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Running title: Endothelin-1 mediates A. fumigatus airway pathology 

 

Abstract  

Background: Asthma is a chronic inflammatory condition of the airways and 

patients sensitised to airborne fungi such as Aspergillus fumigatus have more severe 

asthma. Thickening of the bronchial subepithelial layer is a contributing factor to 

asthma severity for which no current treatment exists. Airway epithelium acts as an 

initial defence barrier to inhaled spores, orchestrating an inflammatory response and 

contributing to subepithelial fibrosis. Objective: We aimed to analyse the production 

of profibrogenic factors by airway epithelium in response to A. fumigatus, in order to 

propose novel anti-fibrotic strategies for fungal-induced asthma. Methods: We 

assessed the induction of key profibrogenic factors, TGFβ1, TGFβ2, periostin and 

endothelin-1, by human airway epithelial cells and in mice exposed to A. fumigatus 

spores or secreted fungal factors. Results: A. fumigatus specifically caused 

production of endothelin-1 by epithelial cells in vitro but not any of the other 

profibrogenic factors assessed. A. fumigatus also induced endothelin-1 in murine 

lungs, associated with extensive inflammation and airway wall remodelling. Using a 

selective endothelin-1 receptor antagonist, we demonstrated for the first time, that 

endothelin-1 drives many features of airway wall remodelling and inflammation 

elicited by A. fumigatus. Conclusion: Our findings are consistent with the hypothesis 

that elevated endothelin-1 levels contribute to subepithelial thickening and highlight 

this factor as a possible therapeutic target for difficult-to-treat fungal-induced asthma. 
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Introduction  

Asthma is a chronic respiratory condition affecting approximately 300 million people 

worldwide, accounting for around a quarter of a million deaths annually.1 Asthma is 

characterised by two main pathophysiological features, airway inflammation and 

airway remodelling, which together contribute to symptoms such as breathlessness, 

wheeze and persistent cough. Remodelling of the airways is poorly characterised, 

despite evidence suggesting its occurrence may proceed or occur in parallel to 

inflammation in childhood asthma.2,3 Airway remodelling describes denuding of the 

epithelium, subepithelial fibrosis with increased extracellular matrix deposition, 

extensive smooth muscle hypertrophy and goblet cell hyperplasia.4,5 Such airway 

remodelling contributes to the severity of exacerbations to aeroallergens such as 

those from house dust mite, pollen, animal dander and fungi. At present, no available 

therapy specifically targets the airway wall remodelling aspect of asthma. 

 Epidemiological studies have shown that severe asthma with fungal sensitisation 

(SAFs) is associated with a high incidence of allergy to airborne fungi including 

Aspergillus fumigatus (A. fumigatus).6  It has been estimated that as many as 28% of 

people with asthma are hypersensitive to A. fumigatus, but disease aetiology is 

unclear. 7 A. fumigatus spores can be found at high concentrations with the average 

adult inhaling several hundred per day.8 With a diameter of just 2-3 μm, A. fumigatus 

spores may disseminate throughout the airway reaching distal alveoli.8 In healthy 

individuals, inhaled spores are likely cleared by alveolar macrophages, but 
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immunocompromised patients or those with reduced lung function are more prone to 

retain spores in their airway which may permit spore germination and prolonged host 

allergen exposure.9  

Airway epithelium provides a physical barrier separating underlying tissue from the 

external environment and provides the first line of defence to inhaled A. fumigatus 

spores. Through its pivotal role in recruiting innate immune cells,10 and mediating an 

adaptive immune response,11 airway epithelium is at the interface of the host-

environment interactions and as such plays a significant role in regulating airway 

homeostasis.12,13 Furthermore, signalling through an epithelial-mesenchymal trophic 

unit (EMTU) may enable epithelial cells to regulate fibroblast behaviour in the 

subepithelial layer14 so governing the extent of repair following airway damage. 

Previous studies have shown that airway epithelial cells respond to germinating 

spores and hyphae of A. fumigatus via production of a number of key cytokines 

including IL6, IL8, GM-CSF, TNF-α.15,16  In addition, we and others have established 

that inhalation of components of A. fumigatus in vivo elicits airway inflammatory and 

remodelling responses through release of secreted fungal products including 

allergens with protease activity.17,18 However, it remains unclear whether A. 

fumigatus spores and/or its components induce airway epithelium to produce 

profibrogenic growth factors, which may in turn contribute to airway remodelling and 

asthma severity.  

Biopsies from asthmatic lungs show an upregulation of a number of profibrogenic 

factors including Transforming Growth Factor (TGF) β1 and β2, levels of which 

correlate with subepithelial fibrosis.19,20 Periostin, a matricellular protein and 

promising asthma biomarker, is also upregulated in asthmatic airways and serum21,22 

and Endothelin-1 (ET-1), an important contributor to organ fibrosis, is increased in 
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exhaled breath condensate derived from people with asthma and in lavage fluid of 

atopic asthmatics.23-25 Furthermore, extensive evidence suggests a role for ET-1 in 

remodelling and fibrosis of the airway associated with bronchiectasis, idiopathic 

pulmonary fibrosis and scleroderma lung disease, suggesting that this growth factor 

may be central for driving lung fibrosis in multiple settings.26 These growth factors 

have been shown to elicit fibrogenic effects in cultured fibroblasts27-29 and contribute 

to airway remodelling events in vivo following exposure aeroallergens such as to 

house dust mite extract and ovalbumin.30-32 However, the major profibrogenic growth 

factors likely to contribute to A. fumigatus -induced airway remodelling have not yet 

been defined. The purpose of this study was to elucidate the growth factors 

produced following A. fumigatus inhalation that drive subepithelial fibrosis in order to 

identify therapeutic targets.  

 

Methods 

Aspergillus fumigatus culture: A. fumigatus strain Af293 was used, originally 

obtained Manchester mycology reference centre (Wythenshawe, United Kingdom) 

and kindly gifted by P. Bowyer (University of Manchester). A. fumigatus was cultured 

on Sabouraud dextrose agar (Oxoid, Hampshire, UK) at 37 °C for 5 days. Spores 

were harvested with a vigorous PBS-tween (0.05 % tween 20) wash and hyphae 

removed using sterilised lens cloth. For in vivo studies, spores were harvested as 

described with a minor modification of using 0.05 % tween 80. Spores were then 

passed through 40 μm nylon mesh and centrifuged for 5 minutes at 10,000 x g at 4 

°C twice. The concentration of spores was adjusted to 5 x 108 spores/ml, aliquoted 

and frozen. Culture filtrates were produced according to our previously described 
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protocol. 18  Briefly, Erlenmeyer flasks containing 500 ml Vogel’s minimal media were 

inoculated with 500 x 106 spores/ml and cultured for 48 hours at 37 °C at 320 rpm. 

Resultant cultures were filtered through J cloth and sterile filtered (0.2 µm). Filtrates 

were dialysed overnight, freeze-dried and stored at -80 °C. Freeze dried aliquots 

were reconstituted with sterile PBS and total protein content was determined using 

the BCA protein assay before use (Thermo Scientific, Loughborough, UK). 

 

Bronchial epithelial cell culture and exposure to A. fumigatus 

Human primary bronchial epithelial cells (BECs) were purchased from Promocell 

(Heidelberg, Germany) and Lonza (Basel, Switzerland). Cells were cultured in 

Bronchial Epithelial Cell Growth Media supplemented with BEGM BulletKit (Lonza, 

Basel, Switzerland) in 75-cm2 flasks until they reached 80% confluence. For 

experiments, BECs were used between passage 2 and 3 and seeded at 15 x 

103/cm2. Monolayers were exposed to 1 x 105 spores/ml for 12 and 24 hours or 1 

μg/ml A. fumigatus culture filtrate for 24 hours. At the end of the study, culture 

supernatants were collected and levels of TGFβ1, ET-1, Periostin and TGFβ2 

determined using DuoSet® ELISA kits performed according to manufacturer’s 

instructions (R&D Systems Abingdon, UK). For cultures involving germinating 

spores, cell layers were collected for analysis of gene expression, whilst 

supernatants were filtered through a 0.22 μm filter for ELISA.  

In some experiments, in order to assess the growth of A. fumigatus in the presence 

of epithelial cells, cultures were stained for calcofluor white (Sigma-Aldrich, Poole, 

UK) and time lapse imaging performed using the Nikon Eclipse TE2000E 
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microscope at X20 using an ORCA-ER CCD camera (Hamamatsu, Welwyn Garden 

City, UK).  

 

Murine models of A. fumigatus induced airway inflammation and remodelling 

Male C57BL/6J mice, aged 8 weeks (Charles River Laboratories, UK) were 

maintained under specific-pathogen-free conditions for the duration of the study with 

food and water available ad libitum. All procedures were performed in accordance 

with the UK Animal Scientific Procedures Act 1986 with local ethical committee 

approval. For the A. fumigatus spore exposure model, mice were anesthatised with 

2-3 % isoflurane and 40 μl of  4 x 105 spores in PBS Tween 80 (0.05 %)  or PBS 

Tween 80 (0.05 %) alone was administered intranasally (Figure 1A). Mice were 

dosed a total of nine times over three consecutive weeks following a previously 

published protocol.33  For the A. fumigatus culture filtrate exposure model, mice were 

anesthetized with 2-3 % isoflurane and 25 μl of the culture filtrate (containing 50 µg 

of protein) or PBS was administered intranasally (Figure 1B). Mice were dosed twice 

a week for 4 weeks followed by a final dose on week five following our previous 

protocol.18  In studies, involving ET-1 receptor antagonist (BQ-123, Sigma, Poole, 

UK), 50 pmol of antagonist in 25 μl PBS or PBS alone was intranasally dosed 30 

minutes prior to culture filtrate administration (Figure 1C). Twenty-four hours after 

final A. fumigatus exposure, animals were killed and samples including 

bronchoalveolar lavage fluid (BALF), serum and lung collected, processed and 

analysed as previously described.18  Cytokines and growth factors were assessed in 

BALF and lung homogenate and IgE in serum by ELISA (Supplementary Methods).  
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Real time PCR for growth factor gene expression 

RNA was extracted from cell monolayers and frozen homogenised lung samples 

using the RNeasy Mini Kit (Qiagen, Crawley, UK). Reverse transcription was 

performed using TaqMan Reverse Transcription Reagents (ThermoFisher Scientific, 

Loughborough, UK). Using the SensiFAST SYBR No-ROX Kit (Bioline, London, UK) 

qRT-PCR reactions were performed in technical triplicate using forward and reverse 

primers for gene expression of ET-1, TGFβ1, TGFβ2, periostin and normalised to 

GAPDH or RPL13 as housekeeping genes (Supplementary Methods). 

 

Histology and immunofluorescence 

The entire left lobe was fixed in buffered paraformaldehyde and wax embedded to 

permit direct comparison between experimental animals. Serial transverse 8 μm lung 

sections from the same region in each lung were stained with Hematoxylin and Eosin 

(H&E) or Masson’s trichome. For analysis of subepithelial collagen thickness, at 

least five images of bronchioles within X20 magnification field of view, from the same 

region of the lung were captured for each animal. For immunofluorescence, sections 

were permeabilised and then incubated with primary antibody to α-SMA (A2547 – 

clone 1A4, Sigma-Aldrich) diluted at 1:400, washed and then followed by secondry 

antibody (Alexa Fluor 488 goat anti-mouse IgG, 1:1000, Life Technologies, Oregon, 

USA) before mounting (Vectashield with DAPI, Cambridgeshire, UK). For analysis of 

α-SMA immunostaining, images of bronchioles that were of appropriate size to be 

contained within fields of view under high-power magnification (X20) were obtained 

from the same region of the lung using a ZEISS Axiostar plus microscope. For image 

analysis, collagen staining from Masson’s trichrome stained images was isolated by 

colour deconvolution. Derived images from colour de-convolution were made 
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binary, and the total area of the bronchiole and subepithelial region showing positive 

α-SMA or Masson’s staining was manually selected. The percentage area with 

positive stain was then determined by Image J Analysis Software (National Institute 

of Health, Maryland, USA). A minimum of 5 bronchioles were used from each lung 

for analysis. 

 

Statistical analysis 

Statistical analysis was performed using GraphPad Prism 6 for Windows (GraphPad 

Software Inc, California, USA) using One Way ANOVA with post hoc tests or 

Students T tests as appropriate. Observed change was considered significant with 

p< 0.05. Data is presented as mean +/- SEM. 

 

Results 

Bronchial epithelial cells upregulate Endothelin-1 expression in response to A. 

fumigatus spores  

We initially determined whether A. fumigatus induced human BECs to express pro-

fibrogenic growth factors in vitro. Cells were exposed to spores and expression of 

TGFβ1 and 2, periostin and ET-1 assessed by qPCR. At 12 hours, A. fumigatus 

spores had undergone germination, showing progressive branching of hyphae which 

gradually evolved into a mycelial mesh by 18 hours (Figure 2A). In response to A. 

fumigatus spores, there was no increase in gene expression for TGFβ1 or periostin 

and surprisingly a downregulation of TGFβ2 by BECs (Figure 2B). In contrast, A. 

fumigatus spores caused a highly significant increase in ET-1 gene expression and 

the pro-inflammatory cytokine, IL6 (Figure 2B). Furthermore, in response to A. 
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fumigatus, ET-1 protein production was significantly increased at 24 hours compared 

with control (Figure 2C). In parallel, BECs were exposed to A. fumigatus culture 

filtrate containing secreted products and again there was a significant increase in 

gene expression and protein production of ET-1 but not of the other growth factors 

assessed  (Supplementary Figure 1).  

 

Induction of Endothelin-1 in a murine A. fumigatus spore inhalation model 

Using a murine model of repeated spore inhalation (Figure 1A), we next analysed 

the ability of A. fumigatus to upregulate profibrogenic growth factors in vivo. Mouse 

airway exposure to A. fumigatus spores, over the course of three weeks, was 

associated with a mild inflammatory response of the peribronchiolar region (Figure 

3A) with no significant difference in total cell count in BAL compared with control 

(Figure 3B). Exposure to spores was also associated with a relatively mild, but 

significant increase in the level of proinflammatory cytokines, IL4, and IL6, assessed 

in lung homogenate, as well as a significant rise in total serum IgE but not IL5 

(Figures 3 C-F). A. fumigatus spore exposure also significantly enhanced α-SMA 

localisation around the airways (Figure 4 A-B), although no significant change in 

peribronchiolar collagen deposition was detected by image analysis (Figure 4 C-D). 

This relatively mild remodelling of the airways in response to A. fumigatus spores 

was accompanied by significantly increased lung ET-1 gene expression (Figure 4E). 

However, the increase in gene expression was not accompanied by a significant 

increase in ET-1 protein level in lung homogenate or BAL compared with controls 

(Figure 4 F-G). Similar to findings in vitro, A. fumigatus spores failed to induce a 

significant upregulation of gene expression for TGFβ1, TGFβ2 and periostin in 
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murine lung tissue (Supplementary Figure 2). Together these findings indicate that 

airway ET-1 gene expression was specifically upregulated in response to A. 

fumigatus spores.  

 

A. fumigatus culture filtrate drives robust airway inflammation and remodelling 

associated with Endothelin-1 induction.  

We conceptualised that rapid fungal spore clearance before adequate germination in 

the inhalation model may prevent sufficient exposure time of the airways to A. 

fumigatus mediators. We therefore used a different inhalation model which involved 

repeated airway exposure to A. fumigatus culture filtrate in vivo over the course of a 

five week period (Figure 1B). Prominent peribronchiolar inflammation was evident in 

culture filtrate exposed lungs (Figure 5A) associated with a significant increase in 

total cell counts in BAL compared with that from control lungs (Figure 5B). 

Differential BAL cell counts revealed that this overall  increase was associated with a 

decrease in the number of macrophages concomitant with an increase in the number 

of eosinophils, neutrophils and lymphocytes (Supplementary Figure 3). Filtrate-

induced inflammation was associated with a robust and highly significant increase in 

proinflammatory cytokines, IL4, IL5 and IL6, in lung homogenate and total serum IgE 

to levels far greater than that found in response to spores indicating a robust allergic 

response (Figure 5 C-F). Furthermore, significantly increased α-SMA localisation 

was detected around the airways accompanied by profound collagen deposition, 

hallmarks of airway remodelling (Figure 6 A-D). Gene expression of lung ET-1 was 

significantly increased in culture filtrate exposed lungs (Figure 6 E). Similar to the 

spore model, lung homogenate ET-1 protein was not changed (Figure 6 F) but 
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interestingly, ET-1 levels in BAL were significantly increased which may suggest an 

increase in bronchial epithelial-derived ET-1 or increased production by inflammatory 

cells in BAL (Figure 6 G). We also assessed gene expression of TGFβ1, TGFβ2 and 

periostin in the lungs of mice exposed to A. fumigatus culture filtrate. Similar to the 

spore inhalation model, culture filtrate exposure did not increase the expression of 

these growth factors (Supplementary Figure 4).  

 

Endothelin receptor A (ETA) antagonism diminishes A. fumigatus induced 

airway pathology 

We hypothesised that ET-1 likely facilitates A. fumigatus driven airway pathology. To 

test this theory, mice were treated intranasally with BQ-123, an ETA receptor 

antagonist, prior to each A. fumigatus culture filtrate exposure. Pre-treatment with 

BQ-123, reduced the extent of peribronchiolar inflammatory infiltration and 

significantly reduced total BAL cell count compared to mice receiving filtrate alone 

(Figure 7 A-B). Assessment of BAL differential cell counts revealed that this 

reduction was due to a significant decrease in the number of macrophages, 

neutrophils and lymphocytes (Supplementary Figure 5). Reduced inflammation was 

not associated with a significant reduction in IL4, IL6 or total serum IgE in the BQ-

123 treated group compared with culture filtrate alone group (Figure 7C-E). 

Antagonism of ET-1 receptor caused a modest, but significant increase in lung 

homogenate ET-1, but did not alter BAL ET-1 levels compared with mice receiving 

culture filtrate (Figure 7 F-G). We next assessed whether BQ-123 reduced airway 

remodelling in response to A. fumigatus culture filtrate. Subepithelial α-SMA 

distribution (Figure 8A-B) and collagen deposition (Figure 8C and D) induced by 
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culture filtrate exposure were both significantly diminished and often undetectable in 

the airways of mice pre-treated with BQ-123. These findings suggest that ETA 

antagonism successfully diminishes the inflammatory response and subepithelial 

remodelling induced by A. fumigatus secreted products. 

 

Discussion 

In the present study, we demonstrated that A. fumigatus spores and culture filtrate 

caused a highly specific upregulation of ET-1 in cultured human airway epithelial 

cells. By modelling fungal-induced allergic disease in mice, we corroborated these 

findings in vivo and showed that A. fumigatus driven airway inflammation and 

remodelling was associated with a targeted upregulation of ET-1. Based on the 

notion that ET-1 is central to A. fumigatus driven airway remodelling, we delivered an 

ET receptor A (ETA) antagonist, BQ-123, prior to exposing mice to A. fumigatus. We 

demonstrated for the first time that antagonism of ETA prevents A. fumigatus induced 

inflammation and remodelling of the airways.    

Previously regarded as a mere bystander, the airway epithelium is now recognised 

as pivotal in driving the asthma phenotype.10-12  Furthermore, acting as an epithelial-

mesenchymal trophic unit, injured airway epithelial cells signal to underlying 

mesenchymal cells and vice versa.14 A. fumigatus upregulates a number of key 

cytokines in airway epithelial cells.15,16  Intriguingly in the present study, we found 

that both A. fumigatus spores and culture filtrate also caused an upregulation of ET-1 

in airway epithelial cells, with no significant change detected for TGFβ1 or periostin 

and a decrease in TGFβ2 compared with untreated controls. We next substantiated 

the upregulation of ET-1 found in vitro using murine models of allergic inflammation 
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mediated by A. fumigatus exposure. Both a spore inhalation model33 and our 

previously published model of culture filtrate exposure18 showed a significant 

upregulation of ET-1 gene expression compared with controls. In accord with our in 

vitro findings, TGFβ1/2 and periostin expression were not significantly altered. 

Upregulation of ET-1 expression was accompanied by Th2 cytokine and IgE 

induction and extensive remodelling of the airways, with subepithelial collagen 

deposition and smooth muscle hypertrophy, highly pronounced in the culture filtrate 

model. To our knowledge, this is the first report of an upregulation of ET-1 by human 

airway epithelial cells and in BAL from murine lungs exposed by A. fumigatus. These 

findings may indicate an epithelial source of this growth factor in vivo. ET-1 has been 

found in high levels in children with asthma24 and also increased during exacerbation 

of asthma in adults.25 Furthermore in human asthmatic airways, ET-1 is located 

primarily in the bronchial epithelium34 with its expression increased in steroid 

refactory asthma.35 As well as the epithelium, ET-1 is produced by a number of lung 

cell types including pulmonary vascular endothelial cells, macrophages, neutrophils 

and fibroblasts.36-39 ET-1 is also reported to drive macrophage cytokine production 

and recruitment of lymphocytes, neutrophils and eosinophils in ovalbumin sensitised 

mice.40 In the current study macrophages, neutrophils and lymphocytes were all 

increased in the BAL of A. fumigatus exposed mice. It is therefore possible that ET-1 

was derived from the bronchial epithelium and contributes to the recruitment of 

immune cells found in BAL and/or was produced by these immune cells.  

ET-1 signals via ET receptor A (ETA), expressed by many cell types including 

vascular and airway smooth muscle leading to vaso and bronchoconstrictive but can 

also signal by ET receptor B (ETB), predominately expressed by the endothelium.41 

In the current study, upregulation of ET-1 in mice exposed to A. fumigatus culture 
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filtrate was associated with an increased inflammatory response. Treatment with ETA 

antagonist, BQ-123, diminished the recruitment of inflammatory cells around the 

airways and total cell counts assessed in lung lavage. Differential cell counts showed 

that this was due to a significant decline in the number of macrophages, neutrophils 

and lymphocytes following BQ-123 treatment. A range of immune cells including 

macrophages, dendritic cells and lymphocytes express ET receptors,42 providing the 

signalling mechanism by which upregulated ET-1 may drive early inflammation and 

ultimately an allergic phenotype and the means by which BQ-123 diminished 

inflammation and allergy These finding support those of others where inhibition of 

ET-1 with BQ-123 and a dual ETA and ETB blockade with SB-209670, reduced 

airway eosinophila and neutrophilia in ovalbumin sensitised mice.43 Furthermore, in a 

mouse model of house dust mite sensitisation, eosinophilia and airway 

hyperresponsiveness were alleviated by the dual ET-1 receptor antagonist SB-

217242.44 Interestingly, eosinophil cell count was not significantly reduced by BQ-

123 in the current study although there was only a modest increase with culture 

filtrate exposure. Overall, our findings point to an important pathophysiological role 

for ET-1 in the development of airway inflammation in A. fumigatus-induced allergic 

asthma. 

As well as mediating an inflammatory response, our in vivo findings support a role for 

A. fumigatus-induced ET-1 in mediating subepithelial fibrosis. Antagonism of ETA 

with BQ-123 caused near complete resolution of A. fumigatus induced subepithelial 

collagen deposition and diminished α-SMA positive immunostaining around airways. 

Previous in vitro studies showed that ET-1 elicits fibroblast proliferation, 

differentiation into myofibroblasts and induction of contractile activity.36,45-47 

Intriguingly, ETA antagonism also inhibited the differentiation of isolated blood-
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derived fibrocytes into myofibroblasts in vitro.48 Furthermore, adenovirus mediated 

pulmonary upregulation of ET-1 was sufficient to drive extensive inflammation 

coupled with remodelling of the airways.49 Of relevance, a study involving ovalbumin 

exposure in mice overexpressing smad 2, a downstream TGFβ signalling molecule, 

displayed reduced airway wall remodelling following ET-1 antagonism.50 Of interest, 

cultured bronchial epithelial cells were shown to display reduced migration and 

proliferation in the presence of ET-1, suggesting this factor could potentially lead to 

defective repair of the lung epithelium resulting in enhanced remodelling.51 Taken 

together, such data point to a possible role for ET-1 in the epithelial-mesenchymal 

trophic unit, where A. fumigatus induced activation of airway epithelium may trigger 

the production of ET-1 that initiates a fibrogenic response in the subepithelial layer. 

These experimental observations are interesting when considering the 

pathophysiology of childhood asthma, where remodelling of the airways may occur in 

parallel or precede inflammation.2 Our findings build on these previous reports and 

show that antagonising ETA is an effective treatment to combat both inflammation 

and remodelling caused by inhaled fungal particles. This finding is particularly 

significant for difficult-to-treat asthma patients, quite often sensitised to airborne 

fungi. 

In our hands, the extent of airway inflammation and remodelling was relatively mild in 

the A. fumigatus spore inhalation model. This may stem from rapid spore clearance 

by innate immune cells recruited to the airways, ultimately not providing sufficient 

time for complete spore germination and host sensitisation.52 Shedding of the outer 

rodlet layer and exposure of carbohydrate moieties during germination are thought to 

be crucial steps in the host inflammatory response.53,54 Indeed, studies comparing 

repeated exposure to live or dead A. fumigatus spores in pre-sensitised mice have 
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shown that germination is essential for allergic airway inflammation and 

remodelling.55 We assessed fungal burden 24 hours after final spore exposure and 

found no evidence of A. fumigatus colonisation of the lungs supporting this 

conclusion (data not shown). Repeated exposure to a high concentration of secreted 

fungal factors, as provided by the culture filtrate, was much more efficient in driving 

inflammation and airway remodelling than that found with the rapidly cleared spores.  

It remains uncertain which secreted mediators from germinating spores and enriched 

in fungal culture filtrate may induce ET-1 production but could include fungal 

protease allergens and/or secondary metabolic by-products. We previously showed 

that deletion of specific protease activity from the culture filtrate of a genetically 

modified A. fumigatus isolate curtailed epithelial damage and airway remodelling in 

the mouse inhalation model.18 Others have shown that proteases contained in 

various aeroallergens such as ragweed, cockroach and house dust mite, can 

activate PAR2, a seven-transmembrane G-coupled protein receptor. Furthermore, A. 

fumigatus extract has been shown to activate this receptor in airway epithelial cells 

and biases the cells to mediate a Th2 response.56 Of note, activation of this receptor 

in keratinocytes stimulated by house dust mite-derived proteases increased ET-1 

production in vitro. Therefore, activation of PAR2 by A. fumigatus proteases may be 

a proposed mechanism leading to ET-1 induction. However, in the current study, we 

used culture filtrate derived from A. fumigatus strain, AF293, which we previously 

showed lacked protease activity when grown in minimal culture media [52]. With this 

in mind, we suggest that A. fumigatus-derived proteases may, in part, be involved in 

germinating spore mediated ET-1 production but A. fumigatus-derived soluble 

factors other than proteases may also be driving ET-1 production in the culture 

filtrate studies.  
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Secreted components in culture filtrate such as carbohydrate moieties and/or toxins 

may be driving induction of ET-1 via activation of pattern recognition receptors such 

as Dectin-1. For instance, in a similar allergic model of chronic lung exposure to live 

A. fumigatus conidia, β-glucan recognition via Dectin-1 resulted in the induction of 

multiple proallergic and proinflammatory mediators.57 In addition, gliotoxins and other 

metabolic by-products, are important A. fumigatus virulence factors known to 

interfere with epithelial integrity58 and trigger the release of pro-inflammatory 

mediators53,54 and possibly profibrogenic factors such as ET-1. In vivo, where 

epithelial-fibroblast cross-talk occurs, apoptosis of BECs may contribute fibroblast 

activation and fibrosis.59 We did not notice overt denuding of the epithelium in mice 

treated with A. fumigatus however it is possible that A. fumigatus induced ET-1 and 

ultimately fibrosis are first initiated by transient apoptosis. Interestingly, gliotoxins 

have been shown to accentuate ovalbumin induced airway inflammation, Th2 

sensitisation and airway remodelling in a murine model.60 Of note, mechanical stress 

also induces the selective production of ET-1 by bronchial epithelial cells in culture61 

and ET-1 was found to decrease bronchial epithelial cell proliferation and migration 

in vitro.51 Therefore, loss of bronchial epithelial cell integrity may induce ET-1 

production leading to subepithelial fibrosis and impaired epithelial repair. Lastly, 

TNF-α is a known inducer of ET-1 and this mediators has been shown to be 

upregulated in transformed human airway cells on exposure to germinating A. 

fumigatus spores.53 Whether, ET-1 is induced indirectly via an early induction of 

TNF-α in BECs exposed to A. fumigatus may be another possible mechanism which 

requires further investigation. 
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It may seem surprising that there was no observable increase in expression of 

TGFβ1 and 2 and periostin when they are known to be associated with fibrotic 

response in multiple organs. It is plausible that the timing of analysis was a limitation 

and a later time point may have shown an increased expression. However, evidence 

suggests that TGFβ was not upregulated in mice exposed to A. fumigatus spores 

unless they were pre-sensitised by fungal extract intra-peritoneally and 

subcutaneously.62 Furthermore, periostin does not appear to be essential for A 

fumigatus induced-subepithelial fibrosis as mice deficient in periostin demonstrated 

the same extent of airway remodelling as wild-type mice.32  

Although our studies indicate an important role for ET-1 in the aetiology of airway 

disease, there are several experimental limitations. In the current study, we used 

cultures of healthy human epithelial cells. Asthmatic nasal and bronchial epithelial 

cells are reported to produce heightened levels of the growth factors associated with 

fibrosis (TGFβ2, periostin and VEGF) at baseline and in response to IL4/13 

compared with healthy cells.63 Furthermore, ET-1 release was found to be higher 

from unstimulated asthmatic epithelial cells compared to control cells.64 With these 

studies in mind, it is likely that if we had used asthmatic epithelial cultures, we may 

have observed an even greater amplitude ET-1 production in response to A. 

fumigatus. Furthermore, submerged alveolar epithelial cultures showed a dampened 

inflammatory response compared to those at air-liquid interface (ALI) following an 

oxidative stress response with zinc oxide nanoparticles.65 Therefore, BECs grown at 

ALI are likely to have shown an even greater induction of ET-1. The mouse models 

used in the current study, also fast-track the allergic phenotype and recapitulate 

allergic features that may be comparable to some aspects of the disease, but by no 

means represent the complexity of asthma in people. Heightened exposure to fungal 
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allergens may occur in asthma and other lung pathologies where pre-existing mucus 

hypersecretion or cavitation provides the ideal environment for A. fumigatus spores 

to thrive and avoid being cleared. Indeed, it is reported that 60-80% of asthmatics 

with fungal sensitisation have A. fumigatus present in sputum, suggesting that such 

people are continuously exposed to A. fumigatus-derived products at high 

concentrations over a long period of time.6  

Herein, we have demonstrated for the first time, that A. fumigatus caused a robust 

upregulation of ET-1 by bronchial epithelial cells and in murine lung. Antagonism of 

ETA caused a profound decrease in inflammation and subepithelial fibrosis, 

highlighting the therapeutic potential for targeting ET-1 in fungal-sensitised asthma. 

Whether, also blocking ETB will a dual antagonist would have produced an even 

greater effect is not known. Although other studies have shown that antagonism of 

ETB using BQ-788 did not inhibit differentiation of fibrocytes into myofibroblasts48 and 

failed to influence airway inflammation43 suggesting that ETB may not play a major 

role in ET-1-induced airway pathology. Of note, a small clinical trial using the dual 

receptor antagonist, Bosentan, to treat people with asthma showed no improvement 

in the symptoms assessed66. However, this trial was limited by not reporting the 

specific allergic sensitisation of participants and the fact that Bosentan inhibits both 

ET-1 receptors. Further studies assessing the efficacy of selective ETA antagonism, 

specifically in A. fumigatus sensitised asthma may be warranted. 
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Figure legends 

Figure 1: Schematic representation of the experimental design of the murine 

models of A. fumigatus exposure. A. Spore inhalation model involved mice 

receiving an intranasal dose of spores nine times over three consecutive weeks and 

sample collection performed 24 hours after final exposure. B. Culture filtrate model 

involved mice receiving an intranasal dose of culture filtrate nine times over five 

consecutive weeks with sample collection performed 24 hours after final exposure. 

C. A separate group of mice also received an intranasal dose of BQ-123, an ET-1 

receptor antagonist, 30 minutes prior to A. fumigatus culture filtrate exposure.   

Figure 2: ET-1 is upregulated in human bronchial epithelial cells exposed to A. 

fumigatus germinating spores. A. Confocal microscopy of live, germinating spores 

seeded onto BEC monolayers and stained with calcofluor white at 0, 12 and 18 

hours. Note the progressive emergence of hyphal extensions (Scale bar =100 μm). 

B. In response to A. fumigatus germinating spore exposure for 12 hours, BECs 

increased gene expression of EDN1 (***P<0.001, n=6) and proinflammatory 

mediator, IL-6 (*P<0.05, n=6) as assessed by qPCR. Gene expression of other 

profibrogenic mediators, TGFβ1 and POSTN, was unchanged whilst TGFβ2 
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expression was significantly reduced (*P<0.05, n=6) relative to control. C. In 

response to A. fumigatus germinating spores, BECs significantly increased the 

production of ET-1 after 24 hours (***P<0.001, n=6).  

Figure 3: A. fumigatus spores elicit a mild inflammatory and allergic response 

in a murine inhalation model. A. Representative H&E images, depicting the 

relatively mild peribronchiolar inflammatory response in airways exposed to A. 

fumigatus spores (Scale bar = 50 μm). B. Total BAL cell counts were similar in 

response to spore exposure and control. C-F. Exposure to spores caused a mild, but 

a significant increase in serum IgE (*P<0.05, n=5) and IL4 (*P<0.05, n=5) and IL6 

(**P<0.01, n=5) levels in homogenised lung, but no change for IL5 compared with 

control.   

Figure 4: A. fumigatus spores cause limited remodelling of the airways and 

Endothelin-1 induction in a murine inhalation model. A-B. Repeated exposure to 

A. fumigatus spores significantly increased peribronchiolar α-SMA (green and 

counterstained for DAPI to visualise nuclei blue; *P < 0.05; n = 5) compared with 

control (Scale bar = 50 μm). C-D. No detectable change in collagen deposition 

around airways following spore exposure was detected by image analysis of 

Masson’s trichrome stained sections. E-G. A significant increase in lung Edn1 gene 

expression (*P<0.05, n=5), was found by qPCR in spore exposed mice but no 

significant increase in ET-1 protein in total lung homogenate or BAL compared with 

control mice.  

Figure 5: Robust inflammation and allergic response in a murine A. fumigatus 

culture filtrate inhalation model. A. Representative H&E images of control and A. 

fumigatus culture filtrate exposed airways (Scale bar = 50 μm). Note the profound 
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peribronchiolar and perivascular inflammation apparent in culture filtrate exposed 

airways. B. Total cell counts from Giemsa stained cytospins showing a significant 

increase in total cell number (***P < 0.001, n = 5), C-F. Total serum IgE (***P < 

0.001, n=5) and proinflammatory and Th2 promoting cytokines, IL4 (***P<0.0001, 

n=5), IL-5 (**P<0.01, n=5) and IL-6 (***P<0.01, n=5) were all significantly increased 

in the lungs of mice exposed to culture filtrate compared with control.  

 

Figure 6: Extensive airway remodelling in mice exposed to A. fumigatus 

culture filtrate. A-B. Culture filtrate caused a noticeable increase in peribronchiolar 

α-SMA localisation (green and counterstained for DAPI to visualise nuclei, blue). 

compared with control which was found to be significant following image analysis (*P 

< 0.05, n=5). C-D. Culture filtrate exposed bronchioles showed extensive collagen 

deposition on Masson’s Trichrome stained sections confirmed by to be significantly 

increased compared with control by image analysis (***P < 0.001, n=5; Scale bar = 

50 μm). This profound airway wall remodelling in culture filtrate exposed mice was 

associated with a significant increase in E. Edn1 gene expression in homogenised 

lung (*P < 0.05, n=5), F. no change in total lung homogenate ET-1 protein, but G. a 

robust increase in ET-1 protein in BAL (****P < 0.0001, n=5) compared with control.  

Figure 7: Endothelin-1 receptor antagonism moderates inflammation and 

allergic response to A. fumigatus. A. Representative H&E images showing 

exposure to A. fumigatus culture filtrate caused extensive peribronchiolar 

inflammation which was far less apparent following BQ-123 treatment (Scale bar = 

50 μm). B Mice receiving culture filtrate alone showed a significant increase in total 

BAL cell count (**P < 0.001, n=5) which was significantly reduced by BQ-123 
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treatment relative to culture filtrate group (*P < 0.05, n=5). C. Exposure to culture 

filtrate caused a significant induction of IL4 (*P < 0.05, n=5), which was unchanged 

with BQ-123 treatment and D. a significant induction of IL6 (**P < 0.01, n=5) that was 

decreased by BQ-123 abet not significantly.  E. Culture filtrate caused a significant 

induction of total serum IgE (*P < 0.05, n=5) which also showed a trend for reduction 

following BQ-123 treatment. F. A. fumigatus caused a significant induction of ET-1 

protein in the lung (*P < 0.05, n=5), which increased further with BQ-123 treatment 

(**P < 0.01, n=5). G. Relative to controls, ET-1 was significantly increased in BAL 

from mice exposed to culture filtrate (*P < 0.05, n=5) and did not statistically 

significant change in the BQ-123 treated group.  

Figure 8: Endothelin-1 receptor antagonism obliterates A. fumigatus induced 

airway wall remodelling. A. Representative images of bronchioles from control, 

culture filtrate exposed, or culture filtrate with BQ-123 pre-treatment mice showing α-

SMA localisation (green) and counterstained for DAPI to visualise nuclei (blue). B. 

Compared with controls, A. fumigatus filtrate caused a significant increase in 

peribronchiolar α-SMA (**P < 0.01, n=5) which was significantly decreased in the A. 

fumigatus filtrate + BQ-123 group compared with culture filtrate group (**P < 0.01, 

n=5). C. Representative images of bronchioles from control, A. fumigatus filtrate or 

A. fumigatus filtrate+BQ-123 treated mice stained by Masson’s Trichrome. D. 

Exposure to A. fumigatus filtrate caused a profound and signficant increase in 

collagen (****P < 0.0001, n=5) which was significantly diminished in the BQ-123 

treated group (***P < 0.001, n=5).  
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Supplementary Figures 

Supplementary Figure 1: A. fumigatus culture filtrate caused a significant 

induction of Endothelin-1 by primary human bronchial epithelial cells. Primary 

BECs were exposed to culture filtrate for 12 hours and induction of fibrogenic growth 

factors assessed by qPCR. Gene expression of TGFβ1/2 and periostin was not 

changed, but culture filtrate increased expression of ET-1 (*P<0.05, n=5) and  

proinflammatory cytokine, IL-6 (*P<0.05, n=5) compared with control. Culture filtrate 

exposure was also associated with a significant increase in ET-1 protein after 24 

hours (***P < 0.001, n=5) compared with control. 

Supplementary Figure 2: Assessment of selected profibrogenic mediators in 

the lungs of mice exposed to A. fumigatus spores. Repeated exposure to A. 

fumigatus spores failed to induce a significant increased gene expression of Tgfβ1, 

Tgfβ2 or periostin compared with controls as assessed by qPCR.  

Supplementary Figure 3: A. fumigatus culture filtrate cause an influx of 

neutrophils and lymphocytes in mouse lungs. An increased total BAL cell counts 

in culture filtrate exposed mice was associated with an increased percentage of 

neutrophils and lymphocytes. Assessment of absolute cell numbers revealed that 

whilst total number of macrophages had significantly decreased (**P < 0.0001, n=5), 

the number of eosinophils (*P < 0.05, n=5), neutrophils (**P < 0.01, n=5) and 

lymphocytes (**P < 0.01, n=5) had each increased compared with control mice.  

Supplementary Figure 4: Assessment of selected profibrogenic mediators in 

the lungs of mice exposed to A. fumigatus filtrate. Repeated exposure to culture 

filtrate failed to induce the expression of TGFβ1, TGFβ2 or periostin in the lungs 

compared with control as assessed by qPCR. 
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Supplementary Figure 5: BQ-123 diminished the A.fumigatus induced influx of 

immune cells. BQ-123 significantly reduced the percentage of neutrophils infiltrating 

BAL compared to A. fumigatus alone group (****P < 0.0001, n=5). A. fumigatus 

exposure decreased the number of macrophages (***P < 0.001, n=5), which was 

further reduced with BQ-123. The significant increase in neutrophils and 

lymphocytes were each diminished with BQ-123 treatment (***P < 0.001 and ****P < 

0.0001 respectively, n=5). 
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