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1. Introduction

Although  desktop  graphical  capabilities  continually  improve,
visualization at  interactive  frame rates  remains a  problem for
very  large  datasets  or  complex  rendering  algorithms.  This  is
particularly evident in scientific visualization, (e.g., medical data
or  simulation  of  fluid  dynamics),  where  high-performance
computing  facilities  organised  in  a  distributed  infrastructure
need to  be  used to  achieve reasonable  rendering  times.  Such
distributed visualization systems are required to be increasingly
flexible;  they  need  to  be  able  to  integrate  heterogeneous
hardware  (both  for  rendering  and  display),  span  different
networks,  easily  reuse  existing  software,  and  present  user
interfaces  appropriate  to  the  task  (both  single  user  and
collaborative  use).  Current  complex  distributed  software
systems tend to be hard to administrate and debug, and tend to
respond poorly to faults (hardware or software). 

In  recognition  of  the  increasing  complexity  of  general
computing  systems  (not  specifically  visualization),  IBM have
suggested  the  Autonomic  Computing  approach  [1]  to  enable
self-management through the means of self-configuration, self-
optimisation, self-healing and self-protection.

  We can think of a typical user scenario, beginning with the
import  of  a  new  data  set  into  the  system.  The  system  will
attempt  to  visualize  the  data  based  upon  previous  usage.  A
selection of images will be presented. The user will select the
most appropriate, and then will describe their requirements for
the system (e.g. real-time, critical, or lower quality and cheaper).
The  system  determines  the  resources  available  to  fulfil  the
requirement, and then takes care of the visualization. The user
may  migrate  their  visualization  images  from their  desktop to
their  PDA,  or  may  invite  others  to  join  in  collaborative
visualization. All  changes are managed by such an autonomic
visualization system. Our previous work [2] made an extensive
study of the enabling technologies and the challenges that will
be faced in implementing such a system. We proposed a model
for  the  deployment  of  such  a  system  (figure  1)  wherein  we
suggested that more intelligence about the system environment,
user requirements and visualization can lead to a system that is
able to analyse, predict and modify its own behaviour, and result
in the above autonomic behaviour.
  Basic  systems  provide  a  user  interface  to  the  visual  task.
Managed  systems  introduce  a  service  layer  (or  middleware)
(e.g.,  Grid)  to  manage  the  security,  distribution,  output
destination and resources available to a task. Predictive systems
add  an  information  layer  that  can  provide  data  about  the
performance of the system and quality of visualization. Adaptive

systems will begin to use such data to alter their own state in
order  to  achieve  self-management,  which  leads  on  to  a  fully
autonomic system, where a knowledge base is added to reason
about  the  intelligence  (both  task  side  intelligence  (e.g.,  this
visualization method is the best for this kind of data), and user
side  intelligence  (e.g.,  this  user  prefers  this  camera  control
widget)). 

This  poster  will  present  the  model  of  semantic  data  flow
within the  visualization  system (called  e-Viz)  that  allows the
system  to  self-configure,  self-model  and  self-adapt  its
configuration  subject  to  general  goals  from  the  user.  The
motivation  is  to  simplify  the  user’s  experience  of  interacting
with such complex visual systems, and simplify the integration
cost for developers of visual software. 

2. Adaptive visualization

In general  middleware  allows the connection of  two or  more
software components by translating the interface between them.
In  this  context  middleware  can  be  regarded  as  software  that
allows  the  programmer  to  abstract  away  from  system  level
details. We can further relate this to visual problems by stating
that a programmer can write their visualization code as if it is
generating images on a single machine, and the middleware will
take  care  of  any  distribution  over  a  heterogeneous  cluster,
display on different devices, and/or interaction through different
user  interfaces.  Adaptive  (or  reflective)  systems  [3]  take
advantage of the ability to inspect their own state and adapt their
configuration to suit a particular environment or the demands of
the user. This act in itself gives the basis for such a system to
implement self-management. 
  Figure 2 shows the functional description of e-Viz:  

• The system and task simulation service layer performs
a  simulation  using  descriptions  of  the  available
hardware and proposed (or used) system pipeline. The
aim  of  this  service  layer  (called  Simu-Vis)  is  to
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Figure 1: The deployment model for developing a visual
supercomputing infrastructure

User Interface
System Layer

User Interface
Service Layer
System Layer

User Interface

Service Layer
System Layer

Information Layer
User Interface

Service Layer
System Layer

Information Layer
Adaptation Layer

Intelligent UI

Service Layer
System Layer

Info & Know. Layer
Adaptation Layer

Basic Managed Predictive Adaptive Autonomic

Figure 2: Functional description of e-Viz using the Adaptive Layer (colours
illustrate the connections to the adaptive layer in Figure 1)
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provide optimised system pipelines for various types
of visualization problems.

• All knowledge and information is stored in a database
that can be queried using particular data types, in order
to provide a valid pipeline. 

• This  pipeline  is  encoded  using  a  formal  pipeline
description  language,  from which  the  user  interface
and system pipeline can be generated. 

• During execution, the interface, formal description and
system  pipeline  can  be  adapted  to  meet  the  user
requirements.

3. Demonstrators

We have evaluated and employed three demonstrators to test the
e-Viz  framework.  The  first  is  an  environmental  pollution
disaster simulation. In this scenario an accidental release of a
chemical has taken place and it is necessary to compute in faster
than  real  time  the  concentrations  of  the  pollutant  in  the
environment to inform decisions with respect to evacuation of
population centres. The pollutant is moved under the action of
the  wind which may change as  time progresses and alter  the
levels  of  concentration in different  locations.  This scenario is
modelled using a PDE based numerical  simulation generating
data that is visualized and presented to the user in real time. The
user  is  able  to  change  the  direction  of  the  wind  while  the
simulation is running and see the effects of these changes as they
are computed. 

  

  In the e-Viz framework the system is responsible, using high
level  directives  from  the  user,  for  generating  an  appropriate
visualization pipeline. This is represented using skML, an XML
based language used to represent the formal pipeline description.
[4]  The various components that make up this pipeline can then
be launched and connected. This skML description is passed to
the  e-Viz  client  which  parses  it  to  dynamically  create  an
appropriate user interface – see Figure 3. For each parameter it
selects an appropriate widget; the selection is initially based on
its  type  but  can  be  refined  on  the  basis  of  special  widgets
specified within the skML, or by local user preferences or by the
nature of the client device. skML snippets are also used by the
simulation component to influence the state of its user interface
to change the state of its initialisation parameters from active to
disabled while running and back to active upon reset.

The second demonstrator implements an Augmented Reality
interface for Transcranial  Magnetic Stimulation (TMS) that is
the process in which electrical activity in the brain is influenced
by  a  pulsed  magnetic  field.  Common  practice  is  to  align  an
electromagnetic  coil  with  points  of  interest  identified  on  the
surface of the brain, which can be stimulated helping researchers
identify further information about the function of the brain – see

Figure  4.  The  cranium  is  remotely  rendered  using  high
performance visualization resources and the compression used
on the image stream to the local client is adapted to maintain
real-time performance regardless of network latency. 

The  third  demonstrator  is  an  anatomical  atlas  volume
rendering demonstrator that offers a degree of self-healing by
monitoring active visualization components through agents.  If
one  component  is  lost  due  to  a  software  failure  or  network
problems, the monitoring agents forward the information to the
associated  pipeline,  which  can  then  switch  to  other  similar
running  components  (if  they  exist)  or  request  new  ones.
Different strategies can be chosen to deal with potential failures:
the pipeline can for example use twice as many components as
needed to offer true redundancy, or can use a pooling strategy.
Performances may be degraded in the case of failure,  but  the
visualization will not terminate, as images will continue to be
produced. If no redundancy  strategy is in place for a pipeline, a
failure will be translated into a service interruption on the client
side,  but  a  replacement  component  will  be  requested and the
visualization  will  thus  restart  automatically.  Each  strategy  is
associated with a certain cost, so the user can choose to trade-off
reliability and frame rate with cost, and e-Viz automatically can
allocate  and  manage  the  pool  of  rendering  agents.  Self-
optimization  is  achieved  by  using  SimuVis  [5]  -  a  task
simulation engine provided within the e-Viz environment.

4. Conclusion

By  exploring  the  Autonomic  Computing  approach,  we  have
demonstrated how it can impact on the way that visualization
services are implemented and presented to users and developers.
We have taken our proposal of a deployment model for a visual
supercomputing infrastructure, and have carried out a thorough
analysis  of  how  it  can  be  achieved  with  a  functional
implementation.
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Figure 3: Environmental Pollution Demonstrator

Figure 4: Augmented Reality Demonstrator
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