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Abstract 
Ground-borne vibration and structure-borne noise in buildings associated with nearby 
railway systems, either above ground or underground, is a common occurrence in 
densely populated areas. This is especially true where new transportation systems are 
built in proximity to existing noise and vibration sensitive buildings, and where 
similar buildings are built close to existing rail systems. With the tendency to build 
closer to railways both overground and underground, there is a need to better 
understand how to predict the levels of ground-borne vibration and structure-borne 
noise in buildings from such systems. A review of the mechanisms through which 
energy is generated from train sources and propagates into buildings, as well as a 
review of the existing empirical and theoretical models for the prediction of structure-
borne noise in buildings has been undertaken. 

A proposal for the simplification of an existing hybrid deterministic – statistical 
model for the prediction of structure-borne noise in buildings has been put forward 
and its feasibility investigated. The original model consists of a hybrid finite 
element – statistical energy analysis tool, where low frequencies are modelled 
deterministically with finite element, and the higher frequencies are modelled 
statistically. In the simplified model, the deterministic elements of the system, i.e. 
beams and columns, are proposed to be modelled using a dynamic stiffness approach. 

The analytical mobility functions for free-free beams with six degrees of freedom at 
each end have been derived from first principles. The results from these were 
compared against a finite element model for the same beam arrangement. Good 
agreement was found between the results of the analytical and finite element models. 
The coupling between beams has been accounted for by using the impedance addition 
method. Various scenarios were modelled. Good agreement was obtained with a finite 
element model for the two beams in line scenario. Discrepancies were present for 
some of the degrees of freedom coupled for the beams in L-junctions scenarios. 
Further works have been suggested to address these. 

A comparison between the various stages of the full and simplified hybrid prediction 
models has been provided, along with suggestions for the next steps to further develop 
and assemble the proposed simplified model. 
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1! Introduction 

1.1! Background 

With the continued growth of cities and the consequent lack of space above ground, 
there is an increasing tendency to build transportation systems underground, 
especially railways. Whilst they are an effective form of transport and they save 
valuable space above ground, they can sometimes have severe effects on those 
nearby. Such effects range from annoyance and sleep disturbance caused to people, to 
cosmetic and potentially structural damage to buildings. The operation of highly 
sensitive equipment can also be disrupted by such transportation systems. 

Energy from the operation of railway systems, both above and below ground can 
manifest itself as ground-borne vibration generated by a train event, which propagates 
through the ground and into a receiver, typically a building. Once at the receiver, 
ground-borne vibration can be perceived by the building occupants as tactile 
vibration, i.e. vibration that can be felt, and / or as structure-borne noise which is 
audible. Structure-borne noise is caused by energy radiating from the surfaces within 
a room that are excited by ground-borne vibration. Structure-borne noise is also 
known as ground-borne or re-radiated noise. (BSI, 2005) For the purposes of this 
document, the terms structure-borne noise and ground-borne noise are 
interchangeable. 

On the effect of ground-borne noise and vibration on people and how it is perceived, 
the Association of Noise Consultants (2012) state “the human body is a complex 
structure and its reaction to vibration is variable and subjective”. Numerous field 
studies have been undertaken on the impact of railway noise and vibration on people 
over the years. These include, but are not limited to, the TCRP 2009 study (Zapfe, 
Saurenman, & Fidell, 2009), where more than 1300 interviews were carried out over 
the phone in five cities in North America. Noted effects of ground-borne vibration and 
noise on people include annoyance and discomfort at low level, which can escalate to 
reduced working efficiency and quality of life. 
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Ground-borne vibration, and sometimes noise, can also affect the operation of highly 
sensitive equipment, such as electron microscopes, where high levels of precision are 
required. Colin Gordon & Associates (Gordon, nd) have undertaken research on 
acceptable levels of vibration for different types of sensitive equipment. They have set 
vibration criterion (VC) curves for different uses, which are widely used across the 
industry, especially in science research facilities. 

As previously mentioned, vibration can also have a negative impact on buildings. In 
extreme cases, it can cause structural damage. BS 7385-1:1990 Evaluation and 
measurement for vibration in buildings, Part 1. Guide for measurement of vibrations 
and evaluation of their effect on buildings (1990), as its name suggests, provides 
guidance on how the effect of vibration on buildings can be assessed. 

Whilst guidance is available from various sources on how to determine the impact of 
vibration and structure-borne noise in buildings and their occupants, such task is not 
an easy one, given the large number of unknowns between a vibration source, such as 
an underground train, and a receiver. Several techniques are available for the 
prediction of ground-borne vibration and structure-borne noise in buildings. These 
range from empirical methods developed in the 1970s and 1980s in America 
(Kurzweil, 1979; Nelson & Saurenman, 1983; Hanson, Towers, & Meister, 2006), 
which are still widely used nowadays, to specialist numerical techniques, including 
finite element modelling (Lurcock & Thompson, 2014) and Rupert Taylor Ltd’s 
FDTD FINDWAVE commercial software package (RPS, 2005), with significant 
computational costs for detailed models. 

Various prediction techniques have also been developed to estimate the propagation 
of ground-borne vibration in the soil before it enters a building. The Pipe-in-Pipe 
model, first launched in 1999 with various subsequent updates, is an example of a 
prediction tool frequently used in the industry to model the interaction between a 
train, a floating-slab track in an underground tunnel and the surrounding soil. Being a 
semi-analytical technique means the computation time required is significantly lower 
than that of numerical techniques, making it an attractive model for use in the early 
design stages of a project. (Hunt & Hussein, 2007; Kuo, Jones, Hussein, & Hunt, 
2013) 
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As most prediction techniques have their limitations, some authors have taken to 
developing hybrid calculation models, which combine the best characteristics of two 
or more calculation techniques and provide more accurate results. An example of 
these is Shorter & Langley’s (2005) Hybrid FE-SEA model, which was developed 
based on work carried out by Langley & Bremner (1999). This uses a combination of 
methods for the prediction of structure-borne noise in buildings as its name indicates: 
finite element analysis to model low frequencies and statistical energy analysis to 
model high frequencies. However, the division between low and high frequencies is 
not as such a clear line, but a mid-frequency zone, which does not fall entirely within 
the domain of finite element or statistical energy analysis. For these frequencies, the 
model makes use of some of the principles of fuzzy structure theory. Further details 
on Shorter & Langley’s Hybrid FE-SEA model, along with a review of other existing 
tools for the prediction of structure-borne noise in buildings is provided in this thesis. 

1.2! Aim and objectives of the research 

The overall aim of this thesis is to propose and investigate the feasibility of a 
simplified hybrid deterministic – statistical model for the prediction of structure-borne 
sound in beam-framed buildings, building on the work undertaken by Shorter & 
Langley (2005) on their Hybrid FE-SEA model. As buildings comprise both 
deterministic and statistical elements, such as beams and walls, respectively, it is 
considered appropriate to model energy propagation through such coupled elements 
using a hybrid approach. The main question is whether dynamic stiffness modelling 
techniques can be used to model the deterministic elements of a building instead of 
finite element analysis, thus simplifying Shorter & Langley’s model. 
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With the above in mind, the following are the objectives of the present document: 

1.! Provide an overview of the mechanisms through which ground-borne 
vibration and structure-borne noise from trains are generated, how energy 
propagates through the soil and into a receiving structure, to help understand 
what parameters affect the propagation of vibration and structure-borne noise 
between a source and a receiver and how these can be modelled; 

2.! Focussing on the receiving structure, present a review of empirical and 
theoretical models currently available for the prediction of structure-borne 
noise in buildings; 

3.! Derive the mobilities for each degree of freedom of the deterministic elements 
of the system using analytical beam functions and compare the obtained 
results with finite element modelling of the same structures. A comparison 
between the computation time of the analytical and finite element models is 
also provided; 

4.! Demonstrate how structures can be coupled together with beam functions 
using coupling matrices, compare the obtained results with finite element 
modelling of the same assemblies and comment on the computation time of 
each model; 

5.! Compare the various calculation stages of the proposed simplified hybrid 
model against the full model it is based on, and identify the main differences 
relating to each, such as the level of detail required. 

1.3! Thesis outline 

Chapter 2 of the present document provides an overview of the mechanisms through 
which ground-borne vibration and structure-borne noise from trains are generated, 
how energy propagates through the soil and into a receiving structure. The parameters 
and elements that control the propagation of vibration and structure-borne noise 
through a building are also set out. This chapter is intended to set the scene on the 
means through which ground-borne vibration and structure-borne noise is generated 
by a source and transmitted to a receiver. The subsequent chapters will focus on the 
receiver only. 
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Chapter 3 discusses the various types of models that can be used to predict structure-
borne noise in buildings and their limitations. A review of the existing empirical and 
theoretical prediction models is provided in Sections 3.2 and 3.3, based on the 
information available, with a summary of the findings in Section 3.4. Section 3.5 sets 
out the initial proposal for a simplified hybrid deterministic – statistical prediction 
model. 

In Chapter 4, analytical beam mobilities for each degree of freedom of a free-free 
beam are derived from first principles. An overview of the impedance, mobility and 
dynamic stiffness calculation methods is provided in Section 4.1, with a description of 
the elements being modelled and their degrees of freedom in Section 4.2. Sections 4.3 
and 4.4 present the derivation process for the analytical beam mobilities and the 
validation of the results against a finite element model, respectively. 

Chapter 5 sets out the process used for coupling beams together. The global and local 
coordinate systems are defined in Section 5.1, and the impedance addition 
methodology for coupling beams together is described in Section 5.2. Sections 5.3 
and 5.4 present the derived coupling matrices and coupled impedance matrices for the 
beams, and the validation of the results against a finite element model, respectively. 

Chapter 6 sets out the proposal for a simplified hybrid deterministic – statistical 
prediction model. A comparison between Shorter & Langley’s (2005) Hybrid FE-
SEA model and the proposed simplified model is provided in Section 6.1, with the 
main steps discussed in Sections 6.2 to 6.5. 

A summary of the conclusions obtained from the research and suggestions for further 
work are provided in Chapter 7. 
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2! Vibration and structure-borne noise theory 

The present chapter introduces the theory necessary to understand and predict 
vibration and structure-borne noise in buildings. The mechanisms through which 
vibration propagates from a source to a receiver are described and different vibration 
sources and their characteristics identified. This chapter is intended as a background 
literature review to guide the reader through the vibration transmission route from a 
source to a receiver, as per the first objective of this thesis. The subsequent chapters 
will focus on vibration transmission through a receiver only. 

2.1! Vibration transmission route 

Vibration and structure-borne noise in buildings can be caused by a number of 
sources, namely road traffic, surface and underground rail, machinery and 
construction works. According to BS ISO 14387-1:2005 (BSI, 2005), railways, either 
on the surface or underground, are the most commonly occurring and significant 
source of ground-borne vibration and noise, as a result of the interaction between the 
steel wheels of the train and the steel rails. 

Understanding the mechanism through which vibrational energy propagates away 
from a source and arrives at a receiver is essential for the determination of vibration 
and structure-borne noise. Such processes have been the subject of numerous and 
extensive studies, dating back to the 1960s and 1970s. The guidance provided in some 
of these studies, such as that by Kurzweil (1979), is still widely used nowadays. 
Kurzweil’s study focuses on the propagation of vibration from underground trains in 
tunnels through the ground and into a building. It proposes a method for estimating A-
weighted sound levels, and noise and vibration spectra due to ground-borne vibration 
in buildings. (Kurzweil, 1979) 
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Hung & Yang (2001) state that the transmission of noise and vibration from a source, 
namely trains in underground tunnels, to a receiver includes four main stages: 

•! Generation: vibration excitation resulting from the movement of a train on 
rails with irregular surfaces; 

•! Transmission: propagation of energy through the tunnel structure and soil; 

•! Reception: vibrational energy admitted to the nearby buildings; 

•! Interception: attenuation of vibration through barriers, such as building 
foundations and vibration isolation measures. 

Whilst the above stages focus on noise and vibration associated with trains in 
underground tunnels, vibration from other sources to a receiver would be subject to a 
similar process. Melke (1988) groups the above stages into three main categories: 
source, transmission path and receiver. These are also referred to in BS 14387-1:2005 
(BSI, 2005) as emission, transmission and immission. Figure 2. 1 provides a sketch 
showing the source – transmission path – receiver line. 

 
Figure 2. 1 Indicative sketch showing source – transmission path – receiver line 

Receiver 

Source 

Source 
Path 

Path 
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2.2! Source 

Road traffic, railways, machinery and construction works are some of the types of 
sources / activities that generate vibration. In road traffic, vibration is generally 
caused by heavy goods vehicles (HGVs) passing over imperfections on the road 
surface, such as potholes, speed humps, changes of road surface, etc. This generates 
forces, dependent on the suspension system of the vehicle, that propagate along the 
surface of the ground and the soil underneath to a receiver. (ANC, 2012) 

In the case of railways, vibration is generated by the interaction between the steel 
wheels of the trains and the rails. Heckl et al. (1996) suggest that vibration from trains 
is most dominant between 40 Hz and 100 Hz, as this is approximately where the 
resonant frequency of the wheel / track system lies. The following are some of the 
mechanisms of excitation that govern source vibration in railway systems, as 
described in BS ISO 14387-1:2005 (BSI, 2005): 

1.! Moving loads (quasi-static) excitation: the passage of a train on a rail can be 
regarded as several discrete static forces acting on the rail. However, from the 
point of view of the rail, these discrete forces are “seen” as a periodic 
excitation, even though the force applied on it is constant. This effect 
contributes to the low frequency response of the system between 0 Hz and 
20 Hz (Hunt & Hussein, 2007) and it mainly affects the stability of the track in 
the near field. This quasi-static excitation can be controlled by installing the 
train bed on stiffer ground and / or foundations. 

2.! Wheel / rail roughness: irregularities on the rails and wheels occur during the 
manufacture process and will vary with time and use of the system. Such 
irregularities cause forced excitations of the vehicle / track and are the main 
source of vibration in railway systems across a wide range of frequencies. 
(Hunt & Hussein, 2007) 

3.! Parametric excitation: in railway tracks supported on periodic structures, such 
as sleepers on ballast, the wheels of the vehicle will experience different 
stiffness depending on where they are along the rail. This is influenced by the 
spacing between the supports and the speed at which the vehicle is travelling. 
For low speed trains, the excitation frequency would be in the region of 25 Hz, 
while for high-speed trains it would increase to 150 Hz. (Hunt & Hussein, 
2007) 
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4.! Additional wheel / rail defects: irregularities with different wavelengths 
overlaid periodically along the track are a significant cause of roughness, 
capable of generating high levels of vibration. Such irregularities are 
commonly known as corrugation. Wheel flats (from skidding with locked 
brakes, for example) and other changes in shape of the wheels can also result 
in corrugation of the wheels. 

5.! Discontinuities of the track: impact forces are caused by discontinuities of the 
track, such as joints and switches. An increase in the vibration levels generated 
will occur where the spacing between bogies of the vehicles is equal to the 
length of the jointed rails. Hunt & Hussein (2007) state that this mechanism of 
excitation is becoming less significant with the use of continuously welded 
tracks. 

6.! Vehicle suspension: the dynamic excitation forces caused by the vehicle 
suspension can be reduced through the use of low-stiffness systems. (Hunt & 
Hussein, 2007) 

7.! Steel hardness: changes in hardness of the rails, either random or periodic, can 
generate vibration. Such variations can arise during manufacture, though they 
occur more frequently during operation. 

8.! Driving conditions and lateral loads: dynamic forces generated during 
acceleration or deceleration of the train, and lateral loads resulting from 
vehicle guidance systems on corners with tight radius, can result in vibration. 

9.! Environmental conditions: the temperature of the rails and vehicle wheels, 
along with humidity, can have an impact on the deterioration of the system, 
affecting the levels of vibration generated. 

An additional mechanism of excitation in railway systems, not mentioned in BS ISO 
14387-1:2005, occurs when the speed of the train approaches or exceeds the speed of 
Rayleigh waves in the ground (refer to Section 2.3.1 of the present document), 
generating high amplitudes of vibration. Such high levels of vibration can also occur 
when the train speed is equal to or greater than the minimum phase velocity of 
bending waves in the track. (Hunt & Hussein, 2007) 

Industrial machinery, such as generators, compressors, centrifugal fans and pumps, 
can also generate high levels of vibration. This is caused by the periodic motion of 
moving parts exciting the system and adjacent structures, especially if the system is 
unbalanced or not well maintained. Isolation bases are often used to control vibration 
from impulsive sources. (ANC, 2012) 
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Construction and demolition works are also major sources of vibration and structure-
borne noise. Activities such as driven piling and blasting are some of the most 
significant sources associated with this type of works. (ANC, 2012) BS 5228-2:2009 
(BSI, 2009) provides guidance on the types of vibration generating activities 
encountered in construction and demolition sites, typical vibration levels generated by 
each of them, and guidance on how they can be mitigated. 

2.2.1! Types of vibration 

Vibration is often characterised based on its duration, frequency content, direction and 
whether it is deterministic or random. (ANC, 2012) 

With regard to duration, a vibration signal / event can be continuous or transient. BS 
7385-1:1990 (BSI, 1990), now superseded by BS ISO 4866:2010, suggests that 
whether an event is continuous or transient is related to the time constant of a 
response. Equation 2. 1 shows the dependency of the time constant on frequency 
!HIand damping /H. 

BS 7385-1:1990 considers an event to be continuous if a structure is excited for 
longer than 53H, and transient if the excitation lasts for less than 53H. BS 6472-1:2008 
(BSI, 2008) goes on to state that impulsive (or transient) vibration consists of a rapid 
build-up to a peak level followed by a decay. The peak level can be sustained for a 
certain period, provided it does not exceed 53H, while the decay can include several 
vibration cycles / events. 

Vibration which can be perceived in separately identifiable repeated bursts is neither 
continuous or transient. In such scenarios, like in many real life situations, vibration 
can also be intermittent. The ANC Guidelines (2012) state that there is no strict 
approach to describing intermittent vibration based on its frequency of occurrence or 
on the characteristics of the excitation. Intermittent vibration is random with variable 
or similar magnitudes and can be defined as a “string of vibration incidents, each of 
short duration, separated by intervals of much lower vibration levels”. Examples of 
sources of intermittent vibration are HGVs and trains generating ground or airborne 
vibration. 

 
3H =

1

2J/H!H
 Equation 2. 1 
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The duration of a vibration event will affect the dynamic response of a building. For 
example, dynamic amplification can occur when the duration of an event is 
sufficiently long with a steady frequency content, and the excitation frequency is 
similar to the resonant frequency of the structure it is exciting. When assessing 
building damage, different vibration criteria should therefore be set for continuous 
and transient vibration. (ANC, 2012) 

The spectral content of a vibration event, combined with the natural frequencies of the 
structure being excited, will influence the frequency content of the event under 
consideration. The following frequency ranges are often considered when analysing 
ground-borne vibration and building response (BSI, 1990): 

•! 1 Hz to 150 Hz when assessing building damage from man-made sources; 

•! 0.1 Hz to 30 Hz when assessing vibration from natural sources, such as 
earthquakes; 

•! 0.1 Hz to 2 Hz when assessing wind excitation. 

Another factor that can be used to characterise vibration is its direction. The ANC 
Guidelines (2012) state that vibration will tend to propagate in all directions away 
from the source. The direction of the vibration might change when a discontinuity is 
present in the propagation path. Such discontinuities can alter the direction of 
propagation, but can also end the propagation in that particular direction. 

In addition to the above, whether vibration is deterministic or random can also be 
used to describe a vibration event. BS 7385-1:1990 (BSI, 1990) states that vibration 
which can be described by an explicit mathematical function is deterministic. This can 
be further divided into periodic (sinusoidal or complex) and non-periodic vibration 
(transient or shock). An example of sinusoidal vibration would be that generated by 
machinery with rotating parts, such as a centrifugal fan. This type of vibration can be 
described using the root mean square (rms) or peak-to-peak descriptors. For complex 
periodic vibration, averaging of energy is required to describe the spectral amplitudes 
of the vibration accurately. The time history of an event would be required to fully 
understand non-periodic vibration, such as that caused by the passage of HGVs / 
trains or blasting. (ANC, 2012) 
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BS 7385-1:1990 (BSI, 1990) sub-divides random vibration into stationary and non-
stationary, depending on whether the statistical properties of the vibration are constant 
or variable with time. When assessing random vibration, the measurement period 
should be selected based on the error that can be tolerated in the end analysed result. 
Random vibration is normally quantified by the power spectral density, i.e. the square 
of the vibration / acceleration / displacement over frequency. (ANC, 2012) 

Time varying and steady state signals are often quantified in terms of their rms value. 
This is dependent on the averaging time and any time response characteristic 
associated with this, i.e. whether the measurements were undertaken using a ‘slow’ or 
‘fast’ time constant. (ANC, 2012) 

Additional guidance on the frequency range, and typical displacement, particle 
velocity and acceleration ranges for different types of vibration sources is provided in 
Table 1 of BS 7385-1:1990 (BSI, 1990). Part of this table is reproduced in Table 2. 1 
below, where the frequency ranges given refer to the response of buildings and of 
building elements to each type of forcing function shown. 

Table 2. 1 Typical range of structural response for various sources (reproduced from BS 7385-1:1990) 

Vibration forcing 
function 

Frequency 
range 
(Hz) 

Amplitude 
range 

(µm) 

Particle 
velocity 

range (mm/s) 

Particle 
acceleration 

range (mm/s2) 

Time 
characteristic 

Traffic 
Road, rail, ground-borne 

1 – 80 1 – 200 0.2 – 50 0.02 – 1 
Continuous / 

transient 

Blasting vibration 
Ground-borne 

1 – 300 100 – 2500 0.2 – 500 0.02 – 50 Transient 

Pile driving 
Ground-borne 

1 – 100 10 – 50 0.2 – 50 0.02 – 2 Transient 

Machinery outside 
Ground-borne 

1 – 300 10 – 1000 0.2 – 50 0.02 – 1 
Continuous / 

transient 

Machinery inside 1 – 1000 1 – 100 0.2 – 30 0.02 – 1 
Continuous / 

transient 

Human activities 
a) impact 
b) direct 

 
0.1 – 100�
0.1 – 12 

 
100 – 500�

100 – 5000 

 
0.2 – 20�
0.2 – 5 

 
0.02 – 5�

0.02 – 0.2 
Transient 
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2.3! Propagation path 

The second stage in Melke’s (1988) vibration transmission line is the propagation 
path. To predict the vibration levels from a source at a given receiver, the propagation 
path and any effects associated with it need to be considered. For vibration sources 
located outside buildings, the main propagation path will likely be through the 
ground. The types of waves propagating away from a vibration source through the 
ground are described in the following sections. 

2.3.1! Types of waves in soil 

The ground is often modelled as an elastic half-space, i.e. an elastic solid bound by a 
single plane. The response of an isotropic elastic half-space to different types of 
impulsive and harmonic loads was originally studied by Lamb in 1904. His findings 
still form the basis for understanding wave propagation in an elastic half-space 
nowadays. (Hunt & Hussein, 2007) Lamb’s work (1904) acknowledged that the study 
would be relevant to understanding earthquakes. However, the vibrational energy 
from a source such as road / rail traffic would be subject to similar propagation 
mechanisms in the soil. 

The types of waves that can propagate through soil can be divided into two main 
groups: body waves and surface waves. Body waves propagate spherically away from 
an excitation point, and can be sub-divided into pressure and shear waves. (Hunt & 
Hussein, 2007) In a medium without boundaries, i.e. a homogeneous full space, 
subjected to a vibration source, shear and pressure waves would be the only types of 
waves that would be generated. However, for a medium with a free surface, such as 
the ground, pressure and shear waves will interact along the free surface, generating 
surface waves. Surface waves can also occur along discontinuities in the propagation 
medium, and include Rayleigh, Love and Stoneley waves. (Eitzenberger, 2008) The 
characteristics of each wave type are further described in Table 2. 2. Illustrations 
showing the particle motion in relation of the direction of propagation for each wave 
type are provided in Figure 2. 2. 
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Table 2. 2 Types of waves propagating in soil (Hunt & Hussein, 2007 and Eitzenberger, 2008) 

 

Wave 
types 

Sub-
division 

Particle motion Characteristics 

Body 
waves 

Pressure 
waves 

(P-waves) 

Parallel to direction of 
propagation. 

P-waves have the highest propagation velocity. 

This is determined by 5K =
L MNO

P MQO MNRO
 in an 

unbounded (full) space. 

Shear 
waves 

(S-waves) 

Perpendicular to 
direction of propagation. 

If the particle motion caused by S-waves is 
vertical when compared to the direction of 
propagation, vertical (SV) polarised waves occur. 
If the particle motion is horizontal, then horizontal 
(SH) polarised waves occur. 
S-waves are slower than pressure waves. Their 

particle velocity is determined by 5S =
T

P
. 

Surface 
waves 

Rayleigh 
waves 

(R-waves) 

Elliptical in a plane 
perpendicular to the 
direction of propagation 
and to the half-space free 
surface. 

R-waves propagate along the surface of the 
ground. Their propagation velocity is lower than 
that of body waves. As R-waves occur because of 
the interaction between body waves, their particle 
velocity is related to that of S-waves as follows 

5H =
U.WXRQM.MYO

MQO
5S (Achenbach, 1973). 

Love 
waves 

Horizontal in a plane 
parallel to the half-space 
free surface. 

Love waves are the fastest of all surface waves 
and occur when a layer with different properties is 
present along the surface of the half-space. They 
propagate within that layer. 

Stoneley 
waves 

Perpendicular to 
direction of propagation. 

Stoneley waves propagate along the boundary 
between two half-spaces with different mechanical 
properties. They occur when the propagation 
velocity of S-waves in the two half-spaces are 
similar. Stoneley waves are faster than Rayleigh 
waves, though slower than S-waves. 
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Figure 2. 2 Diagrams showing particle motion of different wave types in the ground (Braile, 2010) 

The type of waves arriving at a receiver are dependent on the type and location of the 
vibration source, and on the monitoring location. BS ISO 14387-1:2005 (BSI, 2005) 
states that ground-borne vibration from rail systems at grade or on elevated structures 
is mainly carried by surface waves, while for underground rail systems, pressure and 
shear waves are the main carrier of vibrational energy. However, at large distances 
from the source, vibration carried by surface waves may dominate. 

Gutowski & Dym (1976) state that for a small rigid disk vibrating on the surface of a 
half-space, the input energy to the half-space is distributed as follows between each 
wave type: 

•! 67% to Rayleigh waves; 

•! 26% to shear waves; 

•! 7% to pressure waves. 

The above shows that for excitations on the surface of the half-space, such as rail 
systems at grade, the energy is mostly carried by Rayleigh waves as suggested in 
BS ISO 14387-1:2005 (BSI, 2005). 

Regarding monitoring locations, the response at locations on the surface of the half-
space, i.e. at the ground surface, will include both body and surface waves. However, 
for monitoring locations within the half-space well below the surface, body waves 
will predominate. (Gutowski & Dym, 1976) 

a)  b)  

c)  d)  
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2.3.2! Attenuation through soil 

The prediction of vibration through the ground, from sources such as road and rail 
traffic, is a rather complex process. The somewhat limited knowledge of soil 
behaviour, combined with difficulties associated with the determination of accurate 
soil properties and the precision when modelling vibration sources, are some of the 
problems that affect the degree of accuracy with which vibration propagation through 
the soil can be predicted. 

There are two main mechanisms that affect vibration propagation in an elastic half-
space. These are geometric attenuation and material damping. The former consists of 
the rate of decrease of wave amplitude with distance away from a source. Geometric 
attenuation is also known as geometric decay, geometric spreading or radiation 
damping. Material damping is associated with the energy dissipation properties of the 
elastic half-space. (Gutowski & Dym, 1976) 

Geometric attenuation for a given source is dependent on the type of source, 
propagation distance and on the monitoring location, as mentioned above. The rate at 
which vibration amplitudes decay with distance away from a given source are set out 
in Table 2. 3, based on far-field analyses of elastic spaces. (Gutowski & Dym, 1976; 
Verhas, 1979; Hung & Yang, 2001) 

Table 2. 3 Geometrical attenuation for body and surface waves generated by surface sources 

Monitoring location 

Geometrical attenuation of wave vibration amplitude with 
distance r from a source in an elastic half-space 

Body waves Surface waves 

Surface point source (spherical spreading) 

Surface 
1

ZR
 

1

Z
 

Within the half-space 
1

Z
 N/A 

Surface line source (cylindrical spreading) 

Surface 
1

Z
 1 

Within the half-space 
1

Z
 N/A 
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As Rayleigh waves, being surface waves, only propagate along the surface of the 
elastic half-space, they are not present at monitoring locations located within the half-
space, well below the surface. Also, for line sources monitored at the surface of the 
half-space, the geometric attenuation of Rayleigh waves is independent of the distance 
from the source, and in an ideal undamped elastic half-space, they would propagate 
away from the source with constant amplitude. (Gutowski & Dym, 1976) 

The geometric attenuation associated with vibration sources located within an elastic 
half-space differs from those presented in Table 2. 3. For sources located sufficiently 
deep in an elastic half-space, such that a far-field can be developed, the geometric 
attenuation of body waves is presented in Table 2. 4, as stated in Gutowski & Dym 
(1976). Surface waves resulting from the interaction between body waves and the 
half-space free surface can also be generated by an underground vibration source. 
However, their amplitude would be negligible when compared to the amplitude of 
body waves, the exception to this being if the underground source is located close to 
the surface. 

Table 2. 4 Geometrical attenuation for body waves generated by underground sources 

When considering vibration propagation over large distances, damping can play a 
crucial part in the attenuation of vibrational energy in an elastic half-space. 
Attenuation of energy with distance due to damping in soil can be higher than that 
provided by geometrical attenuation. (ANC, 2012) 

BS ISO 14387-1:2005 (BSI, 2005) recommends that careful consideration is given to 
damping. Elements such as water saturation of porous soils and layering can have 
significant effects on vibration attenuation through the ground due to damping. 

Monitoring location 
Geometrical attenuation of body wave vibration amplitude with 

distance r from a source in an elastic half-space 

Underground point source (spherical spreading) 

Within the half-space 1

Z
 

Underground line source (cylindrical spreading) 

Within the half-space 
1

Z
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Damping can be modelled in many ways. These are briefly discussed below (ANC, 
2012): 

•! Viscous damping: this type of damping occurs where vibration forces liquid 
through an orifice. Friction caused by the viscosity of the liquid results in 
energy being converted into heat. Vibration transmission through fluids is 
affected by viscous damping. 

•! Radiation damping: the radiation of vibration from a finite structure into its 
surroundings is often regarded as an energy loss to the finite structure system. 
This can be referred to as radiation damping. 

•! Hysteretic damping: damping introduces a phase difference between an 
excitation force and the displacement response of the structure or medium 
under study. In the frequency domain, damping in a material is often 
represented as a complex modulus of elasticity. This is a hysteretic damping 
model. The use of this type of damping when predicting ground-borne 
vibration produces a complex vibration propagation velocity in the ground. 
The loss factor, which is widely used to describe damping in a medium, is 
given by the ratio of the imaginary part to the real part of the complex 
modulus of elasticity in hysteretic damping. 

Gutowski & Dym (1976) discuss the damping properties of soils, based on work by 
Barkan (1962), Crandall (1974) and Ungar & Bender (1975), and state that the 
decrease in wave amplitude in soil due to damping can be represented by 

where ) is the absorption coefficient and # the distance from the source. To suitably 
quantify damping, the frequency dependence of the absorption coefficient needs to be 
understood. 

Barkan (1962) modelled viscous damping with the absorption coefficient being 
dependent on the square of the frequency. In his work, he also presented frequency 
independent damping attenuation values, which were rather large. A frequency 
independent approach would mean that such large values of attenuation would be 
valid over all frequency ranges. However, this is unlikely to be the case. 

 [ # = [U\
N]^ Equation 2. 2 
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An alternative approach was suggested by Crandall (1974) and Ungar & Bender 
(1975) in that the absorption coefficient is dependent on the loss factor +, frequency ! 
and wave speed 5 for the wave type under consideration as follows. 

The above yields more conservative values for damping attenuation, and shows that 
the lower the wave speed and the shorter the wavelength, the greater the attenuation 
of vibration due to damping. The above also shows that as the wave speed of shear 
waves is lower than that of pressure waves, shear waves are attenuated at a greater 
rate than pressure waves. Whilst the above provides a more conservative assessment 
of losses due to damping, for some types of soil and rock, studies have shown that 
damping at low frequencies is independent of frequency. Currently, theoretical data 
for the modelling of damping in the ground is limited and many studies rely on 
empirical data or field measurements to determine damping. (ANC, 2012) 

In addition to geometric attenuation and damping, the presence of different layers in 
soil can have an impact on the vibrational energy in the ground. If layers with 
differing properties are present, phenomena such as reflection and refraction can 
occur within the soil. (Ewing, Jardetzky, & Press, 1957) For example, if an 
underground train tunnel is located above a rock stratum, vibration generated from the 
passage of trains in the tunnel will be reflected off the rock layer towards the surface. 
This principle is indicatively shown in Figure 2. 1. 

A number of models have been developed to predict the losses through the ground. 
These typically include for geometrical attenuation, damping and changes of soil or 
rock along the propagation path. A good example of this is referred to in Chapter 16 
of the Transportation Noise Reference Book (Remington, Kurzweil, & Towers, 1987) 
as the Ungar and Bender approach for underground trains. In Ungar and Bender’s 
simple analysis model (1975), the total vibration attenuation [H from a tunnel to a 
receiver location at a location # m from the source is given by Equation 2. 4. 

 

 

 

 

 
) =

J+!

5
 Equation 2. 3 
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[S, given by Equation 2. 5, accounts for the geometrical attenuation through the soil, 
where ZU is the tunnel radius. Equation 2. 6 and Equation 2. 7 account for the 
attenuation due to damping in the soil and rock and for the changes in soil or rock 
along the propagation path, respectively. Ungar and Bender’s approach only considers 
compressional waves. Equation 2. 7 assumes that such waves travel from soil _ to soil 
5, and 0 and 5 represent the density and compressional wave speed for each type of 
soil. This equation is only accurate where the thickness of each soil layer is several 
wavelengths wide. 

2.4! Receiver 

The third and final stage in Melke’s (1988) vibration transmission line is the receiver. 
Ground-borne vibration from a given source can exhibit itself in two ways at a 
receiver location. The first of these is tactile or whole body vibration, i.e. vibration 
that can be felt in the form of vibrating structures. Structure-borne noise, a 
consequence of often imperceptible levels of vibration exciting walls, floors and 
ceilings in buildings causing them to radiate noise, is the other way in which vibration 
manifests itself. (BSI, 2005; BSI, 2008) 

Ground-borne vibration and structure-borne noise can have negative effects on human 
occupants of buildings, by reducing their quality of life and / or work efficiency. The 
operation of sensitive equipment can be easily disrupted by ground-borne vibration, 
and this can also cause structural damage to buildings in extreme cases. (BSI, 2005) 

The present section sets out the types of wave and mechanisms through which 
vibration and structure-borne noise propagate within a building. 

 [H = [S + [a + [b Equation 2. 4 

where  
 

 
[S = 10 logMU

ZU + #

ZU
 

Equation 2. 5 

 [a = 4.34
4+#

5
 

Equation 2. 6 

 
[b = 20 logMU

1

2
1 +

0h5h
0i5i

 

Equation 2. 7 
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2.4.1! Types of waves in building structures 

Ground-borne vibration typically enters a building through its foundations. This is 
especially true for vibration generated by underground sources. Once in the building 
foundations, vibration propagates away from the point of entry through beams, 
columns, walls, floors and ceilings. The prediction of vibration propagation and losses 
through a building is a complex process, and it is often useful to simplify and group 
the various building components into beams and plates. For example, beams and 
columns in a building can be modelled as beams, while floors, walls and ceilings can 
be modelled as plates. 

Vibrational energy within a building is carried through various wave types: 

•! (quasi-) Longitudinal or compressional waves; 

•! Transverse waves; 

•! Bending or flexural waves. 

Pure longitudinal waves can only occur in solids with dimensions in all directions that 
are significantly larger than a longitudinal wavelength. Whilst they can occur in 
building structures, most beams and plates in buildings are too thin when compared to 
the longitudinal wavelength, across the frequency range of interest. Hence the term 
quasi-longitudinal is used to describe longitudinal waves in buildings. This type of 
wave causes longitudinal and lateral strains, and contraction of building structures. 
The extent of contraction is dependent on the Poisson’s ratio for the material in 
question. The lateral strains caused by this type of wave result in rather small lateral 
displacements. Consequently, sound radiation from quasi-longitudinal waves is often 
negligible when compared to that of bending waves. This said, quasi-longitudinal 
waves contribute highly to the transmission of vibrational energy between 
interconnected structures. (Hopkins, 2007) 



2. Vibration and structure-borne noise theory 

 22 

Transverse waves are generated as a result of solids opposing changes in volumes and 
shapes, through being capable of withstanding shear stresses. Transverse waves in 
plates are referred to as transverse plane waves, while in beams they are referred to as 
torsional waves. Transverse plane waves occur in plates due to shear stresses and 
cause the shape of a rectangular plate to be distorted into a parallelogram. (Cremer, 
Heckl, & Ungar, 1988) Hopkins (2007) refers to transverse plane waves as transverse 
shear waves, and states that the only motion of a plate surface in the presence of 
transverse shear waves is tangential to the adjacent air, and as a result these waves 
cannot radiate sound. However, as quasi-longitudinal waves, they play an important 
part on vibration transmission to other connected structures. 

Torsional waves occur when a narrow beam is subjected to a time varying, torsional 
moment, i.e. a moment whose axis coincides with that of the beam, causing the cross-
section of the beam to rotate about its axis. When this occurs, all points on the beam 
cross-section experience displacements. The further away the points on the cross-
section of the beam are from its axis, the larger these displacements. 
(Cremer et al., 1988) 

The other type of waves that can propagate in buildings are bending (or flexural) 
waves. These are the most significant for sound radiation, the reason for this being 
that bending waves generate substantial lateral displacements in a direction 
perpendicular to the direction of propagation. Some may consider bending waves to 
fall within the same category as transverse waves, given the large lateral 
displacements. However, this would be incorrect for the following reasons: 

•! The stresses and strains present in bending waves act on the longitudinal 
direction, rather than on a direction perpendicular to the longitudinal direction; 

•! The behaviour and underlying principles of bending waves are significantly 
different from that of transverse waves. 

Therefore, bending waves fall in a category of their own. (Cremer et al., 1988 and 
Fahy & Gardonio, 2007) 

The above paragraphs provide a brief overview of the types of waves that can 
propagate in building structures. The main characteristics and deformation patterns 
associated with each wave type are presented in Table 2. 5 and Figure 2. 3, 
respectively. Further details on each wave type can be found in Cremer et al. (1988), 
Fahy & Gardonio (2007) and Hopkins (2007). 
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Table 2. 5 Types of waves in building structures (Cremer et al., 1988; Fahy & Gardonio, 2007 and 
Hopkins, 2007) 

Wave 
types 

Sub-
division 

Particle motion in 
relation to propagation 
along x- axis 

Characteristics 

Longitudinal 
waves 

Pure 
longitudinal 

Parallel to direction of 
propagation. 

Propagation velocity is given by 5j =
k

P
. 

The propagation phase velocity of pure 
longitudinal waves is independent of 
frequency. 

Quasi-
longitudinal 

Parallel to direction of 
propagation. 

The propagation phase velocity of quasi-
longitudinal waves is different for plates and 
beams and is also independent of frequency. 

For beams, 5j,m =
L

P
. 

For plates, 5j,K =
L

P MNOn
. 

Transverse 
waves 

Transverse 
plane 
waves 

Perpendicular to 
direction of 
propagation. 

Transverse plane waves occur in plates (walls, 
floors, etc.). 
Their propagation phase velocity is given by 

5o,K =
T

P
=

L

RP MNO
. 

The propagation velocity of transverse plane 
waves is smaller than that of quasi-longitudinal 
waves, and is also independent of frequency. 

Torsional 
waves 

Rotation about the 
x- axis, see 
Figure 2. 3 c). 

Torsional waves occur in beams. 
Their propagation phase velocity is given by 

5o,m =
o

Ppq
. 

E and Ar are different for beams of rectangular 
and circular cross-sections. 
For solid rectangular beams: 

E = @
stsu

v

w
1 −

MyRsu

z{st
tanh

zst

Rsu
 and 

Ar =
sust

vQstsu
v

MR
. ℎÅ and ℎÇ are the width and 

height of the beam, respectively. 
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The shear modulus, @, mentioned in Table 2. 5 can be calculated using Equation 2. 8. 

 
@ =

>

2 1 + .
 Equation 2. 8 

 

 

 

 

 

 

 

 

 

 

Bending (or 
flexural) 
waves 

- 
Perpendicular to 
direction of 
propagation. 

Bending waves cause both rotation and lateral 
displacement of a beam or plate. 
The propagation phase velocity of bending 
waves is different for plates and beams and is 
frequency dependent. 

For beams, 5É,m =
ÑnÉÖ

Üá

à
, where <m = >Am. 

For beams of rectangular cross-section: 

Am =
sust

v

MR
 for lateral displacement in the z-

direction and moment of inertia about the y-

axis, and Am =
stsu

v

MR
 for lateral displacement in 

the y-direction and moment of inertia about the 
z-axis. ℎÅ and ℎÇ are the width and height of 

the beam, respectively. 

For plates, 5É,K =
ÑnÉâ

Üáá

à

, where <K =
Lpâ

MNOn
 and 

AK =
sv

MR
. ℎ is the thickness of the plate. 
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Figure 2. 3 Deformation patterns of wave types in beams and plates: a) quasi-longitudinal wave, b) 
transverse plane wave, c) torsional wave, d) bending wave (Hopkins, 2007) 

a)  

b)  

c)  

d)  
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2.4.2! Vibration transmission through buildings 

The propagation of vibration through a building is a complex field, highly dependent 
on the response of the building structure, and of its walls, floors and ceilings. Nelson 
& Saurenman (1987) divide the response of buildings to vibration into three main 
components: 

•! Foundation coupling loss; 

•! Floor resonance amplification; 

•! And floor to floor attenuation. 

As previously mentioned, building foundations typically represent the point of entry 
of vibrational energy into a building. The response of building foundations to 
vibration is characterised by their mass and geometry, the soil properties and the 
direction and type of incident vibration, and is described using a parameter called 
foundation coupling loss. (Nelson & Saurenman, 1987) Coupling losses are described 
in Cremer et al. (1988) as energy losses in a system that are a consequence of energy 
being reflected at discontinuities. In a building, these discontinuities can be structural 
connections between internal walls, beams and columns, change of medium between 
the building foundations and the soil, as well as between walls and the air in rooms. 
Kurzweil (1979) defines foundation coupling loss as the difference between the 
vibration levels in the soil and those in the building support structure. Nelson & 
Saurenman (1987) clarify that the levels of vibration in the soil should be considered 
without the presence of the foundations. The ANC Guidelines (2012) suggest that 
free-field vibration levels in the soil can reduce by up to 60 % when entering the 
foundations of a building, while the Federal Transit Administration (FTA; Hanson, 
Towers, & Meister, 2006) uses the following principle: “The heavier the building 
foundation, the greater the coupling loss”. 

Slab on grade, spread footings, piles founded in earth, and piles supported on rock are 
some of the most common building foundation types. For slab on grade floors, 
including most basement floors, excited by an underground vibration source, the large 
surface area of the slab is coupled with the soil underneath. This results in the 
vibration levels of the slab being similar to the levels that would be present in the soil 
without the slab. In these cases, the coupling loss between the soil and the building 
foundations is 0 dB at frequencies below the resonant frequency of the slab on grade. 
(Remington et al., 1987) A coupling loss of 0 dB is also experienced by lightweight 
frame buildings and buildings supported on rock. (Kurzweil, 1979) 
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In contrast with the above, the vibration levels entering a building through piled 
foundations can be significantly affected. In large cities with densely populated 
underground areas, such as London which has a total of eleven public underground 
train lines, in addition to underground lines to and from mainline train stations and 
significantly more service tunnels, building piles are often located within metres of 
the underground tunnel walls. The coupling losses associated with piled foundations 
are often high, except when the wavelength of the vibration in the soil matches that of 
the wave motion in the pile. For typical pile dimensions, this essentially means that 
bending waves cannot normally be excited between 25 Hz and 250 Hz, where most of 
the energy from underground trains occurs. Effective vibration transmission, i.e. 
minimal coupling losses, only occur significantly above the frequency range of 
interest. (ANC, 2012) 

Saurenman et al. (1982) set out empirical curves for coupling losses provided by 
various types of foundations between the frequency range of 4 Hz to 500 Hz, based on 
measurements undertaken in various cities in the USA. These curves are also 
provided in Nelson & Saurenman (1983 and 1987) and Remington et al. (1987), and 
show foundation coupling losses varying from approximately -1 dB at 500 Hz for 
single family dwellings to -16 dB at 31.5 Hz for large masonry buildings on spread 
footings. Figure 2. 4 shows the curves as presented by Nelson & Saurenman (1983). 
Although these curves date back to the 1980s, they are still widely used to model 
foundation coupling losses. However, the typical constructions in the USA can be 
substantially different from those encountered in the UK, meaning the losses 
associated with the coupling between the building foundations and the ground can 
also be significantly different. Avillez (2013) proposes a different set of curves for 
typical UK dwellings, i.e. 2 to 3 storey terraced, semi-detached and detached 
residential buildings, on strip footings with a ground bearing slab. Avillez’s curves 
follow the same trend as those presented in Figure 2. 4. However, the coupling losses 
vary from approximately +3 dB at 16 Hz to -9 dB at 40 – 63 Hz, suggesting the 
foundations of this type of buildings can in fact amplify vibration levels at certain 
frequencies. 
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Figure 2. 4 Foundation coupling losses for different types of buildings (Nelson & Saurenman, 1983) 

When peaks in the ground-borne vibration spectrum coincide with the resonances of 
the building structure, amplification of the vibration levels experienced within the 
building may occur. (ANC, 2012) Nelson & Saurenman (1987) state that little or no 
amplification typically occurs below the resonant frequency of the floors. However, 
above this frequency, the vibration levels may be amplified as a result of the greater 
number of modes that exist within structures at higher frequencies. This can be 
considered to some extent inversely analogous to the force transmissibility, i.e. the 
difference between the input and output forces, of a vibration isolator system. For a 

single degree of freedom system, amplification occurs at frequencies up until 2!U, 
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where !Uis the resonant frequency of the system, with maximum amplification 
occurring when the exciting frequency matches the resonant frequency of the system. 

At frequencies above 2!U, the isolator starts to attenuate the transmitted force 
instead of amplifying it. (Rajaram & Saurenman, 2013) The level of vibration 
amplification is highly dependent on the type of construction of the building, and 
tends to be lower near the junctions between walls and floors, and between walls and 
ceilings (Hanson et al., 2006), as the constructions at these locations are stiffer and 
therefore harder to excite. 

Chapter 16 of the Transportation Noise Reference Book (Remington et al., 1987) 
provides typical vibration amplification factors for floor slabs supported on columns 
or shear walls. These are based on the estimates given by Nelson & Saurenman 
(1983), vary between 5 dB and 15 dB in the frequency range of 16 – 80 Hz, and are 
reproduced in Figure 2. 5. Whilst some amplification of vibrational energy is expected 
in building constructions, especially at mid-span locations of walls and floors, the 
extent of amplification is highly dependent on the characteristics of the vibration 
excitation, as well as on the damping of the constructions. For instance, for short 
transient vibration events, such as vibration from trains, the resonance of the 
construction will not have been fully excited, meaning that the maximum 
amplification will be less than if the construction was excited by a continuous 
vibration source. (ANC, 2012) Therefore, amplification values of up to 15 dB may not 
actually be realised in situations where train events are the main vibration source. The 
FTA (Hanson et al., 2006), on the other hand, suggest an adjustment to the vibration 
level of +6 dB for amplification due to resonances of floors, walls and ceilings, with 
the acknowledgement that the “actual amplification will vary greatly depending on 
the type of construction”. This single figure number should be applied to the 
frequency range of the resonant frequency. 
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Figure 2. 5 Range of floor amplification due to floor resonances and attenuation per floor (Nelson & 
Saurenman, 1983) 

The last component of the response of buildings to vibration mentioned in Nelson & 
Saurenman (1987) is floor to floor attenuation. Similarities can be drawn between this 
and airborne sound propagation in ductwork systems. In the latter, losses occur when 
sound encounters a discontinuity, such as a branch, and part of the sound energy will 
be reflected and the remaining energy will spread through the other duct branches. 
(Cremer et al., 1988) A similar attenuation mechanism is applicable for floor to floor 
vibration attenuation in buildings. Typical values of floor to floor attenuation in multi-
storey buildings are provided in Figure 2. 5, based on Nelson & Saurenman’s work. 
These show that the vibration attenuation from floor to floor is approximately -3 dB. 
Ishii & Tachibana’s work (1978) showed that the level of attenuation per floor of a 
building is not constant throughout, reduces with the height of the building and is 
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dependent on the floor to floor distance. Table 2. 6 shows the levels of attenuation per 
floor as estimated by Ishii & Tachibana and reproduced by Remington et al. (1987). 
In addition to these, the FTA (Hanson et al., 2006) suggests that between levels 1 to 5 
above grade, the levels of vibration within a building is attenuated by 2 dB per floor, 
while between levels 5 to 10 above grade this reduces to 1 dB per floor. The 
attenuation values advised by the FTA are frequency independent and can potentially 
lead to oversimplification of the actual losses per floor. However, the losses suggested 
are somewhat more conservative than those given by Ishii & Tachibana (1978). 

Table 2. 6 Attenuation of acceleration level per floor in dB for a point source below a building 
(Remington et al., 1987) 

Frequency (Hz) 
Floor level above grade 

1 2 3 4 5 6 7 8 9 10 

Floor to floor distance: 3 m 

31 2 2 2 1 1 1 1 1 1 1 

63 3 2 2 2 2 1 1 1 1 1 

125 3 3 2 2 2 2 2 1 1 1 

250 3 3 3 3 3 3 3 2 2 2 

500 4 4 3 3 3 3 3 3 3 3 

1k 5 5 4 4 4 4 4 3 3 3 

Floor to floor distance: 3.7 m 

31 2 2 2 2 1 1 1 1 1 1 

63 3 2 2 2 2 1 1 1 1 1 

125 3 3 3 2 2 2 2 1 1 1 

250 4 4 3 3 3 2 2 2 2 2 

500 4 4 4 4 4 3 3 3 3 3 

1k 5 5 5 4 4 4 4 4 4 4 
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The guidance provided in Chapter 16 of the Transportation Noise Reference Book 
(Remington et al., 1987), commonly used in the UK, and the US’ Transit noise and 
vibration assessment report (Hanson et al., 2006) are based on the original work by 
Saurenman et al. (1982) and Nelson & Saurenman (1983 &1987), and provide 
reasonably similar guidance. A summary of the guidance on foundation coupling loss, 
floor resonance amplification and floor to floor attenuation given in both of these 
documents is provided in Table 2. 7 in terms of single number values. 

Several methods, models and calculation tools have been developed for the prediction 
of structure-borne noise in buildings, some of which are based on the guidance set out 
in the present section. A review of these is provided in Section 3. 

Table 2. 7 Summary of guidance on factors affecting the response of buildings to vibration 

Factors affecting the response of 
buildings to vibration 

Reference document 

Transportation Noise Reference 
Book (Remington et al., 1987) 

Federal Transit 
Administration 

(Hanson et al., 2006) 

Foundation coupling loss 

Slab on grade / lightweight 
frame buildings: 0 dB 

Other foundation types: -1 dB to 
-16 dB over 4 – 500 Hz 

(refer to Figure 2. 4) 

Wood frame houses: -5 dB 

1 – 2 storey masonry buildings: 
-7 dB 

3 – 4 storey masonry buildings / 
large masonry buildings on 

piles: -10 dB 

Large masonry buildings on 
spread footings: -13 dB 

Foundation in rock: 0 dB 

Floor resonance amplification 
+5 to +15 dB over 16 – 80 Hz 

(refer to Figure 2. 5) 
+6 dB 

Floor to floor attenuation 
-3 dB / floor 

(refer to Figure 2. 5) 

1 to 5 floors above grade: 
-2 dB / floor 

5 to 10 floors above grade: 
-1 dB / floor 
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2.4.3! Attenuation mechanisms through buildings 

Whilst the guidance given in Remington et al. (1987) and by the FTA (Hanson et al., 
2006) is useful and reasonably easy to apply, it is worth gaining a better 
understanding of how vibration is attenuated within buildings. 

Once vibrational energy enters a building and propagates through it, it is bound to 
encounter discontinuities, such as changes in the type of material and / or structure. 
These reduce the amplitude of the wave transmitted past such discontinuities by 
reflecting some of the incident energy. For the amplitude of the transmitted wave to 
be significantly lower than that of the incident wave, i.e. for high levels of attenuation 
to occur, significant changes in the material densities and stiffnesses are required. In 
addition to a change in the material, a change in the cross-sectional area of beams and 
plates might also occur. This would result in reflections off the discontinuity and 
would also provide additional attenuation. (Cremer et al., 1988) 

Other mechanisms through which the amplitude of vibration waves can be attenuated 
in buildings include corners and branches at right angles, elastic interlayers and 
blocking masses. These mechanisms and their effect are further described in the 
following paragraphs. However, as Craik (1988) and Cremer et al. (1988) note, there 
are several types of junctions and discontinuities encountered in buildings, such that it 
is not possible to analyse all the possible scenarios. Therefore, the following 
paragraphs only provide examples of the most basic situations that are typically found 
in buildings. 

Changes in material and cross-sectional area affect quasi-longitudinal and bending 
waves in different ways. For instance, in the case of a beam, the transmission 
efficiency 3 of quasi-longitudinal waves across the discontinuity, i.e. the ratio of 
transmitted to incident power at the discontinuity, is given by Equation 2. 9, where GM 
and GRI are the wave impedances of the beam on both sides of the discontinuity. This 
equation relies on the following boundary conditions. (Cremer et al., 1988) 

1.! The velocity on both sides of the discontinuity must be equal (:M = :R); 
2.! The longitudinal forces on both sides of the discontinuity and at a small 

distance from it must also be the same (?M = −2MDM = ?R = −2RDR). This 
boundary condition does not apply to arbitrary changes in cross-section, nor 
for very high frequencies. 
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For bending waves, the transmission efficiency across the discontinuity is somewhat 
more complex and is given by Equation 2. 12. Cremer et al. (1988) state that this 
requires the following parameters to be continuous across the discontinuity: transverse 
velocities (:ÅM = :ÅR), shear forces (?ÅM = ?ÅR), angular velocities (;ÇM = ;ÇR), and 

moments (BÇM = BÇR). 

Equation 2. 15 sets out the relationship between the transmission efficiency and the 
transmission loss across the discontinuity. 

Substituting Equation 2. 9 and Equation 2. 12 into the above, the transmission losses 
for quasi-longitudinal and bending waves across a junction with different materials 
and / or cross-sectional areas can be found. 

 

 
3 =

4

GM
GR
+

GR
GM

R Equation 2. 9 

where   

 GM = 7ä
M5j,mM Equation 2. 10 

 GR = 7′R5j,mR Equation 2. 11 

 
3 =

2 ãå 1 + ã 1 + å

ã 1 + å R + 2å 1 + ã R

R

 Equation 2. 12 

where   

 
ã =

7′R<M
7′M<R

à

=
-M
-R

 Equation 2. 13 

 
å =

7′R<R
7′M<M

 Equation 2. 14 

 
C = 10 log

1

3
 Equation 2. 15 
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Cremer et al. (1988) demonstrate the effect a change in thickness between two 
connected plates would have on the transmission loss across the discontinuity, by 
plotting the results of Equation 2. 16 and Equation 2. 17 for two plates of the same 
material. This is reproduced in Figure 2. 6. Essentially, the greater the difference 
between the cross-sectional area of the two plates, the greater the attenuation across 

the discontinuity. However, changes in cross-sectional areas between 0.2 > sn
sç

 > 5 are 

not often encountered, and in reality attenuation due to changes in cross-sectional area 
are usually in the region of 3 dB for common building structures. 

 
Figure 2. 6 Transmission losses between two plates with different cross-sections 

The second and potentially more important vibration attenuation mechanism 
encountered in buildings occurs where structural elements, such as a wall and a floor 
or two beams, meet at right angles. 

 
Quasi-longitudinal waves: C = 20 logMU

éç
én
Q

én
éç

R
 Equation 2. 16 

 Bending waves: C = 20 logMU
è MQê nQRê MQè n

R èê MQè MQê
 Equation 2. 17 
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To rationalise the number and type of constructions, as well as the interface details 
between various elements within a building, a certain degree of symmetry often exists 
between adjacent areas in buildings, meaning that some beams and plates will have 
very similar, if not the same, properties (material and cross-sectional area). There are 
three main types of junctions where plates / beams meet at right angles: L-junctions, 
T-junctions and X-junctions. These types of junctions are shown in Figure 2. 7 a), b) 
and c), respectively. In line junctions, such as the junction between plates / beams 1 
and 3 in Figure 2. 7, are also commonly found in buildings. For junctions between 
perpendicular beams or plates, the term transmission around a corner is useful to 
describe the energy propagation path. For in line junctions, the term transmission 
across a straight section is used. (Hopkins, 2007) 

a) b)  

c)  

Figure 2. 7 Common beam / plate junctions encountered in buildings 

An example of an L-junction between two beams is shown in Figure 2. 8, where the 
various force, linear velocity, moment and angular velocity components are given, as 
mentioned in Cremer et al. (1988). 
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Figure 2. 8 Forces and moments on two beams connected at a right-angle corner 

The above scenario requires the bending moments and the angular velocities on both 
sides of the corner to be the same, i.e. BÇM = BÇR and ;ÇM = ;ÇR, respectively. These 
boundary conditions are as considered for the attenuation resulting from changes in 
material and cross-sectional areas. However, the remaining two boundary conditions 
are significantly different. For instance, whilst the shear force ?ÅM will have no impact 

on the bending wave in beam 2, it will produce a longitudinal force of the same 
magnitude in the second beam ?ÅR, such that ?ÅM = ?ÅR. From here, it follows that the 

amplitudes of the transverse velocity in beam 1 :ÅM and of the longitudinal velocity in 

beam 2 :ÅR will also be equal (:ÅM = :ÅR). 

For the previous scenario of changes in material and cross-sectional areas, the 
magnitude of the reflected and transmitted waves at the discontinuity would add up to 
the magnitude of the incident wave. As a result, the reflection and transmission 
efficiencies would add up to 1. However, in the case of two beams (or two plates) at a 

90° angle excited by a bending wave, this does not occur and consideration must be 
given to the fact that a reflected and transmitted longitudinal wave would be 
generated. Equation 2. 18 highlights the various reflection and transmission efficiency 
contributions to the beam arrangement shown in Figure 2. 8. (Cremer et al., 1988) 
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The above equations for the reflection and transmission efficiencies show that these 
are dependent on the following parameters, as well as on ã and å given in Equation 2. 
13 and Equation 2. 14, respectively. 

 1ÉÉ + 1Éj + 3ÉÉ + 3Éj = 1 Equation 2. 18 

where   

 1ÉÉ is the reflection efficiency of a bending wave from an 
incident bending wave, 1ÉÉ = Z R 

Equation 2. 19 

 1Éj is the reflection efficiency of a longitudinal wave from 

an incident bending wave, 1Éj =
híç

Rhìç
9 + 9î

R 
Equation 2. 20 

 3ÉÉ is the transmission efficiency of a bending wave from an 
incident bending wave, 3ÉÉ = IãIå 9 R 

Equation 2. 21 

 3Éj is the transmission efficiency of a longitudinal wave 

from an incident bending wave, I3Éj =
M

Rïn
1 + Z + Zî

R 
Equation 2. 22 

ñM =
5ÉR7′R
5jM7′M

 Equation 2. 23 

ñR =
5ÉM7′M
5jR7′R

 Equation 2. 24 

Z =

å 1 − 2ñR − ñMñR + ã 1 + 2ñM − ñMñR
+ó å 1 + ñM − ñMñR + ã −1 + ñR + ñMñR

å −1 − ñM − 2ñR − ñMñR + ã −1 − 2ñM − ñR − ñMñR
+ó å + ã 1 − ñMñR

 Equation 2. 25 

Zî =
−1 + ñR − Z 1 + ñR

1 + óñR
 Equation 2. 26 

9 =
2 ñM + ñR − 2ó 1 − ñMñR

å −1 − ñM − 2ñR − ñMñR + ã −1 − 2ñM − ñR − ñMñR
+ó å + ã 1 − ñMñR

 Equation 2. 27 

9î =
1 + ñM
−1 − óñM

9 Equation 2. 28 
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The transmission losses across two beams (or plates) rigidly connected in an L-
junction in bending are shown in Figure 2. 9, as a function of the ratio between the 
beam (or plate) thicknesses. These are as provided in Cremer et al. (1988) for two 
beams / plates of the same material, but with different cross-sectional areas. Figure 2. 
9 shows that the highest transmission loss between two beams / plates of the same 

material and cross-sectional area sn

sç
= 1  is approximately 4 dB. 

 
Figure 2. 9 Transmission losses between two beams at a right angle in bending (L-junction) 

Whilst it is useful to understand how energy is transmitted across L-junctions, such 
type of junctions is not as common in buildings as branching junctions, where three or 
four plates or beams meet (T- and X-junctions). Cremer et al. (1988) have derived the 
transmission and reflection efficiencies for these scenarios from the equations 
provided for the two beams or plates in a corner arrangement. 

The transmission losses associated with junctions between three and four plates as a 
function of their thickness ratio are provided in Figure 2. 10 and Figure 2. 11, 
respectively, as given in Cremer et al. (1988). Guidance on transmission losses for 
various types of junctions as a function of the ratio between the thickness of plates is 
also provided in Craik (1988) in tabulated form. 

As a result of reciprocity and of the symmetry typically encountered in buildings, the 
transmission loss between plates 1 and 2 CMR  is equal to the transmission loss 
between plates 2 and 1 CRM  and between plates 2 and 3 CRw . 
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Figure 2. 10 Transmission losses between three plates at right angles in bending (T-junction) 

 
Figure 2. 11 Transmission losses between four plates at right angles in bending (X-junction) 

Figure 2. 10 shows that the lowest transmission loss between plates 1 and 2 CMR  of 
the same material and cross-section in a T-junction can be as low as approximately 
6 dB. The transmission loss between plates 1 and 3 of identical properties in a T-
junction CMw  is approximately 6.5 dB and increases to 15 dB when plate 3 is twice 
as thick as plate 1. 
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For identical plates in an X-junction, as shown in Figure 2. 11, the lowest 
transmission loss between plates 1 and 2 CMR  occurs when the thickness of the two 
plates is the same, and is approximately 9 dB. In this scenario, a 3 dB increase in the 
transmission loss CMR  can occur when the thickness of the branching plate 2 is twice 
or half of the thickness of the primary plate 1. The transmission loss between plates 1 
and 3 of identical properties in an X-junction CMw  increases to a significant 20 dB 
when plate 3 is twice as thick as plate 1. 

The relationships highlighted above between the transmission losses and the doubling 
or halving of the thickness of the plates are only valid for the transmitted power 
across the junctions. Cremer et al. (1988) state that these do not influence the 
velocities. Whilst these can be easily found from the transmission losses, they rely on 
the product of ã and å given in Equation 2. 13 and Equation 2. 14, rather than on 
their ratio, as is the case for the transmission losses. 

The above analyses show that the losses obtained from changes in the material, cross-
sectional area and changes of direction in structural elements typically found in 
buildings are often of limited benefit, unless these changes are rather significant. In 
the scenario of a building located in proximity to an underground train line, the losses 
associated with these mechanisms may not be sufficient to adequately control 
vibration and structure-borne noise within a building, and additional mitigation 
measures capable of providing higher transmission losses may be required. 

Elastic interlayers, such as elastomeric bearings, are often used to reduce vibration 
and structure-borne noise transfer within buildings. The effectiveness of such 
materials relies on the introduction of a significant change of impedance into the 
system, which results in a large portion of the incident energy being reflected, rather 
than transmitted. Such layers are typically much softer when compared with the 
structure they are in. A good example of a material commonly used is cork, which has 
a characteristic impedance at least two orders of magnitude smaller than that of 
concrete. This means that even a thin layer of cork can have a significant effect on the 
transmission of energy through building structures. (Cremer et al., 1988) However, 
cork has a limited lifespan and its effectiveness decays severely with time, as it starts 
to crumble. Nowadays, elastomeric layers with longer life spans are more commonly 
used, especially for locations in buildings which will not be easily accessible for 
maintenance or replacement, such as the top of a pile or column. 
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The use of elastic interlayers falls outside of the remit of the present document, 
though further information can be found in Cremer et al. (1988), Craik & Osipov 
(1995) and Osipov & Vermeir (1996), to name a few. 

The introduction of elastic interlayers in a building affects the transmission of 
longitudinal and bending waves differently, and can also have considerable effects on 
the structural stability of a building. As elastic interlayers are typically much “softer” 
than the surrounding structure, they cannot be relied upon to provide the shear-
stiffening normally required. Often, in cases where this is overlooked in the design of 
a building, the on-site solution is to rigidly fix structural elements through the elastic 
interlayer, severely undermining its performance. Care must therefore be taken both 
during the design and construction of a building to ensure such problems do not 
occur. A measure that could be implemented during the design stages is the 
introduction of blocking masses, i.e. stiff structural elements that break the energy 
transmission path, reflecting some of the energy back, whilst providing the structural 
restraint necessary. Significant transmission losses can be obtained using such 
methods. Blocking masses are also encountered in ships. (Cremer et al., 1988) 

2.4.4! Damping 

Another mechanism which aids the reduction of vibrational energy in buildings by 
controlling the resonant response of the building and its elements is damping. 
Hopkins (2007) states that internal losses within a material are used to describe its 
damping properties. For instance, the internal losses of a beam or plate under 
deformation as a result of a wave excitation convert mechanical energy into heat. 
Damping is sometimes also referred to as dissipation. Even though it may help to 
reduce energy propagating through a building, the term damping (or dissipation) is 
not used to describe energy losses resulting from reflections at discontinuities. These 
are referred to as “attenuation” or “coupling losses” and fall under the mechanisms 
set out in Section 2.4.3 above. (Cremer et al., 1988) 

The relationship between damping and the basic equations of elasticity for isotropic 
materials, such as Equation 2. 29 where 2 is the stress, * the strain and = the material 
stiffness, has interested physicists since the 1870s. 

 2 = =* Equation 2. 29 
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O. E. Meyer, in 1874, proposed that a viscous friction force, proportional to the time 
derivative of the strain, acts in addition to the elastic forces in a material. With such 
force, the equation of elasticity would be re-written as per Equation 2. 30. 

Applying a sinusoidal time variation * = *cosI 49  to the above, Meyer’s equation of 
elasticity becomes Equation 2. 31, where the strain and stress are out of phase with 
each other, implying the transformation of mechanical energy into heat. However, 
these equations are not sufficient to characterise damping. 

Two years later, in 1876, Boltzmann proposed a different model for damping, in 
which the force that generates a strain is considered to be dependent on both the strain 
itself and on the “strain history”, i.e. the previous strains. The relationship between 
the stress and strain at different points in time, assuming the strain history is linearly 
superposed, can be written as shown in Equation 2. 32, where 2 9  and * 9  are the 
stress and strain and at time 9, and * 9 − ∆9  is the strain at an earlier time 9 − ∆9 . 
õ 9  is the function that describes the after-effect of a strain and can take various 
forms. Of these, the “relaxation function” is important. For example, a material that 
has been subjected to a strain will experience processes at molecular level, including 
displacements, distortion and changes to its internal structure, that are excited and will 
decay gradually. Assuming the strain applied to such material causes its molecules to 
oscillate with an exponential decay, the after-effect function would take the form of 
Equation 2. 33, where =R is a constant and 3 is the relaxation time, i.e. the time 
molecular oscillations take to decay. (Cremer et al., 1988) 

 
2 = = * + ,

ú*

ú9
 Equation 2. 30 

 2 = =* cos 49 − ,ωsinI 49  Equation 2. 31 

 
2 9 = =M* 9 − * 9 − ∆9 õ 9 ú(∆9)

°

U

 Equation 2. 32 

 
õ 9 =

=R
3
\N

∆¢
£  Equation 2. 33 
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Applying a periodic strain * = *cosI 49  to the material and assuming the relaxation 
function is as given by Equation 2. 33, the expression for the stress would be given by 
Equation 2. 34. This equation shows that the relaxation function causes a phase shift 
between the stress and strain, which therefore leads to the dissipation of vibrational 
energy. The second term of Equation 2. 34, which is dependent on the frequency and 
relaxation time, determines how much of the vibrational energy is transformed into 
heat. Cremer et al. (1988) go on to state that all stress and strain relations can be 
derived from Equation 2. 32 and Equation 2. 33, if the various relaxation processes 
that occur simultaneously are accounted for, and consequently the “relaxation model 
of after-effects may be taken as valid in general”. 

However, the use of the above equations to account for the effect of damping leads to 
rather complicated expressions. Cremer et al. (1988) suggest that this can be avoided, 
if the problem is limited to periodic excitations and processes, and complex moduli 
are used. Equation 2. 31 and Equation 2. 34 both imply that the generation of a phase 
difference between the stress and strain is the main effect of damping. This can be 
expressed by Equation 2. 35. 

Cremer et al. (1988) state that both Meyer’s viscosity model and Boltzmann’s 
relaxation model can be represented using a complex modulus of elasticity, as shown 
in Table 2. 8, allowing a simple representation of the complicated processes 
associated with damping for periodic excitations. 

 

 

 
2 9 = =M −

=R
4R3R + 1

* cos 49 − =R
43

4R3R + 1
* sin ωt  Equation 2. 34 

 2 9 = C\ =*\îÑ¢ = =§* cos 49 − =§§* sin 49  Equation 2. 35 

where   

 = = =§ + ó=§§ = =§ 1 + ó+  is the complex modulus of 
elasticity (referred to in other sections of the present 
document as >), and 

Equation 2. 36 

 + =
k••

k•
 is the loss factor. Equation 2. 37 
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Table 2. 8 Modulus of elasticity and loss factor in different damping models (Cremer et al., 1988) 

The loss factor + given in Table 2. 8 consists of the internal loss factor. As internal 
losses within a material can vary with frequency and type of wave, as well as with 
temperature, amplitude of vibration and manufacturing process, its internal loss factor 
is hard to quantify. This is typically done through measurements, though data is 
mainly available only for bending waves. Hopkins (2007) sets out two main methods 
for the measurement of the internal loss factor of a material for bending waves. For 
sheet materials, this involves the measurement of the structural reverberation time of 
the material. An alternative to this would be to form beams with short and narrow 
strips of the material, exciting them with a shaker and determining the loss factor at 
the various resonant frequency of the beams. The structural reverberation time can 
also be used to determine the total loss factor for plates over the frequency range of 
interest. Hopkins (2007) recommends that there should be a minimum of five bending 
modes in the relevant frequency bands, so as to minimise errors in the determination 
of the decay curves. The internal loss factor can be estimated, if the coupling losses 
between the plate and other elements, and sound radiation are negligible. 

As internal loss factors only tend to be available for bending waves and there is a lack 
of information on internal loss factors for in-plane waves, Hopkins (2007) mentions 
that these are often assumed to be the same as for bending waves. Research and 
measurements by Kuhl & Kaiser (1952) show that this assumption is reasonable for 
materials such as concrete and bricks. Craik & Barry (1992) also undertook 
measurements of the internal loss factor of full sized walls, by using a test facility 
where the coupling losses between the test element and the frame are minimal. Their 
results show that the internal loss factor is somewhat frequency dependent, that 
plastering a wall can affect its performance, and that the type of construction and how 
it is built has an impact on the internal loss factor. 

 Damping model 

 Meyer’s viscosity model Boltzmann’s relaxation model 

Modulus of elasticity =§ = = 

=§ = =M −
=R

4R3R + 1
 

=§§ =
=R43

4R3R + 1
 

Loss factor + = 4, + =
=§§
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It is worth noting that, while internal losses of materials help convert mechanical 
energy into heat, damping provided by the coupling between structures in a building 
tends to be more significant. Craik (1981) states that the majority of the energy in a 
wall or floor in a building is not converted into heat within it, but it will propagate to 
another wall or floor somewhere else in the building where the conversion into heat 
will eventually happen. Even then, the reduction in vibration levels due to attenuation 
and / or coupling losses between the various elements in a building is higher than that 
provided by internal losses. 

As alluded to in the previous paragraphs, the total damping (or total loss factor) of a 
building is a combination of the internal damping of the constructions, i.e. the internal 
losses within the construction that aid the conversion of mechanical energy into heat 
and which are characterised by the internal loss factor; the radiation damping, the 
losses that occur when energy is radiated into a room which are dependent on the 
radiation efficiency of the constructions; and the structural coupling between each 
element in a building, i.e. the losses that occur when energy is transferred from one 
part of the structure to another and which are described by coupling loss factors. 
(Craik, 1981; Hopkins, 2007) 

In a typical low rise building in the UK, such as a masonry residential block, the total 
damping can vary between 0.02 to 0.10, with an average of approximately 0.05. In a 
tall building, however, the rate at which energy dissipates varies with the vibration 
mode being excited. Measurements in tall buildings where the coupling between the 
soil and structure is negligible have shown that the damping ratio can vary between 
0.005 and 0.025 for the fundamental modes of vibration. Where the coupling between 
the soil and the building structure is significant at a particular mode, higher damping 
ratios would apply. Also, buildings with reinforced concrete frames tend to have 
higher damping values than those with steel frames. As previously mentioned, 
damping is affected by the method and type of construction of a building and its 
elements, the materials used, and workmanship. This essentially means that, during 
the design stage of a building, it is difficult to predict damping accurately and there 
often are significant errors associated with such predictions. (ANC, 2012) 
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The previous sections provide an overview of the vibration transmission line, from the 
source, through the propagation path and into the receiver, and of the various 
mechanisms through which vibrational energy is attenuated in each of these stages. 
As this document is to focus on the prediction of structure-borne noise in buildings, 
the following sections concentrate on the receiver stage of the vibration transmission 
line and on the various models currently available for the prediction of structure-borne 
noise in buildings. 
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3! Prediction of structure-borne noise in buildings 

To determine the effect vibration sources, such as underground trains, have on 
buildings and their occupants, the prediction of ground-borne vibration and structure-
borne noise in buildings is a necessary step, especially when either the source or the 
receiver are not yet in place and the levels of vibration and noise cannot be measured. 
BS ISO 14837-1 (BSI, 2005) acknowledges that the prediction of ground-borne 
vibration and structure-borne noise, especially that caused by railway systems, is a 
“complex and developing technical field”. To aid the development of prediction 
models, this standard provides guidance on the many aspects that need to be 
considered and on the types of models that can be developed. The following are 
examples of the recommendations provided: 

•! Ground-borne noise and vibration should be determined as a function of 
frequency; 

•! The magnitude of ground-borne noise and vibration at the required location 
should be given as a function of the source, propagation path and receiver; 

•! The following parameters should be considered, depending on the stage of the 
assessment: 

o! Source: route alignment, rolling stock, rail, track form, supporting 
infrastructure, construction tolerance, operation and maintenance; 

o! Propagation path: type of ground and wave field; 
o! Receiver: type of foundation and building structure. 

The present chapter provides a summary of the different types of models currently 
available for the prediction of structure-borne noise in buildings, and relates to the 
second objective of this thesis. 

3.1! Types of models 

The detail required in a prediction model for a particular scheme or project varies with 
the stage at which it is. For instance, a project that is about to start construction 
requires a more accurate and detailed prediction model than one that is still in its 
feasibility study stage. BS ISO 14387-1 (BSI, 2005) defines three types of models for 
the prediction of ground-borne vibration and noise from new railway systems, and for 
new buildings near existing railways or for alterations to an existing rail system. 
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The characteristics and aims of each of these model types are somewhat different and 
are set out in Table 3. 1. 

Table 3. 1 Summary of BS ISO 14387-1 prediction model types and their key points (BSI, 2005) 

 

Type of model 

Type of project 

New rail system 
Existing rail system / new 

building near existing railways 

Scoping model 

Used at very early stages of a 
scheme to ascertain whether 

ground-borne vibration and / or 
noise is a problem, and if so, 

where the main areas of concern 
are located. 

Used to determine whether a new 
building may need to be isolated 
to control ground-borne vibration 

and noise from an existing 
railway. This model can also be 
used to determine whether an 

existing rail system needs to be 
modified. 

Environmental assessment 
model 

Uses the scoping model as a 
starting point and detail is added, 
to more accurately quantify the 

location and severity of the 
ground-borne vibration and noise 

problem. This type of model 
typically forms part of the 

planning process of a scheme, and 
highlights measures that are 

required to mitigate ground-borne 
vibration and noise from a new 

rail system. 

This model is used to confirm 
how severe the ground-borne 

vibration and noise problem in a 
new building may be, and to 
define the type and extent of 

mitigation required. For 
modifications to existing rail 

systems, it will identify the type of 
modification needed. 

Detailed design model 

As the name suggests, this type of 
model supports the detailed design 

of a scheme. The mitigation 
measures highlighted with the 

environmental assessment model 
are developed and implemented 

during construction, focussing on 
the rolling stock and track design. 

A detailed design model for a new 
building will contribute to the 

design of the foundations, floor 
and base isolation that may be 

required. It will also allow 
detailed design of any 

modifications to an existing rail 
system, such as changes to the 

rolling stock and tunnel. 
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A model for a new railway system is required to predict the absolute levels of ground-
borne vibration and noise that will be generated. However, a model for a new building 
that is to be located near an existing railway only needs to predict the insertion gains 
or the transfer functions, i.e. the change that will occur in the ground-borne vibration 
and noise level with the new building in place. A similar principle is applicable when 
modifications are made to an existing railway scheme. Another difference between 
models for a new and for existing rail schemes is that the vibration level from an 
existing railway can and should be measured. This reduces the uncertainty associated 
with predicting the generation and propagation of vibration for new railway systems. 
The effect of constructing a new building near a railway, or modifying an existing 
railway, on the ground-borne vibration and noise levels can be assessed by correcting 
the measurement data with the insertion gains and transfer functions predicted. This 
will allow the calculation of the new levels of ground-borne vibration and noise that 
will be experienced by the new building or that will be generated by the modified 
existing railway. (BSI, 2005) 

Whilst the above paragraphs discuss three types of prediction models, they only relate 
to how detailed a model is during different stages of a project and do not mention 
what methodology is used for the calculations. BS ISO 14837-1 (BSI, 2005) states 
that models for the prediction of ground-borne vibration and noise fall in two main 
categories: empirical and parametric (or theoretical). There are also models that are a 
combination of these two methods. As with any modelling, the quality and validity of 
the results obtained is only as good as the data that is input into it. Moreover, 
prediction models typically refer to and have been validated and calibrated to a 
specific situation. Care must therefore be taken when applying a model to a scenario 
that differs significantly from the calibrated and validated one. The following sections 
set out the main characteristics of empirical and parametric models. 

3.1.1! Empirical models 

Field measurement data form the basis of every empirical model, along with methods 
for extrapolating / interpolating predictions within the measurement dataset. BS ISO 
14837-1 (BSI, 2005) sets out two main types of empirical models. These are single 
site models and multiple site models. 



3. Prediction of structure-borne noise in buildings 

 51 

Single model sites are based on measurements obtained at a single site, as the name 
indicates. The extrapolation functions for this type of model are derived from other 
measurement databases, or from analytical models. This type of model should be used 
for single assessment sites, such as to determine whether mitigation measures are 
required for a new building at a single site. 

Multiple site models, on the other hand, make use of measurements obtained at 
various sites, which are analysed by way of regression and trend analysis to develop 
the prediction model. In the case of a new rail system, the measurements should 
include variations in the parameters that will be present over the extent of the new 
system and will have an impact on the levels of ground-borne vibration and noise 
generated, such as soil properties, track system, vehicle type, measurement distances, 
etc. The number of sites that should be included in this type of model is dependent on 
the number of parameters that vary between the measurement and assessment sites, 
and on how significant that variation is. For instance, measurements at various 
distances from and / or along a railway track can be considered different sites on the 
basis that the distance and relative tunnel depth, and potentially soil properties, 
between measurement locations are different. 

Empirical models rely on the derivation of transfer functions or insertion gains 
obtained from the field measurements undertaken. These transfer functions / insertion 
gains are then applied to the base vibration or noise level measured to assess the 
resulting level of ground-borne noise and vibration. Empirical models often require 
simplification of the scenario under study. The degree of simplification is dependent 
on the design stage of the assessment, and on how much variability there is between 
the measurement and assessment sites. 

3.1.2! Theoretical models 

Parametric models, also known as theoretical models, are normally deterministic and 
provide a solution for a specific set of input data. They require many input 
parameters, which often are not known to a sufficient degree of certainty. As 
previously mentioned, their results are only as good as the input data available. 
Therefore, BS ISO 14837-1 (BSI, 2005) recommends that care is taken when relying 
on a single set of input parameters, unless their origin and accuracy is fully known. 
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Theoretical models, comprising either analytical or numerical methods, are derived 
from first principles. In analytical models, the dynamics of the system under 
consideration are described using equations simplified through assumptions and 
approximations. This type of models requires a good understanding of the 
fundamental physical principles and are fast to run. However, even though the 
scenario modelled is simplified to some extent, the analytical equations needed are far 
from simple and straight forward, and numerical models are often preferred. Also, 
analytical models are often developed for rather specific problems and cannot 
normally be used for general vibration problems. An analytical approach is therefore 
more suitable to model simple structures and scenarios. (Jones, 2010; Lurcock & 
Thompson, 2014) 

When sufficient information on the system properties is available, numerical models 
can be used to predict ground-borne noise and vibration with a reasonably high level 
of precision, depending of course on the accuracy of the input parameters. This type 
of models can be used for more complex structures, when compared to an analytical 
approach. Numerical models make use of three main calculation methods: finite 
element method (FEM), finite difference method (FDM) and boundary element 
method (BEM). (ANC, 2012)  

In FEM, the system under consideration is divided into a number of finite, adjacent 
elements, whose extent are defined by a mesh, i.e. a grid of lines, and by discrete 
points (nodes) on the same mesh. An FEM model solves for the continuity across 
each element iteratively. (Fahy & Gardonio, 2007) FDM, on the other hand, involves 
the discretisation of a dynamic system with which calculations for each element are 
undertaken in the time domain, using differential equations with finite time intervals. 
This method can be used to provide advanced algebraic solutions to the wave 
equation. The third commonly used numerical method is BEM which only requires 
elements on the surface of a system to be modelled using an element mesh, such as 
that used in FEM. In ground-borne vibration, BEM is useful to model the semi-
infinite characteristics of the ground. (BSI, 2005) The main advantages and 
disadvantages of FEM, FDM and BEM are summarised in Table 3. 2. 
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Table 3. 2 Advantages and disadvantages of FEM, FDM and BEM models (BSI, 2005; ANC, 2012) 

The above numerical models all rely on the assumption that the structure and 
propagation media within each element are homogeneous and linear. 

In addition, Lurcock & Thompson (2014) state that assumptions need to be made on 
the boundary conditions and connection restraints, and the material properties need to 
be appropriately specified, when using mathematical modelling methods. 

3.1.3! Semi-empirical models 

Semi-empirical models are a combination of the empirical models mentioned in 
Section 3.1.1 and the theoretical models in Section 3.1.2. In these models, one or 
more empirical components can be replaced with equivalent theoretical components, 
or a theoretical component can be substituted for measurements that have been 
undertaken on the partly completed works, for example measurements on a pile cap. 

Type of numerical model Advantages Disadvantages 

Finite element method 
(FEM) 

FEM software packages are 
widely available. 

Models are not limited to 
orthogonal grids. 

Large computational costs. 

Finite difference method 
(FDM) 

FDM can be used to model a 
moving train easily. 

Less computationally expensive 
than FEM. 

Not widely available. 
Models deal well with orthogonal 
grids, though they are not easily 

adaptable to other cases. 

Boundary element method 
(BEM) 

BEM only requires the boundary 
of any homogeneous element to 

be modelled. 
It can model wave propagation in 
an infinite homogeneous system 

without having to account for 
false boundary effects. 

BEM is often combined with FEM 
or FDM to provide hybrid 

prediction models. 

BEM can be unstable. 
(Hargreaves & Cox, 2008) 
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Semi-empirical models are often used to adapt an empirical model developed during 
the environmental assessment stage of a project to make them suitable for detailed 
design. The main areas that are often updated are source characteristics, such as the 
design of the tunnel, track and vehicles, and receiver parameters including foundation 
and building design. (BSI, 2005) 

3.1.4! Model accuracy and validity 

As previously mentioned, the prediction of ground-borne vibration and / or structure-
borne noise is a complex field and all analyses have several unknowns and 
uncertainties. Therefore, when a prediction model is developed, it needs to be 
assessed and validated to provide confidence in its results. In general, the level of 
accuracy required of a model for a given scheme depends on the development stage at 
which it is. The more progressed the scheme is, the more accuracy is desired of the 
prediction model and the less error that can be tolerated. Also, knowing the 
limitations and accuracy of any prediction model is a powerful tool and will certainly 
help manage risk in the design of new schemes, such as railway systems or 
developments that are sensitive to ground-borne vibration and structure-borne noise. 

The accuracy of a prediction model can be quantified through the following steps, as 
set out in BS ISO 14387-1 (BSI, 2005): 

1.! Development: during the development stages of a prediction model, a number 
of iterations are used to modify the model, with the aim of improving the 
agreement between its results and any measured data / test conditions. Such 
modifications should be based on theoretical and / or empirical knowledge of 
the fundamental physical processes involved. In the case of detailed and 
complex models with a requirement for high accuracy, each component of the 
vibration transmission line or sometimes even each parameter of the various 
transmission line stages may need to be developed individually. Wherever 
possible, the development and improvement of a prediction model for a 
specific site can and should make use of measurements at that site. For 
example, take an empirical model that accounts for the prediction of coupling 
losses between the soil and piled foundations of a building. Once the piles are 
in place, vibration measurements should be undertaken on the pile caps to 
confirm the levels that should be output by the model. 
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2.! Calibration: with the model developed as much as possible, the next step is to 
calibrate its results. This is done by evaluating one or more calibration 
functions to assess the agreement between the model results and the measured 
data. 

3.! Validation: once the model is developed and calibrated, it needs to be 
validated, i.e. its results should be compared with independent measurement 
data that is not the same as that used during the calibration stage. If this is not 
available, models can also be validated against another validated model for a 
specific test case. However, care must be taken to ensure any differences in 
the input parameters, conditions and assumptions between the two models are 
noted and documented. When validating a prediction model, it is important 
that the input assumptions and parameters used in the validation are reported, 
along with the calculated accuracy and uncertainty of the model. 

4.! Verification: as models are often implemented through computer programs, a 
last step is required to verify the correctness of implementation of the model. 
For this stage, a test case is solved both by hand and by the computer program 
and the results are compared. The stability of the program should also be 
checked, by trying minimum to maximum values for each of the input 
parameters. 

3.2! Existing empirical models 

The following sections provide an overview of the different empirical models 
currently available for the prediction of structure-borne noise in buildings from 
railway systems. Most of the models found account for the complete vibration 
transmission line, i.e. they start with the source, predict the level of attenuation 
through the soil and calculate the structure-borne noise level in a building. Empirical 
and semi-empirical models were also found for the prediction solely of ground-borne 
vibration, such as EnVib 01, EnVib 02 and NGI, which acknowledge that structure-
borne noise in buildings is associated with ground-borne vibration, but do not provide 
details on how to quantify this. Therefore, these models have not been included in the 
following sections. (Bahrekazemi, 2004; Madshus, Bessason, & Hårvik, 1996) 
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3.2.1! Kurzweil’s model 

One of the earliest empirical models for the prediction of structure-borne noise in 
buildings found is Kurzweil’s model, which dates to 1979. 

Kurzweil (1979) presented a method for the estimation of A-weighted noise levels in 
basement rooms located at 1 to 20 m from an underground train tunnel wall using the 
expression given in Equation 3. 1, where Z is the distance in metres between the 
tunnel wall and the building wall, and ZU is a reference distance of 1 m. 

This equation is based on measurement data obtained by Lang (1971) for a range of 
different vehicle speeds, types and conditions, track types and conditions, type of 
building and tunnel constructions, and soil properties. Lang’s measurements showed 
that higher levels of structure-borne sound in buildings were caused by systems with 
poor wheel and track conditions. The same was noted for stiff track designs and is 
corroborated by research undertaken by Cox et al. (2004) during the EC-Growth 
project CONVURT (CONtrol of Vibration from Underground Rail Traffic). 

Despite the findings of Lang’s measurements being validated by more recent work, 
Equation 3. 1 still offers a variation of ± 10 dB in the predicted A-weighted structure-
borne noise level in buildings. While such variation may just be acceptable in a very 
early scoping model, during the detailed design stages of a project it may cause the 
structure-borne noise mitigation measures to be significantly over specified to a point 
that the project is no longer viable. 

In the same paper, Kurzweil (1979) also provides a method for predicting noise and 
vibration spectral information from ground-borne vibration in buildings located near 
underground train tunnels, accounting for the dynamic properties of the tunnel and 
building structures, as well as the properties of the soil. This more detailed process 
allows the change in ground-borne vibration and structure-borne noise in buildings to 
be estimated. Kurzweil proposes that the vibration acceleration level in the floor of a 
room generated by the passage of a train in an underground tunnel in the vicinity of 
the building is given by Equation 3. 2. 

 

 
ß® = 59 − 20 logMU

Z

ZU
± 10 Equation 3. 1 
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In Equation 3. 2, the octave band vibration acceleration level on the tunnel wall and in 
the room can be found from acceleration measurements using Equation 3. 3. 

The mechanisms that affect the vibration propagation through tunnel structures, 
ground and building structures are as set out in Sections 2.2, 2.3 and 2.4 of this 
document, respectively. Kurzweil suggests that the relationship between the octave 
band floor acceleration level (ßi,H´´Ü) and the resulting octave-band sound pressure 

level in the room (ßK,H´´Ü) is given by Equation 3. 4, where ! is the octave band 

centre frequency. Further details on the relationship between the floor acceleration 
level and the room sound pressure level can be found in research undertaken by the 
Toronto Transit Commission (1976), Manning et al. (1974) and others. 

The ANC Guidelines (2012) mentions that this relationship is still used nowadays and 
can also be used in 1/3 octave bands. Rewriting Equation 3. 4 in terms of velocity 
yields Equation 3. 5, where ß¨,H´´Ü is the rms vibration velocity level on the floor of 

the room in dB with reference to 1×10NyI7/Ø. 

 ßi,H´´Ü = ßi,¢∞±±≤≥I¥i≥≥ − µ∂ − µ∂m − µm I dBIreI10
ª6g rms  Equation 3. 2 

where   

 ßi,¢∞±±≤≥I¥i≥≥ is the maximum octave band acceleration level 
on the tunnel wall during the passage of a train, 

 

 µ∂ is the vibration attenuation through the ground,  

 µ∂m is the coupling loss between the ground and the building,  

 and µm is the vibration attenuation through the building.  

 
ßi = 20 logMU

Z7ØIæ59_:\Iø_¿úI_55\(\Z_9¡æ¿

10NX% Z7Ø
 Equation 3. 3 

where   

 % = 9.817/ØR 
 

 ßK,H´´Ü = ßi,H´´Ü − 20 logMU ! + 37 Equation 3. 4 

 ßK,H´´Ü = ß¨,H´´Ü − 27 Equation 3. 5 
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However, research by the FTA (Hanson et al., 2006) suggests that Equation 3. 5 over 
predicts the sound pressure level in the room by approximately 5 dB and that a 
correction of -32 (instead of -27) shows good agreement with their measurement data. 
The sound pressure level in the room would then be given by Equation 3. 6. 
Measurements undertaken in residences with the London Underground Central Line 
in operation revealed a similar overestimation by Equation 3. 5. (ANC, 2012) 
However, the development of Crossrail in London still uses Equation 3. 5. (Crossrail 
Ltd, 2016) 

3.2.2! Nelson & Saurenman’s model 

The guidance provided in Chapter 16 of the Transportation Noise Reference Book 
(Remington et al., 1987) is based on Kurzweil’s model above and makes use of the 
research undertaken by Saurenman et al. (1982) and Nelson & Saurenman (1983) on 
building response. However, in 1987, Nelson & Saurenman proposed a new model for 
the prediction of structure-borne noise in buildings encompassing the following 
stages: 

1.! Select the trackbed force density; 
2.! Determine the line source response; 
3.! Calculate the building response; 
4.! Calculate the structure-borne noise level in a room. 

The trackbed force density in this model is estimated from measurements undertaken 
at a number of sites. If the track being modelled differs from that in the 
measurements, adjustments need to be made to the force density, as necessary. The 
next step in this model is to apply a line source response, which is done by 
determining the ground-borne vibration velocity level at the receiver location relative 
to the vibration force density in the tunnel. As a result of the shape of an underground 
tunnel and train, the energy generated by the passage of a train in the tunnel will 
spread cylindrically through the soil. Therefore, modelling the geometric attenuation 
through the ground using a line source approach is considered appropriate. However, 
the rate of attenuation will still be dependent on the location of the tunnel in relation 
to the surface and to the measurement location, as described in Section 2.3.2. Nelson 
& Saurenman (1987) developed a procedure to determine the line source responses 
through the measurement of the transfer mobilities between the tunnel and the ground, 

 ßK,H´´Ü = ß¨,H´´Ü − 32 Equation 3. 6 
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or between the bottom of a borehole and the surface of the ground, and then using 
numerical regression and integration methods to convert the transfer mobilities into a 
line source response. This step equates to the effect of propagation through the ground 
on the vibration levels. 

Step 3 of this model makes use of the research published by Saurenman, Nelson, & 
Wilson in 1982, and by Nelson & Saurenman in 1983 on the response of buildings to 
vibration. A summary of the foundation coupling losses, floor resonance amplification 
and floor-to-floor attenuation presented in these references is provided in Section 
2.4.2 of this document. The final stage of Nelson & Saurenman’s model is the 
prediction of structure-borne noise in a room. For this, they state that Equation 3. 7 
can be used to convert 1/3 or 1/1 octave band vibration levels into noise levels. 

Nelson & Saurenman (1987) mention that the predicted structure-borne noise levels 
are only “best estimates” of the 1/3 octave band levels. The authors go on to state that 
the procedure does not include any margin of error and recommend that safety factor 
of 5 – 10 dB is added to the predicted noise levels “to protect the major part of the 
potential receivers”. This prediction model is noted to be most accurate in the 
resonance region of the rail system’s primary suspension and where soil attenuation is 
at its lowest, i.e. at frequencies between 8 to 30 Hz. However, energy from rail 
systems is typically present at frequencies of up to 80 Hz, as stated in BS 7385-1 
(BSI, 1990), with some train systems exciting frequencies up to 100 Hz. This 
essentially means that Nelson & Saurenman’s model may not yield the most accurate 
results for underground rail systems. 

 ßK = ß¨ − 10 logMU _ − 1 Equation 3. 7 

where   

 ßK is the sound pressure level in the room (dB re 20 ƒPa), 
 

 ß¨ is the vibration velocity level (dB re 1 ƒin/s), 
 

 and _ is the absorption coefficient in the room. 
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3.2.3! FTA / FRA model 

Another empirical prediction method that is largely based on the work of Saurenman 
et al. (1982) and Nelson & Saurenman (1983) is the FTA’s ground-borne vibration 
and structure-borne noise prediction model. 

The FTA (Hanson et al., 2006) provides guidance on three assessment methods that 
can be used for the prediction of ground-borne vibration and structure-borne noise 
from new transportation systems. The first of these is the screening model used during 
the very early stages of design of a project to determine whether ground-borne 
vibration and noise from it are likely to have an impact on nearby noise and vibration 
sensitive uses and how severe this impact may be. The screening model can then be 
developed into a general assessment model, which uses measurement data as the basis 
to predict the ground-borne vibration level at a receiver location. Should the 
measurement data available not match the scenario being modelled, the FTA provide 
a number of corrections for items, such as vehicle speed, track and wheel condition 
and track support system in the case of a new railway system. However, the general 
assessment model does not take into account the frequency spectrum of the ground-
borne vibration and noise. For this, a detailed analysis model, which is the most 
complex and accurate prediction model of the three, is required. This type of model 
makes use of site-specific measurements to establish how ground-borne vibration 
propagates in the soil. It can be assumed that a similar principle would apply to the 
prediction of vibration transfer in an existing building. Unless a building, such as a 
recording studio or concert hall, is particularly sensitive to ground-borne vibration and 
noise, a general assessment model tends to provide a sufficient level of detail. 
However, where the levels of vibration and noise are very high or a building is very 
sensitive, a detailed analysis model is more suitable. Similarities can be drawn 
between the FTA’s three assessment methods and the various types of models 
described in BS ISO 14387-1 (BSI, 2005), namely the scoping model, environmental 
assessment model and the detailed design model. 
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The starting point of FTA’s general assessment model is the definition of a base 
curve, or set of curves, that model the vibration levels on the ground surface generated 
by a proposed transportation system at a certain distance from the source. The FTA 
(Hanson et al., 2006) provide base curves for rubber-tired vehicles, locomotive 
powered passenger or freight trains and for rapid transit or light rail vehicles. The 
levels of ground-borne vibration and noise in a receiving building is then calculated 
by correcting the base curves for aspects such as the speed of the vehicles, type of 
building foundation and construction, and the receiver location in the building. Such 
corrections are given as single number values, i.e. they do not account for the 
frequency dependence of parameters such as foundation coupling loss, floor 
resonance amplification and losses with height / floors within a building. For this, a 
detailed analysis model would be required, based on site specific measurements. 

The corrections for foundation coupling loss, floor resonance amplification and floor-
to-floor attenuation within a building in a general assessment and in a detailed 
analysis model are the same, and are as set out in Table 2. 7 in Section 2.4.2. 

The above empirical model is also used by the US Federal Railroad Association 
(FRA) for the prediction of ground-borne vibration and structure-borne noise in 
buildings from high-speed ground transportation, as per the information available in 
Hanson, Ross & Towers (2012). 

The FTA / FRA detailed analysis models have been validated against a hybrid finite 
element – boundary element (FE-BE) model for ground-borne vibration generated by 
underground trains. Good agreement was found between the two models, especially at 
higher frequencies. (Verbraken, Lombaert, & Degrande, 2011) 
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3.2.4! Melke’s model 

Melke (1988) developed a simple model for the prediction of ground-borne vibration 
and structure-borne noise in buildings employing empirical and analytical techniques. 
The purpose of the model was to investigate the effectiveness of a number of low cost 
isolated track designs. With this model, the sound pressure level within a building is 
given by Equation 3. 8. 

The reverberant sound pressure level in a room resulting from the vibration of walls 
and floors can be estimated from Equation 3. 9. 

 ßÉ = ßH + C¢H + C¢∞ + C∂ + Cm Equation 3. 8 

where   

 ßH is the rail velocity level (dB re 50 nm/s),  

 C¢H is the track transmission loss (dB),  

 C¢∞ is the tunnel transmission loss (dB),  

 C∂ is the ground transmission loss (dB),  

 Cm is the building transmission loss (dB)  

 and ßÉ is the velocity level (dB re 50 nm/s) or sound pressure 
level in the building (dB re 20 ƒPa). 

 

 
ßK = ß¨ + 10 logMU 2 + 10 logMU

4D

[
 Equation 3. 9 

where   

 ß¨ is the vibration velocity level of the surface (dB re 50 nm/s), 
 

 2 is the radiation efficiency of the vibrating surface (no units), 
 

 D is the area of the vibrating surface (m2), 
 

 [ is the absorption area in the room (m2), 
 

 and ßK is the sound pressure level in the room (dB re 20 ƒPa). 
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The above equation can be used to calculate 1/3 and 1/1 octave band levels and 
transmission losses, as well as narrow bandwidth and frequency-weighted single 
number values. The model also assumes that the levels predicted are averaged over 
the duration of the train event, while the transmission losses are linear and constant 
with time. Melke’s model relies on estimates and / or measurements of the parameters 
given in Table 3. 3, as a minimum, to allow it to be completed. 

Table 3. 3 Parameters necessary to solve Melke's prediction model (Melke, 1988) 

Parameter Melke’s approach 

Track impedance Modelled as a lumped parameter electric circuit analogy. 

Rail velocity level, ßH 
Determined either through measurements or predictions based on the train, 
track and operating parameters. 

Track transmission 
loss, C¢H 

Dependent on the localised track stiffness impedance GHS and mass 
impedance GHÜ. GHS can be obtained from laboratory measurements or from 

the dynamic stiffness and loss factor of the track. GHÜ can be calculated 
using a mass-spring (or a beam-spring) model. 

Tunnel transmission 
loss, C¢∞ 

Dependent on the tunnel design and parameters, such as tunnel floor 
impedance and bending wave attenuation with distance and by reflection. 

Ground transmission 
loss, C∂ 

Dependent on the soil properties. Calculated from geometrical spreading and 
damping within the ground. At short distances from the tunnel, the ground 
transmission loss is affected only by damping and can be approximated by 

Ca ≈
∆«H

h
, where + is the soil loss factor, ! is the frequency, Z the distance 

from the source and 5 the wave velocity. 

Building transmission 
loss, Cm 

Dependent on the building design. At low frequencies, suspended floors in 
buildings can be modelled as a lumped parameter mass-spring system. 

Validation of the Melke’s model revealed the following (Melke, 1988): 

•! A similar trend was present between the calculated model results and 
measured values; 

•! The model is appropriate to provide a rough estimate of the structure-borne 
noise levels experienced within a building. 
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3.2.5! Jakobsen’s model 

Two years later, Jakobsen (1989) developed an empirical model based on vibration 
measurements at six different residential sites in Denmark affected by nearby surface 
railway lines. At each site, measurements were undertaken outside and inside the 
buildings, and transfer functions between the ground and the building determined by 
subtracting the vibration level measured at the reference point outside from the 
vibration levels measured inside the building. The sample of buildings used consisted 
of two blocks of flats and four single family dwellings. 

The transfer functions obtained from the above measurements are summarised in 
Table 3. 4, where _ is the horizontal distance between the centre of the train track and 
the edge of the track bed, and ø is the distance between the edge of the track bed and 
the reference measurement position outside the building. The expressions for the 
losses through the soil were derived from measurements undertaken at eight sites, 
presented in Jakobsen (1987). 

Jakobsen’s prediction model itself comprises the following stages (1989): 

1.! The vibration levels from a train pass-by should be measured at a short 
distance from the railway line, such as at the edge of the track bed. 

2.! If the vibration level cannot be measured outside the building, this should be 
estimated by applying the losses through the soil given in Table 3. 4. 

3.! The vibration level within the building is then found by applying the 
corrections in Table 3. 4 for the transfer of energy between the soil and the 
foundation and between the foundation and the relevant floor. 

Noting that empirical prediction models are often inaccurate, Jakobsen (1989) states 
that there may be a variation in the predicted levels by up to approximately 10 dB. It 
is also noted that the transfer functions between floors should only be used as “crude 
estimates”, given the small amount of data they are based on. 
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Table 3. 4 Transfer functions used in Jakobsen's prediction model as given in Jakobsen (1989) with the addition of clarifications on building components  

 

Transfer function Building components 
Transfer functions (dB) at 1/1 octave band centre frequencies Overall 

(dB) 4 Hz 8 Hz 16 Hz 31.5 Hz 63 Hz 

Propagation in soil 
from !" to !# (m) 

(Jakobsen, 1987) −3 − 9.2 log,-
#
"  −8.5 log,-

#
"  −1 − 12.1 log,-

#
"  −24.3 log,-

#
"  −28.7 log,-

#
"  −17.1 log,-

#
"  

Transfer between soil and 
foundation, vertical 
component 

Frame type foundation -4 -2 -2 -2 -2 -2 

Basement foundation -3 -4 -10 -9 -6 -8 

Transfer between 
foundation and floors, 
vertical component 

1-storey building (or ground 
floor of 2-storey building) with 
wooden floor 

+12 +15 +14 +10 +10 +12 

Upper floor of 2-storey building 
with wooden floor 

+10 +20 +23 +22 +8 +20 

Multi-storey building with 
concrete deck, with / without 
wooden floors 

0 +2 +7 +9 +11 +9 

Transfer between 
foundation and floors, 
horizontal component 

1-storey building (or ground 
floor of 2-storey building) with 
wooden floor 

+10 +12 +5 +4 +4 +5 

Upper floor of 2-storey building 
with wooden floor 

+11 +23 +20 +23 +7 +20 

Multi-storey building with 
concrete deck, with / without 
wooden floors 

+2 +3 +2 0 +1 +1 
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3.2.6! VIBRA 1-2-3 

In an attempt to reduce the costs associated with ground-borne vibration and 
structure-borne noise measurements and calculations, Swiss Federal Railways (SBB), 
in conjunction with vibration specialists Ziegler Consultants, developed a three-part 
computer model to help predict vibration and structure-borne noise in buildings from 
railways in a more cost effective and time efficient manner. This computer model is 
known as VIBRA 1-2-3 and comprises the following packages (Kuppelwieser & 
Ziegler, 1996): 

•! VIBRA-1: simple, semi-empirical calculation tool to provide rough estimates 
of ground-borne vibration and structure-borne noise levels in buildings, and 
allow problem areas of a development to be identified; 

•! VIBRA-2: a more complex and detailed tool to help model the various factors 
that affect ground-borne vibration and structure-borne sound radiation in 
buildings; 

•! VIBRA-3: database comprising all the results obtained from ground-borne 
vibration, and from structure-borne and airborne noise measurements of 
railway systems. The data in VIBRA-3 feeds into VIBRA -1 and VIBRA-2. 

VIBRA-1 uses Equation 3. 10 to calculate the vibration velocity level ! and Equation 
3. 11 to predict the level of structure-borne noise in the centre of a room in a building 
from a nearby railway system. The calculation of structure-borne noise from Equation 
3. 11 accounts for the vibration velocity levels between 40 Hz and 100 Hz, with 
emphasis on the 63 Hz 1/3 octave band, where most of the energy from train events is. 
However, frequency dependence is not accounted for in Equation 3. 10. The variables 
in the following equations are based on statistical analysis of the data available in 
VIBRA-3. (Ziegler Consultants, 2009) 
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"#$ = !&' − ) * + Δ-. + / + 10 log56

789:;<
3600

 Equation 3. 11 

where   

 !&' is the vibration level of the floor in the 63 Hz 1/3 octave band; 

 ) *  is the A-weighting correction at the relevant 1/3 octave band centre 
frequency (-26 dB at 63 Hz); 

 Δ-. is a 3 dB correction for summation (it is not entirely clear what this 
correction relates to); 

 / is the radiation efficiency of the floor;  

 7 is the number of train events per hour;  

 and 89:;< is the duration of a train event.  

 
! = !6?@

A6
A

B
?C?# Equation 3. 10 

where   

 !6 is the overall vibration level at the reference distance A6 from the track; 

 ?@ is the rail factor to account for the effect of rail switches on the vibration 
levels; 

 A is the distance between the centre of the track and the receiving building; 

 D is a correction for geometrical and material damping;  

 ?C is the foundation coupling loss factor;  

 and ?# is the amplification factor of the floor slabs.  
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The calculation procedure in VIBRA-2 differs from that used for the high-level 
predictions of VIBRA-1. For the second component of this prediction model, SBB 
and Ziegler Consultants developed an open system, frequency dependent attenuation 
model, which contains partial prediction models for rail – track interaction, 
propagation of vibration between the track and a receiver location in the soil, 
attenuation due to the coupling of the building foundations to the soil, vibration of the 
outer walls / shell of the building, vibration of the internal floor slabs, and the re-
radiation of vibration as structure-borne noise in a room. The vibration and / or 
structure-borne noise level in a room is obtained from a step-by-step multiplication of 
a base vibration level with spectral transfer functions. These are either based on 
statistical analysis of the data available in VIBRA-3 or they can be user defined. 
(Kuppelwieser & Ziegler, 1996) 

With regard to accuracy, Ziegler Consultants (2009) state that the uncertainty 
associated with the prediction of structure-borne noise levels by VIBRA 1-2-3 is 
approximately ± 6.5 dB. For vibration levels, they state that an uncertainty factor of 
approximately 2 should be considered. 

3.2.7! High Speed 1 & High Speed 2 

At the time of the design and construction of the Channel Tunnel Rail Link (CTRL) 
that connects London to the Channel Tunnel, also known as High Speed 1 (HS1), an 
empirical model for the prediction of ground-borne vibration and structure-borne 
noise in buildings from high speed trains was developed, to allow the future impact of 
the operation of the CTRL on existing noise and vibration sensitive uses to be 
assessed, and mitigation measures determined. The model covers the prediction of 
tactile vibration and structure-borne noise from trains on the surface, in bored tunnels, 
and in cut and cover tunnels. At the origin of this model is a database of more than 
3000 measurements of TGV (France’s high speed rail service) train events. 

As Hood, Greer, Breslin & Williams (1996) mention, their model is divided into three 
stages: source, propagation and building response, much like the other prediction 
methods previously discussed. The source is modelled based on the TGV 
measurements performed at 10 m from the nearest rail on the surface for various soil 
types. To allow for different types of trains, such as the Eurostar, corrections were 
applied to the vibration levels measured on the surface. Further adjustments were 
made to these levels to account for sections of bored tunnels, based on measurements 
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at Stansted Tunnel in the UK, and for cut and cover tunnels, from measurements 
undertaken by Deutsche Bahn. 

For the second stage of the model, the attenuation through the soil was calculated 
from the statistical analysis of the ground-borne noise and vibration measurement 
results for a number of train types in tunnels. Factors such as the absorption and 
geometric dispersion of body waves between the tunnel and the surface, the 
absorption and dispersion of surface waves and the effect the width of the tunnel has 
on the vibration levels were accounted for. Hood et al.’s (1996) measurement data 
suggested that the propagation characteristics of body and surface waves did not 
change significantly with different types of soil, meaning their models do not account 
for changes in soil. 

The structure-borne noise levels near the centre of a room in a building are calculated 
from the 1/3 octave band rms vertical particle velocities measured outside the building 
during a train pass-by. Hood et al.’s (1996) model uses the equations given by 
Kurzweil (1979) to convert the external vibration levels into internal structure-borne 
noise levels, albeit validated and corrected through the analysis of additional 
measurements. The relevant equations are Equation 3. 2 to Equation 3. 4, given in 
Section 3.2.1. Another difference between Kurzweil’s and the HS1 models is that a 
conservative assumption has been made on the floor-to-floor attenuation in high rise 
buildings. For instance, Kurzweil (1979) notes that a reduction of 3 dB / floor is a 
typical value for floor-to-floor attenuation. However, for HS1, this was only assumed 
to be 1 dB / floor irrespective of building constructions. 

In terms of model accuracy, Hood et al. (1996) have compared their predictions with 
pseudo-measurements (calculated from applying the soil to building transfer function 
to the vibration levels measured), and noted that there is significant variation of 
structure-borne noise levels between different types of trains and sites. This 
comparison also revealed that the calculation model seems to over predict structure-
borne noise levels from low vibration levels, i.e. at distances far from the source, but 
underestimates noise levels calculated from high levels of vibration, which typically 
occur near the source. 

With HS1 complete, works have started on High Speed 2 (HS2) to connect London to 
the West Midlands and beyond. The assessment method described above for HS1 is 
also being used to predict ground-borne vibration and structure-borne noise from the 
new rail system. (High Speed 2 (HS2) Limited, 2013; ARUP & ERM, 2017) 
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3.2.8! RIVAS 

Under the Railway Induced Vibration Abatement Solutions (RIVAS) project, a joint 
research project co-funded by the European Commission within the 7th European 
Framework Programme, various existing models for the prediction of ground-borne 
vibration and noise in buildings were reviewed, with a view to estimate annoyance 
caused to building occupants. The main aim of the project was to develop control 
measures at source, track, propagation path and in the building that can be used to 
reduce annoyance. RIVAS looks at ground-borne vibration and noise propagation in 
three stages: emission, propagation and immission. These relate to the source, 
propagation path and receiver stages of the vibration transmission line described in 
Chapter 2, respectively. RIVAS uses the transfer functions shown in Table 3. 5 to 
describe the vibration attenuation between these stages, where the relevant variables 
necessary are as follows (Villot, Guigou, Jean, & Picard, 2012): 

•! "95 are the ground vibration levels at a reference distance of 8 m from the 
train track; 

•! "9F are the free-field ground vibration levels at the distance of the building 
from the track, but without the building in place; 

•! "9' are the foundation vibration levels; 

•! "9G are the floor vibration levels; 

•! and "H are the sound pressure levels in the room. 

Table 3. 5 Transfer functions used by RIVAS (a similar table is provided in Villot et al. (2012), though 
additional information is included in the second column below for clarity) 

Transfer 
function 

Description 
Input 

variable 
Output 
variable 

TF1 
Attenuation of vibration levels through the soil from a 

location 8 m away from the track to the building 
location (without the building in place) 

"95 "9F 

TF2 
Coupling losses provided by the interaction between the 

building foundations and the ground 
"9F "9' 

TF3 Amplification due to floor slab resonances "9' "9G 

TF4 
Conversion of floor vibration levels into structure-borne 

noise levels in a room 
"9G "H 
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RIVAS makes use of numerous models to ascertain TF1 to TF4. However, only two 
of the models considered provide guidance on the prediction of ground-borne 
vibration and noise from the source through to the receiver. These are the empirical 
VIBRA-1-2-3 model, described in Section 3.2.6, and the theoretical BAM prognosis 
tool mentioned in Section 3.3.6. Of the four transfer functions used by RIVAS, TF1 is 
the only one that can be more accurately known using measurement data available 
from VIBRA-1-2-3 (Kuppelwieser & Ziegler, 1996; Ziegler Consultants, 2009), and 
DB & Obermeyer (2003), which includes statistical data at various distances from 
train tracks for different types of trains, soils, etc. For instance, with measurement 
data available at two reference distances from the train track, such as 8 m and 16 m, 
and if the building is to be built at the farther reference distance from the track, TF1 
can be determined from the difference between the vibration levels measured at each 
location. TF2 and TF4, on the other hand, need to be estimated statistically. Guidance 
on how these are calculated is provided in Villot et al. (2012). 

With regard to the accuracy of the calculation of TF2 to TF4, Villot et al. (2012) state 
that the standard deviation of the predictions is “of the order” of 5 dB. 

3.3! Existing theoretical models 

The following sections provide an overview of the various theoretical models 
currently available for the prediction of ground-borne vibration and structure-borne 
noise in buildings from railway systems. Great part of the models found, such as the 
Pipe-in-Pipe model (Kuo, Jones, Hussein, & Hunt, 2013) and others, deal only with 
the prediction of ground-borne vibration between the source and the soil, and do not 
look at vibration or structure-borne noise levels in buildings. The following sections 
provide a summary of the various theoretical models that account for the complete 
vibration transmission line, i.e. they start with the source, predict the level of 
attenuation through the soil and calculate the ground-borne vibration and structure-
borne noise levels in a building. 
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3.3.1! CATdBTren model 

The CATdBTren project is a collaborative Catalonian research project with the aim of 
developing a model for the prediction of ground-borne vibration and structure-borne 
noise from train sources to a receiver using limited computational resources. With this 
requirement in mind, numerical techniques were discarded and a semi-analytical 
model was developed. The model contains three main block components, as set out 
below, and provides 1/3 octave band vibration levels inside a building I; J . The 
relationship between the three components is given by Equation 3. 12. (Romeu, et al., 
2009) 

•! Source model: represented by I@ J ; 

•! Ground propagation model: represented by K J ; 

•! Building model: represented by ? J ∙ - J , where ? J  relates to the 
foundations of a building and - J  to its structure. 

 I; J = I@ J M ∙ K J ∙ ? J ∙ - J  Equation 3. 12 

The output of the source model component is the ground vibration level at the 
location of the train track I J , which requires consideration to be given to track 
characteristics, as well as the wheel-rail interface. Further information on how source 
vibration is modelled is provided in Palacios, Arcos, Prat, & Balastegui (2009). 

The propagation of vibration through the ground in this model can be divided into two 
categories. The first consists of propagation of vibration along the ground surface. 
The vibration amplitude at a point N from a given vibration amplitude at point O is 
modelled with Equation 3. 13, developed by Lamb (1904) and subsequently used by 
Barkan (1962). In the CATdBTren model for surface trains, a train is considered to be 
a moving multipoint source. The total vibration amplitude at a given point consists of 
the sum of the vibration amplitudes (given by Equation 3. 13) for all the train point 
sources, with a geometric attenuation coefficient P of 0.5. For underground vibration 
sources, the vibration amplitude on the surface of the ground is obtained using a 2D 
finite element method (FEM) model. (Romeu, et al., 2009) 
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!< = !C

AC
A<

Q

RS ;TU;V  Equation 3. 13 

where   

 !C and !< are the vibration velocity amplitudes at points O and N; 

 AC and A< are the distances of points O and N from the vibration source; 

 P is a coefficient for geometric attenuation in the soil, varying between 0.5, 1 
and 2 depending on the type of source and wave (Gutowski & Dym, 1976); 

 and W is the frequency dependent material damping coefficient for the soil in 
question.  

The coupling between the ground and the building foundations, as well as the 
vibration response of the building, can also be modelled with FEM. However, Romeu 
et al. (2009) state that a more appropriate method for this would be to use a coupled 
FEM-SEA (statistical energy analysis) approach, as this would reduce the dimensions 
and computational cost of the model. 

CATdBTren model seems to have been validated against measurements undertaken 
on the ground, but not in buildings. Despite this, good agreement was found between 
the predicted and measured vibration levels for rail systems at grade. (Cardona, 
Romeu, Arcos, & Balastegui, 2010) Whilst the prediction model deals with the 
receiver, its results only relate to ground-borne vibration velocity levels. Structure-
borne noise levels can be calculated from these, though Romeu et al. (2009) do not 
provide guidance on the conversion. 
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3.3.2! Impedance / dynamic stiffness model 

Another prediction model that looks at vibration propagation within buildings, but 
does not provide guidance on structure-borne noise as such is Sanayei, Zhao, Maurya, 
Moore, Zapfe & Hines’s (2011) impedance-based model. This type of model is a less 
computationally expensive alternative to FEM models, which achieves equally (if not 
more) accurate results for the prediction of floor vibration in a building. 

Although Sanayei et al.’s prediction model (2011) deals with train-induced floor 
vibrations, it focuses solely on the propagation of vibration within a building and does 
not consider train vibration propagating through the ground. Sanayei et al. (2011) 
acknowledge that predicting the coupling losses between the soil and the building 
foundations is a complex process, and that although horizontal vibration components 
exist, the vibration experienced by the foundations of a building are mainly in the 
vertical direction. Once vibration enters a building, it is transmitted to the upper floors 
by quasi-longitudinal waves through the columns. The model also assumes that the 
vibration force excitation is applied at the base of the columns in the vertical 
direction. 

Sanayei et al.’s model (2011) can be divided into two main components, relating to 
how columns / beams and slabs are modelled. The dynamic stiffness method is used 
to calculate the response of the columns in a building to the excitation force, using the 
relationship between the force *, stiffness XY:Z and displacement [ given in Equation 
3. 14. 

 * = XY:Z [  Equation 3. 14 

Sanayei et al. (2011) solve the above model for the columns, for two boundary 
conditions: one end of the column is fixed and the excitation force is applied to the 
free end; and one end of the column is fixed and the excitation force is applied to the 
fixed end. The response of the columns to the excitation force with these boundary 
conditions in place is given by the dynamic stiffness matrix set out in Equation 3. 15. 
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XY:Z =

\Y)]
sin ]"

cos ]" −1
−1 cos ]"  Equation 3. 15 

where   

 \Y is the complex modulus of elasticity accounting for energy dissipation 
within the column and is given by \Y = \ 1 + bc ; 

 ) is the cross-sectional area of the column; 

 ] is the quasi-longitudinal wavenumber, which is dependent on the angular 
frequency J, complex modulus of elasticity \Y and density d of the column, 

and is given by ] = J
e

fg
; 

 and " is the length of the column. 

As the floor slabs are attached to the columns, they can be considered energy 
dissipating floor slabs and be modelled as thin plates in bending. The response of a 
floor slab / plate of thickness ℎ and density d is given by Equation 3. 16, in terms of 
its dynamic effective mass D#ii with respect to angular frequency J. 

 
D#ii =

7
bJ

= −
b
J
8 k dℎ Equation 3. 16 

where   

 7 is the point force impedance of the plate, which is given by 7 = 8 k dℎ; 

 and k is the dynamic bending stiffness of a plate given by k =
flm

5F 5Uno
 (p is 

the plate’s Poisson’s ratio). 

The dynamic stiffness matrices XY:Z and the dynamic effective mass D#ii of the 
columns and slabs, respectively, are then assembled into global matrices for the 
system, qY:Z  and r@ZC< . The steady state response of the system s  subjected to a 
harmonic force excitation ?  is given by Equation 3. 18, and the vibration velocity 
level for all floors can be found from Equation 3. 18 and Equation 3. 19. The 
structure-borne noise level in a room in the building can then be estimated from 
Equation 3. 20 in line with Kurzweil’s work (1979) or Equation 3. 21 based on 
subsequent recommendations by the FTA (Hanson et al., 2006). 
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s =

? M
qY:Z − JFr@ZC<

 Equation 3. 17 

 I = bJ s  Equation 3. 18 

 "9 = 20 log56
9

9uvw
 (dB re 10-8 m/s) Equation 3. 19 

where   

 !;#i = 1×10UyMD/{  

 "H = "9 − 27 (dB re 20 µPa) Equation 3. 20 

 "H = "9 − 32 (dB re 20 µPa) Equation 3. 21 

The above equations are for a four-storey high building, and only account for one 
column being excited at the base, which runs through the centre of four slabs on the 
top of each other. Therefore, s  is a 5 x 5 matrix allowing for only 5 degrees of 
freedom (one for the column subjected to longitudinal forces, and one for each of the 
floor slabs in bending). (Sanayei, Maurya, Zhao, & Moore, 2012) 

The above model has been validated against an FEM model by Sanayei et al. (2012), 
a scale model of a building by Sanayei et al. (2011) and against an actual full size 
building (Sanayei, Anish, Moore, & Brett, 2014).  

For the FEM validation, three models of the same four-storey building were built to 
various degrees of detail. These models took between 12 minutes and just over 
6 hours to run, depending on the level of detail, compared to only 20 seconds of the 
impedance model, making the latter significantly more efficient especially when the 
need to model large buildings arises. Sanayei et al. (2012) state that “Compared to FE 
models, it [impedance modelling] provides much higher accuracy with a method that 
is far more computationally efficient.” This can be atributed to the fact that their 
impedance / dynamic stiffness model is based on closed-form analytical expressions 
for known elements, such as beams and plates, and no additional assumptions on the 
structures being modelled are needed. However, the impedance approach is only 
applicable where analytical expressions are available, and for more complex elements 
FE modelling may be the only option. 
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A comparison between the measurements undertaken in a full-scale four-storey 
building and the results of this prediction model revealed that, below 50 Hz, there is 
good agreement between the measured and predicted vibration levels. However, 
above 50 Hz, the differences between the predicted and measured values become 
more noticeable. (Sanayei et al., 2014) 

Li, Wu & Yin (2017) developed a similar dynamic stiffness formulation to model the 
response of a double-bottom cabin in a ship. However, their model accounts for both 
bending and in-plane waves in plates that are simply supported along two edges, 
rather than just one type of wave per component as considered in Sanayei’s et al.’s 
(2011) model. The assembly of the global dynamic stiffness matrix for the system and 
the coupling between each element in Li, Wu & Yin’s (2017) model follow the same 
procedure as that used in FEM, with the exception that the degrees of freedom for the 
plates under consideration are modelled as lines instead of nodes. The results of this 
model were validated against two FEM models with different element sizes. A 
comparison between the models for bending waves revealed that discrepancies are 
present in the results at the resonant frequencies of the system. Also, as the accuracy 
of FEM reduces at higher frequencies, more variation between the FEM and dynamic 
stiffness models at such frequencies is evident. This said, the results of the two model 
types follow the same trend. For in-plane waves, good agreement was found between 
the dynamic stiffness and FEM models, especially when the element sizes in the FEM 
model are smaller. In terms of computation time, the FEM models took up to 
1.5 hours to compute the results up to 10 kHz, while Li, Wu & Yin’s model only 
required 10 minutes to calculate the results for the same frequency range. 

3.3.3! Finite difference time domain model 

A calculation method that can be used to provide reasonably accurate predictions of 
ground-borne vibration and structure-borne noise in buildings is finite difference time 
domain (FDTD) modelling. This method allows moving sources to be modelled 
numerically in 3D. In addition to this, when combined with the boundary element 
method (BEM), it can be used to model radiation of noise through air to the far field. 
FDTD is also useful as it can accommodate propagation through anisotropic media, 
such as soils and other materials. Another advantage of FDTD is that the output of the 
model is a time domain plot, which can be converted into a .wav file and then played 
through loudspeakers. (Thornely-Taylor, 2004a & 2004b) 
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An example of a commercial FDTD numerical modelling package is FINDWAVE 
authored by Rupert Taylor Ltd. While it is mainly used to model railway noise and 
vibration, FINDWAVE can also solve any acoustic or 3D wave propagation problem. 
With regard to railway systems, it can be used to predict ground-borne vibration and 
structure-borne noise from a source (either underground or on the surface) 
propagating through the soil and into buildings. In this field, FINDWAVE contains 
two main modules (RPS, 2005): 

•! The train module, in which the rail vehicle is modelled as a number of damped 
masses and springs on top of each other; 

•! And the track / structure / environment module, which is used to model the 
dynamic response of the track and other structure supporting the vehicle, the 
medium surrounding it and any structures below or above ground. These 
structures are modelled as cells in a 3D orthogonal grid. Each cell is assigned 
a density, loss factor and Lamé constants. 

One of the largest applications of FINDWAVE is Crossrail in London, in which it 
was largely used to predict the future levels of structure-borne noise that will be 
experienced by existing buildings from the passage of trains in the new underground 
tunnels. Three types of assessment were required, the first of which comprised the 
production of structure-borne noise contours, based on assumptions on the building 
constructions and foundations (no deep or piled foundations), as well as simplified 
assumptions for the soil. For the second type of model, buildings with deep or piled 
foundations were assessed individually. The third assessment type consists of the 
assembly of full numerical models of significant buildings that are particularly 
sensitive to ground-borne vibration and noise. This type of assessment was only 
undertaken at the detailed design stage. (RPS, 2005) 

As with any other prediction model, the accuracy of an FDTD model and of 
FINDWAVE itself is highly dependent on the quality of the parameters entered in the 
model. FINDWAVE has been validated for Crossrail against field measurements 
above one of the tunnels of the Docklands Light Railway (DLR) Lewisham Extension 
in London, which was chosen for its multitude of soil layers. (RPS, 2005) The 
predicted levels of structure-borne noise were within 3 dB(A) of the measured values 
when modelled without a building structure, but with measured rail roughness. This 
parameter varies significantly with time, distance and between trains passing through 
the same location. With uncontrolled variations in the rail roughness, the levels of 
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structure-borne noise can vary by up to 20 dB(A). For Crossrail, it was assumed that 
the rails and train wheels will undergo maintenance when the roughness approaches a 
certain limit. Such rail roughness limit has been used in the FINDWAVE model to 
allow a worst-case assessment. Based on this, the uncertainties associated with the 
dynamic properties of soil and of track components result in a variation of up to 
3 dB(A) between the FINDWAVE and measurement results. When the results of the 
validation studies are combined and the uncertainties associated with the existing 
building structures are accounted for, RPS (2004) states that the “measured levels are 
unlikely to exceed predicted levels by more than 5 dB(A)”. 

3.3.4! Finite element method models 

One of the most commonly used numerical techniques to model the response of a 
building to vibration excitation is FEM. In contrast with empirical models and 
potentially some other theoretical models, it allows design changes to buildings, such 
as the introduction of mitigation measures, to be modelled and their impact assessed. 

Lurcock & Thompson (2014) have investigated the accuracy of FEM models with 
varying degrees of detail against historical measurement data for 12 concrete frame 
buildings in London, affected by existing underground train lines. The time domain 
recordings obtained for each train event were post-processed to obtain slow weighted, 
1/3 octave band vibration levels and the A-weighted sound pressure levels on each 
floor level. The measurement results were compared with 1D, 2D and 3D FEM 
models developed using COMSOL Multiphysics. Three 3D models were assembled 
from as simple as a single 1 x 1 portal frame to a full building model with structural 
shafts. The 2D models included a four-bay and single-bay model. Two 1D models 
were also developed. In the first model, the floors were represented by a number of 
point masses, connected by rods representing the columns in a building. Such 
representation cannot consider any amplification that occurs at mid-span slab 
locations. For this, a simply supported plate was assumed to be weakly coupled to the 
1D plate and rod representation. 
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A summary of Lurcock & Thompson’s (2014) findings is provided in Table 3. 6. It is 
worth noting that the measurement data used for the comparisons consists of the 
average of the measured vibration levels on each floor across all buildings. One of the 
main conclusions of this study is that care must be taken when analysing 
measurement data from buildings with different floor spans and column designs, as 
the averaging of the data undertaken seems to have masked the effect of floor 
resonances, which was clear in the 2D and 3D FEM models. Also, the 2D and 3D 
FEM models resulted in vibration levels closest to the average of the measured A-
weighted vibration levels. For spectral analysis, there is benefit in using a full 3D 
FEM model of a building with structural shafts. In addition to this, both the 
measurements and the model results have shown an attenuation of 1 dB(A) per floor. 
Similar results were previously obtained by Lurcock, Thompson & Bewes (2013). 

Table 3. 6 Comparison between FEM models and measurement data in 12 buildings over 6 floors, 
based on Lurcock & Thompson's research (2014) 

 FEM models 

 1D 2D 3D 

Degrees of freedom 87 – 2,910 612 – 1,011 21,642 – 224,250 

Model calculation time 
15 seconds – 
25 minutes 

~ 1 minute 2 hours – 18 hours 

Comparison with 
vibration levels measured 
on different floors within 
the buildings 

Good agreement with 
A-weighted levels 
measured in the 

basement. However, 
such agreement 

reduces significantly 
in the higher floors of 

the building. 

Similar results were obtained with the 2D and 
3D models for A-weighted vibration levels. The 
results of the 2D and 3D models follow the same 

trend as the measured results, with an 
approximate reduction of 1 dB(A) per floor. 

Comparison with 1/3 
octave band vibration 
levels on level 3 of the 
buildings 

The model results do 
not follow the spectral 

shape of the 
measurements nor of 

the other FEM models 
considered. 

Similar results were obtained with the 2D and 
3D models. The effect of the natural frequencies 
of the floor (8 Hz to 10 Hz) are more noticeable 

than in the averaged measurement data. The 
more detailed the model, the less pronounced 

this effect is. 
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As highlighted in Table 3. 6, FEM has large computational requirements when 
compared to other prediction models, such as the impedance model described in 
Section 3.3.2. Another of its limitations is related to the fact that the higher the 
frequencies being modelled (small wavelengths), the higher the number of degrees of 
freedom required to model them accurately. This has further implications on the 
calculation times of the models. FEM is therefore best suited to model low frequency 
vibration. (Cotoni, Shorter, & Langley, 2007) To get around this and other limitations 
of FEM, several hybrid models have been developed using other numerical techniques 
such as energy FEM (Hong, Wang, & Vlahopoulos, 2006), BEM (discussed in 
Section 3.3.6) and SEA (discussed in Section 3.3.8). 

3.3.5! Boundary element method models 

The boundary element method (BEM) is another commonly used method for the 
prediction of vibration propagation through the soil and in buildings. Some authors, 
such as Nagy, Fiala, Márki, Augusztinovicz, Degrande, Jacobs & Brassenx (2004 & 
2006), go as far as stating that BEM is the most accurate way of predicting structure-
borne noise from vibration velocities. Its main advantages are that it can model 
random shaped rooms and can be easily coupled with an FE model. On the other 
hand, it has the same disadvantage as FEM, i.e. it is a low-frequency prediction 
method. To model a typical room with BEM in the mid-frequency range, Nagy et al. 
(2006) state that the density of the boundary mesh should be increased, which would 
result in the need to solve several linear equations, increasing the computational cost 
of the model. As a result, BEM is also often coupled with other predictions methods, 
as can be seen in Section 3.3.6. 

3.3.6! Hybrid finite element – boundary element method models 

Given the versatility of FEM and BEM, there are various models for the prediction of 
ground-borne vibration and structure-borne noise from trains that have combined 
these two methods together. Examples of this include the BAM prognosis tool 
developed by Rücker & Auersch (2007), the EC-Growth project CONVURT 
(CONtrol of Vibration from Underground Railway Traffic) and CSTB’s MEFISSTO 
tool. Whilst the above all use FEM and BEM coupled together, they do not apply such 
coupling in the same way. For instance, the BAM prognosis tool and some of the 
work undertaken on CONVURT both use a hybrid FEM-BEM method to model the 
source of vibration. However, MEFISSTO uses BEM to model the propagation of 
vibration through the ground and FEM to model the receiving building. A comparison 
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between these three prediction models is provided in Table 3. 7, based on the 
literature available. From this, it seems most modelling packages focus on the 
prediction of ground-borne vibration. The levels of structure-borne noise are often 
calculated as an extension to the original models. 

Even though MEFISSTO is a numerical model, it features in the semi-empirical 
RIVAS model described in Section 3.2.8, to help predict the effect changes in the soil 
parameters would have on the vibration levels and to better understand the building 
response with regard to foundation and floor vibration, and structure-borne noise. 
(Villot et al., 2012) 
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Table 3. 7 Comparison between FEM-BEM models used for the prediction of structure-borne noise in buildings 

Model reference / 
project 

Key papers 
Technique used to model vibration transmission line stages Accuracy of 

structure-borne 
noise prediction 

Notes 
Source Propagation path Receiver 

BAM prognosis 
tool 

Rücker & Auersch 
(2007) 

Villot et al. (2012) 

Vehicle is modelled as a 
multi-body and the tracks 

(including ground stiffness) 
are modelled as a beam-on-

support. For complex vehicle-
track interaction scenarios, a 
coupled FEM-BEM model is 

used. 

Transmission through the 
ground is modelled using a 

transfer function for a 
homogeneous half space. To 

model layered soils, the 
response of the soil layers is 

approximated by adjusting the 
frequency dependent material 

properties. 

Vibration velocity is 
estimated from a wall-floor 
model, accounting for the 
presence of the ground as 
spring-damper elements. 

Not validated as 
of 2012. No 
additional 

information 
found. 

The receiver stage is based 
on measurement data. 

The model is given in one 
main module (emission, 

transmission and 
immission). However, an 

additional module is 
available for the prediction 

of structure-borne noise. 

CONVURT 

Clouteau et al. 
(2004) 

Nagy et al. (2004) 
Nagy et al. (2006) 
Fiala et al. (2007) 

Source and propagation path modelled with either the Pipe-in-
Pipe modelling software (originally developed as part of the 
CONVURT project) or a coupled FEM-BEM model. In the 

latter approach, FEM is used to model the vehicle-track 
interaction, while BEM is used to model the soil propagation. 

Receiver modelled either 
using Rayleigh radiation 

integral & modified BEM 
model, or FEM model. 

Rayleigh 
radiation 

integral model: 
± 10 dB in 1/3 
octave bands 

and ± 3 dB A-
weighted. 

FEM model: not 
specified. 

Structure-borne noise 
validated against BEM 

model and measurement 
data. 
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Model reference / 
project 

Key papers 
Technique used to model vibration transmission line stages Accuracy of 

structure-borne 
noise prediction 

Notes 
Source Propagation path Receiver 

MEFISSTO 
Jean et al. (2004) 

Villot et al. (2011) 
Villot et al. (2012) 

Source vibration levels are 
measured. 

Transmission path between 
measurement location and 
receiver is modelled with 

BEM. 

Receiver is modelled with 
FEM. 

Validated 
against 

measurements. 
± 3 dB(A) for 

vibration levels. 

The standard MEFISSTO 
package is a 2D BEM-FEM 

model. However, to 
calibrate the train excitation 
from the measured free field 

ground vibration levels 
correctly and to better 

model attenuation through 
the ground, a 2.5D version 
of MEFISSTO should be 

used. Structure-borne noise 
is calculated from the 

average floor vibration 
velocity level in a separate 

module.* 

* The average structure-borne noise level in a room is given by "# = "% + 10 log,- . + 10 log,- /0
1 , where "% is the average floor vibration 

velocity level with reference 5×1045 m/s, . and 6 are the radiation efficiency and density of the floor, and 7 is the absorption area of the room. 
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3.3.7! Statistical energy analysis 

Statistical energy analysis (SEA) is a calculation method frequently used for the 
prediction of sound transmission in buildings. It was first developed in the 1960s to 
aid the design of space craft, but has since found its way into other areas of 
engineering, namely buildings and rail vehicles. As its name indicates, SEA is a 
statistical approach to model energy transmission (also often referred to in terms of 
power flow) between sub-systems that form a larger system, such as walls and floors 
in a building. The response of a system when modelled using SEA is determined by 
the presence of resonant modes at a given frequency and how these modes are 
coupled together. Each of the sub-systems considered in SEA can therefore store 
modal energy. Damping of the modes and modal overlap, i.e. the portion of the 
frequency spectrum that is governed by resonant modes, also play an important part in 
SEA prediction models. In contrast with numerical models, such as FEM or BEM, 
SEA does not require all parameters of a specific sub-system to be exactly known, 
which allows the sub-systems under consideration to be simplified. (Craik, 1988; 
Fahy & Gardonio, 2007; Hopkins, 2007; Robinson, 2012) 

As previously mentioned, FEM and BEM are both low frequency methods and are not 
typically used to model high frequencies for a number of reasons. At high 
frequencies, the number of modes in a system increases significantly and to model 
them with a numerical method would require all the modes to be known precisely and 
accounted for. Also, the modes at such frequencies are very sensitive to geometrical 
imperfections, such that it is significantly harder to predict them with any level of 
accuracy. Increasing the level of detail in a numerical model, even if accurate 
predictions can be obtained, can have a significant impact on the calculation time and 
overall computational cost of the model, as can be seen from Table 3. 6 in Section 
3.3.4. (Woodhouse, 1981) Being a statistical method, SEA can be used to calculate 
the response of a system at high frequencies without needing the same level of detail a 
numerical model would, and therefore it is considered a high frequency modelling 
method. Extensive work on SEA and on how it can be used to model sound 
transmission through buildings has been carried out by Craik (1988) and 
Hopkins (2007). 
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In its standard form, i.e. with a steady-state power input into the sub-systems under 
consideration, SEA can only be used to predict steady-state sound pressure levels and 
vibration levels. However, variations to the standard SEA method have been 
developed to allow systems with lower modal count and indirect coupling between 
subsystems to be modelled, as well as the prediction of parameters other than steady-
state sound pressure and vibration levels and the use of transient sources. For 
instance, advanced statistical energy analysis (ASEA) is a high-frequency method 
which uses a combination of standard SEA and ray tracing techniques. ASEA was 
originally developed by Heron (1994) to allow indirect coupling between sub-systems 
to be considered when calculating the power transmission between coupled sub-
systems. Wang & Hopkins (2016) have used ASEA to model the coupling between 
rectangular beams in an L-junction with bending and longitudinal, or bending and 
torsional wave motion. The model switches between Euler-Bernoulli and 
Timoshenko’s beam theories when there is a difference of at least 1 dB in the 
resulting coupling loss factors. This corresponds to a difference of 26% between the 
group velocities of both beam theories. The results of the model were compared 
against a standard SEA model, FEM and measurements, and have shown that ASEA 
is capable of predicting high propagation losses, which are more significant at high 
frequencies and are not accounted for with SEA. Such losses can occur in different 
wave types. 

Experimental statistical energy analysis (ESEA) is another of the variants of SEA, 
which can be used to establish the in situ coupling loss factors for a set of sub-systems 
with low modal density and low modal overlap. These can then be input into a 
standard SEA model. (Hopkins, 2002; Hopkins, 2009; Robinson, 2012) Transient 
statistical energy analysis (TSEA) is also a variation of SEA, which allows the effect 
of transient noise and vibration sources, such as trains, doors closing in a building, 
etc., on the energy and power flows of a sub-system to be determined. Further 
information on TSEA can be found in sources such as King & Scholl (2011) and 
Robinson (2012). 

As ground-borne vibration and structure-borne noise from trains, or other sources, 
occur mainly at low frequencies, SEA is not commonly used in prediction models for 
such parameters. This said, Trochides (1991) proposed a simple method to estimate 
structure-borne noise levels in buildings caused by ground-borne vibration from 
nearby underground train tunnels, in which the vibration levels from the source to the 
receiver were estimated using impedance formulae, while SEA was used to model the 
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structural response of the building. The results of Trochides’ (1991) model were 
validated against measurements undertaken on a 1:10 scale model of the system under 
consideration, over a frequency range of 500 Hz to 5000 Hz (equivalent to 50 Hz to 
500 Hz in a full scale model). The results of the validation were limited, though a 
comparison between the predicted and measured values shows that the model 
underestimates the response of the building structure at resonant frequencies. 

3.3.8! Hybrid finite element – statistical energy analysis method 

As mentioned in the previous section, SEA is a method commonly used to predict 
energy transmission between complex systems and sub-systems, as it does not require 
the full properties of the elements being modelled to be fully known. Instead, as its 
name indicates, the energy / power flow between sub-systems can be estimated from 
statistical analysis of the number of modes and modal overlap of a sub-system at a 
given frequency. The larger the number of modes present, i.e. the higher the 
frequency, the higher the accuracy of SEA. However, the number of modes in a sub-
system, and hence the reliability of the model, reduce with frequency. Numerous 
studies have been undertaken on the lowest number of modes needed to allow 
reasonably accurate SEA results, some suggesting a minimum of 2 – 30 modes per 
frequency band. However, information on damping and modal overlap is also needed 
to better determine a lower frequency limit for SEA predictions. (Craik, 1988) 

FE, on the other hand, relies on the details of each element under consideration, such 
as degrees of freedom and number of modes, being precisely known at all 
frequencies. At high frequencies, where the wavelength is significantly smaller than 
the dimensions of the element being modelled, the number of modes increases 
significantly. At the same time, the response of an element can be highly affected by 
small imperfections within it, such as those from a manufacturing or construction 
process, which at smaller wavelengths would become more noticeable and their 
impact on the response of the element more substantial. A good example of the 
impact of these on the accuracy of FE is often encountered in the automotive industry, 
where cars in a production line are modelled using very detailed FE models with 
millions of degrees of freedom and intensive computation costs. Even with such 
detailed models, measurements on successive cars on the production line have shown 
significantly different responses. A statistical analysis method, such as SEA, is 
therefore preferable to model high frequencies. (Cotoni, Shorter, & Langley, 2007; 
Kompella & Bernhard, 1993; Cornish, 2000) 
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With the above limitations in mind, there are some theoretical prediction models that 
combine statistical and numerical methods to model ground-borne vibration and 
structure-borne noise in buildings more accurately and over a larger frequency range. 
A good example of this is Shorter & Langley’s (2005) hybrid deterministic-statistical 
method to model complex vibro-acoustic systems, which was implemented in 
collaboration with Vibro-Acoustic Sciences Inc. (VASci), later incorporated within 
the ESI Group. The model is based on work carried out by Langley & Bremner (1999) 
and in 2005, the model was developed into the vibro-acoustics analysis software 
package VA One. (University of Cambridge, 2014) Although this model is not 
specific to ground-borne vibration and structure-borne noise from trains, it can be 
used to model the receiver stage of the vibration transmission line. 

Shorter & Langley’s (2005) hybrid model uses FEM to model low frequencies, and 
SEA for the high frequencies. However, the mid-frequency zone, i.e. the division 
between low and high frequencies, does not fall entirely within the domain of FEM or 
SEA. The output of the model is the ensemble average response of the system and 
takes into account the contribution of the direct and reverberant fields within the 
system. The model has been validated against various FEM models, and the results of 
the two techniques are in good agreement. (Cotoni, Shorter, & Langley, 2007) 

A very similar prediction model was developed by Maksimov & Tanner (2011). This 
model also uses FEM to model low frequencies and SEA to model high frequencies. 
The main difference between this and Shorter & Langley’s (2005) model seems to be 
related to whether the models account for the reciprocity relationship between the 
direct and reverberant fields. 

3.4! Summary of existing models and their limitations 

The main characteristics of the various empirical and theoretical models for the 
prediction of ground-borne vibration and structure-borne noise in buildings, reviewed 
in Sections 3.2 and 3.3 of the present document, are summarised in Table 3. 8 and 
Table 3. 9, respectively. These tables follow the same format as those presented by 
Lotinga (2014) for the prediction of ground-borne noise and vibration in the soil, 
though the information in them only relates to models that deal with ground-borne 
vibration and structure-borne noise in buildings. 
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Table 3. 8 Summary of existing empirical models for the prediction of structure-borne noise in 
buildings 

Model / 
project 

Key papers Description 
Accuracy in the 

prediction of structure-
borne noise 

Notes 

 
Kurzweil (1979) 

Lang (1971) 
Empirical ± 10 dB variation 

Simplified model for 
A-weighted noise levels. 

 Kurzweil (1979) Empirical Not disclosed 

Prediction of structure-borne 
noise in a room in one octave 

bands. Potentially over predicts 
structure-borne noise. 

 
Nelson & 

Saurenman (1987) 
Empirical Not disclosed 

The authors recommend that a 
safety factor of 5 – 10 dB is 

added to the predictions, and that 
the model is most accurate 

between 8 – 30 Hz. 

FTA / 
FRA 

general 

Hanson et al. (2006) 
Hanson et al. (2012) 

Empirical Not disclosed  

FTA / 
FRA 

detailed 

Hanson et al. (2006) 
Hanson et al. (2012) 

Empirical 

Prediction of ground-
borne vibration 

validated against FE-
BE model. Good 

agreement was found 
between the results of 

the two models. 

 

 Melke (1988) 
Semi-

empirical / 
analytical 

Not disclosed 

Based on analytical techniques, 
and on laboratory and field 

measurements. Appropriate for a 
rough estimate of structure-borne 

noise levels in a building. 

 
Jakobsen 

(1987 &1989) 
Empirical ± 10 dB variation 

Based on a small number of 
measurements. 

VIBRA 
1-2-3 

Kuppelwieser & 
Ziegler (1996) 

Ziegler Consultants 
(2009) 

Semi-
empirical 

± 6.5 dB variation  
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Model / 
project 

Key papers Description 
Accuracy in the 

prediction of structure-
borne noise 

Notes 

HS1 & 
HS2 

Hood et al. (1996) 
High Speed (HS2) 

Limited (2013) 
ARUP & ERM (2017) 

Empirical 

Overestimates 
structure-borne noise 

from low levels of 
vibration, but under 
predicts noise levels 
from high levels of 

vibration. 

Large variation between sites and 
types of trains. However, the 
prediction model has gone 

through numerous peer reviews 
and is still being used on HS2. 

RIVAS Villot et al. (2012) Empirical 
Estimated ± 5 dB 

variation 
Uses VIBRA-1-2-3 and other 

models. 

 

Table 3. 9 Summary of existing theoretical models for the prediction of structure-borne noise in 
buildings 

Model / 
project 

Key papers Description 
Accuracy in the 

prediction of 
structure-borne noise 

Notes 

CATdBTren 
Romeu et al. (2009) 

Cardona et al. 
(2010) 

Analytical 
with FEM 

 

Model outputs ground-borne 
vibration velocity levels in a 

building, though no conversion 
into structure-borne noise is 

given. 

 
Sanayei et al. (2011) 
Sanayei et al. (2012) 
Sanayei et al. (2014) 

Analytical, 
impedance 

based 
 

Model outputs vibration 
velocity levels in a building, 

though there is good agreement 
between predicted and 

measured data. 

 
Li, Wu & Yin 

(2017) 

Analytical, 
dynamic 
stiffness 

 

Developed to model the 
response of a double-bottom 
cabin in a ship. More detailed 
than Sanayei et al.’s (2011) 

model. This model can 
potentially be extended to 

buildings. 

FINDWAVE 
Thornely-Taylor 
(2004a & 2004b) 

RPS (2004 & 2005) 

Numerical, 
FDTD 

± 3 dB(A) variation 

RPS (2004) states that 
measured levels are unlikely to 
exceed the predicted levels by 

more than 5 dB. 
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Model / 
project 

Key papers Description 
Accuracy in the 

prediction of 
structure-borne noise 

Notes 

 

Lurcock & 
Thompson (2014) 

Lurcock, Thompson 
& Bewes (2013) 

Numerical, 
FEM 

 

Results presented in terms of 
floor vibration levels. 2D and 
3D FEM models are adequate 

to predict A-weighted vibration 
levels. However, for spectral 

analysis, full detailed 3D 
models are more accurate. 

BAM 
prognosis tool 

Rücker & Auersch�
(2007) 

Villot et al. (2012) 

Numerical / 
analytical 
adjusted 

with 
measurement 

data 

Not validated as of 
2012. No additional 
information found 

Receiver stage is based on 
measurement data. 

The model is given in one main 
module (emission, transmission 
and immission). An additional 

module is available for 
structure-borne noise. 

CONVURT 
Rayleigh 
integral 

Nagy et al. (2004) 
Nagy et al. (2006) 

Analytical 
± 10 dB in 1/3 octave 
bands and ± 3 dB A-

weighted 

FEM-BEM or Pipe-in-Pipe 
software can be used to model 
source and transmission path. 

CONVURT 
FEM 

Fiala et al. (2007) 
Numerical, 

FEM 
Not disclosed 

FEM-BEM or Pipe-in-Pipe 
software can be used to model 
source and transmission path. 

MEFISSTO 
Jean et al. (2004) 

Villot et al. (2011) 
Villot et al. (2012) 

Numerical, 
FEM-BEM 

Validated against 
measurements. 
± 3 dB(A) for 
vibration levels 

The standard MEFISSTO 
package is a 2D BEM-FEM 
model. However, the 2.5D 

version of MEFISSTO should 
be used to model train 

vibration. Structure-borne noise 
is calculated from the average 

floor vibration velocity level in 
a separate module. 

Hybrid FE-
SEA 

Shorter & Langley 
(2005) 

Cotoni, Shorter & 
Langley (2007) 

Numerical, 
FEM-SEA 

Validated against 
other FEM models. 
Results are in good 

agreement. 

 

 



3. Prediction of structure-borne noise in buildings 

 92 

3.5! Proposal for a new simplified hybrid model 

The review of the existing models presented in the previous sections shows that 
detailed calculation models tend to be more accurate than simplified models. This is 
especially true where two types of calculation methods, such as FEM-SEA or FEM-
BEM, have been combined. However, there is an inherent computational cost 
associated with detailed models. Take, for instance, the example of the FEM models 
presented in Section 3.3.4. Good agreement was obtained between measurement data 
and the results of the 2D and 3D FEM models used. The model that best represented 
the measured data was the full 3D model of a building with structural shafts. 
However, the computational time to solve this model was approximately 18 hours, 
compared to 2 hours for a somewhat simpler 3D FEM model. 

The results of Sanayei et al.’s (2011 & 2012) impedance-based model presented in 
Section 3.3.2 suggest that there may be some merit in using a simplified approach to 
FEM, whilst still obtaining reasonably similar results and significantly reducing 
computation time. Sanayei et al’s model is a rather simplified approach, which models 
quasi-longitudinal waves propagating in a single column that runs through four floor 
slabs on top of each other, to simulate a four-storey building. The floor slabs 
themselves are modelled as thin plates in bending, and in-plane waves are not taken 
into account. The accuracy of this type of prediction model can be improved by 
increasing the number of degrees of freedom considered. 

In addition to the above, most of the prediction models reviewed included the 
prediction of ground-borne vibration and structure-borne noise from the source to the 
receiver, modelling the ground through various means. As the properties of the source 
(wheel-track interaction, rail roughness, etc.) and of the soil (type(s) of soil, damping 
characteristics, etc.) are not always known precisely, modelling these components can 
and does introduce uncertainties into the prediction model, reducing its accuracy. 
Ideally, the starting point of all models would be to measure the vibration levels 
generated by the source under consideration at the location of the receiver. However, 
this would only be possible for existing railway systems. New railway projects would 
still have to rely on predictions to model source vibration. For vibration propagation 
through the ground, the transfer function between the source and receiver location for 
the specific site of the project can be determined from measurements, helping to 
reduce the uncertainties of the model. 
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A better alternative to this would be to consider ground-borne vibration and structure-
borne noise from the point of entry into the building only. From this point, the 
materials and their properties, as well as the type of construction used, are known 
either from design development or historic construction drawings. Although this 
approach would remove uncertainties related to the source and propagation path 
altogether, it would rely on vibration measurements at the point of entry into the 
building. If the building foundations are a ground bearing slab or a raft, this approach 
would be reasonably straightforward. However, for buildings with piled foundations, 
either a borehole would be necessary to ascertain the vibration levels that will enter 
the future building, or measurements can only be undertaken once the piles are in 
place. In sites where ground-borne vibration and / or structure-borne noise is a 
concern, waiting to undertake measurements on a pile cap to determine whether 
vibration isolation measures are required might be too late in the design, and can have 
severe cost implications and cause delays to the project. This approach would be 
better suited as a detailed design stage validation tool for assessments carried out in 
the early stages of a project. 

With the above paragraphs in mind, a simplification to Shorter & Langley’s (2005) 
hybrid deterministic-statistical model is proposed for the prediction of structure-borne 
noise in buildings. The deterministic elements (beams and columns) in the model are 
proposed to be represented through simple, analytical, mobility / dynamic stiffness 
beam functions with six degrees of freedom each, while the statistical systems, such 
as walls and floors, would be modelled with SEA as per Shorter & Langley’s (2005) 
model. This is expected to provide a better representation of the structural frame of a 
building and its effect on vibration transmission to other elements, compared to 
Sanayei et al.’s (2011 & 2012) model. In addition to this, modelling walls and floors 
using SEA will allow their resonant behaviour to be accounted for in contrast with 
Sanayei et al.’s model. Such approach is also expected to yield more accurate 
predictions, while keeping the calculation time to a minimum. The model is only 
proposed to consider vibration from the entry point to a building. 
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The following chapters provide further details on the stages of the proposed simplified 
model. Chapter 4 sets out the process for deriving the analytical beam functions used 
in the proposed model, while the coupling between deterministic elements is 
discussed in Chapter 5. The results of the proposed deterministic part of the model are 
validated against FEM in each chapter. Chapter 6 provides a comparison between the 
various stages of the proposed simplified model and Shorter & Langley’s (2005) 
model. 
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4! Modelling beams using the dynamic stiffness method 

Following the proposal for a simplified hybrid deterministic-statistical model for the 
prediction of structure-borne noise in buildings in Section 3.5, the present chapter sets 
out the process through which the modelling of the deterministic elements in Shorter 
& Langley’s (2005) model can be simplified. It includes additional information on the 
dynamic stiffness approach to modelling deterministic elements, such as beams and 
columns, along with derivations of the relevant analytical beam mobility functions. In 
addition to this, the results of the derived functions are validated against a FE model. 
This chapter relates directly to objective 3 of this thesis. 

Beams (and columns) form the base structure of a building. The response of beams to 
vibration excitation has interested researchers for quite some time, such that plenty of 
guidance is available. Examples of relevant sources include Graff (1975 / 1991), 
Cremer et al. (1988) and Fahy & Gardonio (2007), to name a few. Where the term 
beam is used in the following sections, it refers to beams and columns in buildings. 

4.1! Impedance, mobility and dynamic stiffness 

The term impedance first came into use in the 1880s. This was introduced by Oliver 
Heaviside and in its early years related mainly to the fields of electricity and 
electromagnetism. Only in the 1910s, the concept of using impedance to describe 
vibrating mechanical systems was developed, when Professor Arthur G. Webster 
realised its potential. (Gardonio & Brennan, 2002) 

The mechanical impedance as a function of frequency " #  of a system is given by 
Equation 4. 1. This describes how a system resists motion when a force $ #  is 
applied through it. 

 
" # =

$ #

& #
 Equation 4. 1 

where   

 & #  is the resultant velocity across the system.  
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The inverse of mechanical impedance is mobility, also known as admittance. The 
mobility as a function of frequency ' #  of a system is defined in Equation 4. 2 and 
is a representation of how easy it is for a system to admit motion. The relationship 
between impedance and mobility is given in Equation 4. 3. (Gardonio & Brennan, 
2002) 

 
' # =

& #

$ #
 Equation 4. 2 

where   

 & #  is the resultant velocity across the system;  

 and $ #  is the resultant force through the system.  

 
" # =

1

' #
 Equation 4. 3 

For the simple case of a beam on which a shear force and bending moment are 
applied, as shown in Figure 4. 1, the response of the beam as a function of frequency 
can be modelled using Equation 4. 4 in terms of impedance, and Equation 4. 5 in 
terms of mobility, where the numbers shown refer to the relevant points on the beam. 
(Rubin, 1967; Fahy & Gardonio, 2007) The frequency term #  is not shown for 
simplicity, but it is still included. The concepts and sign convention are illustrated in 
this section using the example of a beam in bending with two degrees of freedom. The 
partitioning shown in Equation 4. 4 and Equation 4. 5 helps to identify the excitation 
and response points on the beam. Different degrees of freedom are included within 
each partition. Closed form expressions for bending and other degrees of freedom are 
derived in Section 4.3. 
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Figure 4. 1 Beam being excited by a shear force and bending moment 
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 Equation 4. 4 

 &)*
4,*
&)-
4,-

=
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 Equation 4. 5 

The above equations show a matrix for the impedances and mobilities. These are 
known as transmission matrices, and they are used to relate the input forces, moments 
and velocities at one end of the beam to the output at the other end. For instance, 5*- 
is the impedance at point 1 on the beam from excitation at point 2, while 5-* is the 
impedance at point 2 on the beam from excitation at point 1. The references to the 
forces and moments, as well as to the linear and angular velocities have been omitted 
here for simplicity. From these relations, the following types of impedances and 
mobilities can be defined (Rubin, 1967): 

•! Driving-point, direct or self impedances / mobilities: impedances and 
mobilities at an arbitrary point 6 on a beam from an excitation at point 6 (5**, 
75--, 78** and 8-- in the above equations); 

•! Transfer, cross or mutual impedances / mobilities: Impedances and 
mobilities at an arbitrary point 6 on a beam from an excitation at point 9 (5*-, 
75-*, 78*- and 8-* in the above equations). 

$ Force   + Moment 
& Linear velocity  4 Angular velocity 

$)*, &)* 

9 

+,*, 4,* 
 

6 

$)-, &)- 

+,-, 4,- 
 

Point 
1 

Point 
2 
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When modelling linear, elastic and dissipative structures, as is the case of beams in a 
building, the impedance and mobility matrices are symmetric. This is a result of the 
principle of reciprocity. Rubin (1967) states that if the total work performed during a 
given displacement is equal to the product of that displacement with the respective 
force / moment, reciprocity is true. The effect of reciprocity on the impedance and 
mobility transmission matrices is highlighted in Equation 4. 6 and Equation 4. 7, 
respectively. 

 5 # = 5: #  

5** 5*-
5-* 5--

=
5** 5-*
5*- 5--

 
Equation 4. 6 

 8 # = 8: #  

8** 8*-
8-* 8--

=
8** 8-*
8*- 8--

 
Equation 4. 7 

In addition to impedance and mobility, the response of a system can also be described 
in terms of its dynamic stiffness, which in contrast with the previous approaches uses 
displacement instead of velocity as its starting point. The dynamic stiffness method, 
also known as the displacement method, looks to determine the overall stiffness 
matrix for a system based on the stiffness matrix from each individual element of the 
system. (Rubin, 1967) Shorter & Langley’s (2005) model makes use of dynamic 
stiffness matrices ; # 7for both the deterministic and statistical sub-systems. The 
relationship between these and the impedance and mobility matrices is given by 
Equation 4. 8. (Fahy & Gardonio, 2007) 

 ; # = <#75 # = <#78 # => Equation 4. 8 

The input into the simplified prediction model proposed in this thesis is intended to be 
the velocity measured at the entry point to the building. The force excitation can then 
be calculated from the measured velocity levels and the mobility matrix for the whole 
building. 
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4.2! Degrees of freedom for free-free beams 

As mentioned in Section 2.4.1, there are three main types of waves that propagate 
through building structures. In beams, these are quasi-longitudinal, torsional and 
bending waves. Each of these waves and their sub-components consist of a degree of 
freedom that needs to be considered. Each free end of a beam has six degrees of 
freedom, three translations and three rotations. These are shown in Figure 4. 2 and 
Table 4. 1 for clarity. 

Whilst it is acknowledged that beams in buildings are not free-free beams, i.e. they 
are coupled to other elements, free-free finite beams form a suitable building block for 
the proposed simplified model. Their response can be easily determined from closed 
form expressions and the effect of coupling them to other beams and elements can be 
modelled. For instance, when coupling two free-free beams together, the total 
impedance at the location where the two beams meet will consist of the sum of the 
impedances at the respective free end of each beam, thus allowing the coupling 
between elements to be accounted for. (Rubin, 1967) Further details on the effects of 
coupling free-free beams on their response are provided in Chapter 5. 

 
Figure 4. 2 Degrees of freedom at both ends of a free-free beam (refer to Table 4. 1) 
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Table 4. 1 Degrees of freedom at both ends of a free-free beam (refer to Figure 4. 2) 

Reference 

Degrees of freedom at both ends of a free-free beam 
corresponding to Figure 4. 2 

Translations Rotations 

Quasi-longitudinal waves 1, 7 - 

Torsional waves - 2, 8 

Bending waves, y direction 3, 9 4, 10 

Bending waves, z direction 5, 11 6, 12 

4.3! Free-free beam mobilities 

The governing mobility equations for each of the degrees of freedom mentioned 
above have been derived to allow the beams, and energy transfer between them, to be 
modelled in the proposed simplified prediction tool. These are set out in the following 
sections for a beam of finite length. Although quasi-longitudinal and torsional waves 
may not contribute significantly to direct structure-borne noise radiation into a room, 
they will propagate to other areas within a building where they may be coupled with 
bending waves, which will then radiate structure-borne noise as a result of the energy 
transmitted by quasi-longitudinal and torsional waves. Therefore, the three wave types 
above have been considered in the analysis that follows. 

4.3.1! Quasi-longitudinal waves 

The mobilities for a beam subjected to a longitudinal harmonic excitation can be 
derived from first principles. The procedure used to derive these is described in the 
following paragraphs, in line with guidance provided by Cremer et al. (1988). 

The first step to develop the quasi-longitudinal mobilities for a free-free beam is to 
determine the displacement caused by the excitation. Assuming the velocity & 6, A  is 
given by Equation 4. 9, the displacement B 6, A  can be found by integrating the 
velocity with respect to time. C and D are constants that will be determined by the 
boundary conditions to be applied. E is the constant of integration. 

 & 6, A = CFG HI=JK + DFG HIMJK  Equation 4. 9 

 
B 6, A = & 6, A NA =

1

<#
CFG HI=JK +

1

<#
DFG HIMJK + E Equation 4. 10 
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The strain OK on the beam can be calculated from the displacement with the 
expression in Equation 4. 11. This can then be used to determine the stress7PK using 
the relationship in Equation 4. 12. 

 
OK =

QB

Q6
= −

1

ES
CFG HI=JK +

1

ES
DFG HIMJK  Equation 4. 11 

 
PK = TOK = −

T

ES
CFG HI=JK − DFG HIMJK  Equation 4. 12 

where   

 ES is the quasi-longitudinal wave speed in beams (refer to Table 2. 5); 

 and T is the longitudinal stiffness given by T =
U *=V

*MV *=-V
, where W is the 

Young’s modulus and X is the Poisson’s ratio for the beam. 

The stress PK is directly proportional to the longitudinal force $. The relation between 
these two parameters is set out below, where Y is the cross-sectional area of the beam. 

 
$ = −YPK =

YT

ES
CFG HI=JK − DFG HIMJK  Equation 4. 13 

Of the variables given in Equation 4. 9 and Equation 4. 13, C and D are the only 
unknowns. However, these can be determined following application of the relevant 
boundary conditions below. 

If the beam is excited at 6Z = 0, the stresses PK 6  at both ends of the free-free beam 
will be as per Equation 4. 14 and Equation 4. 15. Solving the stress equations for $ 
simultaneously (using Equation 4. 13) reveals that the relationship between constants 
C and D is given by Equation 4. 16, where \ is the length of the beam. 

 
PK 0 = −

$

Y
 Equation 4. 14 

 PK \ = 0 Equation 4. 15 

 
D = C

F=GJ]

FGJ]
=

C

cos 2b\ + 2< cos b\ sin b\
 Equation 4. 16 

If the beam is excited at 6Z = \ instead, the stresses PK 6  at both ends of the free-free 
beam will be as per Equation 4. 17 and Equation 4. 18. Solving the stress equations 
for $ simultaneously (using Equation 4. 13 as before) reveals that C = D. 
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 PK 0 = 0 Equation 4. 17 

 
PK \ = −

$

Y
 Equation 4. 18 

Incorporating the expressions for C and D in Equation 4. 9 and Equation 4. 13 and 
representing these in trigonometric form yields the following mobility expressions, 
where numbers 1 and 2 represent the two ends of the beam. 

 
'S** =

&*
$*
=

ES
<YT

cos b\

sin b\
 Equation 4. 19 

 
'S*- =

&*
$-
=

ES
<YT

1

sin b\
 Equation 4. 20 

 
'S-* =

&-
$*
=

ES
<YT

1

sin b\
 Equation 4. 21 

 
'S-- =

&-
$-
=

ES
<YT

cos b\

sin b\
 Equation 4. 22 

The mobilities derived above can be arranged in a 2 x 2 matrix, as given by Equation 
4. 23, which will feed into the overall mobility matrix for the beam. The subscript e is 
to indicate that these mobilities are quasi-longitudinal mobilities. While no axis 
descriptor has been included here, when assembling the overall mobility matrix for 
the beam, this will need to be included to differentiate between quasi-longitudinal and 
bending translations. 

 
8S =

'S** 'S*-
'S-* 'S--

 Equation 4. 23 
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4.3.2! Torsional waves 

The torsional beam mobilities can be derived in a similar manner to the quasi-
longitudinal mobilities above. The main difference between the two derivations is that 
instead of using linear velocity and force, the angular velocity and moment should be 
used instead. The following paragraphs are based on the guidance provided in Cremer 
et al. (1988). 

Assuming the angular velocity 4 6, A  is given by Equation 4. 24, the angular 
displacement f 6, A  can be found by integrating the angular velocity with respect to 
time. As before, C and D are constants that will be determined by the boundary 
conditions to be applied, and E is the constant of integration. 

4 6, A =
C

g
FG HI=JK +

D

g
FG HIMJK  Equation 4. 24 

f 6, A = 4 6, A NA =
1

<#g
CFG HI=JK +

1

<#g
DFG HIMJK + E Equation 4. 25 

where   

 g is the radius of gyration of the beam. 

The shear stresses h and torsional moment +K on the beam can be calculated from the 
angular displacement using Equation 4. 26 and Equation 4. 27, respectively. 

 
h = ig

Qf

Q6
= −

i

E:
CFG HI=JK +

i

E:
DFG HIMJK  Equation 4. 26 

 
+K = j

Qf

Q6
=
j

i
h = −

j

E:
CFG HI=JK +

j

E:
DFG HIMJK  Equation 4. 27 

where   

 E: is the torsional wave speed in beams (refer to Table 2. 5 for E: for 
rectangular beams); 

 i is the shear modulus given by i = U

- *MV
, where W is the Young’s modulus 

and X is the Poisson’s ratio for the beam; 

 and j is the torsional stiffness (refer to Table 2. 5 for j for rectangular 
beams). 
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C and D are the only unknowns in Equation 4. 26 and Equation 4. 27, which can be 
determined following application of the relevant boundary conditions below. 

If the beam is excited at 6Z = 0, the stresses h(6) at both ends of the free-free beam 
will be as per Equation 4. 28 and Equation 4. 29, where \ is the length of the beam. 
Solving the stress equations for +K simultaneously (using Equation 4. 56) reveals that 
the relationship between constants C and D is given by Equation 4. 30. 

 
h(0) =

i

j
+K Equation 4. 28 

 h(\) = 0 Equation 4. 29 

 
D = C

F=GJ]

FGJ]
=

C

cos 2b\ + 2< cos b\ sin b\
 Equation 4. 30 

If the beam is excited at 6Z = \ instead, the stresses h(6) at both ends of the free-free 
beam will be as per Equation 4. 31 and Equation 4. 32. Solving the stress equations 
for +K simultaneously (using Equation 4. 56) reveals that C = D. 

 h(0) = 0 Equation 4. 31 

 
h(\) =

i

j
+K Equation 4. 32 

Incorporating the expressions for C and D in Equation 4. 26 and Equation 4. 27 and 
representing these in trigonometric form yields the following mobility expressions. 

 
':** =

4*
+*

=
E:
<j

cos b\

−sin b\
 Equation 4. 33 

 
':*- =

4*
+-

=
E:
<j

1

−sin b\
 Equation 4. 34 

 
':-* =

4-
+*

=
E:
<j

1

−sin b\
 Equation 4. 35 

 
':-- =

4-
+-

=
E:
<j

cos b\

−sin b\
 Equation 4. 36 
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The mobilities derived above can be arranged in a 2 x 2 matrix, as given by Equation 
4. 37, which will feed into the overall mobility matrix for the beam. The subscript j is 
to indicate that these mobilities are torsional mobilities. While no axis descriptor has 
been included here, when assembling the overall mobility matrix for the beam, this 
will need to be included to differentiate between torsional and bending rotations. 

 
8: =

':** ':*-
':-* ':--

 Equation 4. 37 

4.3.3! Bending waves 

Unlike quasi-longitudinal and torsional waves, two degrees of freedom are associated 
with each bending wave: a translation and a rotation. The translation is represented by 
a transverse force, i.e. a force perpendicular to the direction of propagation of the 
wave, while the rotation is represented by a bending moment. The bending translation 
and rotation are therefore characterised by four parameters. These are the angular 
velocity 4, the bending moment +, transverse force $ and linear velocity &. They are 
related by Equation 4. 38 to Equation 4. 41, as set out by Cremer et al. (1988). As 
previously noted, bending in a rectangular beam occurs in two directions 
perpendicular to the direction of propagation. Whilst the orientation changes, the 
governing equations are the same. In the following equations, 6 represents the 
direction of propagation along the length of the beam, 9 is the horizontal coordinate 
perpendicular to the direction of propagation and ? is the vertical coordinate. These 
are as shown in Figure 4. 2 for information. # is the angular frequency, m′ is the mass 
per unit length of the beam and D is its bending stiffness (refer to Table 2. 5 in 
Section 2.4.1). 

 
4, =

Q&

Q6
 Equation 4. 38 

 
+, = −

D

<#

Q4

Q6
 Equation 4. 39 

 
$) = −

Q+,

Q6
 Equation 4. 40 

 
&) = −

1

<#mo

Q$)

Q6
 Equation 4. 41 
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The above relations can be used to determine the force, transfer and moment 
mobilities for a beam in bending. Equation 4. 42 to Equation 4. 45 show how this can 
be achieved, based on guidance provided by Cremer et al. (1988), Fahy & Gardonio 
(2007) and Hopkins (2007). The subscripts &, $, 4 and + on the left hand side of the 
equations allows the parameters involved in the calculation (linear / angular 
velocities, force or moment) to be easily recognised. The 9 and ? subscripts relate to 
the axis on which these parameters act. 

Force mobility '0/./ =
&)

$)
 Equation 4. 42 

Transfer mobility '0/12 =
&)

+,

 Equation 4. 43 

Transfer mobility '32./ =
4,
$)

 Equation 4. 44 

Moment mobility '3212 =
4,
+,

 Equation 4. 45 

Substituting Equation 4. 38 to Equation 4. 41 into the above, considering a velocity of 

& = CFG HI=JK + DFG HIMJK  where C and D are determined by the boundary 
conditions of the beam, and solving for '0/./ yields the following relationships 

between mobilities. As '0/./ is a function of the response position 6 and the 

excitation position 6Z on the beam, as well as of the frequency #, 6 and 6Z are 
variables until the response and excitation positions have been fixed. Therefore, 
derivation with respect to 6 and 6Z is possible. (Moorhouse, Evans, & Elliott, 2011; 
Su, 2003) It is worth noting that D in the velocity expression does not refer to the 
bending stiffness of the beam, but to a variable to be determined by the boundary 
conditions. 

Transfer mobility '0/12 =
N'0/./
N6Z

 Equation 4. 46 

Transfer mobility '32./ =
N'0/./
N6

 Equation 4. 47 

Moment mobility '3212 =
N-'0/./
N6N6Z

 Equation 4. 48 
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The force mobility for a free-free beam varies depending on where the excitation and 
response / receiving points (6Z and 6, respectively) are on the beam in relation to its 
length \. Su (2003) sets out the closed form solutions for the force mobility for a free-
free beam. These are provided in Equation 4. 49 and Equation 4. 50, as presented by 
Su (2003). #, D and b are the angular frequency, bending stiffness and bending 
wavenumber. 

0 ≤ 6 ≤ 6Z '0/./ =
<#

2Dbq
r* 6Z s* 6 + r- 6Z s- 6  Equation 4. 49 

6Z ≤ 6 ≤ \ '0/./ =
<#

2Dbq
r* 6 s* 6Z + r- 6 s- 6Z  Equation 4. 50 

where   

 

r* 6 = cosh b6 − cosh b \ − 6 cos b\

− sinh b \ − 6 sin b\ − cos b6

+ cos b \ − 6 cosh b\

− sinh b\ sin b \ − 6  

Equation 4. 51 

 r- 6 = sinh b6 + sinh b \ − 6 cos b\

− sin b\ cosh b \ − 6 − sin b6

+ sinh b\ cos b \ − 6

− cosh b\ sin b \ − 6  

Equation 4. 52 

 
s* 6 = −

sin b6 + sinh b6

2 1 − cosh b\ cos b\
 Equation 4. 53 

 
s- 6 =

cos b6 + cosh b6

2 1 − cosh b\ cos b\
 Equation 4. 54 

As the prediction model will require beams to be coupled together so that energy 
transfer across them can be assessed, the response at the two ends of the beam from 
an excitation at each end needs to be determined. For ease of reference in the 
following paragraphs, functions r* 6 , r- 6 ,7 s* 6  and s- 6  have been simplified 
to the expressions presented in Table 4. 2. 
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Table 4. 2 Simplified r* 6 , r- 6 , s* 6  and s- 6  functions at each end of the beam 

Simplified r* 6 , r- 6 , s* 6  and s- 6  functions (refer to Equation 4. 49 and Equation 4. 50) 

6 = 0 6 = \ 

r*(0) = −2 sinh b\ sin b\ r*(\) = 2 cosh b\ − 2 cos b\ 

r-(0) = 2 sinh b\ cos b\ − 2 sin b\ cosh b\ r-(\) = 2 sinh b\ − 2 sin b\ 

s*(0) = 0 s* \ = −
sin b\ + sinh b\

2 1 − cosh b\ cos b\
 

s-(0) =
1

1 − cosh b\ cos b\
 s- \ =

cos b\ + cosh b\

2 1 − cosh b\ cos b\
 

The force mobility at each end of the beam can be found by substituting the simplified 
expressions given above into Equation 4. 49 and Equation 4. 50. The transfer and 
moment mobilities at each end can then be derived from the force mobility using the 
relationships given in Equation 4. 46 to Equation 4. 48. Table 4. 3 and Table 4. 4 
present the simplified transfer and moment mobilities for a free-free beam with 
excitation at 6Z = 0 and at 6Z = \, respectively. 

Table 4. 3 Transfer and moment mobilities for a free-free beam with excitation at 6Z = 0 (refer to 
Equation 4. 50 and Table 4. 4) 

Transfer and moment mobilities for a free-free beam with excitation at 60 = 0 

'0/12 =
N'0/./

N6Z
=
N

N6

<#

2Dbq
r* 6 s* 0 + r- 6 s- 0

= −
<#

2Db-
1

1 − cosh b\ cos b\
cosh b6 − cosh b \ − 6 cos b\

− sinh b \ − 6 sin b\ − cos b6 + cos b \ − 6 cosh b\

− sinh b\ sin b \ − 6  

Equation 4. 55 

'32./ =
N'0/./

N6
=
N

N6

<#

2Dbq
r* 6 s* 0 + r- 6 s- 0

=
<#

2Db-
1

1 − cosh b\ cos b\
cosh b6 − cosh b \ − 6 cos b\

+ sin b\ sinh b \ − 6 − cos b6 + sinh b\ sin b \ − 6

+ cosh b\ cos b \ − 6  

Equation 4. 56 
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Transfer and moment mobilities for a free-free beam with excitation at 60 = 0 

'3212 =
N-

N6N6Z

<#

2Dbq
r* 6 s* 0 + r- 6 s- 0

= −
<#

2Db

1

1 − cosh b\ cos b\
sinh b6 + sinh b \ − 6 cos b\

+ cosh b \ − 6 sin b\ + sin b6 + sin b \ − 6 cosh b\

+ b sinh b\ cos b \ − 6  

Equation 4. 57 

 

Table 4. 4 Transfer and moment mobilities for a free-free beam with excitation at 6Z = \ (refer to 
Equation 4. 49 and Table 4. 4) 

Transfer and moment mobilities for a free-free beam with excitation at 60 = \ 

'0/12 =
N'0/./

N6Z
=
N

N6

<#

2Dbq
r* \ s* 6 + r- \ s- 6

=
<#

2Dbq
1

2 1 − cosh b\ cos b\
− sin b6 − sinh b6 2b sinh b\

+ 2b sin b\ + cos b6 + cosh b6 2b cosh b\ − 2b cos b\  

Equation 4. 58 

'32./ =
N'0/./

N6
=
N

N6

<#

2Dbq
r* \ s* 6 + r- \ s- 6

=
<#

2Dbq
1

2 1 − cosh b\ cos b\
r* \ −b cos b6 − b cosh b6

+ r- \ −b sin b6 + b sinh b6  

Equation 4. 59 

'3212 =
N-

N6N6Z

<#

2Dbq
r* \ s* 6 + r- \ s- 6

=
<#

2Dbq
1

2 1 − cosh b\ cos b\
−b cos b6 − b cosh b6 2b sinh b\

+ 2b sin b\ + −b sin b6 + b sinh b6 2b cosh b\ − 2b cos b\  

Equation 4. 60 
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The mobilities derived above can be arranged in a 2 x 2 matrix, as given by Equation 
4. 61, which will feed into the overall mobility matrix of the beam. Additional 
information can be added to the matrix by including the excitation and response 
points as shown in Equation 4. 62. The subscript D indicates that these mobilities are 
bending mobilities. As opposed to the quasi-longitudinal and torsional mobilities 
derived, the bending mobilities require reference to the coordinate system to be 
included in the nomenclature, so as to identify which axis the translations and 
rotations refer to. 

 
8u =

80/./ 80/12
832./ 83212

 Equation 4. 61 

 

8u =

'0/*./* '0/*./- '0/*12* '0/*12-

'0/-./* '0/-./- '0/-12* '0/-12-

'32*./* '32*./- '32*12* '32*12-

'32-./* '32-./- '32-12* '32-12-

 Equation 4. 62 

The results of the mobility formulations for quasi-longitudinal, torsional and bending 
waves in beams are presented in Section 4.4. 

4.4! Results and validation of beam mobilities 

The mobilities for a finite beam free at both ends derived in Section 4.3 have been 
modelled in MATLAB and compared against known expressions for infinite beams. 
In addition to this, a finite element (FE) model has also been built in COMSOL and 
its results compared with those from the derived mobilities. The following sections 
provide a summary of the parameters used in each model, as well as a comparison of 
their results. 

The code used to model the beam mobilities in MATLAB is provided in Appendix C. 

4.4.1! Model parameters 

Concrete is one of the most common construction materials found in buildings, and 
was the material chosen for the beam being modelled. Its density and other properties 
are highly dependent on the mix of materials used during the manufacturing process 
and can vary significantly. It is therefore important to clarify the material properties 
used in the MATLAB and COMSOL models. These are summarised in Table 4. 5. 
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It is also worth confirming the notation used for the mobilities in the following 
sections. Whilst the present chapter is only concerned with the mobilities for a single 
beam, Chapter 5 will include the response of various beams in the same calculation 
and therefore details such as the beam reference and the number of nodes on the beam 
will need to be included in the mobility subscripts. For consistency with Chapter 5, 
the same approach has been followed here, where the response of a beam A has been 
modelled at points 1A and 2A, as shown in Figure 4. 3. 

Table 4. 5 Beam parameters used in MATLAB and COMSOL models (Hopkins, 2007) 

Parameter Value 

Beam dimensions (L x W x H) 4 m x 0.2 m x 0.3 m 

Density, v 1 2200 kg/m3 

Young’s modulus, W (refer to Section 4.4.1.1) 1 277×10=y Pa 

Poisson’s ratio, X 1 0.2 

Internal loss factor, z 2 0.05 

Frequency range 1 – 5000 Hz 
1 Values for density and Poisson’s ratio are as provided in Hopkins (2007). The base value for the 
Young’s modulus is as given in BS EN 1992-1-1:2004 Eurocode 2: Design of concrete structures – 
Part 1-1: general rules and rules for buildings (CEN, 2004). 
2 Although Hopkins (2007) states that dense concrete has an internal loss factor of 0.005, beams in 
buildings will be coupled to other elements and the damping of these elements will be much greater. A 
higher internal loss factor has therefore been used to represent these additional coupling losses. 

The shear modulus used in the models was calculated using Equation 2. 8. 

 
Figure 4. 3 Sketch showing reference points in the beam and coordinate axes 
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4.4.1.1! Damping 

As mentioned in Section 2.4.4, the effect of damping in a structure can be accounted 
for by applying a hysteretic damping model to the calculations. This uses a complex 
modulus of elasticity which accounts for the internal loss factors of the materials used 
and allows the model to be simplified when working in the frequency domain. (ANC, 
2012; Cremer et al., 1988) 

The complex modulus of elasticity in the analytical and FE models has been taken as 
277×10=y 1 + <0.05  Pa. The use of such parameter will allow the decay of energy 
with frequency in the beam to be evaluated. 

The use of damping as part of the models will also aid with the validation of the 
mobility functions derived. The predicted mobilities with damping included will 
converge towards the mobilities of an infinite beam, allowing conclusions to be drawn 
on whether the results of the analytical model are as would be expected. 

4.4.1.2! FEM assumptions 

In addition to the parameters described above, a number of assumptions were made in 
the FE model to allow the beam to be modelled. These are described in the following 
paragraphs. 

Numerous theories for the response of beams in bending are available, the most 
common of which are Euler-Bernoulli’s and Timoshenko’s theories. COMSOL offers 
both of these as options to model a beam. The main assumptions of Euler-Bernoulli’s 
beam theory are that the cross-section of the beam is infinitely rigid in its plane, and 
that when a transverse force is applied to a beam, the cross-section of the beam will 
remain plane and perpendicular to the central axis of the beam at any given point. 
(Bauchau & Craig, 2009) Timoshenko’s beam theory, on the other hand, assumes that 
the cross-section of the beam rotates in relation to its central axis when a transverse 
force is applied to it, i.e. the cross-section remains perpendicular to the original 
central axis of the beam before a transverse force was applied. This rotation is a result 
of the shear deformation that occurs when a transverse force is applied to the beam. 
(Han, Benaroya, & Wei, 1999) Both theories have their own limitations and are used 
to model different scenarios. While Euler-Bernoulli’s theory does not take rotation of 
the beam cross-section into account, such rotation will only be significant under 
severe bending. In addition to this, when choosing between Euler-Bernoulli’s and 
Timoshenko’s beam theories consideration also needs to be given to the frequency 
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dependency of the two theories and of their group velocities. Wang & Hopkins (2016) 
have shown that as frequency increases, so do the differences between Euler-
Bernoulli and Timoshenko group velocities. The effects of rotatory inertia and shear 
deformation become significant with increased frequency, causing the Timoshenko 
group velocities to be lower than those of Euler-Bernoulli theory. The latter tend to 
increase continuously with frequency, while the Timoshenko group velocities flatten 
out. However, as the mobility matrices have been derived based on Euler-Bernoulli’s 
theory, this was used in the FE model. Additional information on these and other 
beam theories can be found in works such as Timoshenko & Goodier (1970), Han et 
al. (1999) and Bauchau & Craig (2009). 

In addition to this, the geometry of the beam was modelled using a Bézier polygon, 
which allows the beam to be modelled as a sequence of connected line segments with 
cross-section dimensions added later in the calculation process. (COMSOL 
Multiphysics, 2018) The beam was modelled using 1D elements with excitation and 
response points along the central axis of the beam. 

An extra fine mesh was used to model the beam. As the purpose of the FE model is to 
validate the results of the predicted mobilities at each end of the beam at low 
frequencies, rather than to predict the response at multiple points in the centre of the 
beam, the number of elements used in the calculation was limited to 20. Based on a 
beam length of 4 m, as mentioned in Table 4. 5, each element on the beam is 0.2 m 
long. 

The accuracy of FE models is dictated by the size of the finite elements in relation to 
frequency. Suitable element sizes can be determined through an iterative process in 
which their size is reduced until a suitable level of convergence towards a solution is 

found. Hopkins (2007) states that suitable element sizes typically vary between }
q
 and 

}

~
. At frequencies above which the element sizes are greater than }

~
, discretisation 

errors may occur in the FE model and as such, the results at these frequencies may not 
be as accurate. As the wave speeds for longitudinal, torsional and the two bending 
degrees of freedom considered are different, and as the bending wave speeds are 
frequency dependent, the cut-off frequencies for each wave type vary. The cut-off 
frequencies for each wave type, along with the approximate element size in relation to 
the wavelength at the lowest cut-off frequency for 0.2 m long elements are shown in 
Table 4. 6. Based on these, element sizes of 0.2 m allowed the response at each end of 
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the beam to be accurately predicted at the frequencies of interest without significantly 
increasing the calculation time of the model. However, it is worth noting that the 
results in the sections that follow are presented up to 5000 Hz to allow consistency in 
the display of the results despite the various cut-off frequencies. It should be noted 
that the results above the cut-off frequencies shown in Table 4. 6 for the FE model 

may not be accurate as the element size exceeds }
~
. 

Table 4. 6 Approximate element size in relation to wavelength 

Degree of freedom 

Frequency at which 
element size corresponds 

to }
~
 (Hz) 

Approximate element size in 
relation to wavelength at lowest 

cut-off frequency (883 Hz) 

Quasi-longitudinal 2922 0.05� 

Torsional 1606 0.09� 

Bending along 
the y-axis 

883 0.17� ≈ }

~
 

Bending along 
the z-axis 

1325 0.14� 

As the mobilities in Section 4.3 were derived in the frequency domain, the FE model 
has also been built in the frequency domain. Both ends of the beam were modelled as 
free to match the assumptions of the derived analytical mobility functions. The 
various mobilities were calculated in the FE model by applying a 1 N force or 1 Nm 
moment harmonic excitation to the relevant end of the beam and using the 
relationship between mobility, force, moment, and linear and angular velocity given 
in Equation 4. 63 to Equation 4. 66. 

 
'0. # =

& #

$ #
 

when $ # = 1Å, '0. # = & #  

Equation 4. 63 

 
'01 # =

& #

+ #
 

when + # = 1Åm, '01 # = & #  

Equation 4. 64 
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'3. # =

4 #

$ #
 

when $ # = 1Å, '3. # = 4 #  

Equation 4. 65 

 
'31 # =

4 #

+ #
 

when + # = 1Åm, '31 # = 4 #  

Equation 4. 66 

The results of the analytical mobility function and FE models for quasi-longitudinal, 
torsional and bending waves are presented in the following sections. 

4.4.2! Quasi-longitudinal mobilities 

The quasi-longitudinal driving point and transfer force mobilities predicted at both 
ends of the free-free beam described in Section 4.4.1 are shown in Figure 4. 4 and 
Figure 4. 5, respectively, where: 

•! 'S*Ç*Ç is the driving point mobility at point 1A from excitation at point 1A. As 
the beam is symmetric, the driving point mobility at point 2A from excitation 
at point 2A ('S-Ç-Ç) is equal to 'S*Ç*Ç; 

•! 'S*Ç-Ç. is the transfer mobility at point 1A from excitation at point 2A. As the 
beam is symmetric, the transfer mobility at point 2A from excitation at point 
1A ('S-Ç*Ç) is equal to 'S*Ç-Ç. 

The results of the FE model and a comparison with the quasi-longitudinal driving 
point mobility for a semi-infinite beam are also provided. 

 
Figure 4. 4 Quasi-longitudinal driving point force mobilities at one end of a free-free beam 
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Figure 4. 5 Quasi-longitudinal transfer force mobilities at one end of a free-free beam 

Figure 4. 4 shows that at frequencies of up to approximately 220 Hz, the response of 
the beam is controlled by its mass and energy decays at a rate of 6 dB per octave. As 
frequency increases, however, the behaviour of the beam starts to be affected by its 
damping. The latter causes the amplitude of the resonant and anti-resonant peaks to 
reduce with frequency. 

Cremer et al. (1988) provide closed form expressions for the driving point impedance 
of infinite and semi-infinite beams excited by various wave types. The quasi-
longitudinal impedance for a semi-infinite beam with excitation at one end has been 
converted into mobility and plotted against the results of the MATLAB model given 
in Figure 4. 4. As the frequency increases and the response of the beam is affected by 
damping, the mobility of the finite beam converges to that of the semi-infinite beam 
as would be expected. 

Good agreement was also found between the analytical and FE models. The results of 
the latter follow the outline of the analytical model, albeit with small differences as 
can be seen in Figure 4. 4 and Figure 4. 5. The resonant and anti-resonant peaks of 
both models are congruent in both frequency and magnitude. However, as frequency 
increases, the discrepancies between the analytical and FE models become more 
apparent. The use of a finer mesh in the FE model would likely be required to reduce 
these discrepancies. 
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The quasi-longitudinal transfer mobilities shown in Figure 4. 5 indicate a similar 
beam behaviour as noted for the driving point mobilities at low frequencies. At mid to 
high frequencies, a notable difference between the driving point and transfer 
mobilities is the lack of anti-resonant peaks. Also, as frequency increases, so does the 
difference between the results of the FE and analytical models. 

Another point worth noting is the confirmation of the principle of reciprocity in the 
mobility matrices, as mentioned by Rubin (1967). While not shown in Figure 4. 5, 
reciprocity was found between the derived transfer mobilities from excitation at the 
opposite ends of the beam, i.e. 'S*Ç-Ç = 'S-Ç*Ç. 

4.4.3! Torsional mobilities 

Similarly to the quasi-longitudinal mobilities, the torsional driving point and transfer 
moment mobilities predicted at both ends of the free-free beam are shown in Figure 4. 
6 and Figure 4. 7, respectively, where: 

•! ':*Ç*Ç is the driving point mobility at point 1A from excitation at point 1A; 

•! ':-Ç-Ç. is the driving point mobility at point 2A from excitation at point 2A; 

•! ':*Ç-Ç. is the transfer mobility at point 1A from excitation at point 2A; 

•! ':-Ç*Ç. is the transfer mobility at point 2A from excitation at point 1A. 

The results of the FE model and a comparison with the torsional driving point 
mobility for a semi-infinite beam are also provided. 

 
Figure 4. 6 Torsional driving point moment mobilities at the two ends of a free-free beam 
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Figure 4. 7 Torsional transfer moment mobilities at the two ends of a free-free beam 

The response of the beam when excited by a torsional moment differs from when it is 
excited by a longitudinal force, as can be seen when comparing Figure 4. 4 and Figure 
4. 6. In the latter, the mass controlled region seems to have reduced to frequencies up 
to approximately 140 Hz where the first resonance occurs. A similar decay of 6 dB 
per doubling of frequency, as for the quasi-longitudinal driving point mobilities, is 
present in the torsional driving point mobilities. 

Comparing the predicted torsional driving point mobilities for a finite beam given in 
Figure 4. 6 with that calculated for a semi-infinite beam with excitation at one end 
based on Heckl (1961) reveals the effect of damping on the response of the beam. As 
before, the torsional driving point mobilities for the finite beam show the expected 
trend by tending to the driving point mobility for the semi-infinite beam as the 
frequency increases. 

A comparison between the FE model results and the analytical mobilities shows good 
agreement between the two models at low and mid frequencies. However, at high 
frequencies, the differences between the analytical and FE models become more 
apparent. For the driving point mobilities, the FE model predicts an increase in 
mobility at high frequencies which is not matched by the predictions from the 
analytical model. This discrepancy can potentially be attributed to the fact that a finer 
mesh may be needed in the FE model to calculate the system response at high 
frequencies with a minimum degree of certainty. A similar scenario can be seen in the 
transfer mobilities shown in Figure 4. 7, where the mobilities calculated with the 
analytical model decay significantly at high frequencies when compared to the FE 
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model. A combination of the level of detail in the FE model used and potential 
numerical errors in the analytical solution may be the cause of these discrepancies. 

The principle of reciprocity in the mobility matrices can also be seen in Figure 4. 7, 
the derived transfer mobilities from excitation at the opposite ends of the beam yield 
the same results, i.e. ':*Ç-Ç = ':-Ç*Ç. 

4.4.4! Bending mobilities – bending along the y-axis 

As mentioned in Sections 2.4 and 4.3, bending in beams can occur in two directions 
perpendicular to the longitudinal axis of the beam. The driving point and transfer 
force and moment mobilities predicted at both ends of the free-free beam in bending 
along the y-axis are shown in Figure 4. 8 to Figure 4. 11 where: 

•! '0)*Ç.)*Ç is the driving point force mobility at point 1A from excitation at 
point 1A; 

•! '0)-Ç.)-Ç is the driving point force mobility at point 2A from excitation at 

point 2A; 

•! '0)*Ç.)-Ç and '0)-Ç.)*Ç are the transfer force mobilities at point 1A from 

excitation at point 2A and vice-versa; 

•! '3,*Ç1,*Ç is the driving point moment mobility at point 1A from excitation at 
point 1A; 

•! '3,-Ç1,-Ç is the driving point moment mobility at point 2A from excitation at 
point 2A; 

•! '3,*Ç1,-Ç and '3,-Ç1,*Ç are the transfer moment mobilities at point 1A from 
excitation at point 2A and vice-versa. 

The results of the FE model and a comparison with the bending driving point mobility 
for a semi-infinite beam are also provided. 

The results of the analytical and FE models for a free-free beam in bending along the 
z-axis are included in Appendix A for completeness. However, as the results are very 
similar to those along the y-axis, no discussion has been included in the appendix. 
Reference should be made to the discussion in this section instead. 
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Figure 4. 8 Transverse driving point force mobilities for a free-free beam in bending along the y-axis 

 
Figure 4. 9 Transverse transfer force mobilities for a free-free beam in bending along the y-axis 

 
Figure 4. 10 Transverse driving point moment mobilities for a free-free beam in bending along the y-
axis 
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Figure 4. 11 Transverse transfer moment mobilities for a free-free beam in bending along the y-axis 

The conclusions to be drawn from the results of the bending mobilities are similar to 
those for the quasi-longitudinal and torsional beam mobilities. The behaviour of the 
beam at low frequencies is controlled by its mass up until the first resonance. The 
frequency of this resonance varies depending on which beam dimension and degree of 
freedom is considered. 

The effect of damping on the response of the beam becomes evident as the frequency 
increases and the driving point force and moment mobilities shown in Figure 4. 8 and 
Figure 4. 10 converge towards the driving point force and moment mobilities of a 
semi-infinite beam excited at one end. These were calculated based on the 
impedances given in Cremer et al. (1988). 

In addition to the above, good agreement was found between the driving point and 
transfer bending mobilities in the analytical and FE models. The results of the latter 
follow the contours of the analytical model reasonably accurately as can be seen in 
Figure 4. 8 to Figure 4. 11. At high frequencies, the differences between the results of 
the FE and analytical models become somewhat more noticeable. Assembling a more 
detailed FE model would likely limit the small differences at high frequencies. 

The driving point force and moment mobilities in Figure 4. 8 and Figure 4. 10 
predicted using the analytical model exhibit what seems to be a numerical error at 
high frequencies. Such errors are often small and, in the frequency range in which 
they occur, of little interest. As good agreement was found between the analytical and 
FE models at the frequencies of interest, as well as between these and the mobility 
matrix for a semi-infinite beam in bending, the numerical errors shown (maximum 
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normalized error of 6 dB for the driving point force mobilities and 4 dB for the 
driving point moment mobilities) are considered to be acceptable. 

As with the quasi-longitudinal and torsional transfer mobilities, the symmetry of the 
mobility matrices is clear such that the derived transfer mobilities from excitation at 
the opposite ends of the beam yield the same results, i.e. '0)*Ç.)-Ç = '0)-Ç.)*Ç and 

'3,*Ç1,-Ç = '3,-Ç1,*Ç. Similar relationships were found between the transfer 
mobilities '0)*Ç1,*Ç = '3,*Ç.)*Ç , '0)*Ç1,-Ç = '3,*Ç.)-Ç , '0)-Ç1,*Ç = '3,-Ç.)*Ç 

and '0)-Ç1,-Ç = '3,-Ç.)-Ç. 

4.4.5! Computation time 

Part of the reason for the proposal to simplify Shorter & Langley’s FE-SEA structure-
borne noise prediction model (2005) relates to the often high computation costs 
associated with FE models. It is therefore considered appropriate to present a 
comparison of the computation time taken for analytical and FE models to run. This 
can be found in Table 4. 7. 

Table 4. 7 Comparison of computation times of the analytical and FE models 

 Computation time of each model 

 
Analytical beam 

functions (MATLAB) 
FE model (COMSOL) 

Quasi-longitudinal mobilities 14 seconds 1 minute 17 seconds 

Torsional mobilities 15 seconds 1 minute 23 seconds 

Bending mobilities along 
the y- and z-axes 

20 seconds 5 minutes 28 seconds 

While the difference in time taken to run the models is clear from the table, it should 
also be noted that the set up of the FE model plays an important part on the 
computation time. For instance, if the number of elements on the beam and the mesh 
size were optimised, the times shown in Table 4. 7 for the FE model would likely be 
shorter and more in line with the analytical model. However, as the larger differences 
between the results of the analytical and FE models were noted to be at high 
frequencies, reducing the detail of the FE model might also impact on the overall 
accuracy at low and mid frequencies. 
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4.5! Combined mobility matrix for a free-free beam 

The mobility matrices derived in Section 4.3 and validated in Section 4.4 have been 
assembled into one large matrix that contains the driving point and transfer force and 
moment mobilities for the two ends of a free-free beam. The assembled matrix is 
provided in Equation 4. 67 and is a result of numerous iterations to allow the various 
degrees of freedom of the beams to be coupled correctly in Chapter 5. This matrix 
includes the mobilities for the beam in bending along the y- and z-axes. 

8 =
8*É*É 8*É-É
8-É*É 8-É-É

 Equation 4. 67 

8*É*É =

'e61C1C 0 0 0 0 0
0 'j61C1C 0 0 0 0
0 0 '&91C$91C '&91C+?1C 0 0

0 0 '4?1C$91C '4?1C+?1C 0 0

0 0 0 0 '&?1C$?1C '&?1C+91C

0 0 0 0 '491C$?1C '&91C$91C

 Equation 4. 68 

8*É-É =

'e61C2C 0 0 0 0 0
0 'j61C2C 0 0 0 0
0 0 '&91C$92C '&91C+?2C 0 0

0 0 '4?1C$92C '4?1C+?2C 0 0

0 0 0 0 '&?1C$?2C '&?1C+92C

0 0 0 0 '491$?2 '&91C$92C

 Equation 4. 69 

8-É*É =

'e62C1C 0 0 0 0 0
0 'j62C1C 0 0 0 0
0 0 '&92C$91C '&92C+?1C 0 0

0 0 '4?2C$91C '4?2C+?1C 0 0

0 0 0 0 '&?2C$?1C '&?2C+91C

0 0 0 0 '492C$?1C '&92C$91C

 Equation 4. 70 

8-É-É =

'e62C2C 0 0 0 0 0
0 'j62C2C 0 0 0 0
0 0 '&92C$92C '&92C+?2C 0 0

0 0 '4?2C$92C '4?2C+?2C 0 0

0 0 0 0 '&?2C$?2C '&?2C+92C

0 0 0 0 '492C$?2C '&92C$92C

 Equation 4. 71 
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With the quasi-longitudinal, torsional and bending mobilities for a free-free beam 
derived and validated, and with the overall mobility matrix for the beam assembled, 
the next step in simplifying Shorter & Langley’s (2005) model is to couple the 
deterministic elements of the system together using the derived mobility matrices. The 
following chapter discusses the coupling of beams further. 
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5! Coupling of beams using mobility functions 

With the analytical beam mobilities derived in Chapter 4, the next step in the 
assembly of the simplified model is to couple the deterministic elements together. The 
process through which beams can be coupled using the derived mobility functions is 
set out in this chapter. This includes a description of the required coordinate system, 
the methodology for coupling beams, a summary of the results obtained and 
validation of these against a FE model. This chapter relates directly to objective 4 of 
this thesis. 

5.1! Coordinate system 

When coupling structures and degrees of freedom together, care must be taken to 
ensure the correct system coordinates are used. This is especially important when the 
structures to be connected are at different orientations to each other and multiple 
degrees of freedom are being modelled. It is often useful to develop global and local 
coordinate systems. For instance, when considering a building with a large number of 
beams at different angles to each other, a local coordinate system would help with 
calculations within that system and would avoid the need to identify the location of a 
particular component in a large global coordinate system. The following paragraphs 
provide details of the coordinate system and notation used when coupling beams 
together. 

Clearly defining the global and local axes to be used is key to set up the coordinate 
system correctly. Global axes relate to the overarching coordinates and orientation of 
the system. In the case of a building with a rectangular footprint, the horizontal axes Ñ 
and ' would typically relate to the length and width of the building, while the " axis 
would relate to its height. A similar principle can be applied to the local coordinate 
axes, but instead of relating them to the building, they would refer to the axes of each 
element. For example, for a beam, the 6 and 9 axes typically refer to the beam’s 
length and width, while the ? axis often refers to its height. As beams and columns in 
buildings are characteristically at different orientations, the local axes for a beam 
would differ from those of a column. However, the global axes would be the same for 
both elements. 
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To distinguish between global and local axes, different notation is needed. In the 
sections that follow, the global axes are shown and referred to in upper case letters Ñ, 
' and ", while the local axes make use of lower case letters 6, 9 and ?. This notation 
has been adopted in the following sections to couple beams together. 

Figure 5. 1 illustrates the global and local axes for beams A and B in an L-junction, 

i.e. at 90° to each other. It can be seen that the local 6 axis in beam A is equivalent to 

the – ? axis in beam B, and that the ? axis in beam A is equivalent to the 6 axis in 

beam B. However, as beam B is only rotated by 90° in relation to beam A on the Ñ" 

plane, the orientation of the local 9 axes of both beams coincides. 

 
Figure 5. 1 Sketch showing an example of the local and global coordinate systems for two beams at 90° 
to each other 

With the global and local axes and their notation defined above, the next step in the 
simplification of Shorter & Langley’s model is to develop a strategy to couple the 
deterministic elements of a building together. This is set out in the following sections. 
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Global axes:!Ñ, ', "!
Local axes: 6, 9, ? 
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5.2! Methodology for coupling beams 

The coupling between beams, columns and plates in buildings is key to maintain their 
structural integrity. When modelling buildings, such coupling can be accounted for in 
different ways, depending on the modelling method being used. The proposed 
simplified model makes use of a dynamic stiffness approach to model beams and 
columns within a building and their response has been derived in terms of mobility. 
However, mobilities are often used to describe the overall response of a system, and 
when considering the connection between structures and small segments, the use of 
impedances may be more suitable. (O'Hara, 1967) It is therefore considered 
appropriate to use impedance addition to model the coupling between these elements. 
The following paragraphs set out the method used to couple beams together. 

Rubin (1967) provides guidance on how to couple various elements together using the 
impedance addition method. The main assumption needed to model the coupling 
between two (or more) elements is that the velocities at the interface between the 
elements must be the same, and the forces must be in equilibrium. In the case of two 
beams A and B coupled in a straight line at point 2, as shown in Figure 5. 1, the 
following conditions need to be realised at the connection point / junction between 
elements for the system to be in equilibrium. 

 Ü = Ü-Ç = Ü-u Equation 5. 1 

 á = á-Ç + á-u Equation 5. 2 

The impedances on both sides of the junction can be calculated from á-Ç = 5-ÇÜ-Ç 
and á-u = 5-uÜ-u. Substituting the conditions in Equation 5. 1 and Equation 5. 2 into 
these expressions yields the relationship given in Equation 5. 3. This shows that the 
impedance at a junction between two beams is given by the sum of the impedances of 
each of the beams at the connection point. 

 á = 5-Ç + 5-u Ü Equation 5. 3 
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Figure 5. 2 Sketch illustrating two beams to be coupled in-line 

Equation 5. 4 shows the impedance matrix for the above beams coupled in line as 
given by Rubin (1967). For consistency with the subscripts used in the mobility 
matrices derived in the previous chapter and in the sections that follow, the expression 
on the right-hand side includes a reference to which beam points 1, 2 and 3 refer to. 
When assembling the impedance and mobility matrices with numerous degrees of 
freedom, the relevant local axes coordinates of each element will also be shown. 

5 =

"** "*- "*q
"-* "-- "-q
"q* "-q "qq

=

"*Ç*Ç "*Ç-Ç 0
"-Ç*Ç "-Ç-Ç + "-u-u "-uqu
0 "-uqu "ququ

 Equation 5. 4 

The coupling between beams in the proposed simplified prediction model is intended 
to follow the same principle as shown above. However, as the response of the beams 
has been modelled in terms of mobilities and as the above makes use of impedances 
to couple beams together, the first step in the coupling process will be to convert the 
mobilities into impedances. In addition to this, the mobility matrices derived in 
Chapter 4 for a free-free beam take in account six degrees of freedom at each end 
which will be coupled to six other degrees of freedom in another beam, depending on 
the arrangement being modelled. Equation 5. 4 will need to reflect the additional 
degrees of freedom being considered. As such, an intermediate matrix (referred to as a 
coupling matrix) has been developed to allow the selection of which degree of 
freedom in a beam connects to which degree of freedom in other beams. Increasing 
the number of degrees of freedom and the number of beams being modelled will 
inherently increase the size of the resultant impedance and mobility matrices for the 
coupled system. 
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The procedure used to derive the resultant impedance / mobility matrix for beams 
coupled together is summarised in steps 1 to 6 below. It is worth noting that the 
simple scenario of two beams coupled in line as shown in Figure 5. 2 has been used in 
the following steps. For simplicity and clarity in setting out the methodology used for 
coupling beams together, the various degrees of freedom considered in the mobility 
matrices have been excluded here. However, a more detailed look into the coupling 
matrix used and the resultant impedance matrix for two beams coupled in line is 
provided in Section 5.3.2. 

1.! Assemble the mobility matrices for the beams to be coupled as follows, taking 
into account the required degrees of freedom. 

8 =

8*Ç*Ç 8*Ç-Ç 0 0
8-Ç*Ç 8-Ç-Ç 0 0
0 0 8-u-u 8-uqu
0 0 8qu-u 8ququ

 Equation 5. 5 

2.! Invert the mobility matrix in Equation 5. 5 to obtain the equivalent impedance 
matrix. 

5 = 8=* =

5*Ç*Ç 5*Ç-Ç 0 0
5-Ç*Ç 5-Ç-Ç 0 0
0 0 5-u-u 5-uqu
0 0 5qu-u 5ququ

 Equation 5. 6 

3.! Assemble a matrix of 1s and 0s with the same number of rows as the 
impedance matrix given in Equation 5. 6. The number of columns in the new 
matrix should be equivalent to the number of columns in the impedance matrix 
in Equation 5. 6 minus the number of degrees of freedom / points that will be 
coupled together. Each non-zero element in Equation 5. 6 would relate to a 1 
in Equation 5. 7, all other elements should be set to 0. Where degrees of 
freedom / points on the beam are to be coupled together, such as 5-Ç-Ç and 
5-u-u in the present scenario, and as the coupling matrix has one less column 
than the impedance matrix, there will be a second 1 in the same column as 
shown below. 

àâäãåçéè =

1 0 0
0 1 0
0 1 0
0 0 1

 Equation 5. 7 
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4.! Multiply the impedance and coupling matrices to merge columns 2 and 3 of 
Equation 5. 6 into a single column. 

5×àâäãåçéè =

5*Ç*Ç 5*Ç-Ç 0
5-Ç*Ç 5-Ç-Ç 0
0 5-u-u 5-uqu
0 5qu-u 5ququ

 Equation 5. 8 

5.! Multiply the transpose of the coupling matrix given in Equation 5. 7 by 
Equation 5. 8 to add 5-Ç-Ç and 5-u-u together. 

àâäãåçéèê× 5×àâäãåçéè

=
1 0 0 0
0 1 1 0
0 0 0 1

×

5*Ç*Ç 5*Ç-Ç 0
5-Ç*Ç 5-Ç-Ç 0
0 5-u-u 5-uqu
0 5qu-u 5ququ

 
Equation 5. 9 

5ëíìî]ïñ = àâäãåçéèê× 5×àâäãåçéè

=

"*Ç*Ç "*Ç-Ç 0
"-Ç*Ç "-Ç-Ç + "-u-u "-uqu
0 "-uqu "ququ

 
Equation 5. 10 

6.! Invert 5ëíìî]ïñ to obtain the mobility matrix for the coupled system. 

8ëíìî]ïñ = 5ëíìî]ïñ
=*  Equation 5. 11 

As previously mentioned, the above methodology was simplified to allow a clearer 
statement of the various steps needed to couple beams together. Also, as the 
overarching aim of this thesis is only to investigate the feasibility of replacing FEM 
with analytical beam functions in an existing prediction model, the coupling matrix 
given in Equation 5. 7 is created by hand. However, once the six degrees of freedom 
at each end of each beam being modelled are included in the above matrices, these 
will become rather large and hard to handle manually. As such, when modelling 
complex systems, for example the full frame of a building, it would be appropriate to 
automate the assembly of the coupling matrices for the system. 
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The process for coupling beams together has been set out above for a simple scenario 
of two beams coupled in line. Beams and columns in buildings, however, are often at 
different orientations to each other to form a frame. Although the principles given 
above would also apply to more complex arrangements, the coupling matrices would 
be specific to each scenario. The following section sets out the various scenarios 
analysed, along with the coupling matrices derived for each. 

5.3! Beam arrangements modelled and their coupling matrices 

Four beam interfaces commonly encountered in buildings have been modelled using 
the mobilities derived in Chapter 4 and the procedure for coupling beams set out in 
Section 5.2. The first scenario modelled is that of two beams in a straight line briefly 
discussed in the previous section. Beams in an L-junction arrangement have also been 
modelled along with a beam frame, i.e. four beams in L-junctions to each other 
forming a frame. The following sections provide additional details on how to interpret 
coupling matrices, along with a summary of the beam arrangements modelled, the 
coupling matrices used and the resultant impedance matrices at the connection points 
accounting for the six degrees of freedom described in Chapter 4 at each end of the 
beams. 

As the full resultant impedance matrices for beams coupled together are rather large, 
they have been included in Appendix B. However, the derived impedance sub-
matrices at the connection points of each beam are provided in the following sections 
for ease of reference. 

5.3.1! Interpreting coupling matrices 

Assembling the coupling matrices for a simple system such as two beams coupled in 
line with two degrees of freedom at each end of each beam is reasonably 
straightforward. However, assembling these matrices for more complex systems is 
trickier and more time consuming. It is therefore important to clarify what the various 
elements in the coupling matrix refer to, to help speed up the process. A summary of 
these is provided in the following paragraphs. 

Taking the example of two beams A and B, each with six degrees of freedom at each 
end and coupled together at a given point, the combined impedance matrix for the two 
beams (Equation 5. 6) would have 24 rows and 24 columns. The coupling matrix, on 
the other hand, would have 24 rows and only 18 columns to allow for the addition of 
the impedances of the six degrees of freedom being coupled. 



5. Coupling of beams using mobility functions 

 132 

Each row of the coupling matrix therefore represents a local degree of freedom at 
each point on the beam, while the columns refer to the global degrees of freedom of 
the system. 

5.3.2! Two beams in-line 

While two beams in line on their own are not often found in buildings, it is useful to 
model this scenario to cement the processes described in Sections 5.1 and 5.2. The 
coordinate system, coupling matrices and resultant impedance matrices for this 
scenario are set out below. 

One of the properties of two beams coupled in a straight line is the fact that the local 
6, 9 and ? coordinates for each of the beams are the same as they have the same 
orientation. This can be clearly seen in Figure 5. 3, where beams A and B are to be 
coupled at point 2. The global coordinate system (axes Ñ, ' and ") has been set at the 
origin of beam A. For consistency, the global axes remain the same for all of the beam 
arrangements considered. 

 
Figure 5. 3 Sketch showing local and global coordinate system considered when modelling two beams 
in-line (global coordinate system in upper case, local coordinate system in lower case) 

With the coordinate systems defined, the next step to derive the coupled impedance 
matrix for the two beams is to assemble the coupling matrix as set out in Section 5.2. 
Equation 5. 12 sets out the coupling matrix assembled for two free-free beams 
coupled in line with six degrees of freedom at each end. 
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àâäãåçéè27óFòmô7öõ7\öõF = 
 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0  
 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0  
 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0  
 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0  
 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0  
 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0  
 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0  
 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0  
 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0  
 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0  
 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0  
 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0  
 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0  
 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0  
 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0  
 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0  
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0  
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0  
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0  
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1  

 

Equation 
5. 12 

The resultant impedance matrix at the connection point of the two beams is given in 
Equation 5. 13. The below shows that for two beams coupled in line, the quasi-
longitudinal, torsional and bending degrees of freedom in each beam are coupled 
together at point 2. As the beams have the same orientation, no coupling between 
translations and rotations of other degrees of freedom, such as between torsion and 
bending, would occur. However, for beams at different angles to each other, this 
would not be the case. The full impedance matrix for two beams coupled in line is 
provided in Appendix B for information. 

The response of two beams coupled in a line has been modelled in MATLAB using 
the matrices given above and the results compared with those from a FEM model. A 
summary of these is provided in Section 5.4.2. 
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!"#$%&'(#)*#+)*%,###-.)*/#"

=

123"4"4 + 123"6"6 0 0 0 0 0
0 183"4"4 + 183"6"6 0 0 0 0
0 0 19:"4;:"4 + 19:"6;:"6 19:"4<="4 + 19:"6<="6 0 0
0 0 1>="4;:"4 + 1>="6;:"6 1>="4<="4 + 1>="6<="6 0 0
0 0 0 0 19="4;="4 + 19="6;="6 19="4;="4 + 19="6;="6
0 0 0 0 1>:"4;="4 + 1>:"6;="6 1>:"4<:"4 + 1>:"6<:"6

 
Equation 5. 13 
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5.3.3! Two beams in an L-junction 

A more common arrangement of beams and columns encountered in buildings is for 

these to be at 90° angles to each other. The coordinate system, coupling matrices and 
resultant impedance matrices for two beams in an L-junction have been derived and 
are presented in the following paragraphs. 

In contrast with two beams in line, the local coordinate systems of beams coupled in 
L-junctions differ. Focussing on the example given in Figure 5. 4 for two beams at 

90° to each other, it can be seen that the local ! axis of beam B is perpendicular to the 

! axis of beam A and to the global " axis of the overall system. Similarly, the local # 

axis of beam A is at 90° to the local # axis of beam B. 

 
Figure 5. 4 Sketch showing local and global coordinate system considered when modelling two beams 
in an L-junction (global coordinate system in upper case, local coordinate system in lower case) 
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As the local coordinate systems for two beams in line and in an L-junction are 
different, so is the coupling matrix needed to couple the relevant degrees of freedom 
and points on the beam. The coupling matrix for two beams in an L-junction has been 
assembled and is provided in Equation 5. 12. One point worth noting in the coupling 
matrix is the presence of negative numbers. These relate to situations where a given 
degree of freedom in beam A is coupled to a degree of freedom in beam B which runs 
in the negative local axis direction. A good example of this is the coupling between 
quasi-longitudinal waves in beam A in the positive ! direction and transverse waves 
along the negative # axis. When excited, quasi-longitudinal waves in beam A will 
excite the local # axis in beam B in the negative direction. 

'()*+,-./01234506708 = 
 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0  
 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0  
 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0  
 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0  
 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0  
 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0  
 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0  
 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0  
 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0  
 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0  
 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0  
 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0  
 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0  
 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0  
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0  
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0  
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0  
 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0  
 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0  
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1  

 

Equation 
5. 14 

The resultant impedance matrix at the connection point of the two beams in an L-
junction is given in Equation 5. 15. The below shows that degrees of freedom of 
different types, such as quasi-longitudinal and bending can be coupled together to 
give the response of the beam at the connection point. The full impedance matrix for 
the two beams coupled in an L-junction is provided in Appendix B for information. 

The response of two beams coupled in an L-junction has been modelled in MATLAB 
using the matrices given above and the results compared with those from a FEM 
model. A summary of these is provided in Section 5.4.3. 
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!"#$%&'(#)*#+,###-.)*/#"

=

1+2"3"3 + 156"786"7 0 0 0 0 −156"7;<"7
0 1=2"3"3 + 1>6"7;6"7 −1>6"78<"7 0 0 0
0 −15<"7;6"7 15<"38<"3 + 15<"78<"7 15<"3;6"3 0 0
0 0 1>6"38<"3 1>6"3;6"3 + 1=2"7"7 0 0
0 0 0 0 156"386"3 + 1+2"7"7 156"3;<"3

−1><"786"7 0 0 0 1><"386"3 1><"3;<"3 + 1><"7;<"7

 
Equation 5. 15 
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5.3.4! Three and four beams in L-junctions 

The principles followed above for two beams in an L-junction can also be applied to 
three and four beams in L-junctions. The latter scenario, i.e. a beam frame, is the one 
that is most commonly found in buildings. In between the beam frame, there would 
typically be a wall, floor or ceiling. A description of the coordinate systems, coupling 
matrices and coupled impedance matrices for these two scenarios is provided below. 

Figure 5. 5 and Figure 5. 6 show the global and local coordinate systems for three and 
four beams coupled in L-junctions, respectively. As with two beams in an L-junction 
discussed in the previous section, the local axes of beams B, C and D are rotated in 
relation to the local axes of beam A, as well as to the global coordinate axes of the 
system. Therefore, when coupling three or four beams in such arrangements, different 
degrees of freedom, such as quasi-longitudinal and bending, will be coupled together. 

 
Figure 5. 5 Sketch showing local and global coordinate system considered when modelling three beams 
in L-junctions (global coordinate system in upper case, local coordinate system in lower case) 
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Figure 5. 6 Sketch showing local and global coordinate system considered when modelling a four-beam 
frame (global coordinate system in upper case, local coordinate system in lower case) 

The coupling matrices for three and four beams in L-junctions are given in Equation 
5. 16 and Equation 5. 17, respectively. Given the number of degrees of freedom 
considered, these matrices are rather large. As the local axes of beams B, C and D are 
rotated in relation to each other, negative numbers are also present in these coupling 
matrices. 

The impedance matrix for three beams coupled in L-junctions at connection point 3 is 
provided in Equation 5. 18, while Equation 5. 19 and Equation 5. 20 set out the 
impedance matrices for a beam frame at connections points 4 and 1, respectively. It is 
worth noting that the impedance matrix for three and four beams coupled in L-
junctions at connection point 2 is the same as Equation 5. 15 for two beams in an L-
junction and has therefore not been repeated in this section. Similarly, the response at 
point 3 for four beams in a frame is given by Equation 5. 18 for three beams in L-
junctions. 

The response of three and four beams coupled in L-junctions has been modelled in 
MATLAB using the matrices given below and the results compared with those from a 
FEM model. A summary of these is provided in Sections 5.4.4 and 5.4.5, respectively. 
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!"#$%&'()*+,-./*01*2 = 
 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0  
 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0  
 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0  
 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0  
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0  
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0  
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0  
 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0  
 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0  
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0  
 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0  
 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0  
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0  
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0  
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0  
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0  
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0  
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0  
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0  
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0  
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0  
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1  

 

Equation 5. 16 
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!"#$%&'(4*+,-./*01*2 = 
 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0  
 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0  
 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0  
 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0  
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0  
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0  
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0  
 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0  
 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0  
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0  
 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0  
 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0  
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0  
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0  
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0  
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0  
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0  
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0  
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0  
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0  
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0  
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1  
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0  
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0  
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0  
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0  
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0  

Equation 5. 17 
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 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1  
 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

 

 

5)*+,-./*01*2,***78019*) =

:;<)=><)= + :2@)A)A 0 0 0 0 −:;<)=DE)=
0 :F<)=D<)= + :G@)A)A −:F<)=>E)= 0 0 0
0 −:;E)=D<)= :;E)H>E)H + :;E)A>E)A :;E)AD<)A 0 0
0 0 :F<)A>E)A :G@)=)= + :F<)AD<)A 0 0
0 0 0 0 :2@)=)= + :;<)A><)A −:;<)ADE)A

−:FE)=><)= 0 0 0 −:FE)A><)A :FE)HDE)H + :FE)ADE)A

* Equation 5. 18 

54*+,-./*01*2,***78019*4 =

:2@4I4I + :;<4J><4J 0 0 0 0 :;<4JDE4J
0 :G@4I4I + :F<4JD<4J :F<4J>E4J 0 0 0
0 :;E4JD<4J :;E4I>E4I + :;E4J>E4J :;E4ID<4I 0 0
0 0 :F<4I>E4I :F<4ID<4I + :G@4J4J 0 0
0 0 0 0 :;<4I><4I + :2@4J4J −:;<4IDE4I

:FE4J><4J 0 0 0 −:FE4I><4I :FE4IDE4I + :FE4JDE4J

 Equation 5. 19 

54*+,-./*01*2,***78019*K =

:2@KLKL + :;<KJ><KJ 0 0 0 0 :;<KJDEKJ
0 :G@KLKL + :F<KJD<KJ :F<KJ>EKJ 0 0 0
0 :;EKJD<KJ :;EKL>EKL + :;EKJ>EKJ :;EKLD<KL 0 0
0 0 :F<KL>EKL :F<KLD<KL + :G@KJKJ 0 0
0 0 0 0 :;<KL><KL + :2@KJKJ :;<KLDEKL

:FEKJ><KJ 0 0 0 :FEKL><KL :FEKLDEKL + :FEKJDEKJ

 Equation 5. 20 
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5.4! Results and validation of coupling matrices 

The coupling matrices have been assembled and the resultant impedance matrices for 
the coupled beams determined in the previous section. To validate the results, the 
beam arrangements described in Section 5.4 have been modelled in MATLAB. In 
addition to this, finite element (FE) models have also been built in COMSOL for each 
scenario and their results compared with those from the coupling matrices. For each 
scenario, the beams were excited at the junction points with the response predicted at 
the same points. The comparisons between the analytical and FE models were 
therefore carried out in terms of driving point mobilities. This allowed the 
simplification of the analytical model, offering savings in computation time. The 
following sections provide a summary of the parameters used in each model, as well 
as a comparison of their results. A discussion of the results is provided within each 
sub-section. 

The code used to model the beam mobilities in MATLAB is provided in Appendix C. 

5.4.1! Model parameters 

The material properties used to model the beams in different arrangements are the 
same as used in Section 4.4.1 to validate the output of the beam mobilities for 
consistency, with the exception of the length of the beams used. Shorter beams have 
been modelled in this section, such that the overall length of two beams coupled in 
line matched the length of the beams modelled in Section 4.4. While it is appreciated 
that the length of the beams used in the following paragraphs is reasonably small and 
might not often be encountered in buildings, the results should still highlight the 
properties of the coupled systems. The properties of the beams used in the validation 
exercise that follows are summarised in Table 5. 1. Additional information on the 
damping model considered and other assumptions used in the FE model is also 
provided. 
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Table 5. 1 Beam parameters used in MATLAB and COMSOL models to couple beams together 

Parameter Beams A & C Beams B & D 

Beam dimensions (L x W x H) 2.5 m x 0.2 m x 0.3 m 1.5 m x 0.2 m x 0.3 m 

Density 1 2200 kg/m3 

Young’s modulus 1 27#×10'( Pa 

Poisson’s ratio 1 0.2 

Internal loss factor 2 0.05 

Frequency range 1 – 5000 Hz 
1 Values for density and Poisson’s ratio are as provided in Hopkins (2007). The base value for the 
Young’s modulus is as given in BS EN 1992-1-1:2004 (CEN, 2004). 
2 Hopkins (2007) states that dense concrete has an internal loss factor of 0.005 which is very low. 
However, beams in buildings will be coupled to other elements and damping of these elements will be 
much greater. A higher internal loss factor has therefore been used to represent these additional 
coupling losses. 

5.4.1.1! Damping 

The effect of hysteretic damping has been included in both the MATLAB and FE 
models, for consistency with the work described in Section 4.4.1. As such, the 
complex modulus of elasticity in the analytical and FE models has been taken as 
27#×10'( 1 + *0.05  Pa. The use of such parameter will allow the decay of energy 
with frequency in the beam to be evaluated. 

5.4.1.2! FE model assumptions 

The assumptions in the FE model of the coupled beams are as per those set out in 
Section 4.4.1 for the validation of the beam mobilities. 

The work in Section 4.4 only included a single beam, and therefore there was no need 
to specify junctions between beams. However, to model the coupling between various 
beams, this is now required. As mentioned in Section 4.4.1, each beam has been 
modelled as a Bézier polygon. The start and end points of each beam were set in 
terms of global coordinates and COMSOL automatically coupled the beams together 
at the relevant points. 

With the parameters used in the analytical and FE models defined, the results of the 
models can now be analysed. The following sections provide graphs showing the 
driving point mobilities for the coupled beams at the connection points for the various 
scenarios described in Section 5.3. 
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5.4.2! Two beams in line 

The predicted driving point mobilities at the connection point of two beams coupled 
in line are given in Figure 5. 7 to Figure 5. 12. The results of the FE model are also 
provided in these figures for comparison. A discussion of the results obtained is 
included in the following paragraphs. 

 
Figure 5. 7 Quasi-longitudinal driving point force mobilities for two beams coupled in line, YL2A2A + 
YL2B2B 

 
Figure 5. 8 Torsional driving point moment mobilities for two beams coupled in line, YT2A2A + 
YT2B2B 
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Figure 5. 9 Transverse driving point force mobilities for two beams in bending along the y-axis coupled 
in line, Yvy2AFy2A + Yvy2BFy2B 

 
Figure 5. 10 Transverse driving point moment mobilities for two beams in bending along the y-axis 
coupled in line, Yaz2AMz2A + Yaz2BMz2B 

 
Figure 5. 11 Transverse driving point force mobilities for two beams in bending along the z-axis 
coupled in line, Yvz2AFz2A + Yvz2BFz2B 
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Figure 5. 12 Transverse driving point moment mobilities for two beams in bending along the z-axis 
coupled in line, Yay2AMy2A + Yay2BMy2B 

Figure 5. 7 to Figure 5. 12 present the predicted response of beams A and B coupled 
in line at the connection point 2. The mass-like behaviour of the beams at low 
frequencies mentioned in Section 4.4 is still evident when the beams are coupled 
together and energy decays at a rate of 6 dB per octave. As frequency increases, 
however, the behaviour of the coupled beams starts to be affected by their damping, 
causing the amplitude of the resonant and anti-resonant peaks to reduce with 
frequency as can be seen. 

Good agreement was also found between the analytical and FE models. The results of 
the latter follow the outline of the analytical model quite precisely, and the resonant 
and anti-resonant peaks of both models are reasonably well matched in both 
frequency and magnitude. This suggests that the coupling matrices derived for two 
beams in line are correct. However, as frequency increases, the discrepancies between 
the analytical and FE models become somewhat more apparent. The use of a finer 
mesh in the FE model would likely be required to reduce these discrepancies. 
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5.4.3! Two beams in an L-junction 

The predicted driving point mobilities at the connection point of two beams coupled 
in an L-junction are given in Figure 5. 13 to Figure 5. 18. The results of the FE model 
are also provided in these figures for comparison. A discussion of the results obtained 
is included in the following paragraphs. 

 
Figure 5. 13 Driving point mobilities for two beams coupled in an L-junction, YLx2A2A + 
Yvz2BFz2B 

 
Figure 5. 14 Driving point mobilities for two beams coupled in an L-junction, YTx2A2A + 
Yaz2BMz2B 
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Figure 5. 15 Driving point mobilities for two beams coupled in an L-junction, Yvy2AFy2A + 
Yvy2BFy2B 

 
Figure 5. 16 Driving point mobilities for two beams coupled in an L-junction, Yaz2AMz2A + 
YTx2B2B 

 
Figure 5. 17 Driving point mobilities for two beams coupled in an L-junction, Yvz2AFz2A + 
YLx2B2B 
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Figure 5. 18 Driving point mobilities for two beams coupled in an L-junction, Yay2AMy2A + 
Yay2BMy2B 

Figure 5. 13 to Figure 5. 18 present the predicted response of beams A and B coupled 
in an L-junction at the connection point 2. As with two beams in line, the mass-like 
behaviour of the beams coupled manifests itself as a linear slope that decays at 6 dB 
per octave at low frequencies. The effect of damping becomes more apparent as 
frequency increases, where the decay in the amplitude of the resonant and anti-
resonant peaks can be seen more prominently. 

Figure 5. 13, Figure 5. 17 and Figure 5. 18 show good agreement between the 
analytical and FE models, with the differences between the two being just noticeable 
in the figures. The frequency and magnitude of the resonant and anti-resonant peaks 
are well matched in both models. This suggests that the coupling assigned for these 
degrees of freedom is correct. As frequency increases, the differences between the 
analytical and FE models also increase somewhat. A finer mesh in the FE model 
would likely be required to reduce these discrepancies. 

Figure 5. 14, Figure 5. 15 and Figure 5. 16, on the other hand, show more noticeable 
discrepancies between the analytical and FE predicted responses of the two beams 
coupled in an L-junction, starting reasonably close to the first modal peak. Although 
at low frequencies the results of the analytical and FE models are very well matched, 
as frequency increases, the differences between the models are more apparent. 
Despite the results of the two models following a similar trend, and the resonant and 
anti-resonant behaviour of the coupled beams still being evident, the global modes in 
one of the models seem to be incorrect for all wave types, causing such discrepancies. 
This could potentially be attributed to assembly errors in the coupling matrices. 
However, if this was the case, significant discrepancies between the two models 
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would also be expected at low frequencies and these do not occur. In addition to this, 
different configurations of the coupling matrices were tested and the errors persisted. 
The differences between the analytical and FE models could also be attributed to the 
destructive interference between the torsional and bending degrees of freedom. 
However, should this be the case, similar results would be expected for the coupling 
between the other degrees of freedom. Further investigation into the discrepancies 
between the analytical and FE models in Figure 5. 14 to Figure 5. 16 is required. This 
will be suggested as part of the further work to be carried out to simplify Shorter & 
Langley’s prediction model. As the same approach for modelling two beams in an L-
junction was followed when coupling three and four beams together, it is likely that 
this unsolved problem in the analytical and / or FE model also affects the comparisons 
in the sections that follow. 

5.4.4! Three beams in L-junctions 

The predicted driving point mobilities at the connection point of three beams coupled 
in an L-junction are given in Figure 5. 19 to Figure 5. 24 for point 3. As previously 
mentioned, the response of the system at point 2 would be as per the two beams in an 
L-junction scenario presented in Section 5.4.3. The results of the FE model are also 
provided in these figures for comparison. A discussion of the results obtained is 
included in the following paragraphs. 

 
Figure 5. 19 Driving point mobilities for three beams coupled in an L-junction, Yvz3BFz3B + 
YLx3C3C 
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Figure 5. 20 Driving point mobilities for three beams coupled in an L-junction, Yaz3BMz3B + 
YTx3C3C 

 
Figure 5. 21 Driving point mobilities for three beams coupled in an L-junction, Yvy3BFy3B + 
Yvy3CFy3C 

 
Figure 5. 22 Driving point mobilities for three beams coupled in an L-junction, YTx3B3B + 
Yaz3CMz3C 
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Figure 5. 23 Driving point mobilities for three beams coupled in an L-junction, YLx3B3B + 
Yvz3CFz3C 

 
Figure 5. 24 Driving point mobilities for three beams coupled in an L-junction, Yay3BMy3B + 
Yay3CMy3C 

Figure 5. 19 to Figure 5. 24 present the predicted response of beams B and C coupled 
in an L-junction at connection point 3 (refer to Section 5.3.4 for the relevant notation). 
As with two beams in line and in an L-junction, the mass-like behaviour of the 
coupled beams manifests itself as a linear slope that decays at 6 dB per octave at low 
frequencies. With the increase in frequency, the effect of damping becomes more 
significant and the amplitude of the resonant and anti-resonant peaks decays. 
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As with two beams in an L-junction, good agreement is shown in Figure 5. 19, Figure 
5. 23 and Figure 5. 24 between the analytical and FE models. The differences between 
the two models are somewhat more noticeable than in the case of the two beams in an 
L-junction. The frequency and magnitude of the resonant and anti-resonant peaks are 
well matched in both models, which suggests that the coupling assigned for these 
degrees of freedom is correct. As frequency increases, the differences between the 
analytical and FE models also increase more noticeably than in the previous scenario. 
These differences could likely be reduced by using a finer mesh in the FE model. 

More noticeable discrepancies are shown in Figure 5. 20, Figure 5. 21 and Figure 5. 
22 between the analytical and FE models. While for the two beams in an L-junction 
scenario the response at low frequencies was very well matched, the predicted 
responses at similar frequencies for three beams in L-junctions are significantly 
different. This said, the results of the two models follow a similar trend, and the 
resonant and anti-resonant behaviour of the coupled beams is still evident. The results 
of the FE model also show additional anti-resonant behaviour at low frequencies, 
which is not present in the results of the analytical model. This additional anti-
resonance could potentially be an effect of the presence of beam A on the response of 
the coupling between beams B and C at point 3, which is not accounted for in the 
analytical model. 

The errors between the analytical and FE models could also be attributed to assembly 
errors in the coupling matrices. However, different configurations of the coupling 
matrices were tested and the errors persisted. The differences between the analytical 
and FE models could also be attributed to the destructive interference between 
different degrees of freedom, such as torsional and bending degrees of freedom. 
However, should this be the case, similar results would be expected for the coupling 
between the other degrees of freedom. Further investigation into the discrepancies 
between the analytical and FE models in Figure 5. 20 to Figure 5. 22 is required. This 
will be suggested as part of the further work to be carried out to simplify Shorter & 
Langley’s prediction model. 
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5.4.5! Four beams in an L-junction 

The predicted driving point mobilities at the connection points of four beams coupled 
in an L-junction are given in Figure 5. 25 to Figure 5. 30 for point 1 and in Figure 5. 
31 to Figure 5. 36 for point 4. The response of the system at points 2 and 3 would be 
as per the three beams in L-junctions scenario presented in Section 5.4.4. The results 
of the FE model are also provided in these figures for comparison. A discussion of the 
results obtained is included in the following paragraphs. 

 
Figure 5. 25 Driving point mobilities for four beams coupled in an L-junction, YLx1A1A + 
Yvz1DFz1D 

 
Figure 5. 26 Driving point mobilities for four beams coupled in an L-junction, YTx1A1A + 
Yaz1DMz1D 
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Figure 5. 27 Driving point mobilities for four beams coupled in an L-junction, Yvy1AFy1A + 
Yvy1DFy1D 

 
Figure 5. 28 Driving point mobilities for four beams coupled in an L-junction, Yaz1AMz1A + 
YTx1D1D 

 
Figure 5. 29 Driving point mobilities for four beams coupled in an L-junction, Yvz1AFz1A + 
YLx1D1D 
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Figure 5. 30 Driving point mobilities for four beams coupled in an L-junction, Yay1AMy1A + 
Yay1DMy1D 

 
Figure 5. 31 Driving point mobilities for four beams coupled in an L-junction, YLx4C4C + 
Yvz4DFz4D 

 
Figure 5. 32 Driving point mobilities for four beams coupled in an L-junction, YTx4C4C + 
Yaz4DMz4D 
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Figure 5. 33 Driving point mobilities for four beams coupled in an L-junction, Yvy4CFy4C + 
Yvy4DFy4D 

 
Figure 5. 34 Driving point mobilities for four beams coupled in an L-junction, Yaz4CMz4C + 
YTx4D4D 

 
Figure 5. 35 Driving point mobilities for four beams coupled in an L-junction, Yvz4CFz4C + 
YLx4D4D 
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Figure 5. 36 Driving point mobilities for four beams coupled in an L-junction, Yay4CMy4C + 
Yay4DMy4D 

Figure 5. 25 to Figure 5. 36 present the predicted response of beams A, D and C 
coupled in L-junctions at connection points 1 and 4 (refer to Section 5.3.4 for the 
relevant notation). The mass-like behaviour of the coupled beams manifests itself in 
most figures as a linear slope that decays at 6 dB per octave at low frequencies. With 
the increase in frequency, the effect of damping becomes more significant and the 
amplitude of the resonant and anti-resonant peaks decays. 

Good agreement was found between the results of the analytical and FE models 
shown in Figure 5. 25, Figure 5. 29, Figure 5. 30, Figure 5. 31, Figure 5. 35 and 
Figure 5. 36. The differences between the two models are more noticeable than in the 
case of the two and three beams in L-junctions. The frequency and magnitude of the 
resonant and anti-resonant peaks are well matched in both models, with the exception 
of the degrees of freedom shown in Figure 5. 30 and Figure 5. 36, where a small shift 
in frequency is shown. This could be related to the level of detail included in the FE 
model. Despite this small shift in frequency, the results suggest that the coupling 
assigned for these degrees of freedom is correct. As frequency increases, the 
differences between the analytical and FE models also increase more noticeably than 
in the previous scenarios. These differences could likely be reduced by using a finer 
mesh in the FE model. 

Figure 5. 26, Figure 5. 27, Figure 5. 28, Figure 5. 32, Figure 5. 33 and Figure 5. 34 
reveal more significant discrepancies between the analytical and FE models. While 
for the two beams in an L-junction scenario the response at low frequencies was very 
well matched, the predicted responses at similar frequencies for four beams in L-
junctions are quite different. This said, the results of the two models follow a 
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reasonably similar trend. The resonant and anti-resonant behaviour of the coupled 
beams is still evident. However, the frequencies at which they occur in each model are 
noticeably different. As per the discussion for three beams coupled in L-junctions, 
there is a chance that the significant differences between the two models are related to 
the presence of the coupling between beams A, B and C, which is not accounted for in 
the analytical model. 

The errors between the analytical and FE models could also be attributed to assembly 
errors in the coupling matrices. As per the previous discussions, different 
configurations of the coupling matrices were tested and the errors persisted. The 
differences between the analytical and FE models could also be attributed to the 
destructive interference between different degrees of freedom, such as torsional and 
bending degrees of freedom. However, should this be the case, similar results would 
be expected for the coupling between the other degrees of freedom. Further 
investigation into the discrepancies between the analytical and FE models in the 
above figures is required. This will be suggested as part of the further work to be 
carried out to simplify Shorter & Langley’s prediction model. 

5.4.6! Computation time 

In addition to comparing the results of the analytical and FE models, consideration 
has also been given to the time each model takes to generate results to demonstrate 
the different computational requirements of each model. A comparison between the 
computation time taken for each model to run is provided in Table 5. 2, along with a 
discussion of the results in the subsequent paragraphs. 

Table 5. 2 Comparison of computation times for each model 

 Computation time of models 

 
Analytical beam 

functions (MATLAB) 
FE model (COMSOL) 

Two beams in line 1 minute 14 seconds 3 minutes 59 seconds 

Two beams in an L-junction 1 minute 32 seconds 4 minutes 10 seconds 

Three beams in L-junctions 1 minute 32 seconds 4 minutes 

Four beams in L-junctions 1 minute 56 seconds 

8 minutes 26 seconds (total for 
excitation at points 1 and 4) 

4 minutes 13 seconds (for excitation 
at a single point) 
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The difference in time taken to run the models is clear from the table. However, it 
should be noted that the set up of the FE model has a significant impact on the 
computation time needed. If the number of elements on the beam and the mesh size 
were optimised, the times shown in Table 5. 2 for the FE model would likely be 
shorter and more in line with those of the analytical model. 

Similarly, if the MATLAB code for the analytical model was to be optimised, there 
would be potential for the run times given above to also be reduced. 

One point worth noting is that the computation time for the FE model only increased 
marginally with the addition of more beams into to the system. The run times for the 
analytical model, on the other hand, increased more significantly. 

 

The process for coupling beams together in four different scenarios commonly 
encountered in buildings has been set out in this chapter, in terms of the coordinate 
systems to use and the coupling of beams through the use of coupling matrices and 
impedance addition. This process was modelled in MATLAB and the results of which 
were compared with those of an FE model for the same scenario. Good agreement 
was found for most scenarios. However, further work is expected to be required to 
ascertain the causes of some of the discrepancies found. The computation time for the 
analytical and FE models has been compared. As expected, the FE model has larger 
computational requirements. With the beam mobilities derived in Chapter 4 and with 
the coupling of beams discussed in the present chapter, it is now appropriate to 
provide additional information on the proposed simplifications to Shorter & Langley’s 
prediction model. This is given in the following chapter. 
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6! A simplified hybrid model for the prediction of structure-
borne noise in buildings 

With the results for the coupling of beams validated against FEM, the next step in the 
proposal for a simplified hybrid model for the prediction of structure-borne noise in 
buildings is to demonstrate how the work presented in Chapters 4 and 5 can be 
incorporated into Shorter & Langley’s model (2005). The present chapter relates to 
objective 5 of this thesis and compares the main calculation stages of Shorter & 
Langley’s hybrid model against the proposed simplified model. 

6.1! Comparison between Shorter & Langley’s and simplified models 

As previously mentioned, buildings comprise both low frequency and high frequency 
elements, such as beams and plates, respectively. Low frequency elements are better 
modelled using a deterministic approach such as FEM or analytical functions. For 
high frequency elements, a statistical approach would be more appropriate. Shorter & 
Langley’s hybrid model caters for the properties of these two types of elements in a 
building / vibro-acoustic system and allows them to be modelled with a flexible 
approach. For instance, their calculation method can account for the deterministic 
characteristics of an element without the need to model the whole system 
deterministically, allowing a solution to the problem encountered at mid-frequencies 
where neither FE nor SEA are strictly appropriate. (Shorter & Langley, 2005) 

The lowest frequency to which SEA can be applied has been studied by many authors, 
in terms of the lowest number of modes needed to allow accurate statistical averaging. 
Typical suggested lowest values range from 2 to 30 modes per frequency band. 
However, as Craik (1988) states, the lower limit of SEA is not only dependent on the 
number of modes per frequency band, but also on the damping properties of those 
modes. Therefore, the lower limit of SEA will likely vary depending on the system 
under consideration, and so will the frequency range in the simplified model. 

The various calculation steps of the full hybrid model are set out in Table 6. 1 based 
on information provided in Shorter & Langley (2005). Also included in this table is a 
brief description of how the dynamic stiffness beam model presented in the previous 
sections can be incorporated within the full model. Additional information on the 
various steps is provided in Sections 6.2 to 6.5. 
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Table 6. 1 Comparison of full and proposed simplified hybrid models for the prediction of structure-borne sound in buildings 

Step Shorter & Langley’s model (2005) Proposed simplified model Notes 

 System definition   

1 
Divide the system into a set of coupled sub-systems, and 
specify connection regions for each sub-system. 

As per Shorter & Langley’s model. 
Beams are considered to be deterministic systems, and 
plates (walls, floors and ceilings) statistical. 

2 Define the deterministic boundaries for each sub-system. As per Shorter & Langley’s model. 
Deterministic boundaries apply to junctions between 
beams, and between beams and plates, where the sub-
system properties are fully known. 

3 
Specify degrees of freedom for the deterministic sub-
systems and the statistical junctions, i.e. junctions 
between statistical elements only. 

As per Shorter & Langley’s model. 

At least two points need to be considered on each beam 
when modelling the deterministic elements on their own. 
These are the excitation point and the reception point. At 
each end of the beam, the longitudinal, torsional and two 
bending degrees of freedom need to be accounted for, 
resulting in a total of 12 degrees of freedom per beam. 
Additional points, and consequently degrees of freedom, 
will likely be needed when connecting deterministic and 
statistical elements. 

As the simplified model is only intended to model beam 
framed buildings, i.e. there will always be a beam 
element in between plates, there are no connections 
between statistical systems. 
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Step Shorter & Langley’s model (2005) Proposed simplified model Notes 

 Assembly of direct field equations   

4 

Use finite or boundary element analysis to obtain the 
dynamic stiffness matrix, !", for the deterministic sub-

systems at a given frequency. Specify the excitation 

applied to the system, #$$%&', in terms of a cross-spectral 

matrix at a given frequency. 

Instead of using finite or boundary element analysis 

techniques to derive the dynamic stiffness matrix, !", 
for the beams, this can be found using the mobilities 
derived in Chapter 4 and the coupled matrices given in 
Chapter 5. 

In a real scenario, the force applied to the system / 
building can be determined from velocity measurements 
at the point of entry to the system / building. The input 
force can then be calculated from the relationship 
between velocity and mobility discussed in Chapter 4. 

The cross-spectrum matrix of the force #$$%&' is calculated 

from the cross spectral matrix of the measured velocity 
and in the simplest case is given by the magnitude 
squared of a unit force. 

The dynamic stiffness matrix is proportional to the 
inverse of the mobility matrix. 

Refer to Section 6.3 for the dynamic stiffness matrix. 

Additional points will be required on the beam to allow 
coupling to plates. 

5 

Calculate the direct field dynamic stiffness, !"()
(+), for 

each statistical sub-system. Shorter & Langley (2005) 
state that boundary element analysis can be used to 
calculate the direct field dynamic stiffness. However, 
they also note that using analytical expressions for such 
calculations would be more computationally effective. 

As with the dynamic stiffness matrix for the beams, the 
direct field dynamic stiffness for each plate can be found 
from the inverse of the point mobility for the plate. 

Refer to Section 6.4 for the direct field dynamic stiffness 
matrix. 



6. A simplified hybrid model for the prediction of structure-borne noise in buildings 

 165 

Step Shorter & Langley’s model (2005) Proposed simplified model Notes 

6 
Assemble the total dynamic stiffness matrix for the 
system. 

The total dynamic stiffness matrix for the system can 

then be assembled with the derived !" and !"()
(+). 

 

 Assembly of reverberant field equations   

7 Calculate the input power to each statistical sub-system. As per Shorter & Langley’s model. 
Use equation in Shorter & Langley to calculate the input 
power. 

8 
Calculate the power transfer coefficients, or coupling 
loss factors, between the statistical sub-systems. 

As per Shorter & Langley’s model. 

As the simplified model is only intended to model beam 
framed buildings, i.e. there will always be a beam 
element in between plates, there are no connections 
between statistical systems. 

9 
Calculate the total power transfer coefficients for each 
statistical sub-system. 

As per Shorter & Langley’s model. 
Use equation in Shorter & Langley to calculate the total 
power transfer coefficients for each sub-system. 

10 
Calculate the modal overlap factors for each statistical 
sub-system. 

As per Shorter & Langley’s model. 
Calculate the modal overlap factors for each plate by 
using the modal density of a plate. 

11 
Assemble the reverberant power balance equations for 
the statistical sub-systems, making use of the external 
input powers calculated in Step 7. 

As per Shorter & Langley’s model. Assemble matrix as per Shorter & Langley’s model. 
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Step Shorter & Langley’s model (2005) Proposed simplified model Notes 

 Solution for reverberant and direct field responses   

12 

Find the ensemble average modal energy density in the 
reverberant field of each statistical sub-system by 
solving the reverberant power balance equations 
assembled in Step 11. 

As per Shorter & Langley’s model. 

Solve for the average modal energy density in the 
reverberant field of each plate using the equations given 
by Shorter & Langley. 

13 
Determine the ensemble average cross-spectral response, 

#-- , using the reverberant energy levels determined. 
As per Shorter & Langley’s model. 

Use equations in Shorter & Langley. 

14 
Add the energy in the direct and reverberant fields to 
find the total energy of each statistical sub-system. 

As per Shorter & Langley’s model. 
 

15 Repeat Steps 1 to 14 for each frequency of interest. As per Shorter & Langley’s model.  
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6.2! Steps 1 to 3 – Define the system 

The first steps in Shorter & Langley’s (2005) model consist of correctly defining the 
properties of the system. This should include a description of the coupled sub-systems 
and their connection regions, as well as the definition of the deterministic boundaries 
and the specification of degrees of freedom. A description of these items based on the 
above paper, along with how they are applied in the simplified model, is provided in 
the following paragraphs. 

6.2.1! Boundaries, connection regions and junctions 

The definitions of boundaries, connection regions and junctions used by Shorter & 
Langley (2005) are provided below. Examples of how these can be applied to a beam 
framed building and to a simpler scenario of a plate in a beam frame are also given. 

Coupled sub-systems can have two main types of boundaries. These are deterministic 
boundaries, which are present where the full properties of the boundary are known, 
and random boundaries, present when the properties of a boundary are not fully 
known. A sub-system that is formed by fully deterministic boundaries can be treated 
as a deterministic sub-system. All other sub-systems containing either only random or 
a mix of random and deterministic boundaries are considered to be statistical 
subsystems. 

Each deterministic boundary will have connection regions, i.e. areas of the boundary 
through which energy will transfer between sub-systems, either as a result of the 
coupling between adjacent sub-systems or due to excitation from external sources. 
Connection regions can also be divided into coherently and incoherently coupled. The 
former is possible if the properties of the sub-system are fully known and the 
connection regions are within a few wavelengths of each other. At low frequencies, 
sub-systems are more likely to be coherently coupled as the wavelength will be longer 
and the connection regions will be “closer” together. If the opposite is present, 
however, i.e. the connection regions are many wavelengths apart and their properties 
are not fully known, the connection regions would be incoherently coupled. As 
frequency increases and the wavelength decreases, the connection regions between 
sub-systems will become incoherently coupled. 
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In addition to the above, connection regions can be coupled through the following 
types of junctions: 

1.! Deterministic junctions: junctions between deterministic sub-systems; 
2.! Statistical junctions: junctions between statistical sub-systems; 
3.! Hybrid junctions: junctions between deterministic and statistical sub-systems. 

Applying the above to a beam framed building, beams and columns show long 
wavelength behaviour and therefore would be better modelled deterministically. 
Plates (walls and floors), on the other hand, have a short wavelength behaviour, 
meaning a statistical approach would likely produce more accurate results when 
modelling such elements. 

Focussing now on the scenario of a plate in a beam frame, such as a wall within a 
building, four connection regions could be defined between the plate and the frame, 
one per beam. In terms of defining the deterministic boundaries for a plate in a beam 
frame, these would apply to the junctions between the beams, as well as between 
beams and plates where the sub-system properties are fully known. In this scenario, 
there would be no connections or boundaries between statistical systems. However, if 
the plate formed part of the boundaries of a room, a random boundary would exist 
between the plate and the room volume. Extensive work on the energy flow between 
plates and volumes is available from sources such as Craik (1988). 

As noted in Section 5.2, for the coupling of various elements to be successful, the 
velocity (or displacement, when working in terms of dynamic stiffness) on both sides 
of the connection regions will need to be compatible. 

6.2.2! Degrees of freedom and connection points 

The response of the deterministic sub-systems can be described with degrees of 
freedom, as used in Chapters 4 and 5. In the case of the beams modelled in the 
previous chapters, six degrees of freedom have been accounted for at each end of each 
beam. These included the quasi-longitudinal, torsional and bending along the y- and 
z-axes degrees of freedom, and resulted in a total of 12 degrees of freedom per beam. 
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When modelling beams and the coupling between them, a minimum of two points 
need to be considered on each beam. These are the excitation point and the response 
point. However, when coupling statistical and deterministic sub-systems together, 
additional excitation and response points may be needed on the beam. This will 
increase the number of degrees of freedom that need to be considered. 

For simplicity, the discussions in the following sections will refer to a beam coupled 
to a single plate. The beam has been modelled as having a total of 12 degrees of 
freedom, six degrees of freedom per end. Deterministic junctions will be present at 
both ends to couple the beam to the plate. 

6.3! Step 4 – Determine the dynamic stiffness matrix and the applied 
excitation for the deterministic sub-systems 

With the overall system defined in steps 1 to 3 above, the dynamic stiffness matrix for 
the deterministic sub-systems should now be determined, along with the excitation 
applied to the system. The following paragraphs provide the dynamic stiffness matrix 
for the beam and details of the excitation applied to it. 

Shorter & Langley (2005) mention that finite or boundary element modelling can be 
used to obtain the dynamic stiffness matrix for the deterministic sub-systems. 
However, this can also be calculated from the mobility matrices derived in Chapter 4. 
It is worth noting that if the system under consideration includes more than a single 
deterministic sub-system, the dynamic stiffness matrix derived ought to be for the 
coupled deterministic sub-systems. As the scenario under consideration only 
comprises one deterministic sub-system, the dynamic stiffness matrix will be for the 
uncoupled beam. 

As mentioned in Section 4.1, the dynamic stiffness matrix for a beam is directly 
proportional to the inverse of the mobility matrix. Equation 6. 1 to Equation 6. 6 set 
out the dynamic stiffness matrix for a free-free beam with six degrees of freedom at 
each end. For consistency, the notation used to indicate which degree of freedom the 
terms refer to and what axis they act on has been kept as per the previous chapters. 
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 !" = $%& % '( Equation 6. 1 

!" =
!()() !()*)
!*)() !*)*)

 Equation 6. 2 

!()() =

+,-1/1/ 0 0 0 0 0

0 +1-1/1/ 0 0 0 0

0 0 +231/431/ +231/561/ 0 0

0 0 +761/431/ +761/561/ 0 0

0 0 0 0 +261/461/ +261/531/

0 0 0 0 +731/461/ +231/431/

 Equation 6. 3 

!()*) =

+,-1/2/ 0 0 0 0 0

0 +1-1/2/ 0 0 0 0

0 0 +231/432/ +231/562/ 0 0

0 0 +761/432/ +761/562/ 0 0

0 0 0 0 +261/462/ +261/532/

0 0 0 0 +731462 +231/432/

 Equation 6. 4 

!*)() =

+,-2/1/ 0 0 0 0 0

0 +1-2/1/ 0 0 0 0

0 0 +232/431/ +232/561/ 0 0

0 0 +762/431/ +762/561/ 0 0

0 0 0 0 +262/461/ +262/531/

0 0 0 0 +732/461/ +232/431/

 Equation 6. 5 

!*)*) =

+,-2/2/ 0 0 0 0 0

0 +1-2/2/ 0 0 0 0

0 0 +232/432/ +232/562/ 0 0

0 0 +762/432/ +762/562/ 0 0

0 0 0 0 +262/462/ +262/532/

0 0 0 0 +732/462/ +232/432/

 Equation 6. 6 

In addition to the dynamic stiffness matrix for the deterministic elements, the 

excitation applied to the system 9::;<= needs to be specified in terms of a cross-spectral 

matrix. As mentioned in Table 6. 1, the cross-spectrum matrix of the force 9::;<= can be 

calculated from the cross-spectral matrix of the measured velocity, which is given by 
the magnitude squared of a unit force in its simplest scenario. 
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6.4! Step 5 – Calculate the direct field dynamic stiffness matrix for each 
statistical sub-system 

Using a similar method to that described in Section 6.3 to model the statistical sub-
systems would require the properties of these to be known exactly. However, this is 
not always possible and as Shorter & Langley (2005) state “there is therefore an 
unavoidable amount of uncertainty (or missing information) associated with the 
properties of such subsystems”. 

As such, instead of deriving the global dynamic stiffness matrix for each statistical 
sub-system, the dynamic behaviour of these sub-systems can be modelled statistically 
by describing their response as a superposition of direct and reverberant fields. When 
an excitation is applied to a deterministic boundary of a statistical sub-system, such as 
the boundary between a plate and a beam, the displacement field generated can 
describe the direct field within the statistical sub-system. Therefore, the direct field of 
a statistical sub-system can be coupled with a deterministic sub-system. (Shorter & 
Langley, 2005) 

Shorter & Langley’s (2005) model states that the direct field dynamic stiffness matrix 
for the statistical sub-systems can be calculated using a boundary element model. 

However, the direct field dynamic stiffness matrix for a plate !
">?

(A) can also be 

derived from its mobility matrix &>C:>C>=;DEFG=;, as shown in Equation 6. 7. The term 

(H) refers to the mth statistical sub-system. In the simple case of a beam coupled to a 
plate, H = 1. 

 !
">?

(A)
= $%&>C:>C>=;DEFG=;

'(  Equation 6. 7 
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The driving point mobility for an infinite plate in bending along the y-axis can be 
found from Equation 6. 8, as provided by Su (2003). 

 &IJKLJM = NO PQ
(*)

RS>T − PQ
(*)

−$RS>T  Equation 6. 8 

where   

 NO = 8 +H′′ is the characteristic mobility; Equation 6. 9 

 
+ =

XYZ

(* ('[\
D is the bending stiffness; Equation 6. 10 

 
R =

]\A^^

_
 is the wavenumber; Equation 6. 11 

 PQ
(*) is a Hankel function of the second order;  

 And S>T is the distance between points ` and $ on the plate.  

The transfer and moment mobilities for the plate (&IJKabM, &cbKLJM and &cbKabM, 

respectively) can be found using the same method as described for the beams in 
Section 4.3.3. However, these can also be approximated using a simpler finite 
difference method as set out in Elliott, Moorhouse & Pavíc (2012) for beams. 

To allow the plate to be coupled to the two ends of the beam, the number of degrees 
of freedom on the plate should match those of the beam. This essentially means that 
the second bending degree of freedom along the z- axis, as well as the longitudinal 
and transverse shear degrees of freedom will also need to be accounted for. The 
inclusion of these in the mobility, and subsequently dynamic stiffness matrix, will 
generate a 12 x 12 matrix as for the beam. 

6.5! Step 6 – Assemble the total dynamic stiffness matrix for the system 

The next step in Shorter & Langley’s (2005) model is the assembly of the total 
dynamic stiffness matrix for the coupled system !=d=. This can be calculated from 
Equation 6. 14. !=d= for a single beam and plate connected at the two ends of the 
beam is given by Equation 6. 15. 
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 !" = $%&e;GA
'(  Equation 6. 12 

 !
">?

(A)
= $%&EFG=;(DA)

'(  Equation 6. 13 

 
!=d= = !" + !

">?

(A)

A

 Equation 6. 14 

 
!=d= =

!"(g(g + !">?(g(g !"(g*g + !">?(g*g

!"*g(g + !">?*g(g !"*g*g + !">?*g*g
 Equation 6. 15 

At present, the above dynamic stiffness matrix only considers two excitation and 
response points on the beam and plate. However, in reality, additional points will 
likely be needed to effectively couple plates to beams along their full length. 
However, calculating the mobility matrix for each additional point on the beam and 
plate is expected to have a significant impact on the computation time of the 
analytical model. Therefore, by introducing more excitation and response points into 
the system, the advantages of using a dynamic stiffness model as replacement for a 
FE model will likely diminish. To ascertain the extent of such impact and whether it is 
feasible to replace FEM with dynamic stiffness models for complex systems, it is 
suggested that further research work is undertaken. 

 

In summary, the present chapter sets out the main differences between Shorter & 
Langley’s (2005) hybrid deterministic – statistical model and the proposed simplified 
prediction model. These relate to the calculation of the deterministic and direct field 
dynamic stiffness matrices for the various sub-systems. The replacement of the FE 
stage of the model with a dynamic stiffness approach has been proposed, based on the 
work presented in Chapters 4 and 5. However, given the likely need for additional 
excitation and response points on the various sub-systems to allow them to be 
effectively coupled, the use of a simplified model may not be appropriate for complex 
systems. The simplification of Shorter & Langley’s (2005) model ends with the 
assembly of the total dynamic stiffness matrix for the system under study. The 
remaining steps of the original model can then be followed to complete the vibro-
acoustic analysis of the system. 
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7! Conclusions 

The following conclusions have been drawn from the research set out in the previous 
chapters: 

•! An overview of the mechanisms through which ground-borne vibration and 
structure-borne noise propagate from a source, such as an underground train 
line, through the soil and into a receiver has been provided. The parameters 
that affect the generation and propagation of vibration and structure-borne 
noise are complex and, in some cases, their impact on the propagation of 
energy is hard to predict. 

•! Extensive work on the prediction of vibration and structure-borne noise 
through soil and into buildings has been ongoing since the 1970s, and 
numerous prediction models have been developed since. These range from 
empirical calculation tools, which are based on data measured at a number of 
sites from which relationships are then derived for losses through the soil, 
foundations and the building itself, through to highly detailed numerical 
models. Although numerical prediction techniques can be more accurate than 
an empirical model, the latter are still widely used in the industry. A potential 
reason for this may be related to the high level of detail often required for such 
models and the associated large computational costs. 

•! As most prediction techniques have their limitations, some authors have taken 
to developing hybrid calculation tools. This type of models combine the best 
characteristics of two or more calculation techniques and are therefore more 
likely to provide more accurate results. An example of these is Shorter & 
Langley’s (2005) hybrid FE-SEA model, which allows deterministic elements, 
such as beams and columns in buildings, to be modelled deterministically, 
while allowing statistical elements, such as walls and floors, to be modelled 
statistically. However, there is an inherent computational cost associated with 
such detailed models. 
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•! Therefore, a simplification to Shorter & Langley’s (2005) hybrid FE-SEA 
model has been proposed for the prediction of structure-borne noise in 
buildings. The deterministic elements in the model are proposed to be 
represented through analytical expressions for mobility / dynamic stiffness 
beam functions with six degrees of freedom each, while the statistical systems 
would be modelled using SEA as per Shorter & Langley’s (2005) model. This 
approach is expected to provide a better representation of the structural frame 
of a building and its effect on vibration transmission to other elements within 
the building, compared with other simplified dynamic stiffness models 
currently available, and the use of SEA to model walls and floors will allow 
their resonant behaviour to be accounted for. Such approach is also expected 
to yield more accurate predictions, while keeping the calculation time to a 
minimum. 

•! The first step to allow the simplification of Shorter & Langley’s (2005) model 
was to derive the analytical mobility functions for beams and columns. These 
have been derived from first principles for free-free beams with six degrees of 
freedom including quasi-longitudinal, torsional, and bending along the y- and 
z- axes. The results of the mobility functions were compared against a FE 
model for the same scenario. Good agreement was achieved between the 
analytical and FE models. 

•! With the beam mobilities derived, coupling of beams was the second step in 
simplifying Shorter & Langley’s (2005) model. Beams were coupled in four 
scenarios including two beams coupled in line and two, three and four beams 
coupled in L-junctions to each other. The beams were coupled using the 
impedance addition method for which coupling matrices were developed. 
These matrices allow the selection of which degrees of freedom are to be 
coupled. The results of the impedance addition and coupling matrices have 
been compared against a FE model for the various scenarios. 

•! For two beams coupled in line, good agreement was achieved between the 
analytical and FE model. Slight differences in the results of the two models 
were noticeable at high frequencies. 
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•! For two, three and four beams coupled in L-junctions, positive results were 
also obtained for some of the coupled degrees of freedom. However, larger 
discrepancies were encountered particularly when coupling torsional and 
bending degrees of freedom. Further interrogation of the coupling matrices 
derived for these scenarios has been suggested. 

•! Based on the results presented in this thesis, the replacement of FEM in 
Shorter & Langley’s (2005) model with dynamic stiffness functions to model 
beams and columns in buildings may in fact be feasible. The research herein 
has shown that, in most instances, good agreement was present between the 
results of the analytical and FE models and that savings in computational costs 
may be available. However, to fully confirm this, further work is required. 
This is further discussed in Section 7.1. 

•! A comparison between the various stages of the full and simplified hybrid 
prediction models has been provided, along with suggestions for the next steps 
to further develop and assemble the proposed simplified model. 

7.1! Opportunities for further work 

The work presented in this thesis has highlighted a number of areas which would 
benefit from further study, especially relating to the development of the simplified 
structure-borne noise prediction model. These are set out below. 

•! Discrepancies were noted between the results of the analytical and FE models 
for some degrees of freedom when beams are coupled in L-junctions. One of 
the potential causes of these differences may be associated with the coupling 
matrices and how they have been derived. Therefore, it would be worth 
interrogating the coupling matrices used further to ascertain whether these are 
the cause of such differences between the analytical and FE models. 

•! The next step in simplifying Shorter & Langley’s (2005) model would be to 
derive the dynamic stiffness matrix for the statistical elements of the system, 
using the equations and methodology provided in Chapter 6.4. The dynamic 
stiffness matrix for the statistical elements would need to account for the same 
number of degrees of freedom as the beams to allow the elements to be 
effectively coupled. 
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•! The current analytical model only considers two points on the beam, one at 
each end. Whilst this is sufficient when coupling beams together at the ends, 
additional points on the beams would likely be required to allow plates to be 
effectively coupled to them. Further research could be undertaken on the 
minimum number of points that would be needed on the beams to allow 
effective coupling between these elements and reasonably accurate results. If 
the number of points needed on the beams is large, the benefit of replacing 
FEM with the dynamic stiffness method to model beams in the simplified 
model might be somewhat reduced. 

•! The derivation of the coupling matrices for the scenarios considered herein 
was done manually and was found to be very time consuming for beams with 
six degrees of freedom at each end. For more complex scenarios, such as when 
coupling beams and plates, or when assembling the full structure of a building, 
such task would become very challenging. Therefore, consideration could be 
given to the automation of the assembling of coupling matrices. This would 
help make the process more time efficient and might bring additional benefits 
in terms of computational costs. 

•! Additional consideration could also be given to the frequency range in which 
the dynamic stiffness method would be expected to be used and whether this 
range matches that of the FEM model being replaced. 

•! Lastly, if following the above works a simplified deterministic-statistical 
model is still found to be feasible, the complete simplified model could be 
assembled. The model could then be verified and validated against Shorter & 
Langley’s (2005) model and on-site measurements. 
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Appendix A – Mobilities for a free-free beam in bending 
along the z-axis 

Figure A. 1 to Figure A. 4 present the results of the derived mobilities for a finite free-
free beam in bending along the Z-axis. A comparison with the results of the FEM 
model for the same scenario is also provided. These results are similar to those 
obtained from the derived mobilities for a free-free beam in bending along the Y-axis, 
presented in Section 4.4.4, and are discussed in the same section. 

 
Figure A. 1 Transverse driving point force mobilities for a free-free beam in bending along the z-axis 

 

 
Figure A. 2 Transverse driving point force mobilities for a free-free beam in bending along the z-axis 
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Figure A. 3 Transverse driving point moment mobilities for a free-free beam in bending along the z-
axis 

 

 
Figure A. 4 Transverse transfer moment mobilities for a free-free beam in bending along the z-axis 
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Appendix B – Impedance matrices for coupled beams 

 

        
Figure B. 1 Coupled impedance matrix for two beams in an L-junction 
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Figure B. 2 Coupled impedance matrix for two beams in an L-junction 
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Figure B. 3 Coupled impedance matrix for three beams in an L-junction 
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Figure B. 4 Coupled impedance matrix for a beam frame (four beams in L-junctions) 
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Appendix C – MATLAB code 

Base code 
%% Beam properties 
wd = 0.2;                           % Width of beam (m) 
l = 4;                              % Length of beam (m) 
h = 0.3;                            % Height of beam (m) 
S = wd*h;                           % Cross-sectional area of beam 
rho = 2200;                         % Density of beam (kg/m3) 
E = (27*10^9)*(1+1i*(0.05));        % Modulus of elasticity of beam (Pa) 
nu = 0.20;                          % Poisson's ratio of beam 
G = E/(2*(1+nu));                   % Shear modulus of beam 
Iy = wd*(h^3)/12;                   % Moment of inertia of beam about y axis (emphasis on 
dimension perpendicular to the axis) 
Iz = h*(wd^3)/12;                   % Moment of inertia of beam about z axis (emphasis on 
dimension perpendicular to the axis) 
Ix = (wd*(h^3)+h*(wd^3))/12;        % Polar moment of inertia of beam about x axis 
(torsional moment of inertia) 
T = G*((h*(wd^3))/3)*(1-((192*wd)/((pi^5)*h))*tanh((pi*h)/(2*wd))); % Torsional stiffnes, 
Hopkins (2007) 
By = E*Iz;                          % Bending stiffness of beam along y axis 
Bz = E*Iy;                          % Bending stiffness of beam along z axis 
D = (E*(1-nu))/((1+nu)*(1-2*nu));   % Longitudinal stiffness of beam 
m = rho*S;                          % Mass per unit length of beam 
  
% Frequency range 
nfreqs = 5000;                      % Number of frequencies 
fmax = 5000;                        % Maximum frequency (Hz) 
freq = 1:fmax/nfreqs:fmax;          % Frequency array (Hz) 
f = freq; 
  
w = 2*pi*freq;                      % Angular frequency (rad/s) 
cBy = sqrt(w).*(By/m)^(1/4);        % Phase velocity of bending waves along y axis (m/s) 
cBz = sqrt(w).*(Bz/m)^(1/4);        % Phase velocity of bending waves along z axis (m/s) 
cL = sqrt(E/rho);                   % Propagation velocity of longitudinal waves (m/s) 
cT = sqrt(T/(rho*Ix));              % Propagation velocity of torsional waves (rad/s) 
kBy = w./cBy;                       % Complex wavenumber along y axis (bending) 
kBz = w./cBz;                       % Complex wavenumber along z axis (bending) 
kL = w/cL;                          % Longitudinal wavenumber 
kT = w/cT;                          % Torsional wavenumber 
  
x0 = [0 l];                         % Excitation point on the beam (m) 
x = [0; l];                         % Points on the beam we're interested in 
  
% Beam lengths 
l_1 = 2.5;                          % Length of beam 1 (m) 
l_2 = l-l_1;                        % Length of beam 2 (m) 
l_3 = l_1;                          % Length of beam 3 (m) 
l_4 = l-l_1;                        % Length of beam 4 (m) 
  
% Excitation and response points on each beam 
x0_1 = [0 l_1];                     % Excitation point on beam 1 (m) 
x_1 = [0; l_1];                     % Points on beam 1 we're interested in 
x0_2 = [0 l_2];                     % Excitation point on beam 2 (m) 
x_2 = [0; l_2];                     % Points on beam 2 we're interested in 
x0_3 = [0 l_3];                     % Excitation point on beam 3 (m) 
x_3 = [0; l_3];                     % Points on beam 3 we're interested in 
x0_4 = [0 l_4];                     % Excitation point on beam 4 (m) 
x_4 = [0; l_4];                     % Points on beam 4 we're interested in 
  
Zeros = zeros(1,1,length(f)); 
  
%% One long beam 
%Long beam - Bending mobilities along Y axis 
pBy = [x0 l By m]; 
[Yaa,Yab,Yba,Ybb] = ffbend_beam_mobility(w,pBy,kBy,x); 
Ylong_bendy = [Yaa Yab; 
    Yba Ybb]; 
Ylong_forceby_infinite = 1./((1/2)*rho*S.*cBy*(1+1i)); 
Ylong_momenby_infinite = 1./((1/2)*rho*S.*cBy.*((1-1i)./(kBy.^2))); 
  
%Long beam - Bending mobilities along Z axis 
pBz = [x0 l Bz m]; 
[Yaa,Yab,Yba,Ybb] = ffbend_beam_mobility(w,pBz,kBz,x); 
Ylong_bendz = [Yaa Yab; 
    Yba Ybb]; 
Ylong_forcebz_infinite = 1./((1/2)*rho*S.*cBz*(1+1i)); 
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Ylong_momenbz_infinite = 1./((1/2)*rho*S.*cBz.*((1-1i)./(kBz.^2))); 
  
% Long beam - Longitudinal beam mobilities 
pL = [x0 l S rho cL D]; 
[Ylong_longi] = fflongi_beam_mob(w,pL,kL,x); 
Ylong_longi_infinite = 1./(S*sqrt(E*rho)); 
Ylong_longi_infinite = repmat(Ylong_longi_infinite,nfreqs); 
  
% Long beam - Torsional mobilities 
pT = [x0 l cT T]; 
[Ylong_torsion] = fftorsion_beam_mob(w,pT,kT,x); 
rg = sqrt((h^2)/12);          % Radius of gyration of rectangular beam 
Ylong_torsion_infinite = 1/(S*(rg^2)*sqrt(G*rho));   % Torsional impedance for a semi-
infinite beam (Heckl, Compedium of impedances) 
Ylong_torsion_infinite = repmat(Ylong_torsion_infinite,nfreqs); 
  
% Mobility matrix for long beam with 6 DOFs 
Ylong = [Ylong_longi(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) 
Ylong_longi(1,2,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:); 
          Zeros(1,1,:) Ylong_torsion(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) 
Zeros(1,1,:) Zeros(1,1,:) Ylong_torsion(1,2,:)  Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) 
Zeros(1,1,:);          
          Zeros(1,1,:) Zeros(1,1,:) Ylong_bendy(1,1,:) Ylong_bendy(1,2,:) Zeros(1,1,:) 
Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Ylong_bendy(1,3,:) Ylong_bendy(1,4,:) Zeros(1,1,:) 
Zeros(1,1,:); 
          Zeros(1,1,:) Zeros(1,1,:) Ylong_bendy(2,1,:) Ylong_bendy(2,2,:) Zeros(1,1,:) 
Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Ylong_bendy(2,3,:) Ylong_bendy(2,4,:) Zeros(1,1,:) 
Zeros(1,1,:); 
          Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Ylong_bendz(1,1,:) 
Ylong_bendz(1,2,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Ylong_bendz(1,3,:) 
Ylong_bendz(1,4,:); 
          Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Ylong_bendz(2,1,:) 
Ylong_bendz(2,2,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Ylong_bendz(2,3,:) 
Ylong_bendz(2,4,:); 
          Ylong_longi(2,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) 
Zeros(1,1,:) Ylong_longi(2,2,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) 
Zeros(1,1,:); 
          Zeros(1,1,:) Ylong_torsion(2,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) 
Zeros(1,1,:) Zeros(1,1,:) Ylong_torsion(2,2,:)  Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) 
Zeros(1,1,:); 
          Zeros(1,1,:) Zeros(1,1,:) Ylong_bendy(3,1,:) Ylong_bendy(3,2,:) Zeros(1,1,:) 
Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Ylong_bendy(3,3,:) Ylong_bendy(3,4,:) Zeros(1,1,:) 
Zeros(1,1,:); 
          Zeros(1,1,:) Zeros(1,1,:) Ylong_bendy(4,1,:) Ylong_bendy(4,2,:) Zeros(1,1,:) 
Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Ylong_bendy(4,3,:) Ylong_bendy(4,4,:) Zeros(1,1,:) 
Zeros(1,1,:); 
          Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Ylong_bendz(3,1,:) 
Ylong_bendz(3,2,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Ylong_bendz(3,3,:) 
Ylong_bendz(3,4,:); 
          Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Ylong_bendz(4,1,:) 
Ylong_bendz(4,2,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Ylong_bendz(4,3,:) 
Ylong_bendz(4,4,:)]; 
  
%% Beam 1 mobilities 
% Beam 1 - Bending mobilities along Y axis 
p_1 = [x0_1 l_1 By m]; 
[Yaa,Yab,Yba,Ybb] = ffbend_beam_mobility(w,p_1,kBy,x_1); 
Ybendy_1 = [Yaa Yab; 
    Yba Ybb]; 
% Beam 1 - Bending mobilities along Z axis 
p_1 = [x0_1 l_1 Bz m]; 
[Yaa,Yab,Yba,Ybb] = ffbend_beam_mobility(w,p_1,kBz,x_1); 
Ybendz_1 = [Yaa Yab; 
    Yba Ybb]; 
% Beam 1 - Longitudinal mobilities 
pl_1 = [x0_1 l_1 S rho cL D]; 
[Ylongi_1] = fflongi_beam_mob(w,pl_1,kL,x_1); 
% Beam 1 - Torsional mobilities 
pt_1 = [x0_1 l_1 cT T]; 
[Ytorsion_1] = fftorsion_beam_mob(w,pt_1,kT,x_1); 
  
% Mobility matrix for Beam 1 with 6 DOFs 
Ybeam_1 = [Ylongi_1(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) 
Ylongi_1(1,2,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:); 
          Zeros(1,1,:) Ytorsion_1(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) 
Zeros(1,1,:) Ytorsion_1(1,2,:)  Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) 
Zeros(1,1,:);          
          Zeros(1,1,:) Zeros(1,1,:) Ybendy_1(1,1,:) Ybendy_1(1,2,:) Zeros(1,1,:) 
Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Ybendy_1(1,3,:) Ybendy_1(1,4,:) Zeros(1,1,:) 
Zeros(1,1,:); 
          Zeros(1,1,:) Zeros(1,1,:) Ybendy_1(2,1,:) Ybendy_1(2,2,:) Zeros(1,1,:) 
Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Ybendy_1(2,3,:) Ybendy_1(2,4,:) Zeros(1,1,:) 
Zeros(1,1,:); 
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          Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Ybendz_1(1,1,:) 
Ybendz_1(1,2,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Ybendz_1(1,3,:) 
Ybendz_1(1,4,:); 
          Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Ybendz_1(2,1,:) 
Ybendz_1(2,2,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Ybendz_1(2,3,:) 
Ybendz_1(2,4,:); 
          Ylongi_1(2,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) 
Ylongi_1(2,2,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:); 
          Zeros(1,1,:) Ytorsion_1(2,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) 
Zeros(1,1,:) Ytorsion_1(2,2,:)  Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:); 
          Zeros(1,1,:) Zeros(1,1,:) Ybendy_1(3,1,:) Ybendy_1(3,2,:) Zeros(1,1,:) 
Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Ybendy_1(3,3,:) Ybendy_1(3,4,:) Zeros(1,1,:) 
Zeros(1,1,:); 
          Zeros(1,1,:) Zeros(1,1,:) Ybendy_1(4,1,:) Ybendy_1(4,2,:) Zeros(1,1,:) 
Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Ybendy_1(4,3,:) Ybendy_1(4,4,:) Zeros(1,1,:) 
Zeros(1,1,:); 
          Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Ybendz_1(3,1,:) 
Ybendz_1(3,2,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Ybendz_1(3,3,:) 
Ybendz_1(3,4,:); 
          Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Ybendz_1(4,1,:) 
Ybendz_1(4,2,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Ybendz_1(4,3,:) 
Ybendz_1(4,4,:)]; 
    
%% Beam 2 mobilities 
% Beam 2 - Bending mobilities along Y axis 
p_2 = [x0_2 l_2 By m]; 
[Yaa,Yab,Yba,Ybb] = ffbend_beam_mobility(w,p_2,kBy,x_2); 
Ybendy_2 = [Yaa Yab; 
    Yba Ybb]; 
% Beam 2 - Bending mobilities along Z axis 
p_2 = [x0_2 l_2 Bz m]; 
[Yaa,Yab,Yba,Ybb] = ffbend_beam_mobility(w,p_2,kBz,x_2); 
Ybendz_2 = [Yaa Yab; 
    Yba Ybb]; 
% Beam 2 - Longitudinal mobilities 
pl_2 = [x0_2 l_2 S rho cL D]; 
[Ylongi_2] = fflongi_beam_mob(w,pl_2,kL,x_2); 
% Beam 2 - Torsional mobilities 
pt_2 = [x0_2 l_2 cT T]; 
[Ytorsion_2] = fftorsion_beam_mob(w,pt_2,kT,x_2); 
  
% Mobility matrix for Beam 2 with 6 DOFs 
Ybeam_2 = [Ylongi_2(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) 
Ylongi_2(1,2,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:); 
          Zeros(1,1,:) Ytorsion_2(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) 
Zeros(1,1,:) Ytorsion_2(1,2,:)  Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) 
Zeros(1,1,:);          
          Zeros(1,1,:) Zeros(1,1,:) Ybendy_2(1,1,:) Ybendy_2(1,2,:) Zeros(1,1,:) 
Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Ybendy_2(1,3,:) Ybendy_2(1,4,:) Zeros(1,1,:) 
Zeros(1,1,:); 
          Zeros(1,1,:) Zeros(1,1,:) Ybendy_2(2,1,:) Ybendy_2(2,2,:) Zeros(1,1,:) 
Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Ybendy_2(2,3,:) Ybendy_2(2,4,:) Zeros(1,1,:) 
Zeros(1,1,:); 
          Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Ybendz_2(1,1,:) 
Ybendz_2(1,2,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Ybendz_2(1,3,:) 
Ybendz_2(1,4,:); 
          Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Ybendz_2(2,1,:) 
Ybendz_2(2,2,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Ybendz_2(2,3,:) 
Ybendz_2(2,4,:); 
          Ylongi_2(2,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) 
Ylongi_2(2,2,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:); 
          Zeros(1,1,:) Ytorsion_2(2,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) 
Zeros(1,1,:) Ytorsion_2(2,2,:)  Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:); 
          Zeros(1,1,:) Zeros(1,1,:) Ybendy_2(3,1,:) Ybendy_2(3,2,:) Zeros(1,1,:) 
Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Ybendy_2(3,3,:) Ybendy_2(3,4,:) Zeros(1,1,:) 
Zeros(1,1,:); 
          Zeros(1,1,:) Zeros(1,1,:) Ybendy_2(4,1,:) Ybendy_2(4,2,:) Zeros(1,1,:) 
Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Ybendy_2(4,3,:) Ybendy_2(4,4,:) Zeros(1,1,:) 
Zeros(1,1,:); 
          Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Ybendz_2(3,1,:) 
Ybendz_2(3,2,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Ybendz_2(3,3,:) 
Ybendz_2(3,4,:); 
          Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Ybendz_2(4,1,:) 
Ybendz_2(4,2,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Ybendz_2(4,3,:) 
Ybendz_2(4,4,:)]; 
       
%% Beam 3 mobilities       
% Beam 3 - Bending mobilities along Y axis 
p_3 = [x0_3 l_3 By m]; 
[Yaa,Yab,Yba,Ybb] = ffbend_beam_mobility(w,p_3,kBy,x_3); 
Ybendy_3 = [Yaa Yab; 
    Yba Ybb]; 
% Beam 3 - Bending mobilities along Z axis 
p_3 = [x0_3 l_3 Bz m]; 
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[Yaa,Yab,Yba,Ybb] = ffbend_beam_mobility(w,p_3,kBz,x_3); 
Ybendz_3 = [Yaa Yab; 
    Yba Ybb]; 
% Beam 3 - Longitudinal mobilities 
pl_3 = [x0_3 l_3 S rho cL D]; 
[Ylongi_3] = fflongi_beam_mob(w,pl_3,kL,x_3); 
% Beam 3 - Torsional mobilities 
pt_3 = [x0_3 l_3 cT T]; 
[Ytorsion_3] = fftorsion_beam_mob(w,pt_3,kT,x_3); 
  
% Mobility matrix for Beam 3 with 6 DOFs 
Ybeam_3 = [Ylongi_3(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) 
Ylongi_3(1,2,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:); 
          Zeros(1,1,:) Ytorsion_3(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) 
Zeros(1,1,:) Ytorsion_3(1,2,:)  Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) 
Zeros(1,1,:);          
          Zeros(1,1,:) Zeros(1,1,:) Ybendy_3(1,1,:) Ybendy_3(1,2,:) Zeros(1,1,:) 
Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Ybendy_3(1,3,:) Ybendy_3(1,4,:) Zeros(1,1,:) 
Zeros(1,1,:); 
          Zeros(1,1,:) Zeros(1,1,:) Ybendy_3(2,1,:) Ybendy_3(2,2,:) Zeros(1,1,:) 
Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Ybendy_3(2,3,:) Ybendy_3(2,4,:) Zeros(1,1,:) 
Zeros(1,1,:); 
          Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Ybendz_3(1,1,:) 
Ybendz_3(1,2,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Ybendz_3(1,3,:) 
Ybendz_3(1,4,:); 
          Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Ybendz_3(2,1,:) 
Ybendz_3(2,2,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Ybendz_3(2,3,:) 
Ybendz_3(2,4,:); 
          Ylongi_3(2,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) 
Ylongi_3(2,2,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:); 
          Zeros(1,1,:) Ytorsion_3(2,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) 
Zeros(1,1,:) Ytorsion_3(2,2,:)  Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:); 
          Zeros(1,1,:) Zeros(1,1,:) Ybendy_3(3,1,:) Ybendy_3(3,2,:) Zeros(1,1,:) 
Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Ybendy_3(3,3,:) Ybendy_3(3,4,:) Zeros(1,1,:) 
Zeros(1,1,:); 
          Zeros(1,1,:) Zeros(1,1,:) Ybendy_3(4,1,:) Ybendy_3(4,2,:) Zeros(1,1,:) 
Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Ybendy_3(4,3,:) Ybendy_3(4,4,:) Zeros(1,1,:) 
Zeros(1,1,:); 
          Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Ybendz_3(3,1,:) 
Ybendz_3(3,2,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Ybendz_3(3,3,:) 
Ybendz_3(3,4,:); 
          Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Ybendz_3(4,1,:) 
Ybendz_3(4,2,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Ybendz_3(4,3,:) 
Ybendz_3(4,4,:)]; 
  
%% Beam 4 mobilities       
% Beam 4 - Bending mobilities along Y axis 
p_4 = [x0_4 l_4 By m]; 
[Yaa,Yab,Yba,Ybb] = ffbend_beam_mobility(w,p_4,kBy,x_4); 
Ybendy_4 = [Yaa Yab; 
    Yba Ybb]; 
% Beam 4 - Bending mobilities along Z axis 
p_4 = [x0_4 l_4 Bz m]; 
[Yaa,Yab,Yba,Ybb] = ffbend_beam_mobility(w,p_4,kBz,x_4); 
Ybendz_4 = [Yaa Yab; 
    Yba Ybb]; 
% Beam 4 - Longitudinal mobilities 
pl_4 = [x0_4 l_4 S rho cL D]; 
[Ylongi_4] = fflongi_beam_mob(w,pl_4,kL,x_4); 
% Beam 4 - Torsional mobilities 
pt_4 = [x0_4 l_4 cT T]; 
[Ytorsion_4] = fftorsion_beam_mob(w,pt_4,kT,x_4); 
  
% Mobility matrix for Beam 4 with 6 DOFs 
Ybeam_4 = [Ylongi_4(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) 
Ylongi_4(1,2,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:); 
          Zeros(1,1,:) Ytorsion_4(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) 
Zeros(1,1,:) Ytorsion_4(1,2,:)  Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) 
Zeros(1,1,:);          
          Zeros(1,1,:) Zeros(1,1,:) Ybendy_4(1,1,:) Ybendy_4(1,2,:) Zeros(1,1,:) 
Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Ybendy_4(1,3,:) Ybendy_4(1,4,:) Zeros(1,1,:) 
Zeros(1,1,:); 
          Zeros(1,1,:) Zeros(1,1,:) Ybendy_4(2,1,:) Ybendy_4(2,2,:) Zeros(1,1,:) 
Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Ybendy_4(2,3,:) Ybendy_4(2,4,:) Zeros(1,1,:) 
Zeros(1,1,:); 
          Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Ybendz_4(1,1,:) 
Ybendz_4(1,2,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Ybendz_4(1,3,:) 
Ybendz_4(1,4,:); 
          Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Ybendz_4(2,1,:) 
Ybendz_4(2,2,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Ybendz_4(2,3,:) 
Ybendz_4(2,4,:); 
          Ylongi_4(2,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) 
Ylongi_4(2,2,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:); 
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          Zeros(1,1,:) Ytorsion_4(2,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) 
Zeros(1,1,:) Ytorsion_4(2,2,:)  Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:); 
          Zeros(1,1,:) Zeros(1,1,:) Ybendy_4(3,1,:) Ybendy_4(3,2,:) Zeros(1,1,:) 
Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Ybendy_4(3,3,:) Ybendy_4(3,4,:) Zeros(1,1,:) 
Zeros(1,1,:); 
          Zeros(1,1,:) Zeros(1,1,:) Ybendy_4(4,1,:) Ybendy_4(4,2,:) Zeros(1,1,:) 
Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Ybendy_4(4,3,:) Ybendy_4(4,4,:) Zeros(1,1,:) 
Zeros(1,1,:); 
          Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Ybendz_4(3,1,:) 
Ybendz_4(3,2,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Ybendz_4(3,3,:) 
Ybendz_4(3,4,:); 
          Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Ybendz_4(4,1,:) 
Ybendz_4(4,2,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Zeros(1,1,:) Ybendz_4(4,3,:) 
Ybendz_4(4,4,:)]; 
       
%% Beams coupled in line and in L-junctions 
       
% Coupling beams 1 and 2 in line - 6 DOFs 
Ycoupled_IL = ffb_coupled(f,'IL2',Ybeam_1,Ybeam_2); 
  
% Coupling beams 1 and 2 in an L-junction - 6 DOFs 
Ycoupled_LJ2 = ffb_coupled(f,'LJ2',Ybeam_1,Ybeam_2); 
  
% Coupling beams 1, 2 and 3 in an L-junction - 6 DOFs 
Ycoupled_LJ3 = ffb_coupled(f,'LJ3',Ybeam_1,Ybeam_2,Ybeam_3); 
  
% Coupling beams 1, 2, 3 and 4 in an L-junction - 6 DOFs 
Ycoupled_LJ4 = ffb_coupled(f,'LJ4',Ybeam_1,Ybeam_2,Ybeam_3,Ybeam_4); 

Quasi-longitudinal mobilities 
% fflongi_beam_mob: function to predict the longitudinal mobility of a free-free 
% beam 
% Expression for mobility / impedance derived as for an organ pipe 
% Daniela Filipe 
% 
% [Ylaa,Ylab,Ylba,Ylbb] = fflongi_beam_mob(w,p,k,x) 
%  
% w(1,N) = angular frequency range (Hz) 
% p(1,5) = beam parameters: excitation position 1, excitation position 2, length,  
%          cross sectional area, density, cL, longitudinal stiffness D 
% k(1,N) = wavenumber (1/m) 
% x(K,1) = response points along the beam (m) 
% 
% Ylaa(K,N) = longi mobility at a with excitation at a 
% Ylab(K,N) = longi mobility at a with excitation at b 
% Ylba(K,N) = longi mobility at b with excitation at a 
% Ylbb(K,N) = longi mobility at b with excitation at b 
  
  
function [Yl] = fflongi_beam_mob(w,p,k,x) 
  
% Check number of input arguments is sufficient 
if nargin<4, return, end 
if length(p)<7, return, end 
  
Yc = p(1,6)/(1i*p(1,4)*p(1,7));      % Yc = cL/(j*S*D) 
  
kx(1,:) = k*x(1);       % Response points on the beam (response at 0) 
kx(2,:) = k*x(2);       % Response points on the beam (response at l) 
% kx0(1,:) = k*p(1,1);    % Excitation points on the beam, at 0 
% kx0(2,:) = k*p(1,2);    % Excitation points on the beam, at l 
kl = k.*p(1,3); 
  
for i = length(kl):-1:1 % Do loop backwards 
  
    Ylaa = Yc.*(cos(kl(1,:))./sin(kl(1,:))); 
    Ylab = Yc.*(1./(sin(kl(1,:)))); 
    Ylba = Yc.*(1./sin(kl(1,:))); 
    Ylbb = Yc.*(cos(kl(1,:))./(sin(kl(1,:)))); 
     
end 
  
P1o = struct('Ylaa',Ylaa,'Ylab',Ylab,'Ylba',Ylba,'Ylbb',Ylbb); 
Yl = [reshape(P1o.Ylaa(1,:),1,1,size(w,2)) reshape(P1o.Ylab(1,:),1,1,size(w,2)); 
    reshape(P1o.Ylba(1,:),1,1,size(w,2)) reshape(P1o.Ylbb(1,:),1,1,size(w,2))]; 
  
end 
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Torsional mobilities 
% fftorsion_beam_mob: function to predict the torsional mobility of a free-free 
% beam 
% Expression for mobility / impedance derived from Cremer & Heckl 
% 
% [Ytaa,Ytab,Ytba,Ytbb] = fftorsion_beam_mob(w,p,k,x) 
%  
% w(1,N) = angular frequency range (Hz) 
% p(1,5) = beam parameters: excitation position 1, excitation position 2, length,  
%          cT, torsional stiffness T 
% k(1,N) = wavenumber (1/m) 
% x(K,1) = response points along the beam (m) 
% 
% Ytaa(K,N) = torsional mobility at a with excitation at a 
% Ytab(K,N) = torsional mobility at a with excitation at b 
% Ytba(K,N) = torsional mobility at b with excitation at a 
% Ytbb(K,N) = torsional mobility at b with excitation at b 
  
  
function [Yl] = fftorsion_beam_mob(w,p,k,x) 
  
% Check number of input arguments is sufficient 
if nargin<4, return, end 
if length(p)<5, return, end 
  
Yc = p(1,4)/(1i*p(1,5));      % Yc = cT/(j*T) 
  
% kx(1,:) = k*x(1);       % Response points on the beam (response at 0) 
% kx(2,:) = k*x(2);       % Response points on the beam (response at l) 
% kx0(1,:) = k*p(1,1);    % Excitation points on the beam, at 0 
% kx0(2,:) = k*p(1,2);    % Excitation points on the beam, at l 
kl = k.*p(1,3); 
  
for i = length(kl):-1:1 % Do loop backwards 
  
    Ytaa = Yc.*(cos(kl(1,:))./(-sin(kl(1,:)))); 
    Ytab = Yc.*(1./(-sin(kl(1,:)))); 
    Ytba = Yc.*(1./(-sin(kl(1,:)))); 
    Ytbb = Yc.*(cos(kl(1,:))./(-sin(kl(1,:)))); 
     
end 
  
P1o = struct('Ytaa',Ytaa,'Ytab',Ytab,'Ytba',Ytba,'Ytbb',Ytbb); 
Yl = [reshape(P1o.Ytaa(1,:),1,1,size(w,2)) reshape(P1o.Ytab(1,:),1,1,size(w,2)); 
    reshape(P1o.Ytba(1,:),1,1,size(w,2)) reshape(P1o.Ytbb(1,:),1,1,size(w,2))]; 
  
end 

Bending mobilities 
% ffbeam_mobility: function to predict the flexural mobility of a free-free 
% beam, using the closed form equations from "Simplified characterisation of 
% structure-borne sound sources with multi-point connections, Appendix A" 
% 
% [Yaa,Yab,Yba,Ybb] = ffbeam_mobility(w,p,k,x) 
%  
% w(1,N) = angular frequency range (Hz) 
% p(1,5) = beam parameters: excitation position 1, excitation position 2, length,  
%          bending stiffness, mass per unit length 
% k(1,N) = complex wavenumber (1/m) 
% x(K,1) = response points along the beam (m) 
% 
% Yvf(K,N) = translation force mobility  
% Yvm(K,N) = translation moment mobility 
% Yaf(K,N) = rotation force mobility 
% Yam(K,N) = rotation moment mobility 
  
  
function [Yaa,Yab,Yba,Ybb] = ffbeam_mobility(w,p,k,x) 
  
% Check number of input arguments is sufficient 
if nargin<4, return, end 
if length(p)<5, return, end 
  
Yc = w./(p(1,4).*(k.^3)); 
  
kx(1,:) = k*x(1);       % Response points on the beam (response at 0) 
kx(2,:) = k*x(2);       % Response points on the beam (response at l) 
kx0(1,:) = k*p(1,1);    % Excitation points on the beam 
kx0(2,:) = k*p(1,2);    % Excitation points on the beam 
l = p(1,3); 
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kl = k*l; 
  
% Initialising variables 
Yvf = zeros(2,length(k)); 
Yvm = zeros(2,length(k)); 
Yaf = zeros(2,length(k)); 
Yam = zeros(2,length(k)); 
  
for i = length(x):-1:1 % Do loop backwards 
  
    f1(i,:) = cosh(kx(i,:))-cosh(k.*(l-x(i,:))).*cos(kl)-sinh(k.*(l-x(i,:))).*sin(kl)-
cos(kx(i,:))+cos(k.*(l-x(i,:))).*cosh(kl)-sinh(kl).*sin(k.*(l-x(i,:))); 
    f2(i,:) = sinh(kx(i,:))+sinh(k.*(l-x(i,:))).*cos(kl)-sin(kl).*cosh(k.*(l-x(i,:)))-
sin(kx(i,:))+sinh(kl).*cos(k.*(l-x(i,:)))-cosh(kl).*sin(k.*(l-x(i,:))); 
  
    g1_x0 = -(sin(kx0(1,:))+sinh(kx0(1,:)))./(2.*(1-cosh(kl).*cos(kl))); 
    g2_x0 = (cos(kx0(1,:))+cosh(kx0(1,:)))./(2.*(1-cosh(kl).*cos(kl))); 
  
    df1dx(i,:) = k.*(sinh(kx(i,:))+sinh(k.*(l-x(i,:))).*cos(kl)+cosh(k.*(l-
x(i,:))).*sin(kl)+sin(kx(i,:))+sin(k.*(l-x(i,:))).*cosh(kl)+sinh(kl).*cos(k.*(l-x(i,:)))); 
    df2dx(i,:) = k.*(cosh(kx(i,:))-cosh(k.*(l-x(i,:))).*cos(kl)+sin(kl).*sinh(k.*(l-
x(i,:)))-cos(kx(i,:))+sinh(kl).*sin(k.*(l-x(i,:)))+cosh(kl).*cos(k.*(l-x(i,:)))); 
     
    % Mobilities with excitation at 0 
    Yvf(i,:) = (1i/2).*Yc.*(f1(i,:).*g1_x0+f2(i,:).*g2_x0); 
    Yvm(i,:) = ((1i.*Yc.*k)./(4.*(1-cosh(kl).*cos(kl)))).*(f2(i,:).*(-
sin(kx0(1,:))+sinh(kx0(1,:)))-f1(i,:).*(cos(kx0(1,:))+cosh(kx0(1,:)))); 
    Yaf(i,:) = (1i/2).*Yc.*(g1_x0.*df1dx(i,:)+g2_x0.*df2dx(i,:)); 
    Yam(i,:) = ((1i.*Yc.*k)./(4.*(1-cosh(kl).*cos(kl)))).*(df2dx(i,:).*(-
sin(kx0(1,:))+sinh(kx0(1,:)))-df1dx(i,:).*(cos(kx0(1,:))+cosh(kx0(1,:)))); 
  
end 
P1o = struct('Yvf',Yvf,'Yvm',Yvm,'Yaf',Yaf,'Yam',Yam);  % Mobilities with excitation at x0 
  
  
for i = length(x):-1:1 % Do loop backwards 
    f1_x0 = 2.*cosh(kx0(2,:))-2.*cos(kx0(2,:)); 
    f2_x0 = 2.*sinh(kx0(2,:))-2.*sin(kx0(2,:)); 
     
    df1_x0dx0 = 2.*k.*sinh(kx0(2,:))+2.*k.*sin(kx0(2,:)); 
    df2_x0dx0 = 2.*k.*cosh(kx0(2,:))-2.*k.*cos(kx0(2,:)); 
     
    g1(i,:) = -(sin(kx(i,:))+sinh(kx(i,:)))./(2.*(1-cosh(kl).*cos(kl))); 
    g2(i,:) = (cos(kx(i,:))+cosh(kx(i,:)))./(2.*(1-cosh(kl).*cos(kl))); 
  
    dg1dx(i,:) = -k.*(cos(kx(i,:))+cosh(kx(i,:)))./(2.*(1-cosh(kl).*cos(kl))); 
    dg2dx(i,:) = k.*(-sin(kx(i,:))+sinh(kx(i,:)))./(2.*(1-cosh(kl).*cos(kl))); 
     
    % Mobilities with excitation at l 
    Yvf(i,:) = (1i/2).*Yc.*(f1_x0.*g1(i,:)+f2_x0.*g2(i,:)); 
    Yvm(i,:) = (1i/2).*Yc.*(g1(i,:).*df1_x0dx0+g2(i,:).*df2_x0dx0); 
    Yaf(i,:) = (1i/2).*Yc.*(f1_x0.*dg1dx(i,:)+f2_x0.*dg2dx(i,:)); 
    Yam(i,:) = ((1i.*Yc)./(4.*(1-cosh(kl).*cos(kl)))).*((-k.*cos(kx(i,:))-
k.*cosh(kx(i,:))).*df1_x0dx0+(-k.*sin(kx(i,:))+k.*sinh(kx(i,:))).*df2_x0dx0); 
     
     
end 
P2o = struct('Yvf',Yvf,'Yvm',Yvm,'Yaf',Yaf,'Yam',Yam);  % Mobilities with excitation at l 
  
  
% Assembling mobilities for each frequency (3D matrices) 
Yaa = [reshape(P1o.Yvf(1,:),1,1,size(w,2)) reshape(P1o.Yvm(1,:),1,1,size(w,2)); 
    reshape(P1o.Yaf(1,:),1,1,size(w,2)) reshape(P1o.Yam(1,:),1,1,size(w,2))]; 
  
Yab = [reshape(P2o.Yvf(1,:),1,1,size(w,2)) reshape(P2o.Yvm(1,:),1,1,size(w,2)); 
    reshape(P2o.Yaf(1,:),1,1,size(w,2)) reshape(P2o.Yam(1,:),1,1,size(w,2))]; 
  
Yba = [reshape(P1o.Yvf(2,:),1,1,size(w,2)) reshape(P1o.Yvm(2,:),1,1,size(w,2)); 
    reshape(P1o.Yaf(2,:),1,1,size(w,2)) reshape(P1o.Yam(2,:),1,1,size(w,2))]; 
  
Ybb = [reshape(P2o.Yvf(2,:),1,1,size(w,2)) reshape(P2o.Yvm(2,:),1,1,size(w,2)); 
    reshape(P2o.Yaf(2,:),1,1,size(w,2)) reshape(P2o.Yam(2,:),1,1,size(w,2))]; 
  
end 
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Coupling function 
% ffb_coupled: function to couple two free-free beams together in line 
% Y_coupled = ffb_coupled(Y1,Y2,f,IL/LJ/TJ/HJ) 
%  
% Y1 is the matrix containing the mobilities of beam 1 
% Y2 is the matrix containing the mobilities of beam 2 
% f is the frequency 
% 
% Nomenclature for types of junctions: 
%           IL - In line 
%           LJ - L junction 
%           TJ - T junction 
%           HJ - H junction (intersecting beams) 
% 
% Number next to the type of junctions is the number of beams being 
% coupled, i.e. LJ2 = two beams in an L-junction, LJ4 = four beams in an 
% L-junction. 
  
  
function Ycoupled = ffb_coupled(f,type,Ybeam_1,Ybeam_2,Ybeam_3,Ybeam_4) 
  
% Check number of input arguments is sufficient 
if nargin<4, return, end 
  
% One large impedance matrix with the impedances at x0 and l of the 2 beams 
% The results of the inversion have been checked and they seem to be 
% correct using 1./Y. 
  
if type == 'IL2' 
    for i = length(f):-1:1; 
        Zbeam_1(:,:,i) = inv(Ybeam_1(:,:,i)); 
        Zbeam_2(:,:,i) = inv(Ybeam_2(:,:,i)); 
    end 
     
    % Impedance matrix assembled (1/Y) 
    zeros_0 = zeros(size(Zbeam_1)); 
    Z = [Zbeam_1(:,:,:) zeros_0(:,:,:); 
        zeros_0(:,:,:) Zbeam_2(:,:,:)]; 
     
     % Coupling matrix that identifies which points of the beams are connected 
    coupling = [see Section 5.3.2]; 
             
    for i = length(f):-1:1;     
        Zalmost_coupled(:,:,i) = Z(:,:,i)*coupling; 
        Zcoupled(:,:,i) = coupling.'* Zalmost_coupled(:,:,i); 
        Ycoupled(:,:,i) = inv(Zcoupled(:,:,i)); 
    end 
     
elseif type == 'LJ2' 
     
    for i = length(f):-1:1; 
        Zbeam_1(:,:,i) = inv(Ybeam_1(:,:,i)); 
        Zbeam_2(:,:,i) = inv(Ybeam_2(:,:,i)); 
    end 
  
    % Impedance matrix assembled (1/Y) 
    zeros_0 = zeros(size(Zbeam_1)); 
    Z = [Zbeam_1(:,:,:) zeros_0(:,:,:); 
        zeros_0(:,:,:) Zbeam_2(:,:,:)]; 
  
    % Coupling matrix that identifies which points of the beams are connected 
    coupling = [see Section 5.3.3]; 
  
    for i = length(f):-1:1;     
        Zalmost_coupled(:,:,i) = Z(:,:,i)*coupling; 
        Zcoupled(:,:,i) = coupling.'* Zalmost_coupled(:,:,i); 
        Ycoupled(:,:,i) = inv(Zcoupled(:,:,i)); 
    end 
     
elseif type == 'LJ3' 
     
    for i = length(f):-1:1; 
        Zbeam_1(:,:,i) = inv(Ybeam_1(:,:,i)); 
        Zbeam_2(:,:,i) = inv(Ybeam_2(:,:,i)); 
        Zbeam_3(:,:,i) = inv(Ybeam_3(:,:,i)); 
    end 
  
    zeros_0 = zeros(size(Zbeam_1)); 
    Z = [Zbeam_1(:,:,:) zeros_0(:,:,:) zeros_0(:,:,:); 
        zeros_0(:,:,:) Zbeam_2(:,:,:) zeros_0(:,:,:); 
        zeros_0(:,:,:) zeros_0(:,:,:) Zbeam_3(:,:,:)]; 
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    % Coupling matrix that identifies which points of the beams are connected 
    coupling = [see Section 5.3.4]; 
  
  
    for i = length(f):-1:1;     
        Zalmost_coupled(:,:,i) = Z(:,:,i)*coupling; 
        Zcoupled(:,:,i) = coupling.'* Zalmost_coupled(:,:,i); 
        Ycoupled(:,:,i) = inv(Zcoupled(:,:,i)); 
    end 
     
elseif type == 'LJ4' 
     
    for i = length(f):-1:1; 
        Zbeam_1(:,:,i) = inv(Ybeam_1(:,:,i)); 
        Zbeam_2(:,:,i) = inv(Ybeam_2(:,:,i)); 
        Zbeam_3(:,:,i) = inv(Ybeam_3(:,:,i)); 
        Zbeam_4(:,:,i) = inv(Ybeam_4(:,:,i)); 
    end 
  
    zeros_0 = zeros(size(Zbeam_1)); 
    Z = [Zbeam_1(:,:,:) zeros_0(:,:,:) zeros_0(:,:,:) zeros_0(:,:,:); 
        zeros_0(:,:,:) Zbeam_2(:,:,:) zeros_0(:,:,:) zeros_0(:,:,:); 
        zeros_0(:,:,:) zeros_0(:,:,:) Zbeam_3(:,:,:) zeros_0(:,:,:); 
        zeros_0(:,:,:) zeros_0(:,:,:) zeros_0(:,:,:) Zbeam_4(:,:,:)]; 
     
    % Coupling matrix that identifies which points of the beams are connected 
    coupling = [see Section 5.3.4]; 
  
    for i = length(f):-1:1;     
        Zalmost_coupled(:,:,i) = Z(:,:,i)*coupling; 
        Zcoupled(:,:,i) = coupling.'* Zalmost_coupled(:,:,i); 
        Ycoupled(:,:,i) = inv(Zcoupled(:,:,i)); 
    end 
         
else 
    return 
end 
     
end 

 


