
A Framework for Adaptive Visualization
K. W. Brodlie1, J. Brooke2, M. Chen3, D. Chisnall3, C. J. Hughes4i, N. W. John4,

M. W. Jones3, M. Riding2, N. Roard3, M. J. Turner2 and J. Wood1

University of Leeds1, University of Manchester2, University of Wales,Swansea3 and University of Wales, Bangor4

1. Introduction

Although desktop graphical capabilities continually improve,
visualization at interactive frame rates remains a problem for
very large datasets or complex rendering algorithms. This is
particularly evident in scientific visualization, (e.g., medical data
or simulation of fluid dynamics), where high-performance
computing facilities organised in a distributed infrastructure
need to be used to achieve reasonable rendering times. Such
distributed visualization systems are required to be increasingly
flexible; they need to be able to integrate heterogeneous
hardware (both for rendering and display), span different
networks, easily reuse existing software, and present user
interfaces appropriate to the task (both single user and
collaborative use). Current complex distributed software
systems tend to be hard to administrate and debug, and tend to
respond poorly to faults (hardware or software).

In recognition of the increasing complexity of general
computing systems (not specifically visualization), IBM have
suggested the Autonomic Computing approach [1] to enable
self-management through the means of self-configuration, self-
optimisation, self-healing and self-protection.

 We can think of a typical user scenario, beginning with the
import of a new data set into the system. The system will
attempt to visualize the data based upon previous usage. A
selection of images will be presented. The user will select the
most appropriate, and then will describe their requirements for
the system (e.g. real-time, critical, or lower quality and cheaper).
The system determines the resources available to fulfil the
requirement, and then takes care of the visualization. The user
may migrate their visualization images from their desktop to
their PDA, or may invite others to join in collaborative
visualization. All changes are managed by such an autonomic
visualization system. Our previous work [2] made an extensive
study of the enabling technologies and the challenges that will
be faced in implementing such a system. We proposed a model
for the deployment of such a system (figure 1) wherein we
suggested that more intelligence about the system environment,
user requirements and visualization can lead to a system that is
able to analyse, predict and modify its own behaviour, and result
in the above autonomic behaviour.
 Basic systems provide a user interface to the visual task.
Managed systems introduce a service layer (or middleware)
(e.g., Grid) to manage the security, distribution, output
destination and resources available to a task. Predictive systems
add an information layer that can provide data about the
performance of the system and quality of visualization. Adaptive

systems will begin to use such data to alter their own state in
order to achieve self-management, which leads on to a fully
autonomic system, where a knowledge base is added to reason
about the intelligence (both task side intelligence (e.g., this
visualization method is the best for this kind of data), and user
side intelligence (e.g., this user prefers this camera control
widget)).

This poster will present the model of semantic data flow
within the visualization system (called e-Viz) that allows the
system to self-configure, self-model and self-adapt its
configuration subject to general goals from the user. The
motivation is to simplify the user’s experience of interacting
with such complex visual systems, and simplify the integration
cost for developers of visual software.

2. Adaptive visualization

In general middleware allows the connection of two or more
software components by translating the interface between them.
In this context middleware can be regarded as software that
allows the programmer to abstract away from system level
details. We can further relate this to visual problems by stating
that a programmer can write their visualization code as if it is
generating images on a single machine, and the middleware will
take care of any distribution over a heterogeneous cluster,
display on different devices, and/or interaction through different
user interfaces. Adaptive (or reflective) systems [3] take
advantage of the ability to inspect their own state and adapt their
configuration to suit a particular environment or the demands of
the user. This act in itself gives the basis for such a system to
implement self-management.
 Figure 2 shows the functional description of e-Viz:

• The system and task simulation service layer performs
a simulation using descriptions of the available
hardware and proposed (or used) system pipeline. The
aim of this service layer (called Simu-Vis) is to

i e-mail: chughes@informatics.bangor.ac.uk

Figure 1: The deployment model for developing a visual
supercomputing infrastructure

User Interface
System Layer

User Interface
Service Layer
System Layer

User Interface

Service Layer
System Layer

Information Layer
User Interface

Service Layer
System Layer

Information Layer
Adaptation Layer

Intelligent UI

Service Layer
System Layer

Info & Know. Layer
Adaptation Layer

Basic Managed Predictive Adaptive Autonomic

Figure 2: Functional description of e-Viz using the Adaptive Layer (colours
illustrate the connections to the adaptive layer in Figure 1)

Adaption

Database

System and
Task

Simulation

User Interface

Formal pipeline
Description

System Pipeline

User
Visualization

Problem
Application

generate

derive

Knowledge
Server

provide optimised system pipelines for various types
of visualization problems.

• All knowledge and information is stored in a database
that can be queried using particular data types, in order
to provide a valid pipeline.

• This pipeline is encoded using a formal pipeline
description language, from which the user interface
and system pipeline can be generated.

• During execution, the interface, formal description and
system pipeline can be adapted to meet the user
requirements.

3. Demonstrators

We have evaluated and employed three demonstrators to test the
e-Viz framework. The first is an environmental pollution
disaster simulation. In this scenario an accidental release of a
chemical has taken place and it is necessary to compute in faster
than real time the concentrations of the pollutant in the
environment to inform decisions with respect to evacuation of
population centres. The pollutant is moved under the action of
the wind which may change as time progresses and alter the
levels of concentration in different locations. This scenario is
modelled using a PDE based numerical simulation generating
data that is visualized and presented to the user in real time. The
user is able to change the direction of the wind while the
simulation is running and see the effects of these changes as they
are computed.

 In the e-Viz framework the system is responsible, using high
level directives from the user, for generating an appropriate
visualization pipeline. This is represented using skML, an XML
based language used to represent the formal pipeline description.
[4] The various components that make up this pipeline can then
be launched and connected. This skML description is passed to
the e-Viz client which parses it to dynamically create an
appropriate user interface – see Figure 3. For each parameter it
selects an appropriate widget; the selection is initially based on
its type but can be refined on the basis of special widgets
specified within the skML, or by local user preferences or by the
nature of the client device. skML snippets are also used by the
simulation component to influence the state of its user interface
to change the state of its initialisation parameters from active to
disabled while running and back to active upon reset.

The second demonstrator implements an Augmented Reality
interface for Transcranial Magnetic Stimulation (TMS) that is
the process in which electrical activity in the brain is influenced
by a pulsed magnetic field. Common practice is to align an
electromagnetic coil with points of interest identified on the
surface of the brain, which can be stimulated helping researchers
identify further information about the function of the brain – see

Figure 4. The cranium is remotely rendered using high
performance visualization resources and the compression used
on the image stream to the local client is adapted to maintain
real-time performance regardless of network latency.

The third demonstrator is an anatomical atlas volume
rendering demonstrator that offers a degree of self-healing by
monitoring active visualization components through agents. If
one component is lost due to a software failure or network
problems, the monitoring agents forward the information to the
associated pipeline, which can then switch to other similar
running components (if they exist) or request new ones.
Different strategies can be chosen to deal with potential failures:
the pipeline can for example use twice as many components as
needed to offer true redundancy, or can use a pooling strategy.
Performances may be degraded in the case of failure, but the
visualization will not terminate, as images will continue to be
produced. If no redundancy strategy is in place for a pipeline, a
failure will be translated into a service interruption on the client
side, but a replacement component will be requested and the
visualization will thus restart automatically. Each strategy is
associated with a certain cost, so the user can choose to trade-off
reliability and frame rate with cost, and e-Viz automatically can
allocate and manage the pool of rendering agents. Self-
optimization is achieved by using SimuVis [5] - a task
simulation engine provided within the e-Viz environment.

4. Conclusion

By exploring the Autonomic Computing approach, we have
demonstrated how it can impact on the way that visualization
services are implemented and presented to users and developers.
We have taken our proposal of a deployment model for a visual
supercomputing infrastructure, and have carried out a thorough
analysis of how it can be achieved with a functional
implementation.

References

[1] IBM. Autonomic computing website (Last visited 29th June 2006),
http://www.ibm.com/autonomic/about.shtml.
[2] K. Brodlie, J. Brooke, M. Chen, D. Chisnall, A. Fewings, C. Hughes,
N.W. John, M.W. Jones, M. Riding, and N. Roard. Visual
supercomputing – technologies, applications and challenges. Computer
Graphics Forum, 24(2):217–245, 2005.
[3] F. Kon, F. Costa, G. Blair, and R. H. Campbell. The case for
reflective middleware. Communications of the ACM, 45(6):33–38, June
2002.
[4] K. Brodlie, D. Duce, J. Gallop, M. Sagar, J. Walton, and J. Wood.
Visualization in grid computing environments. In Proceedings of IEEE
Visualization 2004, pages 155–162, 2004.
[5] D. Chisnall and M. Chen, The Making of SimEAC, 3rd IEEE
International Conference on Autonomic Computing, Dublin, Ireland,
2006.

Figure 3: Environmental Pollution Demonstrator

Figure 4: Augmented Reality Demonstrator

View publication statsView publication stats

