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ABSTRACT 

The particle systems approach is a well known technique in computer graphics for 
modelling fuzzy objects such as fire and clouds. The algorithm has also been applied to 
different biomedical applications and this paper presents two such methods: a charged 
particle method for soft tissue deformation with integrated haptics; and a blood flow 
visualization technique based on boids. The goal is real time performance with high 
fidelity results. 
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1. INTRODUCTION 
There is a growing trend to develop simulators for training a variety of medical procedures as there are 
obvious advantages to be gained from enabling training on a virtual patient instead of on real patients. 
Mistakes can be made without risk, different patient physiologies can be used, a variety of pathologies can 
be modelled and the trainee can practice as many times as they need. The challenge of a medical simulator 
is therefore to provide real time interaction (with 3D graphics and haptics interfaces) whilst maintaining a 
fidelity that is high enough to ensure that face, content and construct validity can be achieved in the training 
process. The Medical Graphics group at Bangor has been developing solutions to address this challenge, 
with a particular focus on interventional radiology (IR) procedures. This paper presents two novel ways in 
which we are using the well known particle systems algorithm in this work. 
 
A particle system is a technique used in computer graphics to create certain fuzzy phenomena that are 
otherwise difficult to model [1]. Particle systems have been used to great effect in a wide variety of 
applications to model fire, water, clouds, etc. The technique has also been extended to model large 
collections of boids that exhibit emergent behaviour as a result of each boid following a simple set of rules, 
e.g. a flock of birds or a school of fish [2]. Within medical simulation, blood flowing from wounds, smoke 
and other effects have already been modelled with particle systems, e.g. [3, 4]. The algorithm has also been 
adapted for surface reconstruction and so applied to construct skeletal surfaces and organ interaction [5]. 
For the modelling of muscles, oriented particles were introduced to simulate elastic surfaces by using 
attraction-repulsion forces or virtual springs to model interactions between particles [6, 7]. However, the 
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integration of realistic tissue properties into particle models is not a trivial task. Previous work with 
particles has not included support for a force model that can be used with haptic feedback devices, which is 
an important requirement in a simulation of an IR procedure. In addition, we need to be able to accurately 
visualise the blood flow within an artery, e.g. for the dissipation of an injected contrast agent into the blood 
stream. The use of particle systems for modelling blood has not addressed blood flow within this context.  
 

2. MODELLING PHYSIOLOGY WITH PARTICLE SYSTEMS 
The hypothesis of this research is that particle systems techniques can be used and adapted to provide an 
effective real time implementation for some of the key physiological processes that we need to model in a 
virtual patient. We demonstrate this by focussing on two important areas required in an IR procedure 
simulation: soft tissue deformation of skin and internal organs; and blood flow through a (possibly 
diseased) artery. 
 
2.1 Charged Particle Method for Tissue Deformation with Haptics 
Traditional soft tissue deformation methods are based on Finite Element Modelling (FEM) or a Mass 
Spring Model (MSM). A typical FEM solution e.g. [8], usually offers a deformation model that provides 
high levels of realism but at a high computational cost. This means that the simulation will either not 
provide real time interaction, particularly with haptics, or will require an expensive pre-processing step. 
Conversely a soft tissue model that uses a MSM [9] will trade off the quality of results attained for real 
time interaction. MSM and FEM are both mesh-based approaches, and the resolution of the mesh will also 
have an implication on the performance of any simulation. Cutting or re-structuring of soft tissue will 
require new elements to be created and the mesh to re-calculated, both of which are costly to implement.  
 
Our Charged Particle Model (CPM) [10] provides a visually and haptically realistic simulation that runs on 
a standard desktop machine, and also provides the ability to both deform and restructure soft tissue. Each 
particle within a CPM surface is given a notional electro-magnetic charge, and the haptic interaction point 
(HIP) is also given the same charge. Then the charged particles and the HIP are governed by the rules of 
electro-magnetic interaction i.e. like charges will repel and opposite charges will attract. As the charged 
particles and HIP have a like charge, once the HIP is within is a given distance of the particle surface, the 
surface will then deform accordingly (see Figure 1) with neighbouring particles moving to take up stress 
and slack within the surface in a method similar to that used in the ChainMail Model [11]. Multiple HIPs 
are also supported in the CPM, which provides support for different shaped tools. A Bezier surface can then 
be rendered to provide the visual representation, using the charged particles as control points for the 
surface. 

 
Figure 1: As the HIP, the shaded disc, moves closer to the particles which represent the soft tissue to be deformed then 
under the rules of electromagnetic interaction the particles are repelled accordingly 

 
Results achieved using the CPM demonstrates that real time deformation with haptics can be achieved. We 
typically use around 6000 charged particles and 250,000 points in a Bezier surface, and run at over 30 
frames per second.  
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2.2 Blood Flow Visualization using Boids 
Simulation of blood flow is essential to interventional radiology simulators, such as the injection of contrast 
medium whilst using fluoroscopy. However, the blood flow generally plays a supporting role and must 
appear to behave realistically in real time. The flow does not need to be accurately computed in this case, 
which due to its complexity represents a challenge for conventional methods of simulation, even at a 
macroscopic scale (flow in arteries, veins). We therefore propose a new computer simulated model to 
visualize blood flow in arteries using boids [12].  
 
The boids individual properties (separation, alignment, cohesion) cannot be used to describe individual 
particles of fluid; however their group behaviour, flocking, matches the characteristics of laminar flow 
(collision avoidance, velocity matching, flock centering) and it is suitable for modelling channel flows. Due 
to their nature, a model based on boids algorithm can be used for visualization purposes only; hence our 
method is compared with existing fluid particle based simulation, only qualitatively not quantitatively. Our 
model is based on the idea the each layer of fluid behaves as a flock, interconnected by the parameters 
which govern the flow dynamics. At the macroscopic level blood is seen as a Newtonian fluid and can be 
represented with a particle system. Many similarities with existing particle dynamics systems for fluids are 
kept (kernel function in SPH is replaced by the flock neighbourhood; however the search for nearby 
particles is done in the same way). In order to conserve mass properly we keep constant the number of 
particles inside the domain during the entire simulation. Each particle carry its own physical quantity as 
mass, speed, position, which means that we have control over the entire fluid’s main physical parameters.  
 
The results are compares with many existing benchmarks (non-uniform channel flows, with or without 
obstacles). The following benchmark comparisons (Figures 2 and 3) have been generated to compare our 
results with commercial software. In all figures the red colour emphasizes the layer of fluid with the highest 
velocity, with blue representing the lowest velocity. The boids-based visualization is on the right hand side. 
 

 Figure 2: Flow in a straight channel 
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3. CONCLUSIONS 
In this paper we have shown that we are able to deform and restructure a Charged Particle Model, that is 
both visually and haptically realistic and able to be run in real time on a standard desktop machine. We 
have also shown a particle model which enables the visualization of fluids flow in tubes with non-uniform 
radius considering also fluid interactions with stationary objects. In our simulations the trade of is accuracy 
for speed. The method can be successfully use in complex haptic simulators where the “real-time” aspect of 
the model is essential. 
 
The research hypothesis is shown to be true for the above examples and particle systems techniques can 
indeed be used and adapted to provide an effective real time implementation for some of the key 
physiological processes that we need to model in a virtual patient. We are now working on further 
applications based on these techniques, for example, the simulation of Doppler ultrasound visualization 
effects. 
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