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A B S T R A C T

Employing a triangulated design to explore psychophysiological indices of cognitive style, the study investigated
the validity of the intuition-analysis dimension of cognitive style and its associated construct measure, the
Cognitive Style Index (CSI). Participants completed a comparative visual search (CVS) task whilst changes in
hemodynamic concentrations in the prefrontal cortex (PFC) were monitored using functional near-infrared
spectroscopy and eye movements were recorded together with task performance measures of response time and
accuracy. Results revealed significant style-related differences in response time and number of saccades. Analysts
were characterized by fewer saccadic eye movements and quicker response times—but with comparable accu-
racy scores—compared to intuitives, suggesting a more efficient visual search strategy and decision-making style
on the experimental task. No style-related differences in neural activation were found, suggesting that differ-
ences were not mediated by style-specific variations in brain activation or hemispheric lateralization. Task-
evoked neural activation—compared with baseline resting state—represented the value of PFC-based neural
activation measures in studies of cognitive processing. Findings demonstrated style-related differences sup-
porting the intuition-analysis dimension of cognitive style and the validity of the CSI as a psychometric measure
of style. The potential value of valid psychometric measures of cognitive style in applied areas is highlighted.

1. Introduction

Cognitive—or information-processing—style refers to cognitive
strategies consistent over both time and activity (Sternberg &
Grigorenko, 2001) that govern the way an individual habitually ac-
quires, processes, and interprets information. Thus, cognitive style re-
flects individual differences in information-processing that are the focus
of familiar frameworks of human thinking such as Epstein's (1990)
Cognitive-Experiential Self-Theory and Kanheman's (2011) fast and
slow thinking. Distinct from cognitive ability (Sternberg, 1997), style is
key to fundamental human processes such as decision-making, per-
ception, and learning (Hough & Ogilvie, 2005; Riding & Sadler-Smith,
1997). As such, cognitive style is a construct central to a range of dis-
ciplines and fields including cognitive and social psychology, educa-
tion, business, and management (Koshevnikov, Evans, & Kosslyn,
2014). Accounting for style has been found to promote learning po-
tential and enhance work-related performance (Hayes & Allinson, 1996;

Riding & Agrell, 1997; Sadler-Smith, Allinson, & Hayes, 2000). Some
studies, for example, suggest that delivering educational material in a
format suited to the individual's preferred cognitive style significantly
improves learning outcomes (Ford & Chen, 2001; Yang, Hwang, &
Yang, 2013). Style has also been found to have a direct impact on the
development of managerial strategies and entrepreneurial innovation
(Allinson, Chell, & Hayes, 2000; Visser & Faems, 2015).

Whilst the utility of cognitive style seems evident, the field has
suffered a period of heavy criticism, with the existence of over 71 dif-
ferent conceptual models of style (Coffield, Moseley, Hall, & Ecclestone,
2004) and a plethora of seemingly arbitrary construct definitions and
associated measures, inciting confusion amongst researchers and prac-
titioners alike (Cassidy, 2004). This has raised questions regarding both
the validity of the conceptualization of style and, in particular, existing
self-report psychometric construct measures of style and their wide-
spread use in both research and applied contexts (Cassidy, 2012;
Coffield et al., 2004). Capitalizing on the potential of style to afford
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optimal fit between the individual and a particular functional en-
vironment is conditional on the capacity to effectively measure the
construct. In view of criticisms levelled at existing approaches to style
measurement, the present study explores the potential in adopting a
neuroscientific approach combined with eye-tracking and psycho-
metrics for the study of cognitive style, and in doing so offer validation
data supporting existing self-report psychometric measures of style
which, in turn, will facilitate work exploring the construct in applied
settings.

Based on the assumption that style is reflective of underlying cog-
nitive functioning (see Koshevnikov et al., 2014 for a review), it is ar-
gued that there exists potential to validate the construct through the
identification and exploration of psychophysiological indices (Bendall,
Galpin, Marrow, & Cassidy, 2016). The ability to identify style-depen-
dent traits in neurological mechanisms and perceptual strategies would
offer a unique insight into the functional expression of style, confirm
construct validity of the psychometric instrument under investigation,
and, most crucially, serve to consolidate and substantiate the con-
ceptual basis of cognitive style.

1.1. The intuition-analysis dimension of style

Despite a range of available conceptualizations of human informa-
tion-processing, and perhaps due to its association with speed and ac-
curacy in decision making and thus its inherent value, the distinction
between intuitive and analytic processing is prevalent in cognitive style
research and practice (Dane & Pratt, 2007; Hodgkinson & Sadler-Smith,
2003). For example, intuitive-analysis processing has been used to in-
vestigate diagnostic decision making in medical students (Tay, Ryan, &
Ryan, 2016) and dominant thinking style in judges (Guthrie,
Rachlinski, & Wistrich, 2007), highlighting the relevance of this parti-
cular conceptualization of information processing in critical areas of
human functioning. This fundamental distinction is a central feature of
influential theories of information processing including Epstein's in-
tegrative personality theory Cognitive-Experiential Self-Theory
(Epstein, 1990; Epstein, Pacini, Denes-Raj, & Heier, 1996) and
Kanheman's (2011) System 1 and System 2 thinking. Although using
different conceptual labels, both Epstein's Rational and Experiential
thinking and Kahneman's System 1 and System 2 thinking represent the
familiar distinction between analytic and intuitive processes. Active
when the situation is routine and time-constrained, Experiential and
System 1 thinking are commonly described using the terms pre-
conscious, automatic, concrete, holistic, affect-free, fast, effortless, ex-
periential, automated, subconscious, based on pattern recognition and
past experience, and, critically, intuitive. More cognitively demanding
and active when the situation is complex or involves uncertainty, Ra-
tional and System 2 thinking are commonly described using the terms
conscious, deliberate, abstract, logical, affect-laden, slow, effortful,
based on past learning with the conscious application of rules, and,
critically, analytic (Epstein et al., 1996; Hodgkinson, Sadler-Smith,
Sinclair, & Ashkanasy, 2009; Kahnamen, 2002; Kahneman & Frederick,
2002; Tay et al., 2016). The Cognitive Style Index (CSI; Allinson &
Hayes, 1996) is a self-report psychometric measure of cognitive style
that specifically assesses preference-related differences in information
processing according to intuition and analysis. Whilst a number of
psychometric instruments have been developed for the purpose of
measuring style, the CSI emerged as the only psychometric measure to
offer evidence satisfying each of the minimum criteria set by an influ-
ential critical review of the field (Coffield et al., 2004). These criteria
included internal consistency, test-retest reliability, construct validity
and predictive validity. Using the intuition-analysis dimension of style,
the CSI categorizes individuals as analysts, characterized by systematic,
sequential and logical reasoning, or intuitives, who favor a more in-
novative, creative and wholistic approach. On the basis that these
characteristic differences in cognitive style reflect differences in un-
derlying cognitive function, there exists potential to validate the

construct using neurological biomarkers and patterns of perceptual
processing (Bendall, Galpin, et al., 2016).

Whilst Allinson and Hayes' (1996) CSI, Epstein's (1990) Rational/
Experiential thinking and Kanheman's (2011) Systems of thinking all
focus on the distinction between intuitive and analytical processing,
Epstein and Kahneman are both dual-process theories, proposing in-
tuition and analysis as two separate, parallel, but interacting processing
modes. Rather than dual-processes, the CSI measures intuition-analysis
as a single unidimensional bipolar construct. The debate regarding the
comparative value of multi- and unidimensional construct measures is
considered by Hodgkinson and Sadler-Smith (2003) and Hodgkinson
et al. (2009), who, although noting limitations with both multi- and
unidimensional construct measures, favor a multidimensional ap-
proach. Hayes, Allinson, Hudson, and Keasey (2003) however maintain
that the unitary approach they adopt as the basis of the CSI is theore-
tically and empirically defensible and aligns with the approach adopted
by a number of conceptual models of cognitive style.

1.2. Eye movements and cognitive style

Observing how an individual deploys their attention whilst locating
a visual target (i.e., visual search) offers insight into the underlying
cognitive processes involved as the search progresses (Bendall &
Thompson, 2015; Galpin & Underwood, 2005). Tracking eye-move-
ments is perhaps one of the most comprehensive ways to capture the
dynamics of attention, offering the potential to reveal style-related
cognitive processing (Bendall, Galpin, et al., 2016). Whilst the authors
were unable to locate published studies directly examining the intui-
tion-analysis dimension, individual differences in eye-movements have
been noted for other proposed dimensions of cognitive style. For in-
stance, visualizers have been found to attend more to pictorial in-
formation, whilst verbalizers prioritize written text (Koć-Januchta,
Höffler, Thoma, Prechtl, & Leutner, 2017; Tsianos, Germanakos,
Lekkas, Mourlas, & Samaras, 2009). In a further study tracking eye-
movements, field-dependent (wholistic/global processing) and field-
independent (analytical/local processing) styles were reported as in-
fluencing the allocation of attention to different visual elements
(Mawad, Trías, Giménez, Maiche, & Ares, 2015). Although these at-
tentional preferences indicate distinctions in the allocation of attention,
they do not directly evidence the existence of specific style-related
strategies for perceptual processing. Assessing the moment-by-moment
pattern of eye-movements during visual search tasks is likely to provide
a greater understanding of how style directs and guides perceptual
behaviors (Henderson, 2003).

Nisiforou and Laghos (2016) suggested that, compared to field-in-
dependent individuals (analytical/local processing), those who favored
a field-dependent style (wholist/global processing) displayed a more
disorganized visual search strategy represented by a substantially
higher number of fixations and saccades. Nitzan-Tamar, Kramarski, and
Vakil (2016) examined style-related visual search strategies based on
the wholist-analytic dimension (Riding, 1991), a dimension that argu-
ably shares many common characteristics with the intuition-analysis
dimension of style (Sadler-Smith & Badger, 1998). Recording dwell
time (total number of fixations and saccades in an area of interest) and
number of transitions between images to make style-related compar-
isons across a series of global and local visual search tasks revealed that
analysts were characterized by longer dwell times on both global and
local processing tasks and, overall, made more transitions between
images. Conversely, wholists seemed better able to adapt their pre-
ferred search strategy to fit the task requirements as no differences in
response times or accuracy between global and local tasks were re-
ported. However, because eye-movement data was gathered using the
same visual stimuli that constitute the Extended Cognitive Styles Ana-
lysis Test (Peterson, Deary, & Austin, 2003), and which was used to
define the participants' cognitive style along the wholist-analysist di-
mension, interpreting the findings in terms of indicative style-related
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cognitive processing is problematic; any differences in eye-movements
may not be indicative of style-related differences but rather a simple
artifact of the task which was developed with the express purpose of
delineating style along the specified dimension.

In an attempt to address the suggested limitations identified with
Nitzan-Tamar et al.'s (2016) design, the present study uses the CSI as an
independent style measure, free from the constraints of ability, against
a separate and independent comparative visual search task (CVS). The
CVS task requires participants to identify differences between pairs of
simultaneously presented images, similar to a ‘spot-the-difference’ task
(Galpin & Underwood, 2005; Pomplun et al., 2001). Critically, existing
studies report that participants can approach this task with different
cognitive strategies, focusing either on encoding details into memory,
evidenced by making fewer comparison eye-movements, or reduce
memory load by favoring a more dynamic between-images perceptual
comparative strategy with increased comparison eye-movements
(Hardiess & Mallot, 2015). Thus, the task was selected as a suitable
means of investigating cognitive style strategies revealed through ob-
served differences in eye-movements.

1.3. A neurological perspective and cognitive style

In a further effort to validate the intuition-analysis dimension of
cognitive style—and associated CSI measure—using triangulated data
sources, functional neuroimaging methods were also employed to
identify potential neural mechanisms of style-related behavior.
Investigating neural correlates of human visual attention using brain
imaging techniques is common in attention resource allocation studies
which have successfully identified functional connectivity and neural
networking associated with visual orientation tasks (e.g. Corbetta &
Shulman, 2002). The intuition-analysis dimension, as defined within
the context of the CSI, is based partly on the—now ques-
tionable—assumption of hemispheric lateralization (Allinson & Hayes,
1996). That is, analysts are thought to be left-brain dominant, favoring
logical and sequential processing, whilst intuitives utilize right hemi-
spheric function (spatial orientation and visual comprehension)
(Genovese, 2005). Despite a lack of evidence supporting the notion of
cerebral dominance in the governing of cognitive processes (Hervé,
Zago, Petit, Mazoyer, & Tzourio-Mazoyer, 2013; Lindell, 2011), the
functional anatomy of the brain does offer the potential for processing
preferences of intuitive and analytic thinkers to manifest in specific
identifiable patterns of neural activation.

To date, few studies of cognitive style have attempted to identify
style-related neural activity in conjunction with behavioral strategies.
Neuroscientific evidence does however exist suggesting that cognitive
style influences demands on specific brain structures. Greater activation
in the fusiform gyrus (implicated in encoding of pictorial imagery) is
reported for visualizers, whilst verbalizers show increased activation in
the supramarginal gyrus (responsible for phonological encoding), a
difference that is maintained even when presented with a mismatched
stimulus (Kraemer, Rosenberg, & Thompson-Schill, 2009). Further
evidence of style-structure dependence is presented by Walter and
Dassonville (2007) who identified distinct regions of the parietal cortex
that specifically process contextually embedded stimuli, suggesting that
field dependent-independent styles may naturally exploit different
neurological mechanisms.

Nevertheless, studies focusing on the neurophysiological char-
acteristics of intuitive and analytic styles remain scarce. Using pupil
diameter as an index of neural gain (described as an excitation/in-
hibition-contrast amplifier of neural communication and modulated by
the locus coeruleus-norepinephrine system in the brain) Eldar, Cohen,
and Niv (2013) reported style-related differences according to the
sensing-intuitive dimension of the Index of Learning Style (Felder &
Spurlin, 2005). Sensing style involves perceptual fact-based concrete
learning, (e.g., visual features) and intuitive style is semantic meaning-
based learning involving abstract concepts (e.g., sematic categories).

When neural gain was high participants showed a stronger inclination
towards their preferred style; when gain was low, this inclination was
weakened. Eldar et al. (2013) concluded that participants' predisposi-
tion for learning is modulated by neural gain and because learning style
was less evident when neural gain was high, there is less cognitive
flexibility under stress so learning is more strongly constrained by
preferred learning style, resulting in diminished performance in some
tasks requiring cognitive flexibility. Riding, Glass, Butler, and Pleydell-
Pearce (1997) explored neural activations of the wholist-analytic di-
mension of style, as measured using the Cognitive Style Analysis Test
(Riding, 1991). Using electroencephalography, neural impulses were
recorded during a cognitive task involving both analytic and verbal
processing. Viewing words presented on a computer screen at varying
processing difficulties (i.e., speed of presentation), participants were
required to respond when the stimuli belonged to a particular semantic
category (e.g., fruit). Analysts produced significantly greater neural
responses across all levels of processing difficulty, suggesting that
analysts engage in more intensive cognitive processing irrespective of
task complexity. Riding et al. (1997) did not monitor behavioral per-
formance responses, so it is not possible to establish whether these
differences in neural activity were associated with differences in per-
formance, such as accuracy. Thus, the need remains to explore how any
neurological differences recorded translate into intuitive-analyst style-
related behavior.

1.4. The present study

The aim of the present study is to explore the psychophysiological
correlates of the intuition-analysis dimension of cognitive style, as
measured by the CSI. Using a unique methodological approach invol-
ving data triangulation, functional neuroimaging and eye-tracking
techniques are employed alongside psychometric and performance
measures. Hemodynamic responses in the PFC are recorded whilst si-
multaneously monitoring visual search strategies during a CVS task
allowing style-related behavioral strategies to be associated with re-
lated neural mechanisms.

Functional near-infrared spectroscopy (fNIRS) is a non-invasive
neuroimaging technique already successfully applied in the study of
cognitive processes (Bendall, Eachus, & Thompson, 2016; Masataka,
Perlovsky, & Hiraki, 2015). This technique, like functional magnetic
resonance imaging (fMRI), is based on the principle of neurovascular
coupling which details the relationship between cerebral blood flow
and neural activation (Villringer & Dirnagl, 1995). fNIRS infers activity
by measuring fluctuations in levels of oxygenated hemoglobin (oxy-Hb)
and deoxygenated hemoglobin (deoxy-Hb) and these signals have been
shown to be correlated with the blood oxygenation level-dependent
(BOLD) response observed in fMRI (Cui, Bray, Bryant, Glover, & Reiss,
2011). Previous studies employing neuroimaging have provided evi-
dence supporting PFC activation during cognitive task completion (e.g.
Bendall & Thompson, 2016; Racz, Mulki, Nagy, & Eke, 2017) and the
PFC has been shown to play an important role in cognitive control
(Miller & Cohen, 2001). Using fNIRS, Racz et al. (2017) reported a
strong response throughout the PFC during completion of a pattern-
recognition test—compared to resting state—demonstrating that cog-
nitive challenge increased activation in the PFC and indicating the
potential value of adopting fNIRS in imaging the PFC in studies of
cognitive function.

The task chosen for this study is the comparative visual search task.
Searching within the environment is a complex behavior common to
both human and non-human animals that involves a series of processes
including allocation of attention and memory of the visual scene.
Consequently, visual search has provided a platform for investigating
both visual and cognitive function. Selective attention is the cognitive
process that allows specific information from the environment to be
selected and prioritized for further processing over less important or
relevant stimuli. The processing of information may be either top-down,
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characterized by internally generated, goal-directed behavior (e.g., a
visual search guided by selected features), or bottom-up, the externally
generated, automatic processing of information in the environment
regardless of task demand (Itti & Koch, 2000). Working memory, es-
sential for higher cognitive functions such as planning and decision
making, is the ability to hold, recall and manipulate information for use
in the short term (Baddeley, 2003). Both attention (Panieri &
Gregoriou, 2017; Miller & Cohen, 2001) and working memory
(Funahashi, Bruce, & Goldman-Rakic, 1989)—fundamental facets of
information processing and therefore cognitive style—have been found
to have neural correlates within the PFC, particularly the dorsolateral
prefrontal cortex (dlPFC). Consequently, if as previous studies have
suggested (e.g., Riding et al., 1997) intuitives and analysts differ in
their strategies for performing visual search tasks similar to that used in
the present study, it is anticipated that this difference will be reflected
in activity of PFC as measured by fNIRS.

Both theoretical and conceptual accounts and empirical evidence
exploring cognitive style suggest observable style-dependent differ-
ences in visual search strategies. As such, we selected eye-tracking
measures that would capture these potential differences by measuring
how often comparisons were made, and how far search moved between
each subsequent fixation. Standard measures of number of saccades and
fixation duration were also captured. These are useful because in the
CVS task, there is an increased demand on encoding into working
memory which may be reflected by increased fixation duration. This in
turn may reduce the strength of the relationship between number of
saccades and response time in comparison to a standard visual search
task. Whilst the available evidence is limited, somewhat contradictory,
and in some cases only relates indirectly to the intuitive-analytic di-
mension, it was anticipated that, as suggested by the earlier work of
Nisiforou and Laghos (2016) and conceptualizations of style offered by
Allinson and Hayes (1996), Epstein (1990), and Kanheman (2011),
participants identified by the CSI as analytic will exhibit a more orga-
nized and systematic visual search strategy, with fewer eye-movements,
than those participants identified as intuitive. In addition, given the
neural mechanisms underlying cognitive processes, it is anticipated that
the intuition-analysis dimension will be reflected in observable varia-
tions and differentiated patterns of style-dependent neurological acti-
vation representative of associated cognitive workload indexed by in-
creased activation for analysts compared to intuitives as reported by
Riding et al. (1997) and according to conceptual accounts associating
an analytic style with effortful, deliberate, rule-driven processing
(Epstein et al., 1996; Hodgkinson et al., 2009; Kahnamen, 2002;
Kahneman & Frederick, 2002; Tay et al., 2016). Behavioral perfor-
mance data, including response time and task accuracy were also col-
lected, enabling interactions between style-preference, task perfor-
mance and psychophysiological response to be explored.

2. Method

2.1. Design

A quasi-experimental between-subjects design was used to examine
neural and behavioral correlates of the intuition-analysis dimension of
cognitive style. The independent variable was cognitive style (intuitive
or analytic) as defined by the CSI (Allinson & Hayes, 1996, 2012). The
three dependent variables studied were evoked brain activation re-
presented by changes in oxy-Hb using fNIRS, visual search strategy
captured using eye-tracking and represented by fixation duration,
number of saccades, proportion of comparative saccades, and distance
moved, and finally behavioral performance measures of accuracy score
(percentage correct) and task related response time (seconds) on the
CVS task.

2.2. Participants

The initial study sample included 56 university staff and students
(45 female, 11 male) aged between 18 and 57 years (M=28.53,
SD=9.48). For the purposes of comparative analysis, participants were
assigned to either an intuitive group (n=16, mean age 30.25, SD
11.12, mean CSI score 31.19, SD 5.89) or an analytic group (n=31,
mean age 28.0, SD 9.38, mean CSI score 54.42, SD 7.23) based on their
CSI score indicating a ‘pure’/‘tendency towards’ either intuition or
analysis (Allinson & Hayes, 2012; see Materials and Apparatus section
for further details). The remaining nine participants fell in the Adaptive
category, meaning that their CSI scores did not confer an analytic or
intuitive cognitive style. These participants were excluded from com-
parative analyses but included in correlational analyses. Ethical ap-
proval was gained from the School of Health Sciences' Ethics Panel at
the University of Salford (HSRC12-88). All participants received an
inconvenience allowance of £10.

2.3. Materials and apparatus

2.3.1. The cognitive style index (CSI)
The CSI is a 38 item self-report psychometric measure used to de-

termine preferred cognitive style along the intuition-analysis dimension
(Allinson & Hayes, 1996). Participants respond true, uncertain, or false
along a 3-point Likert scale to statements such as ‘to solve a problem I
have to study each part of it in detail’. Each statement attracts a score of 0,
1 or 2 according to the selected response and by applying reverse
scoring guidelines to 17 items. A total scale score is achieved by sum-
ming responses to all 38 items. The CSI has a theoretical range of 0–76,
with lower scores indicative of intuitive style and higher scores in-
dicative of analytic style. Extreme scores represent ‘pure’ style pre-
ferences; scores in the range 0–28 represent intuitive style and in the
range 53–76 analytic style. Moderate scores, in the range 29–38 and
46–52 respectively, represent quasi-intuitive and quasi-analytic style
groupings reflecting a tendency towards, but not full adoption of, that
style category. Centralized scores, 39–45, represent an adaptive style
(Allinson & Hayes, 2012). For the purposes of the study and to optimize
comparative data analysis, CSI pure and quasi style groupings were
combined to form single intuitive (i.e., scores 0–38) and analytic (scores
46–76) groups. Participants exhibiting an adaptive style (39–45) were
excluded from comparative analysis but were included for correlational
analysis.

2.3.2. Comparative visual search task
The experimental task comprised 20 randomized CVS trials pre-

senting pairs of images in parallel. In half the trials the pairs of images
were identical and in half there existed subtle differences. Images de-
picted a variety of real-world scenes selected from a larger stimulus set
previously reported in Galpin, Underwood, and Chapman (2008). Dif-
ferences were created using Photoshop to manipulate images so that
some objects were deleted, in part or in full, moved, or had their color
or orientation changed and pre-tests ensured that differences were not
immediately obvious but were clear once were pointed out (Galpin
et al., 2008; Fig. 1). The objective of the task was to identify if a dif-
ference existed between each pair of images.

2.3.2.1. Eye-tracking. A Tobii T120 eye-tracker (Tobii Pro), which
emits infrared light to monitor and track eye movements, gathered
data at a frequency of 120 Hz with a spatial resolution of 0.2°. Tobii
Studio software was used to record eye movement data (Tobii Pro).

In order to assess differences in visual search strategies across
cognitive style groups, average fixation duration and the number of
saccades were computed as indices of engagement in direct encoding
and number of steps involved in visual processing (Galpin &
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Underwood, 2005; Pomplun et al., 2001). A systematic point-by-point
strategy, represented by shorter fixations and a higher proportion of
comparative saccades, prioritizes a reduced memory load over high-
encoding behaviors. Longer fixations and fewer comparative saccades
represents greater engagement in direct encoding. The variable distance
moved from corresponding points on the image pair was calculated to
establish how focused or dispersed the search was (Galpin &
Underwood, 2005). The measure was computed by subtracting the
distance between the two corresponding points on each image from the
horizontal x-coordinate of all fixations on the right hand image. This
essentially allows the second image to be mapped onto the first, pro-
viding an indication of how far saccades on the second image were
directed away from the corresponding point on the first image. A
smaller distance moved signifies a more targeted visual search in-
dicative of an analytic scan strategy, whilst a greater distance moved
would indicate the use of an intuitive scan strategy.

2.3.3. Functional near-infrared spectroscopy
An fNIR Imager 1000 (Biopac Systems Inc.) was used to record

changes in hemodynamic activity in the PFC using Cognitive Optical
Brain Imaging Studio data collection suite (fNIR Devices, LLC). This
system has a temporal resolution of 500ms (2 Hz) and detects con-
centration changes in cerebral blood flow using infrared light to
monitor levels of oxy-Hb and deoxy-Hb within the PFC via a continuous
wave 16 channel probe secured across the forehead. The probe was
aligned to Fp1 and Fp2 of the international 10–20 system (Jasper,
1958), with Fpz corresponding to the midpoint of the probe (Ayaz,
Izzetoglu, Shewokis, & Onaral, 2010). Data were analyzed offline using
fnirSoft (Ayaz, 2010). Raw data were processed with a finite impulse
response linear phase low-pass filter, with order 20 and cut-off fre-
quency of 0.1 Hz, to attenuate high frequency noise, respiration and
cardiac effects. A sliding-window motion artifact rejection algorithm
and visual inspection of the data was used to remove motion artifacts
and saturated channels (see Ayaz et al., 2010 for a detailed description
of these methods). Oxy-Hb was then calculated using the modified Beer-
Lambert Law (Sassaroli & Fantini, 2004). To allow for comparative
analysis, task-related data was extracted for hemispheric regions of
interest, with channels 3, 4, 5 and 6 representing the left dlPFC and
channels 11, 12 13 and 14 representing right dlPFC activity (Fig. 2).
Synchronized markers were scheduled to enable extraction of baseline
neural activity (5 s) and to identify the beginning and end of the ex-
perimental task. Task-related evoked activity was then compared with
baseline activity and across style groups using mixed analysis of var-
iance (ANOVA).

2.4. Procedure

Once participants had provided informed consent and data relating
to handedness, age, gender and ethnic group had been recorded, the

fNIRS headband was positioned on the participant's forehead and se-
cured using elastic strapping. Baseline brain activation was then re-
corded whilst the participant was at rest. For the purposes of task
completion and to enable eye tracking, participants were seated at a
distance of 70 cm from a computer monitor, placing their chin on a chin
rest to minimize head movement during the task. A nine-point eye
calibration procedure aligning gaze with the eye tracker was conducted
with all participants in advance of task initiation. Following successful
calibration the CVS task began. Each trial involved the presentation of a
pair of images on the computer screen. Stimuli were presented using E-
Prime version 2.0 (Psychological Software Tools, Inc.) on a
36 cm×27 cm computer monitor with a resolution of
1024×768 pixels. Participants were required to indicate whether they
believed the two images were identical or were different in some way
by pressing one of two keys on the keyboard (‘Q’= identical,
‘P’= different). Participants were advised that the task was not time-
limited but that they should endeavor to respond as soon as they were
confident that their response was accurate. Four practice trials preceded
the experimental trials. Feedback on correct answers and response time
was given between each trial. Pressing one of the response keys trig-
gered presentation of the next image pair. In addition to neuroimaging
of brain activation and tracking eye-movements, response times (RT)
and accuracy scores (percentage of correct responses) were recorded
during task completion. To ensure participants were blind to the nature
of the study, the CSI was administered once the task had been com-
pleted.

Fig. 1. Example stimuli for a difference trial on the CVS task.

Fig. 2. Positioning of the fNIRS channels across the PFC.
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2.5. Analytical approach

Due to advantages of reporting both Bayesian analyses and tradi-
tional null hypothesis significance tests (NHST; Quintana & Williams,
2018), we report both analyses below. NHST and Bayesian statistical
analyses were conducted using JASP (JASP Team, 2017). Bayes factors
(BF) are calculated on distributions of effect size to provide the relative
probability of observed data between competing statistical hypotheses;
the null hypothesis (H0) and the alternative hypothesis (H1). See Jarosz
and Wiley (2014) for an introduction to Bayesian statistics. BFs are
expressed as the probability of the data given H1 relative to H0. Values
larger than 1 provide evidence for H1, whilst values below 1 provide
support for H0.

3. Results

One participant was excluded from all analyses due to limited en-
gagement with the experimental task reflected by a low accuracy score
(35%) and a high percentage of false positive responses (80%). A fur-
ther participant was excluded from the analytic group for RT analyses
as responses exceeded the threshold of three standard deviations from
the mean. Due to technical malfunction 15 datasets were excluded from
eye-movement analysis. Fixations of less than 100 milliseconds were
also eliminated from analysis (see Galpin & Underwood, 2005). Ad-
ditionally, owing to neuroimaging software malfunction, 4 datasets (3
analytic, 1 intuitive) were excluded from fNIRS data analysis. All raw
data is available at Bendall, Lambert, Galpin, Marrow, and Cassidy (in
prep).

3.1. Behavioral performance analysis

Behavioral data was analyzed using traditional NHST independent t-
tests, Pearson correlations and the Bayesian equivalents, to examine
group differences and relationships in task performance presented in
Table 1 and Fig. 3. Because of the different sample sizes in each group,
Hedge's g, which weights effects size according to relative sample size,
was calculated to express effect sizes in NHST analyses. All Bayesian
analyses were conducted using default priors. Accuracy scores did not
differ significantly between groups, t(40)= 0.77, p= .44, g=0.298.
Bayesian analysis produced a BF10 of 0.401 providing anecdotal evi-
dence in support of the null hypothesis. Correlational analyses de-
monstrated that CSI scores were not correlated with accuracy, r
(45)= 0.096, p= .520. Bayesian analysis produced a BF10 of 0.222
providing moderate evidence in support of the null hypothesis. Analysis
of RT data revealed significantly faster response times for analysts,
compared with intuitives, both when analysis was based on all trials, t
(39)=−2.34, p= .025, g=0.769 and when based on correct re-
sponse trials only, t(39)=−2.24, p= .031, g=0.738. Corresponding
BFs of 2.532 (all trials), and 2.161 (correct trials), provide anecdotal
support for the alternative hypothesis, where the data are 2.532 and
2.161 times more likely to be observed under the alternative hypoth-
esis.

Correlational analyses demonstrated that CSI scores were correlated
with RT, r(45)=−0.435, p= .001; Fig. 4, and RT for correct trials
only, r(45)=−0.424, p= .002; Fig. 5. Bayesian analyses produced
corresponding BF10s of 16.978 and 12.973 providing strong evidence in

support of the alternative hypothesis where individuals with a more
analytic style were quicker at completing the CVS task.

3.2. Eye movement analysis

Fifteen data sets were lost due to technical issues with network
communication between fNIRS hardware, the eye-tracking system and
the experimental software. A further data set was lost due to poor ca-
libration (substantial periods of unstable signal, and over 40% of fixa-
tions less than 100ms). After removal of participants classed as
Adaptive, the comparative eye-tracking analyses were therefore based
on 36 data sets (24 analysts, 12 intuitives). Independent t-tests

Table 1
Summary statistics for style-based group differences in task performance mea-
sures.

Accuracy (%)
Mean (SD)

RT (s)
Mean (SD)

RT (s) correct responses
Mean (SD)

Intuitive 71.07 (13.18) 22.91 (10.9) 22.29 (10.9)
Analytic 74.11 (11.39) 16.47 (6.76) 16.17 (6.61)

Fig. 3. Mean (± SEM) task response times (RT) to all trails and correct trials
only for intuitive and analytic style groups.

Fig. 4. Response time to all trials as a function of CSI score.

Fig. 5. Response time to correct trials as a function of CSI score.
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confirmed that average fixation duration, reflecting level of encoding,
did not differ between intuitive and analytic groups, t(34)=−0.217,
p= .829, g=0.088. Corresponding Bayesian analysis produced a BF10
of 0.342 suggestive of anecdotal to moderate support for the null hy-
pothesis. The intuitive group did employ a significantly greater number
of saccades during their search compared to analysts, t(34)=−2.12,
p= .041, g=0.75; BF10 1.785 (Table 2; Fig. 6). The number of sac-
cades is reflective of task complexity and relative difficulty with which
the visual search was completed. There were no style group differences
between the proportion of comparative saccades, t(34)=−0.023,
p= .982, g=0.008; BF10 0.336 (anecdotal to moderate support for the
null hypothesis) or the distance moved from the corresponding point on
the paired image t(34)= 0.978, p= .335, g=0.341; BF10 0.484 (an-
ecdotal support for the null hypothesis).

Correlational analyses (based on 41 data sets, including the adap-
tives) between the eye tracking metrics and CSI scores supported the
findings of the group comparisons, with the number of saccades being
the only variable to return a significant relationship with style-pre-
ference, r(41)=−0.436, p= .004 (Fig. 7). That is, higher CSI scores,
indicative of an analytic style, were associated with the use of fewer
saccades during the comparative visual search task. The corresponding

Bayesian correlational analysis produced a BF10 of 9.794 suggesting
that the data are 9.794 times more likely under the alternative hy-
pothesis (Fig. 8).

3.3. fNIRS analysis

A 2 (style: intuitive vs. analytic)× 2 (task: baseline vs. CVS
task)× 2 (hemisphere: left dlPFC vs. right dlPFC) mixed ANOVA was
conducted to assess evoked hemispheric brain activation according to
cognitive style preferences. A significant main effect was reported for
task, F(1, 40)= 85.47, p < .01, ηp2=0.681, demonstrating increased
task-evoked neural activity compared to baseline. The corresponding
Bayesian mixed ANOVA revealed a BF10 of 5.187e+26, indicating
extreme evidence in support of the alternative hypothesis. There was
also a significant effect of hemisphere on oxy-Hb, F(1, 40)= 12.86,
p= .001, ηp2= 0.243, indicating greater activation in the right dlPFC
(Fig. 6). However, Bayesian analysis revealed a BF10 of 0.562, in-
dicating anecdotal evidence in support of the null hypothesis. There
was no significant main effect for cognitive style, F(1, 40)= 2.44,
p= .126, ηp2= 0.057, suggesting similar levels of neural activity
across style groups. Here a BF10 of 0.380 suggests that the data are
2.632 times more likely under the null hypothesis and provide anec-
dotal support.

A significant task×hemisphere interaction effect was reported, F
(1, 40)= 12.86, p= .001, ηp2=0.243, reflecting greater right dlPFC
activation during task completion (Fig. 6). This was supported by
Bayesian analysis that produced a BF10 of 3.984 suggestive of moderate
evidence in support of the alternative hypothesis. No significant inter-
actions were reported between cognitive style and hemispheric acti-
vation or task-evoked activity (all p > .05). Correlation analyses sug-
gest that CSI scores are not related to task-related neural activation for
both regions of interest; left dlPFC r(41)= 0.039, p= .788; BF10 0.183,
right dlPFC r(41)= 0.247, p= .084; BF10 0.756.

Individual fNIRS channel analysis was performed using 2 (style:

Table 2
Summary statistics for style-based group differences in tracked eye-movement measures.

Fixation duration (ms)
Mean (SD)

No. saccades
Mean (SD)

Proportion of comparative saccades (%)
Mean (SD)

Distance moved (degrees)
Mean (SD)

Intuitive 230 (23.8) 81.98 (31.9) 31.1 (7.3) 1.00 (17.1)
Analyst 228 (22.1) 61.01 (25.8) 31.0 (5.2) 1.05 (13.0)

Fig. 6. Mean (± SEM) number of saccades for intuitive and analytic groups.

Fig. 7. Number of saccades as a function of CSI score.

Fig. 8. Increased levels of oxy-Hb in in the right-dlPFC.
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intuitive vs. analytic)× 2 (task: baseline vs. CVS task) mixed ANOVAs.
A significant main effect of task was observed across all but two
channels; voxel 7 and voxel 9 (Table 3). There were no significant main
effects of CSI style, or any significant interaction effects for CSI
style× task for any of the 16 channels, indicating comparable levels of
neural activation across style groups for both resting state and during
task completion (Table 3). The corresponding Bayesian analysis for CSI
style produced BFs10 between 0.255 and 0.898 demonstrating anec-
dotal to moderate support for the null hypothesis (Table 3). The
Bayesian analysis of task supports the NHST analysis. For channels 7
and 9 BFs10 of 2.181 and 3.578 were observed providing anecdotal
support for the alternative hypothesis. The remaining channels pro-
duced BFs10 between 35.168 and 2.005e+21 demonstrating very
strong – extreme evidence in support of the alternative hypothesis. For
channels 7, 11, 12 and 13 the interaction between CSI group and task
produced BFs10 of 2.39, 2.86, 1.10 and 2.08 suggestive of anecdotal
support of the alternative hypothesis.

4. Discussion

The present study explored psychophysiological indices of the in-
tuition-analysis dimension of cognitive style as measured using the CSI
(Allinson & Hayes, 1996). The aim was to gather evidence validating
both the style dimension and its associated psychometric measure, in-
creasing confidence in the construct's veracity and in a self-report ap-
proach to its measurement, assisting the continuation of cognitive style
research and practice in applied areas. Participants completed a CVS
task during which eye tracking and neuroimaging data were gathered
simultaneously. Visual search strategies and neural activity—elucidated
through eye tracking and fNIRS techniques—were considered against
measures of task performance—RT and accuracy—so that the degree to
which style-dependent differences in psychophysiological mechanisms
and functional behaviors could be established along the intuition-ana-
lysis dimension of style.

RT task performance data showed that analysts responded sig-
nificantly quicker than intuitives but without compromising accuracy,
which was comparable across the two style groups. This result held for
analysis based only on trials where a correct response was made, de-
monstrating that analysts reached decisions quicker than intuitives, at
least on this particular experimental task. The finding seems at first
contradictory when considered against Nitzan-Tamar et al. (2016), who
reported faster response times for participants exhibiting the wholistic
style (a style classification similar to intuitive style). However, Nitzan-
Tamar et al. used the same visual search task (Cognitive Style Analysis
Test) to both identify participants' style preferences and measure per-
formance, bringing into question the value of the performance data as
an independent measure separate from the style classification measure.
By employing an independent visual search paradigm, distinct from the
style preference assessment measure used, the present study is perhaps
better able to attribute any differences in task performance to the
functional characteristics associated with the extremes of the intuition-
analysis dimension of cognitive style, and not purely artifacts of the task
itself. Thus, quicker observed response times are interpreted here as
representative of superior decision-making capability of analysts, at
least on this particular CVS task. Equally, it may be that differences in
decision-making thresholds indicate that—by virtue of the intentionally
subtle nature of differences between pairs of images—the demands of
the CVS task are more closely aligned with an analytical approach and
therefore analytic style. Studies introducing multiple tasks into the
experimental paradigm will help establish the true nature of style-de-
pendent differences in performance, but task-related differences in
performance reported here do provide some support for the intuition-
analysis dimension of cognitive style.

Analysis of eye tracking data found that intuitives employed a
greater number of saccades but similar fixation durations to analysts
during the CVS task. As with results from response time analysis, theseTa
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findings fail to support Nitzan-Tamar et al. (2016), who reported that
wholists' approach was characterized by both fewer saccades and
shorter fixations. Once again, it is suggested that contradictory findings
may reflect limitations in the design adopted by Nitzan-tamar et al.
Previous studies using eye-tracking techniques do provide support for
style-related differences in visual attention, but only on visualizer-
verbaliser (Koć-Januchta et al., 2017; Tsianos et al., 2009) and field-
dependent/field-independent (Mawad et al., 2015) dimensions.
Nisiforou and Laghos (2016) report a higher number of fixations and
saccades, representing a more disorganized visual search, for field-de-
pendent individuals, a style characterized by wholist/global processing
similar to intuitive style, compared to field-independent individuals,
characterized by analytical/local processing similar to analytic style.
Interestingly, aside from the number of saccades, none of our strategy
measures, designed to capture differences in visual search, were influ-
enced by cognitive style. Establishing that performance differences
were solely predicted by a different number of overt shifts of attention
between the intuitives and analysts is an interesting finding and sug-
gests a number of avenues for future research. First, it is possible that
our measures were not fine-grained enough to capture qualitative
strategy differences. For instance, it could be possible that analysts
made better predictions about where to start and direct search, leading
them to the target more quickly. The design of our stimuli (using real-
world scenes) did not allow us to systematically assess this, but this
could be manipulated in future studies. Second, it could be possible that
strategy differences are covert, influenced by what information is en-
coded during fixations, rather than the spatial and temporal allocation
of the fixations themselves. Again, manipulating stimulus details such
as the feature complexity of objects or type of target difference, may
allow us to assess differences in encoding within fixations.

Neuroimaging data analysis revealed a significant main effect of
task [vs. baseline], establishing the validity of the CVS task as a means
of eliciting cognitive challenge. Increased PFC brain activation during
task completion, compared with resting state, represented increased
mental workload during task completion, underlining further the po-
tential value of the PFC in studies of cognitive processing (Racz et al.,
2017).

On the basis of findings from resource allocation studies and
knowledge regarding the neural mechanisms underlying cognitive
processing (e.g. Corbetta & Shulman, 2002), evidence from neuroima-
ging studies reporting cognitive style-brain structure dependence for
both visualizers-verbalizers (Kraemer et al., 2009) and field dependent-
independent dimensions (Walter & Dassonville, 2007), and the sug-
gestion that analytic thinkers engage in more intensive cognitive pro-
cessing (Riding et al., 1997), observable variations and differentiated
patterns of style-dependent neurological activation were anticipated.
However, contrary to evidence presented in relation to other style di-
mensions, no main effect of style or interaction effect for style× task
were reported, indicating that both baseline and task-evoked brain
activation were similar for intuitives and analysts. A further suggestion
that hemispheric lateralization underlies the functional expression of
the intuitive-analysis dimension (Allinson & Hayes, 1996) was ex-
plored, but, whilst a main effect for hemisphere was reported, there
were no style-related hemispheric interactions. The failure to provide
evidence supporting style-related hemispheric lateralization is perhaps
unsurprising given a general lack of evidence supporting cerebral
dominance in other areas (Hervé et al., 2013; Lindell, 2011). Higher
overall activation in the right hemisphere reported here is likely related
to the visuospatial nature of the task (Genovese, 2005). However, some
caution is perhaps needed regarding the interpretation of the differ-
ential left-right hemispheric activation. Whilst the NHST analysis re-
vealed a significant difference in activation, where increased neural
activity was reported in the right dlPFC (p= .001), the corresponding
Bayesian analysis contradicted this result providing a BF10 of 0.562
suggestive of anecdotal support for the null hypothesis.

Individual fNIRS channel analyses did not reveal any identifiable

differences in neural activity between style-groupings and so is further
evidence against style-related hemispheric lateralization, at least in
terms of the intuition-analysis dimension. Again, however, some minor
differences between the NHST and Bayesian analyses were evident.
Here the NHST analyses suggested that there were no significant in-
teractions for style grouping and hemispheric neural activation,
whereas the corresponding Bayesian analysis produced anecdotal sup-
port of an interaction in voxels 7, 11, 12 and 13. Whilst fNIRS is rela-
tively easy to administer, and can reduce discomfort to participants, it is
limited in the depth to which changes in oxygenation can be detected,
restricting investigation to the more superficial levels of the brain. The
potential role in style related processing of deeper brain areas was not
able to be investigated using this methodology. Whole brain neuroi-
maging techniques may prove enlightening for future studies.

5. Conclusion

Identifying and understanding fundamental individual differences
in approach to information processing remains an important area of
basic and applied psychological research. The conceptualization of in-
dividual differences in information processing as ‘style’ is appealing and
the potential value of style construct measures, particularly psycho-
metric measures, in applied areas including education, business, and
management is high (see for example Koshevnikov et al., 2014).
However, amidst a critical onslaught aimed especially at psychometric
self-report style measurement (e.g., Coffield et al., 2004), the field has
stalled somewhat. Reviewing cognitive psychology and neuroscience
studies of individual differences in information processing,
Koshevnikov et al. (2014) notes the failure of such studies to help
conceptualize cognitive style. Adopting a triangulated approach invol-
ving data capture focused on key dimensions of human psychological
functioning including brain activity, eye movement, self-report and task
performance, the present study provides some evidence supporting the
intuition-analysis dimension of cognitive style and the validity of the
CSI (Allinson & Hayes, 1996) as a self-report measure of the dimension.
Quicker response times and fewer saccades suggests that analysts
reached decisions faster and found the task less challenging than did
intuitives. Findings from behavioral and physiological measures suggest
that analysts and intuitives may possess inherent differences in deci-
sion-making thresholds. Whilst monitoring of eye movements revealed
that both style groupings adopted similar visual search strategies during
the task, analysts were able to conduct a more efficient search, signified
by fewer saccades and faster response times; analysts were able to reach
a definitive conclusion sooner than intuitives and were able to do so
without compromising accuracy. The absence of observable differences
in neurological activation suggests that the quicker response times re-
corded for analysts were not a consequence of increased mental
workload or hemispheric specificity. Further studies that explore dif-
ferent cognitive tasks are needed as are studies that address questions
regarding construct dimensionality and the relative validity of uni-
dimensional measures such as the CSI and multidimensional measures
such as the Rational-Experiential Inventory (Epstein et al., 1996) and
Cognitive Reflection Test (Frederick, 2005), perhaps alongside one
another in similar multivariate designs used in the present study.
However, though the nuances of style-related differences are important,
they are less important here; that individuals assigned to cognitive style
groups based purely on their responses to the CSI exhibited discernible
differences in information processing is, it is argued, evidence sup-
porting the intuition-analysis dimension of cognitive style and its as-
sociated psychometric measure, the CSI.
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