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Abstract

Traditionally registration and tracking within Augmented Reality (AR) applica-

tions have been built around specific markers which have been added into the user’s

viewpoint and allow for their position to be tracked and their orientation to be es-

timated in real-time. All attempts to implement AR without specific markers have

increased the computational requirements and some information about the environ-

ment is still needed in order to match the registration between the real world and

the virtual artifacts. This thesis describes a novel method that not only provides a

generic platform for AR but also seamlessly deploys High Performance Computing

(HPC) resources to deal with the additional computational load, as part of the dis-

tributed High Performance Visualization (HPV) pipeline used to render the virtual

artifacts. The developed AR framework is then applied to a real world application

of a marker-less AR interface for Transcranial Magnetic Stimulation (TMS), named

BART (Bangor Augmented Reality for TMS ).

Three prototypes of BART are presented, along with a discussion of the subse-

quent limitations and solutions of each. First by using a proprietary tracking system

it is possible to achieve accurate tracking, but with the limitations of having to use

bold markers and being unable to render the virtual artifacts in real time. Second,



iii

BART v2 implements a novel tracking system using computer vision techniques.

Repeatable feature points are extracted from the users view point to build a de-

scription of the object or plane that the virtual artifact is aligned with. Then as

each frame is updated we use the changing position of the feature points to estimate

how the object has moved. Third, the e-Viz framework is used to autonomously

deploy HPV resources to ensure that the virtual objects are rendered in real-time.

e-Viz also enables the allocation of remote High Performance Computing (HPC)

resources to handle the computational requirements of the object tracking and pose

estimation.
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Chapter 1

Introduction

(a) (b)

Figure 1.1: Early work at (a) MIT and (b) Bangor University, showing how users

were able to interact with the early Computer Graphics applications.

Since the Term Computer Graphics was first coined in the early 1960’s by William

Fetter to describe his work at Boeing [1], there has been a constant challenge not

only to improve the quality of the computer graphics but also to find more natural

interfaces between the Computer Graphics image and the real-world. Initially cath-

1
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ode ray-tube (CRT) monitors were the only technology that was available to display

the computer output, however as computing resources became more powerful allow-

ing Computer Graphics to improve, there was also a requirement to improve the

methods by which users view the images.

Even in the early days it was clear how powerful the computer graphics could

be. Figure 1.1, gives examples of some of the first computer graphics research being

done, both at (a) MIT and at (b) Bangor University. Work done in 1965 by Ivan

Sutherland produced the first Head Mounted Display (HMD) as a ‘window into a

virtual world’, allowing the users to look into an environment that was completely

computer generated and although the Computer Graphics were extremely basic it

was a major milestone in the work towards immersive visualization environments [2].

However it was not until 1989 when Jaron Lanier used the phrase Virtual Reality

(VR) and created the first commercial business around virtual worlds [3].

Twenty years later researchers are still working towards that goal. Computa-

tional resources are much faster, most people have watches with more processing

power than was available to them in the 1960’s and over 67% of all homes have a

computer with the capabilities to generate real-time, photo-realistic environments.

Ivan Sutherland’s CRT based HMD has now been replaced by ultra thin LCD dis-

plays, but work is still going on to develop better and more natural ways to allow

the user to understand the computer graphics.

During the 1990’s, Tom Caudell, another developer at Boeing, suggested the idea

of Augmented Reality (AR), allowing the user to remain present in the real world

but also to use an HMD to supplement the real world with virtual graphics and

information which could be used to help workers at Boeing assemble cables into air-

craft [4]. In 1994 Ronald Azuma took this work forward defining three requirements
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(a) (b)

Figure 1.2: (a) 1966: Ivan Sutherland’s CRT based HMD (b) Modern day: A typical

HMD with stereo capabilities up to 800x600 resolution. Commercially available for

approx $5000.

for AR: a) the real and virtual world must be combined, b)the environment must

be interactive whilst maintaining real-time performance (i.e. more than 15 frames

per second) and c) the Computer Graphics must be registered in 3D [5].

There have now been many successful applications which use AR, however it

is generally accepted that all of them require specifically placed, bold markers to

be placed within the environment to enable the software to easily align the virtual

objects with the real world. This Thesis presents a solution which enables virtual

artifacts to be overlaid into the real world view and tracked using a series of feature

points rather than bold markers. The developed AR framework is the applied to

the real-world application of a markerless AR interface for Transcranial Magnetic

Stimulation (TMS). Furthermore the solution is extended to allow the computer

Graphics to be rendered using remote High Performance Visualization resources, in

order to meet the requirements of our exemplar application.
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1.1 Hypothesis

The hypothesis is that it is possible to create an interactive Augmented Reality

interface, using feature points for registration. It will also be capable of providing

high performance visualizations by seamlessly deploying processing power from a

remote, possibly Grid-enabled, high performance computing resource.

The framework developed will be applied to Transcranial Magnetic Stimulation.

1.2 e-Viz Project

The e-Viz project was funded by the EPSRC between November 2003 and Febru-

ary 2007 to provide a solution to the Grand Challenge problems which require High

Performance Visualization (HPV) resources. It was a collaborative project involving

computer science groups at Bangor, Leeds, Manchester and Swansea Universities.

By exploiting Grid technologies, e-Viz provides a generic flexible infrastructure for

remote visualization allowing the rendering of large datasets whilst providing real-

time, high resolution performance. It does this using a combination of intelligent

scheduling for new rendering pipelines and the monitoring and optimisation of run-

ning pipelines, all based on information held in a knowledge base. This provides an

adaptive visualization service that provides rendered graphics reliably without the

application or user even being aware of what resources are being used. An overview

of the e-Viz framework is given in chapter 2.

The e-Viz project has demonstrated how visualization can be seamlessly in-
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tegrated into a Grid infrastructure and the application of autonomic computing

strategies to visualization tasks - this is the first time that such a strategy has been

proposed. Bangor’s contribution to the e-Viz project included the study of the

performance of distributed graphics pipelines in a visualization architecture built on

commodity PC hardware. This reflects the trend of incorporating such architectures

in Grid computing, in place of supercomputers. Furthermore, the development of

an augmented reality interface for transcranial magnetic stimulation using high per-

formance computing resources, was created as an exemplar application for the e-Viz

framework. The work of which is included as part of this thesis and is explained on

more detail in Chapter 6.

1.3 Motivations of this work

Augmented Reality (AR) provides the user with the ability to visualize and project

3D data or other information into their natural environment. It also provides the

user with an intuitive method of interacting with the data in a way that has not

previously been available. By providing the user with an egocentric view of the

visualized data allows them to use their natural spatial understanding and to gain

a sense of their presence in the real world, augmented with virtual artifacts.

The use of grid enabled visualization resources, to render the virtual artifacts,

allows the AR environment to be generated by a workstation that would not nor-

mally have the required processing capabilities. Combining this with the possibility

to capture the user’s viewpoint using a cheap proprietary web-cam allows the AR

applications to be brought to the user’s home and run on their average, non special-

ist, desktop computer. Other suitable platforms for running AR applications could

include a Personal Digital Assistant’s (PDA’s) or some other embedded device such
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as a mobile phone, many of which have camera facilities built in.

The ability to visualize and interact with an environment that has been aug-

mented with complex virtual artifacts could have a great impact upon many appli-

cations. Some examples of these include:

Medical: During medical diagnostics or surgery, previously derived tomography

could be overlaid over the patient allowing the clinician to ‘see’ inside the

patient.

Manufacturing and Assembly: Assembly instructions could be placed into the

field of view of the assembly worker.

Visualization of Architecture: Destroyed historic buildings could be virtually

rebuilt, or planned construction projects be simulated.

Collaboration: Meetings could combine both real and virtual participants. Also

a single 3D artifact could be explored by user’s from multiple locations.

Entertainment: Virtual Objects could be presented in museums and exhibitions

Several AR applications exist that use specific markers for registering the virtual

artifacts with the real world. However this thesis presents a solution which uses

information extracted from the user’s view in order to track and align the virtual

object. The performance of most of the existing marker-less solutions are still be-

yond the demands of real-world AR applications, in terms of speed, accuracy and

flexibility. The user’s viewpoint must be freely movable, which makes the movement

of the camera unpredictable. The 3D pose of the object must also be calculated re-

liably regardless of environmental changes. Therefore any successful solution must

satisfy the following criteria:



1.4. Contributions of this research 7

• Must be easy to calibrate offline which real world objects are being tracked.

• Needs to be capable of automatically reinitializing should the alignment drift

or an error occur.

• Needs to extract feature points reliably and repeatably.

• Must have a computational cost that can be satisfied in real-time.

• Must provide an accurate alignment of the virtual and real objects.

• Must work in unconstrained environments, such as changing levels of light.

• must be able to be adapted for each required application.

The main challenges of this research include:

• Implementing a robust, repeatable feature point detector.

• Registering extracted feature points to a calibrated reference frame.

• Implementing a pose estimation algorithm in order to reconstruct the position

and orientation of the tracked object.

• Utilise the e-Viz framework to seamlessly deploy the computational load of

the AR application to a remote Grid enabled resource.

• Attempt to achieve an Autonomic AR environment with support for Self-

configuration, Self-healing, Self-optimization and Self-protection.

1.4 Contributions of this research

This research makes a number of contributions to the current state of the art in Aug-

mented Reality (AR) and the use of grid enabled visualization technologies, allowing
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more computationally intensive AR environments to be generated. Specifically the

contributions include:

• A novel AR interface to the Transcranial Magnetic Stimulation (TMS) using

a Polaris Optical Tracking System was developed. This allows the operator to

identify and align the TMS tools with the required regions of interest on the

subject’s cranium, whilst working in a much more natural environment. The

software, Bangor Augmented Reality for TMS (BART) allows the operator to

see the actual rendering of the subjects cranium whilst interacting with the

subject rather than focusing at a computer monitor.

• A new framework for tracking, using only a cheap webcam rather than an

expensive proprietary tracking system was developed. By extracting feature

(or corner) points from the user’s viewpoint the software is able to track the

position and pose of the real world object that was used for reference. A Haar-

classifier technique was combined with a POSIT algorithm to track the position

of the moving object and calculate its change in orientation and rotation within

set error bounds.

• In order to use BART in real-time with large volume datasets, the e-Viz frame-

work was successfully used to transparently allocate a remote High Perfor-

mance Visualization (HPV) resource to remotely render the virtual artifacts.

• To satisfy the large computational requirements of the BART software it was

finally distributed as part of the visualization pipeline. The e-Viz framework

was used to allocate remote High Performance Computing (HPC) resources.

• During this research a significant contribution was made to the development

and testing of the e-Viz framework, a project which was rated as tending to



1.5. Publications 9

outstanding by the EPSRC reviewers. Specifically, contributions were made

to the following components of e-Viz included:

– Contribution to the overall system design.

– Development and maintenance of the e-Viz broker and database which

ran on a machine based at Bangor.

– Development of an e-Viz wrapper for openDX, allowing it to be used as

a remote visualization software resource.

– Install and testing of the e-Viz software during development.

1.5 Publications

The following publications where contributed to during this research project:

1.5.1 Journal Publications:

(1) K Brodlie, J Brooke, M Chen, D Chisnall, A Fewings, C Hughes, N.W. John,

M Jones, M Riding, and N Roard, ‘Visual Supercomputing - Technologies,

Applications and Challenges’, Computer Graphics Forum, Number 24, Issue

2, pp. 217-245, 2005.

1.5.2 Publications in refereed conference Proceedings:

(2) K.W. Brodlie, J. Brooke, M. Chen, D. Chisnall, C. Hughes, N.W. John,

M.W. Jones, M. Riding, N. Roard, M. Turner, J.D.Wood, ‘Adaptive Infras-

tructure for Visual Computing’, Proceedings of Theory and Practice of Com-

puter Graphics, Bangor, pp. 147-156, ISBN 978-3-905673-63-0, 2007.
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(3) C. J. Hughes, N. W. John, ‘A generic approach to High Performance Visu-

alization enabled Augmented Reality’, Proceedings of Theory and Practice of

Computer Graphics, Bangor, pp. 181-186, ISBN 978-3-905673-63-0, 2007.

(4) Chris Hughes and Nigel W. John, ‘A flexible infrastructure for delivering

Augmented Reality enabled Transcranial Magnetic Stimulation’, Proceedings

of Medicine Meets Virtual Reality 14, Long Beach, California, pp. 219-224,

IOS Press, ISBN 1-58603-583-5, 2006.

(5) Mark Riding, Jason Wood, Ken Brodlie, John Brooke, Min Chen, David Chis-

nall, Chris Hughes, Nigel W. John, Mark W. Jones, Nicolas Roard, ‘e-Viz:

Towards an Integrated Framework for High Performance Visualization’, Pro-

ceedings of the UK e-Science All Hands Meeting, EPSRC, pp. 1026-1032,

ISBN 1-904425-53-4, 2005.

(6) K. Brodlie, J. Brooke, M. Chen, D. Chisnall, A. Fewings, C. Hughes, N.W.

John, M. Jones, M. Riding, and N. Roard, ‘Visual Supercomputing - Technolo-

gies, Applications and Challenges’, STAR Report, Eurographics, Grenoble,

France, 2004.

1.5.3 Refereed Poster Presentations:

(7) K. W. Brodlie, J. Brooke, M. Chen, D. Chisnall, C. J. Hughes, N. W. John,

M. W. Jones, M. Riding, N. Roard, M. J. Turner and J. Wood, ‘A Frame-

work for Adaptive Visualization’, Poster presentation for IEEE Visualization,

Baltimore, Maryland, USA, 2006. Poster presented by Hughes.

(8) Chris J Hughes, Nigel W. John and M. Riding, ‘A generic approach to High

Performance Visualization enabled Augmented Reality’, Poster presentation
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at UK e-Science Programme All Hands Meeting, Nottingham, 2006. Poster

presented by Hughes.

1.5.4 Summary of contribution to each publication:

Paper (1) was a revision of Paper (6) which was originally drafted as the literature

review for this thesis. It was moderately redeveloped, as a state-of-the-art report

with contributions from the e-Viz consortium. Paper (2) summarises the final results

of the e-Viz project. Paper (3) detailed the BART v3 software, as shown in Chapter

6, and how it was integrated to use the e-Viz framework. Paper (4) was based upon

the first version of BART as described in Chapter 4. Paper (5) described the design

of the e-Viz system, including details about the Broker web service.

The Poster (7) was prepared and presented by Bangor, on behalf of the e-Viz

consortium and submitted as a poster to IEEE Visualization, describing e-Viz and

how it aimed towards adaptive visualization. Poster (8) summarized the early work

towards BART v3, as shown in Chapter 6.



Chapter 2

Background and Literature

Review

2.1 Virtual Environments

Virtual Environments represent a major technical drive in computer graphics and

visualisation, and have helped push a range of hardware and software technologies

forward. A Virtual Environment (VE) gives the user a feeling of being inside a com-

puter generated environment with a sense of spatial presence and often coupled with

physical presence. For many visualisation applications, Virtual Environments can

provide user’s with realistic experience in interrogating, navigating within, feeling

and manipulating data via its visual representation.

The visual display can be broken down into three different types of immersive

display. These three types are described below:

12
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2.1.1 Non-Immersive Displays

The most basic method of stimulation is to use a computer display to show the user

graphics information, allowing the user to view the the virtual environment through

a window. Generally these environments allow the user to interact using a mouse or

a keyboard. However using an ordinary computer display has many limitations and

the user would only see a flat image and do not give the user a true feeling of being

immersed within the virtual environment. To try and extend upon this scientists

have developed several ways to send a different image to each eye and thus give the

user a 3D perspective of the image.

2.1.2 Semi-Immersive Displays

One popular method is to use active-stereo and Shutter Glasses, as shown in Fig-

ure 2.1(a). With this technology an ordinary computer monitor can be used and

allow several people to view the visualization at a time. These work by using LCD

panels to alternatively block the light to each of the user’s eyes. This can then

be synchronized to the monitor which can display different projections for each eye

by switching between the images very quickly [6]. These allows the user to get a

true grasp of the 3D environment and although the user can still see the real world

around them, gives them a more realistic view of the objects and environment into

which they are looking. There are several commercial versions of the Shutter Glasses

from companies such as CrystalEyes [7] and StereoGraphics [8].

Shutter Glasses although very effective for small groups of people, are not suitable

for larger or public events due to their cost. An inexpensive alternative is to use

a passive-stereo alternative [9]. In this case each viewer is given a disposable pair

of glasses containing two oppositely polarized filters, which can be produced very
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cheaply. The image is projected from two digital projectors with their image filtered

to match the separate polarization filters in the viewer’s glasses. This means that

each eye can only see the image from one of the projectors and therefore the stereo

image can be produced by sending a different projection to each eye.

Auto-stereoscopic displays are being developed to enable the user to see into the

virtual environment in 3D without the need for Shutter Glasses, such as the SeeReal

display from inition [10]. However many of these displays can be difficult to set up

successfully and require the user to be sit in a specific position, making it difficult

for collaborative use.

Another example of semi-immersive displays is the Immersive Workbench from

Sensegraphics [11]. They have developed an environment which uses a standard

computer display, which is reflected from a semi-transparent mirror. This allows the

user to look down into the virtual environment through the mirror using Shutter

Glasses. This allows the user to not only see the 3D environment, but also leaves

the real workspace within the environment empty for other tools to be used, such

as Haptic devices which allow the user to touch the objects within the environment.

The Immersive Workbench is available in a number of different formats, ranging

from the desktop version, as shown in Figure 2.1(b) using a CRT monitor, up to a

collaborative version using a 3D digital projector to provide a much bigger working

environment.

2.1.3 Fully-Immersive Displays

The first method to allow a user to be fully immersed in a virtual environment was

to mount a visual display in front of each eye using a headset design to form a Head

Mounted Display (HMD). This was limited because only one user would be able to
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(a) (b)

Figure 2.1: An example of (a) a pair of Shutter Glasses from CrystalEyes and (b) a

desktop version of the Immersive Workbench from Sensegraphics.

see the visualization at once, but it did ensure that the user would only be able to

see the computer environment. This provides a number of other limitations such as

the headsets were generally uncomfortable due to their size and weight. They also

the user requires some form of cabled connection to the computer which could be

cumbersome [12].

The University of Illinois at Chicago developed the Cave Automatic Virtual En-

vironment (CAVE) in 1992 [13]. Its main aim was to address the challenges of

providing a visualization tool which allowed multiple user’s to experience the envi-

ronment simultaneously. The CAVE used a series of large scale digital projectors

to surround the user’s, enabling the environment around the user to be controlled

by the computer system, as ilustrated in Figure 2.2. The CAVE became an enor-

mously successful interface to virtual environments and several commercial systems
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are available. Fakespace Systems [14] are one of the leading suppliers of immersive

displays.

Figure 2.2: The basic set up of the Cave Automatic Virtual Environment (CAVE)

2.2 Augmented Reality

Augmented Reality (AR), is an extension of existing Virtual Environments (VE)

which completely immerse a user inside a computer generated environment. By

contrast, AR allows the user to see the real world, whilst supplementing it with

virtual objects that are superimposed within the real world [5].

Milgram and Kishino’s continuum, shown in Figure 2.3, illustrates the difference

between reality and virtuality with several steps between them. They define any

step between the real world and a completely virtual environment as Mixed Reality

(MR). In Augmented Virtuality real world views or objects are inserted into a virtual

scene, rather than in AR where virtual objects are inserted into real world scene.

There are many potential areas currently being explored as possible AR applica-
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Figure 2.3: Milgram and Kishino’s reality-virtuality continuum.

tions, including: medical visualization, maintenance and repair, annotation, robot

path planning, entertainment and aircraft navigation [5].

2.2.1 Displays

Most AR technologies have been based upon the use of some form of transparent

display which is positioned between the real world and the eyes of the user [15]. In

order to align the computer graphics with the physical reality, cameras are used to

track the movements of the user’s vision and allow the graphics to be realigned [16].

It is also possible for a collaborative AR in which several users can be tracked and

see the same virtual objects from different perspectives [17].

This can be done most simply using a HMD which is designed to allow the user

to ‘see-through’ an optical combiner and therefore to be able to see the real world

as well as the computer graphics as shown in Figure 2.4(a). Other HMD solutions

include video see-through HMD’s which use dual cameras (to capture the real world

in stereo) as shown in Figure 2.4(b). The video streams captured by these cameras

is then composited with the computer graphics to generate the user’s view.

Volumetric Displays attempt to produce 3D images within a free space. This
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(a) (b)

Figure 2.4: Comparison of (a) Optical see-through HMD and (b) Video see-through

HMD.

is usually done by the emission of a light source such as a laser into 3D space.

Actuality Systems Inc, produce an auto-stereoscopic device which allows users to

walk around and see a life size 3D image. It works by projecting a series of 2D

images onto a rotating screen. Although this allows many people to look at the

virtual objects simultaneously, it is very restrictive as the 3D objects can not be

positioned arbitrarily into the real world.

2.2.2 Applications

The most basic method AR implementation is to overlay computer graphics onto a

2D tabletop surface. Rekimoto et al [18] developed an InfoTable which combined a

series of cameras to identify real objects that were placed on the tabletop, and an

LCD projector which was used to append the known objects with useful information.

Several AR techniques have now been shown to add value to the information

available to doctors in the medical world. Magnetic Resonance Imaging (MRI) and

Computed Tomography scans (CT) can be used to build 3D datasets of a patient.
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This data can then be rendered in real time and overlaid onto the patient allowing

the doctor virtually to see inside the patient [19].

The Eurographics Association, sponsor an annual medical prize, acknowledging

research utilizing computer graphics within the medical field [20]. In 2003 the prize

went to an AR application for Liver Surgery Planning, which utilized a Personal

Interaction Panel (PIP) and a tracked pen to allow doctors to examine a patients

liver. The PIP was used to allow doctors to specify cross sections of the liver that

they wanted to examine.

Larose used a Tile system to create a PIP which was a two handed pen and

pad interface into AR applications as part of the Studierstube AR Project [17] This

panel allowed user’s to interact with virtual controls overlaid onto the panel.

2.3 High Performance Computing and the Com-

putational Grid

‘High Performance Computing (HPC) involves the use of parallel computing systems

to solve computationally intensive applications’ [21].

A Grand Challenge problem is a complex problem to which no ideal solution

has yet been found. Grand Challenges are all demonstrably hard to solve, but are

believed to have a solution and have a significant social or economic impact. Within

science and engineering many of the existing Grand Challenge problems have not

been solved due to computational requirements that cannot be satisfied on single

processor machine. In order to solve this, the idea of parallelism has been introduced

which allows a task to be split into smaller parts which can be processed in parallel

on multiple processors.
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There is a lot of research into the field of parallel algorithms, with a particular

focus on developing algorithms which can provide scalability to perform efficiently

depending upon the available resources.

Parallel architectures have also become very popular due to the efficiency that

can be achieved at low cost. For example, it is possible to achieve the same level of

processing power by using a number of cheap, desktop computer processors as you

could from one expensive specialist processor [22].

There is no completely satisfactory way to characterize the different types of

parallel system. Flynn [23] devised a taxonomy that is still the most popular and

widely used today. Streams of information are used to as the basis of classification.

The streams of data that are received by a processor can be separated into two

separate groups; instructions and data. Flynn’s taxonomy classifies each node in a

parallel system according to whether it has one or more streams for each type of

information.

2.3.1 Single Instruction, Single Data Stream (SISD)

This is the traditional uniprocessor model, where only one instruction can be exe-

cuted at a time. This means that it is not possible to achieve parallelism, although

it can closely be emulated by multitasking. This means that each process shares the

processor usually on a time share basis.

2.3.2 Single Instruction, Multiple Data Streams (SIMD)

This model is used to describe many processors each executing the same instructions

in lock step, but on different sets of data. This means that there is only one instruc-

tion counter and each processor performs the same operation on its separate data
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in sync. This global synchronization is generally performed by hardware. SIMD

machines are particularly useful for processing vectors or images, where the data

can be partitioned into separate blocks.

2.3.3 Multiple Instruction, Single Data Stream (MISD)

There are very few machines which would fit into this category, certainly none

which have been particularly successful or had any impact on computer science. To

construct an MIMD system several instructions streams would need to operate on

the same data simultaneously. One example of an MISD machine is the experimental

Carnegie-Mellon computer from 1971.

2.3.4 Multiple Instruction, Multiple Data Streams (MIMD)

This is the most general and most powerful model for high performance computing.

Execution on each processor can be either synchronous or asynchronous, determin-

istic or non-deterministic, running its own individual set of instructions on its own

set of data.

It is possible to construct an MIMD machine using simple of the shelf processors,

which are cheap and easily available. There are also a variety of remote message

passing software systems available to allow the use of workstations on a network as

MIMD systems.

2.3.5 Other Taxonomies

There are several weaknesses in the structure of Flynns taxonomy. The main prob-

lem occurs in the MIMD category. With Flynns taxonomy all of the MIMD systems

are categorized together with no regard for how they are actually interconnected,
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and how they are connected to the shared memory. Since these characteristics can

have such a dramatic effect on the performance of the system it would be more

suitable to classify them differently.

A popular solution to this has been to extend the SIMD category to Single

Program Multiple Data stream (SPMD) as it allow processing similar to SIMD

on MIMD hardware. It is commonly used for trivially parallel problems such as

queueing [24].

2.3.6 Example of a Parallel System

The University of California, Berkeley has a research department which is looking

into more advanced techniques for analysing radio transmissions received by the

Arecibo telescope in Puerto Rico. Their main project is called ‘The Search for Ex-

traterrestrial Intelligence’ (SETI) and involves a number of mathematical functions

which look for correlations in the received radio data.

Each day about 36Gb of data is recorded and has to be analysed. In order to do

this however would require a large amount of very expensive processors. The team

at Berkeley realized how much processor time was being wasted by privately owned

computers sitting idle and realized that all of these computers could be utilized in

the search for extraterrestrial transmissions.

In 1996 the idea for SETI@Home was first conceived that a screen saver could be

released to the public which would be able to request small chunks of the data and

perform the analysis on the data when the computer was idle. Finally in 1999 the

software was released to the public. A lot of media attention launched the project

and soon many computer user’s where keen to do their bit and to be involved.

The SETI@Home client works by requesting a data segment from the server
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hosted at Berkeley. The server then sends back 0.25Mb of data to the client and

keeps a record of where the processing is taking place. Once the data segment is

processed which can take several hours, the result is returned to the server which

correlates all of the results back together. If for any reason the server doesn’t receive

a reply within a specified period the segment of data is simply sent to a different

client.

The SETI@Home project is an example of how supercomputer power can be

achieved without the need to buy expensive mainframe computers. Now with nearly

4.5 million user’s there is the potential for millions of nodes to be running in parallel.

To put this into perspective the SETI@Home website tells us that the most powerful

computer, IBMs ASCI White, is rated at 12 TeraFLOPS and costs $110 million.

SETI@home currently gets about 15 TeraFLOPs and has cost $500K so far [25] [26].

2.4 High Performance Visualization

High Performance Visualization (HPV) is the combination of the very latest visual-

ization techniques along with the utilization of High Performance Computing (HPC)

resources.

HPV generally involves high resolution graphics, large quantities of data and

computationally-intensive tasks. HPV tasks often make use of distributed data and

extensive network communication. Typically HPV tasks can be seen as ‘complex

feedback processes, involving data collection, visualization design, task parallelisa-

tion, immersive visual display and interfacing with the corresponding data generator

such as a simulation engine’ [27].
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2.4.1 Visualization

The basic aim of visualization is to convert a subset of data into a more perceptually

understandable form by using computer graphics to represent the data.

The technique of visualization was around long before computers. Early scientists

where forced to record their data using hand drawn images and diagrams to represent

the information. This would have been a painstaking task and meant that early

researchers had to be accurate artists as well as scientists [28].

With the progresses in technology users are now able to generate vast quantities

of numerical data during our work or research. This can be achieved in many

different ways, including: computational simulations and actual measured data.

In order to implement visualization solutions it is necessary to find a method of

presenting the original data into a graphical way that will be useful to the researcher

and there are many trade-off’s that will have to be made to find the most efficient

method. Most of the current limitations with visualization are caused by the physical

limitations of the computer systems being used. For example memory limitations

may mean that the computational process will only be able to handle a small subset

of the data at one time or the processing capabilities may mean that the computer

system isn’t capable of processing the graphics in real time.

There are a great many different solutions to this problem, which the combination

of visualization with HPC is starting to improve but not yet completely overcome.

Different solutions to improve this include batch processing, where complex data

which can not be rendered in real time can be rendered in advance, or allowing the

researcher to work on low resolution data and when an area of interest has been

identified then use high resolution data for this region. It may also be possible for

the researcher to manipulate the low resolution data in real-time whilst recording
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his movements. Then this path could be retraced later and an animation rendered

over a longer period of time.

When the entire view of a dataset is rendered it is known as a qualitative overview

but when a specific subset of the data is being represented then it is known as a

quantitative study [28].

It is important to remember that although the process of visualization is a trans-

formation from numerical data to computer graphics, the mapping is most likely to

be a one way process and trying to recreate the original dataset from the visualiza-

tion, could be impossible. It is also important to remember that the visualized data

can be potentially inaccurate and is open to human interpretation and perception.

Generally before a dataset can be used, it is necessary to perform some filtering to

prepare and clean up the data. Such as interpolating missing data values, removing

noise and clamping data to specific ranges.

It is often desirable within a visualization to show a realistic representation of

what the data represents, such as modelling prototypes or architectural based data.

However it can be more useful to have a simplified representation which could be

just as accurate. Other techniques for improving visualization include adding colour

and motion.

Adding colour to a visualization could be used to represent a range of values

for example representing the temperature of a weather map and thus make the

visualized data even more useful to the researcher. Also there are many examples

of where realistic colours and image maps have been applied to visualized data to

increase realism. By allowing the transparency of different objects to be changed it

is possible to give the researcher the feeling of inner structures or skeletons of an

object.
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Iteration is an important aspect of visualized data that changes over time and

actually allows the researcher to manipulate the data using the process of steering,

whilst actually seeing the effects in real time.

Figure 2.5 shows two examples of visualizations being done at Bangor University.

Figure 2.5(a) shows a model of the Lambeck European Ice Sheet. The model is

being used to create a detailed reconstruction of the glacial movements over the last

10 years, with the aim of better understanding about glaciation and the underlying

geology [29]. The European Palaeotidal Visualisation Model, shown in Figure 2.5(b)

shows an example of where visualization is being used to predict tidal statistics based

upon up to date palaeoshorline data [30].

(a) (b)

Figure 2.5: Examples of visualization work done at the School of Ocean Sciences at

the University of Wales Bangor: (a) The Lambeck European Ice Sheet and Shoreline

3D Visualisation Model and (b) The European Palaeotidal Visualisation Model.

Images courtesy of A. Wainwright.
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2.4.2 Visualization Model

Craig Upson, suggests that in order to ‘deal with the problems of multiple disciplines

in the computational sciences effectively, it is useful to begin by developing a coherent

picture of the various steps a scientist takes while simulating a natural process using

a computational model’ [31].

This simplifies to identifying the similarities between each discipline. Figure 5,

demonstrates the process of numerical simulation using a computer program. It

shows a circular path which can be repeated many times before a program is finely

enough resolved.

The basic strategy to the computational cycle is that after the researcher has

performed his initial research, he is ready to program an implementation. This

implementation will then produce data which can be analysed. The outcome of this

data will decide whether the researcher needs to return to the programming stage,

or whether the implementation has succeeded.

The analysis step within the cycle can be broken down into the cycle shown in

Figure 2.6(b). This shows that there are several main steps to the analysis of the

data [31].

Haber and McNabb [32] defined the linear visualization pipeline that is used for

most visualization tasks today. As shown in Figure 2.7, there are four main parts

to the pipeline. Firstly the raw data is enhanced to make it suitable for visualiza-

tion. This includes processes such as calibration, smoothing and interpolation. The

derived data is then filtered appropriately and then mapped to a suitable geometry

description. The Geometry is then rendered to produce a final image.
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(a) (b)

Figure 2.6: Visualization Model: (a) The Computational cycle (b) The Analysis

cycle.

Figure 2.7: Haber and McNabb’s visualization model

2.4.3 Human Factors involved in Visualization

Visualization really ‘attains its power by captivating the user’s attention by inducing

a sense of immersion and presence’ [6]. This is achieved by using hardware that is

able produce stimulations to the main senses of the human body, giving the user a

feeling that they are immersed within the virtual environment [33].

There are 5 main senses within the human body each of which are used together

to build up the mental image of an environment and it has been found that when

more than one of the senses are being stimulated, the user will feel more as though

they are actually immersed:
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2.4.4 Vision

The Human eye contains a lens which focuses the light on the light-sensitive retina

at the back of the eyeball. The light information is then transferred via the optic

nerve to the visual cortex [28].

The Human body has Stereoscopic vision. This means that by using two eyes

the brain is able to estimate depth by the use of binocular disparity and ultimately

gives rise to the sense of 3D vision by providing two different images.

This is the most commonly stimulated sense, which is generally stimulated with

the use of a video display which presents the visual information to the user.

Using an ordinary computer display has many limitations, as the user would only

see a flat image. To try and extend upon this scientists have developed several ways

to send a different image to each eye and thus give the user a 3D perspective of the

image.

2.4.5 Sound

The second sense is that of hearing. Human ears allow sound waves to be interpreted

by conducting vibrations in the inner ear. The Human ears are also used to tell

whether the body is standing upright, or leaning at an angle as well as identifying

whether it is stationary or accelerating.

Motion sickness is caused when equilibrium is lost between all of the senses. For

example if a person’s sight is telling him that he is moving, but his ears say that the

body is stationary, then motion sickness can occur. This is an issue that can occur

when immersed in a visualization environment, and must be considered.

It is very easy to provide sound within a visualized environment. Most standard

computer workstations come with the facilities to produce sound and provided is
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used to simulate the appropriate environmental sound, it can add a great deal of

realism when interacting with a visualized environment.

2.4.6 Haptics

Touch is also a very important sense. The human body is made up of a vast quantity

of nerves which provide complex feedback from all over the human body. This allows

the user to use their hand to actually feel the shape of objects and to identify different

attributes such as texture and temperature. This is the most difficult sense to try

and stimulate simply because it is very difficult to make it feel like you are actually

touching an object without limiting the user’s capabilities [34].

The most effective method for giving the user the impression of physically inter-

acting with objects, is to use a Haptic Force Feedback Device such as the Phantom

Desktop from SenseGraphics, as shown in Figure 2.8(a). Force Feedback Devices

work by allowing the user the ability to freely use a stylus or joystick. However

this stylus is fixed to a base and the computer has the ability to provide force back

onto the device and depending upon the force used this can produce the feeling of

resistance and create the feel of solid objects and different textures.

Lower cost Haptic devices such as the Phantom Omni, as shown in Figure 2.8(b)

have been developed in order to make the technology more readily available. Re-

cently a domestic version, the Novint Falcon, has been released to meet the demand

of the home gaming industry, shown in Figure 2.8(c).

One limitation that all of these Haptic devices share is that they are restricted to

three Degrees of Freedom (DOF) as there is only tracking and no force feedback of

the stylus itself. Very expensive products such as the Sensable Phantom Premium

do provide this functionality but at a cost which makes them unaffordable to many
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(a) (b) (c)

Figure 2.8: Examples of Haptic devices: (a) Sensable Phantom Desktop, (b) Sens-

able Phantom Omni and (c) Novint Falcon.

users.

2.4.7 Input Devices

The user also needs the facility to allow him to interact with the visualization in

some way. There are several commercially available solutions to this.

The first is a 3D mouse which is a hand-held device which uses a tracker sensor

and a set of buttons. By changing the orientation of this the user could then interact

with an environment. For example tilting the mouse forward could be used to control

forward movement and speed, and the buttons could be used to allow the user to

pick up and use tool objects.

Another example of an input device is an Interactive Glove. This could be worn

by the user and transducers sewn into the finger joints can be used to tell the

computer the physical characteristics of the fingers when they are bent. This could

allow the computer to identify when an object is being picked up [35].
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2.5 Problem Solving Environments

The term Grand Challenge was used to describe problems which ‘cannot be solved

in a reasonable amount of time with todays computers’ [36]. However it is more

commonly used now to describe problems that can be solved cost effectively by the

use of parallelism [37]. For the problem to be solved cost effectively, the improvement

of the task execution time from that of a single processor must out weight the overall

cost of the processors. It must also allow the task to be solved in a reasonable amount

of time. Many of the grand challenge applications currently being addressed have

been considered to be intractable on a single processor [38] where all solutions could

take hundreds of years.

It is suggested that the use of any grand challenge application that may be

solved with the use of high performance computer resources will have the poten-

tial for broad economic, political, and scientific impact [39] as we would have the

capabilities to solve problems that have been impossible before. The exciting po-

tential of these solutions has led to several national grand challenges being proposed

giving a competitive edge to the research. HPV is heavily dependant upon data

management, distribution and communication and as such has been classified as a

grand challenge for many years. However with the HPC resources that are currently

available it is now becoming possible.

2.5.1 Problem Solving

Problem Solving Environments (PSE) are ‘computer systems that provide all of the

computational facilities necessary to solve a target class of problems’. [40]

Many of the complex problems which fall into the category of Grand Challenge

Problems require a PSE which can utilize HPC resources. However this should not
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over complicate the problem solving process. More specifically, the end user should

not need to understand the middleware to use the PSE as this should be taken care

of internally [41].

In the field of visualization there are a number of existing PSE’s which offer

a generic approach to visualization. These are known as Modular Visualization

Environments (MVE) and provide user extensible tools [42].

There are a number of commercial MVE’s currently available [43]. Although

many of them offer similar services, giving the user a library of modules which

can be linked together to provide the required function. Some packages us visual

programming to give the user a graphics representation of the linked modules clearly

showing the path of the data from its raw state to the completed result.

2.5.2 Cactus

Cactus, is an open source PSE, originally designed to provide a ‘unified modular

and parallel computational framework for physicists and engineers’ [44].

The original development of the Cactus code was designed to provide a framework

for solving Einstein’s Equations. In the early 1900’s Albert Einstein first published

his theories on relativity and gravity. Part of his claim about gravity suggested

the existence of black holes which had such an extreme gravity that nothing could

escape, not even light [39].

Up until recently, scientists have just had to accept this theory, being unable to

prove it wrong as there was simply no way to be able to solve the equations, within

a reasonable amount of time. This has always been regarded as a Grand challenge

Problem.

The modular design of Cactus has enabled different teams of experts in the fields
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of mathematics, physics and computer science to bring together their research and

as a result have begun to make progress into this Grand Challenge Problem.

The structure of the Cactus system has been described as a central core (or

flesh) which connects to a number of application modules (or thorns). A toolkit

is provided with a basic range of thorns. This includes thorns for parallel I/O,

data distribution, check pointing and other mathematical functions. Although it

is designed to be very easy to implement additional thorn applications such as the

applications that were used to help solve Einstein’s equations [44].

Cactus is extremely portable and will allow applications, that have been built

on standard workstations, to run on clusters and other HPC resources. This is

achieved by using a simple API that can be called for features such as I/O operations.

Thorns can be written in either C/C++ or F77/F90 which ever is more convenient

to the programmer. It also attaches nicely to other technologies such as the Globus

Middleware and many advanced visualization tools.

2.5.3 SCIRun

‘The SCIRun scientific PSE is a computational steering system that allows the inter-

active construction, debugging and steering of large-scale scientific computations’.

The SCIRun PSE was initially developed when it was realised that scientists not

only want to be able to analyse and interpret results from computationally intensive

tasks, but also to be able to steer the simulations as closely as possible to real-time.

Therefore a framework was needed that would allow scientists to be able to change

the parameters, resolution and representation of data within a simulation and to see

what effect it has [45].

In previous PSE’s the simulator typically ran within an off-line mode. This meant



2.5. Problem Solving Environments 35

that the scientist was able to implement a simulation and set the initial parameters.

The simulation would then be allowed to run and produce a final result. SCIRun

adds the ability to perform interactive steering at each stage of the simulation.

SCIRun also make use of a Data flow System for allowing the programmer to

use a visual environment for developing the modular structure in which basic mod-

ules can be connected by dragging with the user’s mouse. Additional modules can

be implemented using C++ and many utility routines are provided to handle the

existing SCIRun data structures and basic mathematical computations.

Parallelism is used to make the simulations run as efficient as possible, taking

advantage of the resources available within HPC resources. SCIRun does this by

allowing different modules to run in parallel, even if this does not explicitly follow

the data flow diagram, provided that all of the data for a module to run is available.

2.5.4 Visualization Toolkits

There are also a few specialist visualization toolkits available which all provide very

similar features. They are all designed to be usable without specialist programming

knowledge, although do provide programming interfaces to allow more experienced

user’s to extend them further. This generally increases the system overheads as

researchers are using a generic solution which has not been optimized for a particular

task. The most common tools are listed below:

The Visualization Toolkit (VTK)

The Visualization Toolkit [46] is an extensive computer graphics library. It is im-

plemented as a C++ class library and provides interfaces for Tcl/Tk, Java and

Python. A large developer base has contributed to VTK making it one of the most
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complete libraries of visualization libraries including; scalar, vector, tensor, tex-

ture, and volumetric methods. Is also provides many advanced modeling techniques

such as implicit modelling, polygon reduction, mesh smoothing, cutting, contouring,

and Delaunay triangulation. Although there is a vast range of documentation for

VTK, Kitware, Inc. also provide professional support and solutions to non technical

users [47].

IRIS Explorer

IRIS explorer [48] provides a visual programming environment allowing the rapid

prototype of visualization applications. It was developed by the The Numerical

Algorithms Group Ltd (NAG) and as a commercial product it contains many of

their world class libraries.

OpenDX

OpenDX [49] is the open source version of IBM’s Visualization Data Explorer. Orig-

inally released as commercial application IBM have now chosen to release it to the

development community to encourage the usage of its Deep Computing range of

HPC servers, for visualization tasks. OpenDX was designed for the visualization of

scientific and analytical data. It provides a useful Graphical User Interface (GUI)

which allows the user’s to build complex rendering pipelines.

COVISE

The Collaborative Visualization and Simulation Environment (COVISE) [50] pro-

vides a distributed software framework which allows the integration of HPC simula-

tions and visualizations within a collaborative environment. It is a modular system
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with each module forming a separate machine process, allowing each module to be

placed arbitrarily within the distributed system. The software provides a Graphi-

cal User Interface (GUI) called the MapEditior that allows user’s to drag and drop

modules to form their visualization pipelines. There are many modules currently

available, although the modular structure of COVISE makes it easy to develop new

modules for specialist tasks.

OpenGL volumizer

OpenGL Volumizer is an API which has been specifically designed for volume ren-

dering applications. It is a commercial product from SGI and is robust enough to

allow researchers to visualize very large data sets.

Other Visualization Libraries

Several other visualization libraries exist offering similar functionality, including

TGS Amira [51] and AVS Express [52], both of which are very good at providing

visualization solutions, and all provide a graphical interface for designing the data

flow between modules [53] [54].

2.6 Components of HPV

Current research into HPV has been looking at specific areas, rather than the com-

plete process as a whole. The following is a list of the most significant development

areas:
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2.6.1 Computational Steering and Remote Monitoring

Traditionally, intensively computational tasks are non-interactive. This means that

once the simulation has been setup, the parameters are set and then the simulation

is submitted as a batch, for processing. The simulation will then be allocated the

next available processing slot and the simulation will run to completion. The time

frame for the simulation will not be real-time, it could be much slower or even faster

than real-time. It is also possible that the simulation will get put on hold, whilst

other jobs are using the resources [55].

Once the non-interactive simulation has completed, the scientist will receive his

results to interpret and analyse. If they then wishe to change any part of the

simulation then the parameters will have to be changed and the simulation run

again from scratch.

Although this can be useful for some research it can be very time consuming and

be an inefficient use of resources. This is where the idea for computational steering

has been introduced, to allow the scientist to have some way to interact with the

simulation, whilst it is running.

There are two main aspects of computational steering. Firstly to allow the

scientist to be able to interact with the simulation there must be some method to

allow the parameters to be changed whilst the simulation is running. Secondly in

order for the scientist to make informed decisions and to see the result of interaction,

there must be some way to monitor the simulation. This is generally done using a

visualization of the simulation as it evolves. It is desirable, but not essential, to have

have the simulation running as close to real-time as possible to give the scientist the

best interaction with the data [56].

The complexity of the visualization can be scaled to meet the hardware resources
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on which it is processing, to allow the simulation to run in real-time. For example the

resolution of the data used could be much higher when running on a HPC resource,

than on an ordinary desktop computer [55].

The RealityGrid project [55] is interested in extending the realistic modelling

and simulation of complex condensed matter structures using visualization. Com-

putational Steering therefore forms a large part of their research. Their solution lies

in the modular design of the applications. In essence, separate applications exist

for simulation, visualization and steering each with the ability for communications

between components. The simulation component is responsible for generating the

data which is sent to the visualization component. The Steering component is able

to dynamically connect to either of the other components, which can be both mon-

itored and steered. This allows the simulation to run undisturbed for the majority

of the time and only needs to connect whilst the scientist is examining the state of

the simulation.

It also provides a library with a variety of features to allow any appropriate

applications to make use computational steering. In order for an application to be

appropriate it must be able to emit a subset of the simulation values, each value must

accept changes and the application must be able to restart from checkpoints [55].

Work is also in progress to see how the RealityGrid can utilize Grid technologies

and provide a Steering Grid Service (SGS) to provide a Grid service interface for

the component using the Open Grid Services Architecture [57].
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2.6.2 Parallel and distributed computation for graphics and

visualization

The main limitation within a visualization framework is that of the bottleneck caused

by the computational pipeline. This can be solved by combining the visualization

technology with HPC resources.

An early project, Visualization in Parallel (Vipar) was set up at Manchester Uni-

versity, to improve upon the issues causing these bottlenecks by providing a series

of libraries that would integrate with the current PSE’s, such as AVS and IRIS Ex-

plorer, and provide improved support for parallelism. Many of the existing parallel

solutions where written explicitly for specific tasks and architectures. The Vipar

libraries where developed to produce a generic solution which would be portable

and scalable [58] [59] [54].

2.6.3 Very large dataset visualization

One of the biggest problems with computationally expensive, visualization tasks is

that they can involve very large sets of data. This dataset is usually too big to fit

into the physical memory of a computer workstation and has thus rendered many

of these tasks as Grand Challenge Problems [60] [61].

At the Georgia Institute of Technology, they have been attempting to provide

an interactive fly-through of real life datasets that take up more than 20GB of

data. In order to do this it is necessary to organize the data is such a way that

it can be transmitted to and from disk quickly enough to support the interactive

visualization. The dataset can be stored either locally or across a network. This

technique is known as an out-of-core approach to visualization [62].

They found that improved data access and quality of the presentation could
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be achieved through the use of multi-resolution data that would allow the use of

smaller, lower resolution data to be used if the visualization was struggling for time,

and the higher resolution data would then load in the background when the disk

was not overloaded.

By using techniques such as hierarchical data structures, appropriate memory

page sizes and setting priorities to different subsets of data, it was found that they

could make vast improvements upon previous efforts.

The research group, are now working towards handling moving data objects,

which they believe will integrate easily with the existing system [62].

2.6.4 Collaborative Virtual Environments

Initial work into visualized environments focused on the interaction of one person

with the system. However researchers are developing multi-user environments to

open up a new range of possibilities. In this way it is possible to have multiple

user’s sharing and interacting with the same data and visualization whether they

are local user’s or a great distance apart [63].

Collaborative environments suggest that users are able to connect to the same

environment and concurrently edit the same objects. This brings with it several

major problems; it is important to handle the distribution of objects and information

as well as the delegation of rights and the representation of group structures [64].

There are also several examples of collaborative tasks which would not be pos-

sible within a virtual environment. For example an object may in real life require

two people to move it, by lifting simultaneously. Whereas in existing virtual envi-

ronments it is not yet possible to do this.

In order to ensure concurrency it is essential to implement some form of locking.
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This means that all of the copies of an object (one at each site), must be locked

whilst a user it editing the object. Once the edit is finished, the changes must be

forced upon all of the objects after which the lock can then be released. This ensures

that all of the objects stay current, and it is not possible to lose any changes [33].

Other techniques for implementing concurrency include: Transaction Mecha-

nisms, Turn-Taking Protocols, Centralized Controllers, Dependency Detection, Re-

versible Execution and Master Entities [64]. Work at the German National Research

Centre for Computer Science has found that the Master Entities technique is most

commonly used. This technique implies that only one site (or process) has the rights

to make any changes at anyone time. This allows writing and reading of data con-

currently, although if a site needs to make changes to the data it must request the

write privileges.

2.6.5 Autonomic Visualization

IBM describes a new model for computing called Autonomic Computing [65] as

a challenge to develop systems that are able to manage themselves according to

the goals of the user. When applied to visualization applications this applies to

the self-management of the visualization pipeline and to intelligently choose the

most appropriate software and hardware for each visualization task. There are four

requirements which need to be satisfied in order for a system to be fully Autonomic

it must be [66]:

Self-configuring: The system can make intelligent decisions about its own config-

uration.

Self-healing: The system can recover efficiently from any problems.
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Self-optimizing: The system will continuously adapt to find better configurations

to meet the user’s requirements.

Self-protecting: The system is secure.

IBM describes Autonomic Computing as a journey with several stages along the

way, as shown in Figure 2.9. The development of Autonomic Computing applications

can be shown as an evolution through each stage of the deployment model. The

current maturity of the e-Viz framework has only achieved the Adaptive Computing

stage, although its ultimate aim is to eventually be fully Autonomic.

Figure 2.9: Autonomic Computing deployment model.

Basic systems provide only a user interface for the visualization task.

Managed systems introduce a service layer, such as the Grid, to manage the

security, distribution and available resources.

Predictive systems use an information layer to store performance and quality

information about each visualization and use it to make predictions about

the best visualization pipeline configuration and which software and hardware

resources to use.
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Adaptive systems use the information stored by the information layer to self-

manage the visualization pipeline and update the system during run-time,

using the most appropriate resources available.

Autonomic systems use a full knowledge-base to add a context to the each con-

figuration choice allowing the system to make intelligent choices about both

pipeline configuration and hardware and software choices.

Most visualization environments rely upon the user having enough knowledge

to configure the visualization pipeline and make choices about what software and

hardware to use. Roard [67], explores a solution which aims towards autonomic

visualization. Rendering strategies to be used are selected by using an agent-based

visualization pipeline, which is able to dynamically change strategy during run-time

and therefore better adapt to the network conditions. An agent is located on each

resource in the system and therefore can add a specific behaviour to each component

of the graphics pipeline.

2.7 Summary

This chapter explored the state of the art for AR and looked at many of the sup-

porting technologies, ranging from immersive displays through to the visualization

software and hardware required to render the high quality 3D graphics. The chapter

looked at how the computational Grid is being used to distribute visualization tasks

to remote HPV resources in response to the demand for rendering larger data-sets

at higher resolutions, whilst still providing interactive real-time frame rates.
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2.7.1 Augmented Reality (AR)

Augmented Reality represents a specific type of immersive environment in which vir-

tual artifacts are superimposed into the real world. In order for the AR environment

to be successfully and accepted by the user, three cases must be satisfied:

1. The real and virtual world must be combined with an accurate alignment

between the two.

2. The environment must be interactive in and real-time (i.e. more than 15

frames per second).

3. The Computer Graphics must be registered in 3D.

There is a vast selection of display technologies that offer some degree of immer-

sion, ranging from a standard desktop monitor with 3D shutter glasses to completely

immersive environments such as the CAVE. However in the world of AR it is es-

sential that the display is able to move freely around the real world with the user

rather than fixing the user into one place. Therefore the only suitable type of display

technology that is realistically available is the HMD, either specifically designed for

AR with a see-through design, or using two cameras to capture the user’s viewpoint

of the real world.

2.7.2 Visualization

A number of visualization toolkits have been developed for to allow the user to

create visualization applications. Most of them provide similar functionality and

it would be feasible to replicate the same visualization task in each of the different

environments, although there is no standard method for specifying each visualization

task. Toolkits such as VTK, OpenDX and COVISE all offer free implementations for
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non-commercial use, although IRIS Explorer, COVISE, OpenGL Volumizer, TGS

Amira and AVS Express all require expensive software licenses. This means that

often only a specific toolkit is available for use.

IRIS Explorer, OpenDX, and COVISE all offer the user a simple GUI for con-

figuring their visualization pipelines. Whereas VTK and OpenGL Volumizer only

provide programming interfaces. VTK does offer TCL/Tk scripting however, which

makes it very fast for rapid prototyping.

2.7.3 Autonomic Computing

This review also identified the Autonomic Computing Model from IBM, which states

applications much provide four functions to be truly autonomic: Self-configuring,

Self-healing, Self-optimizing and Self-protecting. Chapter 7 also discussed whether,

or not, there is a truly developed autonomic AR framework which is capable of dy-

namically distributing its computational and visualization tasks to remote resources.



Chapter 3

Related work

3.1 Introduction

This thesis presents a generic solution for embedding computer graphics artifacts,

such as volume rendering, into an AR environment. As shown in Chapter 2, in order

to achieve this the following conditions must be true:

1. The real and virtual world must be combined with an accurate alignment

between the two.

2. The environment must be interactive and real-time (i.e. more than 15 frames

per second is typically required).

3. The Computer Graphics must be registered in 3D.

This chapter presents alternative methods for tracking the position of real world

objects and how their orientation can be calculated. In order to ensure that the

environment is interactive and that the virtual artifacts are rendered in real-time,

Web Services and the Grid have also been used to deploy remote HPC resources.

Examples of this approach are described below.

47
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3.2 3D Position Tracking

One approach to generating an AR environment is to accurately track a real-world

object, and by calculating its 3D position it is possible to superimpose a virtual

artifact into the same position in the user’s view. Several different technologies exist

for tracking real-world objects and mapping their 3D position into the computer

software:

3.2.1 Mechanical Tracking

Mechanical tracking, allows the position of a real world object to be calculated very

precisely by the use of a physical connection between the tracked object and a fixed

reference point. Usually a mechanical arm with multiple points of articulation is

used, allowing free movement of the tracked object by the operator. At each point

of movement, a potentiometer accurately records the angle of each link of the arm

and this information is used to calculate the 3D position of the object.

Bajura, Fuchs and Ohbuchi [68] demonstrated how mechanical tracking can be

useful for tools within a restricted area, where the limitation of a mechanical arm

does not restrict the operator. They developed a training tool for ultrasound guid-

ance for interventions, such as lesion biopsy and cyst aspiration. Using mechanical

tracking of the ultrasound probe allowed for the position and orientation that the

operator was holding the probe to be accurately calculated. This information al-

lowed them to generate a simulated ultrasound view of a virtual patient realistically

based on the position that the operator was holding the ultrasound probe.

Haptics devices, such as the Sensable Phantom Desktop and Omni (as described

in Chapter 2) are also examples of general purpose Mechanical Tracking devices.

They provide the operator with a generic stylus that can be easily replaced with
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other tools. Several API’s are available for developing software applications that use

these Mechanical tracking devices and provide the programmer with the calculated

3D position of the tool, such as the OpenHaptics toolkit [69], Chai3D [70], H3D [71]

and SOFA [72]. A comprehensive review of these software tools can be found in [73].

In addition to measuring the position of the tool these devices also provide a force

feedback, which allows the user to interact with virtual objects. Work has also

been done to use the force feedback to produce an anti-gravity effect [74]. By

compensating for the weight of the arm it is possible to create the illusion that the

tool is freely movable and not tethered to a fixed point.

3.2.2 Magnetic Tracking

Electromagnetic Tracking systems, use multiple coiled wires which have been ar-

ranged in perpendicular orientation to each other and embedded in the object which

is to be tracked. An electric current is cycled through each of the coils generating

a small electromagnetic field. Sensors within the tracking system measure the mag-

netic field generated by each of the wires, and use this information to determine

the position and orientation of the sending unit. Electromagnetic tracking devices

are generally regarded to be very accurate, providing tracking of multiple objects

which are unrestricted in their movement within the tracking area. They are how-

ever susceptible to interference from both electronic devices, which can create their

own electromagnetic fields, and metal objects which can cause disturbances to the

magnetic fields [75].

The coils which are used to generate the electromagnetic fields can be driven

by either Direct Current (DC) or Alternating Current (AC). This results in fields

which are either constant (DC) or continually changing (AC). The main advantage
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for using a constant (DC) magnetic field is that no eddy currents are generated in

the surrounding metallic objects. However DC fields can be affected by the environ-

mental magnetic field of the Earth and therefore must be compensated for. With

an AC magnetic tracking system, eddy currents are generated, but are frequency

dependent and these dependencies are useful in calibrating the system to reduce the

distortion effects on accuracy [76].

One example of a commercial application, developed by Innovative Sports Train-

ing (IST), is a Biomechanics Analysis tool as shown in Figure 3.1. It uses the Polhe-

mus Liberty magnetic tracker, to acquire key positions from a player during several

sporting movements. This information is then analyzed by mapping it to a virtual

skeleton within a visualization environment. By performing this analysis the aim

is to improve upon the players efficiency by understanding better how the body

moves [77].

Figure 3.1: A Biometric Analysis tool from Innovative Sports Training (IST).

Several other proprietary Electromagnetic tracking systems are available, costing

between $2,000 and $10,000. Popular examples include the Polhemus Fasttrak [78],

NDI Aurorta [79] and the Ascension Flock of Birds [80].
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Magnetic Tracking is not suitable for medical applications, where the electro-

magnetic radiation can cause interference with other medical facilities.

3.2.3 Inertial Tracking

Inertial tracking provides a method for being able to track the actual movement of

a user or object, relative to its previous position. The movement is calculated using

the data generated by a combination of gyroscopes and accelerometers which are

located on each of the three perpendicular bodies of the tracked object. Although

several research groups have attempted to use inertial tracking for Augmented reality

applications, very few have found that using inertial tracking alone provides enough

information. Projects such as [81], showed that when combined with other tracking

technologies such as optical tracking, the Inertial movement information of the user’s

viewpoint can increase the accuracy of the tracking.

Several commercial Inertial Tracking devices are available, with the most popular

being the wireless Intersense InertiaCube [82] which costs around $2,000, as shown

in figure 3.2.

Biomedicom, a commercial enterprise based in Isreal, have been using Inertial

Tracking as part of their 3D ultrasound work. By placing the Inertial Tracker inside

a ultrasound probe, it was possible to calculate the probe’s position and therefore

produce a 3D ultrasound image whilst using a standard 2D scanner [83].

3.2.4 Acoustic Tracking

Acoustic Tracking devices use ultrasonic sound waves to determine the position of

a target object. These sound waves must have a frequency about 20kHz, which is

too high to be audible by a human ear. There are two methods that can be used:
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Figure 3.2: The Wireless InertiaCube from Intersense.

Time-of-flight and phase coherence.

Time-of-flight tracking, measures the amount of time taken from sound emitted

from a transmitter to reach the target. By using multiple transmitters sequentially

transmitting sound, it is possible to calculate the distance from the target to each of

the transmitters which can be used to find the precise position of the target. This

method generally suffers from a low update rate caused by both the relatively slow

speed of sound in air, and the environmental impact on the speed of sound, such as

temperature and humidity. Phase Coherence improves upon this by measuring the

difference in phase between the sound waves at the transmitter and at the target.

As long as the distance between updates is less than a complete wavelength, it is

possible to calculate the distance based upon the current position in the sound wave.

Alusi et al. used acoustic tracking to calculate the position of a handheld ultra-

sound probe. This information allowed them to develop a novel AR application for

skull base surgery [84].
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3.2.5 Optical Tracking

Optical Trackers can be split in to two categories: Beacon tracking and Computer

Vision tracking.

Beacon Tracking

Beacon trackers rely upon the use of a set of optical beacons. These can be either

active or passive, depending upon whether they transmit light or simply reflect it.

(a) (b)

Figure 3.3: (a) The Polaris Optical Tracking system and (b) a generic marker which

will be used to track the electromagnetic coil.

The Polaris Optical Tracking system from NDI [85], as shown in Figure 3.3, is

an example of a commercially available passive tracking system. It is designed to

track wireless tools within a limited optical range. Tools are defined by a unique

pattern of markers fixed in position on a rigid body. The tracking unit emits a

constant infra-red (IR) light that is reflected by the markers on each tool, back to a

position sensor - see Figure 3.4. The Polaris system is then able to use triangulation
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to calculate both the position and orientation of each tool within the working area.

The Polaris system provides the programmer with 6 Degrees of Freedom (DOF)

for each tracked tool: the translation in all three perpendicular axes (X, Y and Z)

combined with rotation about the three perpendicular axes (yaw, pitch, roll). The

TMS application described in Chapter 4 uses this Polaris Optical Tracking System.

Figure 3.4: The Polaris system emits IR light which reflects back from the markers

on each tool.

In order to improve accuracy it is possible to use active tracking, where infrared

LED’s are positioned within the view of a camera. By pulsing the LED’s individually

it is possible for the tracking system to identify rapidly which part of the object

being tracked is in view. At the University of North Carolina, a research group have

developed a technique for tracking the head of the user by mounting three cameras

on a HMD, each pointed towards the ceiling. The ceiling is then covered with 1000

uniformly distributed Infrared LED’s which are each cycled during tracking, and
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by understanding exactly where each camera is pointing it is possible to accurately

calculate the position and orientation of the HMD [86].

Computer Vision Tracking

Computer Vision techniques allow objects to be tracked by identifying them within

a camera viewpoint. Several Toolkits exist that allow objects to be tracked using

only a cheap, easily available web-cam. The most common of these include:

OpenCV - The Open Source Computer Vision Library (OpenCV) from Intel,

although not strictly a library for developing AR applications, it does provide many

of the libraries required for processing real-time camera images. It provides libraries

to perform computer vision tasks such as: Object Identification, Segmentation and

Recognition, Face Recognition, Gesture Recognition, Motion Tracking and Under-

standing, Structure From Motion (SFM) and Mobile Robotics [87].

ARToolkit - The Human Interface Technology Lab (HIT Lab) as Washington

university has developed a technique allowing 2D Markers, or ‘Tiles’ to be used to

as a reference between the virtual object and the real world. Using a head mounted

camera the computer can identify the uniquely labelled Tiles and superimpose other

graphics onto each Tile [88]. The HIT Lab have also produced a software library for

building AR applications called ARToolKit which is freely available [89].

osgART - The osgART Software Development Kit (SDK) [90] was also developed

at the HIT Lab as an extension to the ARToolkit. It combines the ARToolkit with

OpenSceneGraph (OSG) [91], a high performance graphics toolkit to allow high

quality rendering and support for many standard file types.

DART - The Designer’s AR Toolkit (DART) [92] is aimed more at artists and

non-technical designers, by providing a graphics development environment for devel-
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Figure 3.5: A virtual teapot is aligned with the real world using a marker detected

by the ARToolkit.

oping AR environments. The toolkit uses specified markers which can be attached

to landmarks or objects. DART is provided as a series of extensions to Macrome-

dia Director [93], allowing sophisticated multimedia content to be associated with

the markers, including 3D graphics, sound and video, in an environment which is

already familiar to most multimedia designers.

MRT - The Mixed Reality Toolkit (MRT) [94] was developed at University College

London (UCL) and is the first toolkit to move away from the requirement to use

specific markers. Instead it uses a primitive modeling technique to identify simple

geometric shapes within a video stream. This makes it very effective for tracking
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simple objects such as cubes or tables, but unsuitable for identifying more complex

or generic objects. It also relies mainly on using a fixed camera, which makes it

difficult to use when the operator wants to move freely within an AR environment.

BazAR - The BazAR framework [95], is a computer vision based library based

upon feature popint detection and matching. By using textured plane surfaces

as markers it allows markers to be easily calibrated by capturing a good quality

view of each marker being used. BazAR uses a Scale-Invariant Feature Transform

(SIFT) algorithm to detect and describe feature points within the video stream [96].

Dementhon’s Pose from Orthography and Scaling (POSIT) algorithm is used to

calculate the pose of the tracked object based on the set of extracted feature points.

InstantReality - The InstantReality [97] is a framework suited to both VR and

AR. It brings together a number of different techniques to provide both marker

and marker-less based environments, and is compatible with a number of different

immersive display technologies. The system is compatible with a number of industry

standards, such as VRML, X3D and OSG.

3.2.6 Tracking Summary

There are advantages and disadvantages to each of the tracking techniques explored

here. Mechanical, Magnetic, Acoustic and Optical Beacon tracking methods all

impose restrictions upon the work space area that can be used to track the object.

Inertial tracking however places no such restriction on the work space because it

only provides the movement of the object, rather than calculating a position for the

object.

Commercial products exist for each type of tracking device, although they tend

to be very expensive. The computer vision tracking techniques are possible with a
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very cheap and easily available web-cam making it the only option for a cheap AR

application. Mechanical tracking is the only technique which does not suffer from

environmental interference, such as magnetic interference in magnetic tracking, or

changing light levels with optical tracking.

Each of the Optical tracking techniques rely upon the use of markers to be added

to the real world scene, which can be intrusive. They also have a much higher

computational requirement, as it is much harder to search for the object within the

camera’s view.

Several software toolkits exist to help with the development of AR applications

using optical tracking. Most of these toolkits, such as ARToolkit, osgART and

DART all provide functions for aligning virtual objects with specific markers which

have been defined in the application. MRT is the first toolkit to allow the user to

track objects which are not specifically aligned with marker, however the toolkit is

limited to only identifying strict geometric shapes such as cubes and tables. BazAR

was the first AR framework to use extracted feature points for tracking the real

world. It is however limited to only using plane surfaces reliably, rather than tracking

3D objects in the real world.

Several other toolkits exist such as InstantReality which brings together several

of the technologies described above and allows the user to combine them in a single

environment. The OpenCV library provides functions for image processing and real

time processing of camera images, although it is not specifically designed for AR

applications.

The first software tools were all deigned around simple OpenGL applications,

although the more recent ones do provide support for other tehchnologies, such as

VRML, X3D anf OSG. None of them currently provide facilities for integration with
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HPV resources, without modification.

3.3 Pose Estimation

When using a computer vision based tracking approach, it is necessary to reconstruct

the 3D position and orientation of the object that we are tracking. There are several

methods for doing this, as illustrated in Figure 3.6.

(a) (b) (c)

Figure 3.6: Three common methods for Pose Estimation: (a) Point-based, (b)

Contour-based and (c) Texture-based.

Point-based tracking is based upon the detection and registration of feature

points between those extracted from an image and a set of reference points. Contour-

based tracking, detects the object boundary lines, or contours. Texture-based track-

ing uses techniques which register the whole 3D textured surface of the image to the

virtual model. Yilmaz, has completed a full review of these techniques [98].
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3.4 Feature point Extraction

Many methods attempt to extract feature points from an image and although there

is no set definition of what a feature is, it is generally accepted that a feature is

simply a point that can be repeatedly identified from an image [99]. Since the 1970s

many feature point detectors have been proposed and as a good detector is yet to

be found, there is still work today to improve their accuracy and efficiency. Feature

points can define either a single pixel point within the image or a larger region of

interest. There are three main categories of feature points that can be extracted

from our image data, as shown in in Figure 3.7.

Edge Points Edges are defined where there are boundaries between two regions of

the image. Generally speaking this defines points within an image that have

a high gradient magnitude.

Corner Points Corner detection operator’s build on edge detection ideas to define

a corner as a single pixel point at each edge intersection.

Area Points Areas (also referred to as Blobs) provide more general descriptions of

structures and areas within the image.

There are several methods for detecting feature points in images that all follow

these steps, as illustrated in Figure 3.8:

1. The source image data is captured and desaturated into a two-dimensional

array of grey-scale values.

2. For each point in the image data a Cornerness value is calculated by the

operator, and relates to how likely it is believed that that point is a corner.
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(Source Image) (a)

(b) (c)

Figure 3.7: The three main categories of feature points: (a) Edge points, (b) Corner

points and (c) Area points.

3. A threshold value is used to disregard any points that are identified but are

not strong enough to be true corners. The Cornerness value of these points is

then typically set to zero.

4. Non-maximal suppression sets the Cornerness value for each point to zero if

its Cornerness value is not larger than the Cornerness measure of all points

within a certain distance. This ensures that we only find maximum points and

so we can then assume that all non-zero points are corners.
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Figure 3.8: The steps involved in feature detection.

3.4.1 Convolution

Kitchen and Rosenfield [100] used differential geometry operator’s to detect edges

within an image, identifying corners at the intersection of two edges. An edge can be

described as an linear intensity change over a series of pixels. In order to efficiently

find these intensity changes, first and second order derivatives of the image data are

used to generate a gradient map representing the intensity changes within the image.

For example it is possible to instantly identify the edge in the following segment of

a grey-scale image:

23 27 31 29 127

34 26 21 141 122

32 23 136 161 109

28 128 142 152 149

159 115 119 123 104

Figure 3.9: A subset of a grey-scale image showing an obvious edge.

The first order derivative of an image is generally used to calculate an intensity

gradient for the data, which can be searched for peaks and troughs that could

represent an edge. If I(x, y) represents the grey-scale value for pixel x, y then the
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first derivative I1(x, y) can be calculated as:

I1(x, y) = −
1

2
· I(x− 1, y)+ 1

2
· I(x+1, y)− 1

2
· I(x, y− 1)+ 1

2
· I(x, y +1)

This is the equivalent of applying the following convolution mask to the initial

image data:

0 −
1
2 0

−
1
2 0 +1

2

0 +1
2 0

By computing the second derivative we can take this one step further and calcu-

late the rate of change for the gradient intensities. Peaks and troughs found in the

second derivative can therefore be taken to represent lines in the image, where there

is a rapid change in gradient on both sides of the line. If I1(x, y) represents the first

derivative value for pixel x, y then the second derivative I2(x, y) can be calculated

as:

I2(x, y) =

1 ·I1(x−1, y)+1 ·I1(x+1, y)+1 ·I1(x, y−1)+1 ·I1(x, y+1)−2 ·I1(x, y)

This is the equivalent of applying the following convolution mask to the first

derivative data:

0 +1 0

+1 −2 +1

0 +1 0

Depending upon how clean or noisy the source image data is, calculating the first

and second derivative will still produce a number of incorrectly identified points.
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Therefore a threshold must be used to remove irrelevant features. A common solu-

tion to problem of finding where to set the threshold is to use hysteresis [101]. An

initial point on an edge is located using a simple threshold. The algorithm then

passes through each point following the edge. Providing the image contains contin-

uous edges then it ensures only lines are located and no other erroneous points are

found.

3.4.2 Auto-correlation

Moravec proposed a simple algorithm in 1977 as part of his work on machine vision

enabled robotics [102]. He suggested that a point could be identified as a feature

point if there was a significant intensity variation in each direction from that point.

Although this algorithm provides basic feature detection without being too compu-

tationally intensive, it is not repeatable as the points it finds are only repeatable

when the edges are at 45o or 90o to the point being evaluated. Harris [103] improved

this method but at a significant cost to the computational requirements.

Year Corner Detector

1977 Moravec

1988 Harris / Plessey

1997 SUSAN

1998 Trajkovic and Hedley

1999 Zhenq and Wang

Figure 3.10: Timeline of Corner Detectors.

More recently a significant number of approaches for detecting corners have

appeared, as shown in Figure 3.10. The most common of these are summarized
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below:

Moravec operator

Moravec calculated an intensity variation for each pixel within the image. This was

done by placing a fixed size square over the image data centered on the pixel that

we are calculating the intensity variation for. This square is then shifted in each of

the eight possible directions, as shown in Figure 3.11 and the intensity variation for

each shift is then calculated by the summation of the square value of the difference

in value between the each of the cells and it original position.

(-1, 1) (0, 1) (1, 1) (1, 0)

(-1, 0) (-1, -1) (0, -1) (1, -1)

Figure 3.11: The eight positions shifts required to calculate the intensity variation

of the centre point.

Therefore the intensity variation for pixel P(x,y) can be calculated as:
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P(x,y) =
∑1

i=−1

∑1
j=−1(P(x+i,y+j) − S(x+i+u,y+j+v))

2

For each (u, v) in ((−1, 1), (0, 1), (1, 1), (1, 0), (−1, 0), (−1,−1), (0,−1), (1,−1))

where (u, v) represent each of the eight shifted positions. P represents the (3x3)

box around the specific pixel (x, y), S represents the shifted box and (i, j) represent

each cell of the (3x3) box. The minimum intensity value found from each of the eight

shifts is stored as the Cornerness value. A threshold value is then used to remove

any points that are below a specific value. Finally non-maximal suppression [104] is

used to find all maximum points within its locality. Figure 3.12 provides an example

of the Moravec operator in use.

Figure 3.12: The Moravec Operator used to extract corner points from a spinning

cube, with some obvious points missed and circled in red.

The Moravec operator provides the basic procedure that we use for our feature

point detection, however, due to its nature of using the eight shift position pattern

it only becomes reliable when the edges in view are at 45o or 90o to the point being

evaluated. We need a detector that is able to detect repeatable feature points even

when the operator is making subtle viewpoint changes, which will never occur in

45o steps.
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Harris / Plessey operator

Harris and Stevens extended the Moravec detector by addressing the issue of the

directional dependence and developed a new method for how the auto-correlation is

calculated allowing the variation intensity to be obtained over different orientations.

The first order derivative is used to find an initial estimation of the gradient of

the image. The Moravec operator is then used to measure the intensity variation

within the first order derivative. Figure 3.13 demonstrates the improved performance

obtained with the Harris Operator.

Figure 3.13: The Harris Operator used to extract corner points from a spinning

cube. An example of a point which has been accurately repeated is circled in red.

The Harris operator is more computationally expensive than the Morovac oper-

ator, although it does yield more accurate results.

SUSAN

The Smallest Univalue Segment Assimilating Nucleus (SUSAN) algorithm makes the

assumption that within a small circular region pixels belonging to a specific object

will have relatively uniform brightness. SUSAN uses a circular mask which is placed

over the pixel to be tested, which is known as the nucleus. The number of pixels
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with a similar brightness to the nucleus are calculated. Corners are then detected by

applying the mask to each pixel within the image to produce an Univalue Segment

Assimilating Nucleus (USAN) map. Each local minima within the USAN map is

then marked as a corner.

SUSAN is relatively robust from noise, quick to compute but has only a very

average repeatability rate [105].

Trajkovic and Hedley

Trajkovic and Hedley improved upon the SUSAN algorithm, by considering the

brightness along all lines passing through each nucleus, assuming that at each corner

the variation in brightness will be high for each line. Although the repeatability

rate of this algorithm is no better than SUSAN, it is one of the fastest algorithms

available [106].

Zhenq and Wang

Zhenq and Wang attepted to address the computational complexity of the Harris

Operator. By identifying the key aspects responsible for corner detection they were

able to reduce the computational complexity at a cost of a slightly degraded corner

detection performance [107].

3.4.3 Feature Point Extraction Summary

The Harris operator is generally accepted to be the most robust corner detection

operators developed, however it is very computationally intensive. In order to re-

duce its computational requirements several researchers have tried to develop more

efficient algorithms, although they have all come at a cost to reliability and repeata-
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bility.

3.5 Web Services and the Grid

This thesis explores an hypothesis that it is possible to use Grid computing for AR

applications. Computer Vision can be applied to AR tracking (as described above)

but typically this process is computationally heavy. The remainder of this chapter

explores the state of the art of Web Services and the Grid. The intention is to

determine whether or not this approach is suitable for supporting the computation

required in AR.

3.5.1 Web Services

Web services provide a standard means of communication over a heterogeneous net-

work of computers, providing interoperability between a variety of hardware archi-

tectures and software packages. The World Wide Web Consortium (W3C) provides

a common definition of the Web Service Architecture (WSA), providing a conceptual

model of how Web Services should be implemented, as shown in Figure 3.14 [108].

Figure 3.14: The Web Service Concept.

In this basic concept, three steps occur:
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1. The Service advertises itself in the Directory

2. The Client user the Directory to find an appropriate Service.

3. The Client starts interaction with the service.

Web services use a service orientated Architecture (SOA) to provide interaction

between agents, which can be either software or human, by passing messages between

them using XML. This is implemented using three main technologies:

SOAP

Although initially SOAP used to be an acronym for Simple Object Access Protocol,

the technology has now evolved and is now no longer regarded as simple and no

longer uses objects. SOAP is a simple framework for exchanging XML based mes-

sages between agents. SOAP generally uses the HTTP protocol for transporting in-

formation, although any valid Internet application layer protocol could be used, such

as HTTPS which could make use of the underlying encrypted transport protocol. It

is both platform and language independent, although many specific implementations

exist, such as gSOAP [109], SOAP Toolkit [110] and Apache Axis [111].

Web Service Description Language (WSDL)

WSDL is an XML based language used for describing network services, including

details of the services capabilities and locations. It defines each service as a network

endpoint capable to exchange messages. It is designed to communicate either using

SOAP, HTTP or MIME [112].
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Universal Description, Discovery, and Integration (UDDI)

UDDI provides a registry mechanism for clients and servers to establish contact,

using SOAP for communication. A popular implementation is Apache jUDDI [113].

3.5.2 The Grid

Ian Foster, is one of the central characters in the development of the Grid. He de-

scribes, the Grid, as a distributed computing infrastructure for ‘coordinated resource

sharing and problem solving in dynamic, multi-institutional organizations’ [114] [41].

The concept of the Grid is still an emerging, new technology. This is because of

two main reasons; firstly potential user’s are still struggling to see how applications

will be able to benefit from Grids and secondly because the available Grid software

is still hard to use and not application specific [115].

The general purpose behind the Grid is to provide a middleware infrastructure

for allowing the sharing of resources that are not necessarily local to the user’s in

geographic terms. This has two major advantages. Firstly not every organization

will need to have their own High Performance Computing resources and secondly

by allowing extra user’s to use the resources can prevent the resource being wasted

by filling up any free processing time. Also if organizations get together to buy and

share resources it generally means that better and more powerful resources become

available.

However when implementing Grid technologies, the only aspect that the whole

Grid community has agreed upon is that the IPv4/IPv6 is the best current choice

for the underlying protocol. There is still a great deal of experimentation going on

to decide the best way to provide middleware services and as such there are as of yet

no actual standards, even though it is generally agreed upon what actual services
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are required [116].

The Open Grid Services Architecture (OGSA) has been set out to try and map a

new path for development for both the grid and web services. The OGSA has been

set in place to define standard communication protocols and formats, to ensure that

all of the current research work and developments will be compatible in the future.

The OGSA is part of the Global Grid Forum (GGF) and as such produces a detailed

set of documents detailing these standards which are currently being instantiated in

the Open Grid Services Infrastructure (OGSI) [57].

The Open Grid Services Infrastructure (OGSI) represents the Web Services De-

scription Language (WSDL) specification which defines the standard Grid Service

interfaces, behaviours and schema. This is kept in line with the OGSA vision. The

OGSI Specification is maintained by the Global Grid Forum (GGF) where it has

been implemented on a number of platforms [117].

3.5.3 The Global Grid Forum

The Global Grid Forum (GGF) was formed to bring Grid development together as

‘an open process for development of agreements and specifications’ and to provide

‘a Forum for information exchange and Collaboration’ [118].

The GGF therefore provides a structure for the discussion of standards and all of

the research going on in the Grid community. This helps to identify key successful

results and to keep everyone within the forum up to date with the developments.

The GGF also provides a steering group which is responsible for managing the

GGF as well as handling a series of review documents following the progress of the

development.

Within the GGF the research is divided into the following 7 areas, each of which
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is overseen by an Area Director within the GGF: Application and Programming

Environments, Architecture, Data, Information Systems and Performance, Peer-to-

Peer: Desktop Grids, Scheduling and Resource Management and Security.

At the beginning of 2003 there where 42 research groups involved with the GGF

and this number is rising steadily. The GGF also hold regular meetings, which

include tutorials, Workshops and Work sessions [118].

3.5.4 Middleware

The software to implement Grids is known as a Middleware because it is a middle

layer which sits between the user’s application and the remote computing resource.

It is generally accepted that the following key issues and services must be ad-

dressed within the Grid middleware, in order to be successful:

Networking Quality of Service (QoS), Resource co-scheduling, Load Balancing,

Message Passing, File Transfer Mechanisms, Data Security, integrity and coherence

and Authentication. [119] [120] [121] [122] [123] [124]

3.5.5 Existing Middleware implementations

There are several middleware implementations which exist although they all provide

similar platforms [114].

Globus

Globus has become the standard for Grid middleware by providing all of the services

and capabilities to construct a computational grid.

At the central core of Globus is the Globus Metacomputing Toolkit, which con-

tains all of the tools needed:
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Resource Management (GRAM) Resource allocation and process management.

Communication (Nexus) Unicast and multicast communication services.

Security (GSI) Authentication and related security services.

Information (MDS) Distributes access to structure and state information.

Health and Status (HBM) Monitoring of health and status of system compo-

nents.

Remote data access (GASS) Remote access to data via sequential and parallel

interfaces.

Executable management (GEM) Construction, caching and location of exe-

cutables.

The reason for providing this selection of tools, is that computational grids must

be able to support a vast range of different applications, and the services can be

incorporated into the applications using a mix-and-match approach.

An important aspect of Globus is that it separates local and global services.

Local services are kept simple to allow deployment and global services are built on

top of local services.

The Metacomputing Directory Service is provided as part of the toolkit, to dis-

cover available resources and services. This allows resources to be added and re-

moved dynamically and also allows the Grid to recover if a failure was to occur. By

discovering the characteristics of the execution environment, it is able to automati-

cally make the best choices for finding the most efficient settings [114].
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UNICORE

The UNiform Interface to COmputing REsources (UNICORE) project, was initiated

by the German Ministry for Education and Research (BMBF), with the aim of

developing a middleware structure for ‘seamless access to supercomputer resources’

[125].

The main focus of their work is to provide a framework which will allow user’s,

wishing to process large batch jobs, to seamlessly prepare, submit and monitor their

jobs through an intuitive web based interface. One of the original goals was to

ensure that UNICORE would be usable by scientists without having to know the

anything specific about the middleware.

The emerging X.509 standard has been used as a method for authenticating

user’s by the use of certificates. This also supports the encryption of data if it is to

be transmitted over the internet.

Like most other middleware implementations there are a number of central com-

ponents. These include: Job Creation, Job Management, Data Management, Appli-

cation Support, Flow Control, Metacomputing, Interactive support, Single sign-on,

Support for legacy jobs and Resource management [126].

The client software has been developed in Java, in an effort to try to make the

software as platform independent as possible [125].

ICENI

The Imperial College e-Science Networked Infrastructure (ICENI) is the Grid mid-

dleware which has been developed at the London e-Science centre. It has been based

upon the languages Java and Jini. Jini provides a service discovery architecture sim-

ilar to Globus.
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XML is used to store the attributes for each service, which are dynamically

updated by the resource manager. A domain manager is provided which publicizes

the resource capabilities within the Grid community.

Access control is implemented through a policy manager which controls who and

what are allowed to use which resources. When resources are requested an X.509

public key infrastructure is used by the identity manager to verify users.

Other tools such as the resource browser, application mapper and resource broker

are provided to access the resource information.

Legion

Legion is another Grid middleware which has been designed to connect many hosts

together. The hosts can range from normal Desktop workstations to massively

parallel supercomputers.

It is an object orientated environment providing a sound infrastructure for im-

plementing a computational Grid. However unlike Globus the software is provided

as a uniform programming model which can limit the programmer.

In order to be successful, Legion aims to satisfy the following objectives: Site au-

tonomy, Support for heterogeneity, Extensibility, Ease of use, Parallel processing to

achieve performance, Fault tolerance, Scalability, Security, Multi language Support

and Global Naming [127].

Condor and Codine

There are other Grid middleware structures such as Condor and Codine which both

provide similar features.
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3.5.6 Existing Grid Projects

There are a number of existing Grid structures that have been implemented and are

already being used for research.

UK e-Science Grid

The UK e-Science Grid, is the supercomputing backbone to the UK. It brings to-

gether all of the e-science supercomputing resources such as HPCx and HECToR.

The HPCx Consortium [128] is run by the University of Edinburgh, providing further

HPC resources with funding from the EPSRC. The High End Computing Terascale

Resource (HECToR) [129] has recently been funded by the EPSRC, to provide a

Cray XT4 supercomputer based at the University of Edinburgh’s Advanced Comput-

ing Facility. Continuous funding has been allocated to guarantee updates in 2009

and 2011 ensuring that is will maintain its position as one of the most powerful

research machines in Europe.

NASA’s Information Power Grid (IPG)

NASA’s Information Power Grid (IPG) is one of the largest grids in use today. It

was set up to provide Supercomputing resources to provide NASA’s research groups

with the power they need when they need it. It is also the largest mass of freely

available resources that any institution has made available to its researchers [130].

EuroGrid

The EuroGrid project was developed using funding granted by the Eurpoean Com-

mision between November 2000 and January 2004. Its main objective was to es-

tablish and maintain a European GRID network consisting of HPC resources from
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centres in different European countries as shown in figure 3.15. Based on the UNI-

CORE middleware, EuroGrid concentrated on several core applications, including

bio-molecular modeling and weather forecasting as a basis to evaluate the usefulness

of Grid resources. Although the project has now finished the resulting software is

freely available for use in the research community [131].

Figure 3.15: The EuroGrid Project established a grid of resources from centres in

different European countries.

Particle Physics Data Grid

Particle Physics Data Grid Collaboratory Pilot (PPDG) developed and deployed a

production Grid system with specific goals for modelling high-energy and nuclear

physics experiments. By utilizing Grid resources significant increases were found in

performance. One example of this comes from the Jefferson Lab for Nuclear Physics,
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who were able to reduce the time taken to simulate 30M events from over 3 months

to less than a week using the PPDG [132].

TeraGrid

The TeraGrid is coordinated through the University of Chicago, and using high

performance network connections, provides more than 750 taraflops of computing

capability from across the US [133].

HealthGrid

The HealthGrid has been developed in order to meet the demands of modernizing

health care systems. Grid computing provides an infrastructure allowing connectiv-

ity between health organizations and facilitates the secure sharing of patient records,

research and information about new care methods. In particular the areas of where

Grid technology has been most beneficial include:

• Medical imaging and image processing.

• Modelling the human body for therapy planning.

• Pharmaceutical Research and Development.

• Epidemiological studies.

• Genomic research and treatment development.

For all of the above areas, evidence has been produced that Grid technology can

significantly reduce the cost and time taken to produce results [134].
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3.5.7 AccessGrid

The AccessGrid is a very different use of grid resources. Instead of using the Grid

infrastructure for computation, it uses audio and video streams to allow groups of

user’s to interact through a vast array of resources, including extensive video dis-

plays, shared presentation and interactive software environments. The main purpose

of the AccessGrid is to allow ‘large-scale distributed meetings, collaborative work

sessions, seminars, lectures, tutorials and training’ [135].

The main difference between the AccessGrid and existing desktop to desktop

communication is that the AccessGrid focuses on groups interacting. For example

by utilizing high end video and audio reproduction, the access grid allows groups of

people to have the feeling of joining together in one large group meeting and thus

increase productivity by removing time and travelling constraints.

However it is also possible to use the AccessGrid as a stand-alone desktop ap-

plication. This makes it possible for a single user to join a larger group meeting,

or even to have a one-to-one meeting. The real advantage of installing a personal

AccessGrid node is that it can be installed on a standard computer system using

very low cost cameras and microphones which are easily available. The personal

node can then be used to sit in on meetings and distributed lectures for very low

cost.

The AccessGrid software was originally developed and continues to be updated

at the ‘Futures Laboratory at Argonne National Laboratory (ANL) and is deployed

by the NCSA PACI Alliance’ [136].

The AccessGrid software is also highly configurable, allowing many different

combinations of hardware to achieve the best and most appropriate solution for

each venue. It is common for the software to be distributed across several machines
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locally to enable as many video and audio resources as required. For example, the

software could be running on three computer systems each running a section of an

extended video display. Then it would be logical for one of these systems to handle

the video broadcast from your venue, another to handle the audio broadcast and

the final computer could handle any shared applications.

Several projects have tried to integrate AR within the AccesGrid. VPC [137] is

a replacement VideoProducer service for the AccessGrid which uses the ARToolkit

to add virtual artifacts to the video stream of the presenter. Although the result

is only presented in a 2D window, it allows the presenter to talk about various

aspects of a virtual object by being able to rotate and move the object around by

moving the ARToolkit marker. A similar application Access Grid Augmented Virtual

Environment (AGAVE) [138] uses the AccessGrid to allow the presenter to share 3D

content by capturing the scene with two cameras. The 3D scene is then presented to

the audience who can either view it on any auto-stereoscopic style display. Generally

when dealing with a large audience this would be done with passive 3D glasses.

3.5.8 Grid based HPV

It is possible to classify users of the Grid for HPV into four categories, as shown

in Figure 3.16. Grid and Visualization specialists are the users who already have a

working knowledge of the Grid, and Visualization and are generally the users who

will continue to develop new Grid enabled Visualization tools. e-Scientists are users

who have some familiarity with the Grid, but not visualization. Visualisation Spe-

cialists have knowledge of Visualization techniques, but not the Grid. Application

Scientists have neither Grid or Visualization experience, however they form a large

single group of potential visualization users. In the following list we explore some
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of the most common HPV systems and we also evaluate which user types they are

most aimed towards:

Figure 3.16: The user’s of Grid based Visualization can be broken down into these

four groups.

GVK

The Grid Visualization Kernel (GVK) [139] is designed to integrate the scientific

visualization pipeline with Grid services. GVK monitors network conditions to dy-

namically modify the visualization pipeline, ensuring real-time performance to the

user. GVK provides a modular approach to simulation and visualization severs,

allowing for easy configuration for Visualization specialists who know how to con-

Figure the visualization pipeline. Although initially designed to extend the OpenDX

modular visualization system, interfaces are now provided for many other visualiza-

tion environments, allowing the framework to be used arbitrarily with many software

and hardware configurations.
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RAVE

The Resource Aware Visualization Environment (RAVE), [140] is a collaborative

visualization environment which has been designed for deployment across a range

of heterogeneous resources. RAVE allows multiple clients to connect and interact

with a single visualization, regardless of the type of client that they are using. It

is a unique framework, in that it supports a wide range of clients from large scale

displays to PDA’s and mobile phones which have very limited graphical capabilities

for local rendering.

RAVE is seen as resource aware because the format of the graphics sent to each

client is determined by the capabilities of the client and supporting networks. A

remote render service is provided for any client which is unable to locally render the

scene, and will sent the graphics to the client at a compressed image stream. If the

client has limited graphical capabilities then the dataset is likely to be decimated

to a size that can be rendered locally. Figure 3.17(a) shows an active client which

is running on a Linux PC and connected to a simulation. The Linux PC has some

basic graphics capabilities and so the rendering is being done locally. Figure 3.17(b)

shows a thin client running on a PDA. It is connected to the same simulation, except

in this case it has no graphical capabilities and so a remote render service is being

used to generate the graphics, which are being streamed to the PDA as compressed

images.

Chromium

Chromium [141] works differently to most visualization platforms. It works by cap-

turing the OpenGL stream generated from the mapping stage of the visualization

pipeline and distributes it over a series of processing nodes. Each node renders a
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(a) (b)

Figure 3.17: An example of the RAVE client running on (a) A Linux PC (b) A

Windows CE based PDA, where both clients are connected to the same visualization.

Images courtesy of Ian Grimstead, Cardiff University.

section of the final image and these are all composited to produce the final image.

By its nature it is very easy to integrate Chromium with any application which gen-

erates an OpenGL stream making it compatible with a large number of visualization

applications. Previous work at Bangor University [142] has extended Chromium to

integrate with the Globus Toolkit, is shown in Figure 3.18.

SGI Vizserver

SGI developed Vizserver [143] to enable their range of Onyx Servers to be used as

multi-user visualization servers. Vizserver provides a thin client which decompresses
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(a) (b)

Figure 3.18: An OpenGL demonstration is distributed with Chromium (a) across

16 desktop computers and (b) tiled across a 2x2 display. Images courtesy of Ade

Fewings.

and displays a stream of images that have been rendered remotely, bringing the

power of the Visualization server directly to the user’s desktop. Vizserver is currently

only compatible with SGI’s rage of servers and does not support connections through

Grid middleware.

The Op3D system [144] was designed to utilize the visualization capabilities of

a Shared Memory Parallel (SMP) machine using integrated graphics hardware and

was specifically implemented using a high end SGI Onyx machine. It is primarily

designed to volume render data and return a stream of frames to the client machine

which provides a simple viewer interface, allowing surgeons, who are Application

Scientists, to view and interact with large 3D datasets of medical scans whilst work-
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ing in an operating theatre. Op3D uses OpenGl Volumizer to provide high quality

rendered images, and SGI Vizserver to compress and transfer the images to the

operator’s laptop.

Visapult project

Visapult [145], is also used for remote rendering of large datasets. It provides scala-

bility by distributing the volume dataset over several disks, and therefore transferred

to the visualization servers in parallel. Visapult has been specifically designed for

handling time-stepped volume data and therefore is unsuitable for general use by

application scientists. Due to the parallel design of the data handling however, it

does become very efficient for volume rendering extremely large datasets, and has

been demonstrated with datasets over 10GBs.

gViz

The gViz project [146] provides a collaborative Grid visualization platform based

around the modular system IRIS Explorer. Modules can be configured to form

pipelines, using the supplied dataflow network editor, allowing the construction of

almost any type of visualization. As knowledge of visualization techniques is still

needed to construct the pipelines, the software is aimed primarily at Visualization

specialists.

During development of the gViz project a reference model was suggested for

describing visualization tasks, as shown in Figure 3.19. At the conceptual layer the

visualization task is described independently of the hardware and software required

to support it. The logical layer, adds details of the software used for the visualization

and the physical layer describes the underlying hardware [146].
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Conceptual

Logical

Physical

Figure 3.19: The gViz reference model for describing visualization tasks.

e-Viz

The e-Viz system [147] was developed as a visualization tool for application sci-

entists, following the Autonomic Visualization model in order to attempt to make

choices on behalf of the user. It is based around a framework of pre-defined visual-

ization services, each of which can be implemented using different configurations of

visualization system, such as VTK.

e-Viz follows the principles of the gViz reference model where the user is provided

with a number of suitable options for rendering their visualization task, specified at

the conceptual level. The process of specifying the task at the logical and physical

levels is left to the e-Viz system. This means that the user only has to choose

the desired type of visualization and not have to understand how or where it is

implemented.

The e-Viz remote rendering library enables multiple visualization servers to re-

turn frames to a single client, using several codecs for compressing the data. By

interchanging the compression method with different codecs, e-Viz is able to bal-

ance network bandwidth and image quality to ensure real-time performance. The

client is also able to change between each of the visualization server streams during

run-time and servers can be added and removed at any point during a visualization

session, allowing seamless migration between servers. This allows for e-Viz to give

the user a low quality visualization whilst waiting for more powerful machines to
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become available. It also allows for mission critical applications, where two streams

can be synchronized and the client can dynamically switch should one of the servers

fail.

The list of possible rendering options is identified by a decision making module

that uses a knowledge-base to see what configurations have been used successfully for

similar tasks previously. A simulation framework, SimuVis [148] is used to simulate

the performance of different visualization pipeline configurations allowing e-Viz to

dynamically optimize the pipeline during the visualization run-time.

e-Viz provides both an API for developers to write their own software, as well as

a wizard style launcher application. The wizard identifies the user’s data set, and

having generated a list of possible configurations, presents the user with a thumbnail

to represent how each configuration may look, to assist them with starting their

visualization session.

The development of the e-Viz framework was fundamental to the research de-

scribed in the thesis. This was a challenging three year project using resource and

expertise from four universities. Bangor university contributed significantly to the

implementation of the e-Viz broker and database components, as well as the over-

all deign and testing of the framework [27] [147]. This thesis contributes to the

exemplar applications of the framework and the development of the framework.

3.5.9 Web Services and the Grid Summary

The Grid provides a middleware infrastructure for allowing resources to be used

which are not necessarily local to the user in geographical terms. It allows each

user to effectively have HPC resources at their desktop, by making the resources

available transparently. Several Grid implementations have been developed following
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guidelines set by the GGF.

Several toolkits have been developed that use the Grid as a mechanism for bring-

ing HPV resources to the user’s desktop. In the context of visualization, this chapter

showed that there are four categories of Grid Based Visualization user: e-Scientists,

Application Scientists, Grid and Visualization Specialists and Visualization Special-

ists. Each of the toolkits has been developed and targeted at either e-Scientists

or Visualization Specialists, who have some specialist knowledge. e-Viz, a project

which was developed in parallel with this research, was developed to target Ap-

plication Scientists, using an autonomous approach to helping make decisions for

inexperienced user’s.

3.6 Grid enabled AR?

This review identifies several approaches to AR, although the most successful of

these rely upon markers to align the virtual artifacts with the real world. More so-

phisticated approaches are possible but they are not widely used due to the inherent

computational overhead typically involved. There has also been very little research

done into using HPV resources to render the virtual objects within the AR scene

and to use the pose estimation to steer the virtual camera in the remote simulation.

Chapter 5 presents our unique approach to AR, by extracting feature points from

the user’s view to allow us to estimate the movement of any arbitrary object in the

real world. Chapter 6, shows how the e-Viz framework can be used to remotely

render large data-sets which form the virtual objects in our AR scene. To ensure

real-time performance this thesis also shows how the pose estimation component of

our AR system can be distributed to a remote computational resource.



Chapter 4

Optical Tracking for AR

4.1 Introduction

In order to investigate the research hypothesis a challenging AR application was se-

lected. Transcranial Magnetic Stimulation (TMS), is a procedure in which electrical

activity in the brain is influenced by a pulsed magnetic field [149]. TMS is extremely

important for researchers as it allows them to accurately stimulate different regions

of the brain’s cortex and by recording the subject’s response it is possible to validate

the function of different areas of the brain. TMS has also been found to be useful

in therapy and has had positive results when attempting to treat severe depression,

auditory hallucinations and tinnitus as well as other drug resistant mental illnesses

such as epilepsy.

Common practice during the TMS procedure is to place an electromagnetic coil

on the subject’s head so that it is aligned with a region of interest on the cortex

of their brain. The coil and subject’s head can be tracked using optical sensors,

and targeting information is calculated and displayed on a local workstation. This

procedure allows analysis of the visually induced perceptions related to the cortical

90



4.1. Introduction 91

site stimulated.

Typical TMS installations utilize a Polaris optical tracking system, as developed

and manufactured by Northern Digital Incorporated (NDI), to track the patients

head and to help align the electromagnetic coil with the regions of interest on the

surface of the patient’s cranium.

This chapter describes the software prototype developed for interfacing with the

Polaris optical tracking system that allows users to find the quaternion and trans-

lation position of each of the tools. A custom OpenGL application is then used to

allow the operator to identify and specify regions of interest in the cranium. The

software also guides the operator to accurately align the coil with the specific regions

and then uses VTK to render the patient’s brain according to the operator’s view-

point, allowing for both an offset calibration for the tools and real-time movement

of the patient and operator.

(a) (b)

Figure 4.1: A typical electromagnetic coil (a) and the magnetic field generated (b)

as used for TMS.
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TMS has an important role in neuroscience as it allows researchers to understand

which regions of the brain are actually used to perform different tasks. Previously it

has been possible to use noninvasive techniques such as fMRI to allow researchers to

identify which regions of the brain are active whilst the subject is asked to perform

specific tasks. However TMS has now been proved to show that although an area of

the brain is active with a task it does not necessarily show that it controls the task.

4.1.1 Clinical uses for TMS

TMS has been shown to have successful results when used for both diagnostic and

therapeutic uses:

Diagnostic Uses

TMS allows clinicians to meanure the activity and function of specific parts of the

human brain. To date the most widely accepted use is for measuring the strength

of a connection between the primary motor cortex and different muscles within the

body. This makes TMS a useful diagnostic and assessment tool for cases involving

strokes, spinal cord injury, multiple sclerosis and motor neuron disease [150].

Therapeutic Uses

Herrmann and Ebmeier used TMS to show that by exciting specific neurons in the

cortex of their trial subjects, they were able to treat them for depression [151].

Based upon this previous work the American Psychiatric Association launched the

NeuroStar TMS TherapyTM system in 2006, a clinical trial designed to evaluate

TMS as a real world treatment for several depressive disorders.

Further research has shown TMS to be an effective method for treating migraines
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as well as for controlling sleeping patterns for subject’s who are being treated whilst

asleep [152]. TMS has therefore an established treatment for patients suffering

from the above problems. Any improvements that can be made to the treatment

environment can only be beneficial.

Other conditions which have been reported to respond to TMS include: Tinni-

tus, Parkinson’s Disease, Dystonia, Epilepsy, Migraine, Dysphasia and Hemispatial

neglect [153].

4.2 Brainsight Software

The Brainsight, frame-less image-guided, TMS system (Magstim, UK) used during

this project, incorporates a Polaris optical tracking system for tracking the electro-

magnetic coil and its relative position to the subject’s head.

(a) (b)

Figure 4.2: (a)The tracker used to identify the position of the subjects head, and (b)

The Brainsight software displaying targetting information on a computer display.
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4.3 Optical Tracking

In order to accurately render the patients brain from the view point of the operator,

the system needs to know the orientation of both the subject’s head and the view

point of the operator. The Polaris Optical tracking system (described in Chapter 3)

is supplied with several tools, which include a head position tracker and a digitizing

probe that is used for the accurate pinpointing of positions in the trackers view.

The head position marker is used to represent the position of the subject’s head and

the probe to identify the position of the operator’s viewpoint - see Figure 4.3.

(a) (b)

Figure 4.3: The tools being tracked: (a) The subjects head, The electromagnetic

coil and (b) the viewpoint of the operator captured using a webcam aligned with

the digitizing probe

4.3.1 Polaris Interface

Communication between the operator’s laptop and the Polaris System is achieved

by sending serial ASCII text messages using the RS232 standard as shown in Figure

4.4. All communications are initiated by the laptop, which sends a message and

will in response receive a reply either containing the requested information or a flag
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Figure 4.4: System Diagram showing the flow of data and the tools that are being

tracked.

indicating whether or not the last command was successful. Messages sent to the

Polaris system always take one of the following two formats:

Command | <SPACE> | Parameter 1 | Parameter 2 ... | Parameter n | <CR>

Command | <:> | Parameter 1 | Parameter 2 ... | Parameter n | CRC16 | <CR>

The Polaris system always responds with the following format:

Reply | CRC16 | <CR>
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The description of the marker configuration for each tool is specified in a ROM

file, which is provided by the manufacturer, and each tool is plugged into the tracker

by passing the contents of these ROM files in messages. It is then possible to simply

query the tracker as to the position of each tool, which it returns as a quaternion

and translation pair.

4.3.2 Error Checking

A 16-bit Cyclic Redundancy Check (CRC) based upon the IBM standard is used to

validate the integrity of each command sent to the Polaris system and each reply

received from the Polaris system, using the polynomial:

x16 + x15 + x2 + 1

Therefore should an error occur our software can detect it and either retry the

previous command, or return an error to the operator saying that an error has

occurred. The Polaris system also provides the ability to search the surrounding area

for environmental IR sources which can cause interference to the marker reflected

IR and therefore cause inaccurate results. The operator can then either identify

and remove these IR sources or the software can compensate for the possible loss of

precision [154].

4.4 Video Capture

The software that has been developed is named Bangor AR for TMS (BART). In

BART the operator’s viewpoint is captured by a USB web-cam, using video4linux

(V4L) which provides the video capture/overlay framework API for the linux kernel.
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The V4L API provides a generic interface to USB and Firewire based imaging devices

[155]. BART allows the user the flexibility to use any general purpose webcam and

allows our software to capture an image from the camera at each time-step of our

applications execution. V4L also follows the same conventions of the video4windows

(V4W) API allowing that the software could be ported to the Microsoft Windows

platform with ease.

4.5 Coordinate system

BART uses a 3D Cartesian coordinate system which follows the right hand rule

for the viewing transformations, specifying the directions of positive and negative

as shown in Figure 4.5(a). This is the same convention as used by both OpenGL

and VTK, allowing our transformation information to be moved easily between the

graphics API’s being used.

To allow us to realistically match the virtual world to the real world a Perspective

Projection is used. This allows the objects in our virtual environment to be projected

onto a viewing plane. This plane can then be matched to the view captured by the

camera view point. Although sometimes in computer graphics, it would not be

suitable to use Orthographic Projection as an alternative. Orthographic Projection

is used mainly for design applications where the z-axis coordinate is ignored. This

would mean that each virtual object would be the same size regardless of their

distance from the camera [156].
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Figure 4.5: The virtual Camera, which is aligned with the real camera from the real

world, showing the viewing plane in Cartesian space.

4.6 Standardizing the Coordinate System

In order to correctly align the subject’s brain the position of each tool is requested

from the tracker and returned in quaternion and transformation form.

Q0, Qx, Qy, Qz represent the quaternion rotation of the tool and Tx, Ty, Tz

represent the translational components of the transformation. To enable the rotation

to be used in our OpenGL application, the quaternion representation is converted

into a rotation matrix [157]:

M =

⎛

⎜

⎜

⎜

⎜

⎝

Ma Mb Mc

Md Me Mf

Mg Mh Mi

⎞

⎟

⎟

⎟

⎟

⎠

Ma = (Q0Q0) + (QxQx)(QyQy)(QzQz)

Mb = 2((QxQy)(Q0Qz))
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Mc = 2((QxQz) + (Q0Qy))

Md = 2((QxQy) + (Q0Qz))

Me = (Q0Q0)(QxQx) + (QyQy)(QzQz)

Mf = 2((QyQz)(Q0Qx))

Mg = 2((QxQz)(Q0Qy))

Mh = 2((QyQz) + (Q0Qx))

Mi = (Q0Q0)(QxQx)(QyQy) + (QzQz)

The Transformation Matrix can then be derived by combining the translation

information with the rotation matrix M :

M1 =
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⎝

Ma Mb Mc Tx

Me Mf Mg Ty

Mi Mj Mk Tz

0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

We can simply transform to the position of the subject’s head and draw the

brain, then transform to the operator’s viewpoint using an offset established during

calibration to produce the final viewpoint. This view is then composited onto the

video stream from the camera and presented back to the operator via the HMD.

4.7 Calibration

In order to correctly align the computer graphics with the real world, it is essential to

calibrate the BART software to understand the offset between the tracked position

of the physical markers and their relation to the real world position of the objects.
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Figure 4.6: The Calibration offset for both the Camera C and the subject’s head H

need to be calculated.

Figure 4.6, illustrates the offset transformation which is needed by the markers on

both the camera and the subject’s head. The Digitizing probe used to specify the

position of the camera is designed to track the position at c1, however we need

to calculate the relationship between this point and the lens of the camera at c2.

Likewise the tracker used to track the subject’s head only gives the software the

position h1 and therefore we will need to calculate the difference between h1 and h2.

4.7.1 Camera Position Calibration

The calibration of the camera’s position is calculated using a static point, such as a

pencil taped to a desk as a reference. As shown in Figure 4.7, the Digitizing probe

is firstly aligned with the static reference and its position stored as transformation
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matrix C1. The Digitizing probe is then moved forward to align the camera lens

with the reference point and the second position is then stored as C2. In order to

correctly align the virtual camera with the real world camera the transformation

matrix could be evaluated using the calibration transformation matrix C, in the

following way:

C1 × C × C2

Therefore the transformation matrix C representing the relationship between the

probe and the camera can then be calculated as:

C = C−1

2
× C1

Figure 4.7: The relationship C between the Digitizing Probe and the camera lens is

calculated using a static point as a reference.

4.7.2 Head Position Calibration

The Head Position Calibration, as shown in Figure 4.6 as H , is specified manually

by the operator. Whilst the application is running, the operator has the option to



4.8. Targeting 102

manually change the alignment of the virtual cranium as an overlay of the actual

subjects head. This allows for movement of the brain to be taken into account and

for the operator to correct any alignment problems whilst using the software.

4.8 Targeting

The BART AR Interface has been implemented in order to make alignment of the

TMS coil with the specific regions of the subjects cranium. To do this the operator

must first specify the regions on the surface of the cranium using our software to

identify the areas that they wish to target. The targeting tool then guides the

operator to accurately align the TMS coil with the specified area.

Figure 4.8: The transformation is calculated between the actual position of the coil

and the target position of the tool.
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The operator is guided by a 3D arrow which is rendered from their viewpoint,

as shown in Figure 4.8. The transformation of the arrow is calculated by firstly

calculating the transformation between the actual position of the coil and the target

position T , where the translation from the origin to the actual position is T1 and

the translation from the origin to the target position is T2:

T = T−1

2 × T1

The translation from T1 to the guide arrow A is then calculated in the following

way:

A = T − T1

A second OpenGL window is used to display only the guide arrow as shown in

Figure 4.9. The arrow is rendered from the viewpoint of the operator as before except

the translation information is disregarded, allowing the operator to see the guide

arrow full screen. This is calculated by taking only the 3x3 Rotation component

from the transformation matrix:

A =
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⎠

4.9 Rendering the Graphics

The cranium is previously segmented from the MRI data captured for the specific

patient. The BART software uses VTK to render the cranium using the standard
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Figure 4.9: The OpenGL Targeting interface guides the operator to align the mag-

netic coil with the desired region of interest.

visualization pipeline as shown in Figure 4.10, using a single transformation matrix

as shown in Figure 4.6. Whilst the rendered display is updated in real time by the

position of the subject’s head, and position of the camera the operator also has the

opportunity to fine tune that calibration by manually updating the offset matrix for

the tracker on the subject’s head.

4.10 Results

As shown in Figure 4.11 the alignment is visually acceptable, and the AR interface

for positioning the coil is more natural than having to look between the subject and

the results displayed on the workstation monitor (even if the workstation display is

also projected onto the wall).

However there are some limitations as to how well the software can perform.
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Figure 4.10: The VTK rendering pipeline.

Figure 4.11: The composited operator’s view showing a visually acceptable align-

ment of the real world and the computer graphics

The laptop computer only has basic graphics capabilities and although is capable of

rendering the subjects brain at an average 15FPS, it can only render the graphics at

a low screen resolution, whilst maintaining this real time performance. It is also not

yet possible to composite the rendered cranium into the user’s viewpoint without

vastly reducing the FPS and losing the realism of the AR environment. However
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these issues are addressed and solutions are found in subsequent chapters.

4.11 Conclusions

Although many AR applications currently rely upon the use of bold markers that can

be easily identified by a computer, it is becoming increasingly desirable to be able

to use AR in environments where there are no clear markers. Markerless tracking is

not only more computationally intensive however, but also requires more information

about the environment and the structure of any planes or real objects that are to

be tracked.

Due to the obvious dangers involved with modifying the natural activity inside

a patients’s brain, there is a clear need for validation to ensure that alignment is

correct between the patient and the rendered cranium. This will ensure that the

clinician is actually targeting the intentional region of the brain within an acceptable

tolerance. It is very difficult to measure the accuracy of the alignment, particularly

due to the both the manual calibration which requires the cranium to be aligned

visually by the operator and the natural movement of the cranium within the skull.

The alignment is always going to be limited by the ability and experience of the

operator and it can be expected that there will be a significant difference between

the calibration performed by both an expert and a novice. Any validation studies

would need to ensure that the calibration stage was included and would also need to

take into account a range of different calibrations performed by operators of different

experience.

There are several approaches that could be taken to validating the accuracy of

the alignment. It would be possible to run both BART and the existing Brainsight

Software, which has been generally accepted to be accurate, and any discrepancies
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between them should be observed. Another approach would be to create a phantom

head, which after calibration could be disassembled and internal components could

probed, to confirm their actual position. Fischer et al, used similar validation study

to validate MRI image overlay for needle puncture alignment [158].

In order for BART to be a useful tool several metrics must be defined. These

must include quantifiable allowances such as a tolerance for how accurately the coil

must be aligned. Although a full validation study is outside the scope of this project,

favourable comments about the ease of use of the AR interface have been obtained

from the TMS operator’s in the School of Psychology at Bangor University.

The next chapter presents a generic solution that does not rely on the use of

markers, but rather feature points that are intelligently extracted from the user’s

view.



Chapter 5

Using Feature Point Extraction

for Pose Estimation

5.1 Introduction

In order to align the virtual object with the real world, a developer to define the ob-

ject in the user’s view. During a calibration stage the user is given the opportunity

to specify where the object exists within the viewpoint. This work uses a robust fea-

ture point detection algorithm to identify the points that can be repeatedly identified

within the space occupied by the virtual object and use this information to estimate

and track the object’s pose (i.e. position and orientation) as it is moved from its

initial position. A Cascading Haar-Classifier [159] is used to track the position of the

object within the user’s viewpoint. A POSIT (Pose from Orthography and Scaling

with ITeraions) algorithm is then used to estimate the pose of the object [160] .

In order to use the feature point based tracking within BART v2, the tracking

system is extended to use multiple calibrated views. A Haar-Classifier is then used

to rapidly match the user’s current view with each of the stored calibrated views.

108
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5.2 Computer Vision

Computer vision techniques are used to enable the computer to actually ‘see’ what

the user is looking at. There are many camera options available to capture an image

data stream of the surrounding environment, but this work uses a cheap proprietary

web-cam which is connected to the Linux workstation. Also the Open Source Com-

puter Vision Library (OpenCV) from Intel is used to capture and manipulate the

image data stream from the camera using the Video 4 Linux API, see Figure 5.1.

OpenCV

Video 4 Linux

Linux kernel

Figure 5.1: The software layers for Computer Vision

During this research the user’s viewpoint was captured using a Sony Eye-toy USB

camera, capable of providing a stable 640x480 pixel resolution at 30 hertz, with a 56

degree field of view. The Sony Eye-toy uses the standard OV7640 compatible sensor,

which can be decoded by Video 4 Linux using the open source OmniVision OV5xx

drivers developed by Mark McClelland [161]. This camera was chosen because it

offered a high specification in an inexpensive and easily available camera.

5.3 Calibration

In a similar approach to the software developed in chapter 3, a calibration stage

is used to record the transformation relationship between the virtual objects and

their position in the real world. BART v2 initializes by asking the operator to align

a basic wire-frame model with the position that it relates to in the view captured
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by the camera representing the operator’s viewpoint. Basic mouse interaction is

used to align the virtual object with the real world, and the operator is given the

opportunity to store multiple viewpoints with the correctly aligned virtual object.

The software relies upon the ability of the computer vision system to identify the

real world representation of the virtual object, so by capturing multiple views it is

possible to store calibration information for different views of the object. Figure 5.2

shows the calibration tool being used to register a virtual object with a real world

object.

Figure 5.2: The Calibration tool allows the user to align a virtual object with an

object in the real world.

The calibration information is stored as a combination of the transformation

matrix representing the position that the operator has moved the virtual object to

from the origin, and the subset of the image data which contains the object in the

real world. Later the subset of the image data is converted into a set of feature

points, which can be used to calculate the final pose of the object.
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5.4 Object Tracking

BART v2 application uses the calibration that links our virtual object to a space in

the operator’s real-time view, to train a Haar-classifier [159]. The Haar-classifier is

then used to estimate which sub image from our operator’s view contains the real

object, to which a virtual object is to be aligned. This work extends previous work

with Haar-classifiers by using multiple calibration views allowing the detector to not

only be more robust but also to continue to track different sides of an object.

5.4.1 Haar-classifier

Haar-classifiers use a set of simple geometric shapes, known as Haar-like features,

which are used as building blocks for specifying more complex shapes. This gives

many advantages over using raw pixel data as Haar-like features can be used to

encode simple image data and provide a domain knowledge specification that can

be used to specify whether two patterns match. Each Haar-like feature has a value,

which is defined as the difference between the total number of black pixels and the

total number of white pixels. This makes the classification tolerable to environmen-

tal changes, such as light because the value is calculated as a ratio between the black

and white pixel areas.

Each Haar-like feature consists of several white and black regions. Figure 5.3

shows an example set of these features although it is much more common to use an

extended set that was proposed by Lienhart and Maydt [162].

Learning

In order for the Haar-classifier to be able to identify accurately the where the object

is likely to be within the operator’s viewpoint, it is necessary to train the classifier
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Figure 5.3: An example set of Haar-like features.

with source images. The OpenCV toolkit is used to generate a series of training

images by scaling, rotating and adding noise to the calibration images. A second

set of random noise images are also generated as negative training examples.

The AdaBoost algorithm [163] is used to train the classifiers. Initially each

training sample is allocated an initial weight. The first of our classifiers is set to

use the single Haar-like feature that achieves the most reliable recognition of each

of the training images. This produces a weak classifier as it will still produce a high

rate of inaccurate results. Each of the training samples that produced an incorrect

recognition is then given a higher weighting, a further classifier is then set to use a

more detailed Haar-like feature having tested it against each of the higher weighted

images. This process is then repeated to produce a linear set of weak classifiers

which are designed to work together to produce the accuracy of a strong classifier.

Classification

The operator’s viewpoint is split into a series of subsections, each of which is applied

to the cascaded Haar-classifier. If the subsection is within a threshold of the value

of the first classifier, then it will propagate through each classifier until either it fails

to match a classifier or it passes all of the classifiers. When a subsection is deemed a

failure it is instantly discarded and the next subsection is classified. If a subsection

passes then it is classified as containing the object and it is stored with a likeli-
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hood weighting. Once each of the subsections has been tested the highest weighted

subsection is declared the winner and will now be comparable to our classification

image for pose estimation as shown in Figure 5.4.

Figure 5.4: The cascaded Haar-classifier is presented with subsections of the op-

erator’s viewpoint. The subsection propagates through each classifier until either

it passes each stage or it fails a single classifier, at which point the subsection is

immediately rejected.

5.4.2 Parallel Classification

To allow the software to use multiple calibration views multiple cascaded classifiers

are used to classify each of the different calibrations. When each classification is

complete the highest weighted subsection out of all of the classifiers is declared the

winner and in this case both the subsection and the transformation matrix that

relates to that view are passed to handle the pose estimation. The BART v2 soft-

ware uses separate threads for each cascaded classifier to utilize multiple processors

where available, as shown in Figure 5.5. Although this approach has increased the
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robustness of BART v2, the computational requirements of the software has also

increased.

Figure 5.5: Multiple cascaded classifiers are used in parallel in order to identify the

source of the subsection from each of the different calibrated views.

5.5 Pose Estimation

The pose of a 3D object can be described by using a combination of its trans-

formation and rotation. DeMenthon and Davis developed a POS (Position from

Orthography and Scaling) algorithm for estimating the perspective projection with

a scaled orthographic projection and therefore calculates the transformation matrix

for the specified object. Consequently the POS algorithm is used to compare the

feature points extracted from the relevant subsection of calibration view to feature

points extracted from the section of operator’s current viewpoint that has been

classified by the Haar-classifier as containing the actual object that the system is

tracking, as shown in Figure 5.6 [160].
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Figure 5.6: The POS algorithm maps the 2D feature points from the operator’s

viewpoint to the real world 3D object.

5.5.1 Implementation

OpenCV provides an implementation of the POSIT algorithm with the function

cvPOSIT(). The function takes an array of two dimensional feature points from

both the operator’s viewpoint and the calibrated image and returns a 4x4 matrix

representing the OpenGL transformation matrix. By simply applying the POSIT

algorithm to a 2D representation of the calibration image we eliminate the need

to store 3D geometric information about our virtual object and simply calculate

the difference. As shown in Chapter 3, the final transformation is calculated by

combining the POSIT transformation P with the calibration transformation C to

calculate the total transformation T :

T = C−1
× P
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5.6 Results

Figure 5.7 shows the complete system diagram for the software that has been de-

veloped for the generic AR framework. In order to fully evaluate the framework

an updated version of the TMS interface, which no longer requires specific markers

has been used. A short video clip (100 frames) of the camera panning around the

subjects head was recorded to evaluate our software. Four views of the subjects

head where used to calibrate BART as shown in Figure 5.8. The test video was

deliberately designed to progress around the subject’s head clearly including three

close matches to the calibrated views.

Figure 5.7: The complete system diagram for our software.

A desktop PC (Athlon 3200 64Bit, 1GB RAM) was used to run the BART v3

software. Figure 5.8 shows an example frame from the evaluation video. The red box

signifies which of the four calibration images has been selected by the Haar-classifier,

and the blue lines illustrate some of the feature points which have been matched

and used to estimate the pose of the subjects head. Although not drawn whilst
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the software was running the subject’s cranium has later been composited into the

frame, using the transformation matrix that was calculated for the frame during

run-time. The subject’s cranium appears to line up correctly with the subject’s

head showing an visually acceptable alignment.

Figure 5.8: A frame from our evaluation video, showing which calibration image

has been used and some of the feature points that have been matched to it, whilst

calculating the pose.

Figures 5.9 - 5.12 show the output of the four classifiers that have been trained

and applied to our test video. Each classifier generates a rating for each frame

with a value between 0 (unlikely to contain the pattern) and 1 (most likely to

contain the pattern). It is clear to see that around frames 25 and 65 there is the

most confusion about which classifier has matched the pattern. This is because
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those frames represent the boundary between two calibrated images, therefore it is

possible that both classifiers will have found a match. The fourth classifier at no

point features in the test video and so has the lowest weighting for each frame. The

application was found to be robust over an extended period of time, however only

100 frames are shown for illustrative purposes.
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Figure 5.9: The weighting that classifier (1) allocated to each image of the test

video.

Figure 5.13 shows the time taken to estimate the pose for each frame. We can

see that although the alignment has been accurate it is currently far from real-

time taking between 180ms and 500ms to calculate each. This gives us an average

frame rate of 5.49FPS, which is a significant drop from the 15FPS that, as stated in

Chapter 1, is required to maintain the illusion of AR in real-time. It is also possible

to see a significant increase in the time take at point (a) and (b). This is most

likely because as the camera approaches the border between to calibrated views it

is becoming more difficult to classify the image.
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Figure 5.10: The weighting that classifier (2) allocated to each image of the test

video.
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Figure 5.11: The weighting that classifier (3) allocated to each image of the test

video.
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Figure 5.12: The weighting that classifier (4) allocated to each image of the test

video.
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Figure 5.13: This graph shows the time take to process each frame of a pre-recorded

video stream.
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5.7 Conclusions

This work demonstrates that it is possible to provide a framework for AR without

markers provided that environmental conditions, such as lighting, remain constant.

In varying lighting conditions the software is unable to accurately estimate the pose

due to a poor recognition of the repeatable feature points. This is not generally

a problem within TMS laboratories, where the lighting remains constant however

this would make our software unsuited to outdoor applications where light levels

constantly change. Gausemeier et al, provide a solution to this by using low-pass

filters to attempt to separate the image data from the environmental light [164].

This technique could be used to filter the camera image data and to remove the

effects of the lighting. Another approach that has been found to be successful is to

extract repeatable image data through a histogram analysis [165].

Problems also occur when trying to run the AR software on a local workstation.

It is simply too computationally intensive and so can not keep up with the real time

video. The next chapter explores how this problem can be solved by distributing

this processing to a more powerful remote Grid resource.



Chapter 6

Grid enabled Augmented Reality

6.1 Introduction

The developed BART v2 framework for AR, which although has been shown to

be accurate in alignment, has so far been unusable due the computational require-

ments hindering the real-time performance. In this chapter we explore the how real-

time performance can be achieved by exploiting remote Grid enabled computing

resources, using the e-Viz framework. Firstly demonstrating how the e-Viz frame-

work can be used to increase the quality of the rendered objects by distributing the

rendering process to a remote visualization server. Second demonstrating how the

AR application, BART v3, can be used successfully used as a real-time interface to

TMS by distributing the pose tracking and estimation to a remote resource as part

of the e-Viz visualization pipeline.

The e-Viz system [147] was developed with funding from the EPSRC and was a

collaborative project involving computer scientists at Bangor, Swansea, Leeds, and

Manchester universities. The project developed a framework that aims to address

some key issues with visualization on the Grid. Although as seen in Chapter 2,

122
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projects such as GVK and gViz already offer an architecture for visualization on

the Grid, e-Viz attempts to abstract away from the underlying implementation

and provide a ‘black box’ where the user has no need to consider the underlying

implementation details unless they already have specialist knowledge in this area.

Extending Haber and McNabb’s classical visualization pipeline ideas [32] on to

the computational Grid allows many of the features of the Grid to be inherited by

the visualization system. The use of distributed computation and parallel remote

rendering allow visualization of data sets of increasing size, which can be rendered

at high resolutions whilst still maintaining interactive frame rates through the use

of parallelism at each stage of the visualization pipeline. The Grid framework can

also provide many other features such as remote data acquisition and security based

upon the Grid Security Infrastructure (GSI).

In order for a Grid based visualization system to be truly generic it must be

able to support any visualization technique that the user requires. e-Viz is able to

dynamically select the most appropriate hardware and software for each visualization

task as well as providing system transparency to the user. The Grid can then be

seen as a ‘black box’ inside which the computation is done. The user should not be

concerned about what happens inside the ‘black box’ with only the result that it

produces.

6.2 Adaptive Visualization

The e-Viz framework aims to follow IBM’s Autonomic Computing approach [65], as

described in Chapter 2, in order to intelligently choose the most appropriate software

and hardware for each visualization task.
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6.2.1 Towards Autonomic Computing

Figure 6.1 presents a functional description of the e-Viz framework, relating each of

the coloured components to the adaptive layer of the deployment model. For each

User Visualization problem the framework provides the user with a series of options

that it believes are most suited for running the visualisation task. A simulation

of each of the available hardware and software combinations is performed in the

System and Task Simulation service layer, using SimuVis [148] to find an optimized

visualization pipeline for each visualization task. The Knowledge Server stores in-

formation about how different pipelines can be configured and this information is

used to generate a Formal Pipeline Description. The User interface is created based

upon the Formal Pipeline Description allowing the user to adjust each component of

the visualization pipeline. During run-time the visualization pipeline and hardware

and software choices can be adapted to better meet the user’s requirements.

Figure 6.1: The functional description of the e-Viz framework. Each of the coloured

components relates to its appropriate level of the same colour in Figure 2.9.
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6.2.2 SimuVis

SimuVis was developed as part of the e-Viz system to allow the simulation of auto-

nomic visualization systems. SimuVis was based on SimEAC [148] and provided a

design tool allowing for the rapid prototyping and evaluation of the components of

the e-Viz framework. It also forms a large component of the Decision Making Mod-

ule, which is able to evaluate different hardware, software and visualization pipeline

configurations to find the one most suited to the visualization task. Chisnall gives

an extensive review of the functionality of the Decision Making Module [148].

SimuVis allows the underlying infrastructure of a visualization system to be

specified as a collection of hardware and software attributes which as within in an

XML document. The simulation then evaluates the XML description and provides

statistics for the performance of the system. By evaluating the system ‘offline’ users

are able to save the cost of expensive CPU-time as well as avoid configurations which

could result in a failure of a shared service system. The Decision Making Module

continues to evaluate different configurations during a running visualization. It is

therefore able to dynamically switch between resources, in order to self-optimize the

visualization task.

6.3 Grid Visualization with e-Viz

The e-Viz framework consists of three main components as shown in Figure 6.2.

These are described below:
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Figure 6.2: The three components of the e-Viz framework.

6.3.1 Client

e-Viz provides a basic client for both setting up and controlling the visualization

pipeline and for viewing the output of the remote visualization. It also provides an

API that allows user’s to develop their own client applications which can utilize the

e-Viz resources. A Launcher application provides the user with an entry point into

the e-Viz system as shown in Figure 6.3. It provides a wizard allowing the user to

specify the source data for the visualization and their desired output. gSOAP [109] is

used to connect to the broker machine using web services to establish what hardware

and software resources are available, and to use the knowledge-base to derive an

appropriate visualization pipeline for the specific job. The Launcher then connects

to the Grid exchanging certificates and establishing the connection to the remote

HPV resources. The Java Commodity Grid Kit (CoG) is used connect to the Grid

negating the dependency for the user to have the Globus client installed on their

local workstation.
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Figure 6.3: The standard e-Viz client providing a Launcher application with a visu-

alization wizard, and a remote Visualization viewer. Here a volume visualization of

a hydrogen molecule is being rendered.

The client user interface also contains a viewer for the remote visualization out-

put. The viewer has the capability to connect to multiple visualization servers

allowing dynamic switching between them. This allows a seamless migration be-

tween visualization servers when the system adapts to use different resources as

more appropriate visualization servers become available. It also provides redun-

dancy in mission critical applications where the pipeline can be split to provide

a duplicate output stream that the views can automatically switch to should the
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primary visualization resources fail.

6.3.2 Server

Each server must have the Grid middleware installed to become operational, to allow

the client to connect and run the visualization task. It is also expected that each

server will have at least one visualization application installed for it to become useful.

Each visualization application to be used within the e-Viz framework needs to be

extended to ended to use both the gViz computational steering library [146] and

the e-Viz remote rendering libraries. These libraries both form a wrapper providing

an abstraction from the specific application data into a standard description, which

can therefore be interpreted in the same way by different visualization software.

6.3.3 Broker

The broker uses a knowledge base to store the status of the available servers and

inventory what resources they are capable of providing. By storing the system

knowledge-base it is able to make decisions about which hardware and software

combinations to use and how to configure the visualization pipeline appropriately.

The web service container is implemented using WSRF::Lite [166], in which a sep-

arate instance is created for each e-Viz session allowing communication with the

e-Viz client. The client can interact with the Broker by the use of gSOAP calls,

which will tell the Client which visualization servers to connect to.

6.3.4 Adaptive Codec Selection

Pixel values calculated on the graphics card in each Visualization server are encoded

and transmitted over the Grid to the client where it is decoded and presented in real-
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time to the user. In order to meet the demands of real-time visualization delivery

over congested networks, e-Viz uses different methods for encoding the image stream

at a cost of increased computational load and degraded image quality.

Codecs such as Colour Cell Compression (CCC), JPEG, PNG and Run Length

Encoding (RLE) are implemented in e-Viz. The e-Viz library contains data collec-

tion routines which gather the following data on each codec:

• Compression time.

• Decompression time.

• Compression ratio.

• Processing power.

• Network bandwidth.

This information is then stored in the knowledge-base to assist with future deci-

sion making.

6.4 Abstract Visualization Description Language

To enable the visualization software to be interchangeable a level of abstraction

must be applied to each package allowing a single Abstract Visualization Descrip-

tion Language to be compatible with each. The e-Viz system takes advantage of a

visualization description language, skML [167], which was developed during the gViz

project [146]. The skML description for each visualization task contains information

about each of the functional components required for a visualization process. This

information includes where each process exists, how the processes are interconnected

and details about how each process can be accessed.
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By its abstract nature the skML language allows the description of each visual-

ization task to be translated between visualization software. For example an IRIS

Explorer network can be simply translated into its OpenDX equivalent. Each visu-

alization package should therefore produce an identical image when attempting to

implement the same abstract skML pipeline - see Figure 6.4.

Figure 6.4: The Abstract Visualization Description Language allows a single vi-

sualization task to be rendered using different Visualisation applications - in this

example AVS explorer (left) and VTK (right).

6.5 Towards Autonomic Computing

Although the e-Viz framework currently can only be classed as an adaptive frame-

work many of the feature do tend towards Autonomic Computing :



6.5. Towards Autonomic Computing 131

6.5.1 Self-configuration

e-Viz follows the principles of the gViz [146] reference model, as shown in Chapter

2, where the user is provided with a number of suitable options for rendering their

visualization task, specified at the conceptual level. The process of specifying the

task at the logical and physical levels is left to the e-Viz system. This means that the

user only has to choose the desired type of visualization and not have to understand

how or where it is implemented.

6.5.2 Self-healing

In an attempt to provide self-healing to visualization tasks, the e-Viz system reg-

ularly monitors the status of each visualization component. Should a component

fail to respond then the system will use the forward this information to the associ-

ated pipeline, which will either start a new service or switch to one that is already

running. The method proposed by Roard [67] is used to attempt to restart failed

services to ensure that the visualization quality is not degraded and happens com-

pletely transparently to the user.

6.5.3 Self-optimization

The e-Viz framework allows for self-optimization in two ways. Firstly SimuVis [148]

is used to provide simulations of each of the possible pipeline configurations. This

returns statistics which can be used whilst the simulation is running to dynamically

choose better pipeline configurations. Secondly the use of agents within the system

generate statistics for each component of the pipeline. If any of the agents return

lower performance statistics than expected then the system switch to faster services.
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6.5.4 Self-protection

e-Viz attempts to satisfy the self-protection requirement through redundancy. If the

visualization task is needed for a mission critical application, then multiple services

will be run in parallel. The redundancy strategy within the system will then switch

between services, should one service fail.

6.6 Advantages of using e-Viz

The e-Viz framework is designed to allow application scientists to be able to uti-

lize Grid enabled HPV resources to visualize their data, without needing a prior

knowledge of either the Grid or visualization techniques. BART differs from these

traditional tasks, by utilizing the e-Viz broker to identify remote resources not only

that supply visualization services but also computational services to perform the fea-

ture point extraction and pose estimation. BART also uses the e-Viz API to develop

its own client software, which not only displays the visualization, but composites it

into the video stream of the users view.

6.7 Demonstrating the e-Viz framework

To be able to use the e-Viz framework as part of the BART application, it was

necessary to write our a custom client to the e-Viz system. First a proof of concept

client for e-Viz using the ARToolkit [89] was developed to interact with a simple

visualization task as shown in Figure 6.5.

The e-Viz framework follows the same notation as VTK, using the Eye position,

Look at point and up Vector points to represent the camera position in our remote

visualization. The Eye position represents the actual position of the camera, the
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Figure 6.5: The e-Viz demonstrator using the ARToolkit to steer a simple visual-

ization task.

Look at point represents the point at which the camera is looking and the up Vector

represents the vector that tells us where the top of the camera is and therefore the

top of the image produced by the camera. Figure 6.6 shows both the viewpoint

captured using the ARToolkit and the e-Viz remote rendering of the virtual cone. It

is possible to see an accurate alignment between the locally rendered cone and the

e-Viz remotely rendered cone, showing that this application has been successful.

6.8 Using e-Viz for Remote Rendering

The first Grid enabled version of the software - BART v3, uses e-Viz to render the

virtual artifacts present in our AR view as shown in Figure 6.7. The user’s view-

point is captured by the local machine and the pose estimation is calculated locally.

The pose transformation is used to steer the e-Viz visualization pipeline, which in
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(a) (b)

Figure 6.6: Using e-Viz to remotely render a simple cone using VTK: (a) The simple

ARToolkit based client used to steer the simulation and (b) the remotely rendered

cone is displayed on the client.

the background sends the transformation information to an available visualization

server. Our client then receives the rendered image and composites it locally into

the user’s view.

6.8.1 Rendering the Volume Dataset with e-Viz

MRI datasets of the subjects head are volume rendered to provide the cranium view

provided by BART. In the example dataset shown in Figure 6.8 it is possible to

see both the original dataset and the subjects cranium which has been segmented

manually using itkSNAP [168]. The dataset contains 256 × 256 × 120 voxels. Each

voxel is represented using a 16-bit integer value, making the total size of the dataset

15Mb in size.
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Figure 6.7: The first grid enabled version of BART, uses e-Viz to perform the remote

rendering.

6.8.2 Using BART to steer the e-Viz visualization

The custom client application that was developed for this thesis, uses the e-Viz

launcher to start the volume rendering job. The e-Viz broker uses its Decision

Making Module to provide a recommendation as to which machine to start the

volume rendering on and how to configure the visualization pipeline. Should no

suitable resources be available then e-Viz has the capabilities to start the job on a

less suitable server and dynamically switch servers once the better resources become
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(a) (b)

Figure 6.8: A typical MRI dataset used by BART (a) and the cranium segmented

from the dataset (b).

available, in order to deliver the remote visualization as soon as possible. Many

Grid based resources utilize scheduling or jobs, which can cause user’s to be put

into a queue whilst they wait for their time on the machine. This would be totally

inappropriate with the TMS BART application as it would not be appropriate for

the clinician to be forced to wait.

Once the visualization has started the remote visualization is streamed back

to our client application. e-Viz currently has no support for sending alpha values

to represent transparency within the rendered graphics. Therefore a coloured back-

ground to the visualization was implemented to allow it to be identified and removed

to enable us to composite the rendered graphics into the user’s viewpoint. During

run-time as the user’s viewpoint changes, BART v3 is able to calculate the updated

pose of the calibrated object and use this to steer the camera in the visualization,

using the gViz steering framework.
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6.9 Distributing BART as part of the remote Vi-

sualization pipeline

In order to fully take advantage of the e-Viz resources the BART v3.1 implemen-

tation moves the pose estimation module onto the e-Viz visualization pipeline as

shown in Figure 6.9. In this case the e-Viz visualization is steered directly by the

video stream of the user’s view. e-Viz is used to distribute the pose estimation mod-

ule to a suitable and available resource. The pose estimation module then steers the

visualization pipeline and returns the final view back to the user after compositing

the artificial rendering into the real scene.

6.9.1 BART as a Grid enabled module

Finally a server version of the BART v3.1 software was developed to enable it to

be distributed onto a HPC resource. The e-Viz launcher is now used to find both a

Visualization Server and also an additional computational server which can be used

to run BART. In this case the client encodes the video stream captured from the

user’s viewpoint using a suitable codec and passes it to the HPC machine. The pose

estimation and tracking is then calculated and passed directly to the gViz interface

running on the visualization server to steer the visualization.

Calibration now also takes place on the remote resource. Before the service

is started the calibration views and the user specified transformation information

relating to them, are passed to the server. The server performs the training steps

and returns a flag when it is ready.
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Figure 6.9: The second Grid enabled version of BART extends the pose tracking

and estimation onto remote High Performance Computing (HPC) resources as part

of the e-Viz visualization pipeline.

6.10 Results

The test video generated for Chapter 4, was run using BART v3.1. The time step

was recorded by each component as it was executed, which although would add

overhead time as a disk operations were involved, served to give us an indication on

the proportion of time taken by each component. During this experimental setup,

the following resources were used:

1. The operator’s laptop, with a Sony EyeToy camera capturing the viewpoint.

(1.6GHz Intel Centrino Processor, 1Gb RAM and a nVidia GeForce FX Go5200
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graphics card with 32Mb).

2. The Grid based computational resource. (SGI Altix 3000, 12x Intel Itanium

II Processors and 12Gb RAM)

3. The visualization server. (2x Intel Xenon Processor, 2Gb RAM and a nVidia

Quatro FX graphics card with 256Mb)

Figure 6.10: The average time taken by each component of BART v3.1. The data

has been rounded for illustration purposes.

Whilst processing all 100 frames the average time to process a frame was calcu-

lated at 121.8ms, as shown in Figure 6.10. This is broken down into the nine stages

as listed below, and their average time:

(a) The frame was loaded from the Operator’s laptop and compressed using JPEG

compression. (7.6ms)

(b) This was transferred to the Computational resource using Globus. (23.3ms)

(c) The trained cascaded Haar-classifier utilizes the multiple processors of the com-

putational resource to find a match between the list of feature points from the

viewpoint image and each of the calibration images. (18.7ms)
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(d) The Harris Operator is used to generate a list of feature points from subsection

of the image which has been identified by the Haar-classifier. (3.8ms)

(e) The POSIT algorithm calculates the pose for the virtual object based upon the

feature points. (12.2ms)

(f) The transformation information is sent to the visualization server to steer the

visualization using the e-Viz. (3.6ms)

(g) The subject’s cranium is remotely rendered in VTK. (22.8ms)

(h) The rendered image is transferred back to the operator’s laptop, using a similar

JPEG compression, and the e-Viz framework.(17.6ms)

(i) The captured viewpoint and the rendered graphics are composited and presented

to the user. (12.2ms)

When using the JPEG compression to transport the viewpoint image, it was

found that the typical 640 × 480 image capture was producing data between 20Kb

and 25Kb. Although the data returned from the renderer matches the resolution

of the source image, it was found that the data size was typically smaller because

the singular coloured background tended to compress more easily with JPEG, and

therefore the time taken by (h) was always less than the time taken by (b).

Although we found we were able to process each frame in around 121.8ms, this

still only provides an average frame rate of 8.2FPS, which was not enough to satisfy

the conditions for an AR environment. The computing resources also were being

wasted as they had to wait for each other to complete previous steps.

The solution to this was to stagger the processes as shown in Figure 6.11. BART

was forced to provide a new frame to the system at the desired frame-rate that can
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be specified by the user. As soon as each image is received by the pipeline, it is

processed. A basic management strategy was used to ensure that any old frames

arriving at the client were discarded. By utilizing the resources more efficiently it

was found that we could generate composited images at the same rate that they

were being produced, just at the cost of being delayed by one frame. Figure 6.12

shows the time taken between compositing frames when using our test video, giving

an average time of 68.0ms, which is about 15FPS. It was also found that provided

the virtual artifacts were aligned with the image that they were matched to, the

operator was unable to notice the slight latency.

In Figure 6.12, it is also possible to see the two computational peaks where the

camera was moving between calibrated views.

Figure 6.11: The distributed nature of the BART v3.1 system allows staggered

processes to be overlaid.

Further testing was done to evaluate the robustness and scalability of the system.

The e-Viz visualization servers that were available via the e-Viz broker included:

• Pentium III, 1Ghz, 1Gb RAM, Riva TNT Graphics.

• Athlon 3200, 1Gb RAM, Nvidia Graphics.
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Figure 6.12: This graph shows the time between each frame of our test video that

is returned to the user.

• 12CPU SGI Altix 3000, 12Gb RAM.

• 256CPU SGI Origin 3000.

Each of these services offered VTK as the software rendering tool and it was

found that the visualization could be switched between each of the servers, by syn-

chronizing the visualization state and switching the visualization stream. The data

was rendered at an appropriate resolution to ensure real-time performance was main-

tained depending upon the capabilities of the server. When using the SGI Origin

3000 as the visualization server, which requires each job to pass through a batch

queue, the e-Viz broker dynamically started the job on a lower powered but inter-

active machine to ensure that visualization was available quickly. As soon as the

more powerful machine was available the e-Viz client switched dynamically. Testing

was also done to see how the e-Viz framework handled servers failing. By manu-

ally killing the visualization tasks e-Viz dynamically switched to the next available
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resource, whilst the visualization was automatically restarted on the failed machine.

6.11 Conclusions

This research has shown that although although an average desktop PC does struggle

with the pose estimation, using remote resources can ensure real-time performance.

Provided the visualization server is appropriate for the rendering task the e-Viz

framework is able to return the rendered artifact to the user at a reliable 15 FPS,

where there slight latency. On congested networks the e-Viz framework, compressed

the rendered images using a variety of codecs, including JPEG, PNG and run-length

encoding, and transmitted them to the client. BART was therefore able to use

stricter compression algorithms at a cost to the image quality to try and maintain

these usable frame rates.



Chapter 7

Conclusions and Suggestions for

Future work

This thesis we set out to satisfy the following hypothesis:

’It is possible to create an interactive Augmented Reality interface, using feature

points for registration. It will also be capable of providing high performance visualiza-

tions by seamlessly deploying processing power from a remote, possibly Grid-enabled,

high performance computing resource.’.

This hypothesis was tested using a real world application called Transcranial

Magnetic Stimulation to evaluate the system. This Chapter summarizes the conclu-

sions and examines whether or not the hypothesis has been satisfied.

7.1 State of the Art

Chapter 2, explored the state of the art for AR and looked at many of the supporting

technologies, ranging from immersive displays through to the visualization software

and hardware required to render the high quality 3D graphics. The chapter also

144



7.1. State of the Art 145

looked at how the computational Grid is being used to distribute visualization tasks

to remote HPV resources in response to the demand for rendering larger data-sets

at higher resolutions, whilst still providing interactive real-time frame rates.

In order for the AR environment to be successful and accepted by the user, three

cases must satisfied:

1. The real and virtual world must be combined with an accurate alignment

between the two.

2. The environment must be interactive in and real-time (i.e. more than 15

frames per second).

3. The Computer Graphics must be registered in 3D.

Furthermore, chapter 2 identified several approaches to AR, although the most

successful of these rely upon bold markers to align the virtual artifacts with the real

world. There had also been very little research done into using HPV resources to

render the virtual objects within the AR scene and to use the pose estimation to

steer the virtual camera in the remote simulation.

The Autonomic Computing Model from IBM was also identified, which states

applications much provide four functions to be truly autonomic: Self-configuring,

Self-healing, Self-optimizing and Self-protecting.

This review was used as the motivation for a State of the Art (STAR) Report

presented at Eurographics 2004, in Grenoble, by the e-Viz consortium and was later

refined to become a Journal publication in the Computer Graphics Forum in 2005.
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7.2 Bangor AR for TMS (BART)

In order to evaluate the Hypothesis, Bangor AR for TMS (BART) was developed

to provide a generic AR interface which can be used in real world situations. Three

versions of the software were developed as steps towards finally providing a solution

which was able to fully satisfy our hypothesis. These software steps are concluded

below:

7.2.1 BART v1

BART v1, used a Polaris Optical Tracking System to track the position and orien-

tation of both the subject’s head and the user’s viewpoint. This gave us the scope

to ensure that our software was able to calculate the translations between the user’s

view and the subjects head, and therefore ensure an accurate alignment of the com-

puter graphics to the real world. Also a targeting tool was developed to allow the

operator to specify points within the cranium and provide a guide arrow within the

user’s viewpoint to direct the movement of the tools towards the target.

Although a full validation study is outside the scope of this project, favourable

comments about the ease of use of the AR interface were obtained from the Brain-

sight operator’s in the School of Psychology. The alignment was visually acceptable,

as shown in Figure 7.1, and the AR interface for positioning the coil was more natural

than having to look between the subject and the results displayed on the workstation

monitor (even if the workstation display is also projected onto the wall).

This was the fist time that an AR interface had been implemented for TMS,

by any research group. As a result a paper was accepted for oral presentation at

MMVR 2006 based upon this work.

However there are some limitations as to how well the software could perform.
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The laptop computer only had basic graphics capabilities and although is capable of

rendering the subject’s brain at an average 15FPS, it can only render the graphics

at a very low screen resolution, whilst maintaining this real time performance. It

is also not possible to composite the rendered cranium into the user’s viewpoint

without vastly reducing the FPS and losing the realism of the AR environment.

However these issues are addressed and solutions are found in subsequent versions

of our software.

(a) (b)

Figure 7.1: The BART v1 software showing two of the operator’s views: (a) The

targeting tool helping to align the coil with a region of interest the subjects cranium

and (b) a rendered view allowing the operator to see inside the subjects head.

7.2.2 BART v2

The second version of the software, BART v2, concentrated on moving away from

proprietary optical tracking systems and to attempt to provide a new tracking

and pose estimation using the feature points which have been extracted from the
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user’s viewpoint. A Harris [103] corner detection algorithm was implemented to

extract repeatable feature points from the operator’s viewpoint. A Cascaded Haar-

classifier [159] was then used to estimate the region within the viewpoint that cur-

rently contains the real world object to which we are mapping our virtual artifact. A

POSIT approach [160] was then used to estimate the pose of the real world object,

based upon an initial calibrated view and the comparison of feature points between

the two images, as shown in Figure 7.2. By removing the need for expensive opti-

cal tracking equipment our software provides an inexpensive solution, making the

procedure more accessible to training and further research.

Consequently BART v2 has been successful at providing the alignment of the

virtual and real world objects, provided that optimum environmental conditions are

available. However problems occur when trying to run the AR software on a local

workstation. It is simply too computationally intensive and so can not keep up with

real time video streams.

BART v2 implemented a novel application for combining feature point detection,

with multiple Haar-classifiers for object detection. This work was presented in a

poster presentation at UK e-Science Programme All Hands Meeting in 2006.

7.2.3 BART v3

In the final version of BART, the problem of addressing computational costs was ex-

plored and solved by distributing the pose estimation to a more powerful remote grid

resource. BART v3, integrates the e-Viz [147] framework with High Performance

Visualization (HPV) resources from remote Grid enabled facilities. Two approaches

were followed to integrate BART with e-Viz. In the first version e-Viz was simply

used as a remote rendering tool for the volume data-sets needed for our TMS ex-
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Figure 7.2: The pose tracking and estimation from BART v2.

ample. In order to solve the computational requirements of the pose tracking and

estimation components, e-Viz was used to dynamically locate a suitable High Per-

formance Computing (HPC) resource and distribute the computational load to it as

part of the visualization pipeline.

This thesis demonstrates that although an average desktop PC is unable to

perform our pose tracking and estimation in real-time, using remote resources can

ensure real-time performance. Provided the visualization server is appropriate for

the rendering task, the extended e-Viz pipeline is able to return the rendered artifact

to the user at a usable frame-rate, as shown in Figure 7.3 and with only slight latency.

On congested networks BART is able to compensate by using stricter compression

algorithms at a cost to the image quality to try and maintain these usable frame
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rates.

This later work was shown in a poster that was presented at IEEE Visualization

2006 in Balitimore, as an exemplar application. Further details we provided in two

papers at The Theory and Practise of Computer Graphics at Bangor in 2007, one

detailing the contribution to the e-Viz framework as an exemplar application and

one detailing the AR environment.
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Figure 7.3: This graph shows the time between each frame of our test video that is

returned to the user.

7.3 Conclusions

In order to satisfy the hypothesis the three points listed in Figure 7.4 need to be

satisfied. By following the three stage software development it is clear to see that

each iteration of BART provides better solutions. The final version of the software

fully satisfied the hypothesis, therefore it has been proved.
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Hypothesis BART v1 BART v2 BART v3

Create an AR environment Yes Yes Yes

Use Feature Points for registration No Yes Yes

Seamlessly deploy remote HPV resources No No Yes

Figure 7.4: Summary of the contribution towards evaluating the hypothesis provided

by each software version of BART.

Additionally this thesis makes the following contributions to the state of the art:

• A novel AR interface to the Transcranial Magnetic Stimulation (TMS) using

a Polaris Optical Tracking System has been developed. This allowed the oper-

ator to identify and align the TMS tools with the required regions of interest

on the subject’s cranium, whilst working in a much more natural environment.

The software, Bangor Augmented Reality for TMS (BART) allowed the opera-

tor to see the actual rendering of the subjects cranium whilst interacting with

them rather than focusing away from the subject and looking at a computer

monitor.

• The software was extended to use a framework for tracking, using only a cheap

webcam rather than an expensive proprietary tracking system. By extracting

feature (or corner) points from the user’s viewpoint the system was able to

track the position and pose of the real world object that was being used for

reference. A Haar-classifier technique was combined with a POSIT algorithm

to track the position of the moving object and estimate its change in orientation

and rotation.

• In order to use BART in real-time with large volume datasets, the e-Viz frame-
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work was successfully used to transparently allocate a remote High Perfor-

mance Visualization (HPV) resource to remotely render the virtual artifacts.

• To satisfy the large computational requirements of the BART software it was

finally distributed as part of the visualization pipeline. The e-Viz framework

was used to allocate remote High Performance Computing (HPC) resources.

• During this research a significant contribution was made to the development

and testing of the e-Viz framework, a project which was rated as tending to

outstanding by the EPSRC reviewers.

7.4 Autonomic AR?

By utilizing the e-Viz framework and following its Autonomic approach to visual-

ization, this work demonstrates the potential of Autonomic Visualization and how

resource allocation could impact the way future Augmented Reality applications are

implemented and how users and developers can expect to interact with them. BART

goes further than the hypothesis and provides an Autonmic environment for AR, by

questioning the four conditions IBM laid out for autonomic applications: [66]

7.4.1 Self-configuration

BART uses the e-Viz broker to allocate resources for the computational tasks. It

also inherits the knowledgebase that the e-Viz framework provides to enable self-

configuration of the visualization pipeline. By allowing the user to capture multiple

views of the real-world object to track, BART also dynamically organizes the parallel

cascading Haar-classifiers to perform the object tracking.
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7.4.2 Self-healing

In an attempt to provide self-healing to visualization tasks, the e-Viz system regu-

larly monitors the status of each visualization component. Should a component fail

to respond then the system will use the forward this information to the associated

pipeline, which will either start a new service or switch to one that is already run-

ning. Although the e-Viz framework was extended to monitor the computational

resource, no provision was made for restarting the pose estimation services should

they fail.

7.4.3 Self-optimization

SimuVis [148] allows the simulation of visualization pipelines and therefore can as-

sist in the self-optimization of the visualization pipeline. There are currently no

parameters within the BART application which can be changed during run-time

and so provides no mechanism for self-optimization.

7.4.4 Self-protection

e-Viz attempts to satisfy the self-protection requirement through redundancy. If the

visualization task is needed for a mission critical application, then multiple services

will be run in parallel. The redundancy strategy within the system will then switch

between services, should one service fail. Using the e-Viz frame work it would be

possible to run the pose estimation service on multiple servers and although there

is no provision for migration between servers, the visualization server could choose

to switch pose estimator should one fail.
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7.4.5 Autonomic Computing Conclusions

Although this work moves further towards producing an Autonomic solution, this

has not quite been achieved. In order for BART to be fully Autonomic it must be

able to make intelligent choices about the system configuration. Currently the e-Viz

knowledgebase is fairly limited and has to give the user a list of choices rather than

being able to make the decision intelligently by itself. Therefore the e-Viz framework

has clearly achieved the Adaptive level, on the Autonomic Computing deployment

model, described in Chapter 2.

However, further work would need to be done to turn BART into an autonomic

solution to AR. A mechanism for restarting the remote service is needed to enable

self-healing, and work still needs to be done to expose parameters from the pose

estimation service, which will enable it to be optimized during run-time. There-

fore BART can only be described as a Predictive system, because although it does

use basic knowledge to organize the parallel cascading Haar-classifiers, it does not

provide any mechanism for adaption.

7.5 Future Research Directions

7.5.1 Pose Tracking and Estimation

Future work is to concentrate on improving the efficiency and reliability of the feature

point detection algorithms, ensuring that we have more accurate pose estimation

between frames. Heuristics should be used to help predict the position of the virtual

artifact, even if the system is unable to calculate the pose of the object, by building

up a knowledge base of previous frames. There are several approaches that can be

used to achieve this such as the optical flow techniques that are used by Mooser
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et al, to predict the movement of an object after it has been identified within the

camera view [169]. Using the optical flow, it would be possible to predict where

the object had moved to in the case that we had not found a correct match from

the classifier. This information could also be used to simplify the pose estimation

task by narrowing down the options as to the position and orientation of the virtual

artifact.

Using filters to separate the tracked object from the background could help mak-

ing the registration more efficient, as less incorrect feature points will be identified.

This in turn would lead to a lower computational cost, as less feature points will

need to be matched.

The accuracy of the registration could be improved by using multiple cameras.

This would not only expand the area in which the object can be seen by the camera,

but also provide a better registration should part of the object be occluded from one

camera. When adding the second camera the computational load and bandwidth

for the pose tracking stage would be doubled. However the two cameras could

then work in competition and which ever finds the highest weighted image can be

assumed to have the best view. This method would be limited by the inaccuracy

of the calibration between the cameras and may experience a jump which switching

cameras, if the calibration is not correct.

In order to avoid the rendered image from drifting when switching between cal-

ibration images some basic smoothing could be implemented. This would be par-

ticularly important when the camera is in the mid point between calibrations and

as a result the calibration is constantly switching. It may also be possible to use

a panoramic stitching techniques to create a single image from each of the calibra-

tion images which could be wrapped around a cylinder. Without the abrupt edges
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between images the transitions will naturally be smoother.

BART uses the Harris operator to extract feature points because it is reliable

and produces repeatable feature points. It is however very computationally intensive

and does take advantage of distributed HPC, to ensure real-time performance. If a

more efficient algorithm still provided good enough results then it would be possible

to make the system more efficient.

Since this work began in 2003, a lot of research has been done into using the

Graphics Processing Unit (GPU) for processing data, rather than just graphical

applications as it was designed. It would be possible to port the pose tracking and

estimation software to run on a GPU, which could be fast enough to make it usable

on a simple desktop computer without the need for HPC resources.

7.5.2 Autonomic AR

In order to make BART fully autonomic it would be necessary to modify the remote

server to allow its status to be both queried and restarted. This would allow the

e-Viz broker to properly monitor the status of the server, and if a problem has

occurred to restart it. e-Viz also provides facilities for migrating services between

servers, and running multiple servers in mission critical situations. These facilities

would then be inherited by BART ensuring a more robust system.

In order to allow the software to self-optimize, it would also be necessary to

expose each of the parameters of the cascaded haar-classifier. This would enable

the e-Viz knowledgebase to provide configuration information for each task, and

potentially change the running configuration whilst the system is running.
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7.5.3 Conclusion

Chapter 1 stated, that in order for any AR system to be successful it needed to meet

the following criteria:

• Must be easy to calibrate offline which real world objects are being tracked.

• Needs to be capable of automatically reinitializing should the alignment drift

or an error occur.

• Needs to extract feature points reliably and repeatably.

• Must have a computational cost that can be satisfied in real-time.

• Must provide an accurate alignment of the virtual and real objects.

• Must work in unconstrained environments, such as changing levels of light.

• must be able to be adapted for each required application.

BART provides a very simple to use calibration tool, which allows the operator to

take multiple views of an object within an environment, and then manually calibrate

the virtual objects by aligning it with the environment. By always referencing the

original calibration images BART constantly re-initializes therefore drift could never

occur. Using the Harris Corner detector [103] provides an accurate and repeatable

set of feature point which are used for reference.

The high computational cost required to perform both the pose estimation and

the visualization is addressed by utilizing remote grid enabled HPC resources and

the accurate alignment of the virtual and real world objects is achieved using the

POSIT algorithm [160]. The generic nature of the calibration tool allows the BART
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software to be adapted very easily to many different applications simply by loading

different data sets to represent the virtual objects.

The BART software does not however work well in unconstrained environments,

and future work must be done to ensure an accurate registration in changing levels

of light.

Although this thesis developed a specific AR application, it would now be straight

forward to enable real-time performance for any other AR (or visualization) appli-

cation that has high computational requirements. For example, the Op-3D project

[144] used Grid resources to deliver volume rendered patient data to the operating

room. Developers can now overlay this volume rendered data onto a video stream

of the patient to give the surgeon a truly enhanced interface for hepato-pancreatic

(in the Op-3D example), or any other surgery procedure. There are also many

possibilities from other application domains.
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