Indeed, in case the
signal s(t) is real, the Hartley transform is the real part SR(ω)
minus the imaginary part SI(ω) of the Fourier transform, that is

H[s(t)] = SR(v)− SI(v) (5a)

while the real and the imaginary parts of the Fourier transform is the
even and the negative odd components of the Hartley transform, re-
spectively, that is

F[s(t)] = H(v)+ H(− v)

2
− j

H(v)− H(− v)

2
(5b)

Moreover, it is useful to observe the operation of the Hartley and the
Fourier transforms on a complex signal. Let s(t) = x(t) + jy(t), then
directly from the linearity property we have

H[s(t)] = H[x(t)]+ jH[y(t)] (6)

Thus, the Hartley transform of a complex signal is a complex func-
tion where the real and the imaginary components of the signal in
the time-domain map uniquely onto its real and imaginary compo-
nents in the frequency domain. This may be compared with the case
of the Fourier transform, where

F[s(t)] = F[x(t)]+ jF[y(t)] (7)

Generally, in case both the F [x(t)] and the F [y(t)] components of
the Fourier spectrum are complex, then it holds

F[x(t)] = XR(v)+ jXI(v)

and F[y(t)] = YR(v)+ jYI(v)
(8)

and hence the Fourier transform of the complex signal is given by
Commons J Eng, 2015, Vol. 2015, Iss. 3, pp. 95–101
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Fig. 3 Hartley transform of function s(t)
the relation

F[s(t)] = (XR(v)− YI(v))+ j(XI(v)+ YR(v)) (9)

Similarly, for the Hartley transform, based on (5a) and (6) it holds

H[x(t)] = XR(v)− XI(v)

and H[y(t)] = YR(v)− YI(v)
(10)

and then (6), in view of (10), becomes

H[s(t)] = (XR(v)− XI(v))+ j(YR(v)− YI(v)) (11)
2.2 Complementary Hartley transform

It is also useful to define the complementary Hartley transform,
H*[s(t)] [7], where the asterisk (*) denotes the complementary
form of the Hartley transform H[s(t)]. Hence

H∗[s(t)] = Hs(− v) = 1����
2p

√
∫1
−1

s(t)( cos vt − sin vt) dt (12)

Inspection of (3a) and (12) show that

H∗[s(t)] = H[s(− t)] (13)

Equivalently, the Fourier transform has a complementary function,
namely its complex conjugate, which in case function s(t) is real,
then

F∗[s(t)] = F(−v) =
∫1
−1

s(t)ejvt dt

and hence, it can be seen directly from its definition that F*[s(t)] =
F(−ω) = F[s(−t)].
2.3 Hartley/Fourier relationship

In addition to the obvious relation (5a), direct relationships between
the Hartley and the Fourier transforms can be derived using (2a) and
(3a). Expanding the cosine and sine functions of the Hartley
J Eng, 2015, Vol. 2015, Iss. 3, pp. 95–101
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transform as sums of complex exponentials we have

H[s(t)] =
∫1
−1

s(t)
ejvt + e−jvt

2
+ ejvt − e−jvt

2j

( )
dt

= 1+ j

2

∫1
−1

s(t)e−jvt dt + 1− j

2

∫1
−1

s(t)ejvt dt

= 1��
2

√ ej(p/4)F[s(t)]+ e−j(p/4)F∗[s(t)]
( )

(14)

Equivalently, a Fourier transform expression can be derived in
terms of the Hartley transform and its complementary function

F[s(t)] = 1��
2

√ e−j(p/4)H[s(t)]+ ej(p/4)H∗[s(t)]
( )

(15)
2.4 Product–convolution relationship

The two relationships in (14) and (15) can now be used in order to
derive useful properties for the Hartley transform directly from the
corresponding properties known for the Fourier transform.

Let s(t) = g(t)*h(t) where ‘*’ denotes the convolution operator. It
is known that the Fourier transform of a convolution of two signals
equals to the product of the Fourier transforms of these signals, that
is, F[s(t)] = F[g(t)]·F[h(t)], and hence from (14) we obtain

H[s(t)] = 1��
2

√ ej(p/4)F[g(t)]F[h(t)]
(

+ e−j(p/4)F[g(−t)]F[h(−t)]
)

Substituting (15) into the above expression for F[g(t)], F[h(t)],
F[g(−t)] and F[h(−t)] and then simplifying leads to

H[s(t)] = 1

2
(H[g(t)]H[h(t)]+ H[g(t)]H[h(−t)]

+ H[g(−t)]H[h(t)]− H[g(−t)]H[h(−t)]) (16)

This rather inelegant expression, at least when compared with the
Fourier equivalent, is generally valid for any pair of signals.
However, useful simplifications can be made in (16) when one or
both of the two time functions have either even or odd symmetry.
Hence, for instance, in case g(t) and/or h(t) is even, then (16)
reduces to

H[g(t)∗h(t)] = H[g(t)]H[h(t)] (17)

When a signal may be considered as the product of two other
signals, then a similar result to that of (17) is obtained, except
that the product of the Hartley transforms is replaced by a convolu-
tion. If one of the two time signals has even symmetry, then the
result simplifies to

H[g(t)h(t)] = H[g(t)]∗H[h(t)] (18)

The utility of the result in (18) may be appreciated when it is
required to apply the Hartley transform to a finite or ‘windowed’
time signal. Ensuring that the window function, in the time
domain, has even symmetry (e.g. a Hamming window) and treating
the time-origin as lying at the centre of this window, ensures the
result of (18), greatly simplifying frequency domain analysis (see
Section 4 for details on implementation).
access article published by the IET under the Creative Commons
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Fig. 5 Fourier phase spectrum of function s(t)

Fig. 4 HPS of function s(t)
2.5 Time-shift property

First, we remind ourselves of the Fourier time-shift property, that is

F[s(t − t)] = e−jvtF[s(t)] (19)

From (14) we have that

H[s(t − t)] = 1��
2

√ ej(p/4)F[s(t − t)]+ e−j(p/4)F[s(−t + t)]
( )

(20a)

From (15) and (19) and by rationalising (20a), it holds

H[s(t − t)] = cos (vt)H[s(t)]+ sin (vt)H[s(− t)] (20b)

2.6 Power spectral density function

The power spectral density function for a real signal s(t) is defined
as

P(v) = F[s(t)] · F∗[s(t)] = |F[s(t)]|2 (21)

where |x| denotes the magnitude of a complex number x.
Equivalently, (21) may also be expressed in Hartley transform

terms by substituting (15) into (21), and then simplifying, thus
obtaining

P(v) = 1

2
(H2[s(t)]+ H2[s(− t)]) (22)

3 Whitened Hartley spectrum

The Hartley spectrum of a real signal contains both spectral magni-
tude and phase information in a single real frequency domain func-
tion. It is useful to consider whether, for the analysis of the signal, it
is possible to identify those spectral characteristics of the Hartley
spectrum which relate to the Fourier magnitude spectrum and
those which relate only to the Fourier phase spectrum.

Once again, it is convenient to compare the Fourier and Hartley
transforms. Let F[s(t)] = SR(ω) + jSI(ω) which may be rewritten
in the form F[s(t)] =M(ω)ejw (ω) where M (v) =

����������������
S2R(v)+ S2I (v)

√
is the Fourier magnitude spectrum and w(ω) = tan−1(SI(ω)/SR(ω))
is the conventional Fourier phase spectrum. By considering (5b),
the Fourier magnitude spectrum and the Fourier phase spectrum
can be expressed in terms of the Hartley transform, thus

M (v) =
������������������������������������������������
H(v)+ H(− v)

2

( )2

+ H(v)− H(− v)

2

( )2
√

(23)

and

w(v) = −tan−1 H(v)− H(− v)

H(v)+ H(− v)

( )
(24)

The Whitened Hartley spectrum [32, 33] or HPS is defined as

V (v) = H[s(t)]

M (v)
(25)

According to the Euler’s formula, we have SR(ω) =M(ω)cos(w(ω))
and SI(ω) =M(ω)sin(w(ω)), and hence by substituting these
two relations to (5a) it follows that H[s(t)] =M(ω)(cos(w(ω)) −
sin(w(ω))). Consequently, the Whitened Hartley spectrum or HPS
This is an open access article published by the IET under the Creative
Attribution License (http://creativecommons.org/licenses/by/3.0/)
may now be written as

V (v) = H[s(t)]

M (v)
= cos (w(v))− sin (w(v)) = cas(−w(v)) (26)

Thus, considering again the function

s(t) = e−t−1.5, if t ≥ −1.5
0, if t , −1.5

{

introduced in Section 2.1, one can calculate using (3a), (23) and
(25) that its HPS is given by the following relation

V (v) = (v+ 1) cos (1.5v)+ (v− 1) sin (1.5v)��������
v2 + 1

√

Figs. 4 and 5 depict the Hartley and the Fourier phase spectra of the
function s(t), respectively.

3.1 Properties of the Whitened Hartley spectrum

The Whitened Hartley spectrum, V(ω), has a number of interesting
and important properties which makes it useful. These are sum-
marised as follows:

(1) V(ω) is a bounded function. Indeed, it holds that

V (v) = H[s(t)]

M (v)
= cos (w(v))− sin (w(v))

=
��
2

√
sin

p

4
− w(v)

( ) (27)
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Specifically, for any value of w(ω), the maximum and minimum
values of V(ω) are between +

��
2

√
, and hence V(ω) can never lie

outside this range. This property is particularly useful for speech
and audio coding applications [32, 33]. It is important to note
that a signal may be entirely re-constructed in the time domain
knowing the following frequency domain components: w(ω) and
M(ω). Specifically, from relation (27) by knowing w(ω) one can
evaluate the Whitened Hartley spectrum, V(ω), which conveys the
phase spectral information of the signal. If the value of M(ω) is
also known, then the Hartley spectrum can be evaluated via (25).
In the final step, based on the self-inverse property of the Hartley
transform, the time-domain signal can be accurately re-constructed
from the aforementioned frequency domain components. As will be
analysed in Section 3.2, the advantage of re-constructing a signal
based on the Whitened Hartley spectrum instead of the Fourier
phase spectrum is that the re-constructed time-domain signal does
not have inaccuracies in its calculation because of the wrapping am-
biguities of the Fourier phase spectrum [21]. This advantage of the
Whitened Hartley spectrum is particularly useful for applications
such as speech or audio synthesis.

(2) V(ω) is a continuous function of frequency: This can be deduced
by observing the form of (25). If s(t) is a continuous function of
time, then the Hartley transform of this function H[s(t)] must be a
continuous function of frequency, since it is obtained by performing
integration over time. To ensure that V(ω) is everywhere continu-
ous, it is also necessary to show that the magnitude spectrum,
M(ω), of the signal s(t) is also continuous over frequency. This
may be seen as correct if one realises that the power spectral
density function of a continuous signal s(t) must also be a continu-
ous function of frequency since it is derived via the Fourier trans-
form, and therefore the magnitude spectrum M(ω) must also
convey this property. The only other consideration is for the case
when M(ω) tends to zero. However, in this case, since both H[s
(t)] and M(ω) are derived from the real and imaginary components
of the complex Fourier transform, then as M(ω) tends to zero, so
does H[s(t)], and thus V(ω) tends to a finite number. For
example, as one can observe by comparing Fig. 4 with Fig. 5, the
HPS of the function s(t) is a continuous function of frequency,
whereas the Fourier phase spectrum of the same function exhibits
discontinuities. This advantage of the Whitened Hartley spectrum
compared with the Fourier phase spectrum is further explained in
the following section.

3.2 Comparison between the Fourier phase spectrum and the
HPS

The advantages of the HPS, compared with its Fourier counterpart,
can be further underlined in the view of the discontinuities that
appear across the conventional Fourier phase spectrum w(ω) =
tan−1(SI(ω)/SR(ω)). Specifically, the difficulties in processing the
phase spectrum of a signal when the conventional Fourier phase
spectrum is used, may be summarised in (i) and (ii).

(i) ‘Extrinsic’ discontinuities in the Fourier phase spectrum: The
first difficulty is related to the discontinuities caused because of
the inverse tangent function and are called ‘extrinsic’ discontinu-
ities. The computation of the inverse tangent function results in
phase values with range from −π tο π (see Fig. 5); however, this
does not necessarily hold to non-synthetic signals. To overcome
these ambiguities, appearing as phase ‘jumps’ across the Fourier
phase spectrum, the phase has to be ‘unwrapped’ [21]. However,
these phase ‘jumps’ are caused either because of, Case (a): ‘wrap-
ping’ ambiguities or Case (b): rapidly changing phase angles.
Conventional ‘unwrapping’ algorithms though cannot discriminate
what causes these ‘jumps’, and hence they compensate phase
‘jumps’ which are caused not only because of Case (a) but also
because of Case (b). Consequently, the phase content of the
J Eng, 2015, Vol. 2015, Iss. 3, pp. 95–101
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signal is distorted since the ‘unwrapping’ algorithm should com-
pensate only the phase ‘jumps’ caused because of ‘wrapping’ am-
biguities, that is, because of Case (a). It is important to mention
that the effect of ‘wrapping’ ambiguities is increased considerably
in the presence of noise [26]. Note that, an alternative way to imple-
ment the Fourier phase spectrum avoiding the ‘extrinsic’ discon-
tinuities, is to evaluate it via the z-transform however, round-off
errors are introduced when the roots of the signal’s polynomial
are evaluated [34].
(ii) ‘Intrinsic’ discontinuities in the Fourier phase spectrum: The
second difficulty is related to the discontinuities appearing across
the Fourier phase spectrum caused because of ‘intrinsic’ character-
istics of the signal. These ‘intrinsic’ discontinuities appear when
both the imaginary and real parts of the Fourier spectrum of the
signal cross zero simultaneously (‘critical’ point), during the
phase evaluation process [19, 35]. This latter kind of discontinuity
causes π ‘jumps’ in the Fourier phase spectrum as addressed in [34].
The compensation of the ‘intrinsic’ discontinuities appearing across
the Fourier phase spectrum is attained by adding or subtracting π
accordingly [35].

Whitened Hartley spectrum and ‘extrinsic’ discontinuities: As it
can be seen from (27), the HPS is a function of the Fourier phase
only since it is equal to the subtraction of the sine of the Fourier
phase from the cosine of the Fourier phase, and thus it conveys
purely Fourier phase information. Hence for the case of the
Whitened Hartley spectrum, the signal’s phase content is encapsu-
lated to a cosinusoidal waveform, and consequently unlike the
Fourier phase spectrum case, the inverse tangent function is not
used, therefore ‘extrinsic’ discontinuities do not exist.

Whitened Hartley spectrum and ‘intrinsic’ discontinuities: As
mentioned, when this category of discontinuities appears across
the Fourier phase spectrum, they can be compensated by adding
or subtracting π accordingly. On the basis of that, for the Hartley
case, the ‘intrinsic’ discontinuities are compensated in the following
way: assume that b represents the phase value at a ‘critical’ point
(i.e. simultaneous cross of zero of the real and the imaginary com-
ponents), then two cases exist: Case 1: If π has to be ‘added’ at the
‘critical’ point b of the Fourier phase spectrum for compensation,
then the equivalent expression for the HPS ((26)) is cos(b + π)−
sin(b + π) = −(cos(b) − sin(b)) and Case 2: similarly, assuming
that π has to be ‘subtracted’ at the ‘critical’ point b of the Fourier
phase spectrum, then the equivalent expression for the HPS case
becomes: cos(b− π) − sin(b− π) = −(cos(b) − sin(b)). Since for
both Case 1 and Case 2 the result is −(cos(b)− sin(b)), therefore
wherever a ‘critical’ point is detected in the HPS, then the remain-
der of the spectrum has to be multiplied by −1 in order to compen-
sate the ‘intrinsic’ discontinuities. Summarising, in the case where
the ‘intrinsic’ discontinuities have to be compensated from the HPS
the steps that have to be followed are:

1. Detection of the ‘critical points’ across the phase spectrum.
2. Scan of the HPS from the start; wherever a ‘critical’ point is
detected the remainder of this spectrum has to be multiplied by −1.
3. Repeat steps 1 and 2 for all ‘critical’ points [28, 31].

As mentioned in the Introduction, the aforementioned attractive
properties of the HPS compared with its Fourier counterpart are
inherited to the corresponding cepstrum, called the Hartley phase
cepstrum [28, 30, 31].
4 Short-time analysis and the Whitened Hartley spectrum

For any practical application, the time signal under analysis must be
of finite duration. This phenomenon, usually referred to as ‘win-
dowing’ [36], is well known in Fourier analysis. Similar considera-
tions apply to the Hartley transform where the finite signal may be
access article published by the IET under the Creative Commons
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Fig. 6 Expression Q(ω)/V(ω) against frequency ω
considered as an infinite signal under observation through a finite
length window. The effect in the frequency domain is, however,
less simple. Scrutiny of (18) shows that the way in which the
window is employed in the computation is crucial. Only if the
local time-axis is taken as zero at the centre of the windowed
data, will the corresponding frequency spectrum be represented
by a simple convolution of the two spectra [36]. Thus from (18)

H[ s
_
(t)] = H[s(t)w(t)] = H[s(t)] ∗H[w(t)] (28)

where s
_
(t) is the short-time frame of signal under analysis s(t) and

w(t) is a window function.
Equivalently, under Fourier analysis it holds

F[ s
_
(t)] = F[s(t)w(t)] = F[s(t)] ∗F[w(t)]. With the even symmetry

of the window preserved (i.e. by taking the zero time-axis at the
centre of the window), it follows that F[w(t)] =H[w(t)] =W(ω)
which is a real, even function of frequency. The magnitude spec-
trum of the windowed signal is given by

M
_
(v) = |F[s(t)]∗W (v)| (29)

Letting F[s(t)] = SR(ω) + jSI(ω), then (29) becomes M
_

(v) =��������������������������������������
(SR(v) ∗W (v))2 + (SI(v) ∗W (v))2

√
. This expression may be sim-

plified if one can assume that there is zero cross-correlation between
the window function and the time signal itself. Under these condi-
tions

M
_

(v) =
����������������������������
S2R(v)+ S2I (v)
( ) ∗W 2(v)

√
� M (v) ∗W (v) (30)

Thus, it is now possible to define a modified Whitened Hartley

spectrum in the form V
_
(v) = H[ s

_
(t)]/M

_
(v). From (25), (28)

and (30) it follows

V
_

(v) = (M (v)V (v)) ∗W (v)

M (v) ∗W (v)
(31)

It may be postulated that there exists two further window spectral
functions, Wa(ω) and Wb(ω), such that 0≤ a, b≤ 1 and a + b = 1,
so that

(M (v)V (v)) ∗W (v) = (M (v) ∗Wa(v))(V (v) ∗Wb(v))

Thus

V
_

(v) = 1(v)(V (v) ∗Wb(v)) (32)

where

1(v) = M (v) ∗Wa(v)

M (v) ∗W (v)
(33)

The extent to which this function modifies the Whitened Hartley
spectrum depends on the features in the magnitude spectrum of
the signal and on the spectrum of the window.

5 Time-delay measurement via the Whitened Hartley
spectrum

Consider a signal s(t), and its replica s(t − t) received sometime
later (say from an echo or reflection). On the basis of (20b), the
Hartley transform of the total signal received, that is, s(t) + s(t− t)
This is an open access article published by the IET under the Creative
Attribution License (http://creativecommons.org/licenses/by/3.0/)
is given by

H[s(t) + s(t − t)]
= H[s(t)] + cos(vt)H[s(t)] + sin(vt)H[s(−t)]
= (1+ cos(vt))H[s(t)] + sin(vt)H[s(−t)]

(34)

Now let M(ω) be the magnitude spectrum of the signal s(t) and let
Q(ω) be the Whitened Hartley spectrum of the signal s(t) + s(t− t).
From the linearity property and the time-shifting property of the
Fourier transform, one can calculate that the magnitude spectrum of
the received signal s(t) + s(t− t) is 2M(ω). Hence, the Whitened
Hartley spectrum (25) of s(t) + s(t− t) equals to

Q(v) = H[s(t)+ s(t − t)]

2M (v)

= (1+ cos (vt))
H[s(t)]

2M (v)
+ sin (vt)

H[s(− t)]

2M (v)

= 0.5((1+ cos (vt))V (v)+ sin (vt)V ∗(v))

(35)

where V*(ω) is the complementaryWhitened Hartley spectrum of the
signal s(t).

There are two cases to consider. The first case is when the signal
s(t) is known. In this case, it is possible to re-arrange the signal in
order to have even symmetry (in time). In this case (35) reduces to

Q(v) = 1

2
(1+ cos (vt)+ sin (vt))V (v) (36)

or

Q(v)

V (v)
= 1

2
(1+ cos (vt)+ sin (vt)) (37)

From (37) it follows that the time-delay between the outgoing signal
and the returning signal is represented in the frequency domain by a
cosinusoidal function of period 2π/t. This period corresponds to the
delay between the outgoing signal and its reflection. Let us consider

the signals u(t) = 1, |t| ≤ 5
0, |t| . 5

{
and its shifted version to the left

by t = 4 units, that is, u(t− 4). In Fig. 6, the expression Q(ω)/V(ω)
is plotted as a function of frequency ω and as expected from (37),
this function is periodic with period 2π/4 or π/2.

The second case concerns the situation where the signal s(t) is not
known. Here, the exact signal spectrum is also partially unknown
since the measured spectrum from the received signal is modified
by its delay. In this case, it is necessary to interrogate the function
Q(ω) for a dominant cosinusoidal function. Depending on the
nature of the original signal, the periodicity of this cosinsoidal
Commons J Eng, 2015, Vol. 2015, Iss. 3, pp. 95–101
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function may be identified [28]. The same approach could also be
applied in the case where the reflections producing this time-delay
are changing (i.e. because of a moving object) since the periodic
component can be tracked.

6 Conclusions

In this paper, an overview of the Hartley transform is presented, the
relationship between the Hartley transform and the Fourier trans-
form is provided and the Hartley transform properties are analysed.
More importantly, the Whitened Hartley spectrum is defined, its
properties for phase spectral estimation are highlighted, its short-
time analysis is provided and its advantages compared with the
Fourier phase spectrum are underlined. The properties of the
Whitened Hartley spectrum are also demonstrated via an example
involving time-delay measurement. Summarising, the Whitened
Hartley spectrum is proposed as an alternative to the Fourier
phase spectrum for applications related to phase spectral process-
ing. Specifically, the Whitened Hartley spectrum, unlike its
Fourier counterpart, does not convey extrinsic discontinuities
since it is not using the inverse tangent function, whereas the dis-
continuities of the signal in the phase spectrum which are caused
because of intrinsic characteristics of the signal can be compen-
sated. Finally, it is important to mention that the phase spectrum
which is developed via the Whitened Hartley spectrum does not
only have important advantages compared with the Fourier phase
spectrum but it is also very straightforward in terms of its imple-
mentation and processing.
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