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ABSTRACT: Bionic systems frequently feature electromagnetic pumping and offer significant 

advantages over conventional designs via intelligent bio-inspired properties. Complex wall 

features observed in nature also provide efficient mechanisms which can be utilized in biomimetic 

designs. The characteristics of biological fluids are frequently non-Newtonian in nature. In many 

natural systems super-hydrophobic slip is witnessed. Motivated by these phenomena, in the present 

article, we present a mathematical model for the cilia-generated propulsion of an electrically-

conducting viscoelastic physiological fluid in a ciliated channel under the action of an externally 

applied static magnetic field. The rheological behavior of the fluid is simulated with the Johnson-

Segalman constitutive model which allows internal wall slip. The regular or coordinated 

movement of the ciliated edges (which line the internal walls of the channel) is represented by a 

metachronal wave motion in the horizontal direction which generate a two-dimensional velocity 

profile with the parabolic profile in the vertical direction. This mechanism is imposed as a periodic 

moving velocity boundary condition which generates propulsion in the channel flow. Under the 

classical lubrication approximation (long wavelength and low Reynolds' number), the boundary 

value problem is rendered non-dimensional and solved analytically with a perturbation technique. 

The influence of the geometric, rheological (slip and Weissenberg number) and magnetic 

parameters on the velocity, pressure gradient and the pressure rise (evaluated via the stream 

function in symbolic software) are presented graphically and interpreted at length.  
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NOMENCLATURE 

 

 V   Velocity field vector 

 U,V   Longitudinal and transverse velocities in fixed 

frame 
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 u,v   Longitudinal and transverse velocities in moving 

frame 

 X,Y  Coordinates of fixed frame 

 x,y   Coordinates of moving frame 

  Dynamic viscosity of the fluid 

 f Body force   

 B0   Magnetic field 

  Cauchy stress tensor 

 P   Pressure 

 m   Relaxation time 

  Stream function 

 c   Wave speed 

 a   Rheological slip parameter 

 D Symmetric of the velocity gradient 

 w   Skew symmetric of the velocity gradient 

 M  Hartmann (magnetic body force) number 

 a0   Wave amplitude 

  Cilia length 

  Eccentricity of the elliptical motion 

 β Wave number 

 

 

1.INTRODUCTION 

Cilia are membrane-bounded, centriole-derived projections which extend from the cell surface. 

They contain a microtubule cytoskeleton (the ciliary axoneme) engulfed by ciliary membrane. 

Many different types of cilia arise in human biology and their geometric design is critical to 

sustaining health [1-4]. Fluid transport induced by ciliary motion has therefore mobilized 

significant attention in biofluid dynamics for a number of decades. The initial hydrodynamic study 

of cilia beating was reported by Sleigh [5]. Numerous physiological processes feature ciliary 

transport including the movement of ovum in the fallopian tube [6], mucus transport in the 

respiratory track [7] spermatozoa dynamics in the ductus efferent of the male reproductive tract 

[8], spherule deposition during otolith formation in inner ear hydrodynamics [9] and molecular 

transport in photo-receptors for retinal bio-optics [10]. Cilia generate fluid transport via 

synchronized beating. When the cilia move, they transmit the energy to the fluid creating 

propulsion in the forward direction in the effective stroke. Naturally, the cilia are designed to move 

in hydrodynamically efficient ways. In the effective stroke cilia face large viscous resistance to 

generate the maximal thrust and in the recovery stroke they return to the initial position and the 
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cilia face small relative fluid velocities. Cilia groups (up to 200 cilia) exist on a mature ciliated 

cell, and each cilium is 1 to 10 µm long and of diameter around 0.2 µm, beats 12 to 15 times per 

second. The locomotion mechanism involves each cilium continuously moving or beating with a 

two-stroke motion, as visualized in Fig.1. Interestingly there are analogies between cilia beating 

and also aerodynamic flapping in small fliers (humming birds, bumble bees etc) which have been 

studied recently by Bég [11]. The cilia are closed together in rows and the neighboring cilia beat 

in a harmonized fashion manner with a small phase lag. In this way the tip of cilia are used to form 

a continuous wave-like motion termed the metachronal wave [12], similar to how continuous wing 

flapping in natural fliers generates a continuous lift force with very little energy expenditure. The 

fluid mechanism of cilia beating has been studied under various assumptions by many researchers 

[13-15] with the objective of characterizing the hydrodynamic characteristics which contribute to 

efficient propulsion. In the literature, there are two types of model for the propulsion and to 

transport fluid include: `cilia sublayer models' or `discrete cilia models' and volume force 

distribution' or `volume force models'. In the discrete cilia model, each cilium is treated separately, 

and the contributions of all the cilia are often summated [16]. In contrast, in volume force models 

the cilia are modelled through a continue force distribution, varying in space and times as the cilia 

beat [17]. In the present simulation, the envelope model is employed where only the tips of cilia 

are taken into account, and the tips are used to generate the so-called metachronal wave. 

Magnetohydrodynamics (MHD) is an important area in modern smart (intelligent) bionic systems. 

It can be applied successfully to control flux, direction and other characteristics of the flow of 

electrically-conducting fluids. MHD features in numerous medical technologies e.g. MRI, GMR, 

EMG, IMF, etc wherein it allows the precise and non-invasive therapy of many physiological 

conditions. In biological propulsion, magnetohydrodynamic flows have been addressed for a 

variety of bionic systems including cliated magneto-hydraulics in soft robotics [18], respiratory 

magnetic treatment [19], peristaltic magnetofluid pumping [20-22], magnetic blood pumps [23-

24], magneto-robotic microswimmers [25], cilia-assisted magnetic hemodynamic processes [26-

28], biomagnetic curved arterial fluid mechanics [29].   

Although the above studies considered many complex rheological fluids (viscoplastic, 

viscoelastic, two-phase, memory etc), they did not utilize the Johnson-Segalman non-Newtonian 

model. This model can simulate various physiological fluids quite well [30-32] and therefore the 

motivation of the present article is to investigate theoretically the influence of external (transverse) 
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magnetic field on the cilia transport of an electrically-conducting Johnson Segalman fluid in 

axisymmetric channel of finite length. In addition, we consider slip effects within the fluid (a 

feature which is included in the Johnson-Segalman model) since in numerous bionic microsystems 

non-adherence (slip) of the working fluid arises [33-37]. The paper is organized as follows. The 

governing problem is formulated as a nonlinear system of partial differential equations. These are 

simplified by applying the long wavelength and low Reynold number assumption [38]. With the 

aid of a perturbation method [39] the asymptotic solutions for axial velocity and axial pressure 

gradient are derived. Numerical integration of pressure rise is computed with the symbolic 

software, "MATHEMATICA". The effects of key parameters i.e. viscoelastic material parameter 

(Weissenberg number), cilia length, Hartmann (magnetic body force) number and hydrodynamic 

slip parameter on the flow characteristics are presented graphically. The simulations are relevant 

to bionic ciliated magnetic pumping systems. 

 

2.MATHEMATICAL FORMULATION 

Consider the flow of an incompressible magnetic Johnson-Segalman fluid through a symmetric 

ciliated channel of width 2L, under the action of a transverse magnetic field, Bo. The X-axis is 

directed along the length of channel and in the direction of the metachronal wave. The model is 

depicted in Fig. 1.  

Fig.1: Geometry of Problem
 

Cilia are continuously beating with effective and recovery strokes and the tip of the cilia follow 

the elliptical path centered at ( X0 ,a0  ). The position of the cilia is given by the following 

parametric representation.  
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   (1) 

  (2) 

 

Here ao is the major axis in the X-direction and ao  is the minor axis in the Y-direction. After 

determining the location of the cilia tips, we may calculate the horizontal and vertical velocity 

components. The horizontal velocity U   is obtained by the time derivative at  X   and vertical 

velocity  V   is calculated from the time derivative of vertical coordinate  Y   i.e. 

 

     (3) 

     (4) 

 

Using the MHD Johnson-Segalman fluid model [40] the continuity and momentum equations in a 

fixed frame are defined as follows:  

          (5) 

      (6) 

Here: 

       (7) 
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       (8) 

 (9) 

 

       (10) 

 

Eqns. (5) and (6) together with equations (7)-(10) take the following form:  

 

      (11) 

 (12) 

 

  (13) 

 

Here SXX,SXY   and  SYY   satisfy following equations: 

 

 (14) 
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  (15) 

  (16) 

 

The fixed and the wave frame are related as: 

 

   (17) 

The non-dimensional variables are defined as follows: 

  (18) 

 

Here  is wave number, M is Hartmann magnetic number, Re is the Reynolds number and We is 

the Weissenberg number. Since the flow is incompressible and two-dimensional, a natural 

formulation is obtained by introducing the stream function,, defined by the Cauchy-Riemann 

equations:    



8 
 

    (19) 

 

With the help of Eqns. (17)-(19) and the lubrication approximations (long wavelength relative to 

channel width and low Reynolds number), Eqns. (11)-(16) take the following form: 

 

   (20) 

      (21) 

       (22) 

 

(23) 

     (24) 

After using Eqn. (21) in Eqn. (20), following expression can be obtained: 

    (25) 

From Eqns. (22)-(24), the shear stress, Sxy, can be found as follows:  

     (26) 
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Now substituting Eqn. (26) into Eqns. (25) and (20) yields: 

 

.   (27) 

   (28) 

 

3. VOLUMETRIC FLOW RATE AND BOUNDARY CONDITIONS 

In bionic pumping systems, flow rate is a key design quantity. The volume flow rate Q is related 

to the flux F by the following relation: 

     (29) 

Another physical quantity is the time-mean volume flow rate, Q, in a fixed frame which is defined 

as: 

  (30) 

If we choose the zero value of the streamline (y = 0), as   = 0, then the wall (y = h) is the 

streamline of value  = F. Thus, the boundary conditions in the form of stream function   are  

       (31) 

     (32) 
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With the help of binomial theorem, we neglect higher powers of . Eqns. 

(27) and (28) then take the following form: 

 

      (33) 

 (34) 

Here: 

      (35) 

Here , are viscosity coefficients of the Johnson-Segalman fluid, a is slip parameter.  

 

4. PERTURBATION SOLUTIONS 

To solve the non-linear Eqns. (33) and (34) together with the boundary condition (31) and (32), a 

perturbation method is employed. Expanding the stream function , pressure distribution p and 

flow rate F about the Weissenberg number We (assuming small Weissenberg number) leads to: 

 

       (36) 

       (37) 

        (38) 

 

Using the above equations in (34)-(36) we get the following systems: 

 

4.1 Zeroth Order System 
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    (39) 

  (40) 

The associated boundary conditions are: 

     (41) 

   (42) 

 

4.2 First order system 

 (43) 

    (44) 

 

The relevant boundary conditions are: 

     (45) 
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   (46) 

 

4.3 Solution for the Zeroth order system 

The solution of the zeroth order system given by Eqns. (39)-(42) is as follows:  

  (47) 

With the help of Eqns. (40) and (47), the zeroth order pressure gradient can be obtained: 

   (48) 

4.4 Solution for the First order system 

Solving the first order system as given by Eqns. (43)-(46), we obtain:  

   (49) 
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Substituting Eqn. (49) into Eqn. (44), we arrive at the first order pressure gradient: 

 

 

 

Now summarize the above results up to order We2 and to achieve the final results to introduce F 

= F 0 +We
2

F 1  or F 0  = F-We
2

F 1  in the stream function   and pressure gradient  
dp

dx   

given in Eq. (36) and (37). Where o and 1,  
dp 0

dx  and 
dp 1

dx  are defined in Eqns. (47)-(50). 

 

5. RESULTS AND DISCUSSION 

Figs. 2, 3 and 4 are plotted to visualize the effects of the key parameters i.e. Hartmann number, 

Weissenberg number, slip parameter and the cilia length, on the velocity, pressure and the pressure 

rise, keeping all other parameter fixed. 

Figs. 2a-2d illustrate the impact of Hartmann number (M), Weissenberg number (We), slip 

parameter (a) and cilia length () on the axial pressure (p) evolution with axial coordinate (x) i.e. 

pressure gradient. Fig. 2a shows that pressure is strongly modified by the Hartmann number. With 

increasing Hartmann number there is a uniform decrease in pressure. A reduction in pressure is 

also induced with increasing slip parameter in fig 2c. However pressure is boosted with elevation 

in Weissenberg number (fig. 2c) and cilia length (fig. 2d). There is a more uniform pressure 

distribution along the channel length with variation in Hartmann number (fig. 2a) and the principal 

reduction in pressure is concentrated in the intermediate section of the channel; lower pressures 

arise at the entry and exit of the channel with maximum pressures in between, an important feature 
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required for efficient medical magnetic pump performance [41].  

a b

c d

 

Fig. 2: Axial pressure distributions with variation in (a) Hartmann number  (M), (b) Weissenberg 

number (We), (c) Slip parameter (a), (d) Cilia length () , for =0.4, =0.4, =1, =1,Q----=1.5. 
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a b

c d

 

Fig. 3: Axial velocity distributions across channel span with variation in (a) Hartmann number  

(M), (b) Weissenberg number (We), (c) Slip parameter (a), (d) Cilia length () , for =0.4, =0.4, 

=1, =1,Q----=1.5. 
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a b

c d

 

Fig. 4: Axial velocity distributions versus average volumetric flow rate with variation in (a) 

Hartmann number (M), (b) Weissenberg number (We), (c) Slip parameter (a), (d) Cilia length (), 

for =0.4, =0.4, =1, =1,Q----=1.5.  
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Hartmann number appears in the Lorentz magnetohydrodynamic body force terms in Eqns. (33) 

and (34). This is a retarding force which opposes the flow and induces deceleration across the 

channel span (described later). Effectively pressure is suppressed with stronger magnetic field. 

The maximum pressure is achieved for the case M = 1 wherein magnetic and viscous forces in the 

regime are equivalent in magnitude. For M > 1 the magnetic drag force dominates the viscous 

hydrodynamic resistance. Figs. 2b-d indicate that the other parameters induce a more marked 

modification in pressure profiles in the vicinity of the entry and exit zones (low and high values of 

axial coordinate). The viscoelastic parameter i.e. Weissenberg number embodies the relative 

contribution of viscous forces to the elastic forces and describes mathematically the relationship 

between stress relaxation time of the fluid and a specific process time. For cases where the time-

scale of a flow is significantly less than the relaxation time of the viscoelastic fluids, then elastic 

effects dominate the flow behavior. However, when time-scale exceeds the relaxation time, 

substantial elastic relaxation takes place and the viscous forces dominate the flow. The Johnson-

Segalman fluid model is more sophisticated than other viscoelastic models and permits the 

nonmonotonic variation in the shear stress with the increase/decrease in the rate of deformation 

for simple shear flows. It is also capable of simulating slip effects and furthermore the spurt 

phenomenon [42] i.e. an abnormal increase in the volume throughput for a very weak elevation in 

the driving pressure gradient. With greater Weissenberg numbers the elastic effect dominates the 

behavior and this contributes to the enhancement in pressure. This has also been observed by other 

investigators including Hayat et al. [43] and Elshahed and Haroun [44]. With greater slip effect 

the pressure is decreased significantly (Fig. 2c). The increase in pressure with greater cilia length 

is related to the enhanced transfer of force to the fluid in the channel with larger cilia geometry. 

This boosts the pressure in the central channel length area but depresses the pressure near the entry 

and exit locations.  

Figs. 3a-3d illustrate the influence of the key parameters on the axial velocity across the channel 

span i.e. with transverse coordinate, y. Evidently although symmetrical profiles in velocity are 

consistently computed, the parameters exhibit different effects. Fig. 3a and 3b show that velocity 

decreases with the increase in Hartmann number and Weissenberg number in the central (core) 

region, -0.32<y<0.32 and increases near the walls in the range, y<-0.32 and y>0.32 of the channel. 

The contrary behavior can be observed with an increase in slip parameter and cilia length from 

Figs. 3c and 3d. Furthermore, inspection of the figures reveals that Hartmann number, 



18 
 

Weissenberg number and slip parameter generate a more significant influence at the centre as 

compared to walls of the channel. 

 

The expression for the pressure rise is: 

      (51)  

 

To calculate the result of volume flow rate, we use the expression of p which involves the 

integration of dp/dx. Due to the complexity of the expression given in the Eq. (51), the symbolic 

software, MATHEMATICA, has been implemented for the numerical integration. The results are 

shown in Figs. 4a-4b, which present the evolution in average rise in the pressure against Q  (time-

averaged flux). The effect of Hartmann number (M) on pressure rise depicted in Fig. 4a, which 

shows the retrograde pumping (Q<0, p>0) and the free pumping (p=0) uniformly change with 

the increase in Hartmann number. Fig. 4b and 4c, reveals the variation of pressure rise against time 

average flux, for the different value of Weissenberg number, We and the slip parameter, a. It is 

noted that co-pumping rate decreases with an increase in Weissenberg number and the slip 

parameter. Fig. 4d, shows the effect of cilia length () on the pressure rise. It is evident that the 

pumping and the co-pumping rates increases with an increase in cilia length. 

 

6. CONCLUSIONS 

In this study, we have considered the ciliary transport of MHD Johnson-Segalman fluid in a two- 

dimensional symmetric channel. The flow is produced by the continuous beating of cilia in an 

elliptical path which generates the two-dimensional velocity field. The governing equations are 

simplified by using lubrication theory and converted into non-dimensional form via suitable 

transformations. A regular perturbation technique is used to solve the non-linear partial differential 

equations with appropriate boundary conditions. Mathematica symbolic software is deployed to 

evaluate the closed-form solutions and results are visualized graphically. The principal findings 

from the present study may be summarized as follows: 

• The pressure gradient is strongly affected by the Weissenberg viscoelastic number (We) and 

cilia length ().  

• With the increase in Weissenberg viscoelastic number (We) and cilia length () larger pressure 

gradient is required to maintain the same flux through a narrow region as compared to a wider 
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region of channel, whereas, smaller pressure gradient is required with an increase in Hartmann 

magnetic parameter (M) and slip parameter (a). 

• The velocity response is not the same throughout the channel- velocity decreases in the narrow 

region with an increase in Hartmann magnetic number (M) and Weissenberg number (We)  

whereas it increases with a rise in slip parameter (a) and cilia length ().  

• Pressure rise increases with an increase in Hartmann magnetic number (M) and cilia length () 

whereas it is reduced with greater values of Weissenberg number (We) and cilia length (). 

 

The present investigation has neglected curvature, rotational and heat transfer effects which are 

also important in biomimetic pumps [45] and these may be addressed in the future. 
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