1*" International Conference on Mathematical and Computational Biomedical Engineering — CMBE2009
June 29 — July 1, 2009, Swansea, UK
P. Nithiarasu and R. Léhner (eds)

Computational Requirements of the Virtual Patient

Nigel W. John
School of Computer Science, Bangor University, n.w.john@bangor.ac.uk
Chris J Hughes
School of Computer Science, Bangor University
Serban R. Pop
School of Computer Science, Bangor University
Franck P. Vidal
APIS, INRIA Saclay Research Centre
Oliver Buckley
School of Technology, Oxford Brookes University

ABSRACT

Medical visualization in a hospital can be used to aid training, diagnosis, and pre- and
intra-operative planning. In such an application, a virtual representation of a patient is
needed that is interactive, can be viewed in three dimensions (3D), and simulates
physiological processes that change over time. This paper highlights some of the
computational challenges of implementing a real time simulation of a virtual patient,
when accuracy can be traded-off against speed. Illustrations are provided using projects
from our research based on Grid-based visualization, through to use of the Graphics
Processing Unit (GPU).

Key Words: Medical visualization, virtual environment, Grid, GPU

1. INTRODUCTION

The medical domain provides excellent opportunities for communication and teaching of healthcare issues
using computer graphics, visualization techniques, and virtual environments. Possible applications include
anatomical educational tools; patient education; diagnostic aids; virtual autopsies; planning and guidance
aids; skills training; and computer augmented reality. Both clinicians and patients can benefit from the
appropriate use of tools that make use of these technologies.

The ability to render and manipulate medical data in 3D is one of the core requirements of a medical virtual
environment, but traditionally volume and surface rendering algorithms have been expensive to compute.
The ray casting algorithm, for example, is a O(N?) problem, where N is the dimension of the voxel data set.
Despite the use of optimisation techniques, volume rendering on a single CPU is not an option for real time
performance. A virtual patient must also simulate soft tissues and so the computer graphics rendering must
also deform naturally during interaction with a tool, or as a consequence of physiological processes such as
respiration. Finite Element Modelling is a popular choice for achieving soft tissue deformation, but is also
too slow for real time. Mass spring models can be in real time, but produce lower fidelity results. Cutting
of tissues is another challenge, which often needs a high resolution mesh-based model and the ability to

140



change the topology of that mesh. Fluid dynamics may also be employed for blood flow. In some
applications, the operator and instruments being used will need to be tracked. This can be achieved with
dedicated hardware (such as optical or magnetic tracking), robotic joystick, or by image processing
techniques. This paper examines how the computational demands of all of these requirements can be met so
as to deliver an interactive medical virtual environment. Often accuracy of the model used has to be
sacrificed to achieve the required speed, but even so we can achieve a suitable fidelity of simulation.
Examples are provided below from our research projects and a detailed survey of the principles and
applications of computer graphics in medicine can be found in [1].

2. COMPUTING THE VIRTUAL PATIENT

The computational infrastructure that can be deployed within a hospital continues to evolve and benefit
from recent technology advances. This section contains several examples from our research where we have
taken advantage of and contributed to the state-of-the-art in the field.

2.1 Medical Visualization using the Computational Grid

Grid computing is designed to allow end users transparent access to a wide variety of high performance
computing facilities and data acquisition devices. An excellent example of the Grid being deployed for
visualization tasks is the RAVE system [2], which is now in production release. Our own first experiment
with Grid-based visualization in a hospital setting, however, consisted of a remote visualization application,
where a graphics server processes the patient data and the results are delivered in real time across the
computer network to a client workstation. This can be achieved by streaming the contents of the frame
buffer on the server (where the graphics primitives are rendered) in a similar fashion to how MPEG movie
files are streamed across the Internet. OpenGL Vizserver [3] from SGI was the first product to support
remote visualization, and we used this software for an intra-operative application to aid with hepato-
pancreatic surgery [4]. A volume rendering of the patient’s CT data was delivered to a laptop client in the
operating theatre where it could be interrogated by the surgeon with an easy to use joystick driven
interface. At the time, the CT data sets being used (700 slices at 512 x 512 pixel resolution, with a pixel
size of 0.78 mm and an interslice distance of 1 mm.) were too large to be processed on a local PC. Through
this approach, however, real time rendering was achieved across a 100baseT network link, with a physical
distance of one mile from the server to the operating room. Grid middleware software provided support for
scheduling computer time to coincide with the operation and for security of the patient data.

The lessons learnt from the above were invaluable in the e-Viz project [5] that explored the development of
autonomic visualization and designed a generic adaptive infrastructure for Grid-based visualization. A
particular application that was built on this infrastructure was an augmented reality (AR) interface for a
procedure called transcranium magnetic stimulation (TMS) [6]. TMS requires an electro magnetic coil to
be accurately positioned against a subject’s head. Using AR, a 3D rendering of a subject’s brain can be
overlayed and registered onto a video stream of their head so helping the clinician to position the coil. A
markerless interface was developed to achieve this, in which repeatable feature points are extracted from
known views and then we match the best stored view to the user’s viewpoint using the matched feature
points to estimate the objects pose. Our research has shown that whilst an average desktop PC struggles to
carry out the pose estimation, using remote resources can ensure real-time performance. Provided the
visualization server is appropriate for the rendering task and network latency is low, then the e-Viz
framework is able to return the rendered artefact to the user at a reliable 15 frames/second. On congested
networks e-Viz uses stricter compression algorithms at a cost to the image quality to try and maintain these
usable frame rates.

2.2 The GPU Age

A well known hardware acceleration technique for volume rendering is to use texture mapping hardware
[7] and this method lends itself well for implementation on the Graphics Processing Unit (GPU) found on
all modern PC graphics cards, and is often combined with use of per pixel, or fragment, shaders [8]. The
latest PCI Express architecture allows efficient fetching of texture data from the main memory of the PC
via the graphics bus. Special purpose hardware has also been designed for PCs, for example, the
VolumePro 2000 (TereRecon, USA) implements shear warp rendering and supports memory capacities

141



ranging from 512MB to 16GB, which can handle up to 30000 CT slices. This performance can now often
be matched by the GPU on a high-end graphics card, and even an inexpensive PC can achieve real time for
a 256 cubed voxel data set.

In our simulator for ultrasound guided needle puncture [9], two haptic devices are used: one to manipulate
a virtual ultrasound probe; one to represent the virtual needle. Ultrasound-like images are generated from
the original patient CT data by transforming the appearance using GPU operations via the OpenGL Shading
Language. A 2D multi-planar reconstruction (MPR) image is extracted from the CT voxel data based on the
position and orientation of the virtual ultrasound probe being moved across the skin of the virtual patient.
This can be efficiently achieved using the OpenGL frame buffer object (FBO) architecture. All voxels that
have been penetrated by the virtual needle are assigned a high value corresponding to the metallic material
of the needle shaft, which reflects ultrasound. Acoustic shadowing effects are simulated by post-processing
the MPR image to compute a shadow mask, and high frequency noise is also added. Bright reflections may
occur in ultrasound images at interfaces such as with bone, gas, and fat/tissue. This effect can be produced
in the final image by detecting and enhancing horizontal edges in the MPR image using a Sobel filter.
Finally, the MPR image, the shadow mask and the noise data are blended using multi-texturing. In an
interventional procedure, the needle can then be used as a portal for the entry of other tools such as a
guidewire and catheter. Fluoroscopy images are used in the operating room to keep track of these tools. To
maintain real time performance we have also developed fluoroscopy simulation on the GPU from voxel
data [10] or a polygon mesh [11]. In the latter case, this produces X-ray images using a three pass algorithm
through the OpenGL pipeline. For each X-ray pixel, the first pass computes tissue penetration, the second
computes an intermediary result required in the final pass to compute the cumulative attenuation using the
Beer-Lambert law. This approach is extremely efficient. For example, using full floating point precision,
our results show that the GPU is over 60 times faster than a CPU implementation when computing a 1024 x
768 pixel X-Ray image of a test object made up of 871,414 triangles, with no significant loss of accuracy
(differences smaller than 0.3%).

2.3 Software Techniques

There has been a great deal of research into optimisation of computer graphics algorithms to gain speed
increases — for an overview, refer to [1]. Taking soft tissue deformation as an example, the Chain Mail
algorithm [12] has proved to be a popular alternative to FEM and mass-spring models. With this algorithm
materials are modelled by adjusting deformation limits for individual elements. For a medical simulator,
however, the requirement is not only for rendering speed — often you want to models forces too so that a
haptics interface can be used. Haptics devices require a refresh rate of 1000 Hz to provide a smooth
response and this must be run in parallel with the graphics rendering. In exploring this problem, we have
developed a method based on particle systems, called the Charged Particle Model [13]. The soft tissue is
considered as being composed of a large number of particles that are each assigned a virtual electrical
charge. The haptic interface point is also assigned a virtual charge and forces are then simulated using the
rules of electro-magnetic interaction. Using this approach we have demonstrated that real time performance
for deformation with haptics can be achieved, typically using around 6000 charged particles surrounded by
a Bezier surface of 250,000 points.

Current work at Bangor is looking at other ways of gaining speed through novel use of particle systems.
There is a need to introduce blood flow into our simulators, for example, particularly for vascular
intervention. Our model [14] is based on the idea that each layer of fluid behaves as a flock, interconnected
by the parameters that govern the flow dynamics. At the macroscopic level blood can be considered as a
Newtonian fluid and represented using an underlying particle system. Many similarities with existing
particle dynamics systems for fluids are kept (e.g., the kernel function in smooth particle hydrodynamics
(SPH) is replaced by the flock neighbourhood rule; however the search for nearby particles is still
performed in the usual way). To conserve the mass of the system, we keep the number of particles inside
the domain constant during the entire simulation. Each particle carries its own physical quantities such as
mass, speed and position, which means that control is maintained over the main physical parameters of the
fluid. The result is a real time visualization of blood flow with comparable results to commercial fluid
dynamic software that takes 10-20 seconds to produce a single image.

142



3. CONCLUSIONS

The research projects described above have demonstrated that it is possible to compute a virtual patient for
a real time graphics application. Visualization on the Grid is one possibility and provides the opportunity to
combine 3D visualization with complex simulation algorithms in real time. However, the ever increasing
computational power and very modest cost of desktop PCs make them the ideal platform for running many
of the applications discussed in this paper. There remains a trade off between accuracy and speed with the
latter taking precedence in a medical virtual environment. Despite this, validation studies that we are
actively carrying out with our clinical collaborators show that a sufficient fidelity of simulation can be
obtained for training and educational purposes.

REFERENCES

[1] F.P. Vidal, F. Bello, K.W. Brodlie, D.A. Gould, N.W. John, R. Phillips, and N.J. Avis, Principles
and Applications of Computer Graphics in Medicine, Computer Graphics Forum, Vol. 25 Issue 1,
ppl13-137, 2006

[2] L.J. Grimstead, N.J. Avis, and D.W. Walker, RAVE: Resource-Aware Visualization Environment,
in Proc. of the UK e-Science All Hands Meeting, Nottingham, UK, 2004

[3] C. Ohazama, OpenGL Vizserver White Paper, White Paper, Silicon Graphics, Inc, 1999

[4] N.W. John, R.F. McCloy, and S.Herrman, Interrogation of Patient Data delivered to the Operating
Theatre during Hepato-Pancreatic Surgery using High Performance Computing, Computer Aided
Surgery 9(6), pp235-242, 2004

[5] K.W. Brodlie, J. Brooke, M. Chen, D. Chisnall, C. Hughes, N.W. John, M.W. Jones, M. Riding,
N. Roard, M. Turner, and J.D.Wood, Adaptive Infrastructure for Visual Computing, Proc. of
Theory and Practice of Computer Graphics, Eurographics, pp. 147-156, 2007

[6] C. J. Hughes and N. W. John, A Flexible Approach to High Performance Visualization Enabled
Augmented Reality, Proc. of Theory and Practice of Computer Graphics 2007, Eurographics,
pp181-186, 2007

[7] T.J. Cullip and U. Neumann, Accelerating Volume Reconstruction with 3D Texture Hardware.
Tech. rep., University of North Carolina, Chapel Hill, NC, USA, 1994.

[8] K. Engel, M. Hadwiger, J. M. Kniss, A. E. Lefohn, C. Rezk Salama and D. Weiskopf, Real-time
volume graphics. Tutorial 28 in SIGGRAPH 2004.

[9] F.P. Vidal, N.W. John, A.E.Healey, and D.A. Gould, Simulation of Ultrasound Guided Needle
Puncture using Patient Specific Data with 3D Textures and Volume Haptics, Computer Animation
and Virtual Worlds. Vol. 19, Issue 2, ppl111-127, 2008

[10] F.P. Vidal and N.W. John, Interactive Physically-Based X-Ray Simulation: CPU or GPU?, Stud
Health Technol Inform 125, pp 479-481, 2007

[11] P.F. Villard, F. Bello, F.P. Vidal, N-W. John, C. Hunt, S. Johnson, D. Gould, Percutaneous
transhepatic cholangiography training simulator with real-time breathing motion, 23rd
International Congress of CARS - Computer Assisted Radiology and Surgery, Berlin 2009

[12] S. Gibson, 3D Chainmail: A Fast Algorithm for Deforming Volumetric Objects, Proc. Symposium
on Interactive 3D Graphics, pp 149--154, 1997

[13] O. Buckley and N.W. John, Efficient Soft Tissue Modelling Using Charged Particle Control
Points, Eurographics 2008 Short Paper, Crete, ISSN 1017-4656, 191-194, 2008

[14] C.J. Hughes, S.R. Pop, and N.W. John, Macroscopic Blood Flow Visualization using Boids, 23rd
International Congress of CARS - Computer Assisted Radiology and Surgery, Berlin 2009

143



	A006Plenary Lectures
	AA01Humphrey
	AA02Wall
	AA03Holzapfel
	AA04Taylor
	AA05Ethier
	AA06Baaijens
	AA07Cebral
	AA08Vandevosse
	AA09MiniSymposia
	Abstract_001_32918
	Abstract_002_45937
	Abstract_003_45944
	Abstract_004_45953
	Abstract_005_45957
	Abstract_006_45967
	Abstract_007_59100
	Abstract_008_59119
	Abstract_009_59152
	Abstract_010_45956
	Abstract_011_59101
	Abstract_012_59111
	Abstract_013_59139
	Abstract_014_59047
	Abstract_015_22470
	Abstract_016_45964
	Abstract_017_22509
	Abstract_018_45968
	Abstract_019_45930
	Abstract_020_45931
	Abstract_021_45939
	Abstract_022_45941
	Abstract_023_45942
	Abstract_024_45945
	Abstract_025_45952
	Abstract_026_45962
	Abstract_027_45963
	Abstract_028_45965
	Abstract_029_59092
	Abstract_030_59099
	Abstract_031_59110
	Abstract_032_59133
	Abstract_033_32920
	Abstract_034_45927
	Abstract_035_59103
	Abstract_036_59148
	Abstract_037_51380
	Abstract_038_59055
	Abstract_039_59098
	Abstract_040_59123
	Abstract_041_59159
	Abstract_042_59056
	Abstract_043_51375
	Abstract_044_51376
	Abstract_045_45969
	Abstract_046_59097
	Abstract_047_59116
	Abstract_048_59121
	Abstract_049_59136
	Abstract_050_51379
	Abstract_051_22473
	Abstract_052_45948
	Abstract_053_59138
	Abstract_054_59118
	Abstract_055_45926
	Abstract_056_45961
	Abstract_057_59127
	Abstract_058_22469
	Abstract_059_59149
	Abstract_060_45955
	Abstract_061_45934
	Abstract_062_51451
	Abstract_063_51369
	Abstract_064_59094
	Abstract_065_59129
	Abstract_066_59134
	Abstract_067_59120
	Abstract_067_59120_StandardSessions
	Abstract_068_45966
	Abstract_069_59102
	Abstract_070_59105
	Abstract_071_59126
	Abstract_072_60462
	Abstract_073_59050
	Abstract_074_59051
	Abstract_075_59112
	Abstract_076_59115
	Abstract_077_59128
	Abstract_078_59091
	Abstract_079_59124
	Abstract_080_59135
	Abstract_081_59140
	Abstract_082_59150
	Abstract_083_59151
	Abstract_084_45928
	Abstract_085_45950
	Abstract_086_59095
	Abstract_087_59130
	Abstract_088_45951
	Abstract_089_59108
	Abstract_090_60467
	Abstract_091_45946
	Abstract_092_59122
	Abstract_093_45933
	Abstract_094_59156
	Abstract_095_51441
	Abstract_096_32919
	Abstract_097_45958
	Abstract_098_45960
	Abstract_099_59090
	Abstract_100_32921
	Abstract_101_45940
	Abstract_102_45943
	Abstract_103_59155
	Abstract_104_32917
	Abstract_105_45929
	Abstract_106_59109
	Abstract_107_59117
	Abstract_108_32916
	Abstract_109_59113

