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Abstract 

This PhD thesis studies the dynamics of team strengths in football. It investigates the 

presence of structural breaks, which occur when there is a change in parameters that govern 

dynamics in a time series. In football, such structural breaks occur because of events such as 

squad changes during transfer markets as well as managerial or ownership changes.  

Team strengths are estimated across seven seasons of the Premiership and Championship 

football leagues and then analysed through a time series perspective, based on the double 

Poisson model with an added dependence parameter for lower scores and an exponential decay 

factor that adds more weight to more recent matches. This weighting scheme means that a 

pseudo-likelihood is used to estimate strength parameters. A rolling window approach is used 

to obtain a time series for the attack and defence strengths of teams in order to investigate the 

presence of structural breaks. We show that structural breaks are present in the majority of the 

time series. These present a challenge for the prediction of match outcomes. By not taking 

parameter discontinuity into account, one is in essence forecasting team strengths for the next 

match using incorrect parameter values.  

We then carry out a forecasting exercise. This involves comparing the mean square error 

of the one-step ahead forecast of team strengths for all teams, using the two most recent seasons 

as the out-of-sample forecasting period. We find that different models have a smaller mean 

square error for different teams, but in particular two models stand out as the best ones: a simple 

random walk and forecasts made by model averaging. Even though the time-varying parameter 

model performs quite poorly according to the mean square error, it provides the best match 

predictions for one of our sub-samples. We conclude that different forecasting models that 

account for structural breaks can certainly improve forecast accuracy, although our findings are 

consistent with the econometrics literature that no one model forecasts best all the time. Given 

the prevalence of structural breaks in determining the dynamics of team strengths, this research 

has important implications for bookmakers and punters in the betting industry to take these 

matters into consideration when modelling football match outcomes. 
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1. Introduction 

Football (association football or soccer) is the most popular sport in the world, with an 

estimated 3.5 billion fans and 250 million players worldwide (Sporty Desk, 2015). Betting on 

outcomes in football matches is also very popular, unsurprisingly, and the value of the football 

betting market in 2012 is estimated to be between £500 billion and £700 billion (Keogh and 

Rose, 2013). Consequently, statistical modelling of outcomes in football matches is popular 

among researchers, both in academia and industry, not only for the potential for financial 

returns but also for the challenges that such modelling presents. This is not to say that betting 

drives all research in statistical modelling in football and many interesting problems relating to 

tactical questions (e.g. Wright and Hirotsu, 2003; Hirotsu and Wright, 2006; Brillinger, 2007; 

Tenga et al., 2010; Titman et al., 2015), team, player and manager rating (e.g. Knorr-Held, 

2000; Bruinshoofd and Weel, 2003; Schryver and Eisinga, 2011; Baker and McHale, 2015), 

competitive balance and outcome uncertainty (e.g. Koning, 2000; Buraimo and Simmons, 

2015), match importance (e.g. Scarf and Shi, 2008; Goossens et al, 2012), tournament outcome 

prediction (e.g. Koning et al., 2002; Groll et al., 2015), and tournament design and scheduling 

(e.g. Scarf et. al, 2009; Scarf and Yusof, 2011; Goossens and Spieksma, 2011; Lenten et al., 

2013) have been studied. Nonetheless, modelling results and scores, and other in-match 

outcomes, both straightforward (e.g. first player to score) and unusual (e.g. number of player 

cautions), motivated by the search for betting market inefficiency, has been a major 

motivational factor in the development of state-of-the-art models.  

Statistical models have important implications for both sides of the market. On one hand, 

bookmakers use them to help set their odds competitively, so that they are both interesting to 

punters and profitable for the bookmaker. On the other hand, punters may use them to seek 

opportunities for profit. Given this importance, one could argue that research in modelling 

football match outcomes is to bookmakers and punters as financial mathematics and 

macroeconometrics is to stock markets.  

Following the book (later turned movie) Moneyball (Lewis, 2003) that discusses the use 

of statistical analysis by Oakland Athletics MLB team for player valuation, which allowed 

Athletics to be competitive with teams with much greater payrolls, football clubs have begun 

to use statistical modelling, particularly in player analytics, and several top teams around the 

world now have an analytics team. There are however, significant challenges posed by the 

continuous nature of the “beautiful game”, the significant interactions between players, and the 
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multi-faceted and dynamic roles that individual players assume as they take on more or less 

attacking and defensive responsibilities (McHale et al., 2012). This is an important strand of 

modelling research in football but it is not considered in this PhD thesis. 

Knorr-Held (2000) and Rue and Salvesen (2000) were the firsts to investigate team 

strength dynamics in football. Between then and Koopman and Lit (2015), team strength 

dynamics has not received much attention from researchers. This thesis offers an opportunity 

to revisit the topic of dynamics in team strengths by investigating the presence of structural 

breaks in these dynamic models, something that has not been the centre of attention in the sports 

forecasting literature but is a fiercely researched and debated topic in financial and 

macroeconometrics.  

Contribution 

The main contribution of this thesis is that we demonstrate structural breaks are present in 

the majority of time series of team strengths. Therefore it has important implications for 

forecasting, as demonstrated in Clements and Hendry (1998). If we consider that a structural 

break has occurred, the dynamics governing team strengths will have changed. If one wishes to 

forecast the team strength one-step ahead (i.e. for the next match), one would be in essence 

forecasting one step ahead with the wrong parameters and consequently, this will lead to poor 

predictions of match outcomes. In practice, this is a problem that has important implications 

for bookmakers in setting their odds accordingly as well as punters trying to obtain financial 

returns from their bets.  

This contribution opens up to two significant questions: i) given a break exists in the time 

series, is there a way to predict where the next break will occur out-of-sample and ii) how can 

we predict what the next parameters will be?  

This thesis does not provide the answers for those questions. In fact, no research in time 

series forecasting has the definite answer to them: different models and forecasting techniques 

provide different results when applied to a variety of datasets.  

We believe that the contributions of this thesis opens up opportunities for researchers to 

further develop models in this area. To date, this kind of modelling has been confined within a 

macroeconomic or a financial econometric context. There is thus significant opportunity to 

apply it not only football but in any other sport in which dynamics are involved.  
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Outline 

This thesis is structured as follows: Chapter 2 describes the literature review in terms of 

modelling match outcomes, both direct and indirect, with more focus on the latter. Team 

strength dynamics are explained as well as the implications of structural breaks for forecasting. 

Chapter 3 describes the methodology used to obtain parameter estimates for team strengths over 

time, on which subsequently a time series analysis is carried out. This is followed by the 

methodology used to detect structural breaks and the results are presented. Chapter 4 presents 

a forecasting exercise of five different models used: three of which address structural breaks in 

a simple fashion, and two which do not. The forecasting performance of the models is compared 

by using the mean square error. Those forecasts are then utilised in deriving match outcome 

probabilities and the ranked probability score is used to evaluate which model forecasts match 

outcomes the best. Chapter 4 concludes with a discussion about the problems associated with 

structural break modelling, forecasting techniques and potential extensions for future research. 

Chapter 5 concludes this thesis.  

Publications 

There are two publications that have resulted from this thesis: 

1) Rangel Jr (2015) – presented at the 5th International Conference on Mathematics 

in Sports, which is not discussed in this thesis.  

2) Scarf and Rangel Jr (2017) – book chapter published in “The Handbook of 

Statistical Methods and Analyses in Sports. Most of the literature review of this 

thesis has contributed to the publication.   
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2. Literature Review 

Match outcome models for football can be split into two classes: direct and indirect models. 

The former directly predict the outcome of a match, as a win, draw or loss, and ordered probit 

and logit models are generally used (Koning, 2000; Goddard, 2005).  The latter indirectly model 

the bivariate score (goals-for and goals-against), to which a bivariate probability distribution is 

attributed. Given that the number of goals is classified as a non-negative integer, count data 

models such as the Poisson or negative binomial distributions are implemented and the seminal 

papers are Maher (1982) and Dixon and Coles (1997). Other approaches have also been 

investigated such as models for goal differences through the Skellam distribution (Karlis and 

Ntzoufras, 2009), models which predict shots for and against (McHale and Scarf, 2007) and 

ratings model such as ELO (Hvattum and Arntzen, 2010) and pi-rating models (Constantinou 

and Fenton, 2013). This chapter will describe direct and indirect models, with emphasis on the 

latter, especially because these are both richer in both the modelling questions that they pose 

and the applications they underpin.  

It appears to be the case that indirect models have taken over from direct, not least because 

the most recent paper published in the statistical literature that uses the direct approach is 

Goddard (2005). This shift in interest is probably as a result of the many challenges associated 

with indirect models that open the way for further research. These challenges include: the issue 

of dependence within the bivariate distribution of goals scored in a match; the modelling of the 

dynamics of attacking and defensive strengths; the contribution of players’ strengths to team 

strengths; count data model selection. One of the main challenges ahead of the literature lies in 

modelling player and team strength dynamics. The pioneering work here is Knorr-Held (2000) 

and Rue and Salvesen (2000).  The way this literature review is structured reflects this view:  

the direct models are presented followed by indirect models. Then the literature on team 

strength dynamics is described, followed by the implications of structural breaks for 

forecasting.  

Direct match outcome models 

Direct measurement of the result as win, draw, or loss (from the point of view of the 

reference team) leads to the class of generalised linear models suitable for a categorical 

response variable. To model a dependent variable of this type, it is common to use an ordered 
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response model with an appropriate link function, which links the probabilities for each 

category to the linear combination of model parameters and covariates. For an ordered probit, 

the probit link function is used, and for ordered logistic regression the logit link function is 

used. The idea is that a latent continuous variable exists (but is not observed) which underlies 

the ordered responses (which are observed) and cut-points divide the real line into a series of 

intervals corresponding to the categories of the ordered response. For football match outcomes, 

we have three categories (win, draw or loss) and two cut-points. Thus, for the probit model let 

𝑦* be the latent variable that is some linear combination of explanatory variables 𝑋 and their 

coefficients 𝛽 plus error, denoted  

 𝑦∗ = 𝑋'𝛽 + 𝜀, (1) 

where 𝜀	~	𝑁(0,1). The latent variable 𝑦* takes values 𝑌 as follows 

 
𝑌 = 3

1	(win)
0	(draw)
−1	(loss)

		
if	𝛿@ ≤ 𝑦∗ < +∞
if	𝛿D@ ≤ 𝑦∗ < 𝛿@
if − ∞ < 𝑦∗ < 	𝛿D@

 (2) 

where 𝛿D@ and 𝛿@ are the cut-points. Thus 𝑌 has a trinomial distribution with probabilities 𝑝D@, 

𝑝F and 𝑝@ ( 𝑝D@ + 𝑝F + 𝑝@ = 1) obtained by substituting (1) into (2): 

𝑝D@ = Pr(𝑌 = −1) = Pr(loss) = Pr(−∞ < 𝑋'𝛽 + 𝜀 < 	𝛿D@) = Pr(𝑋'𝛽 + 𝜀 < 𝛿D@)

= Pr(𝜀 < 𝛿D@ − 𝑋'𝛽) = Φ(𝛿D@ − 𝑋'𝛽) 

𝑝F = Pr(𝑌 = 0) = Pr(draw) = Pr(𝛿D@ ≤ 𝑋'𝛽 + 𝜀 < 	𝛿@)

= Pr(𝛿D@ − 𝑋'𝛽 ≤ 𝜀 < 𝛿@ − 𝑋'𝛽) = Φ(𝛿@ − 𝑋'𝛽) − Φ(𝛿D@ − 𝑋'𝛽) 

𝑝@ = Pr(𝑌 = 1) = Pr(win) = Φ(+∞− 𝑋'𝛽) − Φ(𝛿@ − 𝑋'𝛽) = 1 − Φ(𝛿@ − 𝑋'𝛽), 

where Φ(. ) is the cumulative distribution function (CDF) of the standard normal distribution. 

The parameters of the model are typically estimated by maximising the log-likelihood function. 

The vast majority of econometric and statistical software packages have in-built functions for 

this purpose.  

In the ordered logistic (or logit) model, often called the proportional odds model, the log 

odds of the ordered outcomes are assumed to be linearly related to the covariates and 

parameters: 

 
log K

Pr	(win)
1 − Pr	(win)L = log K

𝑝@
1 − 𝑝@

L = 𝛼@ + 𝑋′𝛽 (3) 
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log K

Pr	(win	or	draw)
1 − Pr	(win	or	draw)L = log K

𝑝@ + 𝑝F
1 − 𝑝@ − 𝑝F

L = 𝛼F + 𝑋′𝛽 (4) 

Thus 

Pr(win) = 	 logitD@(𝛼@ + 𝑋'𝛽), 

Pr(win	or	draw) = 	 logitD@(𝛼F + 𝑋'𝛽), 

where logitD@: ℜ → [0, 1] such that logitD@(𝑥) = VWX(Y)
@ZVWX	(Y)

. Although this model is very similar 

to the ordered probit model, it is not generally used for modelling match outcomes in football. 

Nonetheless, their model-fit diagnostics are often very similar to the ordered probit.  

The motivations for the use of direct models vary. Forrest and Simmons (2000a), for 

example, compare tipster performance in predicting match outcomes, whereas Forrest and 

Simmons (2000b) compare Pools Panel football match decisions with actual results. Audas et 

al. (2002) analyse the impact of within-season managerial change on team performance in 

English football. Forrest and Simmons (2002) study the impact of competitive balance on 

football attendance. Koning (2000) estimates team strengths and home advantage for the 

purpose of analysing competitive balance in Dutch football. Dobson and Goddard (2003) study 

short-term persistence in sequences of match results to conclude that negative persistence 

effects exist, implying that series of consecutive wins and consecutive losses tend to end sooner 

than expected if there were no persistence. Goddard and Asimakopoulos (2004) examine the 

predictability of English league football results, and utilise several explanatory variables 

including: match significance for championship, promotion or relegation issues and 

geographical distance between home and away teams. They test for weak-form inefficiency in 

the betting market and conclude that their forecasting model contains additional information 

not included in the bookmakers’ odds. Finally, Goddard (2005) compares the forecasting 

performance of four different direct models using a pseudo-likelihood statistic and concludes 

that the best performing model is a “hybrid” model – an ordered probit regression with results-

based independent variables and goals-based lagged performance covariates. This model 

outperforms the other models in 6 out of 10 seasons.  Nevertheless, they did not implement the 

model to produce ex ante forecasts or test the percentage return on bookmakers’ odds, such as 

Goddard and Asimakopoulos (2004), which would have been more informative.  
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Regarding the interpretation of the parameter estimates, since the probit and logistic models 

both apply a non-linear link function, the coefficients in 𝛽 do not correspond with the linear 

interpretation as in an ordinary least squares (OLS) regression. One has to compute marginal 

effects using 

 𝜕𝐸[𝑦∗|𝑥]
𝜕𝑥 = K

𝑑𝐹(𝑥'𝛽)
𝑑(𝑥'𝛽) L 𝛽 = 𝑓(𝑥'𝛽)𝛽 (5) 

For the probit model, 𝑓(𝑥'𝛽)𝛽 = 𝜙(𝑥'𝛽)𝛽 , so that a marginal change in one of the 

explanatory variables depends on the values that the explanatory variable takes.  

Research into direct outcome models for forecasting football matches have, since Goddard 

(2005), not really developed. This is because indirect match outcomes have presented larger 

modelling challenges. Additionally, modelling exact scores and goal differences has wider 

applications in betting, not least to spread betting.  

Indirect outcome models 

Moroney (1956) observed that football scores were fitted better by a negative binomial 

distribution than a Poisson distribution. Nonetheless, Maher (1982) proposed a double-Poisson 

model that is considered the backbone for all indirect outcome models for modelling football 

scores. In this seminal paper, Maher estimates the attack and defence parameters of teams and 

a home advantage parameter. The model is as follows: consider team i playing at home against 

team j and let 𝑋bc and 𝑌bc denote the goals scored by the home and away teams respectively. 

Then 

 𝑋bc	~	𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝛼b𝛽c𝛾) (6) 

 𝑌bc	~	𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝛼c𝛽b) (7) 

with 𝑋bc and 𝑌bc independent. In the first Poisson mean in (6) the parameter 𝛼b is interpreted as 

the attacking strength of the home team i (tendency to score goals), 𝛽c is the defensive weakness 

of the away team j (tendency to concede goals), and 𝛾 is the home advantage effect. These three 

parameters determine the goal-scoring rate of the home team (𝑋bc ). The parameters that 

determine the goal-scoring rate of the away team (𝑌bc) are 𝛼c, the attack strength of the away 

team j and 𝛽b, the defensive weakness of the home team i. In the simplest variation of this 

model, the home advantage effect is the same for all teams. Maher used the method of maximum 
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likelihood to estimate the parameters, and noted that the model underestimated the number of 

draws. This motivated Dixon and Coles (1997) to enhance the model by adding a dependence 

parameter:  

 
𝑃(𝑋bc = 𝑥, 𝑌bc = 𝑦) = 𝜏(k,l)(𝑥, 𝑦)

𝜆Yexp	(−𝜆)
𝑥!

𝜇sexp	(−𝜇)
𝑦!  (8) 

where 

 ln 𝜆 = 𝛼b	+	𝛽c + 𝛾 (9) 

 ln 𝜇 = 𝛼c + 𝛽b (10) 

and  

 

𝜏(k,l)(𝑥, 𝑦) =

⎩
⎪
⎨

⎪
⎧
1 − 	𝜆𝜇𝜌
1 + 𝜆𝜌
1 + 𝜇𝜌
1 − 𝜌
1

if	𝑥 = 𝑦 = 0
if	𝑥 = 0, 𝑦 = 1
if	𝑥 = 1, 𝑦 = 0
if	𝑥 = 𝑦 = 1
otherwise

 

 

(11) 

so that 𝜌 is the dependence parameter that modifies the independence assumption for low 

scoring matches (𝑥 ≤ 1, 𝑦 ≤ 1).  

With N teams, there are 2𝑁 + 2  parameters to estimate in total. The model is 

overparameterised because, under the specification, strength can only be measured relatively 

(that is, one can only know for example whether A is stronger than B and one cannot know how 

strong is A). Therefore the parameter space must be constrained, and Dixon and Coles (1997) 

use the constraint 

 
𝑁D@{𝛼b

|

b}@

= 1 (12) 

The authors acknowledged that the strength parameters are only locally constant, 

developing a pseudo-likelihood function for estimation in which the outcomes of more recent 

matches are given greater weight. Thus  
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 𝐿(𝛼b, 𝛽b, 𝜌, 𝛾: 𝑖 = 1,… ,𝑁)

=��𝜏(k,l)(𝑥�, 𝑦�)
exp	(−𝜆)𝜆�

Y�

𝑥!
exp	(−𝜇)𝜇�

s�

𝑦! �
�(�D��)�

�}@

 
(13) 

where (𝑥�, 𝑦�) is the result of match k played at time 𝑡� < 𝑡, 𝐽	is the number of matches in the 

sample, and 𝜙  is a non-increasing function of time. In fact, 	

𝜙(𝑡) = exp	(−𝜉𝑡), where 𝜉 was chosen to maximise the prediction of match outcomes and 𝜉� =

0.0065. A large 𝜉 puts large weight on recent matches and 𝜉 = 0 is the static model, with all 

matches given equal weight.  

Dixon and Robinson (1998) developed a model in which scoring rates depend on the 

current match state, and proposed a bivariate non-homogeneous Poisson process for goals 

scored, with the intensities for home and away goals varying linearly (at rates 𝜉@ and 𝜉� for 

home and away teams respectively) with match time t, and strength parameters contingent on 

the current score (𝑥, 𝑦):  

 𝜆b(𝑥, 𝑦, 𝑡) = 𝛼b(𝑥, 𝑦)𝛽c(𝑥, 𝑦)𝛾 + 𝜉@𝑡 
(14) 

 𝜇c(𝑥, 𝑦, 𝑡) = 𝛼c(𝑥, 𝑦)𝛽b(𝑥, 𝑦) + 𝜉�𝑡 

They conclude that goal-scoring rates increase for both teams throughout a match and 

when a goal is scored by the opposition. This model however is really only useful for in-play 

betting, but they demonstrated an improvement in match outcome prediction compared to the 

models of Maher (1982) and Dixon and Coles (1997).  

The next interesting development is due to Karlis and Ntzoufras (2003). They describe a 

bivariate Poisson distribution that captures positive dependence in home and away goals. 

Consider the (pairwise) independent Poisson random variables 𝑍�, 𝑘 = 1, 2, 3  with means 

𝜆@, 𝜆�, 𝜆� and form the bivariate pairs 𝑋 = 𝑍@ + 𝑍� and 𝑌 = 𝑍� + 𝑍�. Then 

 𝑃�,�(𝑥, 𝑦) = 𝑃(𝑋 = 𝑥, 𝑌 = 𝑦)

= exp	{−(𝜆@ + 𝜆� + 𝜆�)} {
𝜆@YD�𝜆�

sD�𝜆��

(𝑥 − 𝑘)! (𝑦 − 𝑘)! 𝑘!

���	(Y,s)

�}F

 
(15) 

where 
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 𝐸(𝑋) = 	𝜆@ + 𝜆� 

(16)  𝐸(𝑌) = 	𝜆� + 𝜆�	

 cov(𝑋, 𝑌) = 	𝜆� 

Karlis and Ntzoufras (2003) also “diagonally inflate” to increase the probability of 

observing draws. This is specified by 

 𝑃�(𝑥, 𝑦) = K
(1 − 𝑝)𝐵𝑃(𝑥, 𝑦|𝜆@, 𝜆�, 𝜆�)

(1 − 𝑝)𝐵𝑃(𝑥, 𝑦|𝜆@, 𝜆�, 𝜆�) + 𝑝𝐷(𝑥, 𝜃)
						if	𝑥 ≠ 𝑦

if	𝑥 = 𝑦 (17) 

where 𝐷(𝑥, 𝜃) is a discrete distribution with parameter vector 𝜃. They recommend to use a 

simple  discrete distribution for D. The Poisson marginals then become 

 𝐸(𝑋) = (1 − 𝑝)(𝜆@b + 𝜆�b) + 𝑝𝜃@ 
(18) 

 𝐸(𝑌) = (1 − 𝑝)(𝜆�b + 𝜆�b) + 𝑝𝜃@ 

where 𝜃@ is the parameter in the Bernoulli distribution and 

 

 𝜆@b = 	𝜇 + home +	att¢b + def£b 

(19)  𝜆�b = 	𝜇 + att£b + def¢b 	

 𝜆�b = 	𝛽¤¥¦ + 𝛾@𝛽¢b¢¥§¨ + 𝛾�𝛽£b
©ª©s 

where  𝜆@b (home score rate) depends on a constant 𝜇, the home advantage parameter home, 

attack parameter of the home team, att¢b, and defence parameter of the away team, def£b; 𝜆�b 

(away score rate) depends on constant 𝜇 , away attack parameter, att£b  and home defence 

parameter, def¢b; and 𝜆�b (covariance parameter) depends on a constant term 𝛽¤¥¦, 𝛾@ and 𝛾� 

are dummy variables, and 𝛽¢b¢¥§¨ and 𝛽£b
©ª©s are parameters that depend on the home and away 

team respectively.  

Karlis and Ntzoufras (2003) applied the diagonally inflated bivariate Poisson model to 

the Italian Serie A league to capture the underpredicted number of draws observed in the 

dataset, particularly the 1 – 1 scores. A possible explanation for the tendency for many draws 

in this league  (Italian Serie A, 1991-1992 season) is that the scoring system of 2-1-0 for wins-

draws-losses was still in place. They compared the fit between the double-Poisson, the bivariate 

Poisson and the diagonally inflated models for a variety of diagonal distributions. The best 
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fitting model according to the Akaike Information Criterion (AIC), Bayes Information Criterion 

(BIC) and Likelihood Ratio Test (LRT) was the bivariate Poisson model with an extra 

parameter for 1 – 1 draws.  

An issue of concern regarding these bivariate models is that they only permit non-negative 

correlation. Since 𝜆�  is a Poisson mean, it cannot be negative. A solution was offered by 

McHale and Scarf (2011) who used particular copula functions that allow negative dependence. 

In application to international football, these authors found that goals scored in a match 

(𝑋b�, 𝑌c�) are negatively dependent. In general, a copula provides a flexible means of joining 

marginal distributions to form multivariate distributions with interesting dependence structures, 

although some care is required with discrete distributions. The copula function itself is a 

multivariate distribution with all univariate marginal distributions as 𝑈(0, 1). Hence 𝐶 is the 

distribution of a multivariate uniform random vector. For a bivariate distribution 𝐹  with 

margins 𝐹@ and 𝐹�, the copula associated with 𝐹 is a distribution function 𝐶: [0,1]� → [0, 1] 

that satisfies 

 𝐹(𝑥, 𝑦) = 𝐶{𝐹@(𝑥), 𝐹�(𝑦)}, (𝑥, 𝑦) ∈ ℜ� (20) 

McHale and Scarf (2011) make use of extendable Archimedean copulas that can model 

both positive and negative dependence. They fit three different copulas and showed that Frank’s 

copula provides the best fit to the international football data set, in which   

 𝐶(𝑢, 𝑣) = 	−𝜅D@ log{1 − (1 − 𝑒D²³)(1 − 𝑒D²´)/(1 − 𝑒²)} , (𝜅 ∈ ℜ) (21) 

where 𝑢 and 𝑣 are specified with marginal distributions to give the full joint distribution. In the 

case of McHale and Scarf (2001) they experimented with both Poisson and negative binomial 

marginal distributions to model football match results. While copulas can capture general 

dependence structure, often at the expense of estimating only one additional parameter, it is 

unclear whether their use in model specification is preferred to the direct dependence models 

of Dixon and Coles (1997) and Karlis and Ntzoufras (2003).  

What is clear however is that one of the most investigated topics in the literature is strength 

dynamics, and although it is some decades since Dixon and Coles (1997) acknowledged 

strength dynamics but did not really model them (instead they proposed rolling, fitting and 

forecasting approach in which recent matches were given more weight in strength estimation), 

the important contributions to this topic have been much more recent.  
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Team strength dynamics 

Team strength dynamics can be modelled either deterministically or stochastically. 

Focusing first on the former, Baker and McHale (2015) use a smoothly varying function 

(barycentric rational interpolation) to specify attack and defence strength for all time, and while 

their model can be used for short term forecasting, their motivation is backward looking, 

focusing on the identification of the strongest team. In the aforementioned paper they discuss 

in particular the historically strongest team. These authors have had success with their approach 

in identifying the all time best not only in football but also in tennis and golf (Baker and 

McHale, 2014). The advantage of the deterministic approach is that the likelihood function is 

both easier to specify and to maximise.  

Modelling team strength dynamics stochastically has received considerably more attention 

in the literature and Knorr-Held (2000) and Rue and Salvesen (2000) and later Crowder et al. 

(2002) pioneered this research. Several different stochastic processes have been used to model 

dynamics in team strengths, and these models can estimated using either classical or Bayesian 

methodologies. A natural place to start when modelling dynamics stochastically is by some 

type of autoregressive process, where a team’s strength at time t is related to its strength at some 

time 𝑡 − 𝑠, 𝑠 > 0. Knorr-Held (2000) considered that time-dependent abilities 𝛼b followed a 

random walk 𝛼b,�	~	𝑁·𝛼b,�D@, 𝜎�¹, where 𝜎� was estimated in order to maximise the in-sample 

predictability of the model with respect to observed final team rankings. The model was 

implemented on the 1996-1997 season of the German Bundesliga. As no forecasts were made 

and no comparison with a benchmark model carried out, there is no indication as to how well 

the model can forecast results.   

In Rue and Salvesen (2000), strength parameters for attack and defence follow a Brownian 

motion, a stochastic process in continuous time. These authors also include in the Poisson 

marginal mean, as a new development, a covariate that they call the psychological effect 

(denoted 𝛾) of the superior team underestimating the strength of the weaker one. Then, letting 

𝑡′ and 𝑡'' > 𝑡′ denote two different points in time, the attack strength dynamics are such that 

 
𝛼b�

ºº − 	𝛼b�
º = »𝐵¼,b ½

𝑡′′
𝜏 ¾ − 𝐵¼,b ½

𝑡′
𝜏¾¿

𝜎¼,b

ÀÁ1 − 𝛾(1 − 𝛾2)Â
 (22) 
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where 𝐵.,.(𝑡), 𝑡 ≥ 0  is a standard Brownian motion, the subscript marks denoting attack 

(subscript 𝛽 for defence) and team. The time parameter 𝜏 is a scaling factor identical for all 

teams and specifies the inverse loss of memory rate for 𝛼b�, var	(𝛼b�
ºº − 𝛼b�

º) ∝ 𝜎¼,b� /𝜏 . The 

model was estimated through Bayesian Markov chain Monte Carlo (MCMC) methods. The 

model used data from the first half of the 1997-1998 Premier League and Division 1 English 

league and was shown to perform as well as the bookmaker in a simulated betting experiment. 

In this experiment, they placed bets to maximise a particular utility function: betting on matches 

which would give a positive expected profit, placing the bets with low variance of profit. They 

obtained a final return of 39.6%, winning 15 bets out of 48 placed in the English Premier League 

and 54.0% in Division 1 (27 out of 64). However, the lower bounds of the 95% confidence 

interval of the betting returns were negative, indicating that there was still a risk of losing 

money. They also showed that combination bets gave lower returns.  

There then followed something of a lull in developments until Owen (2011) presented a 

dynamic generalised linear modelling (DGLM) framework that allows some or all parameters 

to be time dependent. He identified the challenge of estimating the “evolution” variance 𝜎� (a 

volatility parameter in the strength dynamics whereby a higher evolution variance implies more 

volatile strength dynamics). He estimates this parameter by maximising the one-step ahead 

predictive probability of the model:  

 
𝑃@ = exp Å

1
𝑁{ log 𝑒[𝑃(𝑂�)]

|

�}@

Ç (23) 

which is equivalent to the geometric mean of the one-step ahead match predictive probabilities 

that were actually observed, 𝑃(𝑂�) being the one-match ahead predictive probability that match 

k would end with the outcome 𝑂� (home win, draw or away win). However, Owen made use 

of a cumulative measure of 𝑃@ :  𝑃@(𝑡) which included all matches played up to and including 

round t, and as a result, allowed the parameter 𝜎� to be updated as more information becomes 

available. He also used another measure of predictive performance, 𝑃�, a quadratic loss function 

or a measurement error, as well as its cumulative counterpart 𝑃�(𝑡), which incidentally was 

also used in Knorr-Held (2000). Owen used three seasons of the Scottish Premier League  

(2003-2004 to 2005-2006) to consider the efficacy of his model and concluded that the dynamic 

model provided a better fit to these results than a non-dynamic one. Owen’s approach has 

significant advantages over the continuous-time model of Rue and Salvesen (2000), particularly 
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in the choices of priors for the attack and defence parameters, which are derived from previous 

seasons’ data. Estimating 𝜎� directly in the model also allows greater flexibility, permitting the 

strength parameters to vary at different times in the season – there appeared to be higher 

volatility in the strength parameters earlier in the season than later, which seems reasonable. 

However, he does not apply a betting strategy to investigate possible returns of the model.  

Koopman and Lit (2015) use a stationary AR(1) process for team strength parameters, 

including an intercept term, in the form 𝑧� = 𝜇 + Φ𝑧�D@ + 𝜂�, where 𝑧� are state vectors of the 

𝛼b�  and 𝛽b�  elements (attack and defence strengths for team i at time t), 𝜇  is a vector of 

constants, Φ is a square matrix with the autoregressive coefficients in the diagonal and 𝜂� are 

the error vectors which are normally independently distributed with mean vector 0 and variance 

matrix 𝐻. Nine seasons of the English Premier League were used in the analysis (2003-2004 to 

2011-2012), with the first seven seasons used to provide out-of-sample forecasts for the last 

two seasons. The authors also implement a betting strategy, betting on matches where the 

expected value of a unit bet exceeds some benchmark, denoted by 𝜏 > 0. They use average 

odds across 40 different bookmakers, giving a total of 760 betting opportunities (all matches in 

2 seasons) for 𝜏 = 0. As the value of 𝜏 increases, the number of betting opportunities decreases 

and positive mean returns are obtained when 𝜏 > 0.12 (around 270 “value” bets). When 𝜏 =

0.4, one unit bet in each of 50 matches and generated a return of 75 units (an expected profit of 

50% on the stake).  

The autoregressive parameters in Koopman and Lit (2015) were estimated to be 𝜙Ì¼ =

0.9985 for the attack dynamics, and 𝜙ÌÏ = 0.9992 , which are both very close to one so that 

the strength dynamics, although their model constrained the dynamics to ensure stationarity by 

setting 0 < 𝜙Ð < 1, 𝐾 = 	𝛼, 𝛽.  

The introduction of dynamics in the modelling of attack and defence parameters has 

added a layer of depth in football match outcome models that has improved forecasts overall. 

However, authors have made rather large assumptions as to how attack and defence of teams 

evolve, and we believe that the questioning of these assumptions is the next step for research in 

football match outcome modelling. Knorr-Held (2000), Rue and Salvesen (2000) and Owen 

(2011) all use a type of non-stationary processes to capture dynamics, whereas Koopman and 

Lit (2015) implement a stationary autoregressive model. Certainly there are advantages to each, 

however, a non-stationary and a stationary process has different properties, which as a result 

affect forecasting performance if the model is mis-specified. Below is a brief description of 
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stationary processes as well as two different non-stationary processes, and subsequently an 

explanation of how mis-specifying the dynamics could lead to misleading forecasts.  

A (covariance) stationary process is one with the following properties: 

i) 𝐸(𝑦�) = 𝜇, −∞ < 𝜇 < ∞			∀𝑡 

ii) 𝑉(𝑦�) = 𝜎� < ∞			∀𝑡 

iii) 𝐶(𝑦�, 𝑦�DÔ) = 	𝛾(𝑠)			∀	𝑡, 𝑠 (the autocovariance function) 

where the mean, variance and covariance do not depend on the time t. If we observe team 

strengths over time in several papers (e.g. Dixon and Coles, 1997; Knorr-Held, 2000; Koopman 

and Lit, 2015), it appears that the time series plots of strengths do not exhibit the properties 

attributed to a stationary process. Two classic examples of nonstationary time series that violate 

at least one of the properties above are trend-stationary and difference-stationary processes.  

A simple trend stationary process that could be applied to modelling attack strength 

dynamics could be formulated as:  

 𝛼� = 𝛼F + 𝑑𝑡 + 𝜀� (24) 

where 𝑑𝑡 is the trend component of the time series.  The mean is time-dependent, as 𝐸(𝛼�) =

𝛼F + 𝑑𝑡. This series can be made stationary by detrending. A simple example of a difference-

stationary series is a random walk, (used in Knorr-Held (2000) and Owen (2011) where 𝛼� =

𝛼�D@ + 𝜀� ), for which the second and third criteria are violated: 𝑉(𝛼�) = 𝑡𝜎�  and 

𝐶(𝛼�, 𝛼�DÔ) = (𝑡 − 𝑠)𝜎�, so that both the variance and autocovariance functions depend on 

time  t. These types of time series processes are often called I(1) processes (integrated processes 

of order 1), because one can achieve stationarity by taking first differences once. Sometimes a 

time series can have a trend and also be a difference-stationary process, so that it is said to have 

a stochastic trend. Despite the fact that trend-stationary and difference-stationary processes 

have very different properties, realisations and diagnostics can look rather similar. The 

implications for forecasting are that the one step ahead forecast 𝛼Õ�Z@ is different for all three 

processes:  

i) For a trend stationary process, 𝛼ÕÖZ@|Ö = 𝛼F + 𝑑(𝑇 + 1) 

ii) For a random walk, 𝛼ÕÖZ@|Ö = 	𝛼Ö 

iii) For a stochastic trend, 𝛼ÕÖZ@|Ö = 𝛼F + 𝛼Ö + 𝑑(𝑇 + 1) 
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Diebold and Kilian (2000) reinforce this point: that it is very important to decide which 

dynamic model to use because different models imply different predictions. They recommend 

pre-testing for a unit root of the autoregressive parameter. There are several tests that can be 

used to test for the presence of a unit root, most notably the Augmented Dickey-Fuller (ADF) 

test (Said and Dickey, 1984) and the DF-GLS ERS test (Elliot et al., 1996). For a comprehensive 

review of these tests and test alternatives, refer to Maddala (2001).  

Structural breaks and forecasting 

A further issue in modelling dynamics is the possible presence of structural breaks1. This 

occurs when the assumption of parameter “continuity” fails. A break occurs in the trend 

stationary process (24) when there is a discontinuity in either 𝛼F  or 𝑑  or both. Such 

discontinuities may arise naturally in football when teams buy and sell players during transfer 

windows, and when management and team ownership changes. Clements and Hendry (1998) 

provide Monte Carlo evidence for ex-ante forecast failure in the presence of structural breaks 

in time series. This is quite common in macroeconomic and financial time series, but it has 

never been considered when modelling team strength dynamics in football. This adds a further 

challenge to modelling match outcomes. The presence of structural breaks has important 

implications for time series analysis. Perron (1989) shows that traditional unit root tests lose 

power when a structural break is present in the time series. Furthermore, Pesaran and 

Timmermann (2004) show that ignoring these breaks leads to inconsistent and biased forecasts.  

Testing for breakpoints is a huge topic in the econometrics literature that has had incredible 

developments. From the pioneering work of Chow (1960), which tests for a known single 

breakpoint, this topic has attracted a considerable amount of attention for econometricians. 

Zivot and Andrews (1992) provide a test for a unit root null hypothesis against the alternative 

of a trend stationary process with one endogenous breakpoint (determined by the data itself).  

Since then, tests for multiple breakpoints have been developed, such as Bai and Perron (1998, 

2003). A more comprehensive review of structural change detection can be found in Perron 

(2006).  

                                                

1 This can also be known as structural change or change-point analysis. 
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Even if these types of structural break tests are powerful in detecting breakpoints and their 

confidence intervals, they are problematic for forecasting because as new data becomes 

available, the detection of a new break is incredibly difficult and can take several observations. 

Other tests such as Zeileis et al. (2005) deal with this detection delay better, but on the other 

hand struggle to detect smaller breaks.  

Structural break testing has not been considered in the sports literature. In fact, one of its 

only applications is from Palacios-Huerta (2004) as an empirical test of whether exogenous 

factors such as political and economic events as well as changes in the rules affect the outcomes 

of matches (in particular the average and the variability of goals per match), but with no 

application to forecasting. 

Solutions to forecasting under parameter instability are generally split into two categories. 

The first involves modelling the changes parametrically. This means defining a functional form 

to model the data generating process (DGP): both in terms of the break process itself and how 

the new parameters post-break are estimated. Two pioneering models include the Rosenberg 

(1973) and Hamilton (1989) models. Rosenberg (1973) specifies that the parameters change at 

every period under a mean-reversing mechanism where the speed of reversion is estimated. The 

Markov-switching model in Hamilton (1989) allows for less frequent changes and the 

parameters to switch between states. In one way or another, the models in the literature are 

variations and extensions of them.   

Some sophisticated models seem to have had some relative success in forecasting 

macroeconomic series using Bayesian methodologies. Some examples include Pesaran et al. 

(2006) (henceforth, PPT) , Koop and Potter (2007) (KP) and Giordani and Kohn (2008) (GK). 

These models use data to learn where the breaks have occurred in order to sample new 

parameters. The manner in which the new parameters are sampled is the main difference 

between these models. Suppose a break has occurred and the parameters, denoted in a vector 

𝛽c, have changed to 𝛽cZ@. PPT specifies the form 𝛽c = 	𝛽F + 𝑢c, 𝑢c	~	i.i.d	𝑁§(0, 𝐵F), which 

essentially draws 𝛽cZ@  from the conditional mean. PPT also varies the prior and allows a 

random walk evolution of the coefficients 𝛽c = 	𝛽cD@ + 𝑢c  thereby directly linking the next 

regime with the current one. The KP model follows the same random walk prior specification 

for drawing the next set of post-break coefficients. In fact, this is inspired by the literature of 

time-varying parameter (TVP) models (Stock and Watson, 2007) which specifies that the 

coefficients 𝛽c change at every observation, so 𝛽c = 	𝛽cD@ + 𝑢c is in fact 𝛽� = 	𝛽�D@ + 𝑢�. The 
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break process in PPT is modelled using a Markov process developed in Chib (1998), whereas 

KP models the duration between breaks as a Poisson distribution. 

Giordani and Kohn (2008) specify a dynamic mixture approach. If we have a similar 

specification of the state transition equation 𝛽� = 	𝛽�D@ + 𝑢� , the GK model includes a 

Bernoulli random variable 𝑘, where 𝑘 = 1 with probability 𝑝 and 𝑘 = 0 with probability 1 −

𝑝. Thus the evolution of the coefficients becomes 𝛽� = 	𝛽�D@ + 𝑘𝑢�. Rather than sampling the 

states using the Chib (1998) algorithm, GK rely on the efficient methods of Gerlach et al. (2000) 

to estimate 𝑘.  

Xu and Perron (2017) develop a dynamic mixture model, but estimate it in a frequentist 

framework through the use of a mixture Kalman filter and an Expectation-Maximisation (EM) 

algorithm. The mean-reverting mechanism developed in their paper seems to forecast the post-

break parameters consistently well across different macroeconomic time series.  

Bauwens et al. (2015) compares several sophisticated models in an extensive out-of-sample 

forecasting exercise on 60 different macroeconomic series. The conclusion is that no one model 

is consistently the best in the presence of structural breaks. This seems to indicate that there is 

still some research to be carried out on this topic. 

Pesaran and Timmermann (2007) consider an additional problem: if breaks occur near the 

end of the sample, you have a small sample on which to train your new parameter estimates 

post-break. They recommend using some pre-break data to attempt to remedy the trade-off 

between bias and variance. This technique is shown to minimise the expected loss function of 

the forecast (like the mean square error). This awareness leads us to an alternative remedy: 

rather than modelling breaks parametrically, different forecasting techniques and methods that 

are robust to structural change could be implemented. These techniques bypass the “necessity” 

of modelling breaks explicitly. One of the most common techniques is that of model averaging, 

which pools forecasts from many different models by applying some type of weighting 

mechanism. Rossi (2013) finds that equally weighted average forecasts seem to be consistently 

good. Bayesian model averaging and alternative weighting schemes such as maximising the 

weighted log score (Geweke and Amisano, 2011) also work reasonably well. The choice of 

window size also has an impact on forecasting performance with the choice of either rolling or 

recursive windows being most popular. However, averaging across window sizes (Pesaran and 

Timmermann, 2007) seems to be an alternative solution to this problem of window size and 
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type selection. Rossi (2013) provides a thorough review of these forecasting techniques and 

their performances.  

It would be interesting to see either of these solutions being applied to a topic outside of 

macro- or financial economics. A good starting point would be team strength dynamics in 

football.  
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3. Data Analysis and Results 

Methodology 

Match results are available from http://www.football-data.co.uk for the past 22 seasons 

of the top 4 divisions in UK football, although for the purpose of this thesis, only the last 9 

seasons of the Premiership and Championship are used. The data are freely available on the 

website to download as a csv file.  

The model used to obtain and evaluate the time series for team strengths was the Dixon 

and Coles (1997) model, which was explained in section 2 (equations 8 – 13). However, any 

other model specification could have been used to investigate dynamics such as Karlis and 

Ntzoufras (2003) and McHale and Scarf (2011). The software used for fitting the model was R 

(R Development Core Team, 2008), writing the pseudo-likelihood in equation 13 and 

maximising it subject to the constraint in equation 122.  

The methodology is quite unorthodox. Given that team strengths are not observed, a state-

space framework would usually be used to estimate the team strengths (state latent variables). 

However, we choose not to follow that approach for a few reasons. Firstly, the dynamics have 

to be specified and pre-imposed in the state transition equation. This would not be feasible if 

the number of lags of either the autoregressive or moving average parameters of the ARIMA 

process changes over time, allowing more flexibility in the time series analysis. Additionally, 

it is not feasible to estimate the time decay factor within a state space framework. In fact, after 

Dixon and Coles (1997), no article seems to consider this issue, particularly because of the 

preference for modelling in a state-space framework. We consider therefore that this 

methodology is really quantitatively no different than estimating a two-stage-least-squares 

(2SLS) or instrumental variables (IV) estimation, common in dealing with the endogeneity 

problem in econometrics.  

The parameter 𝜉 was estimated by minimising the Ranked Probability Score (RPS) as 

recommended in Constantinou and Fenton (2012) as well as maximising the predicted log-

                                                

2 We modify the constraint of equation 12 slightly, so that the sum of the log of the attack 

parameters is equal to zero instead of one.  
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likelihood  (PLL) in Dixon and Coles (1997). A higher PLL indicates that the actual match 

outcomes are more probable according to the model. The RPS is an alternative as it is a measure 

of the prediction error for the forecast of categorical ordered variables. The generic formula is  

𝑅𝑃𝑆 = 	 @
ÚD@

∑ ·∑ ·𝑝c − 𝑒c¹b
c}@ ¹�ÚD@

b}@    (25) 

where 𝑟 is the number of potential outcomes, 𝑝c and 𝑒c represents the difference between the 

cumulative distributions of forecasts with the observation. Applying this equation to a more 

concrete example: 𝑝ccould be the probability forecasts of home win and 𝑒c is 1 if the outcome 

was a home win and 0 otherwise. This is done across all three outcomes of a football match 

(home win, draw and away win).  

As the RPS approaches 0, it predicts the outcome better as there is a smaller difference 

between 𝑝c and 𝑒c. Therefore the implied benefit of using RPS is that it is also a measure of 

distance; given we observe a home win, a larger predicted probability of a draw is considered 

a smaller error than a higher predicted probability of an away win. The value for RPS is 

calculated for every match for a given value of 𝜉. In order to choose the optimal decay factor, 

the average RPS for the data set was calculated.  

It is necessary to use at least 2 seasons of Premiership and Championship matches to 

obtain estimates of the team strengths. Team strengths are estimated for every round using a 

rolling window of width two seasons: seasons 2008-09 and 2009-10 are used to obtain the 

attack, defence and home advantage parameter estimates for 𝑡 = 1, which is the time of the first 

playing round of season 2010-11. Then, we moved the estimation window by one playing 

round, meaning that matches of the 2nd round of season 2008-09 until 1st round of 2010-11 is 

used to estimate the same parameters at 𝑡 = 2. This rolling window methodology is used until 

we have attack and defence parameter estimates for all teams, from 𝑡 = 1,… , 266. There is the 

inconvenience that the Premier League does not run all 38 rounds of 10 games in “nice” blocks 

(for instance, some matches must be rearranged because of fixture clashes with other 

competitions) and the Championship actually has 552 matches per season because there are 

more teams (46 blocks of 12 games, but also not in “nice” blocks). To facilitate data 

manipulation, we ordered the data by date and before estimating the team strengths parameter, 
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we moved each window start and end by 25 matches in our sample3. In the end, we obtain a 

time series of team strengths of 266 observations4 (until the end of the 2016-17 season)5.  

The dynamic programming algorithm developed in Bai and Perron (2003) was used to 

calculate the optimal breakpoints, using the “strucchange” package in R (Zeileis et al., 2003). 

This algorithm is used to test the hypotheses of 0 vs. ℓ and ℓ vs. ℓ + 1, where  ℓ is the number 

of breakpoints in the total time series.  

The “breakpoints” function allows the user to set the maximum value that ℓ can take, 

which is calculated through a trimming parameter ℎ that has a default value of ℎ = 0.15. This 

is the minimal size (given as a fraction) relative to the sample size that each segment (before a 

breakpoint) can take. In this case, since we have a time series of 266 measures of team strengths, 

the minimum segment length before a break can happen is 39 observations.  

The Bai and Perron (2003) algorithm is a development that reduces the computational 

intensity of Bai and Perron (1998). Both are concerned with minimising the residual sum of 

squares (RSS). Imagine we can split our time series (of team strengths for a specific team) from 

𝑡 = 1,… , 𝑇  (𝑇 = 266)  with 𝑚  breakpoints into 𝑚 + 1  segments. With ℎ = 0.15  we have 

𝑚 ≤ 6. In a general framework, the dynamics governing this time series can be written as: 

𝑦� = 	𝑥�Ö𝛽c + 𝑢� 

where  𝑦� is the observation of the dependent variable at time 𝑡, 𝑥� is the vector of regressors at 

time 𝑡 (which can take form as trend, constant and lagged values of 𝑦�), 𝑥�Ö being its transpose, 

and 𝛽c  the regression coefficients of segment index 𝑗  and 𝑢�  the error term. The set of 

breakpoints can be written as ℐ§,¦ = {𝑡@, … , 𝑡§}, where 𝑡@ and 𝑡§ denote the time of the first 

                                                

3 Across the Premiership and Championship season, there are a total of 552 + 380 = 932 

matches. To obtain the team strengths parameter estimates of 38 games in a season, we would 

move the estimation window 37 times by 25 matches (925) games and then once by 7 matches.  

4 A time series of 266 observations is a result of 38 games for 7 seasons.  

5 Some teams only compete in the Championship and later Premiership after a certain 
number of rounds and therefore not all 266 team strength estimates are available. These are: 
Bournemouth, Brighton and Huddersfield. Southampton competed in League One during the 
estimation, so the missing parameter estimates were estimated through spline interpolation.  
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and last breakpoints respectively. Therefore, given a 𝑚 + 1 segment partition, the RSS for each 

segment can be obtained: 

𝑅𝑆𝑆(𝑡@, … , 𝑡§Z@) = 	∑ 𝑟𝑠𝑠(𝑡cD@ + 1, 𝑡c)§Z@
c}@      (26) 

where 𝑟𝑠𝑠(𝑡cD@ + 1, 𝑡c) is the minimum residual sum of squares of that 𝑗th segment. The goal 

is to find the breakpoints (𝑡@â , … , 𝑡§Z@ã ) that minimise the objective function over all possible 

segment partitions of the set of breakpoint combinations: 

(𝑡@ä ,… , 𝑡§Z@)å = 	arg	 min
�æ,…,�ç

[𝑅𝑆𝑆(𝑡@, … , 𝑡§)]    (27) 

If we used a grid search to obtain the global minimizer of the RSS, we would require least 

squares operations of order 𝑂(𝑇§Z@). Bai and Perron (2003) develop a dynamic programming 

algorithm based on the Bellman’s principle that reduces the computational intensity to least 

squares operations of order 𝑂(𝑇�), for any number of segment partitions. Thus the optimal 

segmentation is the one that satisfies the recursion 

𝑅𝑆𝑆·ℐ§,¦¹ = 	 min
(§Z@)¢Öè�èÖD¢Ö

𝑅𝑆𝑆·ℐ§D@,�¹ + 𝑟𝑠𝑠(𝑡 + 1, 𝑛)  (28) 

More detail on this algorithm can be found in Bai and Perron (2003).  

The “breakpoints” function of the “strucchange” package in R runs the Bai and Perron 

(2003) algorithm and we set the trimming parameter to the default ℎ = 0.15 and therefore the 

maximum number of breaks 𝑚 = 16. The “summary” function outputs shows the estimated 

parameters of the regression model, whereas the “coef” function using the object of the 

breakpoints function as a parameter outputs the different coefficients 𝛽c for each section. The 

optimal breakpoints are selected according to minimum BIC partition.  

The greatest advantages that these tests possess is that they are powerful in detecting 

structural breaks and they do so endogenously, without making any underlying assumptions 

about the data. They provide us with a great starting point in detecting parameter instability in-

sample. The challenge with it is that it is not an appropriate tool to carry out-of-sample forecasts. 

This is because it is difficult to detect delays as new observations become available. Thus for 

us, it becomes a tool for in-sample analysis only.  

This chapter is structured as follows: firstly the result of the decay factor estimation is 

presented, followed a description of the time series for the team strengths. Then, the estimated 

breakpoints for the attack and defence strengths are presented.  
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Estimation of time decay 

Dixon and Coles (1997) estimated 𝜉� = 0.0065, although their measure of time was half 

weeks (3.5 days). However, we used days as a measure of time to estimate the decay factor, 

which would correspond to 𝜉� = 0.0065 ÷ 3.5 = 0.0018.   

To estimate the decay factor, we used a dataset of three seasons (2014-15 to 2016-17), 

comprising of both the Premiership and the Championship. Dixon and Coles (1997) in contrast 

included the 3rd and 4th tiers of English football over 114 half-weeks (or just over one year). 

The average RPS indicates the minimum value (optimal) to be at 𝜉� = 4	 ×	10Dë, whereas if 

we use the same predicted log-likelihood (PLL) as Dixon and Coles (1997), the optimal value 

would be 𝜉� = 5	 ×	10Dë. This value is one order of magnitude lower than that of Dixon and 

Coles, which seems to indicate that 𝜉 is susceptible to change over time, and/or the size of the 

dataset as well as the leagues included in the dataset. This should therefore be an area for future 

study. The plots of the average RPS and PLL against different values of 	𝜉 can be seen in Figure 

1 and Figure 2 respectively.  

For the rest of the analysis, we have opted to select 𝜉 = 4	 ×	10Dë, which is the optimal 

value according to the average RPS and this has been treated as fixed in order to estimate the 

team strength parameters back over the previous 6 seasons.  
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Figure 1 – Mean Ranked Probability Score versus ξ, the decay factor 

 

 

Figure 2 – Predicted Log-Likelihood versus ξ, the decay factor 
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Team strength dynamics 

Table 1 shows the average attack and defence strength estimates for the 23 teams that 

competed in the Premiership either in the 2015-16 or 2016-17 seasons and the standard error 

from the mean attack and defence, rounded to 3 significant figures.  

From the teams listed, we can see that Manchester City had the largest average attack 

strength, followed by Chelsea, Arsenal and Manchester United. Crystal Palace, Southampton, 

and Swansea however are the teams with the largest standard errors, reflecting that their attack 

changed significantly over the course of the 7 seasons being analysed. Other teams worth 

mentioning in this regard are Leicester City and Bournemouth. These are all teams which 

appear to have experienced significant improvements in their attack strength. The standard 

errors were measured as the deviation from the average strength parameter of all 266 “match 

rounds” that have been estimated. 

In comparison, Manchester United had the best average defence, followed by Chelsea, 

Manchester City, Arsenal and Everton, with Southampton, Middlesbrough, and Bournemouth 

having the highest standard errors.  

Figure 3 and Figure 4 illustrate the plots of attack and defence parameter estimates 

respectively over time. This data will form the basis for our time series analysis in the rest of 

Chapter 3. The teams shows below were split into 5 different categories for illustration 

purposes, as they share a similar range of parameter estimates on the y-axis: top 5, teams 

competing for an Europa League spot, mid-table teams, relegation candidates, and teams that 

were promoted from the Championship to the Premier League for the 2016-17 season. The time 

scale 𝑡 = 1,… , 266 represents the 38 games per season over the course of 7 seasons. The attack 

and defence parameter estimates for the top 5 teams can be seen below. It is interesting to note 

that Tottenham has the strongest attack and defence at 𝑡 = 266, whereas it had the weakest at 

𝑡 = 1 out of the “top 5” teams category. Manchester United’s decline in attack strength is also 

noteworthy. Bournemouth’s attack has improved substantially compared to other mid-table 

teams. 
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Table 1 - Mean attack and defence strengths of teams and the standard errors from the mean strength 
parameter over 266 match rounds 

Team 𝐥𝐨𝐠𝜶ðñññ 𝒔𝒆(𝐥𝐨𝐠𝜶𝒊) 𝐥𝐨𝐠𝜷ðñññ 𝒔𝒆(𝐥𝐨𝐠𝜷𝒊) 

Arsenal 0.605 0.0589 -0.341 0.111 

Bournemouth 0.154 0.179 0.233 0.224 

Brighton -0.175 0.104 -0.0117 0.0889 

Burnley -0.0361 0.0617 0.0816 0.206 

Chelsea 0.614 0.0937 -0.449 0.134 

Crystal Palace -0.108 0.235 0.0515 0.178 

Everton 0.342 0.0865 -0.283 0.0677 

Huddersfield -0.187 0.0676 0.387 0.122 

Hull City -0.159 0.118 -0.00903 0.0984 

Leicester City 0.145 0.194 0.0264 0.178 

Liverpool 0.511 0.170 -0.275 0.119 

Man City 0.678 0.116 -0.441 0.0807 

Man United 0.601 0.129 -0.454 0.134 

Middlesbrough -0.123 0.0647 0.0540 0.226 

Newcastle 0.201 0.0876 0.00216 0.0955 

Southampton 0.221 0.218 -0.112 0.282 

Stoke 0.0387 0.136 -0.172 0.0517 

Sunderland 0.0627 0.0622 -0.0522 0.0614 

Swansea 0.0746 0.200 -0.117 0.0579 

Tottenham 0.450 0.0919 -0.270 0.131 

Watford 0.0925 0.114 0.216 0.169 

West Brom 0.160 0.0792 -0.0316 0.119 

West Ham 0.187 0.113 -0.0472 0.118 
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Figure 3 – Attack Strength Parameter Estimates over 9 seasons (until 2016-17) 
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Figure 3 Continued 
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Figure 3 Continued 
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Figure 4 - Defence Strength Parameter Estimates over 9 seasons (until 2016-17) 
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Figure 4 Continued 
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Figure 4 Continued 
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There is a particular difficulty in estimating the strength of new teams as they join the 

Championship, and this can be seen with the increased volatility in teams like Huddersfield, 

Brighton, Bournemouth and Southampton. The way of estimating team strengths when teams 

have only played a few matches is not a topic of research of this thesis, but could be the subject 

of future research. Nevertheless, as more matches become available during the rolling window, 

the volatilities decrease and stabilise and adequate forecasts can be carried out for the last 2 

seasons.  

It is interesting to note how the log home advantage parameter 𝛾  also seems to have 

declined over the course of 7 seasons. This seems to be in agreement with the findings in Owen 

(2016).  

 

Figure 5 – Time series for home advantage over the 266 rounds 

 

The parameter estimate 𝜌Õ in equation 11 (which inflates or deflates the probability of low 

scores) was estimated and can be seen in Figure 6. When 𝜌Õ < 0 as is the case during most of 

our sample, the probability of 0-0 and 1-1 draws increase and the probability of 1-0 and 0-1 

wins decrease. When 𝜌Õ > 0, the opposite occurs. In the case where 𝜌Õ = 0, it means that 𝜏 = 1 

in equation 11 and equation 8 can be simplified to an independent bivariate Poisson model. Our 

parameter estimate of 𝜌Õ shows that in most of our time series, 𝜌Õ < 0.  
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Figure 6 - Time series for 𝝆 over the 266 rounds 

Testing for the presence of structural breaks 

The Bai and Perron (2003) dynamic programming algorithm is implemented to calculate 

the number of breakpoints in each time series and the position of these breakpoints. There are 

only 9 time series out of 46 for which no breakpoints occur: the attacks of Brighton, Burnley, 

Crystal Palace, Everton and West Brom; and the defences of Arsenal, Manchester City, 

Southampton and Stoke City. This part of the analysis was done using functions of the 

“strucchange” package in R.  

Figure 7 and Figure 8 illustrate the breakpoints in some of the time series of team strengths 

(with 95% confidence intervals) and their fitted values of an AR(1) model with intercept and a 

trend component. The black plots represent the time series of attack and defence strengths for 

each team (same plots as Figure 3 and Figure 4), whereas the blue plots are the fitted estimates. 

Red plots are the fitted estimates of time series which do not have a structural break. The vertical 
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dotted lines show the estimated breakpoint in the time series, and the red horizontal line at either 

side are the 95% confidence intervals of that breakpoint.  

The parameter estimates for each segment can be seen in Table 2 and Table 3 for attack 

and defence time series respectively; where 𝑐̂ is the intercept, 𝛿� the slope of the linear trend 

component and 𝜙Ì  the autoregressive parameter estimate. Most time series have at two 

breakpoints (split into three segments). When that is the case, the middle segment usually has 

a smaller value of 𝜙Ì, therefore the fitted estimates do not seem to fit particularly well and do 

not fluctuate around the mean as much as the observed estimates (only the intercept and the 

trend components are significant in explaining the series). This can be seen graphically in 

Figure 7 and Figure 8.  

Most estimates of the autoregressive parameter 𝜙Ì are in the range 0 < 𝜙Ì < 1, but there are 

some notable exceptions. In Liverpool’s attack series, 𝜙Ì > 1 , which is indicative of an 

explosive process. This explosive behaviour can also be seen in the first segment of Chelsea’s 

defence series.   

Regarding other teams’ defences, Bournemouth’s autoregressive parameter in their first 

segment is negative, which indicates mean-reversion with alternating sign: this would indicate 

that their defence will be stronger than the mean next round if it was below the mean this period. 

Manchester United’s autoregressive parameter for their defence time series is very close to zero 

in their second segment which means that there is extremely little fluctuation around the mean. 

Similar results can be found for Leicester’s and Sunderland’s defences. 

Given the range of values that the dependent variable can take, it is not surprising that we 

observe small parameter values for the trend component 𝛿�. However, the Bai and Perron (2003) 

procedure still seems to pick up changes in the trend component between segments, particularly 

when the order of magnitude of the parameter 𝛿� changes by at least one, which according to 

the results, seems to be rather common.   
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Figure 7 - Attack Breakpoint Estimates over 266 rounds, from 2010-11 season to 2016-17 season 
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Figure 7 Continued 
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Figure 8 - Defence Breakpoint Estimates over 266 rounds, from 2010-11 season to 2016-17 season 
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Table 2 - Parameter Breakpoint Estimates Attack 

 

  

Team Segment 𝒄Õ 𝜹û 𝝓û  

Arsenal 
2 - 138 

0.0369 -0.0000293 0.941 

 139 - 177 0.540 -0.000455 0.137 

 
178 - 266 

0.0719 0.000214 0.813 

Bournemouth 
116 - 161 

-0.333 0.00214 0.572 

 162 - 266 -0.0300 0.000434 0.772 

Brighton 
40 - 266 

-0.0205 0.0000609 0.934 

Burnley 2 - 266 -0.00300 0.00000615 0.944 

Chelsea 
2 - 119 

0.0160 -0.0000451 0.975 

 120 - 159 0.0468 0.00273 0.249 

 
160 - 266 

0.0201 0.0000459 0.952 

Crystal Palace 
2 - 266 

-0.0242 0.00015437 0.950 

Everton 2 - 266 0.00986 0.0000552 0.951 

Huddersfield 
79 - 108 

0.514 -0.00661 0.522 

 109 - 266 -0.0432 0.0000489 0.805 

Hull 
2 - 131 

-0.0350 0.000115 0.903 

 
132 - 266 

-0.0706 0.000254 0.632 

Leicester 
2 - 106 

-0.0148 0.000261 0.833 

 
107 - 149 

-0.398 0.00351 0.168 

 150 - 266 -0.0121 0.000125 0.966 

Liverpool 
2 - 147 

-0.0120 0.000156 1.00 

 148 - 204 0.954 -0.00223 0.220 

 
205 - 266 

-0.0648 0.000641 0.853 

Manchester City 
2 - 148 

0.0362 0.000189 0.918 

 149 - 189 0.276 0.00267 0.0498 

 
190 - 266 

0.280 -0.000479 0.783 
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Table 2 Continued  

Team Segment 𝒄Õ 𝜹û 𝝓û  

Manchester United 
2 - 148 

0.0903 -0.0000371 0.876 

 149 - 266 0.386 -0.000860 0.554 

Middlesbrough 
2 - 148 

-0.00918 0.0000536 0.954 

 
149 - 223 

-0.294 0.00125 0.243 

 224 - 266 0.288 -0.00141 0.519 

Newcastle 
2 - 148 

0.0264 -0.0000646 0.919 

 149 - 207 0.0168 0.000301 0.228 

 
208 - 266 

-0.0365 0.000243 0.871 

Southampton 2 - 41 -0.143 0.00505 0.741 

 
42 - 266 

0.00977 0.0000685 0.929 

Stoke 
2 - 105 

-0.0000774 -0.0000453 0.917 

 106 - 177 -0.247 0.00153 0.603 

 
178 - 266 

0.0395 -0.0000517 0.871 

Sunderland 2 - 92 0.0132 -0.0000384 0.881 

 
93 - 149 

0.254 -0.00202 0.267 

 
150 - 266 

-0.00841 0.0000674 0.915 

Swansea 2 - 117 -0.0224 0.000335 0.936 

 
118 - 158 

-0.0407 0.00163 0.0338 

 
159 - 266 

0.0291 -0.0000300 0.895 

Tottenham 
2 - 148 

0.0451 0.0000306 0.884 

 
149 - 266 

-0.0430 0.000816 0.754 

Watford 2 - 148 -0.00260 0.0000669 0.995 

 
149 - 187 

-0.0163 0.000947 0.198 

 
188 - 266 

0.0411 -0.000137 0.947 

West Brom 
2 - 266 

0.0316 -0.000101 0.885 

West Ham 
2 - 148 

0.0164 0.000112 0.799 

 149 - 187 -0.342 0.00259 0.295 
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Table 3 - Parameter Breakpoint Estimates Defence 
 

 
  

Team Segment 𝒄Õ 𝜹û 𝝓û  

Arsenal 
2 - 266 

-0.00783 -0.0000502 0.958 

Bournemouth 116 - 148 3.83 -0.0234 -0.341 

 
149 - 190 

0.910 -0.00402 0.163 

 
191 - 266 

0.0165 -0.0000140 0.757 

Brighton 
40 - 73 

-0.0488 0.000810 0.491 

 
74 - 266 

0.000930 -0.0000123 0.906 

Burnley 2 - 145 0.0116 -0.0000771 0.973 

 
146 - 266 

0.0688 -0.000508 0.731 

Chelsea 2 - 148 0.0241 -0.000192 1.02 

 
149 - 189 

0.219 -0.00369 0.298 

 
190 - 266 

-0.0265 -0.0000287 0.914 

Crystal Palace 2 - 143 0.0272 -0.0000552 0.884 

 
144 - 182 

0.243 -0.00148 0.451 

 183 - 266 -0.0791 0.000269 0.899 

Everton 
2 - 148 

-0.00821 -0.0000643 0.961 

 
149 - 203 

-0.158 0.000200 0.574 

 204 - 266 0.0783 -0.000557 0.738 

Huddersfield 
79 - 106 

-1.063 0.0134 0.431 

 107 - 266 0.0624 0.0000160 0.839 

Hull 
2 - 148 

0.0180 -0.000191 0.893 

 
149 - 222 

0.298 -0.00192 0.374 

 223 - 266 -0.304 0.00120 0.801 

Leicester 
2 - 120 

0.0144 -0.000114 0.959 

 121 - 159 0.562 -0.00373 0.019 

 
160 - 221 

0.111 -0.000618 0.911 

 
222 - 266 

-0.328 0.000503 0.282 

Liverpool 2 - 148 -0.0401 0.000138 0.908 

 
149 - 266 

-0.00808 -0.000256 0.671 

Man City 2 - 266 -0.0287 0.0000241 0.944 
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Table 3 Continued 

  

Team Segment 𝒄Õ 𝜹û 𝝓û  

Manchester United 2 - 119 -0.110 0.000462 0.831 

 120 - 158 -0.487 0.00139 -0.034 

 159 - 266 0.0730 -0.000830 0.781 

Middlesbrough 2 - 148 0.00675 -0.000103 1.007 

 149 - 187 1.20 -0.00676 0.311 

 188 - 266 -0.0432 0.0000877 0.919 

Newcastle 2 - 148 -0.0195 0.000213 0.895 

 149 - 197 0.385 -0.00189 0.268 

 198 - 266 0.132 -0.000534 0.790 

Southampton 2 - 266 0.0322 -0.000368 0.874 

Stoke 2 - 266 -0.0139 0.000000602 0.919 

Sunderland 2 - 119 -0.0133 0.0000498 0.897 

 120 - 161 -0.107 0.000779 0.023 

 162 - 266 0.0123 -0.0000717 0.816 

Swansea 2 - 93 -0.0403 0.000318 0.832 

 94 - 152 -0.162 0.000789 0.181 

 153 - 266 -0.0223 0.0000760 0.940 

Tottenham 2 - 126 -0.0185 0.00000825 0.933 

 127 - 192 -0.333 0.00148 0.374 

 193 - 266 0.191 -0.00105 0.880 

Watford 2 - 84 0.0731 0.000214 0.776 

 85 - 148 0.169 -0.000822 0.718 

 149 - 191 0.314 -0.000813 0.316 

 192 - 266 0.0405 -0.000207 0.884 

West Brom 2 - 148 0.0120 -0.000128 0.898 

 149 - 188 0.199 -0.00104 0.163 

 189 - 266 0.107 -0.000658 0.786 

West Ham 2 - 148 0.00802 -0.000106 0.978 

 149 - 227 0.169 -0.00131 0.537 

 228 - 266 -0.363 0.00121 0.476 
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4. Forecasting 

This forecasting chapter is split into four parts. The first part describes the five different 

models in this exercise and how the one-step ahead forecasts are calculated. The second part 

shows for each model the graphical representation of the point estimate of one-step ahead 

forecasts of team strengths for every team. In the third part we present a table with the mean-

square error (MSE) to see which model performed best in this out-of-sample forecasting 

experiment. In the final part of this chapter, the models are evaluated in their abilities to generate 

match outcome probabilities according to the average RPS, which is the same measure used to 

calculate the optimal decay factor in Chapter 3.  

For the purpose of this analysis, we assume that the estimates for attack and defence 

parameters derived from estimating the Dixon and Coles model in the previous Chapter are the 

“true” values of attack and defence and the forecasts for each model are compared to them. The 

procedure is as follows: a one-step ahead forecast is carried out on the training set window of 

5 seasons in order to forecast the first match of the 6th season. Thus, we use 𝑡 = 1,… , 190 in 

order to generate 𝛼@ý@ã  and 𝛽@ý@ä . Then, the window is moved by 1 observation and 𝑡 =

2,… , 191 is used to generate 𝛼@ý�ã and 𝛽@ý�ä  up until 𝛼�þþã  and 𝛽�þþå. In all four models, the 

dependent variable 𝑦� refers to the attack strength 𝛼� and the defence strength 𝛽�.  

Model 1 – Random walk 

𝑦� = 𝑦�D@ + 𝜀�      (29) 

where 𝜀�	~𝑁(0, 𝜎�). For this model the forecast is simply the last observation: 

𝑦ÕÖZ@|Ö = 𝑦Ö      (30) 

Model 2 – Random walk with drift 

𝑦� = 𝑐 + 𝑦�D@ + 𝜀�     (31) 

where 𝜀�	~𝑁(0, 𝜎�) as in the random walk model, and	𝑐 is the drift parameter. The forecast is 

very similar to that for the random walk model: 

𝑦ÕÖZ@|Ö = 𝑐̂ + 𝑦Ö      (32) 
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Model 3 – Auto-ARIMA 

An ARIMA(p,d,q) process (Box and Jenkins, 1970) for time series 𝑦� can be represented as 

·1 − ∑ 𝜙b𝐿b
ÿ
b}@ ¹∆"𝑦� = ·1 − ∑ 𝜃b𝐿b

#
b}@ ¹𝜀�   (33) 

where 𝐿 is the lag operator, 𝜙b the parameters from the autoregressive component of the model 

for 𝑖 = 1,… , 𝑝 , 𝜃b  the moving average parameters 𝑖 = 1,… , 𝑞 . The order of integration is 

represented by d, with ∆" being the number of times the process needs to be differenced to 

make it stationary.  

A rolling window for forecasting allows for the lags of the autoregressive and moving 

average parts of the model to vary and therefore addresses the problem of structural breaks. 

Different ARIMA(p,d,q) models were estimated and the optimal values of p, d and q chosen 

according to the BIC before generating the one-step ahead forecasts. The BIC is used instead 

of the AIC since it penalises the number of parameters more heavily. The “forecast” package 

in R was used here.  

Model 4 – Time-varying parameter model 

The time-varying parameter (TVP) model (Durbin and Koopman, 2001) specifies that the 

state variables (the parameters that determine the team strengths) follow a random walk. Thus, 

it is as if a break is present at every observation. The one-step ahead forecast is carried out 

through the Kalman Filter for the best estimate of the team strength. The parameters are 

estimated through the Kalman Smoothing procedure.  

In a general state-space framework: 

𝑦� = 𝐹�𝜃� + 𝑣� 

𝜃� = 𝐺𝜃�D@ + 𝑤� 

where 𝑣�	~𝑁(0, 𝜎´�), 𝑤�	~	𝑁(0, 𝜎ª�). The 𝐹�  and 𝐺  matrices specify the transitions between 

state and observed variable, and the dynamics of the state variables respectively. In this 

scenario, we have 2 states and one observed variable: 

 𝑦� = 𝑐� + 𝜙�𝑦�D@ + 𝜀� (34) 

This means that the state dynamics are 
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 𝑐� = 𝑐�D@ + 𝜂¤� 

𝜙� = 𝜙�D@ + 𝜂�� 
(35) 

 

where 𝜀�	~𝑁(0, 𝜎'�) and (𝜂¤�, 𝜂(�,	𝜂��)	~	𝒩(0, 𝑑𝑖𝑎𝑔·𝜎¤�, 𝜎(�, 𝜎��¹). Thus   

𝐹�𝜃� + 𝑣� 	= (1 𝑦�D@) ,
𝑐�
𝜙�-+ 𝑣� 

𝜃� = ,
𝑐�
𝜙�- ,𝐺 = ,1 0

0 1- , 𝜃�D@ = ,
𝑐�D@
𝜙�D@- ,𝑤� = ,

𝜂¤�
𝜂��- 

The Kalman Filter is an algorithm that calculates the moments of the state vector 𝜃�Z@, 

assumed to be normally distributed, conditioned on the observed data 𝑌� = (𝑦@, … , 𝑦�) and the 

state model parameters. The updating equations compute the prediction error and the predicted 

error variance. The Kalman Smoothing is a backward recursion based on the full set of 

observations that calculates the mean and variance of specific conditional distributions to thus 

provide estimates of the state vector and its variance matrix. The model was estimated using 

the “dlm” package in R, using in-built functions such as “dlmMLE” to obtain the maximum 

likelihood estimates of the parameters, “dlmFilter” for the Kalman Filter based on the optimal 

estimates from “dlmMLE”, and “dlmSmooth” for the Kalman Smoothing estimates of the state 

vector.  

The TVP model allows for extra flexibility when accounting for structural breaks. 

Depending on the smoothed estimates of the state variables and the sizes of the variances of the 

errors, they can capture a structural break at every observation (in which case, the state variables 

follow a random walk process), or they can have a break at particular point in time, or the state 

variable estimates could remain constant throughout the duration of the sample.  

The forecast 𝑦ÕÖZ@|Ö is carried out by applying the updating equations of the Kalman Filter 

to obtain the optimal estimator of the state vector 𝜃ÌÖZ@|Ö.  

 𝜃ÌÖZ@|Ö = 𝐺𝜃Ö 

𝑦ÕÖZ@|Ö = 𝐹�𝜃ÌÖZ@|Ö 

 

(36) 
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Model 5 – Equal weights model averaging 

Equal weights model averaging is a very simple method of addressing the problem of 

forecasting structural breaks out-of-sample. It gives equal weights for all the different models 

we consider and takes an average of their respective forecasts. Let our vector of weights be 

𝒘 = (𝑤@, … ,𝑤|), where 𝑁 is the number of models we are averaging, and our vector of one-

step ahead forecast estimates be 𝒚â𝑻Z𝟏|𝑻 = (𝑦Õ@ÖZ@|Ö, … , 𝑦Õ|ÖZ@|Ö) where 𝑦Õ@ÖZ@|Ö is the one-step 

ahead forecast of model 1 and 𝑦Õ|ÖZ@|Ö. In our case, we have four models that we are averaging, 

thus 𝑤@, … ,𝑤| = 0.25. Therefore the one-step ahead forecast of model 5 is: 

 
𝑦ÕÖZ@|Ö ={𝑤b

ë

b}@

𝑦ÕbÖZ@|Ö 

 

(37) 

Rossi (2013) advocates the use of equal weights model averaging saying it can sometimes 

improve its forecasting performance.  

One-step ahead forecast of team strengths 

Figure 9 to Figure 16 show the one-step ahead forecasts for the first four models for 

Arsenal’s attack and defence. The rest of the teams can be seen in Appendix A (Figure 18 and 

Figure 19) to Appendix D (Figure 24 and Figure 25). The black plots represent the actual 

parameter estimates from the Dixon and Coles model estimated in the previous chapter. The 

blue lines represent the one-step ahead point forecasts, and the two red lines are the upper and 

lower 95% confidence intervals. Regarding Figure 24 and Figure 25 (the TVP model), the red 

dotted line overlaid on the black plots represent the one-step ahead forecast from the Kalman 

Filter in-sample. Forecast for model 5 have not been shown in this thesis because the upper and 

lower confidence intervals are very large. Since it is model average, the average of the variances 

of all four models also need the covariance to be taken into account. This in turn inflates the 

95% confidence intervals and for several plots, they lie outside of the graph range (we could 

have increased the graph range in order to show how large the confidence intervals were, but 

we wished to keep the ranges uniform for all forecast graphs in order to ease comparison 

between different figures for the reader).  
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 Graphically, there doesn’t seem to be much difference between the simple random walk 

(model 1) and the random walk with drift (model 2) forecasts. The 95% confidence intervals of 

the auto-arima (model 3) forecasts are slightly narrower than the model 1 and 2 counterparts. 

This is to be expected though: given the parameters estimated from the breakpoint analysis in 

Table 2 and Table 3, only a couple of segments have an autoregressive parameter 𝜙Ì ≅ 1 (which 

would indicate model 1 or model 2). However, the graphs for the TVP (model 4) forecasts look 

like the best fit, with the 95% confidence intervals much narrower than any of the other models.  

The graphs for the estimated smoothed states for each team (attack and defence) were 

calculated through the Kalman Smoothing algorithm and can be seen for all teams in Appendix 

E (Figure 26 and Figure 27). They illustrate, from left to right on the graphs, how the estimates 

of the intercept 𝑐̂�, and the autoregressive parameter 𝜙Ì� behave over time. After discarding the 

initial 5 observations as a burn-in period, we can have a better look at the fluctuations for the 

estimates. The black plots show the estimates and the red dotted lines are their upper and lower 

95% confidence intervals.  

For almost every team, 𝑐̂� fluctuates considerably and looks like a random walk. The only 

exceptions are Arsenal’s and West Ham’s attack series and Liverpool’s defence series. 

Meanwhile, for the majority of teams, 𝜙Ì�  seems to fluctuate too. For the defence series, 

however, only Crystal Palace and Watford do not experience fluctuations in the estimates of 

𝜙Ì� . Additionally, almost every team has 𝜙Ì� < 1  for all values of 𝑡 , with Brighton’s and 

Southampton’s defences being the only exceptions. This suggests that both teams have 

experienced considerable growth in those aspects of their game.  
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Figure 9 - (Model 1) Simple Random Walk Forecasts for Arsenal – Attack 

 

 

Figure 10 - (Model 1) Simple Random Walk Forecasts for Arsenal – Defence 
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Figure 11 - (Model 2) Random Walk With Drift Forecasts for Arsenal – Attack 

 

Figure 12 - (Model 2) Random Walk With Drift Forecasts for Arsenal - Defence 
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Figure 13 - (Model 3) Auto-Arima Forecasts for Arsenal – Attack 
 
 

 

Figure 14 - (Model 3) Auto-Arima Forecasts for Arsenal – Defence 
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Figure 15 - (Model 4) TVP Forecasts using Kalman Filter for Arsenal – Attack 

 

 
 

 

 
Figure 16 - (Model 4) TVP Forecasts using Kalman Filter for Arsenal – Defence 
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Mean Square Error (MSE) comparison 

The MSE is calculated by the average of the squared errors between the forecast and the 

actual observations. Its formula is given by 

𝑀𝑆𝐸 = 	
1
𝑇	{(𝑌� − 𝑌�û)�

Ö

�

 

where 𝑇 is the total number of forecasts in the sample,  𝑡 is the first index of the out-of-sample 

forecast, 𝑌c is the actual observation and 𝑌�û  is our estimate.  

Table 4 and Table 5 demonstrate the values for the out-of-sample forecast MSE for all five 

models and we come up with interesting results. The best performing models according to MSE 

seems to be the simple random walk forecast and the model averaging. For the team attack 

strengths, the simple random walk forecasts has the lowest MSE for 7 teams, compared with 6 

teams for the model averaging forecasts. The TVP model forecasts attack strengths the worst 

according to this criterion. The results for the defence time series are similar for the top two 

forecasting models, with model 1 having the lowest MSE for 8 teams, and model 5 for 7 teams. 

Model 4 performs better in forecasting team defence than attack, having the lowest MSE for 4 

teams. This is surprising given the fact that the simple random walk model is actually a special 

case of the TVP model, where 𝑐� = 0 and 𝜙� = 0 for all values of 𝑡.  

The values in those two tables have been rounded to 6 decimal places and the model with 

the lowest MSE for every team has been highlighted in bold.  
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Table 4 - Mean Square Error Forecast - Attack 

Team Model 1 Model 2 Model 3 Model 4 Model 5 

Arsenal 0.000290 0.000292 0.000318 0.000294 0.000293 

Bournemouth 0.000284 0.000278 0.000305 0.000285 0.000278 

Brighton 0.000259 0.000263 0.000258 0.000264 0.000260 

Burnley 0.000271 0.000273 0.000263 0.000271 0.000267 

Chelsea 0.000249 0.000249 0.000260 0.000261 0.000252 

Crystal Palace 0.000279 0.000282 0.000309 0.000294 0.000287 

Everton 0.000291 0.000290 0.000292 0.000303 0.000293 

Huddersfield 0.000323 0.000327 0.000350 0.000331 0.000322 

Hull 0.000365 0.000367 0.000349 0.000358 0.000349 

Leicester 0.000242 0.000233 0.000265 0.000266 0.000246 

Liverpool 0.000316 0.000314 0.000324 0.000314 0.000313 

Man City 0.000191 0.000201 0.000220 0.000198 0.000199 

Man United 0.000267 0.000265 0.000241 0.000265 0.000254 

Middlesbrough 0.000273 0.000274 0.000267 0.000269 0.000264 

Newcastle 0.000559 0.000563 0.000575 0.000558 0.000554 

Southampton 0.000313 0.000314 0.000366 0.000314 0.000319 

Stoke 0.000281 0.000286 0.000283 0.000278 0.000280 

Sunderland 0.000404 0.000407 0.000415 0.000406 0.000401 

Swansea 0.000318 0.000331 0.000366 0.000335 0.000332 

Tottenham 0.000371 0.000365 0.000435 0.000383 0.000382 

Watford 0.000269 0.000273 0.000283 0.000285 0.000274 

West Brom 0.000557 0.000560 0.000579 0.000571 0.000556 

West Ham 0.000317 0.000313 0.000322 0.000330 0.000318 
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Table 5 - Mean Square Error Forecast - Defence 

Team Model 1 Model 2 Model 3 Model 4 Model 5 

Arsenal 0.000513 0.000517 0.000517 0.000521 0.000515 

Bournemouth 0.000376 0.000368 0.000370 0.000429 0.000366 

Brighton 0.000351 0.000360 0.000404 0.000450 0.000366 

Burnley 0.000343 0.000350 0.000367 0.000348 0.000349 

Chelsea 0.000435 0.000431 0.000462 0.000437 0.000439 

Crystal Palace 0.000332 0.000342 0.000340 0.000330 0.000335 

Everton 0.000387 0.000388 0.000377 0.000397 0.000385 

Huddersfield 0.000232 0.000239 0.000376 0.000255 0.000259 

Hull 0.000471 0.000476 0.000504 0.000490 0.000482 

Leicester 0.000479 0.000482 0.000493 0.000501 0.000481 

Liverpool 0.000390 0.000398 0.000399 0.000381 0.000385 

Man City 0.000485 0.000489 0.000484 0.000486 0.000483 

Man United 0.000453 0.000459 0.000465 0.000480 0.000459 

Middlesbrough 0.000446 0.000452 0.000455 0.000449 0.000444 

Newcastle 0.000231 0.000235 0.000230 0.000240 0.000230 

Southampton 0.000461 0.000469 0.000673 0.000438 0.000467 

Stoke 0.000379 0.000380 0.000410 0.000385 0.000383 

Sunderland 0.000307 0.000308 0.000303 0.000307 0.000302 

Swansea 0.000317 0.000317 0.000356 0.000355 0.000326 

Tottenham 0.000410 0.000404 0.000431 0.000413 0.000399 

Watford 0.000280 0.000274 0.000307 0.000300 0.000287 

West Brom 0.000323 0.000320 0.000322 0.000335 0.000319 

West Ham 0.000348 0.000357 0.000375 0.000347 0.000355 
  



  

77 

 

Forecasting match outcome probabilities  

In this subsection we derive match outcome probabilities from the one-step ahead out-of-

sample forecasts of team strengths from the five models. This means we generated 5 different 

sets of match outcome probabilities (one for each model) for 760 matches in seasons 2015-16 

and 2016-17. Firstly, the model predictions are evaluated graphically in Figure 17 through the 

use of reliability plots. Subsequently, we evaluate their performances numerically using the 

average RPS (Constantinou and Fenton, 2012), broken down into different out-of-sample 

forecast segments. This can be seen in Table 6.  

Reliability plots for out-of-sample match outcome predictions 

We created reliability plots in order to examine how close our generated probabilities are 

to the empirical probabilities of observing each match outcome: home win, draw, or away win. 

These can be seen in Figure 17. A perfectly calibrated curve would lie on the 𝑦 = 𝑥 line, which 

means that each predicted probability “bins” of the model coincide with the empirical frequency 

with which we observe those events. When the curve lies below the 𝑦 = 𝑥, we have under-

estimated the probability according to the dataset observed, whilst the opposite is true if the 

curve lies above.  

All models seem to slightly overestimate the probability of the home team winning the 

match, but underestimate draws and home loss. However, the curves in model 5 seems to lie 

the closest to the 𝑦 = 𝑥 line.  

Below each reliability plot is a histogram of the predicted probabilities which shows the 

frequency of each probability band for our forecasts. They are all very similar for all the models. 

Frequencies above a predicted probability above 0.4 for a draw are negligible, so the reliability 

plots above that predicted probability value do not matter too much. The same can be said about 

the high probability bin in the “home lose” graph of all the models. However, the fact that all 

models under-predict the probability of the draw is indicative that the Poisson distribution 

together with the Dixon and Coles (1997) low-score adjustments are arguably not an adequate 

distribution for modelling scores and further research should be carried out in this area 

concerning count distributions.  
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Figure 17 - Reliability Plots and Histogram of Model Forecasts 
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Figure 17 Continued 
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Figure 17 Continued 

 
 

Average RPS for out-of-sample match outcome predictions 

In order to evaluate the out-of-sample performance for each model, we calculated how 

close our predictions were to the actual match result using the RPS. We filtered the out-of-

sample dataset into different segments to investigate whether some models predict better in a 

particular subsample than others. This seems to be the case.  

The motivation for splitting the sample into first and second halves of the season is to test 

the hypothesis that the first half is difficult to predict. This certainly seems to be the case with 

our results. For every model, the mean RPS value is lower in the second half of the season than 

the full season (a smaller value of the RPS indicates better predictions). 

For the full out-of-sample forecast dataset and the full 2016-17 season, the simple random 

walk performs the best. Model 2 (random walk with drift) is the best model in the 2015-16 

season sub-sample. The simple random walk model predicts the second half of the 2015-16 the 

best, but the TVP model has the lowest RPS value in the second half of the 2016-17 season.  
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Table 6 - Mean RPS Out-of-Sample Forecast 

 
Seasons 
2015-16 
2016-17 

2015-16 2016-17 2nd Half 
2015-16 

2nd Half 
2016-17 

Model 1 0.20210 0.21141 0.19279 0.20034 0.19141 
Model 2 0.20213 0.21138 0.19289 0.20035 0.19149 
Model 3 0.20225 0.21158 0.19292 0.20046 0.19150 
Model 4 0.20216 0.21149 0.19283 0.20037 0.19139 
Model 5 0.20216 0.21146 0.19285 0.20038 0.19145 

  

Discussion 

The naïve random walk forecasts performed only slightly better than the model averaging 

forecasts in terms of having the lowest MSE for most of the time series. However, in terms of 

predicting match outcome probabilities, the competition lies between the simple random walk 

forecast and the TVP model. It is not surprising that it did not outperform all other models for 

all teams. This is consistent with the econometrics literature of modelling and forecasting 

breaks, as no model seems to forecast best all the time.  

This forecasting exercise is intended only as a preliminary one to see how some models 

in the literature address the structural break problem in forecasting team strengths. Only the 1-

step ahead forecast has been considered because of its immediate applicability to sports betting 

(finding out the team strengths for the upcoming fixture in order to generate predictions for the 

match outcome). A 19-step ahead or 38-step ahead forecast could be of interest in order to 

predict table positions mid-season and especially at the end of the season. In terms of the latter, 

it can provide answers for punters and bookmakers as to which teams are most likely to be 

relegated, which ones could qualify or miss out on continental competitions, and who is the 

most likely team to win the Premiership. Along with the 19-step ahead and 38-step ahead 

forecasts, density forecasting could be used to compare variability between models.  

We believe another entire thesis could be dedicated to exploring the forecasting 

performance of several additional models as well as a plethora of forecasting techniques. This 

could include other types of model averaging as well as other methods such as exponentially 

weighted moving average (EWMA), window type and size selection and averaging across 

windows.  
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An issue that should be raised is that the team strength time series estimates are most 

likely to be sensitive to the model specification and the exponential decay factor. In our case, 

we chose the Dixon and Coles model. Future studies should include comparisons with other 

bivariate models of team strengths, such as McHale and Scarf (2011) for instance. As pointed 

out, given the large difference in the decay factor estimate from Dixon and Coles (1997), this 

area should also be considered a topic for future research, both in terms of how to estimate it 

(PLL vs. RPS vs. other criteria), the functional form, and differences across leagues and 

seasons.  

The Bai-Perron test was implemented using a specified functional form for the dynamics: 

an AR(1) with an intercept and a trend. Changing the functional form is likely to affect the 

results of the test: as more parameters are estimated (for instance, by adding more lags of the 

autoregressive component, it is likely that the test will fail to reject the null hypothesis (as the 

test will lose power and more often than not favour the hypothesis with fewer breakpoints).  

One methodology which could also be implemented is to model the duration and 

probability of breaks by using duration analysis, although this does not seem to be very popular 

in the literature. Even though these types of models may provide some underlying structure that 

could explain the duration of breaks, the issue of forecasting still remains an important one. 

The duration analysis can include some covariates such as managerial, ownership change, 

sponsorship deals, and net player transfers which can affect the hazard function and the 

probability of the next breakpoint.  

In theory, the MSE is a good enough measure of model performance for out-of-sample 

forecasting exercises, but in terms of its applicability to sports betting, it is purely theoretical. 

This is the reason we used the average RPS to analyse in practice how good each forecasting 

model generates match outcome probabilities. Extended work could include a betting 

performance analysis, although this raises other issues such as money management techniques 

and bookmakers prices. In practice, the model with the lowest MSE or the lowest RPS might 

not actually provide the best returns.  

We wish to mention one last point, which is an issue that was not addressed in this thesis, 

but remains a large topic of debate among econometricians. Long memory processes can be 

easily mistaken with structural change and confusion between both types of time series can also 

lead to forecasting failure. This area of econometrics could also be an area of future study 

applied to sports forecasting. Granger and Hyung (2004) show that a model with infrequent 
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breaks can perform better than an autoregressive fractionally integrated moving average 

(ARFIMA6) process in terms of in-sample fit, but can result in poorer forecasts. Additionally, 

part of the long memory could be influenced by the presence of breaks in the series. They show 

that, as the number or size of the breaks in a process increase, the value of the sample 

autocorrelation function tends to increase. Thus, the process has properties closer to a random 

walk. This could be the explanation as to why our random walk process has a lower MSE across 

most of the time series in our forecasting exercise.  

 

 

                                                

6 ARFIMA processes are a generalised version of ARIMA(p,d,q) processes, except that 
the differencing parameter 𝑑 is allowed to take non-integer values.  
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5. Conclusion 

In the course of the last ten to fifteen years, the literature on modelling scores in football 

matches has moved into researching dynamics to explain how team strengths change over time. 

In this way, forecasting can take account of the evolution of strength over time. At the very 

least, this will increase the forecast error relative to forecasts that suppose strengths are not 

evolving. The basic idea of a forecast is to extrapolate a statistical relationship into the future. 

Modelling dynamics of strengths allows the strength evolution over time to be extrapolated thus 

forecasting where team strengths will be at time 𝑡 + 1 in order to generate predictions for scores 

at time 𝑡 + 1.  

Strength dynamics can be considered using time series models. This is the approach we 

take in this thesis. In this context, a few questions arise, such as what kind of time series process 

to choose for the strength dynamics. This has important implications in terms of forecasting 

accuracy and it may be detrimental to choose the wrong model. Another issue that needs to be 

considered is the one of structural breaks. This is the phenomenon in econometrics where a 

time series experiences an unexpected change in the regression coefficients which govern the 

data generating process. When these regression coefficients are time invariant, large forecasting 

errors may occur and this is an important problem in time series econometrics (Clements and 

Hendry, 1998). Since then, there have been several attempts in developing forecasting 

techniques and models to improve forecasting performance of time series under parameter 

instability, particularly because of the importance of forecasting time series models in society. 

Several macroeconomic and financial data are modelled using these types of models.  

To date, this is the first thesis that addresses these two problems. Firstly it provides the 

contribution to knowledge that structural breaks are present in team strength dynamics. Through 

the use of the Bai and Perron (2003) algorithm, which endogenously selects the optimum 

breakpoints by minimising the global sum of squared residuals in all possible breakpoint 

partition combinations, we demonstrated that the vast majority of teams strength dynamics have 

at least one breakpoint.  

The second contribution is a natural result of the first one: if structural breaks have been 

shown in macro- and financial econometrics to result in large forecast errors, why could this 

not be the case in the football literature that has moved into researching dynamics? We carried 

out a forecasting exercise to test if this was the case. We compared different dynamic 
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specifications of team strength dynamics: the simple random walk, random walk with drift, 

auto-arima process and a time-varying parameter model (as well as a model averaging 

forecasting technique) in their abilities to firstly: forecast where team strengths would be in the 

next playing round of the league (the one-step ahead forecast) and secondly: using those 

forecasts, generating match outcome predictions.  

Our out-of-sample test dataset was two seasons of the English Premier League (2015-16 

and 2016-17), using team strengths dynamics from the 2010-11 to 2014-15 seasons as a training 

set. As a measure of how accurate our predicted match outcome probabilities were with the 

actual match result, we used the ranked probability score (Constantinou and Fenton, 2013), 

which is a good measure of evaluating the performance of predictions of ordered outcomes. In 

this forecasting exercise, we demonstrated that, in one of our out-of-sample subsamples (in the 

second half of the 2016-17 season), the forecasts of team strengths from the time-varying 

parameter model, which addresses this problem of forecasting under the presence of structural 

breaks, provided the closest match predictions to the real outcome the predictions of match 

outcomes according to the ranked probability score. Our forecasting exercise also shows that a 

simple random walk forecasts of team strengths performs very well in generating match 

outcomes predictions too, particularly in the first half of the season. This is probably because 

as the number of breaks increase, the sample autocorrelation function tends to increase and the 

process has properties that closely resemble a random walk model. 

We believe that the findings of this thesis has opened the door to a plethora of research 

questions to be investigated. Firstly, our estimate of the time decay factor is smaller than the 

one in Dixon and Coles (1997) by one order of magnitude. This means that we discount past 

matches less than Dixon and Coles. This actually gives further credibility to our structural 

breaks finding: a smaller decay factor means historical data contributes more to the current 

parameter estimates, we would expect the time series of parameter estimates to be more smooth 

and thus more difficult to reject the null hypothesis of “no structural breaks in the series”. 

Nevertheless, given the difference, the sensitivity of the decay factor estimate to different 

datasets should be the subject of further study.  

The framework for utilising the team strengths parameter estimates over time and 

modelling them through time series analysis is quite flexible and can be easily implemented in 

other sports. Essentially one could make use of any probability distribution to derive team 

strength parameter estimates over time. In the case of football, we could have obtained the 

parameter estimates over time through the inflated bivariate Poisson of Karlis and Ntzoufras 
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(2003) or the use of copulas (McHale and Scarf, 2011) to join different marginal count data 

distributions.  

The forecasting exercise can also be enhanced by comparing different types of forecasting 

models and techniques which address out-of-sample forecasting under the presence of 

structural breaks. Bayesian methodologies that have been extensively evaluated in Bauwens et 

al. (2015) could be implemented in a similar out-of-sample forecasting exercise of team 

strengths to predict match outcomes as well as different types of model averaging (such as 

Bayesian model averaging). 

Finally, we hope we have opened the doors for future researchers to engage in this 

interesting area of research, which is forecasting sports results. Macro and financial 

econometricians have a myriad of modelling techniques at their disposal that can be used in 

other disciplines, such as sports statistics. I hope to see more sports statisticians making use of 

these techniques not only in football, but in other sports as well.  
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Appendix A – Forecasts from the simple random walk model 

 

 

Figure 18 - (Model 1) Simple Random Walk Forecasts – Attack 
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Figure 19 - (Model 1) Simple Random Walk Forecasts – Defence 
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Appendix B – Forecasts from the random walk with drift 

model 

 

 

Figure 20 - (Model 2) Random Walk With Drift Forecasts – Attack 
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Figure 21 - (Model 2) Random Walk With Drift Forecasts - Defence 
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Appendix C – Forecasts from the auto-arima model 

 

 

Figure 22 - (Model 3) Auto-Arima Forecasts – Attack 
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Figure 23 - (Model 3) Auto-Arima Forecasts – Defence 
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Appendix D – Forecasts from the time-varying parameter 

model 

 

 

Figure 24 - (Model 4) Time-varying Parameter Forecasts using Kalman Filter – Attack 
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Figure 25 - (Model 4) Time-varying Parameter Forecasts using Kalman Filter – Defence 
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Appendix E – Smoothed State Estimates – Kalman Smoothing 
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Figure 26 - Kalman Smoothing State Estimates (model 4) – Attack 
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Figure 27 - Kalman Smoothing State Estimates (model 4) – Defence 
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