
e-Viz: Towards an Integrated Framework for High Performance

Visualization

M. Riding,1 J.D. Wood,2 K.W. Brodlie,2 J.M. Brooke,1 M. Chen,3

D. Chisnall,3 C. Hughes,4 N.W. John,4 M.W. Jones,3 and N. Roard3

1
Manchester Computing, University of Manchester

2
School of Computing, University of Leeds

3
Department of Computer Science, University of Wales Swansea

4
School of Informatics, University of Wales, Bangor

Abstract
Existing Grid visualization systems typically focus on the distribution onto remote machines

of some or all of the processes encompassing the visualization pipeline, with the aim of increasing
the maximum data size, achievable frame rates or display resolution. Such systems may rely on
a particular piece of visualization software, and require that the end users have some degree of
knowledge in its use, and in the concepts of the Grid itself. This paper describes an architecture for
Grid visualization that abstracts away from the underlying hardware and software, and presents the
user with a generic interface to a range of visualization technologies, switching between hardware and
software to best meet the requirements of that user. We assess the di�culties involved in creating
such a system, such as selecting appropriate visualization pipelines, deciding how to distribute the
processing between machines, scheduling jobs using Grid middleware, and creating a flexible abstract
description language for visualization. Finally, we describe a prototype implementation of such a
system, and consider to what degree it might meet the requirements of real world visualization users.

1 Introduction

Research into Grid-based visualization has often
involved the porting of the classical visualization
pipeline [1] into a Grid framework, enabling remote
data acquisition, security based on the Grid Secu-
rity Infrastructure (GSI) [2], distributed computa-
tion and parallel remote rendering. Many systems
have been created that o↵er to users the ability to
visualize data sets of ever increasing size, at high
resolutions and interactive frame rates [3]. This is
achieved through parallelism at some or all stages
of the visualization pipeline, including the trans-
mission of data between functional modules.

It is worth considering what additional require-
ments users might have of Grid visualization sys-
tems. The Grid encompasses a wide range of high
performance machines of varying architectures, op-
erating systems and underlying visualization appli-
cations.

A truly generic Grid visualization system
should be able to fulfill a user’s request for any
particular visualization technique, and to select the
most appropriate hardware and software in order to
implement it.

In addition, we might assess a Grid visualiza-
tion system in terms of quality of service. Electri-
cal power grids have been used as an analogy when
describing computational Grids [4]. While this has
not met with universal approval certain character-
istics of power grids, such as fault tolerance and
adaptability, should be considered when creating

computational Grids. System transparency is also
an important issue. An end user ought to be able
to consider the Grid as a black box capable of per-
forming computational tasks without being con-
cerned about the underlying architecture. Such a
concept poses di�cult challenges for real-time in-
teractive visualization applications, where the end-
user is part of a feedback loop with the remote ma-
chines. This paper introduces the e-Viz architec-
ture for visualization on the Grid, which aims to
address such issues.

2 Consideration of end-users

Visualization users come from a number of back-
grounds and disciplines, and are not always skilled
at creating their own visualization applications or
familiar with Grid computing. We can classify po-
tential users according to their level of knowledge in
the visualization and Grid computing domains, as
depicted in Figure 1. The expectations and require-
ments of each group will di↵er and should be con-
sidered if we are to o↵er a system which can be use-
ful to all. In the following descriptions, we define
‘visualization knowledge’ to be the ability to create
a custom visualization application in either a mod-
ular network-based system such as AVS/Express or
IRIS Explorer, or a software development kit, such
as the Visualization Toolkit (VTK). ‘Grid knowl-
edge’ is defined as familiarity with the principles of

Knowledge of Visualization

 Knowledge
of the Grid

Application
Scientists

e-Scientists
Grid/

Visualization
Specialists

Visualization
Specialists

Figure 1: Users of Visualization Systems

Grid computing, and the mechanisms involved in
its implementation.

The four groups are identified as follows:

• Grid / Visualization Specialists: Users with
knowledge of both the Grid and Visualiza-
tion: Visualization users who can construct
their own applications to run on the Grid are
comparatively rare. Such people are either
developers of new, or users of existing, grid-
enabled visualization software packages.

• e-Scientists: Users with knowledge of the
Grid but not Visualization: There are a grow-
ing number of application scientists using
the Grid to assist in their research, utilising
remote high performance computing (HPC)
machines to run simulations that their desk-
top machine or even local HPC resources
would have been unable to accommodate.
Such users, commonly termed ’e-Scientists’
will not always have the skills necessary to
create their own bespoke visualization appli-
cations, and may instead rely on a visualiza-
tion specialist (see below) to do this for them.

• Visualization Specialists: Users with knowl-
edge of Visualization but not the Grid: There
are a number of groups within research insti-
tutions providing visualization services to ei-
ther on-campus research groups, or external
private enterprises. Such service providers
would be familiar with a range of visualiza-
tion software packages, but perhaps less fa-
miliar with the Grid.

• Application Scientists: Users whose exper-
tise lies in areas other than Grid and Visual-
ization: Probably the largest single group of
candidate visualization users, and potentially
the group who are least familiar with both the
use of the Grid, and of the construction of
visualization applications. Indeed, they are
possibly not used to Unix based computer
systems, instead familiar with the Windows
operating system.

Users in the left hand side of Figure 1 (e-
Scientists and Application Scientists) either use
custom o↵ the shelf software to visualize their data,
or rely on those in the right hand side (Visualiza-
tion Specialists and Grid/Visualization Specialists)
to create applications for them. Similarly, users in
the bottom half of the diagram are not Grid ex-
perts, but may still want to make use of Grid com-
puting to aid in their work.

In the next section, we evaluate existing Grid vi-
sualization systems, and identify which of our user
types they are most suitable for.

3 Existing Distributed and

Grid Visualization Systems

The Op3D project [5], relies on the visualization
capabilities of a shared memory parallel (SMP) ma-
chine with hardware accelerated graphics capabil-
ities to remotely render volume data. Resulting
frames are sent to a client machine which would
itself not have had the necessary memory or com-
putational power to accommodate the data sets in-
volved. In this model, all computation is performed
on the server, and the client acts as a dumb termi-
nal. The Grid is used to provide a particular ma-
chine with su�cient processing power for the client
to connect to. Surgeons are the users of the Op3D
system, certainly we can consider such a group to
fall into the ‘Application Scientists’ class of users.

The Visapult project [6], which also addresses
the topic of remote volume rendering, introduces
parallelism at the very start of the visualization
pipeline. Large volume files are cached over multi-
ple disks, and transferred to visualization servers in
parallel. In this way, the Visapult system can vol-
ume render large data sets in the order of tens of
Gigabytes and upwards, a capability which enabled
it to win the SC Bandwidth Challenge three years
on in succession (2001-2003). The application is
tailored to the rendering of time-stepped volumet-
ric data, and is not a general purpose visualization
toolkit. Users of the software would most likely be
application scientists, perhaps aided by visualiza-
tion engineers.

The Resource Aware Visualization Environ-
ment (RAVE) project [7] has focused on the dis-
tribution of the rendering stage of the visualization
pipeline, and supports a number of options; remote
rendering, local rendering and a hybrid approach
where some of the workload is performed locally,
and some on a remote machine. The system aims
to choose the most appropriate technique automat-
ically, based on the client’s graphical capabilities,
and the network bandwidth. Since RAVE is cur-
rently using the Grid to distribute the rendering
stage of the pipeline we can consider it to be aimed
at users who we would class as ‘e-Scientists’. Ap-

plicability to ‘Grid/Visualization Specialists’ would
be achieved if the software was extended to encom-
pass the entire visualization pipeline.

The Grid Visualization Kernel (GVK) [8] is a
system which extends the OpenDX modular visu-
alization system so that individual stages of the vi-
sualization pipeline can be executed on remote ma-
chines by means of the Globus Toolkit [9]. The sys-
tem is designed to be generic enough that a remote
module may be implemented in another visualiza-
tion system, so long as it is wrapped up with a GVK
interface. This approach yields a heterogeneous ar-
chitecture, but requires that users have the knowl-
edge to construct their own visualization pipelines,
or have access to visualization engineers who can
do so for them. As such, GVK users would fall
into our classification of ‘Grid/Visualization Spe-
cialists’.

The gViz project [10] o↵ers a collaborative Grid
visualization system built around IRIS Explorer.
Similarly to the GVK system, visualization ap-
plications are constructed in a dataflow network
editor, and the user can define that modules be
run on remote machines. This approach is again
very generic, enabling the construction of almost
any type of visualization. The system is aimed at
users who would be classed in our taxonomy as
‘Grid/Visualization developers’, but applications
created with it would in turn be aimed at either
‘Application Scientists’ or ‘e-Scientists’.

We can categorise the above Grid visualization
systems according to two characteristics; the de-
gree of distribution in the pipeline, and the range
of visualization techniques o↵ered. If we reconsider
our plot of users and their visualization and Grid
knowledge (Figure 1), we can see that there are par-
allels between the classification scheme for users,
and for the software. The degree of Grid knowledge
of users equates to the amount of distribution in
existing systems, and similarly the degree of visu-
alization knowledge equates to the range of visual-
ization techniques a↵orded by the system architec-
tures (their degree of specialisation or generality).
Those systems which are the most flexible and the
most distributed are aimed at the most knowledge-
able of users, whilst the systems aimed at the least
experienced users are also the most specific and the
least distributed. This is perhaps to be expected,
since the more complicated systems by their nature
require the user to have more knowledge. But does
this mean that it would be impossible to construct
a system aimed at non-expert users and still o↵er a
high degree of distribution and generality? Is it im-
possible for visualization users to treat the Grid as
a black box? And can we build a visualization sys-
tem that can harness the power of the Grid, and
deliver it to the desktop of the application scien-
tist? The e-Viz project attempts to answer these
questions.

4 Design Considerations

The GVK and gViz projects described above both
o↵er a generic architecture for visualization on the
Grid, flexible enough to create a wide range of vi-
sualization pipelines implemented in a distributed
manner. End users, however, must either have
the skills and knowledge to construct their own
pipelines, or else rely on visualization specialists to
do so for them. The e-Viz project attempts to o↵er
a similar generic architecture, but by abstracting
away from the underlying implementation it aims
to provide a mechanism for end users to visualize
their data without having to consider the imple-
mentation details of the underlying pipeline.

To help us achieve this aim, we need to consider
the concept of a common interface to visualization
systems, and the technologies that can be used to
stage visualizations on the Grid.

4.1 An Abstract Interface to Visual-

ization Software

If we are to create an abstract interface to visu-
alizations software, we must consider the problem
from three viewpoints. Firstly, we must be able
to describe visualization pipelines at an abstract
level. Secondly, we must be able to communicate
with pipeline implementations in a generic man-
ner. Finally, the user must be presented with a
generic user-interface that supports multiple un-
derlying systems. We now introduce technologies
which can help us to achieve these requirements.

4.1.1 Abstract Visualization Description
Language

The gViz project developed a visualization descrip-
tion language known as skML [11], which contains a
description of the functional components that com-
prise a visualization process, where these processes
exist, how they are connected together, and, in a
collaborative context, which roles have access to
them. The abstract nature of the skML language
has been demonstrated by its use as an intermedi-
ate data format in the translation of an IRIS Ex-
plorer network into its OpenDX equivalent. skML
is therefore a useful technology for e-Viz as an ab-
stract visualization description language. Within
the gViz project, it was influenced by IRIS Explorer
in terms of the vocabulary used for functionality
(for example, module names) but it is possible to
generalise the vocabulary to encompass developing
work on visualization ontologies [12].

It is worth considering at this point the via-
bility of an abstract visualization description lan-
guage. It is important to ascertain if two di↵erent

Figure 2: The same visualization implemented with
AVS/Express (left) and VTK (right)

visualization packages can produce identical im-
ages when implementing the same abstract
pipeline. In order to investigate this concept, an ex-
ample skML pipeline, itself a visualization from an
IRIS Explorer tutorial, was re-implemented using
AVS/Express and VTK, as depicted in Figure 2.
Aside from some small di↵erences in specular light-
ing, camera angles and the annotating text, the
two visualizations are identical. This is encourag-
ing and supports the hypothesis that we can create
a single abstract description of a visualization, and
use it to automatically generate equivalent imple-
mentations using a variety of software tools.

4.1.2 Computational Steering for Visual-
ization

Recent development of computational steering li-
braries such as those provided by the Reality-
Grid [13] and gViz [10] projects o↵er a solution
to the issue of implementing a common communi-
cation interface to control visualization pipelines.
A visualization pipeline is a computational task
with a number of controllable parameters, therefore
computational steering libraries are an appropriate
technology to interface with. If we instrument vi-
sualization applications to expose the parameters
of an active pipeline via a computational steering
library, then we have satisfied the requirement for
a common communications interface for user input.
A generic user interface could be created based on
the concepts of a computational steering client, but
e↵ort would have to be made to ensure the applica-
tion would be intuitive to visualization users, and
not just a list of steerable parameters. We discuss
an approach to solve this in section 5.1.2.

4.1.3 Remote Rendering for Visualization

Unfortunately a computational steering library
cannot provide us with a complete solution to the
problem of creating a generic user interface and a
common communications interface. Most visual-
izations output a sequence of rendered images, and
in a distributed pipeline, the machine responsible
for rendering is not necessarily directly connected

to the display device. If rendering is to be per-
formed remotely, we need a technology to transport
frames back to the client’s machine, a task compu-
tational steering libraries are not ideally suited for.

There are instead a number of technologies that
deal with this issue. Besides low level protocols
such as X11 and GLX which perform local ren-
dering of remote applications, remote rendering
capabilities are o↵ered by systems such as SGI’s
OpenGL Vizserver, and the MIDAS [14] compo-
nent of the Merlot project. Similarly VNC allows
users to interact with remote virtual desktops.

In order to create a transparent system for vi-
sualization on the Grid, we need a remote render-
ing technology that can support multiple remote
renderers, but display rendered frames in a single
client window. Furthermore, users must be able to
interact with the render window in an implementa-
tion independent manner. A visualization rendered
using VTK, for instance, should behave identically
to one rendered with IRIS Explorer. Unfortunately,
no existing technology can completely satisfy these
requirements. Vizserver, MIDAS and VNC inte-
grate with the remote server at the operating sys-
tem level, and so the unique look and feel of the
remote software is re-created on the local desktop.
Additionally, each remote application is displayed
in a separate window locally, destroying the illusion
of a black box for Grid visualization.

To solve this problem, we require a library for
remote rendering that can be tightly integrated
with visualization applications, in much the same
way that the gViz and RealityGrid libraries allows
us to instrument code to support computational
steering. The remote rendering software should al-
low the transmission of rendered frames from mul-
tiple servers to a single client instance, o↵ering to
the user the ability to seamlessly switch between
visualization streams. We discuss such a software
implementation in section 5.1.3.

4.2 Grid Middleware

Initial Grid middleware focused on batch process-
ing, where the model of computation is one of exe-
cuting a job and checking back for the results some
time later. More recent developments such as the
Open Grid Services Architecture (OGSA) [15] and
the Web Services Resource Framework (WSRF)
have attempted to introduce a service orientated
architecture to Grid computing, but uptake by
HPV service providers has not yet been widespread.
As a result there is something of a bifurcation be-
tween the former usage of the Grid mainly for com-
pute and file transfer tasks embodied in middleware
such as GT2, and the more recent emphasis on ser-
vice orchestration via workflows, as in projects such
as myGrid [16].

Distributing visualization dataflows and
pipelines on the Grid requires a combination of
both approaches, since the stages of the pipeline
are much more tightly coupled than in conven-
tional workflows, and issues of parallelism and
concurrency both within and between the com-
ponents of the pipeline are also raised. As such
visualization raises issues of deployment and or-
chestration of components and services. The Re-
alityGrid project has addressed these issues specif-
ically and has created lightweight middleware for
such component deployment in WSRF::Lite [17].
This approach also brings the possibility of cou-
pling an application’s data output directly to the
visualization components, without first having to
incorporate that application into any specific vi-
sualization framework. An important issue this
highlights is the necessity to express concurrent
resource co-allocation. The various components
must be deployed concurrently and coupling via
socket-based data transfer since the simulation is
refreshing the data to be transformed and rendered
by the visualization. This requirement for concur-
rency is not currently satisfactorily addressed in
Grid middleware although some super-schedulers
such as the Maui silver scheduler [18] can provide
this, albeit in a non-standard manner.

We now discuss a framework that will allow the
creation of our abstract Grid visualization system.

5 The e-Viz System

We have developed a prototype system which im-
plements the ideas introduced above. The system
consists of three main components; the client ma-
chine, the remote HPV machine(s), and a broker.
Each component is introduced below, together with
associated software modules. Additionally, the re-
lationship between modules is depicted in Figure 3.

5.1 Client

The user’s machine is where the visualization
pipeline is controlled from and outputs to, though
not necessarily where the data resides. There are
two client side software modules: a launcher ap-
plication and a generic user interface used to both
control pipeline parameters and to view visualiza-
tion output.

5.1.1 Launcher

The launcher is a C++ application, writ-
ten using the QT GUI libraries from Troll-
tech in order to provide cross-platform porta-
bility. It is the user’s entry point to the

Decision Making

Module

Knowledgebase

Grid middleware

Server

Software

Visualization

Broker

Web Service

Container

SOAP

Client

Launcher

Generic User

Interface

GRAM

Control

Frames

Figure 3: Architecture of the e-Viz system

e-Viz system, and provides a wizard based inter-
face to allow users to specify their jobs in terms
of input data sets and desired visualization output.
The launcher uses gSOAP to make calls to the web
services on the broker machine, and is bundled with
the Java Commodity Grid (CoG) Kit. By removing
a dependency on the user to have a Globus client
pre-installed, we hope to maximise the potential
user base of the e-Viz system.

5.1.2 Generic User Interface: Pipeline
Control

The e-Viz user interface consists of two compo-
nents; one to control the pipeline parameters by
means of the gViz computational steering library,
and one to display the visualization output.

The generic user interface for pipeline control
has been implemented using Java, and is com-
prised of a communications framework, a widget
set and an XML processing component. The in-
terface starts as a blank container and is config-
ured using the abstract description of the pipeline,
which is generated by the broker. This descrip-
tion, encoded in XML and currently based around
skML, contains such information as the list of com-
ponents in the visualization pipeline, how they are
connected, where they are running, what user in-
terface elements they have and hints on what types
of widgets satisfy those user interface elements.

A control panel is built for each of the compo-
nents in the pipeline, providing appropriately la-
beled and typed widgets, setting their initial values
based on the contents of the XML description. The
widgets used are currently selected from a small set
of basic sliders, buttons and text boxes but it is ex-
pected in the future that a richer set of user inter-
face elements will be provided. This could include
colour map and transfer function editors, or possi-
bly user defined widgets. The selection of widget
type is made based on possible hints provided in
the XML description or chosen based on the pa-
rameters data type.

The now tailored user interface is necessarily de-
coupled from the actual remote visualization pro-

cesses and both delivery of user selected param-
eters and receipt of visualization process-derived
parameter changes are required. For example, the
user may set a desired level of geometry compres-
sion, but the process delivers back the actual value
achieved, requiring an update to the user interface.
This communication process is managed using a
new Java implementation of the client component
of the gViz steering library. For each distinct con-
nection point defined in the XML description (sev-
eral pipeline components may in reality be imple-
mented by a single process and hence share a con-
nection point) a gViz connection is set up to send
and receive changes related to named parameters,
updating the user interface accordingly.

5.1.3 Generic User Interface: Visualization
Output

A remote rendering library has been created which
can be integrated with visualization applications
to enable multiple servers to deliver frames to the
same client window. The library has been written
in C in order to maximise the number of visualiza-
tion applications with which it can be integrated. A
number of codecs are supported, each o↵ering dif-
ferent trade-o↵s between compression ratio, image
quality, and the time taken to encode and decode;
frames can transmitted raw and uncompressed, or
encoded using JPEG, PNG, Colour Cell Compres-
sion Delta and Run-Length Encoding algorithms.
Meta-data is gathered relating to the time taken
to encode, transmit and decode frames, so that
in the future the system can be extended to au-
tomatically select the most appropriate codec for
the current environment. As stated, the library
supports multiple visualization servers, and so can
switch between alternate frame streams at runtime.
Servers can be added and removed at any point in
the life-time of a session, meaning that an e-Viz
visualization can seamlessly migrate from server to
server. Additionally, the library is fault tolerant,
and can cope gracefully with the unexpected loss
of a remote server. This goes some way to achiev-
ing an implementation that supports the system
transparency, reliability and adaptability features
highlighted by the electrical power grid analogy.
In the future, the client side of the library could
be extended to support local rendering of triangles
from remote servers, and the server side to support
output to the Access Grid.

5.2 Server

5.2.1 Grid Middleware

In the general case, the only software which must
be installed on a server machine is the Grid middle-
ware, since visualization software could potentially
be transferred onto the machine at runtime. In

reality, many visualization applications have per-
machine license requirements and non-trivial in-
stallation procedures. Furthermore, automated re-
source discovery and software installation proce-
dures are outside the remit of the e-Viz project,
and so we currently make the assumption that soft-
ware is pre-installed onto our HPV machines. In
the future though, we look to include such capabil-
ity through maturing third party software. In the
meantime, we use GT2.

5.2.2 Visualization Applications

As a first step towards the development of a pro-
totype e-Viz system, we have chosen to focus on
two di↵erent visualization platforms; VTK, and
the Real Time Ray Tracing (RTRT) software [19],
sometimes known as *ray. VTK is a complete soft-
ware development kit for visualization applications,
supporting a wide range of algorithms and tech-
niques, and is available on a large number of plat-
forms. Being an SDK, it is aimed at software devel-
opers and not application scientists. RTRT on the
other hand is a parallel ray tracing application with
support for volume rendering through ray casting.
As such it could be said to be aimed more at end
users than developers. The di↵erence between the
applications should help to evaluate the degree to
which the e-Viz system can abstract away from im-
plementation technologies.

The visualization applications have been instru-
mented with both the gViz computational steering
and e-Viz remote rendering libraries.

5.3 Broker

The broker machine is the heart of the e-Viz sys-
tem, and is where decisions are made on the hard-
ware and software that can best create an appro-
priate pipeline to meet a user’s requirements. The
client interacts with the broker by means of calls
to a web service instance created for each e-Viz
session. The web service is integrated with a deci-
sion making module, which itself interacts with a
knowledgebase.

5.3.1 Web Services Container

The WSRF::Lite[17] implementation of the WSRF
standard has been used to implement the web ser-
vice container. This provides us with a framework
that facilitates the rapid development of WSRF
compliant web services.

5.3.2 Decision Making Module

The decision making module is a software li-
brary called by web service instances, which parses

Figure 4: e-Viz Wizard and User Interface, showing
the volume rendering demonstration

XML messages containing the user’s visualization
requirements, and interrogates a knowledgebase
to determine the most appropriate visualization
pipelines. At the time of writing, this component
of the project has yet to be developed, and so the
e-Viz prototype is hard-wired to o↵er a limited se-
lection of visualization applications.

5.3.3 Knowledgebase

A database has been implemented using PostGRE
SQL in order to provide the knowledgebase com-
ponent of the e-Viz system. Again, at the time of
writing, this component is not integrated with the
rest of the e-Viz prototype.

6 User Scenarios

We now consider how the e-Viz system could be
used in practice, through two exemplar applica-
tions.

6.1 Volume Renderer

A volume rendering e-Viz pipeline has been cre-
ated to allow users to visualize volume data sets.
First the launcher is used to define the input data
set, visualization technique, desired resolution and
target frame-rate. Since we can implement volume
rendering in parallel with RTRT, the system can
potentially choose the number of processors that
would be required in order to meet the user’s de-
sired frame-rate, if possible. The RTRT job is
staged onto a SMP machine (in our case ‘Green’,
CSAR’s 256 processor Origin), and enters the batch
queue. In order to provide the user with some
visualization as soon as possible, a second job is
staged onto an interactive machine, but this time
using VTK and a downsized version of the data
set, rendered at a lower resolution. The user can
interact with this cut-down visualization while the
full resolution job passes through the batch queue.

Figure 5: e-Viz User Interface, showing the pollution
demonstration

When this happens, the client automatically con-
nects to the more powerful machine, synchronises
the visualization state, and switches the visualiza-
tion streams so the user can begin interacting with
the full resolution pipeline. In keeping with the
notion of system reliability, the system can auto-
matically fall back to the VTK pipeline should the
RTRT job fail, or run out of processing time. If all
pipelines fail, the simulation state remains on the
client, and new servers can be automatically added
and synchronised so that the visualization session
can continue.

6.2 Pollution Demonstrator

In contrast to the volume rendering application de-
scribed above in which pre-computed data is be-
ing visualized, the ability to visualize dynamically
created data from running simulations is also im-
portant. This is managed in e-Viz through the
launcher process which not only presents the user
with the option to select a specific data set, but
also allows the user to select a simulation as a data
source. After choosing this option the launcher
contacts a directory service to find a list of running
simulations from which the user may choose. Next,
the choice of visualization is selected and the XML
description of this pipeline generated (in future this
step will be handled by the e-Viz knowledge base).
This XML description not only describes the visu-
alization processes but also the numerical simula-
tion as components in the overall pipeline. This
complete XML description allows the generic user
interface to create controls for the simulation in or-
der to allow computational steering. In addition,
user interface controls for the visualization compo-
nents are provided as described earlier 5.1.2.

This has been demonstrated by re-working the
gViz pollution simulation scenario [10] using e-Viz.
Previously this simulation was steered and its data
visualized on the desktop using IRIS Explorer with
a user created visualization pipeline. Now, the e-
Viz system selects appropriate resources for the

visualization components, the generic user inter-
face is configured from the XML description of the
pipeline and the thin client delivers the rendered
results (see figure 5).

7 Future Work

We intend to improve the system by expending re-
search e↵ort in a number of areas. Firstly, the cre-
ation of an abstract visualization language is es-
sential to the success of the project, and work has
already begun on this topic. Additionally, as high-
lighted in the text, a decision making module must
be implemented in order to present users with a
choice of visualizations, and to instantiate pipeline
instances. Another area of future research relates
to the field of expert systems. It is envisaged that
intelligent software agents can be used to monitor
a user’s visualization session, and to recommend
alternative pipeline configurations in the form of
new camera positions, transfer functions etc. It is
hoped that the system could use feedback from pre-
vious user’s experiences to configure the pipelines
of current users.

8 Conclusions

The e-Viz framework we have introduced and the
prototype implementation we have described aim
to create a Grid-based abstract visualization sys-
tem for application scientists. The system ab-
stracts away from implementation technologies,
and in doing so creates a system for Grid visual-
ization which is transparent, adaptive, and fault
tolerant.

9 Acknowledgments

Financial support for this work was provided by
the Engineering and Physical Sciences Research
Council through grant numbers GR/S46567/01,
GR/S46574/01 & GR/S46581/01.

References

[1] R.B. Haber and D. A. McNabb. Visualization id-
ioms: A conceptual model for scientific visualiza-
tion systems. Visualization in Scientific Comput-

ing, IEEE Computer Society Press, pages 74–93,
1990.

[2] I.T. Foster, C. Kesselman, G. Tsudik, and
S. Tuecke. A security architecture for computa-
tional grids. In ACM Conference on Computer

and Communications Security, pages 83–92, 1998.

[3] K.W. Brodlie, J.M. Brooke, M. Chen, D. Chisnall,
A. Fewings, C. Hughes, N.W. John, M.W. Jones,
M. Riding, and N. Roard. Visual supercomputing

- technologies, applications and challenges. Com-

puter Graphics Forum, 24(2), 2005.

[4] I. Foster and C. Kesselman. Computational grids.
In I. Foster and C. Kesselman, editors, The Grid:

Blueprint for a New Computing Infrastructure,
pages 15–25. Morgan Kaufmann, 1999.

[5] N.W. John, R.F. McCloy, and S. Herrman. In-
terrogation of patient data delivered to the oper-
ating theatre during hepato-pancreatic surgery us-
ing high performance computing. Computer Aided

Surgery, 9(5/6), 2005.

[6] E.W. Bethel, B. Tierney, J. Lee, D. Gunter, and
S. Lau. Using high-speed wans and network data
caches to enable remote and distributed visualiza-
tion. In SC, 2000.

[7] I.J. Grimstead, N.J. Avis, and D.W. Walker. Au-
tomatic distribution of rendering workloads in a
grid enabled collaborative visualization environ-
ment. In SC, page 1. IEEE Computer Society,
2004.

[8] D. Kranzlmüller, P. Heinzlreiter, H. Rosmanith,
and J. Volkert. Grid-enabled visualization with
gvk. In European Across Grids Conference, vol-
ume 2970 of Lecture Notes in Computer Science,
pages 139–146. Springer, 2003.

[9] I. Foster and C. Kesselman. Globus: A toolkit-
based grid architecture. In I. Foster and C. Kessel-
man, editors, The Grid: Blueprint for a New Com-

puting Infrastructure, page 259. Morgan Kauf-
mann, 1999.

[10] K.W. Brodlie, D.A. Duce, J.R. Gallop, M.S. Sagar,
J.Walton, and J.D. Wood. Visualization in grid
computing environments. In IEEE Visualization,
pages 155–162. IEEE Computer Society, 2004.

[11] D.A. Duce and M. Sagar. skml: A markup lan-
guage for distributed collaborative visualization.
In Proceedings of Theory and Practice of Computer

Graphics, pages 171–178, 2005.

[12] D.J Duke, K.W. Brodlie, D.A. Duce, and I. Her-
man. Do you see what i mean? IEEE Computer

Graphics and Applications, 25(3):6–9, 2005.

[13] S. M. Pickles, R. Haines, R. L. Pinning, and A. R.
Porter. A practical toolkit for computational steer-
ing. Philosophical Transactions of the Royal Soci-

ety, 2004.

[14] The MIDAS project: http://www.llnl.gov/icc/
sdd/img/midas.shtml.

[15] I.T. Foster, C. Kesselman, J. Nick, and S. Tuecke.
The physiology of the grid: An open grid services
architecture for distributed systems integration,
2002.

[16] The myGrid project: http://www.mygrid.org.uk.

[17] WSRF::Lite: http://www.sve.man.ac.uk/

Research/AtoZ/ILCT.

[18] David B. Jackson. Grid scheduling with
maui/silver. Grid resource management: state of

the art and future trends, pages 161–170, 2004.

[19] S.G. Parker. Interactive ray tracing on a super-
computer. In Practical Parallel Rendering, 2002.

	WRROcoversheetBrodlie.pdf
	e-viz_integrated_framework.pdf
	Abstract

	Introduction

	Consideration of end-users

	Existing Distributed and Grid Visualization Systems

	Design Considerations

	The e-Viz System

	User Scenarios

	Future Work

	Conclusions

	Acknowledgements

	References

