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Abstract 1

The global spread of pathogens poses an increasing threat to health, ecosys- 2

tems, and agriculture worldwide. As early detection of new incursions is key 3

to effective control, new diagnostic tests which can detect pathogen presence 4

shortly after initial infection hold great potential for detection of infection in 5

individual hosts. However, these tests may be too expensive to be implemented 6

at the sampling intensities required for early detection of a new epidemic at the 7

population level. To evaluate the trade-off between earlier and/or more reli- 8

able detection and higher deployment costs, we need to consider the impacts of 9

test performance, test cost, and pathogen epidemiology. Regarding test perfor- 10

mance, the period before new infections can be first detected and the probability 11

of detecting them are of particular importance. We propose a generic framework 12

which can be easily used to evaluate a variety of different detection methods and 13

identify important characteristics of the pathogen and the detection method to 14

consider when planning early detection surveillance. We demonstrate the appli- 15

cation of our method using the plant pathogen Phytophthora ramorum in the 16

UK, and find that visual inspection for this pathogen is a more cost effective 17

strategy for early detection surveillance than an early detection diagnostic test. 18

Introduction 19

Increased trade, travel, transportation and tourism resulting from globalisa- 20

tion have facilitated the establishment of nonendemic pests (including ani- 21

mals, plants, and pathogens) in new areas [Brasier, 2008,Waage and Mumford, 22

2008, Anderson et al., 2004, Chapman et al., 2017]. Due to the considerable 23

impacts these can have on human, animal, plant, and ecosystem health [Vi- 24

tousek et al., 1997], it is of vital importance that new invasions are detected 25

as early as possible, thereby allowing the implementation of control strategies 26

to eliminate the pest before it becomes unmanageable [Cunniffe et al., 2016]. 27

However, detecting pests present at a low level in the population can require 28

considerable surveillance resources. This problem is further compounded when 29

the pest is not easily detectable at an early stage in the establishment process. 30

In particular, the inability of visual inspection to detect infection during the 31

‘presymptomatic’ period prior to the development of visible disease makes early 32

detection more challenging [Leclerc et al., 2014], even when the probability of 33

correctly detecting infected hosts (the ‘diagnostic sensitivity’) and the intensity 34

of surveillance are high. Despite this, visual detection remains the cornerstone 35

of early detection surveillance for emerging plant and animal pathogens. Indeed, 36

within the UK, foot and mouth disease [Anderson, 2002], bluetongue [Landeg, 37

2007], chalara dieback [Woodward and Boa, 2013], and ramorum disease [Lane 38

et al., 2003,Brasier et al., 2004,Webber et al., 2010] were all first found by visual 39

detection. 40

Early detection surveillance schemes need to be biologically, statistically, and 41

economically informed in order to be effective, yet many statistical approaches 42
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fail to account for the dynamics of pathogen spread [Parnell et al., 2017]. Our 43

previous work has shown that the proportion of infected hosts (the ‘prevalence’ 44

of infection) at the time of first detection can be estimated by accounting for 45

the exponential growth rate of the pathogen (r) as well as the rate of sam- 46

pling [Parnell et al., 2012,Parnell et al., 2015]. We have also demonstrated how 47

the prevalence at first detection is impacted when there is a time delay before 48

infection is first detectable (which we term the ‘detection lag’). Figure 1 shows 49

the change in the ‘apparent prevalence’ (i.e. the proportion of detectable hosts) 50

over time for two different detection methods with different detection lags. A 51

detection lag shifts the growth curve to the right by λ days - meaning that 52

the apparent prevalence for any given true prevalence (e.g. the prevalence at 53

time T in Figure 1) will decrease as the detection lag is increased. Since this 54

means that infection is harder to detect, the required sampling effort to detect 55

infection at this point, and therefore the overall sampling cost, will increase. 56

In response to issues such as this, there has been a particular focus in recent 57

years on the development of new molecular diagnostic tests which can detect 58

infection in the host at an early stage. These tests have been considered key 59

to outbreak preparedness [Royal Society, 2002], but their superior test perfor- 60

mance characteristics come with financial costs associated with test purchase or 61

development. 62

The total cost of an early detection surveillance scheme (which is a key 63

consideration due to the long durations over which these schemes must be 64

maintained) is therefore impacted by both the costs of applying the detection 65

method to individual hosts and the increased sampling effort required for de- 66

tection methods with longer detection lags (such as visual inspection). The 67

threshold at which the cost of a high sampling effort outweighs the cost of a 68

more expensive test capable of earlier detection is influenced by how quickly the 69

pathogen is expected to spread in the population. Despite the importance of 70

this issue to the selection of appropriate detection methods for early detection 71

surveillance, we currently have no method of quantifying this trade-off. In the 72

current paper, we develop a novel, generic, method to address this deficiency 73

and demonstrate its application by quantifying the costs of using molecular 74

tests instead of visual inspection for detection of the oomycete Phytophthora 75

ramorum) on rhododendron in the UK. 76

Methods 77

Developing a generic rule of thumb 78

Our previous work has demonstrated how to integrate epidemiological character- 79

istics of a pathogen with both characteristics of the detection methods used and 80

the statistical and financial considerations associated with sampling itself [Par- 81

nell et al., 2015,Chavez et al., 2016,Parnell et al., 2012,Mastin et al., 2017], to 82

which the reader is directed for further information. Our current method rests 83

upon the same assumptions as this earlier work - namely, that a surveillance 84
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programme is already in place, in which N samples are collected every ∆ days, 85

using a detection method with a sensitivity of Se. Given that ∆ is sufficiently 86

small for us to approximate sampling as a continuous process, the rate of collec- 87

tion of test positive samples at time t (assuming a perfect diagnostic specificity) 88

will be
(
Se
(
N
∆

)
qt
)
, where qt is the prevalence at this time. In the early stages 89

of invasion, we can assume that the prevalence is growing exponentially at a 90

rate of r new infections per infection per day, but in the presence of a detection 91

lag (which we denote as λ) the ‘detectable prevalence’ will be lower than this. 92

Our previous work has demonstrated that in these cases the prevalence at first 93

detection follows an exponential distribution, from which we can estimate any 94

desired cumulative percentile (qx) as follows: 95

qx = −ln
(

1 −
( x

100

))( rerλ

Se · N∆

)
(1)

Equation (1) is therefore useful for situations in which we may be interested 96

in specifying an ‘acceptable upper bound’ of the prevalence at first detection 97

(qx), with
(
x

100

)
being an acceptable probability of reaching this prevalence or 98

less at the time of first detection. This is also the conceptual basis of many 99

‘absence sampling’ programmes - in which case the aim is to demonstrate (with 100

some degree of confidence) that, if present, the prevalence is lower than a given 101

threshold. 102

We can also reformulate Equation (1) to estimate the sampling effort re- 103

quired to be x% confident of detecting infection by some fixed prevalence when 104

using a particular detection method. Multiplying this with the per-sample ‘cost’ 105

of using the chosen detection method (cmethod), which includes both the cost 106

of visiting the host and using the method, will give estimates of the total (vari- 107

able) cost (Cassess) of detecting infection by qx using that method. This gives 108

us Cassess =
(
Nmethod

∆method

)
cmethod, where

(
Nmethod

∆method

)
is the rate of sampling when 109

using the detection method under consideration. Rearranging Equation (1) and 110

substituting the new total cost formulation gives: 111

Cassess = −ln
(

1 −
( x

100

))( rerλmethod

qxSemethod

)
cmethod (2)

We can use Equation (2) to quantify the relative performance of two different 112

detection methods (each of which may have different values of Se, λ, and c) by 113

taking the ratio of the total costs. After simplification, we obtain the following: 114

Cassess1
Cassess2

=


(
cmethod1

Se1

)
(
cmethod2

Se2

)
 e−r(λ2−λ1) (3)

As well as indicating the relative costs of the two detection methods for early 115

detection surveillance, we can also consider Equation (3) as a threshold. At the 116

equivalence point (where either test would result in the same sampling costs: 117

i.e.
(
Cassess1

Cassess2

)
= 1), the following holds: 118
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
(
cmethod1

Se1

)
(
cmethod2

Se2

)
 = er(λ2−λ1) (4)

The left side of Equation (4) is the relative expected sampling cost required 119

for one positive detection when sampling from positive cases for method 1 com- 120

pared to method 2, and the right side represents the relative increase in preva- 121

lence over the detection lag period of method 2 compared to that of method 1. 122

If the term on the right of Equation (4) is greater than that on the left, the 123

most economically viable option would be to select detection method 1. If the 124

contrary is true, detection method 2 should be selected. 125

The Phytophthora ramorum case study 126

We demonstrate how to estimate the cost ratio in Equation (3) using data on P. 127

ramorum in the UK, which typically affects woody ornamental shrubs (such as 128

rhododendron) and larch trees - with the former playing a large role in spread 129

and the latter being of particular economic and ecological importance. We have 130

selected this pathogen because of the availability of data on its spread and 131

detection rather than it being a prime candidate for early detection surveillance 132

in the UK, where it is no longer considered eradicable [Potter and Urquhart, 133

2017] (although early detection and eradication in sub-regions is still relevant). 134

In response to the emergence of P. ramorum as an important plant pathogen 135

in the UK, a surveillance strategy was instigated [Forestry Commission, 2018], 136

conducted by trained inspection teams and based on the use of visual inspec- 137

tion and/or lateral flow devices (LFDs). LFDs are portable, easy-to-use, im- 138

munochromatographic tests which can be applied in the field, making them po- 139

tentially useful for early detection surveillance. Although Phytophthora genus- 140

specific LFDs are currently used for rapid confirmation of suspicious lesions 141

detected by visual inspection, in the current study we consider their value as 142

a replacement for visual detection (i.e. applied to randomly selected shrubs 143

regardless of symptoms). We consider only surveillance of rhododendron, in 144

which symptoms such as leaf necrosis are most apparent [Harris and Webber, 145

2016], and assume that that the diagnostic specificity for detection of P. ramo- 146

rum will be perfect, since all suspected positive samples will undergo laboratory 147

confirmation. 148

The parameter estimates used in the current model are shown in Table 1. 149

We estimated the exponential growth rate of P. ramorum in rhododendron as 150

the mean of the range of 0.001 to 0.005 shrubs per infected shrub per day re- 151

ported in a recent paper [Chavez et al., 2016]. A study of natural transmission 152

of P. ramorum in rhododendron found a high level of symptom expression after 153

14 days [Denman et al., 2008], which we took as a plausible upper bound for 154

the presymptomatic period(and therefore the detection lag for visual detection). 155

We estimated the detection lag of the LFD as three days, based upon a study of 156

detection of P. ramorum on rhododendon leaves using PCR and culture [Beales, 157
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2007], and a study of LFD detection of the pathogen Botrytis cinera [Tomlinson 158

et al., 2010]. We used data from a proficiency test of 16 plant health inspec- 159

tors for detection of ramorum and other Phytopthora diseases in rhododendron 160

(Defra project PH0439: ‘Improving tools and approaches for Plant Health In- 161

spectorate activities – detection, surveillance and monitoring’) to estimate the 162

sensitivity of visual inspection. Since these individuals were not necessarily spe- 163

cialists on P. ramorum, we assumed that a surveillance program would use the 164

top 10 performing inspectors, and so the six lowest performing inspectors were 165

removed from further analysis. Using isolation as a gold standard, a total of 588 166

correct diagnoses of suspected ramorum disease were made from the 900 posi- 167

tive inspector-samples (accounting for each positive sample being inspected by 168

multiple inspectors), giving an estimated sensitivity of 0.65. The same samples 169

were tested with a commercially available LFD (Phytophthora spp. ALERT- 170

LFTM; Neogen Corporation, UK), for which 39 of the 73 positive samples were 171

correctly identified, giving a test sensitivity estimate of 0.53. 172

Method validation 173

Because of the difficulties in comparing the costs of detection by a specified ex- 174

act prevalence in the presence of stochasticity, we evaluated the performance of 175

our method by reformulating Equation (3) to relate to the ratio of prevalences 176

at first detection, assuming a fixed total cost. This ratio can be shown to be 177

mathematically equivalent to the cost ratio for detection by some fixed preva- 178

lence in Equation (3) by first reformulating Equation (2) to isolate qx and then 179

taking the ratio of these prevalences. For each detection method, we simulated 180

deterministic logistic growth in the apparent prevalence of P. ramorum using 181

the parameter estimates in Table 1 and starting from an apparent prevalence of 182

1e−8 (selected as an estimate of the rhododendron population of the UK and 183

in order to reduce left censoring of low prevalences at first detection). Supple- 184

mentary Figure 1 shows the initial simulated growth in the true and apparent 185

prevalences. For each total cost, we estimated the sample size per visit (N) as 186(
Cassess∆
cmethod

)
, assuming a sampling interval (∆) of 28 days. We then applied the 187

binomial theorem (see [Parnell et al., 2015, Chavez et al., 2016, Parnell et al., 188

2012,Mastin et al., 2017]) to the predictions of the logistic growth model to esti- 189

mate the probability of detection at each consecutive sampling point. For each 190

total cost, we ran 100,000 realisations of a sequential sampling process, using 191

a stochastic method (described in [Mastin et al., 2017]) to determine whether 192

each sampling resulted in detection or not - at which point, the simulation was 193

stopped and the prevalence recorded. We then estimated the 95th percentile 194

of these prevalences at first detection for each test and each total cost (results 195

shown in Supplementary Figure 2), as well as the ratio of these prevalences (see 196

Supplementary Figure 3). In order to capture the effect of random error in this 197

ratio, we also randomly paired each individual simulated prevalence at first LFD 198

detection with that for visual inspection and estimated the ratio. The median 199

and the 95% probability interval (2.5th-97.5th percentiles) of these estimates 200
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for each total cost are shown in Supplementary Figure 4. 201

Results 202

Applying the estimates in Table 1 to Equation (3), we found that the cost of 203

using an LFD for early detection surveillance was 1.9 times higher than using 204

visual inspection. This result was confirmed using our Monte Carlo simulation 205

model, which found that the relative prevalence at first detection when using 206

the LFD was consistently 1.9 times higher than that when using visual inspec- 207

tion, over a range of total variable sampling costs (see Supplementary Figures 208

2 and 3). We found a similar pattern in the individual ratio estimates, with a 209

median ratio of 1.9
1 and a 95% probability interval of around

(
1

20.7

)
to
(

73.0
1

)
210

(see Supplementary Figure 4). 211

We also investigated the impact of parameter uncertainty on the optimal 212

detection method for minimising total cost, as shown in Figure 2 and Sup- 213

plementary Figure 5. Figure 2 shows the effect of varying those parameters 214

impacting upon the apparent prevalence curve (i.e. detection lag and expo- 215

nential growth rate) on the x -axis, and those parameters impacting upon the 216

cost of detecting infections (i.e. test sensitivity and detection method costs) 217

on the y-axis, using the formulation described in Equations (3) and (4) and in 218

the Methods above. An alternate visualisation of the same results is shown in 219

Supplementary Figure 5, which shows the effect of varying individual epidemi- 220

ological or detection parameters. In both cases, the parameter ranges for which 221

inspection based upon visual inspection would be economically preferable are 222

unshaded, and those for which the LFD should be used are shaded. Current 223

parameters are shown as dotted lines. Assuming other parameters are fixed, 224

the frontier between these two planes is reached with an epidemic growth rate 225

of around 0.06; a sensitivity ratio of 1.54; a detection lag difference of 206 days; 226

or a cost ratio of 0.85 (Supplementary Figure 5). 227

Discussion 228

Recent developments in molecular biology, chemistry, and immunology have re- 229

sulted in the development of a wide range of new diagnostic tests which can de- 230

tect infection before the development of symptoms. This information is consid- 231

ered highly important for mounting an effective response to epidemics [Thomp- 232

son et al., 2016], and therefore the potential for earlier detection has been her- 233

alded by some as the future of disease surveillance. However, these attributes 234

come with a cost - in particular, the direct financial cost associated with their 235

purchase - which may make them less cost effective over the large areas and 236

long durations required for an effective early detection surveillance system. As 237

a result, visual detection remains the mainstay of early detection surveillance 238

for animal and plant pathogens. 239

When selecting a suitable detection method for early detection surveillance, 240
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Par Interpretation Value

r Epidemic growth rate 0.0033 hosts host−1 day−1

Se1 Sensitivity of LFD 0.53

Se2 Sensitivity of visual inspection 0.65

λ1 LFD detection lag 3 days

λ2 Visual inspection detection lag 14 days

ctest Cost of LFD use (visit + test) £10 host−1 + £6 host−1

cvisual
Cost of visual inspection (visit + in-
spection)

£10 host−1 + £0 host−1

Table 1: Parameter values used for the Phytophthora ramorum case study

we are therefore faced with the challenge of weighing the benefits associated with 241

the earlier and/or more reliable detection achievable with new molecular tests 242

against the lower costs (and therefore higher achievable sampling rate) when 243

using visual detection. In doing this, we must also account for the epidemi- 244

ological characteristics of the pathogen, since the relative increase in required 245

sampling effort (and therefore cost) for a given detection lag will be greater for 246

faster spreading pathogens. Despite the central importance of this issue to the 247

sustainability of a surveillance system, there has been little attempt to date 248

to quantify the value of these attributes for early detection surveillance. Our 249

method addresses this deficiency whilst also linking directly with methods used 250

for declaring the absence of a pathogen from a population. 251

To summarise the basis of our method, we assume a pathogen invades a new 252

population at some unknown point in time and starts to spread. Given we have a 253

surveillance programme in place during this spread (collecting N samples every 254

∆ days), there is an x% chance that the prevalence will be less than the output of 255

Equation (1) at the time of first detection (assuming that our detection method 256

has a detection lag of λ and a diagnostic sensitivity of Se - although further 257

work is needed to identify how to incorporate a changing diagnostic sensitivity 258

over the detection lag period and beyond [DiRenzo et al., 2018]). Equation 259

(2) allows us to estimate the expected surveillance cost for detection by any 260

specific prevalence using any specific detection method. This focus on a specified 261

‘maximum acceptable’ prevalence is the basis of most regulatory surveillance 262

efforts for pathogens thought to be absent from an area of interest, with the 263

threshold prevalence either prescribed by intergovernmental standard-setting 264

organisations or determined by consideration of the impact of the pathogen and 265

the availability of control measures. Given that an initial evaluation has been 266

conducted and at least one detection method under consideration has been 267

found to be economically viable for use in surveillance, we have developed a 268
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method of comparing the total surveillance costs of different detection methods 269

(see Equations (3) and (4)), which can be used to select a surveillance strategy 270

that is cost effective and sustainable for the necessary long periods of time. We 271

note that our method does not currently explicitly account for other surveillance 272

aims [Häsler et al., 2011, Grosbois et al., 2015], such as prevalence monitoring 273

or model parameterisation. 274

Using data obtained from the literature on the epidemiology of European P. 275

ramorum strains in rhododendron and on the performance of different detection 276

methods, and assuming random sampling of hosts regardless of their expression 277

of symptoms, we find that the costs of early detection of this pathogen at any 278

prevalence are lower for visual inspection than for a commercially available LFD. 279

Figure 2 shows that this conclusion is relatively robust to changes in parameter 280

values, unless there are considerable increases in the exponential growth rate; 281

the relative sensitivity of the LFD; or the absolute difference in detection lags. 282

These changes could occur with the evolution of new strains (with faster growth 283

rates and/or longer presymptomatic periods), or through improvements in the 284

sensitivity of the LFD (although a perfect LFD sensitivity would only just reach 285

the frontier in Figure 2). Waiting for symptom expression before using the 286

LFD, as is generally currently used in the field, would have constrained both 287

the detection lag and the sensitivity of the LFD to be no greater than that for 288

visual inspection and would therefore have resulted in a higher cost ratio. 289

Although we have used an example of a plant pathogen in the current report, 290

our method can be applied to any emerging pathogen or parasite, given that 291

sampling is an ongoing process with a reasonably short sampling interval and 292

that the pathogen is not already established in the population. Our analysis (as 293

demonstrated in Figure 2) identifies a number of pathogen and detection method 294

characteristics which can increase the cost effectiveness of using a molecular 295

detection method instead of visual detection for early detection surveillance. 296

These are listed below, along with some examples of pathogens which may be 297

worthy of such consideration: 298

(1) Fast-spreading pathogens (i.e. a high exponential growth rate), such as 299

poliovirus, foot and mouth disease virus, or Puccinia graminis f. sp. tritici. 300

(2) Considerably earlier detection than visual inspection (as may be seen 301

with a long presymptomatic period), such as with ebolavirus, Leptospira inter- 302

rogans, or Candidatus Liberibacter spp. 303

(3) Higher test sensitivity than visual inspection (such as when clinical symp- 304

toms are not easily identified), for example, visceral leishmaniasis caused by 305

Leishmania spp, Mycobacterium bovis (cervical skin test vs serological test), or 306

cassava brown streak virus. 307

(4) Comparable (or lower) test cost to visual inspection, such as with Plas- 308

modium falciparum, Brucella abortus (e.g. using the Rose Bengal test), or re- 309

mote sensing for Xylella fastidiosa (where high coverage can be achieved at 310

comparatively lower costs). 311

Exploring these other applications would be valuable, as would the applica- 312

tion of our method to more realistic spread models and real-world data. 313
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Figure 1: Effect of different detection lag periods on the apparent prevalence
(‘proportion of detectable hosts’) at the time of first detection. Deterministic
logistic growth in the true prevalence of infection (proportion of infected indi-
viduals) over time is shown in the solid line, and the ‘apparent prevalences’ for
two detection methods (a diagnostic test and visual inspection) with different
detection lag periods (λ) are shown as dashed lines. Assuming we are using
visual inspection for early detection and we detect infection for the first time
at time T , the apparent prevalence would be qvisual. However, due to the de-
tection lag, the true prevalence is much higher - at q∗. In order to detect at
a true prevalence equal to qvisual, the sampling effort (and therefore the cost)
would have to be greatly increased. When using a diagnostic test with a shorter
detection lag (λtest), the apparent prevalence at time T (qtest) is higher, which
can be achieved with a lower sampling effort.

[Woodward and Boa, 2013] Woodward, S. and Boa, E. (2013). Ash dieback in
the uk: a wake-up call. Molecular plant pathology, 14(9):856–860.
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Figure 2: Effect of varying epidemiological and detection method parameters
on the optimal detection strategy for early detection. We use the constructs in
Equation (4) as a framework, so the x-axis represents the terms on the right
side of this equation

(
er(λ2−λ1)

)
, and the y-axis represents those on the left(( cmethod1

Se1

)
( cmethod2

Se2

)) (on a log scale, since these are ratio measurements). Higher

values of r and/or a greater difference between the detection lag (assuming that
the LFD lag is shorter than that for visual inspection) will be towards the right
of the x-axis. On the y-axis, diagnostic methods with equal sensitivities and
costs would be placed in the middle, with decreasing LFD sensitivity and/or
higher costs moving towards the top of this axis and decreasing visual detection
sensitivity and/or higher costs towards the bottom. The shaded area indicates

parameter combinations giving a total cost ratio
(

Cassesstest

Cassessvisual

)
of less than 1,

indicating that using the LFD will minimise total costs. The unshaded area
indicates where the total cost ratio is greater than 1 (where visual inspection
will minimise total costs). The dotted horizontal and vertical lines indicate the
values of the parameters used in the current analysis.
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Supplementary Figure 1: Changes in the true and apparent prevalences over six
months, as used in the simulation model.
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Supplementary Figure 2: 95th percentile of prevalence at first de-
tection for LFD and visual inspection from Monte Carlo simulation(
P (Dett) = 1 − (1 − Se× qt)

N
)

with 100,000 iterations, using the parameters

in the main text for a range of total sampling costs between £10 and £1,000.
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Supplementary Figure 3: Predicted ratio of 95th percentile prevalences at first
detection when using LFD compared to using visual inspection from simulation
for a range of sampling costs. Solid line estimated using locally weighted re-
gression. The predicted ratio using the rule of thumb described in the text is
shown as the dashed horizontal line.
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Supplementary Figure 4: Individual-level estimates of the ratio of prevalences
at first detection when using LFD compared to using visual inspection from
simulation. White points show the median ratio for each total sampling cost, and
the shaded area shows the range of 2.5th to 97.5th percentiles (estimated using
locally weighted regression). The dashed horizontal line shows the prediction
using the rule of thumb described in the text, and the solid horizontal line shows
the equivalence point (a ratio of 1.0).
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Supplementary Figure 5: Effect of varying epidemiological and detection method
parameters on the optimal detection strategy for early detection. The x-axis
represents the exponential growth rate, r, or the number of days earlier that
the LFD can detect infection compared to visual inspection, (λtest − λvisual)
(plot (a)); or the relative sensitivity of the LFD compared to visual inspection,
on a log scale (plot (b)). The y-axis shows the relative per-sample cost of

using the LFD compared to visual inspection,
(

ctest
cvisual

)
, on a log scale. The

dashed horizontal line indicates a per-unit sampling cost ratio of 1 - whereby
the cost of either sampling approaches is equal (and which also represents the
minimum realistically achievable if the cost of visual inspection is zero, as we
assume here). The shaded area indicates parameter combinations giving a total

cost ratio
(

Cassesstest

Cassessvisual

)
of less than 1 (i.e. using the LFD will minimise total

costs); the unshaded area indicates where the total cost ratio is greater than 1
(i.e. visual inspection will minimise total costs); with the solid line representing
the frontier between these two planes. The dotted horizontal and vertical lines
indicate the values of the parameters used in the current analysis.
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