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Abstract

Traditionally registration and tracking within Augmented Reality (AR) applications have been built
around limited bold markers, which allow for their orientation to be estimated in real-time. All
attempts to implement AR without specific markers have increased the computational requirements
and some information about the environment is still needed. In this paper we describe a method that
not  only  provides  a  generic  platform  for  AR  but  also  seamlessly  deploys  High  Performance
Computing  (HPC)  resources  to  deal  with  the  additional  computational  load,  as  part  of  the
distributed  High Performance Visualization (HPV) pipeline used to  render  the  virtual  artifacts.
Repeatable feature points are extracted from known views of a real object and then we match the
best stored view to the users viewpoint using the matched feature points to estimate the objects
pose.  We also show how our AR framework can then be used in the real world by presenting a
markerless AR interface for Transcranial Magnetic Stimulation (TMS). 
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1.   Introduction
Augmented  Reality  (AR)  applications  superimpose
computer-generated artefacts into the user’s view of the
real world. These artefacts must be correctly orientated
with  the  viewing  direction  of  the  user  who  typically
wears a suitable Head Mounted Display (HMD). AR is a
technology  growing  in  popularity  in  medicine,
manufacturing, architectural visualization, remote human
collaboration, and the military [1, 2].

To create the illusion of a virtual artefact within the
real  world,  it  is  essential  that  the  virtual  object  is
accurately  aligned  and  that  the  computer  graphics  are
presented  in  real  time.  Most  of  the  existing  solutions
involve the use of bold markers that contain contrasting
blocks  of  colour  and  shapes  making  them  easily
identifiable using computer vision techniques. To align
virtual artefacts into the real world three main stages are
required – see figure 1. Firstly we need to examine the
user’s viewpoint and identify where our  virtual objects
belong in the scene. Secondly we need to track the object
to ensure that we have aligned the object to the correct
position. Finally we use pose estimation to calculate the
orientation of the object so that we can align it with the
real world.

The Human Interface Technology Laboratory at the
University of Washington has developed the ARToolkit,
a software library providing the tools for creating marker
based AR applications. The ARToolkit has provided the
foundation for many of the early developments in AR and

make  it  possible  to  rapidly  produce  AR applications
using  an  inexpensive  webcam  and  an  average
specification PC [3].

Moehring, Lessig and Bimber show that when using
markers that have high contrast (for example, they use a
bold  type  on  a  white  background),  little  processing
power is  actually required to  estimate  the pose of an
object  even  with  the  poor  capture  quality  and  low
processing  capability  of  a  standard  consumer  mobile
phone. [4]

Although  the  use  of  markers  in  optical  tracking
enables the pose estimation to be calculated relatively
easily,  having  to  use  specific  markers  can  limit  the
possible AR tools that can be made available. Therefore
there are now many examples of AR solutions which do
not require markers [5, 6, 7].
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Figure 1: The three stages involved in AR
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In order to be successful, marker-less tracking is not
only  more  computationally  intensive,  but  also  requires
more information about the environment and the structure
of any planes or real objects that are to be tracked. In this
paper we present a generic solution that does not rely on
the  use  of  markers,  but  rather  feature  points  that  are
intelligently  extracted  from  the  users  view.  We  also
provide a solution to the computationally intensive task
of pose estimation and the rendering of complex artefacts
by exploiting remote HPV resources through an advanced
environment for enabling visual supercomputing – the e-
Viz Project [8].

2.   Robust feature point detection
In order to align our virtual object with the real world, we
first need to define the object in the users view.  During a
calibration  stage  the  user  is  given  the  opportunity  to
specify where the object exists within the viewpoint. We
use a robust feature point detection algorithm to identify
the  points  that  can  be  repeatedly  identified  within  the
space  occupied  by  the  virtual  object  and  use  this
information  to  estimate  the  objects  position  and
orientation.

There  are  many  existing  methods  for  extracting
feature  points,  most  of  which  are  based  on  corner
detection algorithms. Since the 1970’s many feature point
detectors have been proposed and there is still work today
to improve their accuracy and efficiency. There are three
main  methods  for  detecting  feature  points  in  images,
which stem from the following methods: edge-detection,
topology and autocorrelation [9, 10].

It  is  generally  accepted  that  the  autocorrelation
methods  yield  the  most  repeatable  results  and  they  all
follow the following three steps:

1.  For  each  point  in  the  input  image  a  Cornerness
value is  calculated by the operator,  and relates  to  how
likely it is believed that that point is a corner.

2. A threshold value is used to disregard any points
that are identified but are not strong enough to be true
corners.  The  Cornerness  value  of  these  points  is  then
typically set to zero.

3.  Non-maximal  suppression  sets  the  Cornerness
value for each point to zero if its cornerness value is not
larger than the cornerness measure of all points within a
certain distance. This ensures that we only find maximum
points  and   so  we  can  then  assume  that  all  non-zero
points are corners. 

2.1 Moravec/ Harris  algorithms

A  very  basic  algorithm  was  proposed  by  Moravec  in
1977  as  part  of  his  work  on  machine  vision  enabled
robotics  [11,  12].  He  proposed  that  a  point  could  be
identified  as  a  feature  point  if  there  was  a  significant
intensity  variation  in  each  direction  from  that  point.
Although this algorithm provides basic feature detection
without  being  too  computationally  intensive,  it  is  not
repeatable as the points it finds are only repeatable when
the edges are at 45o or 90o to the point being evaluated.
The  Harris  algorithm  [13]  improves  the  Moravec
algorithm but at a significant cost to the computational

requirements. It becomes more robust by changing the
way intensity variation is calculated between each pixel
and its neighbours by allowing for edges that are not at
45o or 90o to the point being evaluated.

The Harris algorithm uses first order derivatives to
measure  the  local  autocorrelation  of  each  point.  A
threshold  value  is  then  used  to  set  all  of  the  weaker
points to zero leaving all of the non zero points to be
interpreted as feature points- see figure 2.

3.   Pose Tracking and Estimation
Our application uses the calibration information to train
a Haar Classifier [15]. We have extended previous work
with Haar Classifiers [16] by using multiple calibration
views allowing the detector to not only be more robust
but also to continue to track different sides of an object.
We also maintain real-time performance even with the
increased computational  load by distributing the pose
estimation as part of our visualization pipeline. 

4.   Utilizing HPV with e-Viz
The e-Viz project  [8]  is  currently  under  development
and aims to provide a generic flexible infrastructure for
remote visualization using the Grid [17]. e-Viz address
many  of  the  issues  involved  in  HPV  [18]  using  a
combination of intelligent scheduling for new rendering
pipelines  and  the  monitoring  and  optimisation  of
running pipelines,  all  based on information  held  in  a
knowledge base. This provides an adaptive visualization
service that provides rendered graphics reliably without
the  application  or  user  even  being  aware  of  what
resources are being used. It also allows the application
to render graphics in real time at a resolution that would
normally be too high for the client machine.

We have followed two paths for implementing our
application with e-Viz:

Figure 2: The Harris algorithm detecting repeatable
feature points. The circles show a single point which
has been accurately repeated in each movement of
the cube.



• Rendering the graphics with e-Viz

The first implementation simply uses e-Viz to render the
virtual  artefacts  present  in  our  AR  view.  The  user’s
viewpoint is captured by the local machine and the pose
estimation is calculated locally. The pose transformation
is used to steer the e-Viz visualization pipeline, which in
the background sends the transformation information to
an available visualization server. Our client then receives
the  rendered  image  and  composites  it  locally  into  the
users view. 

• Distributing the pose estimation module as part of
the visualization pipeline.

In order to fully take advantage of the e-Viz resources the
second  implementation  moves  the  pose  estimation
module onto the e-Viz visualization pipeline. In this case
the e-Viz visualization is  steered directly  by the video
stream  of  the  users  view.  e-Viz  distributes  the  pose
estimation module to a suitable and available resource.
The pose estimation module then steers the visualization
pipeline and returns the final view back to the user after
compositing the artificial rendering into the real scene.

4.1 The e-Viz API

e-Viz provides a client  application that  can be used to
control  a  remote  visualization  pipeline  as  well  as
providing a viewer for the remotely rendered graphics to
be  returned  to  the  user.  It  also  provides  an  API  that
allows  users  to  develop  their  own  client  applications
which can utilize the e-Viz resources.

The e-Viz framework uses a web service to decide
which hardware and software to  make available to  the
client, based upon what resources are needed and what
resources  are  available.  The  broker  uses  a  knowledge
base  to  store  the  status  of  the  available  servers  and
inventory what resources they are capable of providing.
The  client  can  interact  with  the  Broker  by  the  use  of
gSOAP  calls,  which  will  tell  the  Client  which
visualization servers to connect to.

There  are  generally  multiple  visualization  servers
within the e-Viz environment. Having discovered which
visualization servers to use, the Client application uses a
Grid middleware (such as GT2) to connect to the remote
server  and  run  the  visualization  task.  By  providing  a
wrapper to different visualization applications it makes it
possible  to  execute  your  visualization  pipeline  on  any
visualization  server  regardless  of  what  visualization
software it is running.

5. Exemplar application
Transcranial Magnetic Stimulation (TMS) is the process
in which electrical activity in the brain is influenced by a
pulsed magnetic  field.  Common practice  is  to  align an
electromagnetic coil with points of interest identified on
the surface of the brain, which can be stimulated helping
researchers  identify  further  information  about  the
function of the brain. TMS has also proved to be very
useful in therapy and had positive results  with treating

severe  depression  and  other  drug  resistant  mental
illnesses such as epilepsy [19, 20].

In previous work we developed an AR interface for
TMS using an optical tracking system to calculate the
pose of the subjects head relative to user’s viewpoint
[21]. We are now developing a new AR interface that
uses our generic framework – see figure 3. By removing
the need for expensive optical tracking equipment our
software will provide an inexpensive solution, making
the procedure more accessible  to  training and further
research.

Our research has shown that although although an
average  desktop  PC  does  struggle  with  the  pose
estimation, using remote resources can ensure real-time
performance.  Provided  the  visualization  server  is
appropriate for the rendering task the e-Viz framework
is able to return the rendered artefact to the user at a

Figure 3: (a) The four images used to train the Haar
classifier  with the  best  match highlighted.  (b)  The
real-time users view with lines illustrating some of
the  matched  feature  points.  (c)  The  e-Viz  remote
rendering view. 



reliable  15  FPS,  where  there  is  little  latency.  On
congested  networks  e-Viz  uses  stricter  compression
algorithms  at  a  cost  to  the  image  quality  to  try  and
maintain these usable frame rates.

6.   Conclusions
In  conclusion  we  have  found  that  our  approach  to

producing a framework for AR has been very successful,
provided that optimum conditions are available. Problems
occur when trying to run the pose estimation locally. It is
simply too computationally intensive and so can not keep
up with the real time video. Distributing this calculation
to a more powerful grid resource has solved this problem.

Future  work  will  concentrate  on  improving  the
efficiency  and  reliability  of  the  feature  point  detection
algorithms,  ensuring  that  we  have  more  accurate  pose
estimation  between frames.  We also  need  to  introduce
heuristics that will help predict the position of the virtual
artefact, even if we are unable to calculate the pose of the
object,  by  building  up  a  knowledge  base  of  previous
frames.
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