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The global spread of pathogens poses an increasing threat to health, ecosys-

tems and agriculture worldwide. As early detection of new incursions is key

to effective control, new diagnostic tests that can detect pathogen presence

shortly after initial infection hold great potential for detection of infection

in individual hosts. However, these tests may be too expensive to be

implemented at the sampling intensities required for early detection of a

new epidemic at the population level. To evaluate the trade-off between earlier

and/or more reliable detection and higher deployment costs, we need to con-

sider the impacts of test performance, test cost and pathogen epidemiology.

Regarding test performance, the period before new infections can be first

detected and the probability of detecting them are of particular importance.

We propose a generic framework that can be easily used to evaluate a variety

of different detection methods and identify important characteristics of the

pathogen and the detection method to consider when planning early detection

surveillance. We demonstrate the application of our method using the plant

pathogen Phytophthora ramorum in the UK, and find that visual inspec-

tion for this pathogen is a more cost-effective strategy for early detection

surveillance than an early detection diagnostic test.

This article is part of the theme issue ‘Modelling infectious disease out-

breaks in humans, animals and plants: epidemic forecasting and control’.

This theme issue is linked with the earlier issue ‘Modelling infectious disease

outbreaks in humans, animals and plants: approaches and important themes’.

1. Introduction
Increased trade, travel, transportation and tourism resulting from globalization

have facilitated the establishment of non-endemic pests (including animals,

plants and pathogens) in new areas [1–4]. Owing to the considerable impacts

these can have on human, animal, plant and ecosystem health [5], it is of

vital importance that new invasions are detected as early as possible, thereby

allowing the implementation of control strategies to eliminate the pest before

it becomes unmanageable [6]. However, detecting pests present at a low level

in the population can require considerable surveillance resources. This problem

is further compounded when the pest is not easily detectable at an early stage in

the establishment process. In particular, the inability of visual inspection to

detect infection during the ‘presymptomatic’ period prior to the development

of visible disease makes early detection more challenging [7], even when the

probability of correctly detecting infected hosts (the ‘diagnostic sensitivity’)

and the intensity of surveillance are high. Despite this, visual detection remains

the cornerstone of early detection surveillance for emerging plant and animal

pathogens. Indeed, within the UK, foot and mouth disease [8], bluetongue

[9], chalara dieback [10] and ramorum disease [11–13] were all first found by

visual detection.
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Figure 1. Effect of different detection lag periods on the apparent prevalence
( proportion of detectable hosts) at the time of first detection. Deterministic
logistic growth in the true prevalence of infection ( proportion of infected indi-
viduals) over time is shown as the solid line, and the ‘apparent prevalences’ for
two detection methods (a diagnostic test and visual inspection) with different
detection lag periods (l) are shown as dashed lines. Assuming we are using
visual inspection for early detection and we detect infection for the first time
at time T, the apparent prevalence would be qvisual. However, owing to the
detection lag, the true prevalence is much higher—at q*. In order to detect
at a true prevalence equal to qvisual, the sampling effort (and therefore the
cost) would have to be greatly increased. When using a diagnostic test with
a shorter detection lag (ltest), the apparent prevalence at time T (qtest) is
higher, which can be achieved with a lower sampling effort.
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Early detection surveillance schemes need to be biologi-

cally, statistically and economically informed in order to be

effective, yet many statistical approaches fail to account for

the dynamics of pathogen spread [14]. Our previous work

has shown that the proportion of infected hosts (the ‘preva-

lence’ of infection) at the time of first detection can be

estimated by accounting for the exponential growth rate of

the pathogen (r) as well as the rate of sampling [15,16]. We

have also demonstrated how the prevalence at first detection

is impacted when there is a time delay before infection is first

detectable (which we term the ‘detection lag’). Figure 1

shows the change in the ‘apparent prevalence’ (i.e. the pro-

portion of detectable hosts) over time for two different

detection methods with different detection lags. A detection

lag shifts the growth curve to the right by l days—meaning

that the apparent prevalence for any given true prevalence

(e.g. the prevalence at time T in figure 1) will decrease as the

detection lag is increased. Since this means that infection is

harder to detect, the required sampling effort to detect infection

at this point, and therefore the overall sampling cost, will

increase. In response to issues such as this, there has been a par-

ticular focus in recent years on the development of new

molecular diagnostic tests that can detect infection in the host

at an early stage. These tests have been considered key to out-

break preparedness [17], but their superior test performance

characteristics come with financial costs associated with test

purchase or development.

The total cost of an early detection surveillance scheme

(which is a key consideration owing to the long durations

over which these schemes must be maintained) is therefore

impacted by both the costs of applying the detection

method to individual hosts and the increased sampling

effort required for detection methods with longer detection
lags (such as visual inspection). The threshold at which the

cost of a high sampling effort outweighs the cost of a more

expensive test capable of earlier detection is influenced by

how quickly the pathogen is expected to spread in the popu-

lation. Despite the importance of this issue to the selection of

appropriate detection methods for early detection surveil-

lance, we currently have no method of quantifying this

trade-off. In the current article, we develop a novel, generic

method to address this deficiency and demonstrate its appli-

cation by quantifying the costs of using molecular tests

instead of visual inspection for detection of the oomycete

Phytophthora ramorum on rhododendron in the UK.
2. Methods
(a) Developing a generic rule of thumb
Our previous work has demonstrated how to integrate epidemio-

logical characteristics of a pathogen with both characteristics of

the detection methods used and the statistical and financial con-

siderations associated with sampling itself. The reader is directed

to Parnell et al. [15,16], Alonso-Chavez et al. [18] and Mastin et al.
[19] for further information. Our current method rests upon the

same assumptions as this earlier work—namely, that a surveil-

lance programme is already in place, in which N samples are

collected every D days, using a detection method with a sensi-

tivity of Se. Given that D is sufficiently small for us to

approximate sampling as a continuous process, the rate of collec-

tion of test positive samples at time t (assuming a perfect

diagnostic specificity) will be (Se(N/D)qt), where qt is the preva-

lence at this time. In the early stages of invasion, we can assume

that the prevalence is growing exponentially at a rate of r new

infections per infection per day, but in the presence of a detection

lag (which we denote as l) the ‘detectable prevalence’ will be

lower than this. Our previous work has demonstrated that in

these cases the prevalence at first detection follows an exponen-

tial distribution, from which we can estimate any desired

cumulative percentile (qx) as follows:

qx ¼ �ln 1� x
100

� �� � rerl

Se � (N=D)

� �
: (2:1)

The above equation is therefore useful for situations in which

we may be interested in specifying an ‘acceptable upper bound’ of

the prevalence at first detection (qx), with (x/100) being an accep-

table probability of reaching this prevalence or less at the time of

first detection. This is also the conceptual basis of many ‘absence

sampling’ programmes—in which case the aim is to demonstrate

(with some degree of confidence) that, if present, the prevalence of

a pathogen is lower than a given threshold.

We can also reformulate equation (2.1) to estimate the

sampling effort required to be x% confident of detecting infection

by some fixed prevalence when using a particular detection

method. Multiplying this with the per-sample ‘cost’ of using the

chosen detection method (cmethod), which includes both the cost

of visiting the host and the cost of using the method, will give esti-

mates of the total (variable) cost (Cassess) of detecting infection by qx

using that method. This gives us Cassess ¼ (Nmethod/Dmethod)cmethod

where (Nmethod/Dmethod) is the rate of sampling when using the

detection method under consideration. Rearranging equation

(2.1) and substituting the new total cost formulation gives

Cassess ¼ �ln 1� x
100

� �� � rerlmethod

qxSemethod

� �
cmethod: (2:2)

We can use equation (2.2) to quantify the relative perform-

ance of two different detection methods (each of which may

have different values of Se, l and cmethod) by taking the ratio of



Table 1. Parameter values used for the Phytophthora ramorum case study.

parameter interpretation value

r epidemic growth rate 0.0033 hosts host21

day21

Se1 sensitivity of LFD 0.53

Se2 sensitivity of visual

inspection

0.65

l1 LFD detection lag 3 days

l2 visual inspection detection

lag

14 days

ctest cost of LFD use

(visit þ test)

£10 host21þ£6

host21

cvisual cost of visual inspection

(visit þ inspection)

£10 host21þ£0

host21
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the total costs. After simplification, we obtain the following:

Cassess1

Cassess2

¼ (cmethod1
=Se1)

(cmethod2
=Se2)

� �
e�r(l2�l1): (2:3)

As well as indicating the relative costs of the two detection

methods for early detection surveillance, we can also consi-

der equation (2.3) as a threshold. At the equivalence point

(where either test would result in the same sampling costs:

i.e. (Cassess1
=Cassess2

) ¼ 1), the following holds:

(cmethod1
=Se1)

(cmethod2
=Se2)

� �
¼ er(l2�l1): (2:4)

The left side of equation (2.4) is the relative expected

sampling cost required for one positive detection when sampling

from positive cases for method 1 compared to method 2, and the

right side represents the relative increase in prevalence over the

detection lag period of method 2 compared to that of method

1. If the term on the right of equation (2.4) is greater than that

on the left, the most economically viable option would be to

select detection method 1. If the contrary is true, detection

method 2 should be selected.

(b) The Phytophthora ramorum case study
We demonstrate how to estimate the cost ratio in equation (2.3)

using data on P. ramorum in the UK, which typically affects

woody ornamental shrubs (such as rhododendron) and larch

trees—with the former playing a large role in spread and the

latter being of particular economic and ecological importance.

We have selected this pathogen because of the availability of

data on its spread and detection rather than it being a prime can-

didate for early detection surveillance in the UK, where it is no

longer considered eradicable [20] (although early detection and

eradication in sub-regions are still relevant).

In response to the emergence of P. ramorum as an important

plant pathogen in the UK, a surveillance strategy was instigated

[21], conducted by trained inspection teams and based on the use

of visual inspection and/or lateral flow devices (LFDs). LFDs are

portable, easy-to-use, immunochromatographic tests that can be

applied in the field, making them potentially useful for early detec-

tion surveillance. Although Phytophthora genus-specific LFDs are

currently used for rapid confirmation of suspicious lesions

detected by visual inspection, in the current study we consider

their value as a replacement for visual detection (i.e. applied to ran-

domly selected shrubs regardless of symptoms). We consider only

surveillance of rhododendron, in which symptoms such as leaf

necrosis are most apparent [22], and assume that the diagnostic

specificity for detection of P. ramorum will be perfect, since all

suspected positive samples will undergo laboratory confirmation.

The parameter estimates used in the current model are shown

in table 1. We estimated the exponential growth rate of P. ramorum
in rhododendron as the mean of the range of 0.001–0.005 shrubs

per infected shrub per day reported in a recent paper [18].

A study of natural transmission of P. ramorum in rhododendron

found a high level of symptom expression after 14 days [23],

which we took as a plausible upper bound for the presymptomatic

period (and therefore the detection lag for visual detection). We

estimated the detection lag of the LFD as 3 days, based upon a

study of detection of P. ramorum on rhododendon leaves using

PCR and culture [24], and a study of LFD detection of the pathogen

Botrytis cinera [25]. We used data from a proficiency test of 16 plant

health inspectors for detection of ramorum and other Phytopthora
diseases in rhododendron (Defra project PH0439: ‘Improving

tools and approaches for Plant Health Inspectorate activities detec-

tion, surveillance and monitoring’) to estimate the sensitivity of

visual inspection. Since these individuals were not necessarily

specialists on P. ramorum, we assumed that a surveillance program

would use the top 10 performing inspectors, and so the six lowest
performing inspectors were removed from further analysis. Using

isolation as a gold standard, a total of 588 correct diagnoses of

suspected ramorum disease were made from the 900 positive

inspector-samples (accounting for each positive sample being

inspected by multiple inspectors), giving an estimated sensitivity

of 0.65. The same samples were tested with a commercially

available LFD (Phytophthora spp. ALERT-LFTM; Neogen Corpor-

ation, UK), for which 39 of the 73 positive samples were

correctly identified, giving a test sensitivity estimate of 0.53.

(c) Method validation
Because of the difficulties in comparing the costs of detection by a

specified exact prevalence in the presence of stochasticity, we eval-

uated the performance of our method by reformulating equation

(2.3) to relate to the ratio of prevalences at first detection, assuming

a fixed total cost. This ratio can be shown to be mathematically

equivalent to the cost ratio for detection by some fixed prevalence

in equation (2.3) by first reformulating equation (2.2) to isolate qx

and then taking the ratio of these prevalences. For each detection

method, we simulated deterministic logistic growth in the appar-

ent prevalence of P. ramorum using the parameter estimates in

table 1 and starting from an apparent prevalence of 1 � 1028

(based upon an estimate of the rhododendron population of the

UK and in order to reduce left censoring of low prevalences at

first detection). Electronic supplementary material, figure S1

shows the initial simulated growth in the true and apparent preva-

lences. For each total cost, we estimated the sample size per visit

(N ) as (CassessD/cmethod), assuming a sampling interval (D) of 28

days. We then applied the binomial theorem [15,16,18,19] to the

predictions of the logistic growth model to estimate the prob-

ability of detection at each consecutive sampling point. For each

total cost, we ran 100 000 realizations of a sequential sampling pro-

cess, using a stochastic method (described in [19]) to determine

whether each sampling resulted in detection or not—at which

point, the simulation was stopped and the prevalence recorded.

We then estimated the 95th percentile of these prevalences at

first detection for each test and each total cost (results shown in

electronic supplementary material, figure S2), as well as the ratio

of these prevalences (see electronic supplementary material,

figure S3). In order to capture the effect of random error in this

ratio, we also randomly paired each individual simulated preva-

lence at first LFD detection with that for visual inspection and

estimated the ratio. The median and the 95% probability interval

(2.5th–97.5th percentiles) of these estimates for each total cost

are shown in electronic supplementary material, figure S4.
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Figure 2. Effect of varying epidemiological and detection method parameters
on the optimal detection strategy for early detection. We use the constructs
in equation (2.4) as a framework, so the x-axis represents the terms on the
right side of this equation (er(l2�l1 )), and the y-axis represents those on the
left ((cmethod1=Se1)=(cmethod2 Se2)) (on a log scale, since these are ratio
measurements). Higher values of r and/or a greater difference between
the detection lag (assuming that the LFD lag is shorter than that for
visual inspection) will be towards the right of the x-axis. On the y-axis, diag-
nostic methods with equal sensitivities and costs would be placed in the
middle, with decreasing LFD sensitivity and/or higher costs moving towards
the top of this axis and decreasing visual detection sensitivity and/or higher
costs towards the bottom. The shaded area indicates parameter combinations
giving a total cost ratio (Cassesstest=Cassessvisual ) of less than 1, indicating that
using the LFD will minimize total costs. The unshaded area indicates
where the total cost ratio is greater than 1 (where visual inspection will mini-
mize total costs). The dotted horizontal and vertical lines indicate the values
of the parameters used in the current analysis.
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3. Results
Applying the estimates in table 1 to equation (2.3), we found

that the cost of using an LFD for early detection surveillance

was 1.9 times higher than using visual inspection. This result

was confirmed using our Monte Carlo simulation model,

which found that the relative prevalence at first detection

when using the LFD was consistently 1.9 times higher than

that when using visual inspection, over a range of total variable

sampling costs (see electronic supplementary material, figures

S2 and S3). We found a similar pattern in the individual ratio

estimates, with a median ratio of (1.9/1) and a 95% probabi-

lity interval of around (1/20.7)–(73.0/1) (see electronic

supplementary material, figure S4).

We also investigated the impact of parameter uncertainty

on the optimal detection method for minimizing total cost,

as shown in figure 2 and electronic supplementary material,

figure S5. Figure 2 shows the effect of varying those para-

meters impacting upon the apparent prevalence curve (i.e.

detection lag and exponential growth rate) on the x-axis,

and those parameters impacting upon the cost of detecting

infections (i.e. test sensitivity and detection method costs)

on the y-axis, using the formulation described in equations

(2.3) and (2.4) and in §2 above. An alternative visualization

of the same results is shown in electronic supplementary

material, figure S5, which shows the effect of varying
individual epidemiological or detection parameters. In both

cases, the parameter ranges for which inspection based

upon visual inspection would be economically preferable

are unshaded, and those for which the LFD should be used

are shaded. Current parameters are shown as dotted lines.

Assuming other parameters are fixed, the frontier between

these two planes is reached with an epidemic growth rate

of around 0.06; a sensitivity ratio of 1.54; a detection lag

difference of 206 days; or a cost ratio of 0.85 (electronic

supplementary material, figure S5).
4. Discussion
Recent developments in molecular biology, chemistry and

immunology have resulted in the development of a wide

range of new diagnostic tests that can detect infection

before the development of symptoms. This information is

considered highly important for mounting an effective

response to epidemics [26], and therefore the potential for

earlier detection has been heralded by some as the future of

disease surveillance. However, these attributes come with a

cost—in particular, the direct financial cost associated with

their purchase—which may make them less cost-effective

over the large areas and long durations required for an effec-

tive early detection surveillance system. As a result, visual

detection remains the mainstay of early detection surveillance

for animal and plant pathogens.

When selecting a suitable detection method for early detec-

tion surveillance, we are therefore faced with the challenge of

weighing the benefits associated with the earlier and/or

more reliable detection achievable with new molecular tests

against the lower costs (and therefore higher achievable

sampling rate) when using visual detection. In doing this, we

must also account for the epidemiological characteristics of

the pathogen, since the relative increase in required sampling

effort (and therefore cost) for a given detection lag will be

greater for faster-spreading pathogens. Despite the central

importance of this issue to the sustainability of a surveillance

system, there has been little attempt to date to quantify the

value of these attributes for early detection surveillance. Our

method addresses this deficiency whilst also linking directly

with methods used for declaring the absence of a pathogen

from a population.

To summarize the basis of our method, we assume a patho-

gen invades a new population at some unknown point in time

and starts to spread. Given that we have a surveillance pro-

gramme in place during this spread (collecting N samples

every D days), there is an x% chance that the prevalence will

be less than the output of equation (2.1) at the time of first

detection (assuming that our detection method has a detection

lag of l and a diagnostic sensitivity of Se—although further

work is needed to identify how to incorporate a changing diag-

nostic sensitivity over the detection lag period and beyond

[27]). Equation (2.2) allows us to estimate the expected surveil-

lance cost for detection by any specific prevalence using any

specific detection method. This focus on a specified ‘maximum

acceptable’ prevalence is the basis of most regulatory surveil-

lance efforts for pathogens thought to be absent from an area

of interest, with the threshold prevalence either prescribed by

intergovernmental standard-setting organizations or deter-

mined by consideration of the impact of the pathogen and

the availability of control measures. Given that an initial
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evaluation has been conducted and at least one detection

method under consideration has been found to be economi-

cally viable for use in surveillance, we have developed a

method of comparing the total surveillance costs of different

detection methods (see equations (2.3) and (2.4)), which can

be used to select a surveillance strategy that is cost-effective

and sustainable for the necessary long periods of time.

We note that our method does not currently explicitly

account for other surveillance aims [28,29], such as prevalence

monitoring or model parametrization.

Using data obtained from the literature on the epidemiol-

ogy of European P. ramorum strains in rhododendron and on

the performance of different detection methods, and assum-

ing random sampling of hosts regardless of their expression

of symptoms, we find that the costs of early detection of

this pathogen at any prevalence are lower for visual inspec-

tion than for a commercially available LFD. Figure 2 shows

that this conclusion is relatively robust to changes in par-

ameter values, unless there are considerable increases in the

exponential growth rate, the relative sensitivity of the LFD,

or the absolute difference in detection lags. These changes

could occur with the evolution of new strains (with faster

growth rates and/or longer presymptomatic periods), or

through improvements in the sensitivity of the LFD (although

a perfect LFD sensitivity would only just reach the frontier in

figure 2). Waiting for symptom expression before using the

LFD, as is generally currently done in the field, would have

constrained both the detection lag and the sensitivity of the

LFD to be no greater than that for visual inspection and

would therefore have resulted in a higher cost ratio.

Although we have used an example of a plant pathogen in

the current report, our method can be applied to any emerging

pathogen or parasite, given that sampling is an ongoing pro-

cess with a reasonably short sampling interval and that the

pathogen is not already established in the population. Our

analysis (as demonstrated in figure 2) identifies a number of

pathogen and detection method characteristics that can

increase the cost-effectiveness of using a molecular detection

method instead of visual detection for early detection
surveillance. These are listed below, along with some examples

of pathogens that may be worthy of such consideration:

(1) Fast-spreading pathogens (i.e. a high exponential growth

rate), such as poliovirus, foot and mouth disease virus, or

Puccinia graminis f. sp. tritici.
(2) Considerably earlier detection than visual inspection (as

may be seen with a long presymptomatic period), such

as with ebolavirus, Leptospira interrogans, or Candidatus
Liberibacter spp.

(3) Higher test sensitivity than visual inspection (such as

when clinical symptoms are not easily identified), for

example, visceral leishmaniasis caused by Leishmania
spp, Mycobacterium bovis (cervical skin test versus serolo-

gical test) or cassava brown streak virus.

(4) Comparable (or lower) test cost to visual inspection, such

as with Plasmodium falciparum, Brucella abortus (e.g. using

the Rose Bengal test) or remote sensing for Xylella fastidiosa
(where high coverage can be achieved at comparatively

lower costs).

Exploring these other applications would be valuable, as

would the application of our method to more realistic spread

models and real-world data.
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